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Abstract 

 
Wolbachia are maternally inherited obligate intracellular bacteria found 

in arthropods, where they induce feminization, male-killing, parthenogenesis, 

and cytoplasmic incompatibility (CI). CI is conditional male sterility, in which 

Wolbachia-infected males successfully mate with infected females, but crosses 

between infected males and uninfected females result in embryonic death. How 

sperm are modified and how the Wolbachia-infected egg rescues them, resulting 

in normal embryonic development, is unknown. 

  The objective of this thesis is to contribute to an understanding of the 

cellular biology of Wolbachia-host interactions, including the mechanism of CI. 

Protein expression in Wolbachia-infected and uninfected Aedes albopictus cells 

was evaluated by 2D PAGE. Proteins expressed exclusively in the presence of 

Wolbachia were identified, and included host actin depolymerizing factor and 

bacterial single-strand binding protein, GroES, 3,4-dihydroxy-2-butanone 4-

phosphate synthase, nucleoside diphosphate kinase, and proteins involved in 

bacterial protein synthesis. 

  Three host proteins (copper zinc superoxide dismutase, glutathione 

peroxidase, and peroxiredoxin) and two bacterial proteins (iron superoxide 

dismutase and bacterioferritin) having antioxidant activity were also identified. 

Antioxidants neutralize reactive oxygen species (ROS) generated by aerobic 

respiration or an immune response and induce cellular damage. Flow cytometric 



 

 

 

 

and microscopic analysis confirmed that ROS is elevated in infected cells and is 

associated with Wolbachia-containing vacuoles in the host cell cytoplasm. In 

Drosophila simulans flies, antioxidant assays showed that ROS is elevated in 

infected reproductive tissues, particularly the testes. To evaluate the effect of 

ROS accumulation, DNA damage was measured in Ae. albopictus cell lines by 

DNA dot blotting for the oxidative lesion 8-oxo-dG, which revealed an 8% 

increase in damage in DNA from infected cells. In D. simulans flies, analysis of 8-

oxo-dG in DNA from whole males by mass spectrometry showed a slight increase 

in the lesion in infected flies, while single cell gel electrophoresis of 

spermatocytes revealed a 20% increase in single and double-stranded breaks as 

a result of Wolbachia infection. The conclusion from these results is that redox 

homeostasis is maintained in Wolbachia-infected insects as a whole. However in 

the densely infected testes Wolbachia-mediated ROS production exceeds 

antioxidant capacity resulting in oxidative DNA damage. The potential role of this 

damage in cytoplasmic incompatibility is discussed.  

 

 
 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

This thesis is dedicated to my parents. Thank you for your love and guidance. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Acknowledgements  

 Thank you to my supervisors Dr. Harriet Harris and Dr. Andrew Keddie. You 

have been incredible mentors and an invaluable source of knowledge and 

support. Dr. Harris, you helped me realize that this was the field for me and got 

me started on this path. You always believed in me, and have provided guidance 

and encouragement throughout this journey. Dr. Keddie, you have been a source 

of strength since the day we met. Thank you for pushing me and challenging me 

to think outside the box. 

 Dr. Warren Gallin, thank you for joining my supervisory committee and 

providing thoughtful advice and direction regarding my research. Your insight 

has advanced my knowledge and my project and is most appreciated. Dr. David 

Evans and Dr. Reuben Kaufman, thank you for being a part of my candidacy exam 

committee. Your questions and discussion points broadened my knowledge base 

and helped direct my research. 

 To my labmates, Phil Batista and Jen Biliske, thank you for making the lab 

such a fun and supportive place to work! Phil, you are always there to discuss 

projects and patiently teach me a little bit of phylogenomics when I need it. Jen, I 

can’t even count the number of exhaustive conversations we have had about 

Wolbachia in our little office. Thank you for being a sounding board, for your 

help in the lab, and for being such a great friend.  



 

 

 

 

 Thank you to the countless people that have been kind and supportive over 

the past several years. Gerry Hilchie, thank you for lending your expertise in cell 

culture and for teaching me so much about insects. Carol Hilchie, thank you for 

being so optimistic and encouraging. It has been such a pleasure getting to know 

you. Michelle Green and Chesceri Mason, your patience with never-ending 

questions and requests is inspirational. Thank you for your kindness and support.  

 Finally, a very special thank you to my family. I can’t imagine a better 

support network. I love you all so very much. Mom and Dad, your unconditional 

love and support have given me the confidence to pursue my dreams and reach 

my goals. Words can’t express the gratitude and respect I have for both of you. 

To my sisters, Nancy and Kelly, thank you for keeping me grounded and 

reminding me not to take myself too seriously. You two have been a source of 

strength and joy. I am so fortunate to have you in my life. To Grandpa Mo, thank 

you for your constant encouragement and for our many dinner dates. I will 

always remember catching up on my work and chatting with you. Also thanks to 

my grandparents that have passed on. Grandma Jean, you were proud of me no 

matter how big or how small the accomplishment. Grandma Ann and Grandpa 

Bill, you never doubted that your granddaughters would achieve their goals. Your 

confidence and support has driven us to make you proud. To Judson, I am so glad 

you found me when you did. Thank you for listening patiently as I talked about 

my research and for being so loving and supportive. 



 

 

 

 

Table of contents 

1. INTRODUCTION ...................................................................................................... 1 

1.1   Bacterial endosymbionts of insects ............................................................................ 1 

       1.1.1   Primary and secondary endosymbionts ............................................................ 1 

       1.1.2   Genome evolution of endosymbionts ............................................................... 3 

1.2   Wolbachia pipientis ..................................................................................................... 4 

       1.2.1   The Wolbachia genome ..................................................................................... 6 

       1.2.2   Reproductive manipulations .............................................................................. 7 

               1.2.2.1   Feminization ............................................................................................ 7 

               1.2.2.2   Male-killing .............................................................................................. 9 

               1.2.2.3   Parthenogenesis .................................................................................... 10 

       1.2.3   Cytoplasmic incompatibility (CI) ...................................................................... 11 

               1.2.3.1   Spermatogenesis: CI modification ......................................................... 12 

               1.2.3.2   Fertilization and development: Maternal rescue .................................. 14 

1.3   The insect immune response .................................................................................... 16 

       1.3.1   Antimicrobial peptides ..................................................................................... 17 

       1.3.2   Phagocytosis .................................................................................................... 18 

       1.3.3   Wolbachia effects on host immunity ............................................................... 21 

1.4   Reactive oxygen species, antioxidants, and cellular damage ................................... 22 

       1.4.1   Reactive oxygen species .................................................................................. 22 

               1.4.1.1   Chemistry and formation ...................................................................... 22 



 

 

 

 

               1.4.1.2   ROS generation and insect immunity .................................................... 26 

       1.4.2   Antioxidants ..................................................................................................... 29 

       1.4.3   Oxidative stress and cellular damage .............................................................. 34 

1.5   Thesis objectives ....................................................................................................... 37 

 

2. MATERIALS AND METHODS .................................................................................. 47 

2.1   Model organisms ....................................................................................................... 47 

       2.1.1   Aedes albopictus (Aa23) cell lines .................................................................... 47 

       2.1.2   Drosophila simulans Riverside (DSR) fly stocks ............................................... 48 

       2.1.3   Wolbachia diagnostics ..................................................................................... 49 

               2.1.3.1   DNA extractions ..................................................................................... 49 

               2.1.3.2   Polymerase chain reaction .................................................................... 49 

               2.1.3.3   Wolbachia visualization by immunofluorescence ................................. 50 

2.2   Proteome analysis of Wolbachia-infected Aa23 cells ............................................... 52 

       2.2.1   Protein purification from Aa23 and Aa23T cell lines ....................................... 52 

       2.2.2   2 Dimensional polyacrylamide gel electrophoresis ......................................... 53 

       2.2.3   MS/MS analysis and protein identification using Mascot ............................... 54 

2.3   Evaluation of reactive oxygen species (ROS) formation in Aa23 cells ...................... 55 

       2.3.1   ROS labelling .................................................................................................... 55 

       2.3.2   Flow cytometric analysis .................................................................................. 55 



 

 

 

 

       2.3.3   Microscopic analysis ........................................................................................ 56 

2.4   Analysis of superoxide dismutase (SOD) levels in DSR and DSRT  

        reproductive tissue  ................................................................................................... 57 

       2.4.1   Ovary and testis dissections and protein preparation .................................... 57 

       2.4.2   SOD assay ......................................................................................................... 57 

2.5   DNA damage in Wolbachia-infected cells and insects .............................................. 60 

       2.5.1   Analysis of 8-oxo-dG in Aa23 and Aa23T cell lines .......................................... 60 

               2.5.1.1   DNA extraction ...................................................................................... 60 

               2.5.1.2   DNA dot blot .......................................................................................... 60 

       2.5.2   Quantification of 8-oxo-dG in male DSR and DSRT flies .................................. 62 

               2.5.2.1   DNA extractions ..................................................................................... 62 

               2.5.2.2   MS/MS analysis ..................................................................................... 63 

       2.5.3   Single cell gel electrophoresis (SCGE) of Drosophila spermatocytes .............. 64 

 

3. RESULTS ............................................................................................................... 67 

3.1   Wolbachia in Aedes  albopictus cell lines and Drosophila simulans flies .................. 67 

       3.1.1   Antibiotic treatment and PCR analysis of Aa23 and Aa23T cells ..................... 67 

       3.1.2   PCR analysis of DSR and DSRT flies .................................................................. 67 

       3.1.3   Immunofluorescence of Wolbachia in Aa23 cells ........................................... 68 

3.2   Proteome analysis of Wolbachia-infected Aa23 cells ............................................... 68 

       3.2.1   2 dimensional protein fingerprint of Aa23 and Aa23T cell lines ..................... 68 



 

 

 

 

       3.2.2   Protein identification by MS/MS ..................................................................... 69 

                3.2.2.1   Host (Aedes  albopictus) proteins ......................................................... 69 

                3.2.2.2   Endosymbiont (Wolbachia) proteins .................................................... 71 

3.3   Evaluation of reactive oxygen species (ROS) formation in Aa23 cells ...................... 73 

       3.3.1   Flow cytometric analysis .................................................................................. 73 

       3.3.2   Microscopic analysis ........................................................................................ 74 

3.4   Analysis of superoxide dismutase (SOD) levels in DSR and DSRT  

        reproductive tissues .................................................................................................. 74 

       3.4.1   SOD levels in DSR/DSRT ovaries and testes ..................................................... 74 

3.5   DNA damage in Wolbachia-infected cells and insects .............................................. 75 

       3.5.1   Analysis of 8-oxo-dG in Aa23 and Aa23T cell lines .......................................... 75 

       3.5.2   Quantification of 8-oxo-dG in male DSR and DSRT flies by MS/MS   

                    analysis ............................................................................................................ 76 

       3.5.3   Single cell gel electrophoresis (SCGE) of Drosophila spermatocytes .............. 76 

 

4. DISCUSSION ........................................................................................................ 108 

4.1   Symbiotic equilibrium: The balance between ROS formation and  

         antioxidant expression in Wolbachia-infected insects ........................................... 108 

       4.1.1   Antioxidant expression .................................................................................. 108 

       4.1.2   ROS formation ................................................................................................ 116 

       4.1.3   Evolution of symbiosis and redox homeostasis ............................................. 118 



 

 

 

 

4.2   Oxidative stress in Wolbachia-dense tissues: Role for oxidative damage in  

        Wolbachia-induced reproductive phenotypes ........................................................ 122 

       4.2.1   ROS and antioxidants in D. simulans testes and ovaries ............................... 122 

       4.2.2   Sperm DNA damage and infertility ................................................................ 124 

       4.2.3   Support for ROS mediated cytoplasmic incompatibility ............................... 126 

4.3   The proteome of Wolbachia-infected Aa23 cells: Insight into symbiosis .............. 134 

       4.3.1   Host actin depolymerizing factor: Bacterial manipulation of host  

                   machinery ...................................................................................................... 135 

       4.3.2   Bacterial replication and protein synthesis/folding: The maintenance  

                  of an intracellular lifestyle .............................................................................. 136 

       4.3.3   Bacterial 3,4-dihydroxy-2-butanone 4-phosophate synthase: Evidence 

                  of a  riboflavin supplement pathway  ............................................................. 140 

       4.3.4   Bacterial nucleoside diphosphate kinase (Ndk): Potential for a  

            unique bacterial-host interaction ........................................................................ 141 

4.4   Conclusions and future directions .......................................................................... 143 

 

5.   REFERENCES .............................................................................................................. 147 

 

6.   APPENDIX I: Fly media recipes ................................................................................. 211 

 

 



 

 

 

 

List of Tables 

 

Table 3.2.1   Identification of proteins unique to Wolbachia-infected Aedes   

                       albopictus cells by LC/MS/MS .................................................................... 100 

Table 3.2.2   Peptide alignment of host proteins (Aedes albopictus) identified by  

                        LC/MS/MS  ................................................................................................. 104 

Table 3.2.3   Peptide alignment of endosymbiont proteins (Wolbachia pipientis)  

                       identified by LC/MS/MS ............................................................................. 106 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

List of Figures         

Figure 1.1 Cytoplasmic incompatibility in Wolbachia-infected insects ..................... 39 

Figure 1.2 Spermatogenesis in Drosophila ................................................................. 41 

Figure 1.3      The cellular basis of cytoplasmic incompatibility ........................................ 43 

Figure 1.4      The formation of reactive oxygen species (ROS) and neutralization  

                        by antioxidants ............................................................................................ 45 

Figure 3.1.1   PCR analysis of Aedes albopictus cells naturally infected with  

                        Wolbachia (Aa23) and cleared of infection using antibiotics (Aa23T) ........ 78 

Figure 3.1.2    PCR analysis of Drosophila simulans Riverside flies infected with  

                         Wolbachia (DSR) and cleared of infection using antibiotics (DSRT)  ......... 80 

Figure 3.1.3   Fluorescent microscopy of Wolbachia-infected and uninfected  

                         Aedes albopictus cells ................................................................................. 82 

Figure 3.2.1    Protein map of soluble extract from Wolbachia-infected and  

                           uninfected Aedes albopictus cells by 2 dimensional       

                          polyacrylamide gel electrophoresis .......................................................... 84 

Figure 3.3.1    Analysis of ROS formation in Wolbachia-infected and uninfected       

                          Aedes albopictus cells by flow cytometry using the fluorescent ROS                         

                          marker carboxy-H2DCFDA ......................................................................... 86 

Figure 3.3.2   Microscopic analysis of ROS formation in Wolbachia-infected and  

                          uninfected Aedes albopictus cells labeled with the fluorescent ROS  

                          marker carboxy-H2DCFDA ......................................................................... 88 



 

 

 

 

 

Figure 3.4.1    Evaluation of superoxide dismutase (SOD) activity in protein  

                         extracts generated from Wolbachia-infected (DSR) and uninfected  

                         (DSRT) reproductive tissue of Drosophila simulans flies    ......................... 90 

Figure 3.5.1   DNA dot blot analysis of 8-oxo-dG in Wolbachia-infected and  

                         uninfected Aedes albopictus cells  ............................................................. 92 

Figure 3.5.2     Quantification of 8-oxo-dG in Wolbachia-infected (DSR) and  

                          uninfected (DSRT) genomic DNA from male Drosophila simulans  

                          flies by ultra-high pressure liquid chromatography–heat assisted   

                          electrospray ionization- tandem mass spectrometry  .............................. 94 

Figure 3.5.3    Analysis of DNA damage in Wolbachia-infected (DSR) and  

                        uninfected (DSRT) Drosophila simulans spermatocytes by single  

                         cell gel electrophoresis    ............................................................................ 97 

 

 

 

 

 

 

 

 



 

 

 

 

List of Abbreviations 

2D PAGE 2 dimensional polyacrylamide gel electrophoresis 

8-oxo-dG 7,8-dihydro-8-oxo-2’-deoxyguanosine 

Aa23 Aedes  albopictus embryonic cell line,  infected with Wolbachia  

Aa23T Aedes  albopictus embryonic cell line , cured of Wolbachia 

ADF Actin depolymerising factor 
 

AH Androgenic hormone 

Ahp alkyl hydroperoxide reductase 

AIF Apoptosis-inducing factor 

AP Abasic site (apurinic/apyrimidinic site) 

BCP bacterial comigratory protein 

BER Base excision repair 

Bfr Bacterioferritin 

carboxy-
H2DCFDA 
 

5-(and-6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate 

Cdk-1 Cyclin dependent kinase-1 

CEB Cell extraction buffer 

CI Cytoplasmic incompatibility 

D. mel Drosophila melanogaster 

DAPI 4′,6-Diamidino-2-phenylindole dihydrochloride 

DIF Dorsal-related immunity factor 

Dps DNA-binding protein from starved cells 



 

 

 

 

DSR Drosophila simulans  Riverside, infected with Wolbachia  

DSRT Drosophila simulans Riverside, cured of Wolbachia  

DTT Dithiothreitol 

Duox Dual oxidase 

EF-Tu Elongation factor Tu 

ERK Extracellular signal-regulated kinase  

FtnA Ferritin-A 

Fur Ferric uptake regulator 

GGR Global genome repair 

GNBP 
 
GPx 
 

Gram negative binding protein 
 
Glutathione peroxidise 

GSC Germline stem cell 

GSH Reduced glutathione 

HPI Hydroperoxidase I 

HPII Hydroperoxidase II 

HR Homologous recombination 

IAA Iodoacetamide 

IMD Immune deficiency 

ird Immune response defective 

ISC Intestinal stem cell 

JNK Jun kinase 



 

 

 

 

LCV Legionella-containing vacuole 

MLST 
 
MMR 

Multilocus sequence typing 
 
Mismatch repair 
 

Ndk Nucleoside diphosphate kinase 

NEB Nuclear envelope breakdown 

NER Nucleotide excision repair 

Nf-KB Nuclear factor kappa B 

NHEJ Non-homologous end-joining 

Nox NADPH oxidase 

Ns-Gpx Nonselenium glutathione peroxidase 

PBS Phosphate-buffered saline (pH 7.2-7.6) 

PCR Polymerase chain reaction 

PG Peptidoglycan 

PGRP Peptidoglycan receptor protein 

PI Parthenogensis inducing 

PLCβ Phospholipase C-β 

Prx Peroxiredoxin 

ROS Reactive oxygen species 

RRF Ribosome releasing factor 

SCGE Single cell gel electrophoresis 

SDS Sodium dodecyl sulfate 



 

 

 

 

SOD Superoxide dismutase 

SSB Single strand binding protein 

TBHP tert-butyl hydroperoxide 

TCR Transcription-coupled repair 

TEMPO                
 
TNF 

2,2,6,6-tetramethylpiperidine 1-oxyl 
                                                                                                                    
Tumour necrosis factor 
 

TPx Thioredoxin peroxidase 

Trx Thioredoxin 

wBm Wolbachia strain found in Brugia malayi 

wMel Wolbachia strain found in Drosophila  melanogaster 

wRi Wolbachia  strain found in Drosophila simulans Riverside 

wsp Wolbachia surface protein 

 
 

 

 

 



1 

 

 

 

1. INTRODUCTION 

1.1 Bacterial endosymbionts of insects 

 Symbiotic relationships between prokaryotes and eukaryotes are 

widespread in nature, although they often receive little attention. One of the 

most fascinating partnerships is that of insects and inherited symbiotic bacteria. 

These associations have evolved over millions of years and have contributed to 

the diversity and success of insects. Many insects thrive on nutritionally deficient 

food sources (phloem, xylem sap, blood) because symbionts supplement their 

dietary needs (Douglas, 2009; Gosalbes et al., 2010). Some symbionts provide 

their hosts with protection against pathogens, parasites, and predators (Haine, 

2008).  In return, bacterial symbionts gain a safe and protected environment. 

However, they often act as parasites, manipulating the host to their advantage 

(Bandi et al., 2001). As a result, symbiotic relationships between insects and 

bacteria have evolved to become a complex balancing act of interactions (Harris 

et al., 2010). An understanding of these interactions is invaluable to 

comprehending prokaryote-eukaryote interactions in a broader sense.  

 

1.1.1 Primary and secondary endosymbionts 

 Endosymbiotic bacteria are found exclusively in the intracellular 

environment. Two categories of endosymbionts have been described, based on 

their host dependence. The primary, or P-endosymbionts are vertically 
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transmitted obligate mutualists, display long evolutionary histories with their 

host and are found within specialized organs called bacteriomes which consist of 

a group of host cells referred to as bacteriocytes (Moran et al., 2008). The best 

studied example is Buchnera aphidicola, the primary endosymbiont of the pea 

aphid Acyrthosiphon pisum. Buchnera are gamma-proteobacteria located in a 

bacteriome adjacent to the ovariole within the insect hemocoel (reviewed in 

Baumann et al., 1995; Brinza et al., 2009). This relationship is  estimated to be 

over 180 million years old and both partners have lost the ability to function 

independently (Moran et al., 1993). The genome of Buchnera is significantly 

reduced, a consequence of an intracellular lifestyle, leaving it dependent upon 

the host for many nutrients, including most non-essential amino acids 

(Shigenobu et al., 2000). However, Buchnera has retained genes required to 

provide its host with essential amino acids that are lacking in the aphid diet of 

phloem sap (Douglas, 1998; Moran et al., 2003; Wilkinson and Ishikawa, 2000). 

Non-essential amino acids are often precursors for the biosynthesis of essential 

amino acids; Buchnera and its aphid host therefore not only complement each 

other metabolically, but are dependent on each other for survival. Blochmannia 

floridanus (gamma-proteobacteria), the primary endosymbiont of carpenter 

ants, also supplements the host with essential amino acids (Feldhaar et al., 

2007), while Wigglesworthia glossinidia (gamma-proteobacteria), provides 
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vitamins and is required for female fecundity in tsetse flies (Glossina spp.) (Pais 

et al., 2008). 

 The secondary symbionts , or S-symbionts have more recently established 

associations with their host, are not restricted to vertical transmission, are found 

in various cell types, and are facultative from the standpoint of the host (Harris 

et al., 2010; Moya et al., 2008). Wolbachia pipientis are well-known S-symbionts, 

however, the variety of S-symbionts includes Hamiltonella defensa, Regiella 

insecticola, and Serratia symbiotica, all of which are gamma-proteobacteria 

common to aphids (Moran et al., 2005). Whiteflies harbour bacteria in the genus 

Hamiltonella, in addition to Wolbachia and Rickettsia, the gamma-

proteobacteria Arsenophonus, and the sphingobacterium Cardinium (Chiel et al., 

2007; Skaljac et al., 2010). Mites are also popular hosts for S-symbionts; in 

addition to Wolbachia and Cardinium, they often carry Spiroplasma 

(Mollicutes)(Enigl and Schausberger, 2007). 

 

1.1.2 Genome evolution of endosymbionts 

 Endosymbiotic bacterial genomes exhibit a bias towards adenine and 

thymine base composition, erosion of the bacterial genome due to a lack of 

selection, and deletional bias (Mira et al., 2001; Moran et al., 2008; Rio et al., 

2003). This is especially true of the P-endosymbionts, which have some of the 

smallest functional genomes documented (Akman et al., 2002; Gil et al., 2002; 
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Gil et al., 2003). S-symbionts appear to be in various stages of evolutionary 

transition,  having genomes of intermediate size compared to free-living relatives 

which are littered with repetitive DNA, mobile genetic elements,  and 

pseudogenes (Dale et al., 2006; Darby et al., 2010; Degnan et al., 2010; Degnan 

et al., 2009; Wu et al., 2004). As the bacterial genome evolves, the symbiont 

becomes increasingly reliant on its host for critical cell processes. Because one 

insect may harbour several endosymbionts simultaneously, isolating and 

studying these fastidious bacteria is a considerable challenge. 

 

1.2 Wolbachia pipientis  

 Wolbachia are inherited S-symbionts of arthropods belonging to the 

alpha-proteobacteria, order Rickettsiales, and are closely related to the genera 

Neorickettsia, Anaplasma, and Ehrlichia (Dumler et al., 2001; Hotopp et al., 2006; 

O'Neill et al., 1992). They are small (0.5-1.2 μm), Gram negative, and coccoid to 

rod-shaped (Hertig, 1936; Popov et al., 1998). Wolbachia were first described in 

the ovaries of Culex pipiens (Hertig and Wolbach, 1924) and have since been 

detected in 20-76 % of arthropod species (Jeyaprakash and Hoy, 2000; Kikuchi 

and Fukatsu, 2003; Tagami and Miura, 2004; Werren and Windsor, 2000; Werren 

et al., 1995b). A recent meta-analysis predicts that approximately 66 % of 

arthropods may be Wolbachia-positive (Hilgenboecker et al., 2008). Wolbachia 

have been documented in all of the major insect orders (Harris and Braig, 2003; 
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Werren et al., 1995a), and while different strains have been identified based 

upon their host association, overall similarity has led to the designation of a 

single type species, Wolbachia pipientis, , Other invertebrates, including several 

species of filarial nematodes (Bandi et al., 1998; Casiraghi et al., 2001a; Casiraghi 

et al., 2001b; Keiser et al., 2008) and isopod crustaceans (Bouchon et al., 1998; 

Cordaux et al., 2004; Wiwatanaratanabutr et al., 2009) also harbour Wolbachia. 

 Maternal inheritance through the egg cytoplasm (Serbus et al., 2008; 

Serbus and Sullivan, 2007; Tram et al., 2003) is the common mode of 

transmission for Wolbachia, but horizontal transmission is also known to occur 

(Baldo et al., 2008; Batista et al., 2009; Huigens et al., 2004; Huigens et al., 2000; 

Vavre et al., 1999). Wolbachia are found within the host cell cytoplasm bound by 

three membranes:  an outer layer, which is of host origin, followed by the 

bacterial cell wall and plasma membrane (Louis and Nigro, 1989). Wolbachia are 

believed to replicate within these vacuoles, as multiple bacteria are often 

observed within a single locale (O'Neill et al., 1997).  Wolbachia are consistently 

found in reproductive tissue and have also been identified in the hemolymph 

and somatic tissues including muscle, fat body, midgut, brain, salivary glands, 

and Malpighian tubules (Cheng et al., 2000; Clark et al., 2005; Dobson et al., 

1999).  
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1.2.1 The Wolbachia genome 

 Wolbachia genomes from several insect hosts have been sequenced and 

annotated, including wMel from Drosophila melanogaster, 1.27 Mb (Wu et al., 

2004), wPip from Culex pipiens, 1.48 Mb (Klasson et al., 2008) and wRi from 

Drosophila simulans, 1.45 Mb (Klasson et al., 2009b). E. coli, a free-living 

proteobacteria, has a genome size of approximately 4.6 Mb (Blattner et al., 

1997). Like most obligate bacterial symbionts, the Wolbachia genomes are 

significantly reduced as a result of deletional bias. For example, wMel has lost 

genes involved in cell envelope biogenesis and cell wall synthesis; numerous 

other genes are defective and in various stages of degradation (Wu et al., 2004). 

 The genomes of wMel, wRi, and wPip are similar in G + C content (34.3-

35.2%), and contain unusually large amounts of repetitive DNA and DNA 

corresponding to mobile genetic elements, including several prophages (Klasson 

et al., 2008; Klasson et al., 2009b; Wu et al., 2004).  A unique feature of the 

Wolbachia genomes is the presence of numerous genes coding for ankyrin 

repeat domains, which are tandem repeats commonly found in eukaryotic 

proteins, but less frequently in prokaryotes. Ankyrin repeats mediate protein-

protein interactions and are involved in many cellular processes, including cell 

cycle regulation, ionic transport, cytoskeleton interactions, signal transduction, 

development, and differentiation (reviewed in Hryniewicz-Jankowska et al., 

2002; Li et al., 2006a; Sedgwick and Smerdon, 1999). Ankyrin-repeat containing 
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proteins are believed to mediate Wolbachia-host interactions and play a role in 

the manipulation of host reproductive biology (Iturbe-Ormaetxe et al., 2005; 

Walker et al., 2007). 

 It is interesting to note that lateral gene transfer from Wolbachia to its 

host is not uncommon. It has been documented within both insect and 

nematode hosts (Hotopp et al., 2007). The transfer of short insertions up to 

nearly the entire genome has been reported (Hotopp et al., 2007; Klasson et al., 

2009a; Kondo et al., 2002). Such transfer may play an important role in the 

evolution of the host (Klasson et al., 2009a). 

 

 1.2.2 Reproductive manipulations 

 Wolbachia have the remarkable ability to alter host reproduction to give 

infected females a selective advantage. Since Wolbachia are maternally 

inherited, this enhances the spread and persistence of infection. Wolbachia are 

therefore referred to as reproductive parasites. Reproductive manipulations 

include feminization, male-killing, parthenogenesis, and cytoplasmic 

incompatibility (reviewed by Duron et al., 2008; Engelstadter and Hurst, 2009). 

 

1.2.2.1     Feminization 

 The development of chromosomal males as functional phenotypic 

females is known as feminization. Wolbachia-induced feminization is common in 
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isopods (Bouchon et al., 1998; Rousset et al., 1992). Wolbachia are believed to 

inhibit differentiation of the androgenic gland, which produces the male 

androgenic hormone (AH), and is often hypertrophied in infected intersexes 

(Nasr et al., 2010; Rigaud et al., 1997; Rigaud et al., 1999). In some isopods, 

Wolbachia may also interfere with AH receptors, preventing masculinization 

even in the presence of AH (Rigaud et al., 1997; Rigaud et al., 1999). Feminizing 

Wolbachia have been identified in only two insects: the leafhopper Zyginidia 

pullula (Hemiptera) (Negri et al., 2006) and the moth Eurema hecabe 

(Lepidoptera)  (Hiroki et al., 2002). While the exact mechanism of feminization is 

unknown, recent work in Z. pullula suggests that epigenetic modification is 

involved. In this case, Wolbachia disrupts normal male genomic imprinting by 

altering cytosine methylation patterns, presumably modifying the expression of 

genes involved in sex determination and development (Negri et al., 2009). Narita 

and colleagues (2007) found that in the E. hecabe, for Wolbachia to successfully 

feminize genetic males, it must act continuously on its host throughout larval 

development. Sex determination in  Z. pullula and E. hecabe differs significantly: 

the former by XO/XX, in which the absence of a second sex chromosome 

determines a male and the latter by  ZZ/ZW, in which the female is 

heterogametic (Sanchez, 2008), and this may influence the mechanism of 

feminization. However, both studies found that the intensity of feminization is 

correlated with Wolbachia density (Narita et al., 2007; Negri et al., 2009). 
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1.2.2.2     Male-Killing 

 Male-killing Wolbachia have been identified in arachnids (Zeh et al., 

2005) and three insect orders: Coleoptera (Fialho and Stevens, 2000; Hurst et al., 

1999), Lepidoptera (Dyson et al., 2002; Hurst et al., 1999; Jiggins et al., 2000; 

Kageyama and Traut, 2004; Mitsuhashi et al., 2004), and Diptera (Dyer and 

Jaenike, 2004; Hurst et al., 2000; Sheeley and McAllister, 2009). The result of 

Wolbachia in these arthropods is a sex ratio that is either exclusively female or 

highly female-biased. Wolbachia-induced male-killing occurs during embryonic 

stages; cannibalism of these eggs by sister siblings upon emergence provides a 

valuable source of nourishment to infected females (Hurst and Majerus, 1993). 

The mechanism of male-killing is unknown; however, recent research has 

provided unique insight. In the butterfly Hypolimnas bolina, inhibition of 

Wolbachia proliferation in females by bacteriostatic antibiotics delayed male-

killing until larval stages, and treatment of infected male larva with bacteriocidal 

antibiotics permitted full rescue of males (Charlat et al., 2007). This suggests that 

Wolbachia’s effect is not limited to embryonic stages of development. In moths 

in the genus Ostrinia, males infected with Wolbachia die during larval 

development, but females require Wolbachia for survival (Kageyama and Traut, 

2004; Sakamoto et al., 2007). The Wolbachia present are capable of feminizing 

the host, and complete feminization is believed to be the basis of male mortality 

(Kageyama and Traut, 2004; Sakamoto et al., 2007).  
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1.2.2.3      Parthenogenesis 

 Wolbachia are capable of inducing thelytokous parthenogenesis in 

infected females, a phenomenon commonly found in insects which employ 

haplodiploid sex determination, wherein males develop from unfertilized haploid 

eggs, and females develop from fertilized diploid eggs.  Parthenogenesis-

inducing  (PI) Wolbachia have been documented in Hymenoptera (Arakaki et al., 

2000; Gottlieb et al., 2002; Plantard et al., 1998; Reumer et al., 2010) and 

Thysanoptera (Arakaki et al., 2001) and other arthropods such as mites (Acari) 

(Weeks and Breeuwer, 2001). Female hosts infected with PI Wolbachia produce 

eggs that develop into females, whether they are fertilized or not. Restoration of 

diploidy in unfertilized eggs by gamete duplication has been described in several 

Wolbachia-infected insects by two different mechanisms.  In the first, common 

to parasitic wasps in the genera Trichogramma and Leptopilina, the two sets of 

chromosomes fail to separate in the first mitotic anaphase, resulting in a nucleus 

with two sets of identical chromosomes (Pannebakker et al., 2004; Stouthamer 

and Kazmer, 1994).  In the second, described in the wasp Muscidifurax uniraptor, 

gamete duplication occurs by fusion of haploid nuclei following the first mitotic 

division (Gottlieb et al., 2002).  Both types of gamete duplication result in 

completely homozygous female offspring. In mites of the genus Bryobia, instead 

of gamete duplication, Wolbachia induce apomictic parthenogenesis, in which 
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meiosis does not occur and the genotype of the offspring is heterozygous and 

identical to the mother (Weeks and Breeuwer, 2001). 

 Many insects, including the parasitic wasps Leptopilina clavipes, 

Telenomus nawai, and Asobara japonica, and the thrips Franklinothrips 

vespiformis   have evolved with PI Wolbachia to fixation, resulting in populations 

which reproduce exclusively by thelytokous parthenogenesis and females that 

have lost the ability to reproduce sexually (Arakaki et al., 2001; Jeong and 

Stouthamer, 2004; Kremer et al., 2009a; Pannebakker et al., 2005). The 

progression of Wolbachia from a facultative reproductive parasite to obligate 

reproductive mutualist is apparent in such cases. 

 

1.2.3 Cytoplasmic incompatibility (CI) 

 Wolbachia induced cytoplasmic incompatibility (CI) was first identified in 

1971 (Yen and Barr) and is conditional male sterility. Crosses between 

Wolbachia-infected males and uninfected females result in nonviable embryos, 

while all other crosses are successful (Sinkins, 2004) (Figure 1.1). CI is the most 

common Wolbachia-induced reproductive phenotype, and has been noted in all 

the major insect orders (Harris and Braig, 2003). The intensity of CI is dependent 

on numerous factors including environment, host age and genetic background, 

and strain and density of Wolbachia (Bordenstein and Werren, 2007; Clancy and 

Hoffmann, 1998; Turelli and Hoffmann, 1995). Hatch rates may be reduced by as 
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little as 15%, as seen in some populations of D. melanogaster (Hoffmann et al., 

1994) to nearly 100%, as in Culex pipiens (Duron et al., 2007; Rasgon and Scott, 

2003).  When more than one Wolbachia strain are present in a population, both 

parents must harbour the same or compatible strains for eggs to be viable; this is 

called bidirectional CI (Bordenstein and Werren, 2007; O'Neill and Karr, 1990). 

Wolbachia are maternally inherited, and by inhibiting the success of matings 

which fail to yield infected individuals, CI causes an increase in the frequency of 

infection within a population with each generation. 

 While the mechanism of CI is unknown, two important details are widely 

agreed upon: (1) Wolbachia somehow “modify” the sperm within an infected 

male and, (2) the Wolbachia-infected egg “rescues” the modification, resulting in 

normal embryonic development (Werren, 1997) .  

 

1.2.3.1     Spermatogenesis: CI modification 

 Spermatogenesis in Drosophila has been reviewed in detail by Fuller 

(1993)(Figure 1.2). It begins with the asymmetric division of a germline stem cell 

(GSC) at the apex of the testes yielding a new stem cell and a primary 

spermatogonium. The spermatogonium is encapsulated by two somatic cyst 

cells, and then undergoes four mitotic divisions to form a cyst of 16 primary 

spermatocytes connected by cytoplasmic bridges called ring canals. Primary 

spermatocytes undergo growth and gene expression during this time, increasing 
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in volume 25 fold. As the cyst migrates distally within the testis, each primary 

spermatocyte divides meiotically to form 32 secondary spermatocytes and then 

64 haploid spermatids, which elongate and differentiate to produce mature 

spermatozoa. Individualization then occurs, whereby an actin-based complex 

remodels the sperm membrane and strips away cytoplasm and organelles, 

forming a waste bag at the distal tip of the sperm bundle (Fabrizio et al., 1998; 

Noguchi and Miller, 2003). Towards the end of spermatogenesis, the sperm 

chromatin undergoes extensive remodelling. Histones, core structural 

components of chromatin, are replaced with basic proteins called protamines, 

which compact the sperm DNA and protects it from mutagens (Jayaramaiah Raja 

and Renkawitz-Pohl, 2005; Rathke et al., 2010). 

 In D. simulans, which exhibits strong CI (Weeks et al., 2007), Wolbachia 

are present in spermatocytes and spermatids but are removed with the waste 

bag during individualization, indicating that sperm are modified prior to this 

point in development (Clark et al., 2002a; Riparbelli et al., 2007; Snook et al., 

2000).  In D. melanogaster, which exhibits low CI, Wolbachia are scarce in 

spermatocytes and occur in variable numbers in spermatids prior to removal 

during spermiogenesis, suggesting that Wolbachia’s presence within the cyst 

itself is a major factor in sperm modification (Clark et al., 2003). However, in the 

parasitic wasp Nasonia vitripennis (Hymenoptera) and the beetle Chelymorpha 

alternans (Coleoptera) Wolbachia presence within developing sperm cells is not 
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compulsory for induction of CI, suggesting that modification is not the result of 

ongoing contact between Wolbachia and sperm (Clark et al., 2008).  

Interestingly, in Drosophila, the strength of CI decreases with age, as does 

Wolbachia density in the testes (Clancy and Hoffmann, 1998; Clark et al., 2002a; 

Reynolds and Hoffmann, 2002; Turelli and Hoffmann, 1995). However, the 

modification imposed on developing sperm remains unknown. 

 

1.2.3.2     Fertilization and development: Maternal rescue 

 Insect fertilization has been studied in detail and differs significantly from 

mammalian fertilization (reviewed in Foe et al., 1993; Loppin and Karr, 2005). In 

insects, the gamete plasma membranes do not fuse. Following entry of the 

sperm into the egg, the sperm plasma membrane and nuclear envelope are 

removed and replaced with a nuclear envelope derived from maternal 

components. During this time, the sperm chromatin decondenses as protamines 

are replaced with maternally-supplied histones (Bonnefoy et al., 2007; Loppin et 

al., 2005). As the male and female pronuclei migrate toward each other, the DNA 

replicates. Upon apposition, the chromosomes condense and nuclear envelope 

breakdown (NEB) occurs. The male and female pronuclei undergo the first 

mitotic division independently, using a shared spindle (gonomeric division). 

Genome fusion occurs after the completion of telophase to form two diploid 

nuclei.  
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  In Drosophila and Nasonia, CI is associated with aberrant condensation 

of the paternal chromosomes and failure to separate at the first mitotic division, 

resulting in extensive chromosome bridging at anaphase and embryo death 

(Figure 1.3) (Callaini et al., 1997; Lassy and Karr, 1996; Reed and Werren, 1995; 

Serbus et al., 2008; Tram et al., 2006).  In Nasonia, the breakdown of the male 

pronuclear envelope is delayed, causing it to lag behind the female pronucleus in 

mitotic entry (Tram and Sullivan, 2002). Nuclear envelope breakdown and 

mitotic entry is induced by cyclin-dependant kinase-1 (Cdk1) activation, 

suggesting that Wolbachia interfere with the activity of cell cycle regulators 

(Tram and Sullivan, 2002). Recent work in Drosophila proposes that chromatin 

defects during interphase, including delayed histone deposition and incomplete 

DNA replication, activate cell cycle checkpoints and are responsible for Cdk1 

inhibition (Landmann et al., 2009).  

 In a rescue cross, in which the oocyte is infected with Wolbachia, 

modified sperm is restored and development proceeds normally (Lassy and Karr, 

1996; Tram and Sullivan, 2002). However, this process is highly specific. While 

multiple Wolbachia may infect a common host, strains of the same compatibility 

type must be present in both the male and female for rescue to occur (Werren et 

al., 2008). Compatibility is often restored if an identical strain occurs in the 

female (Bordenstein and Werren, 2007; Braig et al., 1994a; Charlat et al., 2001; 

O'Neill and Karr, 1990; Zabalou et al., 2008). Occasionally, one strain of 
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Wolbachia can partially or completely rescue sperm modified by a different 

strain, but this is dependent upon the genotype of Wolbachia and the host 

(Duron et al., 2010; Zabalou et al., 2008).  

Several models have been proposed for CI (reviewed by Serbus et al., 

2008). However, the most plausible is the “lock-and-key” model, whereby the 

male chromatin is modified in such a way that only the proper strain of 

Wolbachia can identify and reverse the alteration, permitting normal pronuclear 

formation and embryonic development (Poinsot et al., 2003; Werren, 1997).  

 

1.3 The insect immune response  

 The presence of bacteria generally induces strong responses in 

metazoans. Insects lack adaptive immunity and therefore rely exclusively on 

innate immunity for survival, which is an effective defense against foreign 

invaders including viruses, bacteria, fungi, and some metazoan parasites. Of key 

importance to intracellular bacteria is the generation of antimicrobial peptides, 

phagocytosis, and the formation of reactive oxygen species (ROS). It is unclear if 

bacteria such as Wolbachia, which reside in host-derived cytoplasmic vacuoles, 

elicit recognition by the host immune response; this question is central to this 

research. 
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1.3.1     Antimicrobial peptides  

 Antimicrobial peptides (AMPs) are small, immune-inducible effectors 

produced by the fat body and secreted into the hemolymph (Bulet et al., 1999). 

Seven classes of AMPs have been described in Drosophila, based upon their 

activity (Lemaitre and Hoffmann, 2007; Lemaitre et al., 1997). Diptericin, attacin, 

cecropin and drosocin are active against Gram negative bacteria, defensin is 

active against  Gram positive bacteria, and drosomycin and metchnikowin have 

antifungal properties (Imler and Bulet, 2005).  Gram positive bacteria and fungi 

activate the Toll signalling pathway and Gram negative bacteria activate the Imd 

signalling pathway through host peptidoglycan receptor proteins (PGRP)(Choe et 

al., 2002; Michel et al., 2001). Activation of Toll and Imd  initiates an intracellular 

proteolytic cascade culminating in the cleavage of transcription factors 

DIF/Dorsal and Relish, which translocate to the nucleus and bind to nuclear 

factor-kB (NF-kB) response elements, stimulating the expression of antimicrobial 

peptides (Ferrandon et al., 2007). Induction of Toll and Imd pathways were 

previously believed to be mutually exclusive processes. However, recent work 

demonstrates that the pathways work synergistically with cross-regulation 

mediated by NF-kB related transcription factors and  contributing to an 

enhanced broad-spectrum host response (Tanji et al., 2007).  

PGRPs including Toll receptors PGRP-SA, PGRP-SD, and Imd receptor 

PGRP-LE are secreted (Ferrandon et al., 2007). Others, such as Toll receptor 
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PGRP-LC are embedded in the cell membrane, and act extracellularly (Ferrandon 

et al., 2007). An intracellular form of PGRP-LE recognizing monomeric PGN of 

gram negative bacteria was recently identified in the cytoplasm of Drosophila 

cells (Kaneko et al., 2006).  

Wolbachia induce no change in the expression of transcripts encoding 

antimicrobial peptides in D. simulans and Aedes albopictus, both of which are 

naturally infected (Bourtzis et al., 2000). In an artificial infection generated in 

vitro using Drosophila S2 cells, increased expression of AMP genes and several 

genes in the Toll and Imd pathways, including Relish and Dorsal were reported 

(Xi et al., 2008). Down regulation of ird5, a key component of the Imd pathway, 

was also noted (Xi et al., 2008). Wolbachia were cleared from the cells over time, 

confirming an immune reaction and suggesting that while Wolbachia can 

stimulate a host response, bacterial-host interactions differ between inherited 

and artificial infections. Wolbachia’s location within a host-derived vacuole may 

provide camouflage from host recognition in natural infections (Siozios et al., 

2008).  This evasion may be the consequence of another defense mechanism: 

phagocytosis.  

 

1.3.2     Phagocytosis 

 Phagocytosis of invading bacteria in insects is typically accomplished by  a 

class of hemocytes called plasmatocytes (Lavine and Strand, 2002). Bacteria are 
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recognized by phagocyte membrane receptors (eg. Eater, Nimrod, dSR-CI, and 

Dscam) which promote their uptake (Kocks et al., 2005; Kurucz et al., 2007; 

Nehme et al., 2011; Ramet et al., 2001; Watson et al., 2005). Following 

internalization, the phagosome undergoes maturation, fusing with endosomes 

and lysosomes and creating an acidic and hydrolytic environment which destroy 

and degrade the ingested particle (Stuart and Ezekowitz, 2008; Vieira et al., 

2001). Formation of the NADPH oxidase complex is also stimulated,  which 

assembles on the phagosomal membrane and pumps toxic reactive oxygen 

species (ROS) into the vacuole in what is known as an oxidative burst (Babior et 

al., 1973; Bergin et al., 2005; Rada and Leto, 2008; Renwick et al., 2007). 

  Many bacterial pathogens of mammals avoid destruction following 

phagocytosis. Bacteria such as Listeria monocytogenes lyse the phagosome and 

escape into the cytoplasm (Beauregard et al., 1997; Goldfine et al., 2007; Tilney 

and Portnoy, 1989). Mycobacterium tuberculosis, Legionella pneumophila, and 

Anaplasma phagocytophilum survive within the phagosome by inhibiting 

maturation (Fortier et al., 2007; Fratti et al., 2003; Huang et al., 2010a; Pethe et 

al., 2004). In Salmonella typhimurium, acidification of the phagosome promotes 

expression of virulence genes, including those involved in acid tolerance 

(Alpuche Aranda et al., 1992; Bearson et al., 1998; Prost and Miller, 2008). Many 

bacteria, such as M. tuberculosis and  Burkholderia cenocepacia express 

antioxidants which neutralize ROS  in the phagosome (Keith and Valvano, 2007; 
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Ng et al., 2004); others, including Coxiella burnetii,  A. phagocytophilum and  

Ehrlichia chaffeensis resist the oxidative burst by inhibiting the proper assembly 

of the NADPH oxidase complex on the phagosomal membrane (Ijdo and Mueller, 

2004; Lin and Rikihisa, 2007; Siemsen et al., 2009). C. burnetii also has an 

impressive complement of genes involved in maintaining genome integrity under 

exposure to ROS, including the SOS response, an inducible DNA repair network 

(Mertens et al., 2008).  

In ticks as well as humans. A. phagocytophilum expresses proteins which 

localize to the phagosomal membrane, presumably contributing to the 

generation of the modified vacuole which acts as a symbiosome (Huang et al., 

2010b; Huang et al., 2010c). In Drosophila whole flies and S2 cells, L. 

monocytogenes escapes the phagosome into the cytosol as it does in mammalian 

cells, and has proven to be a good model for bacterial pathogenesis (Cheng and 

Portnoy, 2003; Mansfield et al., 2003). L. pneumophila, Mycobacterium 

fortuitum, and Chlamydia trachomatis all survive and replicate within the 

Drosophila phagosome (Dorer et al., 2006; Elwell and Engel, 2005; Philips et al., 

2005). 

 While it is has been hypothesized that the vacuole in which Wolbachia 

reside is a modified phagosome (Siozios et al., 2008), the composition of the host 

membrane which surrounds Wolbachia and its contents is unknown. However, 

experimental work and genome analysis provide clues as to how Wolbachia may 
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interact with its host and avoid destruction. Wolbachia have what appears to be 

a complete and functional Type IV Secretion System (T4SS) (Rances et al., 2008; 

Wu et al., 2004), which plays an integral role in phagosome remodelling and 

intracellular survival in Legionella pneumophila, B. cenocepacia and Brucella 

abortus (Comerci et al., 2001; Molmeret et al., 2004; Sajjan et al., 2008). 

Wolbachia also have an extensive repertoire of genes containing ankyrin repeats 

(Iturbe-Ormaetxe et al., 2005; Klasson et al., 2008; Klasson et al., 2009b; Wu et 

al., 2004). Ankyrin proteins are known bacterial T4SS effectors (Pan et al., 2008).  

In L. pneumophila, secreted ankyrin B (AnkB) promotes phagosome decoration 

with polyubiquitinated proteins, contributing to biogenesis of the unique 

Legionella-containing vacuole (LCV) which supports intracellular replication in 

protozoans and human macrophages (Al-Khodor et al., 2008; Price et al., 2009; 

Price et al., 2010). 

 

1.3.3     Wolbachia effects on host immunity 

 Recent work shows that the presence of Wolbachia affects the host 

response to other invaders, including parasitoids and viruses. Infected D. 

simulans show increased susceptibility to the parasitoid wasp Leptopilina 

heterotoma, and the eggs of uninfected parasitoids better survive the Drosophila 

immune response than infected eggs (Fytrou et al., 2006).  Wolbachia infection 

enhances resistance to RNA viruses in  D. melanogaster (Hedges et al., 2008; 
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Teixeira et al., 2008) and Culex quinquefasciatus (Glaser and Meola, 2010). In 

artificially infected Anopheles gambiae and Aedes aegypti, Wolbachia upregulate 

the expression of immune genes and inhibit infection by RNA viruses (Bian et al., 

2010; Moreira et al., 2009) and Plasmodium gallinaceum and Plasmodium 

berghei (Kambris et al., 2010; Moreira et al., 2009). 

 

1.4 Reactive oxygen species, antioxidants, and cellular damage 

 Reactive oxygen species (ROS) are an important component of the insect 

and mammalian innate immune response. They are also central to aerobic 

metabolism and intracellular signalling. High levels of ROS create a state of 

oxidative stress and induce cellular damage; therefore the balance between their 

generation and neutralization by antioxidants is crucial in every aerobic 

organism. 

 

1.4.1 Reactive oxygen species 

 1.4.1.1     Chemistry and formation 

 Reactive oxygen species (ROS), including  superoxide (O2
.-), hydrogen 

peroxide (H2O2), and hydroxyl radicals (OH.) are oxygen intermediates which 

have one or more unpaired electrons (reviewed in Fridovich, 1999). They are 

common by-products of respiration. Electrons leak from the mitochondrial 

electron transport chain and react with molecular oxygen to form superoxide, 
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which is quickly reduced to hydrogen peroxide either spontaneously or via the 

antioxidant enzyme superoxide dismutase [1] (Boveris and Cadenas, 1975; 

Dionisi et al., 1975; Loschen et al., 1974; McCord and Fridovich, 1969; Murphy, 

2009; St-Pierre et al., 2002). Hydrogen peroxide may be fully reduced to water by 

antioxidants such as catalase [2] or peroxidases [3] (reviewed in Bayir, 2005; 

Chae et al., 1999; Cohen and Hochstein, 1963; de Haan et al., 1998; Keilin and 

Hartree, 1938; Mills, 1960; Netto et al., 1996) or it can react with free iron via the 

Fenton reaction to generate the most damaging form of ROS, hydroxyl radicals 

[4] (Graf et al., 1984; Imlay et al., 1988; Lloyd et al., 1997). Unreduced superoxide 

contributes to the formation of hydroxyl radicals by inactivating enzymes 

containing iron-sulfur clusters, releasing iron into the intracellular environment 

(Flint et al., 1993; Keyer and Imlay, 1996) (Figure 1.4). 

 

 2O2
 ·-  +  2H+   

  2H2O2  +  O2      [1] 

 2H2O2      2H2O  +  O2      [2]    

 H2O2      H2O        [3]  

 Fe (II)  +  H2O2      OH·  +  OH-  +  Fe (III)  [4]  

Adapted from (Bayir, 2005) 

 
In mammals and in insects, the generation of ROS is among the first lines 

of defense against invading microbes (Ha et al., 2005b; Hoffmann, 2003). In 
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vertebrates, ROS is generated by a family of NADPH oxidases. Seven exist in 

mammals:  Nox1, Nox2, Nox3, Nox4, Nox5 which generate superoxide, and 

Duox1 and Duox2, which produce hydrogen peroxide (reviewed in Rada and 

Leto, 2008). Nox2, the phagocytic NADPH oxidase, plays a central role in 

immunity and is well characterized. Nox2 is a protein complex consisting of 

several subunits: cytosolic proteins p40phox, p47phox, p67phox, the small GTP-

binding protein rac, and phagosomal membrane proteins p22phox and gp91phox 

(which complex to form cytochrome b558) (El-Benna et al., 2005; Nauseef, 2008).  

While the complex is normally inactive in resting cells, upon stimulation p22phox, 

p40phox, p47phox, and p67phox  are phosphorylated, causing the migration of 

cytosolic proteins to the membrane of the phagosome, where they complex with 

cytochrome b558 (El-Benna et al., 2008; Groemping et al., 2003; Nauseef, 2004; 

Taura et al., 2009). NADPH oxidase transfers electrons from cytosolic NADPH to 

the intraphagosomal space where they combine with molecular oxygen to 

generate superoxide anions from which additional ROS are formed in what is 

known as the oxidative burst (El-Benna et al., 2005; Hampton et al., 1998; Roos 

et al., 2003). 

The relatives of Nox2 are characterized mainly by the mammalian cell 

types in which they are found and while non-phagocytic in nature, they share 

many structural and functional attributes with Nox2, including C-terminal NADPH 

and FAD binding sites, six transmembrane domains, two membrane-embedded 
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heme groups, and the ability to generate ROS (Rada and Leto, 2008). Nox1, 3, 

and 4 are most structurally similar to Nox2. In humans, Nox1 is expressed 

predominantly in the colon, but has been identified in other tissues, including 

the prostrate, uterus, and vascular smooth muscle cells (Banfi et al., 2000; Geiszt 

et al., 2003a; Hilenski et al., 2004). Nox4 was first identified in the kidneys, where 

it is abundant (Geiszt et al., 2000; Shiose et al., 2001). It has since been found in 

a variety of tissues and cell types, including vascular smooth muscle, placenta, 

fetal tissues, endothelial cells, brain, and thyroid (Ago et al., 2004; Cheng et al., 

2001; Hilenski et al., 2004; Li et al., 2009; Vallet et al., 2005; Weyemi et al., 2010; 

Xu et al., 2008). Nox3 is found mainly in the inner ear and some fetal tissues 

(Banfi et al., 2004; Cheng et al., 2001). Work in mice suggests that Nox3 it is 

important in balance and the perception of gravity (Paffenholz et al., 2004). Nox5 

is expressed primarily in the testes, spleen, and lymph nodes, although it has also 

been identified in the uterus and some fetal tissues (Banfi et al., 2001; Cheng et 

al., 2001). Nox5 has an additional cytoplasmic region containing four N-terminal 

EF-hand Ca+ binding domains and is calcium-activated (Banfi et al., 2001). No 

immune role for Nox5 has been identified. Duox1 and 2 (dual oxidase) have an 

additional transmembrane domain, and an N-terminal region containing an 

extracellular peroxidase-like domain and two cytosolic EF-hand Ca+ binding 

domains (De Deken et al., 2000; Dupuy et al., 1999). Duox enzymes are 

commonly expressed in the thyroid and mucosal epithelia where they produce 
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hydrogen peroxide in a calcium- dependant manner (Ameziane-El-Hassani et al., 

2005; Bae et al., 2010; Forteza et al., 2005; Geiszt et al., 2003b).  

In addition to their role in immunity, ROS are also cell signalling 

molecules and their generation is critical to many cellular processes (Hoidal, 

2001).  Extensive research shows that ROS signalling mediates cell proliferation 

and differentiation (Arnold et al., 2001; Li et al., 2006b; Sauer et al., 2001; 

Tsukagoshi et al., 2010) adhesion and migration (Pan et al., 2010; Sangrar et al., 

2007) and apoptosis (Aikawa et al., 2010; Cerella et al., 2009). 

 

1.4.1.2     ROS generation and insect immunity 

In insects, superoxide generative reactions mimic the oxidative burst seen 

in vertebrates (Whitten and Ratcliffe, 1999).  In Galleria mellonella hemocytes, a 

phagocytic NADPH oxidase with protein homologs of gp91phox, p47phox, p67phox, 

and rac were identified by immunofluorescence and immunoblotting (Bergin et 

al., 2005; Renwick et al., 2007).  This NADPH oxidase assembles on the 

phagosomal membrane and generates superoxide in response to pathogens 

(Bergin et al., 2005; Renwick et al., 2007). Insects including D. melanogaster, Apis 

mellifera, and Anopheles gambiae lack Nox2, but contain Nox5 and Duox 

(Kawahara et al., 2007). Both of these are characterized by a calcium-binding EF-

hand domain, are ubiquitous in eukaryotes, and appeared early in the 

evolutionary history of Nox enzymes (Kawahara et al., 2007). In Drosophila a 
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duox (dDuox) with a vital role in gut immunity has been identified in the mucosal 

epithelia where it releases ROS into the lumen (Ha et al., 2009a; Ha et al., 

2005a). Expression and activation of dDuox are coordinated to generate the 

correct intensity of ROS depending upon the presence of invasive or indigenous 

microbes (Bae et al., 2010; Ha et al., 2009b). Activity of dDuox is Ca2+ - 

dependent, and gut microbes mobilize intracellular Ca2+ from ER stores in a 

peptidoglycan (PG)-independent manner by activating the Gαq-phospholipase C-

β pathway (PLCβ) (Ha et al., 2009a). Basal ROS generation via this pathway is 

critical for host survival in the presence of commensal microbes and activation of 

dDuox is enhanced under an increasing microbial burden (Ha et al., 2009a). 

Expression of dDuox, on the other hand, is positively and negatively regulated 

depending upon the composition of microbes in the gut (Ha et al., 2009b). 

Pathogenic microbes activate ATF2 through p38 kinase in both a PG-dependent 

and PG-independent manner, resulting in elevated dDuox expression and ROS 

production (Ha et al., 2009b). However, under normal conditions, p38 activity is 

suppressed by PLCβ, thus limiting dDuox expression and preventing excessive 

amounts of ROS (Ha et al., 2009b). The complex interaction between dDuox 

activity and expression permits the level of ROS to be tailored to the composition 

of gut microbes in Drosophila. Recently, it was found that the dDuox-mediated 

oxidative burst promotes intestinal stem cell (ISC) activation, presumably by 

inducing cellular damage, and this epithelial regeneration contributes to gut 
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homeostasis during bacterial infection (Buchon et al., 2009a; Buchon et al., 

2009b).  

Drosophila also has a Nox5 ortholog (dNox5), which regulates ovarian 

muscle contraction, thus playing an essential role in female fertility (Ritsick et al., 

2007). Recently dNox5 was identified in the Drosophila seminal receptacle 

(Prokupek et al., 2010). 

  Numerous studies emphasize the importance of ROS generation in insect 

immunity. Early work suggested a role for ROS in Drosophila encapsulation of 

eggs of the parasite Leptopilina boulardi (Nappi and Vass, 1998; Nappi et al., 

1995) and in the response of Rhodnius prolixus to the parasite Trypanosoma 

rangeli in the hemolymph (Whitten et al., 2001). An ROS-mediated response to 

bacteria and fungi in the hemolymph was noted in the cockroach Blaberus 

discoidalis (Whitten and Ratcliffe, 1999) and G. mellonella (Bergin et al., 2005; 

Renwick et al., 2007). Bombyx mori expresses an NADPH-oxidase-like protein 

(BmNox) in the gut which provides viral resistance (Selot et al., 2010). In 

Anopheles gambiae high levels of ROS are important immune effectors 

generated in response to Plasmodium and bacteria (Herrera-Ortiz et al., 2011; 

Kumar et al., 2003; Molina-Cruz et al., 2008).  
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1.4.2 Antioxidants 

ROS can also induce significant cellular damage. Thus, redox homeostasis 

in aerobic organisms is maintained by balancing ROS formation with 

antioxidants, which include a complement of enzymatic and non-enzymatic 

defences (Figure 1.4). 

  Superoxide dismutase (SOD) catalyzes the breakdown of superoxide 

anions to hydrogen peroxide and molecular oxygen. Mammals and insects 

express two copper-zinc SODs: one in the cytoplasm (SOD1) and one which is 

secreted (SOD3), and one manganese SOD (SOD2) expressed predominantly in 

mitochondria (Corona and Robinson, 2006; Parker et al., 2004; Zelko et al., 

2002).  

 The product of SOD activity, hydrogen peroxide is also a damaging form 

of ROS and may be broken down via several methods. Catalase directly converts 

H2O2 into water and dioxygen and has been characterized in Drosophila (Orr et 

al., 1996; Park et al., 2004). Peroxiredoxins (Prx) are a ubiquitous family of 

antioxidants which reduce peroxides in a thiol-dependent manner. Based on the 

number of cysteine residues present, two subgroups have been identified, the 1-

Cys and 2-Cys Prxs (McGonigle et al., 1998). All Prxs utilize a redox-active 

cysteine (peroxidatic cysteine) which is oxidized to form a cysteine sulfenic acid 

(Cys-SOH) in the process of reducing peroxide substrates (Wood et al., 2003). 

Cys-SOH must then be regenerated by reduction via a resolving cysteine. The 2-
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Cys Prxs are divided into two subgroups based on the pathway they use. The 

typical 2-Cys Prxs form an obligate dimer, in which the resolving cysteine from 

one subunit forms a stable disulfide bond with the peroxidatic cysteine of the 

other (Hall et al., 2009). The atypical 2-Cys Prxs are monomeric and fold upon 

themselves, forming an intramolecular disulfide bond and reducing their own 

peroxidatic cysteine (Wood et al., 2003). In both cases, the disulfide bond is 

reduced, often by using thioredoxin (Trx) as an electron donor (Chae et al., 1994; 

Park et al., 2000; Radyuk et al., 2001; Seo et al., 2000).  The 1-Cys Prxs, in 

contrast, contain only a peroxidatic cysteine, which must be resolved by a thiol-

containing electron donor. Proposed sources include cyclophilin, lipoic acid, 

vitamin C and glutathione (Lee et al., 2001; Manevich et al., 2004; Monteiro et 

al., 2007; Peshenko and Shichi, 2001).   

  Six mammalian peroxiredoxins have been identified; 1 through 4 are 

typical 2-Cys Prxs, 5 is an atypical 2-Cys Prx, and 6 is a 1-Cys Prx (reviewed in 

Shuvaeva et al., 2009; Wood et al., 2003). Six peroxiredoxins have also been 

identified in D. melanogaster, 4 of the 2-Cys variety, and 2 of the 1-Cys variety, 

all of which exhibit antioxidant capabilities (Michalak et al., 2008; Radyuk et al., 

2009; Radyuk et al., 2001).    

Glutathione peroxidase (GPx) catalyzes the reduction of hydrogen 

peroxide and organic hydroperoxides. The first GPx discovered (cytosolic GPx-1) 

relied on reduced glutathione (GSH) as an electron donor (Cohen and Hochstein, 
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1963; Mills, 1957, 1959), and it was presumed that this was always the case. 

However, substrates such as thioredoxin and glutaredoxin are also effective 

electron donors, depending upon the GPx examined (Bjornstedt et al., 1994). 

Seven functional mammalian GPxs with known subcellular localizations have 

been identified to date (Margis et al., 2008). A putative GPx-8 with unknown 

function was recently identified (Toppo et al., 2008). Most mammalian GPxs 

(GPx-1, 2, 3, 4, and sometimes 6, depending on the species) are selenoproteins 

utilizing a seleno-cysteine at the catalytic site (Flohe et al., 1973; Kryukov et al., 

2003; Toppo et al., 2008). The others contain a cysteine in place of the seleno-

cysteine, and maintain antioxidant function (Chabory et al., 2009; Utomo et al., 

2004).  

The Drosophila genome contains two GPx homologs (Adams et al., 2000). 

Both are cysteine-containing enzymes; one, referred to as GPx-like (CG15116) 

has not yet been biochemically characterized, and the other, called D. 

melanogaster GPx, (DmGPx) (CG12013), utilizes reduced thioredoxin (Trx) as an 

electron donor and has been described as a GPx homolog with TPx (thioredoxin 

peroxidase) activity (Maiorino et al., 2007; Missirlis et al., 2003b). Interestingly, 

in response to paraquat (N,N′-dimethyl-4,4′-bipyridinium dichloride) stress, 

expression of DmGPx is upregulated, while the GPx-like protein is repressed, 

suggesting diversity in their functional roles (Girardot et al., 2004).  
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 Antioxidant activity is not limited to eukaryotes. Bacteria are often 

aerobic and the target of ROS and as a result they have developed advanced 

defense networks. E. coli, like Wolbachia, are Gram negative proteobacteria 

known to express numerous antioxidant proteins, including three superoxide 

dismutases – an Mn SOD (Keele et al., 1970), an Fe SOD (Carlioz et al., 1988; 

Sakamoto and Touati, 1984; Yost and Fridovich, 1973) and a CuZn SOD (Benov 

and Fridovich, 1994).  Mn SOD and Fe SOD, termed SodA and SodB respectively, 

are cytoplasmic and their expression is controlled by the global regulatory 

system Fur (ferric uptake regulator) (Niederhoffer et al., 1990). CuZn SOD (SodC) 

is secreted into the periplasm (Imlay and Imlay, 1996) where it likely protects the 

bacteria from the phagocyte respiratory burst,  making it integral to 

pathogenesis (Battistoni, 2003; Gort et al., 1999). SodC is expressed primarily 

during the stationary phase (D'Orazio et al., 2008; Gort et al., 1999).  

 Hydrogen peroxide and other hydroperoxides are broken down by 

several mechanisms. E. coli expresses two catalases, referred to as 

hydroperoxidase I (HPI) and hydroperoxidase II (HPII).  HPI is a bifunctional 

enzyme with peroxidase activity in addition to catalase activity, encoded by KatG 

(Loewen et al., 1985b; Triggs-Raine et al., 1988), while HPII is a monofunctional 

catalase  encoded for by KatE (Loewen et al., 1985b; von Ossowski et al., 1991). 

HPI is expressed during logarithmic growth and in response to H2O2, while HPII is 
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expressed primarily during stationary phase and is unresponsive to H2O2 (Loewen 

et al., 1985a; Schellhorn, 1995).   

 Recent work has characterized an oxidative-stress inducible glutathione 

peroxidase in E. coli which preferentially uses thioredoxin as a reducing agent 

(Arenas et al., 2010).  E. coli also expresses several cytoplasmic peroxiredoxins, 

including alkyl hydroperoxide reductase (AhpC), thiol peroxidase (p20), and 

bacterial comigratory protein (BCP) (Link et al., 1997; Tao, 2008). AhpC is a 

typical 2-Cys peroxiredoxin specifically reduced by the flavoprotein AhpF 

(Jonsson et al., 2007; Seaver and Imlay, 2001). Thiol peroxidase p20 is an atypical 

2-Cys peroxiredoxin, which functions as a lipid hydroperoxide peroxidase and is 

important during anaerobic growth (Cha et al., 1995; Cha et al., 2004). BCP is a  

1-Cys peroxiredoxin (Jeong et al., 2000) which, like p20, is reduced by 

thioredoxin (Choi et al., 2003; Clarke et al., 2009). 

 The fully annotated genome of the Wolbachia endosymbiont of D. 

melanogaster (Wu et al., 2004), has genes which code for three of the 

aforementioned nine antioxidants proteins – Fe SOD, BCP, and AhpC.  As 

previously described, Wolbachia has a significantly reduced genome, the result 

of an ongoing adaptation to an intracellular lifestyle (Fenn and Blaxter, 2006; Wu 

et al., 2004).  Among genes that have been lost over time are several coding for 

bacterial antioxidants. How Wolbachia copes with intracellular oxidative stress in 
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spite of this deficiency is a focus of my work and provides insight into obligate 

host-symbiont interactions. 

 

1.4.3.  Oxidative stress and cellular damage 

 High concentrations of ROS create a state of oxidative stress, resulting in 

damage to lipids, proteins, and nucleic acids.  An unbalanced production of ROS 

has been implicated in human ageing and disease, including atherosclerosis, 

neurodegenerative and ophthalmologic diseases, and cancer (Dalle-Donne et al., 

2006). 

 DNA damage by ROS includes single and double-stranded breaks, base 

and deoxyribose modifications, and DNA cross-linking (reviewed in Valko et al., 

2006). The principal source of DNA damage is the highly reactive hydroxyl radical 

(.OH) , which adds to double bonds of DNA bases and abstracts hydrogen atoms 

from the C-H bonds of  2’deoxyribose and the methyl group of thymine 

(reviewed in Dizdaroglu et al., 2002). Purine and pyrimidine radicals are 

produced as a result of these interactions, and they react further through a 

variety of redox pathways. For example, H-atom abstraction from the methyl 

group of the purine base thymine produces the allyl radical, which reacts with 

oxygen to give 5-hydroxymethyluracil and 5-formyluracil (Cooke et al., 2003). 

Hydroxyl radical addition to pyrimidine bases leads to C5-OH adduct radicals 

which may be oxidized, followed by the addition of OH-  to yield cytosine glycol. 
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Upon deamination, cytosine glycol generates uracil glycol, 5-hydroxycytosine, 

and 5-hydroxyuracil (Cooke et al., 2003). More than 20 oxidatively modified 

bases, called DNA lesions, have been identified and are used as indicators of 

oxidative stress. The lesion 7,8-dihydro-8-oxo-2’-deoxyguanosine (8-oxo-dG) is 

generated by oxidation of deoxyguanosine (creating a C8-OH adduct radical), 

followed by loss of an electron and a proton (Slupphaug et al., 2003).  8-oxo-dG 

is the most common oxidative lesion and is a reliable biomarker of oxidatively 

damaged DNA (Valavanidis et al., 2009). 

 Both prokaryotes and eukaryotes have an extensive capacity for repairing 

damaged DNA and preventing abnormalities resulting from its misincorporation 

into the genome. Homologous recombination (HR) and non-homologous end-

joining (NHEJ) are involved in the repair of double-stranded breaks, while 

transcription-coupled repair (TCR), global genome repair (GGR),  mismatch repair 

(MMR), and nucleotide excision repair (NER) are important pathways for 

repairing DNA lesions (Slupphaug et al., 2003). Oxidative DNA lesions are most 

often restored  by base excision repair (BER), during which a DNA glycosylase 

which specifically recognizes a designated lesion removes it from the DNA strand 

creating an abasic (AP) site  (D'Errico et al., 2008). An AP endonuclease then 

cleaves the DNA 5’of the AP site, followed by cleavage by an end processing 

enzyme at the 3’ end of the AP site (Zharkov, 2008). Some glycosylases also act 

as an AP lyase while they remove the damaged base (bifunctional glycosylases), 
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cleaving the DNA 3’ of the AP site prior to AP endonuclease activity (Zharkov, 

2008). In both cases, a single nucleotide gap is created which is then filled by 

DNA polymerase and DNA ligase (Seeberg et al., 1995).  In mammals and 

Drosophila, the bifunctional DNA glycosylase OGG1 typically identifies and 

excises 8-oxo-dG, promoting the BER pathway (Bruner et al., 2000; Dherin et al., 

2000). An unrelated bifunctional glycosylase called Fpg functions analogously in 

bacteria such as E. coli (Koval et al., 2010).  

 Many studies have demonstrated an association between ROS-induced 

sperm DNA damage and a reduction in human male fertility (Ishikawa et al., 

2007; Kodama et al., 1997; Lopes et al., 1998; Saleh et al., 2003). Sperm that are 

severely damaged  have a decreased capacity for fertilization; those with less 

damage are capable of fertilization but can pass on the damaged paternal DNA 

to the embryo (Aitken et al., 1998). While a small amount of ROS is generated by 

the sperm cells themselves, the majority is generated by infiltrating leukocytes 

recruited to the semen (Henkel et al., 2005; Whittington and Ford, 1999) in 

response to bacterial infection (Sanocka-Maciejewska et al., 2005; Urata et al., 

2001; Wang et al., 1997). 

 

1.5 Thesis overview/objectives 

 While this is a relatively new scientific field, interest in Wolbachia has 

gained momentum over the past several years. It is an excellent model for 
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prokaryote-eukaryote interactions. Furthermore, given Wolbachia’s ability to 

infect and drive through arthropod populations, its potential to be used as a 

method of insect biological control has been recognized (Bourtzis, 2008). In 

order to meet this goal, the biology of Wolbachia must be thoroughly studied. 

The purpose of this work is to contribute to our understanding of the intricacies 

of this unique symbiotic relationship at the cellular level.  

 This study began with a proteomics screen of Wolbachia-infected and 

uninfected Aedes albopictus cells to identify factors expressed exclusively in the 

presence of Wolbachia. Many proteins contributing to the maintenance of 

symbiosis were identified. These include host actin depolymerizing factor (ADF), 

bacterial single-strand binding protein, GroES, 3,4-dihydroxy-2-butanone 4-

phosphate synthase, nucleoside diphosphate kinase, and proteins involved in 

bacterial protein synthesis. Most importantly, it was revealed that increased 

antioxidant expression, both host and bacterial, is a major factor of this 

symbiosis. 

 Antioxidants are expressed to counter to reactive oxygen species (ROS), 

which can induce significant damage to cellular components. When antioxidant 

expression matches or exceeds ROS formation, redox homeostasis is achieved 

and oxidative damage is inhibited. However, when ROS levels surpass 

antioxidant capacity, a state of oxidative stress results and cellular damage is 

inevitable.  
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ROS formation was evaluated in Wolbachia-infected and uninfected Ae. 

albopictus cells to determine if antioxidant expression was indeed upregulated in 

response to changes in ROS levels. Wolbachia induce cytoplasmic 

incompatibility, and this reproductive phenotype is dependent upon an unknown 

activity of Wolbachia in the testes (sperm modification) and the ovaries (paternal 

chromatin rescue). ROS formation and antioxidant expression were therefore 

measured in the reproductive tissues of D. simulans flies as well.  

To determine if redox homeostasis is disrupted in the presence of a 

Wolbachia infection, DNA damage was measured in Wolbachia-infected and 

uninfected Ae. Albopictus cells, as well as in whole male D. simulans flies and 

spermatocytes.  

This study suggests that ROS acts as a critical mediator of Wolbachia-host 

interactions. Wolbachia infection is associated with an increase in ROS formation 

which is counterbalanced by overexpression of host and bacterial antioxidants.  

In whole organisms, it appears that redox homeostasis is maintained despite 

infection with Wolbachia. However, in densely infected tissues, such as the 

testes, it appears that redox homeostasis is lost, and oxidative DNA damage 

occurs. This damage may play a role in the modification of sperm chromatin 

which leads to cytoplasmic incompatibility. The details of these findings and their 

contribution to understanding the cellular basis of host-symbiont interactions 

will be discussed. 
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Figure 1.1     Cytoplasmic incompatibility in Wolbachia-infected insects. 

When Wolbachia are absent in both parents (white boxes), offspring are viable 

and uninfected. When Wolbachia are present (shaded boxes), if the female is 

infected, regardless of male infection status, all offspring survive and are 

Wolbachia-infected. When Wolbachia are absent in the female, but present in 

the male, the embryos die following fertilization. As Wolbachia are maternally 

inherited, this ensures that the frequency of infected individuals in each 

generation is maximized. Adapted from Clark et al., 2002b. 
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Figure 1.2     Spermatogenesis in Drosophila. At the apex of the testes, a 

germline stem cell (GSC) divides asymmetrically to give a new stem cell and a 

primary spermatogonium. The spermatogonium undergoes four mitotic divisions 

to form a cyst of 16 primary spermatocytes connected by cytoplasmic bridges 

called ring canals. Primary spermatocytes undergo growth and gene expression 

then divide meiotically to form 32 secondary spermatocytes and then 64 haploid 

spermatids. Spermatids elongate and differentiate to form mature spermatozoa. 

During individualization, an actin-based complex remodels the sperm membrane 

and strips away cytoplasm and organelles, forming a waste bag at the distal tip of 

the sperm bundle. Adapted from Fuller, 1993. 
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Figure 1.3     The cellular basis of cytoplasmic incompatibility. Following 

fertilization in a normal cross (A), DNA replication occurs as the male (blue) and 

female (pink) pronuclei migrate toward each other. Upon apposition, the 

chromosomes condense and nuclear envelope breakdown (NEB) occurs. The 

male and female pronuclei undergo the first mitotic division independently, 

using a shared spindle (gonomeric division). Genome fusion occurs after the 

completion of telophase to form two diploid nuclei.  In an incompatible cross (B), 

the Wolbachia-modified paternal DNA is introduced into a Wolbachia-free 

environment (the uninfected egg). Nuclear envelope breakdown and 

chromosome condensation are delayed in the male pronucleus, resulting in 

extensive chromosome bridging at anaphase and embryo death. In a rescue 

cross (C), in which the oocyte is infected with Wolbachia (green dots), the male 

pronucleus is restored and development proceeds normally. Adapted from 

Werren et al., 2008. 
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 Figure 1.4     The formation of reactive oxygen species (ROS) and neutralization 

by antioxidants.  Electrons react with molecular oxygen to form superoxide, 

which is reduced to hydrogen peroxide either spontaneously or via the 

antioxidant enzyme superoxide dismutase (SOD). Hydrogen peroxide may be 

fully reduced to water by antioxidants such as catalase or peroxidases (such as 

glutathione peroxidase, GPx and peroxiredoxin, Prx) or it can react with free iron 

via the Fenton reaction to generate hydroxyl radicals. Unreduced superoxide 

contributes to the formation of hydroxyl radicals by inactivating enzymes 

containing iron-sulfur clusters, releasing iron into the intracellular environment. 

The Fenton reaction can be inhibited by binding of free iron through ferritins. 
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2. MATERIALS AND METHODS 

2.1 Model organisms 

2.1.1 Aedes albopictus (Aa23) cell lines 

 Wild populations of Aedes albopictus mosquitoes are superinfected with 

two CI-inducing Wolbachia strains, designated wAlbA and wAlbB (Sinkins et al., 

1995; Werren et al., 1995b). The Aa23 cell line was established from infected                

Ae. albopictus eggs in 1997, and while the wAlbA strain was lost during 

cultivation, the wAlbB infection has been stably maintained since that time. The 

infection can be cured by treatment with antibiotics (Fenollar et al., 2003; O'Neill 

et al., 1997). The Aa23 cell line used in this study was kindly supplied by Dr. 

Stephen Dobson at the University of Kentucky in 2005 and cultured according to 

O’Neill et al., (1997).  Cells were cultured in 25 cm2 plastic tissue culture flasks 

(Corning) containing 5 ml of SMM growth medium at approximately 27oC.  SMM 

consists of equal volumes of Mitsuhashi-Maramorosch (MM) (Handmade, 

Appendix I) and Schneider’s insect medium (Sigma, Appendix 1) supplemented 

with 15- 20% heat-inactivated fetal bovine serum (Sigma).  Every 4-5 days, the 

flasks were shaken vigorously to detach the cells from the flask surface.  

Approximately 90% of the medium containing cells was poured off and replaced 

with fresh medium. New flasks were generated as needed by placing 1ml of the 

existing cell/medium mixture in a new flask and adding 4 mls of fresh media. 

Infected cultures were maintained free of antibiotics. 
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 An uninfected cell line (Aa23T) was generated from the original cell line 

by adding 10 µg/ml rifampicin to the culture medium for 7 passages (Hermans et 

al., 2001). Cells undergoing treatment with antibiotics were removed from the 

culture flask as described, transferred to a 15 ml conical tube, and centrifuged at 

2,000 rpm for 5 minutes to form a soft pellet. The pellet was resuspended in 5 

mls of fresh medium. One ml of this suspension was used to generate new flasks, 

in addition to 4mls of growth medium and 15.5 µl of a 3.2 mg/ml rifampicin 

(Sigma) stock solution prepared in 70% ethanol. New flasks were used for each 

passage to eliminate the possibility of residual Wolbachia in the medium.  Once 

cleared of infection, cells were maintained without antibiotics. Infected and 

uninfected cell lines were observed using a digital camera attached to an 

inverted microscope. 

  

2.1.2 Drosophila simulans Riverside (DSR) fly stocks 

 The Drosophila simulans Riverside (DSR) line originated from Riverside, 

California, and is naturally infected with the CI-inducing Wolbachia strain wRi 

(Hoffmann and Turelli, 1988; Hoffmann et al., 1990; Hoffmann et al., 1986; 

Turelli and Hoffmann, 1995; Zhou et al., 1998). The lines used in this study were 

a gift from Dr. H. Braig at the University of Wales at Bangor. Stocks were 

maintained in plastic culture bottles at room temperature (22-25oC) on a 

standard diet containing agar (0.9%), cornmeal (8.4%), dextrose (6.8%), yeast 
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extract (2.7%) and methyl-4-hydroxybenzoate (0.25%, dissolved in 95% ethanol). 

Wolbachia-free lines (DSRT) were generated by adding tetracycline (0.025% w/v) 

(Sigma) to the diet for two generations (Giordano et al., 1995). Adult flies were 

placed on fresh diet every 4-6 weeks. 

 

2.1.3 Wolbachia diagnostics 

2.1.3.1     DNA extractions 

 Genomic DNA was isolated from approximately 106 cells or 10 flies  

using the Sigma GenElute Mammalian Genomic DNA MiniPrep kit and stored in 

TE buffer (10mM Tris-HCl, 0.5mM EDTA, pH 9.0, Sigma) at -20 oC until use. DNA 

concentration and quality were measured using the Nanodrop ND-1000 

spectrophotometer. Nucleic acid purity is determined by the ratio of absorbance 

at 260 nm compared to 280 nm (~ 1.8) and 260nm compared to 230 nm (1.8-

2.2). Samples with ratios significantly outside of these ranges (± 0.4) were not 

used for analysis. A minimum concentration of 20 ng/ul was required for 

experimental work. 

 

2.1.3.2    Polymerase chain reaction 

 Polymerase chain reaction (PCR) was used to confirm the presence or 

absence of Wolbachia in fly stocks and cell lines using the Wolbachia surface 

protein (wsp) primers 81F (5’ TGG TCC AAT AAG TGA TGA AGA AAC) and 691R (5’ 
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AAA AAT TAA ACG CTA CTC CA)(Sigma) which generate a 591 bp product (Zhou 

et al., 1998). The universal 28S ribosomal DNA primers D3A (5’GAC CCG TCT TGA 

AAC ACG GA) and D3B (5’TCGGAA GGA ACC AGC TAC TA-3) (Sigma) which 

generate a 400bp product, were used to confirm DNA template quality (Singh et 

al., 2004). A PCR master mix composed of 2.5 µl 10 X buffer containing 15 mM 

MgCl2 (Qiagen), 0.5 µl dNTPs (0.5 mM each) (Amersham Biosciences), 0.25 ul 

(1.25 µnits) Taq polymerase (Qiagen), 0.5 µl each forward and reverse primers 

(0.4 mM), 1.5 µl template DNA, and 19.25 µl sterile H2O, per each 25 µl reaction 

was used.  Prepared samples were denatured at 95 oC for 5 min, cycled 30 times 

at 95 oC (30s), 55 oC (1 min), and 72 oC (1 min), followed by a 5 minute extension 

at 72 oC.  A 15 µl sample of each was electrophoresed on a 0.8 % agarose gel, 

stained with ethidium bromide (0.4 µg/ml, Sigma), and visualized on a UV light 

box. Photographs were taken using a digital camera. 

 

2.1.3.3    Wolbachia visualization by immunofluorescence 

 Aa23 and Aa23T cells were cultured to approximately 50% confluency in 

flasks containing SMM media with 15-20% FBS. Cells were diluted 20 fold in 

SMM media and pipetted (2 mls) onto sterile glass coverslips in a six-well plate 

(Corning). The plate was wrapped with ParafilmR (Pechiney Plastic Packaging 

Company) and incubated at room temperature overnight (16 hrs). The culture 

media was aspirated and the coverslips were washed twice with PBS. Cells were 
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fixed by adding 3.7% paraformaldehyde (Electron Microscopy Sciences) in PBS 

and incubating at room temperature for 10 minutes. The fixative was aspirated 

and the cells were washed twice with PBS. To permeabilize the cells, PBS-T (PBS 

+ 0.2% Triton X-100, Sigma) was added and the coverslips were incubated for 5 

minutes at room temperature. A primary antibody SMAUG (generated in guinea 

pig) was diluted 1:750 in PBS-T + 3% BSA (Sigma). 

 SMAUG is a RNA-binding protein which participates in the transition 

from maternal to zygotic gene expression in development (Dahanukar et al., 

1999). The antibody was provided by Dr. Craig Smibert at the University of 

Toronto and gifted to our lab. Evidence suggests that it does not bind to the 

appropriate antigen, and in fact recognizes an unknown component of 

Wolbachia (Dr. Andrew Simmonds, personal communication). Coverslips were 

incubated in primary antibody for 1.5 hours at room temperature, then washed 

three times with PBS-T. They were incubated in secondary antibody (Cy2-labeled 

donkey anti-guinea pig, Jackson ImmunoResearch) diluted 1:200 in PBS-T for 20 

mins at room temperature in the dark. Following three final washes with PBS-T, a 

drop of mounting media containing 4′,6-Diamidino-2-phenylindole 

dihydrochloride (DAPI,1.5 µg/ml) (VECTASHIELDR, Vector Laboratories) was 

placed on the coverslips, and they were lowered on to a glass slide.  The 

coverslips were sealed with clear nail polish and imaged on a Zeiss Axiomat 40 
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fluorescent microscope with a Canon PowerShot camera. Images were processed 

using Photoshop. 

 

2.2 Proteome analysis of Wolbachia-infected Aa23 cells  

2.2.1 Protein purification from Aa23 and Aa23T cell lines 

 Cell-free protein extracts were prepared as described by Adrain et al. 

(2004).  For each cell line, 5 X 108 cells were packed into a 2 ml Dounce 

homogenizer with an equal volume of ice-cold cell extraction buffer (CEB: 20mM 

HEPES-KOH, pH 7.5, 1.5 mM MgCl2, 1mM EDTA, 1mM EGTA, 1mM DTT, 250mM 

sucrose, 10mM KCl, 100 µM phenylmethylsulfonyl fluoride (Sigma), 10 µg/ml 

leupeptin (Sigma), 2µg/ml aprotinin (Sigma)). Following a 20 minute incubation 

on ice, the cells were lysed by homogenization with 20-30 strokes of a B-type 

pestle. The homogenate was centrifuged for 15 minutes at 14,000 rpm. The 

pellet was resuspended in ice-cold CEB with 0.6% IGEPAL CA-630 (Sigma), in 

order to free membrane proteins in addition to cytoplasmic proteins and the 

extraction procedure was repeated. The supernatant was collected, and a 

Bradford Assay (Bio-Rad) was used to determine the protein concentration 

(µg/µl).  Equivalent amounts of protein (750 µg) were precipitated in acetone 

overnight, then pelleted by centrifugation at 14,000 rpm for 10 min. The 

supernatant was removed and the pellets were dried, then resuspended in 200 
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µl of sterile H20 and cleared of potential contaminants using the 2-D Clean-Up Kit 

(Bio-Rad).  

 

2.2.2  2 Dimensional polyacrylamide gel electrophoresis 

 Aa23 and Aa23T protein pellets were suspended in 322 µl of Amersham 

DeStreak Rehydration Solution containing 0.5 % Amersham IPG buffer (pH 3-10 

NL) and 10 mM  dithriothreitol (DTT) (Sigma), then loaded onto 17 cm (pH 5-8) 

Bio-Rad ReadyStrip IPG strips and permitted to rehydrate passively overnight (16 

hours) at room temperature. Isoelectric focusing was performed on an 

Amersham IPGphor isoelectric focusing unit overnight according to the following 

settings: 500V (1hr), 1000V (1hr), 8000V (4hr), 500V (12 hr), 8000V (1hr).  

Following isoelectric focusing, strips were sequentially equilibrated for 15 

minutes in each of two equilibration buffers (50mM Tris-HCl, pH 8.8, 6M urea, 

30% glycerol, 2% SDS, 0.002% bromophenol blue), one containing 1% DTT, the 

other containing 2.5% iodoacetamide (IAA) (Sigma) to prepare the strips for gel 

electrophoresis and minimize point streaking and artifacts (Amersham 

Biosciences). The strips were run on 12 % homogeneous SDS-PAGE gels with a 4 

% stacking gel at 280 V for approximately 4 hours. Gels were stained with Deep 

Purple fluorescent stain (Amersham) and imaged on a Fugifilm FLA-500 scanner 

at 473nm.  Coomassie blue (Sigma) was used secondarily in order to visualize 

protein spots. Spots present in the Wolbachia-infected gel but not in the 
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uninfected gel were excised manually and placed in a sterile 1.5 ml centrifuge 

tube containing 20 µl of nuclease-free H20 and stored at 4oC. Three replicates 

were run for each sample. 

 

2.2.3  MS/MS analysis and protein identification using Mascot 

 Gel slices were sent on dry ice to the Southern Alberta Mass 

Spectrometry (SAMS) Centre for Proteomics at the University of Calgary. The 

samples were trypsin-digested and peptide sequences were determined by 

LC/MS/MS. Matching sequences were identified by the Mascot search engine 

using standard scoring (www.matrixscience.com).  Where more than five 

significant hits were generated, an ions score cut-off of 20 was implemented, 

which eliminates low-scoring, random peptide matches and allows homologous 

proteins to generally collapse into a single hit. From the significant hits 

generated by Mascot (those indicating identity or extensive homology) protein 

matches from suitable organisms were identified.  Since a protein database does 

not exist for Aedes albopictus, those matches from its closest relative for which a 

primary sequence database does exist, Aedes aegypti, were considered most 

probable. Wolbachia protein matches from the endosymbiont which infects 

Drosophila melanogaster (a primary sequence database also exists for this 

isolate), were deemed most likely when evaluating hits within the 

proteobacteria. Protein matches were further evaluated on the basis of 

http://www.sams.ucalgary.ca/v3/default.aspx?pageid=124#id83


55 

 

 

 

isoelectric point and molecular mass. The protein matches which best 

represented the location of the corresponding spot on the two dimensional gel 

were positively identified.  

 

2.3 Evaluation of reactive oxygen species (ROS) formation in Aa23 cells 
 
2.3.1     ROS labelling 

 ROS production in Aa23 and Aa23T cells was compared using the Image-iT 

LIVE Green Reactive Oxygen Species Detection Kit from Molecular Probes.  This 

assay uses the fluorogenic marker 5-(and-6)-carboxy-2′,7′-dichlorodihydro-

fluorescein diacetate (carboxy-H2DCFDA), which permeates live cells and is 

deacetylated by nonspecific esterases intracellularly. In the presence of ROS, this 

reduced compound is oxidized, and fluoresces bright green. An inducer of ROS, 

tert-butyl hydroperoxide (TBHP) was used to generate a positive control.  Cells 

were evaluated by flow cytometry and microscopy. 

 

2.3.2 Flow cytometric analysis 

 Prior to labeling, Aa23 and Aa23T cells were harvested from cell culture 

medium by agitating each flask, poured into a 15 ml conical tube and gently 

pelleted by centrifugation (2,000 rpm for 5 min). Cells were washed twice in PBS 

containing 1.26 mM CaCl2, 0.81 mM MgSO4 and 5 mM EDTA (Buffer A) by gentle 

resuspension of the pellet followed by centrifugation (2,000 rpm for 5 min). They 
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were resuspended in Buffer A containing 25 µM carboxy-H2DCFDA and incubated 

for 30 min at 27 oC in the dark. The cells were washed twice, then resuspended 

in 1 ml of Buffer A. Positive controls were generated by incubating cells in 150 

µM tert-butyl hydroperoxide (TBHP) in cell culture medium for 90 min followed 

by labeling. Fluorescence of the cells was measured using the FACScan flow 

cytometer (BD Biosciences). A total of 10,000 events were acquired and analyzed 

using CellQuest software. 

 

 2.3.3     Microscopic analysis 

 Aa23 and Aa23T cells were harvested and washed in Buffer A as 

described above. Following the second wash, cells were resuspended in Buffer A 

and permitted to adhere to glass slides for 1 hour. Buffer A was replaced with 1 

ml of Buffer A containing 25 µM carboxy-H2DCFDA and the slides were incubated 

for 30 min at 27 oC in the dark. Cells were counterstained for the last 5 min of the 

incubation period by adding one 1µl of Hoechst 333342 (1mM, Molecular 

Probes) to the buffer to generate a final concentration of 1 μM. The buffer was 

removed by blotting with a Kimwipe (Kimberly-Clark), and the slides were 

washed three times with fresh buffer A. The slides were mounted in 1 ml of 

warm buffer A and immediately imaged on a Zeiss Axiomat 40 fluorescent 

microscope with a Canon PowerShot camera. Images were processed using 

Photoshop. 
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2.4 Analysis of superoxide dismutase (SOD) levels in DSR and DSRT 

 reproductive tissue       

2.4.1  Ovary and testis dissections and protein preparation 

Testes and ovaries from a dozen four-day old flies were dissected and 

homogenized using a mechanical hand held homogenizer in 80 µl of Buffer B (10 

mM potassium phosphate, 1mM EDTA, pH 7.4). The homogenate was 

centrifuged at 14,000 rpm for 15 min. The supernatant was collected and a 

Bradford Assay (BioRad) was used to determine the protein concentration 

(µg/µl). Protein aliquots (0.025 µg/µl) were prepared in Buffer B. Three biological 

replicates each of DSR and DSRT were prepared.  

 

2.4.2  SOD assay  

 Total SOD levels were measured using a microplate SOD assay (Dojindo 

Laboratories). This method utilizes the tetrazolium salt WST-1 (2-(4-iodophenyl)-

3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt), 

which, upon being reduced by superoxide anions forms a water-soluble 

formazan dye (WST-1 formazan). Superoxide is generated by the interaction of 

xanthine (a purine base containing two oxygen molecules) and xanthine oxidase, 

which reduces xanthine to uric acid and hydrogen peroxide, producing 

superoxide anions as a by-product. If SOD is present, it degrades available 

superoxide, preventing it from forming WST-1 formazan.  Based on the amount 
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of WST-1 formazan formed, the percentage of superoxide anion formation that is 

inhibited by available SOD can be determined by measuring the absorbance (at 

450 nm) of the sample and comparing it to a standard curve. SOD standards 

were prepared from bovine liver SOD (Sigma). One unit of SOD is defined as that 

amount of protein which inhibits superoxide anion formation by 50%, therefore 

standards ranging from 0.001 units/ml to 200 units/ml were prepared by serial 

dilution in Buffer A.   

 Three biological replicates of each sample were evaluated, with the 

average of two technical replicates representing the determined value within 

each experiment. The SOD assay was run on 96-well plates (Corning) following 

the protocol outlined by Dojindo. Twenty μl of sample solution or standard were 

added to each test well, and to a well designated blank 2. Twenty μl of ddH20 

were added to two additional wells designated blank 1 and blank 3. To all wells, 

200μl of WST working solution was added. Dilution buffer (20μl) was added to 

blank 2 and 3 while 20μl of enzyme working solution was added to the sample 

and blank 1. In blank 1, superoxide was generated with no inhibiter present to 

stop the conversion of WST-1 to WST-1 formazan. Blank 2 and blank 3 were void 

of enzyme, thus preventing the formation of superoxide in the presence of 

sample or water, respectively.  The samples were mixed and incubated at 37oC 

for 30 minutes. Absorbance was read on a Bio-Rad Benchmark microplate reader 
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at 450 nm and SOD activity (inhibition rate %) was calculated using the following 

formula: 

 

 

 

  

 

By determining the difference between blank 1 and blank 3, and the 

sample and blank 2, colorimetric change not induced by xanthine oxidase is 

omitted. The amount of WST-1 formazan generated in the sample well is 

subtracted from the maximum amount of WST-1 formazan, and is indicative of 

the amount of superoxide present in this system. SOD activity is determined by 

dividing this value by the maximum amount of WST-1 formazan possible and 

converting it into a percentage.  Based on SOD activity (% inhibition rate) the 

units/mg of SOD present in each sample was calculated through comparison with 

SOD standards (y=mx + b) and statistical significance was determined using a t-

test (p = 0.05). 

 

 

 



60 

 

 

 

2.5 DNA damage in Wolbachia-infected cells and insects 

2.5.1 Analysis of 8-oxo-dG in Aa23 and Aa23T cell lines 

2.5.1.1   DNA extraction 

 Genomic DNA from Aa23 and Aa23T cells was isolated as described above 

using the Sigma GenElute Mammalian Genomic DNA MiniPrep kit, except DNA 

was eluted in sterile water instead of TE. Three biological replicates were 

prepared and the DNA concentration was measured using the Nanodrop ND-

1000. DNA was lyophilized and resuspended in TBS (150mM NaCl, 20 mM Tris-

HCl, pH 7.5) to a concentration of 250 ng/µl (first replicate) or  200 ng/µl (second 

and third replicates), depending upon the amount of DNA in the sample. Serial 

dilutions were prepared in TBS. From the 250 ng/µl stock, dilutions of 125 ng/µl, 

50 ng/µl, 5 ng/µl, 0.5 ng/µl were prepared. From the 200 ng/µl stock, dilutions of 

100 ng/µl, 50 ng/µl, 5 ng/µl, and 0.5 ng/µl were prepared in TBS. 

 

2.5.1.2   DNA dot blot 

 Nitrocellulose membranes (Bio-Rad 0.45 µm Trans-Blot Transfer 

Membrane) were soaked in TBS for 5 minutes then permitted to air dry for 2 

minutes. DNA samples (2 µl volumes) were pipetted onto the membrane. DNA 

was fixed to the membrane by UV cross-linking at (120mJ/cm2) using the 

Spectrolinker TM UV Crosslinker (Spectronics Corp). The membranes were 

blocked in TBS containing 1 % BSA (Sigma) for 2 hours at room temperature,  
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then incubated at 4oC with primary (anti-DNA/RNA damage) antibody 

(monocolonal antibody, recognizes 8-oxo-dG, made in mouse, StressMarq 

Biosciences) diluted 1:3000 in TBS with 1 % BSA overnight (16 hours). 

Membranes were washed 3 times for 5 minutes in TBS containing 0.05% Tween-

20 (Sigma) then incubated in alkaline phosphatase-labeled anti-mouse IgG (KPL) 

diluted 1:5000 in TBS/BSA for hour at room temperature. The membrane was 

washed 3 times for 5 minutes in TBS containing 0.05% Tween-20. Two different 

methods of detection were used from this point on. 

 For the first replicate, a colorometric method was used. The membrane 

was developed for 15 minutes in 5-bromo-4-chloro-3-indolylphosphate/nitroblue 

tetrazolium (BCIP/NBT, KPL), which is dephosphorylated by alkaline phosphatase, 

generating an insoluble purple precipitate. Following development, the 

membrane was washed in sterile ddH20, and imaged on a light box. A digital 

image was captured and processed using Photoshop. 

 For the second and third replicates, a more sensitive detection method 

based on fluorescence was employed. The membranes were incubated in ECFTM 

substrate (GE Healthcare) for 5 minutes at room temperature then immediately 

scanned on a Fugifilm FLA-500 scanner using a 570 nm filter. In the presence of 

alkaline phosphatase the ECF substrate is converted into a product which 

fluoresces at 540–560 nm. Images were processed using Photoshop.   
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All images were adjusted for brightness and contrast and analyzed using 

ImageJ software (Rasband, 1997-2011) (available at http://rsbweb.nih.gov/ij/). 

Integrated density, which is a product of the area and mean gray value, was 

measured for all Aa23 and Aa23T dots within each replicate. The ratio of Aa23 

compared to Aa23T was calculated for each pair and the mean difference 

between Aa23 and Aa23T was compared using a one-sample t-test (p = 0.05). 

 

2.5.2 Quantification of 8-oxo-dG in male DSR and DSRT flies 

2.5.2.1   DNA extractions 

 Male DSR and DSRT flies 0-5 days old were collected and stored at -80oc 

until use. DNA was extracted in batches of fifty flies as follows. Flies were 

homogenized in 500 μl of lysis buffer (0.1 M  Tris-HCI (pH 9.0), 0.1 M EDTA, 1% 

SDS) containing 20 mM 2,2,6,6-Tetramethylpiperidine 1-oxyl (TEMPO, Sigma) 

using 50 passes with a type A pestle in a Dounce homogenizer (Kontes Glass Co.). 

TEMPO is a free radical scavenger, and inhibits the formation of oxidative 

artifacts. Forty μl of proteinase K (Qiagen) was added followed by incubation at 

56oC overnight (16 hrs). Twenty µl of RNAse mix (8 µl of RNAse T1 (Fermentas) 

and 30 µl of RNase A (Sigma) in 614 µl of ddH20) was added and the samples 

were incubated at 37oC for 30 min, then incubated at 70oC for 30 minutes. 

Seventy μl of potassium acetate (8M) was added, and the samples were shaken 

and placed on ice for 30 minutes. They were then centrifuged for 15 minutes at 
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13,000 rpm and the supernatant was transferred to a new tube. One volume of 

phenol : chloroform : isoamyl alcohol (25:24:1, Sigma) containing 20 mM TEMPO 

was added, the tubes were inverted by hand for 3 minutes, and centrifuged for 5 

minutes at 13,000 rpm.  This step was repeated once with phenol : chloroform : 

isoamyl alcohol and once with chloroform (Sigma) alone. After each 

centrifugation, the supernatant was transferred to a new tube. Isopropanol (300 

μl) was added following the last extraction and the samples were placed on ice 

for 30 minutes to precipitate the DNA. DNA was pelleted by centrifuging for 5 

minutes at 10,000 rpm. One ml of 70% ethanol was added to each pellet 

followed by centrifugation at 13,000 rpm for 5 minutes. The pellets were 

resuspended in 100 μl of TE buffer (10 mM Tris-HCl, 5 mM EDTA, pH 7.3) 

containing 2 mM TEMPO. DNA concentration and purity were measured using 

the Nanodrop ND-1000 and three biological replicates containing 50 μg of DNA 

at a final concentration of 0.2 μg/μl were prepared and stored at -80oC until 

analysis. 

 

2.5.2.2   MS/MS analysis 

 DSR and DSRT DNA samples from whole male flies were sent on dry ice to 

the Center for Environmental Health and Susceptibility, The University of North 

Carolina at Chapel Hill for mass spectrometry. The frequency of 8-oxo-dG  was 

measured by ultra-high pressure liquid chromatography–heat assisted 



64 

 

 

 

electrospray ionization–tandem mass spectrometry according to Boysen et al. 

(2010).  For each biological replicate of DSR and DSRT, the number of 8-oxo-dG 

bases per 106 dG bases was determined. These values were compared using a t-

test (p = 0.05). 

 

2.5.3 Single  cell gel electrophoresis (SCGE) of Drosophila spermatocytes  

 Spermatocytes were evaluated for DNA strand breaks by single cell gel 

electrophoresis (SCGE, also known as the comet assay) using the OxiselectTM 

Comet Assay Kit by Cell BioLabs. The testes from 4 DSR and DSRT flies < 1 day old 

were dissected and placed in a drop of PBS on a glass slide. Testes were 

disrupted with fine dissecting pins and the dissociated cells were collected by 

pipette and transferred to a 1.5ml centrifuge tube. PBS containing 2mM EDTA 

was added to bring the volume to 200 μl. OxiSelectTM low melting point agarose 

was placed in a water bath at 90-95oC until it liquefied, then transferred into a 

37oC water bath for 20 minutes to cool. The testes cell suspension was diluted 

1/10 in 37oC agarose and mixed by gentle pipetting. Seventy-five μl of sample 

was pipetted onto OxiSelectTM glass slides with labeled wells. The slides were 

chilled at 4oC in the dark to allow the agarose to solidify, then immersed in a 

basin containing chilled lysis buffer (2.5 M NaCl, 100 mM EDTA, 1X OxiSelectTM 

lysis Solution) at 4oC in the dark for 45 minutes. Lysis buffer was replaced with 

chilled alkaline solution (300 mM NaOH, 1 mM EDTA) and incubated at 4oC for 30 
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minutes in the dark. The slides were transferred to a horizontal gel 

electrophoresis apparatus and it was filled with fresh alkaline solution. Voltage 

was applied at 1 volt/cm and 300 mA for 20 minutes. Slides were removed from 

the tank and placed in a basin containing chilled ddH20. Water was aspirated 

after 2 minutes and the wash was repeated twice. A 70% ethanol solution was 

then added for 5 minutes, aspirated, and the slide was permitted to air dry at 4oC 

overnight. DNA was stained with Vista Green and visualized on a Zeiss Axiomat 

40 fluorescent microscope. Images were captured using a Canon PowerShot 

camera and processed using Photoshop. Spermatocytes were identified based on 

the increase in nuclear volume (~25 fold) at this stage of development compared 

to other stages (Cenci et al., 1994; Fuller, 1993). In this assay, single and double 

stranded breaks permit the migration of damaged DNA away from the nucleus, 

creating “comets”, with distinct head and tail regions.  Alkaline conditions 

unwind the DNA and contribute to the formation of strand breaks at sensitive AP 

sites (Moller, 2006) . The comet analysis software CometScore ™ 

(www.autocomet.com) created by Tritek was used to quantify and compare 

fluorescence in comet heads and tails. Three biological replicates of 50 cells each 

were evaluated blind for each of DSR and DSRT. The mean percentage of DNA 

forming the comet tail in each spermatocyte for DSR and DSRT was recorded and 

compared using a t-test (p = 0.05). Additionally, the proportion of spermatocytes 

falling into defined damage categories, based on a scale of 0 to 5 was 
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determined. Cells with 0-20% of their DNA in the tail were scored as a “0”, those 

with 21-40 % were scored as a ”1” , 41-60 % were scored as a “2”, 61-80 % were 

scored as a “3”, and 81-100% were scored as a “4” (Figure 3.5.1 A,B).  
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3. RESULTS 

3.1 Wolbachia in Aedes albopictus cell lines and Drosophila simulans flies 
 
3.1.1 Antibiotic treatment and PCR analysis of Aa23 and Aa23T cells 

 The infection status of the Aa23 cell lines was confirmed by PCR using the 

wsp primers. Genomic DNA from stably infected cells generated a band at 

approximately 590 bp (Figure 3.1.1 A, top). DNA template quality was confirmed 

by the presence of a band at 400 bp with universal 28S ribosomal DNA primers 

D3A and D3B (Figure 3.1.1 A, bottom).  Rifampicin treatment (10 µg/ml) resulted 

in the gradual dissipation of the Wolbachia signal over the course of 7 passages. 

No morphological differences were observed between infected and uninfected 

cells (Figure 3.1.1 B, I and II). 

 

3.1.2 PCR analysis of DSR and DSRT flies 

 Infected (DSR) and uninfected (DSRT) Drosophila simulans Riverside flies 

were tested on a regular basis to confirm infection status. DNA from infected 

flies consistently showed a strong band with wsp primers at 590 bp, which was 

absent in DNA from DSRT flies. DNA from all flies generated a 400 bp band with 

28S DNA primers (Figure 3.1.2).  
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3.1.3 Immunofluorescence of Wolbachia in Aa23 cells 

 Aa23 and Aa23T cells were stained with 4′,6-Diamidino-2-phenylindole 

dihydrochloride (DAPI) and labelled with anti-SMAUG antibody which is believed 

to recognize Wolbachia (Figure 3.1.3). The nuclei of infected (I) and uninfected 

(II) mosquito cells were clearly visible upon staining with DAPI. In infected cells, 

Wolbachia DNA was identifiable when stained with DAPI and this signal 

overlapped with fluorescence generated by Cy2-labeled anti-SMAUG antibody 

(green). 

  
 
3.2 Proteome analysis of Wolbachia-infected Aa23 cells 1 
 
3.2.1 2 dimensional protein fingerprint of Aa23 and Aa23T cell lines   

 2 dimensional PAGE of Wolbachia-infected Aa23 cells and uninfected 

Aa23T cells generated a consistent protein map across three biological replicates. 

More than 20 proteins expressed in Aa23 cells, and absent in Aa23T cells were 

revealed. In addition, several hundred host proteins were present regardless of 

the status of Wolbachia infection (Figure 3.2.1). Nine spots (ID #1-9) which 

appeared exclusively on the 2D gel from Wolbachia-infected Aa23 were manually 

excised for identification by LC/MS/MS. 

                                                           
1
 A version of this chapter has been published. Brennan et al., 2008. PLoS ONE 3: doi: 

10.1371/journal.pone.0002083. 
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3.2.2 Protein identification by MS/MS 

 Excised proteins were identified using the Mascot search engine which 

predicts the matching protein based on the amino acid sequence of isolated 

peptides. Five of the nine spots selected (Protein ID 2,3,6,7 and 8) correspond to 

host proteins which are overexpressed in response to a Wolbachia infection 

(Table 3.2.1). Two protein matches were identified at position 6. The peptides 

sequenced by LC/MS/MS showed amino acid sequence coverage of 12 to 56 % in 

matched proteins (Table 3.2.2). Eight of the 9 spots corresponded to a Wolbachia 

protein (Table 3.2.1). Amino acid sequence coverage ranged from 10 to 79 % 

(Table 3.2.3)  Spots 1,4,5 and 9 were exclusively Wolbachia-generated, with spot 

4 generating two bacterial matches. The remaining spots (2,3,6, and 7) matched 

both host and Wolbachia proteins.   

 

3.2.2.1   Host (Aedes albopictus) proteins 

 The spot at position 8 was identified as a mosquito protein within the 

peroxiredoxin family.  The remaining four spots resulted in matches to both host 

(Ae. albopictus), and endosymbiont (Wolbachia) proteins.  Spot 6 generated two 

significant host matches, actin depolymerizing factor and CuZn superoxide 

dismutase (SOD). CuZn SOD was also identified at spots 3 and 7.  The protein 

corresponding to spot 2 was identified as glutathione peroxidase.   
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 Peroxiredoxin (gi|55233150), glutathione peroxidase (gi|108871565), 

and CuZn SOD (gi|94468490) are highly conserved antioxidant proteins which 

function in the neutralization of reactive oxygen species (ROS).  CuZn SOD is 

responsible for the conversion of superoxide (O2-) to oxygen and hydrogen 

peroxide. The mosquito CuZn SOD in this study is homologous to D. 

melanogaster Sod1 (CG11793), which is a cytoplasmic protein. Peroxiredoxins 

(Prx) are a group of thiol-dependant antioxidant enzymes which break down 

peroxides (Wood et al., 2003). The peroxiredoxin expressed in Wolbachia-

infected Ae. albopictus cells is homologous to mammalian and Drosophila Prx5 

(CG7217); both are atypical 2-Cys peroxiredoxins (Michalak et al., 2008; Seo et 

al., 2000). The mosquito glutathione peroxidase identified is homologous to the 

characterized GPx of D. melanogaster (CG12013). GPx uses reduced thioredoxin 

(Trx) as an electron donor to reduce hydrogen peroxide and organic 

hydroperoxides (Maiorino et al., 2007; Missirlis et al., 2003b).  

 Actin depolymerizing factor (gi|94469346) belongs to a family of proteins 

ubiquitous in eukaryotes which are essential to actin regulation (Moon and 

Drubin, 1995).  ADF contributes to the turnover of actin by depolymerizing actin 

filaments, allowing them to be rapidly recycled (Carlier et al., 1997).   
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3.2.2.2   Endosymbiont (Wolbachia) proteins 

 Two highly conserved proteins involved in bacterial redox homeostasis 

were identified:  Fe superoxide dismutase(SOD) (gi|4250581) and bacterioferritin 

(Bfr) (gi|42521044). Fe SOD is a bacterial antioxidant enzyme which degrades 

superoxide, a damaging reactive oxygen species (Fridovich, 1995).  It contains 

iron instead of copper and zinc at the catalytic center (Wang et al., 2006). 

Ferritins include a broad superfamily of iron-storage proteins common to both 

aerobic and anaerobic organisms which play a key role in iron metabolism 

(Carrondo, 2003).  Ferritins generally lack haem groups, however some bacterial 

forms contain a haem b, and are referred to as bacterioferritins (Ford et al., 

1984; Stiefel and Watt, 1979).  

Four of the identified proteins are conserved factors in bacterial protein 

synthesis and folding, including ribosomal protein L7/L12 (gi|42519941),  

translation elongation factor EF-Tu (gi|42520532), ribosome releasing factor 

(gi|42520392) , and GroES (gi|21742794).  Ribosome releasing (recycling) factor 

(RRF) is a bacterial protein responsible for the disassembly of ribosomes from 

mRNA following termination of protein biosynthesis (Caskey et al., 1989).  It also 

plays a role in preventing translational errors during peptide chain elongation 

(Janosi et al., 1996).   

 Elongation factor Tu (EF-Tu) is a prokaryotic elongation factor belonging 

to the guanosine triphosphatase superfamily of proteins (Bourne et al., 1991).  
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During polypeptide chain elongation, EF-Tu binds GTP, promoting the binding of 

an aminoacyl tRNA to the acceptor site of the ribosome (Gordon, 1968).   

 Ribosomal protein L7/L12 has been studied extensively in bacteria, where 

it forms a well-defined domain within the 50S ribosomal subunit and it interacts 

with elongation factors during protein synthesis (Gudkov, 1997). It is also 

involved in release factor function and in the control of translational accuracy 

during proofreading steps (Kirsebom and Isaksson, 1985; Tate et al., 1990).    

 GroES is a protein cofactor which complexes with the chaperonin GroEL 

to assist in the proper folding of newly synthesized proteins and the refolding of 

misfolded proteins (Sigler et al., 1998; Xu and Sigler, 1998).     

 Nucleoside diphosphate kinase (Ndk)(gi|42520980) is a ubiquitous 

enzyme which catalyzes the transfer of a phosphoryl group from a nucleoside 

triphosphate to a nucleoside disphosphate, and is therefore responsible for  

balancing the cellular concentrations of these molecules (Levit et al., 2002).  

 3,4-dihydroxy-2-butanone 4-phosphate synthase (gi|42520502) is an 

enzyme responsible for the generation of the riboflavin precursor L-3,4-

dihydroxy-2-butanone 4-phosphatase  (Volk and Bacher, 1991).  It is part of a 

conserved pathway for riboflavin synthesis in bacteria. Riboflavin is essential to 

cell metabolism, as it is a precursor to flavin adenine dinucleotide (FAD) and 

flavin mononucleotide (FMN).   
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 A Wolbachia single-strand binding protein (SSB) (gi|42520614) was 

identified. SSBs  are essential proteins in all organisms, where they bind with 

high affinity to single stranded DNA and are important factors in DNA replication, 

recombination and repair (Lohman and Ferrari, 1994). 

 

3.3  Evaluation of reactive oxygen species (ROS) formation in Aa23 cells 2 
 
 Seven proteins identified by 2D PAGE have an antioxidant function, 

suggesting an increase in ROS within this system. ROS production was measured 

within Wolbachia infected and uninfected Aa23 cells by flow cytometry and 

microscopy, using the fluorogenic ROS indicator carboxy-H2DCFDA. 

 

3.3.1 Flow cytometric analysis  

 Approximately 1.54 % of uninfected Aa23T cells exhibited ROS formation 

when labeled with carboxy-H2DCFDA and examined by flow cytometry (Figure 

3.3.1A).  This number rose to 5.47 % following induction of ROS with TBHP 

(Figure 3.3.1B).  In contrast, 9.90 % of Wolbachia-infected cells stained with 

carboxy-H2DCFDA fluoresced, demonstrating a 6.4 fold increase in ROS formation 

(Figure 3.3.1C) over uninfected cells. 

                                                           
2
 A version of this chapter has been published. Brennan et al., 2008. PLoS ONE 3: doi: 

10.1371/journal.pone.0002083.  
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3.3.2 Microscopic analysis 

 
 When labelled with carboxy-H2DCFDA and evaluated by microscopy, 

Wolbachia-infected A. albopictus cells exhibit greater ROS formation than 

uninfected cells. Fluorescence is associated with DAPI-labeled Wolbachia in the 

host cell cytoplasm (Figure 3.3.2).   

 

3.4 Analysis of superoxide dismutase (SOD) levels in DSR and DSRT   

 reproductive tissue      

 To investigate the expression of antioxidant expression and ROS 

formation in vivo, the level of superoxide dismutase (units/mg) was evaluated in 

protein extracts from Wolbachia-infected and uninfected Drosophila simulans 

ovaries and testes.   

  

3.4.1  SOD levels in DSR/DSRT ovaries and testes 
 

SOD levels were 394.9 units/mg of protein extract for DSR testes, 273.9 

units/mg for DSRT testes, 94.3 units/mg for DSR ovaries and 83.4 units/mg for 

DSRT ovaries. Therefore, SOD activity is 1.44 X greater in the testes of DSR 

compared to DSRT flies and 1.13 X greater in the ovaries of DSR compared to 

DSRT flies (p < 0.05) (Figure  3.4.1). SOD activity is consistently greater in the 

testes compared to the ovaries (4.3 X greater in infected extracts, 3.3 X greater 
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in uninfected extracts, p <  0.05). SOD activity in uninfected controls reflects, at 

least in part, exposure to ROS during dissection and protein extraction. The 

increase in SOD activity in infected tissues, particularly in the testes, over 

uninfected tissues, is due to the presence of Wolbachia. These results are 

consistent with in vitro data in mosquito cells (Figure 3.3.2) and confirm that ROS 

formation and antioxidant expression are elevated in the reproductive tissue in 

vivo. 

 

 3.5 DNA damage in Wolbachia-infected cells and insects  

ROS can induce damage to cell lipids, proteins and nucleic acids. The 

identification of excess ROS in Wolbachia-infected Aedes albopictus cells and 

Drosophila simulans flies led to an evaluation of ROS-mediated DNA damage in 

these systems. 

 

3.5.1    Analysis of 8-oxo-dG in Aa23 and Aa23T cell lines 

 The intensities of the Aa23 DNA dots were visibly greater at each 

concentration than the Aa23T DNA dots across three replicate blots when 

stained with anti-8-oxo-dG antibody and detected by colorimetric or fluorescent 

methods (Figure 3.5.1A). Within each replicate, the ratio of integrated density 

for Aa23 dots compared to Aa23T dots was determined using ImageJ. On 

average, Aa23 dot blots showed a 7.93% increase in integrated density 
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compared to Aa23T dot blots (p < 0.05) (Figure 3.5.1). This represents a 

significant increase in 8-oxo-dG lesion formation in DNA from Wolbachia-

infected cells. 

 
 
3.5.2 Quantification of 8-oxo-dG in male DSR and DSRT flies by MS/MS  
 

analysis 
  
 The number of 8-oxo-dG bases per 106 dG bases ranged from 10.17 to 

13.34 for male DSR flies, with an average of 11.93. For DSRT males, the number 

ranged from 10.61 to 11.63, with an average of 11.20. On average, DSR flies 

exhibited an increase of 0.73 8-oxo-dG bases per 106 dG bases (Figure 3.5.2 A, B, 

C).  This represents a small, statistically insignificant difference (p > 0.05). 

 

3.5.2 Single  cell gel electrophoresis (SCGE) of Drosophila spermatocytes 

Wolbachia often modifies the sperm of infected Drosophila in order to 

induce CI (Werren, 1997). Because Wolbachia are associated with damaging ROS, 

developing DSR and DSRT spermatocytes were evaluated for DNA damage using 

single cell gel electrophoresis (SCGE), or the comet assay. The percentage of DNA 

in the tail region of each comet was used for analysis. Spermatocytes were first 

categorized according to the scoring system shown in Figure 3.5.3 A and B. While 

nearly 75% of DSR spermatocytes exhibited a score of 2 or more (significant DNA 

damage), the majority of DSRT spermatocytes (58%) fell in the lowest damage 
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categories (0-1, no damage to moderate damage) (3.5.2  B). On average, the tails 

of DSR spermatocytes contained 55.6 % of the  total DNA while in DSRT tails 

contained 35.4 %, representing a 20% increase in single and double stranded 

DNA breaks (p < 0.05) (Figure 3.5.2 C).  This data correlates with increased 

oxidative stress in DSR testes, as determined by the SOD assay (Figure 3.4.1) 
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Figure 3.1.1     PCR analysis of Aedes albopictus cells naturally infected with 

Wolbachia (Aa23) and cleared of infection using antibiotics (Aa23T). (A) 

Amplification of Wolbachia surface protein (wsp primers, top) and ribosomal 

DNA (28S primers, bottom) using genomic DNA from untreated Aa23 cells, and 

cells treated with 10 ug/ml rifampicin for seven passages. Lane L: molecular 

ladder.  Lane 1: stably infected Aa23 cells.  Lanes 2 through 8: cells treated with 

rifampicin for 1, 2, 3, 4, 5, 6, and 7 passages.  Lane 9: negative control. (B) 

Brightfield image (10 X objective) of Aa23 cells and Aa23T cells cultured in SMM 

media containing 10-15% FBS. Bar, 100 µm. 
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Figure 3.1.2     PCR analysis of Drosophila simulans Riverside flies infected with 

Wolbachia (DSR) and cleared of infection using antibiotics (DSRT).  DSR flies are 

naturally infected with Wolbachia, while DSRT flies have been cleared of 

infection by adding tetracycline (0.025%) to the diet for two generations. PCR 

analysis shows amplification of genomic DNA from two DSR samples and two 

DSRT samples tested with ribosomal (28s) primers (lanes 1-4) for DNA template 

quality and Wolbachia surface protein (wsp) primers for the presence of 

Wolbachia (lanes 7-10). Lane L: molecular ladder.  Lanes 1 and 3: DNA from DSR 

flies tested with 28S primers. Lanes 2 and 4: DNA from DSRT flies testes with 28S 

primers. Lane 5: negative control. Lane 6: blank. Lane 7 and 9: DNA from DSR 

flies tested with wsp primers. Lane 8 and 10: DNA from DSRT flies tested with 

wsp primers.  Lane 11: negative control.  
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Figure 3.1.3     Fluorescent microscopy of Wolbachia -infected (I, top) and 

uninfected (II, bottom) Aedes albopictus cells.  DNA is stained with DAPI 

(1.5µg/ml) (blue) in IA and IIA; Wolbachia are labelled with anti-SMAUG antibody 

tagged with Cy2-labeled secondary antibody (green) in IB and IIB. Overlay is 

shown in IC and IIC. Cells were imaged on a Zeiss Axiomat 40 fluorescent 

microscope under the 40X objective. Bar, 10μm. 
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Figure 3.2.1     Protein map of soluble extract from Wolbachia -infected and 

uninfected Aedes albopictus cells by 2 dimensional polyacrylamide gel 

electrophoresis (2D PAGE). Approximately 750 ug of protein extract from Aa23 

cells (I) and Aa23T cells (II) were analyzed.  Gels were stained with Deep Purple 

fluorescent stain (Amersham) and imaged on a Fugifilm FLA-500 scanner at 

473nm. Spots 1-9 correspond to proteins visualized only in the extract containing 

the endosymbiont Wolbachia. These spots were excised and their identities were 

determined by mass spectrometry (shown in Table 3.2.1) 
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Figure 3.3.1     Analysis of ROS formation in Wolbachia -infected and uninfected 

Aa23 cells by flow cytometry using the fluorescent ROS marker carboxy-

H2DCFDA.  Histograms representative of three replicates are shown. The 

negative control (shaded) consists of unlabeled cells. Carboxy-H2DCFDA positive 

cells are represented by the black lines. (A) Uninfected Aa23T cells, (B) 

uninfected Aa23 cells induced to produce ROS using TBHP and (C) infected Aa23 

cells. Wolbachia-infected A. albopictus cells exhibit a 6-fold increase in 

fluorescence compared to uninfected cells. 
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Figure 3.3.2     Microscopic analysis of ROS formation in Wolbachia-infected (I) 

and uninfected (II) Aedes albopictus cells labeled with the fluorescent ROS 

marker carboxy-H2DCFDA.  Hoechst stain was used to label DNA (left panel). 

Carboxy-H2DCFDA was used to label ROS (right panel). ROS formation is greater 

in Aa23 cells compared to Aa23T cells, and is associated with Wolbachia in the 

host cell cytoplasm. Cells were imaged on a Zeiss Axiomat 40 fluorescent 

microscope under the 40X objective. Bar, 10μm.Bar.   
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Figure 3.4.1     Assay for superoxide dismutase (SOD) actitvity in protein 

extracts generated from Wolbachia infected (DSR) and uninfected (DSRT) 

reproductive tissue of Drosophila simulans flies. The level of SOD (units/mg) is 

significantly greater in the both the testes (1.45 X) and ovaries (1.13 X) of DSR 

flies compared to DSRT (p = 0.05). 
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Figure 3.5.1     DNA dot blot analysis of 8-oxo-dG in Wolbachia infected and 

uninfected Aedes albopictus cells. Serial dilutions of genomic Aa23 and Aa23T 

DNA were applied to a nitrocellulose membrane and probed with anti-8-oxo-dG 

antibody. Detection was by a colorimetric method (BCIP/NBT, KPL) or 

fluorescence method (ECFTM,GE Healthcare). (A) A representative blot 

(colorimetric method). (B) The mean increase in integrated density of Aa23 dots 

compared to Aa23T dots from three biological replicates using ImageJ software. 

DNA from Wolbachia-infected cells shows a mean increase of 7.93 % in density 

compared to uninfected cells (p = 0.05). 
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Figure 3.5.2     Quantification of 8-oxo-dG in Wolbachia-infected (DSR) and 

uninfected (DSRT) genomic DNA from male Drosophila simulans flies by ultra-

high pressure liquid chromatography–heat assisted electrospray ionization–

tandem mass spectrometry. (A) Raw data and mean number of 8-oxodG lesions 

per dG bases for three biological replicates of DSR and DSRT DNA. (B) There is an 

increase of 0.73 8-oxo-dG per 106 dG bases in the DNA of DSR flies compared to 

DSRT flies, which is not statistically significant (p = 0.05). (C) Representative 

chromatograms for DSR and DSRT DNA samples. 
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dG 
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8-oxo-dG 
amount 
(fmol) in 
sample 

8-oxo-dG 
/ 10^6 dG 

 
Mean  

8-oxo-dG / 
10^6 dG          

± SD  

DSR A 9.76 10.65 108.3 10.17  

DSR B 8.69 9.48 116.5 12.29 11.93 ± 1.61 

DSR C 10.39 11.33 151.2 13.34  

DSRT A 11.88 12.96 150.6 11.62  

DSRT B 9.80 10.70 113.5 10.61 11.20 ± 0.53 

DSRT C 10.84 11.82 134.4 11.37  

B 

A 

p = 0.05 
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Figure 3.5.3     Analysis of DNA damage in Wolbachia-infected (DSR) and 

uninfected (DSRT) Drosophila simulans spermatocytes by single cell gel 

electrophoresis.  (A) The five categories of DNA damage, from 0 (no damage) to 

4 (highly damaged) based on the percentage of DNA that has migrated to form 

the tail of the comet. Cells were imaged on a Zeiss Axiomat 40 fluorescent 

microscope under the 20X objective. Bar, 10μm. (B) The comet scoring scheme, 

showing the proportion of Wolbachia-infected and uninfected spermatocytes 

which fall into each category. (C) Comparison of the percentage of DNA making 

up the comet tails in DSR (55.6%) and DSRT (35.4%) spermatocytes. A digital 

image of each spermatocyte was analyzed blind using the CometScore ™  

software. 
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Comet Tail 

 

% of Spermatocytes 

DSR DSRT 

0 0-20 19.39 47.27 

1 21-40 7.27 10.30 

2 41-60 10.30 10.91 

3 61-80 51.52 26.06 

4 81-100 12.73 5.45 
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Table 3.2.1     Identification of proteins unique to Wolbachia- infected Aedes 

albopictus cells by LC/MS/MS. Protein matches to host (Ae. albopictus) and 

endosymbiont (Wolbachia) are reported, along with corresponding mowse score, 

isoelectric point, molecular mass, accession number, and matched peptide 

fragments (Mascot). Proteins denoted with a * have matches within both the 

host and endosymbiont databases 
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Table 3.2.2     Peptide alignment of host proteins (Aedes albopictus) identified 

by LC/MS/MS. Ae. albopictus protein sequences are shown in black with 

matched peptides in red. Protein name, location on the 2D map and sequence 

coverage (%) are listed. 
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Host proteins (Aedes albopictus) 

Spot 
# 

Protein 
name 
Name 

% 
coverage 

Sequence with peptide matches 

2 Glutathione 
peroxidase 

14     MATESTSDYKSASSVYDFTVKDGQGEDISLEKYRGKVLLV
VNIASKCGLTKGNYAELTELSQKYADKDFKILSFPCNQFGS
QMPEKDGEEMVCHLRDAKADVGDVFARVNVNGDDAA
PLYKYLKHKQGGSLGNFIKWNFTKFLVDKNGVPVARYSPT
TNPLDIVKDIDKLL 

3 Cu2+/Zn2+ 
superoxide 
dismutase 

13 MPAKAVCVLSGDVKGTIFFQQNGDSDPVKVTGEVTGLKP
GNHGFHIHEFGDNTNGCTSAGPHFNPHGKEHGGPDAAE
RHAGDLGNVVADGSGVAKVDISDSQISLSGPLSILGRTVV
VHADPDDLGLGGHELSKSTGNAGARLACGVIGICKA 

6 Cu2+/Zn2+ 
superoxide 
dismutase 

32 MPAKAVCVLSGDVKGTIFFQQNGDSDPVKVTGEVTGLKP
GNHGFHIHEFGDNTNGCTSAGPHFNPHGKEHGGPDAAE
RHAGDLGNVVADGSGVAKVDISDSQISLSGPLSILGRTVV
VHADPDDLGLGGHELSKSTGNAGARLACGVIGICKA 

Actin 
depolymerizing 

factor 

38 MASGVTVSDVCKTTYEEIKKDKKHRYVIFYIRDEKQIDVEVI
GDRNAEYDQFLEDIQKGGPGECRYGLFDFEYMHQCQGT
SESSKKQKLFLMSWCPDTAKVKKKMLYSSSFDALKKSLVG
VQKYIQATDLSEASREAVEEKLRATDRQ 

7 Cu2+/Zn2+ 
superoxide 
dismutase 

12  MPAKAVCVLSGDVKGTIFFQQNGDSDPVKVTGEVTGLKP
GNHGFHIHEFGDNTNGCTSAGPHFNPHGKEHGGPDAAE
RHAGDLGNVVADGSGVAKVDISDSQISLSGPLSILGRTVV
VHADPDDLGLGGHELSKSTGNAGARLACGVIGICKA 

8 Peroxiredoxin-
like protein 

56  MVQIKEGDKIPSIDLFEDSPANKVNMADLCAGKKVVLFAV
PGAFTPGCSKTHLPGYVDRADAIKSSGVQEIVCVSVNDPF
VMSAWGKQHNTGGKVRMLADPAAIFTKQLELGADLPPL
GGLRSKRYSMVLEDGVIKSLNVEPDGTGLSCSLADKIKV 
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Table 3.2.3     Peptide alignment of endosymbiont proteins (Wolbachia 

pipientis) identified by LC/MS/MS.  Wolbachia protein sequences are shown in 

black with matched peptides in red. Protein name, location on the 2D map and 

sequence coverage (%) are listed. 
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Endosymbiont proteins (Wolbachia pipientis) 

Spot 
# 

Protein 
name 
Name 

% 
coverage 

Sequence with peptide matches 

1 Ribosomal 
protein L7/L12 

25 MSNVTSDLVDKILSLNLLEASELVKVLEEKIGLPAGSFLGGAVG
AGAPIGDNAAAPAAQEKAEYKVVIKEIDASKKIGVIKAVREVNS
TLGLKEAKELVESLPKDLTANVPKDEAEKIKQKLIEAGATKVELE 

2 Single-strand 
binding protein 

20 MSGGTINKVILVGNLGKDPEIRTTQNGKEMASFSIATSESWTD
KLSGMRSEKTEWHNIVIFSEGLVKIVKDFARKGSKVYVEGSLRT
RKWTDQNGGERYTTEVVLYNFNSALTLLDSRNSAPNSDYKPS
EYKQGETEQKDKHESFDNDIKDELLDDEIPF 

3 Bacterioferritin 16 MNEEIVKHLNKLLTNELTSVRQYLLHFAILKNNGINRFAEKVKN
ELNEELEHANKLAERILLFKGVPNFQDTNEISKHDGKFTKDTIRK
ILEANLKLEGKGIKDIKETISIAEKEKDFVSVMLLEEMLKNEEEHF
HWIEKQIDLIELMGVENYLRTQI 

4 3,4-dihydroxy-2-
butanone 4-
phosphate 
synthase 

22 MVQATYASMSLPGISSVEDVLEDARSGKLFILVDDESRENEGD
LVVLAEKVKPEHMAFMVRYGTGIVFLAMTKLHMSKLNLEFM
RKSNVDEKLTPHTAFTTSIDARYGITTGVSAHDRTHTILTAIDEK
STKDDIITPGHVFPIIANEGGVLARNGHTEASVEIAKLVGLNHA
AVGCELVNDDCSMMRLPQLLKFAEQHKIKLTTIDKLISYVKKLN 

Fe superoxide 
dismutase 

10 MSFTLPELPYDKTALEPYISAKTLDFHYDKHHKGYLNKLNELVE
NTDYQHVKIEELITKVHGNSGNLPIFNNAAQVWNHTFYWNS
MKKNGGGKPKDGSLLAKKIQDDIGGFDKFYEEFSSHGVSQFG
SGWVWLVLEKGRLGKLKITKTPNADLPIIYGQVPLLTMDVWE
HAYYLDCQNRRIDYIKVFLDHLINWDFAEENLEEYMR 

5 Translation 
elongation 
factor Tu 

44 MTAIVEAFGKPHVNVGTIGHVDHGKTTLTAAITKHYGNFVAY
DQIDKAPEERKRGITIATAHVEYQTEKRHYAHVDCPGHADYVK
NMIVGAAQMDAAILVVSGVDGPMPQTREHILLAKQVGVGYI
VVYINKADVADADMIDLVEMEVRELLSKYGFPGDEVPVVVGS
ALKALEDDSSEYGKKSIDKLMEKLDEYVAVPPRPVDLPFLLPIED
VFSISGRGTVVTGRIEKGEIKTGEEIEIIGLKATQKTICTGVEMFK
KLLDKGSAGLNVGILLRGTKREEVERGQVLAKPGTITPHRKFKA
EVYILKKEEGGRHTPFFANYQPQFYLRTTDVTGSIKLLDGKEMV
MPGDNVSVEVELQVPIAMDKGLRFAIREGGRTVGSGVVSEILE 

6 Nucleoside 
diphosphate 
kinase 

22 MAIERTLSILKPDAVKNNITGNINSYIEQSGLKITAQKMMLLTK
KQAELFYEIHKDRPFFGELVEFMTSGSVVVQVLVGENAVSKYR
QIMGATDPKQADKGTIRGDFADDISENRVHGSDSLENARKEIA
FFFAECELV 

7 GroES 79 TEEKQGGIVLPSSAEKKPTKGEVIAIGGGSRNSSGERIALTVKTG
DKVFYRQWAGTEVEHDNEKYVVMKESDLLAVIK 

8 Ribosome 
releasing factor 

10 MLNEIKAKTKERMLKTIQSFHDDIKGVRTGRASASLLDGIVVNI
YGGHQKLNQVAGVSVIDNKTLSIKVWDISVVGEVKNAILNANL
NLNPVVEGSTIRIALPDLTQETREKLVKLLHQFAENARIAIRNIR
RDIMEETEKMKENKEISEDDFHGAKKEIQNITDDNIKKIDGELSI
KEKDILNH 
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4. DISCUSSION 

4.1 Symbiotic equilibrium: The balance between ROS formation and 

 antioxidant expression in Wolbachia-infected insects 

4.1.1    Antioxidant expression 

 A proteome analysis of Ae. albopictus cells naturally infected with 

Wolbachia (Aa23) and cured of infection using antibiotics (Aa23T) revealed five 

proteins, three host and two bacterial, having antioxidant capabilities (Brennan 

et al., 2008). Antioxidants are ubiquitous proteins which play a protective role by 

neutralizing damaging reactive oxygen species (ROS). Work presented here 

suggests that antioxidant expression contributes to the maintenance of 

Wolbachia-host symbioses.  

 Host antioxidants identified in this study include copper zinc superoxide 

dismutase (CuZn SOD), peroxiredoxin (Prx), and glutathione peroxidase (GPx). 

Host CuZn SOD was detected in three samples located within close proximity in 

gel I (Figure 3.2.1). These are likely isoforms of the same protein generated by 

posttranslational modification (Arai et al., 1987; Csar et al., 2001; Furukawa and 

O'halloran, 2006).  This CuZn SOD is located in the cytoplasm and represents one 

of three families of SOD enzymes present in insects (Parker et al., 2004). Insects 

deficient in cytoplasmic CuZn SOD suffer from a reduction in lifespan and 

fertility, and an increase in spontaneous DNA damage (Phillips et al., 1989; 

Woodruff et al., 2004). In contrast, overexpression of CuZn SOD  protects 
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neurons from damage induced upon exposure to oxidative stress in Drosophila 

(Botella et al., 2008), and in combination with catalase overexpression 

contributes to an extension in lifespan (Orr and Sohal, 1994). 

A thiol-dependant glutathione peroxidase (GPx) with homology to D. 

melanogaster GPx (DmGPx) is also upregulated in Wolbachia infected Aa23 cells. 

Drosophila GPx is cytoplasmic and provides protection against oxidative stress 

(Missirlis et al., 2003a).  It contains a cysteine at its catalytic center rather than 

the more common seleno-cysteine and is therefore categorized as a 

nonselenium GPx (NS-GPx). NS-GPxs have been identified in a wide range of 

organisms, and many are phospholipid-hydroperoxide GPxs (PHGPxs) (Herbette 

et al., 2007).  PHGPxs can reduce peroxidized phospholipids in addition to 

peroxides, preserving membrane integrity under oxidative stress (Thomas et al., 

1990). DmGPX too, appears to have an affinity for peroxidized phospholipids 

(Maiorino et al., 2007). In adult D. melanogaster, GPx expression is greatest in 

the testes (Li et al., 2003), and in humans, elevated expression of GPx in 

spermatozoa protects sperm lipids, and is required for fertility (Diaconu et al., 

2006; Foresta et al., 2002). An analysis of expression in early development in 

Drosophila found that GPx is maternally expressed, and transcripts are found 

throughout the egg and early embryo (Missirlis et al., 2003a).  

GPxs also play an important role in signal transduction. In plants, 

regulation of ROS by GPx controls cell differentiation (Faltin et al., 2010). In mice, 
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GPx4 acts as a redox sensor, inhibiting the mitochondrial apoptosis-inducing 

factor (AIF)-mediated cell death pathway, which relies on translocation of AIF 

from the mitochondria to the nucleus to induce apoptosis (Modjtahedi et al., 

2006; Seiler et al., 2008).  

  A peroxiredoxin-like protein with homology to Drosophila Prx5 (dPrx5) 

was identified in Wolbachia-infected Ae. albopictus cells. Drosophila Prx5 is 

found in the cytosol, nucleus, and mitochondrion where it provides protection 

from oxidative stress and apoptosis, significantly extending lifespan (Radyuk et 

al., 2009). Peroxiredoxins are important signalling molecules and mammalian 

studies have detailed the mechanisms by which they modulate innate immunity. 

For example, Prx1 can inhibit NF-kB and JNK signalling (Hansen et al., 2007; Kim 

et al., 2006) while Prx4 can activate these  pathways (Haridas et al., 1998). Prx2 

regulates the cytokine TNF-α, by inhibiting its effect on the stress-inducible 

pathways JNK and p38, but enhancing its effect on ERK, which is involved in cell 

survival and proliferation (Kang et al., 2004). Recent work by Radyuk et al. (2010) 

shows that dPrx5 regulates JNK signalling. Overexpression of dPrx5 in Drosophila 

leads to decreased resistance to bacterial infection compared to controls, while 

dprx5 mutants showed increased resistance to bacterial infection (Radyuk et al., 

2010). Mutants also displayed induction of Imd-pathway associated antimicrobial 

peptides (AMPs), and the ability to rapidly clear E. coli infection, suggesting that 

Prx5 negatively controls the host response to bacteria which typically activate 
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the Imd pathway (i.e.  Gram negative bacteria). Wolbachia are Gram negative 

proteobacteria and do not induce AMP expression (Bourtzis et al., 2000). This 

study shows that Wolbachia stimulates the induction of host Prx5, which may 

inhibit the host immune response and enhance intracellular survival. 

 Expression of host-derived catalase in response to Wolbachia infection 

was not detected in this study. Catalase is a ubiquitous antioxidant which 

neutralizes H2O2 (Bayir, 2005; Orr et al., 1996). The catalase protein of Ae. 

aegypti, the closest relative of Ae. albpoictus for which an annotated genome 

exists, has a molecular weight of 56899 Da and an isoelectric point of 7.71. It is 

possible that it did not migrate into the gel during 2D PAGE. Alternatively, it may 

have been equally expressed in both Aa23 and Aa23T cells, or may have been 

present in both gels at different intensities. As spots were selected based only on 

presence or absence, it would have been excluded from analysis. Differential gel 

electrophoresis (DIGE), in which several protein samples are run together with 

different fluorescent stains could be used to quantify changes in abundance of 

this protein.  

 Two Wolbachia proteins having antioxidant function were also identified 

by proteome analysis: bacterial iron superoxide dismutase (Fe SOD), and 

bacterioferritin (Bfr). Like host SOD, Fe SOD is an antioxidant enzyme which 

degrades superoxide (Fridovich, 1995).  It is one of three superoxide dismutases 

identified in bacteria, along with  an Mn SOD and CuZn SOD (Benov and 
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Fridovich, 1994; Carlioz et al., 1988; Keele et al., 1970; Sakamoto and Touati, 

1984; Yost and Fridovich, 1973). Fe SOD is cytoplasmic, contains iron  at its 

catalytic center, and is an important component of the bacterial response to ROS 

(Cabiscol et al., 2000; Storz and Imlayt, 1999).  In some bacterial pathogens, Fe 

SOD contributes to intracellular survival and pathogenesis (Franzon et al., 1990; 

Khelef et al., 1996).  The proteobacteria have been well studied in this respect. 

Fe SOD mutants of the human pathogen Francisella tularensis show increased 

susceptibility to oxidative stress and  reduced virulence (Bakshi et al., 2006).  In 

Edwardsiella tarda, a pathogen of fish,  Fe SOD provides protection from 

oxidative damage and suppresses the host innate immune response by inhibiting 

macrophage activation (Cheng et al., 2010). Helicobacter pylori, like Wolbachia, 

lacks all bacterial SODs except Fe SOD (Spiegelhalder et al., 1993), and its loss 

results in increased sensitivity to ROS and DNA mutation, and a reduced ability to 

colonize hosts (Seyler et al., 2001). 

 Wolbachia bacterioferritin (Bfr) is an intracellular iron storage protein. 

Iron is a transition metal which participates in many critical biological processes, 

and is vital to all living organisms. In bacteria, iron participates in respiration, 

oxygen transport, gene regulation, and DNA synthesis and is therefore essential 

for bacterial survival and pathogenesis (Andrews et al., 2003). Host sequestration 

of iron as a means of restricting bacterial metabolism is a common eukaryotic 

response to pathogens (Ganz, 2009; Skaar, 2010). Successful pathogens 
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overcome iron starvation, often competing for iron by expressing their own iron 

scavenging proteins. Both intracellular and extracellular pathogens secrete 

siderophores, which bind iron and return it to the bacteria for uptake (Ratledge 

and Dover, 2000). Some bacterial pathogens,  such as Neisseria, Pasteurella, and 

Campylobacter have outer membrane receptor proteins which directly acquire 

iron from host storage proteins (Gray-Owen and Schyvers, 1996; Miller et al., 

2008). Once inside the cell, ferritins and ferritin-like molecules store and regulate 

iron for cell processes (Carrondo, 2003; Smith, 2004). 

 Recent research emphasizes the mutualistic effects of Wolbachia on 

manipulation of host iron. Brownlie et al. (2009) found that  D. melanogaster  

flies infected with Wolbachia (wMel) and raised on iron restricted or overloaded 

diets show an increase in fecundity compared to flies raised on a conventional 

diet. They also noted that wild flies often have low iron levels and propose that 

Wolbachia acts as a nutritional mutualist by provisioning iron (Brownlie et al., 

2009).  In Wolbachia-infected D. simulans and Ae. aegypti cells, iron overload 

stimulates expression of Bfr, but has only a minor effect on host ferritin, 

indicating  a storage role for Wolbachia  in iron metabolism (Kremer et al., 

2009b).   

 Kremer et al. (2009b) identified a reduction in host ferritin expression in 

the Wolbachia-infected parasitic wasp Asobara tabida compared to uninfected 

individuals. In A. tabida, Wolbachia are mutualists required for oogenesis 
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(Dedeine et al., 2001). In the absence of infection, excessive apoptosis of nurse 

cells of mid-stage egg chambers occurs, rendering females sterile (Pannebakker 

et al., 2007). ROS is known to activate apoptotic pathways (Bubici et al., 2006; 

Nakamura and Sakamoto, 2001, 2008), and free iron contributes to ROS 

formation by reacting with H202 via the Fenton reaction. The authors suggest 

that (i) Wolbachia may repress host ferritin expression in order to make iron 

available for bacterial processes or (ii) it may be scavenging iron for itself via Bfr, 

thus limiting the need for host sequestration (Kremer et al., 2009b). In either 

case, it appears that A. tabida has evolved to rely on Wolbachia to regulate iron 

and prevent Fenton-mediated apoptosis. Even in the presence of Wolbachia, 

iron overload in A. tabida leads to an increase in apoptosis in the ovaries 

reflective of the phenotype observed in aposymbiotic individuals (Kremer et al., 

2009b). Furthermore, Wolbachia Bfr expression remains constant under normal 

and excess iron conditions (Kremer et al., 2009b). The authors hypothesize that 

A. tabida is highly susceptible to iron toxicity, and they compensate poorly in the 

absence of Wolbachia or in the presence of high iron levels. Studies such as 

these emphasize the importance of iron in bacterial-host interactions and the 

ability of Wolbachia to manipulate iron sequestration and metabolism. 

 In E. coli and many other bacteria, expression of Fe SOD and Bfr is 

positively regulated by the ferric uptake regulator (fur) protein (Andrews et al., 

1989; Dubrac and Touati, 2000, 2002). Activation by fur is iron-dependent 
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although the mechanism by which it operates is unclear. In E.coli it appears to be 

indirectly mediated by a small RNA called RyhB (Masse and Gottesman, 2002). 

Expression of fur is activated by OxyR and SoxR, which are global regulators of 

the bacterial response to oxidative stress (Zheng et al., 1999). Wolbachia lacks 

fur, OxyR and SoxR homologs (Wu et al., 2004). The loss of these genes is likely 

the result of genome erosion resulting from adaptation to an obligate 

intracellular lifestyle. How Wolbachia senses oxidative stress and activates the 

appropriate responses is unknown and provides an interesting avenue for future 

research. 

  Free iron reacts with H2O2 through the Fenton reaction, producing 

hydroxyl radicals (OH.), which are highly reactive and damaging to cell lipids, 

nucleic acids, and proteins (Winterbourn, 1995). Iron-mediated oxidative stress 

and damage is associated with numerous human diseases, underlining the 

importance of proper sequestration and metabolism (Ghio et al., 2008; Honda et 

al., 2004; McDonald et al., 2011; Oakley et al., 2007). Iron is critical to the 

maintenance of redox homeostasis in bacteria (Andrews et al., 2003; Cabiscol et 

al., 2000). Three intracellular ferritin-like molecules have been characterized in E. 

coli:  bacterial ferritin (ferritin-A, FtnA), dodecameric ferritin (DNA-binding 

protein from starved cells, Dps), and bacterioferritin (Bfr) (Smith, 2004).  All of 

these proteins contribute to iron homeostasis and protection from oxidative 

stress (Bellapadrona et al., 2010; Bitoun et al., 2008; Bou-Abdallah et al., 2002). 
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Wolbachia lacks homologs of FtnA and Dps, therefore the burden of intracellular 

iron metabolism and protection from ROS falls solely on Bfr. In the intracellular 

pathogen Brucella abortus, Bfr is the main iron-storage protein, accounting for 

70% of the intracellular iron (Almirón and Ugalde, 2010). Bfr mutants show 

slower growth and  increased sensitivity to ROS compared to wild-type cells 

(Almirón and Ugalde, 2010). Bfr mutants of Neisseria gonorrhoeae showed 

comparable effects (Chen and Morse, 1999). The storage and regulation of iron 

in Wolbachia appears to be important for a number of reasons, including a 

protective role against ROS and oxidative damage. 

 

4.1.2 ROS formation 

 The primary function of antioxidants is to neutralize harmful reactive 

oxygen species (ROS). The identification of numerous proteins having antioxidant 

capacity (CuZn SOD, Prx, GPx, Fe SOD Bfr, Table 3.2.1) in Wolbachia-infected 

mosquito cells suggested that excess ROS is generated in this system compared 

to uninfected cells. Wolbachia-infected Ae. albopictus cells generate more than 6 

times the ROS of uninfected cells (Figure 3.3.1), and this ROS is associated with 

Wolbachia-containing vacuoles in the host cell cytoplasm (Figure 3.3.2). Low 

levels of ROS in control cells represents by-products of mitochondrial respiration. 

Increase ROS in Aa23 cells is due to Wolbachia infection. There are two potential 

sources of excess ROS in this system, which may occur simultaneously. 
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 First, excess ROS may be a by-product of normal bacterial metabolism. 

Wolbachia are aerobic (Wu et al., 2004), and as occurs with all respiring 

organisms, electrons leak from the electron transport chain and react with 

molecular oxygen to form superoxide, which is broken down to other forms of 

ROS (Esterhazy et al., 2008; Murphy, 2009). In prokaryotes, this accounts for a 

significant amount of ROS. In E. coli, the majority of H2O2 (up to 87%) is 

generated by the electron transport chain (González-Flecha and Demple, 1995). 

 ROS may also be generated as part of a host-mediated immune response 

to Wolbachia. The nature of the host-derived vacuole which contains Wolbachia 

remains unknown. However, if derived from a phagosome, it is possible that 

NADPH oxidase complex formation is triggered, causing the injection of 

superoxide into the vacuole via an oxidative burst (Rada and Leto, 2008). This 

suggests that Wolbachia stimulates a part of the innate immune response. 

NADPH oxidase activity (in the form of dDuox) has been well characterized in the 

Drosophila  gut, where ROS is released into the lumen in precise amounts 

depending on the complement of microbes present (Buchon et al., 2009a; 

Buchon et al., 2009b; Ha et al., 2009a; Ha et al., 2009b; Ha et al., 2005a). Immune 

stimulated NADPH oxidase activity in other Drosophila cell types has not been 

studied. However this activity has been observed in hemocytes of other insects 

including the moth Galleria mellonella, the cockroach Blaberus discoidalis, and 

the bug Rhodnius prolixus upon challenge with bacteria or protozoans (Bergin et 
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al., 2005; Renwick et al., 2007; Whitten et al., 2001; Whitten and Ratcliffe, 1999). 

More research is needed to characterize the host-derived membrane which 

surrounds Wolbachia and to determine if immune stimulated NADPH oxidase 

complex assembly occurs.  

 

4.1.3 Evolution of symbiosis and redox homeostasis 

 Some bacteria can manipulate the host antioxidant system to benefit 

their survival. This includes the intentional disruption of host cell redox status to 

induce pathogenesis. One example is Rickettsia rickettsii, an α-proteobacteria 

closely related to Wolbachia (Weinert et al., 2009). It is vectored by ticks and is 

an intracellular pathogen in humans, causing Rocky Mountain spotted fever 

(Dantas-Torres, 2007). R. rickettsii infects endothelial cells, replicating in the 

cytoplasm and inflicting host cell damage via ROS-mediated lipid peroxidation of 

membranes (Silverman and Santucci, 1988). In infected cells, antioxidant 

expression is modified in a manner that is consistent with the generation of 

intracellular peroxides. SOD activity is upregulated (Santucci et al., 1992), leading 

to generation of intracellular H2O2.  Glutathione peroxidase and catalase activity 

are suppressed, and intracellular thiol levels are depleted, diminishing the cell’s 

ability to neutralize H2O2 (Devamanoharan et al., 1994; Silverman and Santucci, 

1990). Treatment with the antioxidant α-lipoic acid  rescues thiol levels and GPx 

activity, reducing intracellular peroxide levels and subsequent lipid damage 
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(Eremeeva and Silverman, 1998a). These results demonstrate that R. rickettsii  

alters redox homeostasis resulting in induced peroxide-mediated membrane 

damage. Intracellular bacteria are thus capable of manipulating the host 

antioxidant system. Unlike pathogenesis, host antioxidant expression in 

Wolbachia symbioses may be induced to return the cell to redox homeostasis or 

may be adaptive, thus ensuring bacterial survival. 

 The evolution from free-living bacteria to obligate intracellular symbiont 

is inevitably accompanied by genome reduction, as bacterial genes with 

redundant functions found in the host become unnecessary (Wernegreen, 2002). 

The Wolbachia genome has lost about two thirds of the major antioxidant genes 

found in free living relatives such as E. coli. In stimulating host antioxidant 

production, Wolbachia has likely reduced the need for a bacterial response to 

ROS, resulting in a streamlined subset of bacterial antioxidants. This may 

contribute to Wolbachia’s dependence on its host, and its inability to survive 

extracellularly. 

 In any organism, if ROS formation exceeds antioxidant activity, redox 

homeostasis is lost and cellular damage is inevitable. In Wolbachia-infected Ae. 

albopictus cells, where a substantial amount of ROS is generated as a result of 

infection (Figure 3.3.1 and 3.3.2), an increase in the oxidative lesion 7,8-dihydro-

8-oxo-2’-deoxyguanosine (8-oxo-dG) has been identified by measuring the 

intensity of antibody staining in a DNA dot blot experiment (Figure 3.5.1). In spite 
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of the DNA damage present, Wolbachia-infected Aa23 cells show no 

morphological changes indicative of stress (Figure 3.1.1B), and doubling time is 

unaffected by infection (Fallon, 2008). Overall, this data shows that despite the 

generation of host and bacterial antioxidants, DNA damage is associated with 

Wolbachia infection. In healthy cells, DNA repair processes may be sufficient to 

restore ROS-induced lesions and allow the persistence of Wolbachia. 

 The effect of Wolbachia on host fitness varies considerably depending on 

host genetic background (Dean, 2006). However, aside from reproductive 

alterations, insects naturally infected with Wolbachia typically fail to show 

negative fitness effects. Fecundity is unaffected by infection in Nasonia 

vitripennis (Bordenstein and Werren, 2000) and enhanced in D. melanogaster  

and Ae. albopictus, along with lifespan  (Dobson et al., 2002; Fry et al., 2004). 

This would suggest that in spite of any negative effects induced by Wolbachia, 

insect redox homeostasis is maintained. 

 Symbiotic associations between insect populations and Wolbachia can 

rapidly expand. In the late 1980’s and early 1990’s the spread of Wolbachia 

through native D. simulans populations in California as a result of cytoplasmic 

incompatibility (CI) was documented, occurring at a rate of 100km per year 

(Turelli and Hoffman, 1991). Weeks et al. (2007) found that infected flies 

collected at the beginning of this study showed at 15-20% reduction in fecundity, 

but only 20 years later showed a 10% increase in fecundity compared to 
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uninfected flies. Symbiont modelling studies predict that selective pressure 

resulting from maternal transmission and symbiont spread via CI is likely to result 

in a reduction of negative effects and movement towards mutualism (Prout, 

1994; Turelli, 1994). The results of the present study suggest that mitigation of 

ROS by host and bacterial antioxidant expression is an adaptation which permits 

the persistence of Wolbachia infection. While redox homeostasis in Wolbachia-

infected insects may be disrupted in early stages of infection, as the relationship 

evolves, this detriment is overcome.  

Some insects do not develop a stable and heritable interaction with 

Wolbachia. For example, Wolbachia have never been found in wild caught 

mosquitoes from the genus Anopheles, (Rasgon and Scott, 2004; Ricci et al., 

2002) and artificially induced somatic transinfections of laboratory females are 

transient (Jin et al., 2009; Kambris et al., 2010). However, an A. gambiae somatic 

cell line (Sua5B) was stably transinfected with Wolbachia from D. simulans (wRi) 

and Ae. Albopictus (wAlbB) (Rasgon et al., 2006). A  transcriptome analysis of 

infected Sua5B cells revealed that gene regulation differs according to the 

Wolbachia strain present (Hughes et al., 2011). Among immunity related 

transcripts both wRi and wAlbB  induced AMP expression,  while wRi supressed 

receptor transcripts including Gram negative binding protein (GNBP) (Hughes et 

al., 2011). Furthermore, the antioxidant peroxiredoxin was decreased under both 

infections, and superoxide dismutase was decreased in wRi- infected cells 
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(Hughes et al., 2011). In a similar experiment, D. melanogaster S2 cells artificially 

infected with wRi showed increased expression of AMP genes and several genes 

in the Toll and Imd pathways, and down regulation of ird5, part of the Imd 

pathway (Xi et al., 2008).  In this case, the infection was lost over the course of 

18 passages (Xi et al., 2008).  These experiments demonstrate that Wolbachia 

strain and host genetic background affect the response of the insect to 

Wolbachia when the infection is introduced. In contrast, the current study 

evaluates the interaction between a Wolbachia strain and its natural host. 

 

4.2 Oxidative stress in Wolbachia-dense tissues: Role for oxidative   

 damage in Wolbachia-induced reproductive phenotypes  

4.2.1    ROS and antioxidants in D. simulans testes and ovaries 

 ROS generation colocalizes to Wolbachia infection (Figure 3.3.2), and 

since the reproductive tissues of Wolbachia are consistently infected, the redox 

status of D. simulans testes and ovaries was investigated. Superoxide generation 

and SOD activity were slightly elevated (13 %) in Wolbachia-ovaries, but greatly 

elevated (44 %) in Wolbachia-infected testes (Figure 3.4.1), confirming an effect 

of Wolbachia on ROS formation.  

  Under aposymbiotic conditions, DSR testes exhibit 3.3 X the SOD 

activities of DSR ovaries. Spermatogenesis involves rapid cell division 

accompanied by significant oxygen consumption by mitochondria within the 
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testes (Aitken and Roman, 2009). ROS are by-products of respiration, and various 

mammalian studies have found that developing sperm are highly susceptible to 

oxidative damage (Aitken and Baker, 2006; Aitken et al., 1989; Koppers et al., 

2008). As a result, robust antioxidant systems have developed in the testes of 

mammals (Aitken and Roman, 2009; Kaur et al., 2006; Peltola et al., 1992; Zini 

and Schlegel, 1996), with the importance of SOD being well documented (Alvarez 

et al., 1987; Mruk et al., 2002). Likewise, insects have evolved protection for 

developing sperm. In D. melanogaster GPx is highly expressed in the testes (Li et 

al., 2003). The expression of several antioxidants, including catalase and SOD is 

greater in both the somatic and reproductive tissue of  Apis mellifera males 

compared to females (Collins et al., 2004). Additionally, both testis and ovary 

specific thioredoxins have been characterized (Svensson et al., 2003; Svensson et 

al., 2007). The environment in which spermatogenesis occurs is prone to 

oxidative stress, thus it is not surprising that antioxidant expression is elevated in 

the testes under aposymbiotic conditions in comparison to ovaries.  

However, infected DSR testes exhibit a greater increase (4.2 X) in the 

amount of SOD activity compared to DSR ovaries. An evaluation of Wolbachia 

copy number by quantitative PCR shows that DSR testes contain approximately 

35 Wolbachia per host cell, while the ovaries contain approximately 9 Wolbachia 

per host cell (Biliske, unpublished). This suggests that Wolbachia-associated ROS 
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generation is density dependent and raises new questions regarding redox 

homeostasis in tissues heavily infected with Wolbachia. 

 

4.2.2 Sperm DNA damage and infertility 

 The significant increase in ROS in Wolbachia-infected testes and the fact that 

cytoplasmic incompatibility is induced by a modification to the sperm during 

spermatogenesis suggested the possibility of ROS-mediated cellular damage in 

male D. simulans flies. Oxidative DNA damage was evaluated in whole male flies 

in vivo by measuring the formation of 8-oxo-dG by mass spectrometry. A slight 

increase in 8-oxo-dG was identified (0.73 bases per 106 dG bases) in DSR males 

compared to DSRT males. This difference is not significant, supporting the fact 

that Wolbachia-associated ROS is not harmful to the host as a whole. However, 

Wolbachia density is greatest in the reproductive tissues, particularly the testes, 

compared to somatic tissues (Cheng et al., 2000; Clark et al., 2005; Dobson et al., 

1999). In DSR, the density of Wolbachia in the testes is about 35 per host cell, 

while in whole males, it is about 7 per host cell (Biliske, unpublished). Clark et al. 

(2002b) observed approximately 50 Wolbachia per host cell in the primary 

spermatocytes of DSR flies. DNA damage may be a localized effect in the densely 

infected testes. Therefore single cell gel electrophoresis was used to evaluate 

DNA damage in the spermatocytes of Wolbachia-infected and uninfected D. 

simulans flies. DSRT spermatocytes exhibited 35.4% DNA in the comet tail, while 
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DSR spermatocytes showed 55.6%.  This experiment revealed a 20% increase in 

single and double-stranded breaks in Wolbachia-infected nuclei compared to 

uninfected nuclei. This work shows that redox homeostasis is disrupted in tissues 

heavily infected with Wolbachia, such as the testes, and results in DNA damage 

from excess ROS. 

  In humans, the comet assay is used to measure sperm quality.  Hughes et al.  

(1998; 1996; 1997) found that baseline values of human sperm are variable, and 

can reach 20-25% tail DNA compared to a baseline of 5% tail DNA which is 

characteristic of lymphocytes. This difference and is attributed to the 

susceptibility of the haploid genome and tight DNA packaging common to sperm 

(Hughes et al., 1996).  

 Wolbachia manipulates the reproductive behaviour of their hosts – inducing 

a range of phenotypes including male-killing, feminization, parthenogenesis and 

cytoplasmic incompatibility (CI).  In CI, the sperm of Wolbachia-infected males is 

modified so that following fertilization of an uninfected egg, chromosome 

condensation is disrupted and the embryo dies. When the modified sperm 

encounters an infected egg, the modification is rescued and development 

proceeds normally (Werren et al., 2008).  The nature of this modification remains 

unknown. However, research in humans suggests that DNA damage may be a 

factor. 
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 In humans, numerous studies have demonstrated an association between 

oxidative DNA damage and a reduction in male fertility (Ishikawa et al., 2007; 

Kodama et al., 1997; Lopes et al., 1998; Saleh et al., 2003; Wang et al., 2003). 

Sperm that are severely damaged  have a decreased capacity for fertilization; 

those with less damage are capable of fertilization but can pass on the damaged 

paternal DNA to the embryo (Aitken et al., 1998). Excess ROS is often generated 

by infiltrating leukocytes recruited to the semen in response to bacterial 

infection (Henkel et al., 2005; Sanocka-Maciejewska et al., 2005; Urata et al., 

2001; Wang et al., 1997; Whittington and Ford, 1999). In addition to DNA 

damage, ROS also induces lipid oxidation of the sperm membrane  (Tremellen, 

2008). The plasma membrane of human sperm is high in polyunsaturated fatty 

acids, making them susceptible to lipid peroxidation (Aitken et al., 1989). Such 

damage leads to reduced sperm motility,  inhibition of the acrosome reaction, 

and impaired sperm-oocyte fusion (Aitken et al., 1993; Williams and Ford, 2005). 

In CI, Wolbachia-modified sperm successfully fertilize eggs, suggesting 

 that DNA damage is a likely effect of oxidative stress in Wolbachia-infected 

sperm. 

 

4.2.3 Support for ROS mediated cytoplasmic incompatibility  

 Cytoplasmic incompatibility is the most common reproductive phenotype 

induced by Wolbachia, having been identified in all the major insect orders 
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(reviewed in Harris and Braig, 2003). The intensity of CI varies considerably 

(Duron et al., 2007; Hoffmann et al., 1994; Rasgon and Scott, 2003) and is 

dependent on a number of factors, including the density of Wolbachia in males 

(Bourtzis et al., 1996; Breeuwer and Werren, 1993; Clancy and Hoffmann, 1998). 

This effect appears to be correlated with age, as Wolbachia numbers and hatch 

rate of CI crosses decreases in older males (Hoffmann et al., 1990; Reynolds and 

Hoffmann, 2002; Weeks et al., 2007).   

 Much evidence points to the importance of Wolbachia in the developing 

sperm cyst in cytoplasmic incompatibility. In D. simulans, CI is very strong, often 

exceeding 90% incompatibility (James and Ballard, 2000; Turelli and Hoffmann, 

1995) and Wolbachia are abundant within developing spermatocytes (Bressac 

and Rousset, 1993; Clark et al., 2002a; Clark et al., 2003). Microscopic analysis 

shows that Wolbachia replicate in spermatocytes following spermatogonial 

mitosis, and again during spermiogenesis (Clark et al., 2002a). In D. 

melanogaster, where CI is weaker, fewer cysts are infected and Wolbachia are 

often found between spermatocytes and in somatic cyst cells (Clark et al., 

2002a). Furthermore, Clark and Karr (2002) found that while bacterial load in the 

testes of two different D. simulans strains exhibiting differing CI levels (44.4% vs 

75.3%) were comparable, the strength of CI positively correlated with the 

number of infected cysts. Similar patterns were observed in several other 

Drosophila species (Veneti et al., 2003). Together, these results were the 
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foundation for the WISSH hypothesis, (Wolbachia Infected 

Spermatocyte/Spermatid Hypothesis), which proposed that Wolbachia presence 

in developing spermatocytes and spermatids is a requirement for sperm 

modification and CI induction (Clark et al., 2003).  

 In the parasitic wasp Nasonia vitripennis, Wolbachia are found in somatic 

cyst cells and the testis sheath and are present in the sheath cells alone in the 

beetle Chelymorpha alternans (Clark et al., 2008), demonstrating that Wolbachia 

does not have to reside within developing sperm to induce CI, and more 

importantly, the factor that modifies sperm can diffuse across cellular 

membranes. Hydrogen peroxide diffuses across mitochondrial and plasma 

membranes through aquaporins (Bienert et al., 2007; Bienert et al., 2006). 

Signalling studies have found that superoxide can move across plasma and 

endosomal membranes through the chloride channel-3 (ClC-3) (Hawkins et al., 

2007). Superoxide generated within Wolbachia-containing vacuoles could enter 

the cytoplasm of the host cell (and potentially neighbouring cells) before or after 

being degraded spontaneously or by antioxidants into hydrogen peroxide. The 

presence of SOD in the cytoplasm of Wolbachia and insect cells supports this 

theory. Superoxide is unstable compared to hydrogen peroxide, so dismutation 

takes place relatively quickly, (McCord and Fridovich, 1969) leading to an 

accumulation of hydrogen peroxide in the host cell cytoplasm. Unreduced 

superoxide can inactivate enzymes containing iron-sulfur clusters, releasing iron 
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into the intracellular environment (Flint et al., 1993; Keyer and Imlay, 1996). Free 

iron and hydrogen peroxide react through the Fenton reaction to form hydroxyl 

radicals, which may then attack DNA (Dizdaroglu et al., 2002). Because hydroxyl 

radicals are so reactive, they will interact with the nearest substrate upon 

formation (Pryor, 1986). Thus, the Fenton reaction must occur within close 

proximity of DNA in order to induce base damage (Cadet et al., 1999; Marnett, 

2000). During meiosis in Drosophila, the nuclear membrane becomes fenestrated 

and the chromosomes condense (Church and Lin, 1985; Kremer et al., 1986), 

leaving DNA particularly vulnerable to oxidative attack. The conditions for ROS-

mediated DNA damage are thus optimal in Wolbachia-infected spermatocytes. 

The capacity for repair of DNA damage in Drosophila testes is currently unknown. 

Barreau et al. (2008) found that in D. melanogaster, mRNA transcription is halted 

in late primary spermatocytes, then is reactivated prior to chromatin remodelling 

in spermiogenesis. If oxidative DNA damage occurs primarily during meiotic 

stages, the opportunity for expression and activity of repair proteins during 

spermiogenesis would be limited, thus increasing the likelihood that DNA 

damage would be carried into mature sperm. The complement of DNA repair 

proteins in various stages of Wolbachia-infected and uninfected Drosophila 

spermatogenesis should be evaluated, as this may influence the intensity of DNA 

damage, and in turn, the strength of CI. 
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 Post-fertilization events in incompatible crosses have been analyzed in 

detail. Insects are unique in that the maternal and paternal chromosomes do not 

fuse immediately following fertilization, but go through the first mitotic division 

individually, sharing the same spindle (Loppin and Karr, 2005).  In a CI cross, the 

paternal chromosomes fail to properly condense prior to first mitosis, resulting 

in extensive chromosome bridging at anaphase, and later, embryonic death 

(Lassy and Karr, 1996; Reed and Werren, 1995; Serbus et al., 2008; Tram et al., 

2006). DNA replication, condensation, and mitosis proceed normally for 

maternal chromatin, regardless of Wolbachia status (Lassy and Karr, 1996). Entry 

into anaphase is controlled individually for each set of chromosomes, which is 

why the female chromatin can proceed with segregation without the male 

chromatin (Callaini et al., 1997). Tram et al. (2006) proposed that in CI crosses, 

aberrant paternal chromosome condensation activates the mitotic spindle 

assembly checkpoint, which prevents progression into anaphase until all 

chromosomes are properly attached to the spindles by microtubules (Pinsky and 

Biggins, 2005). In human cells, DNA damage is known to activate the spindle 

assembly checkpoint activation and delay mitosis (Mikhailov et al., 2002; Nitta et 

al., 2004).  

Tram and Sullivan  (2002) identified earlier CI-associated mitotic defects, 

during the transition from prophase to metaphase. In CI crosses, nuclear 

envelope breakdown (NEB) and cyclin-dependent kinase 1 activation (Cdk1) are 
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delayed in the male pronucleus (Tram and Sullivan, 2002). NEB is triggered by 

active Cdk1, which regulates entry into mitosis, and it is suggested that the 

Wolbachia modified sperm either directly inhibits activation of Cdk1 or triggers a 

cell cycle checkpoint which inhibits it (Tram and Sullivan, 2002).  

 Landmann et al. (2009) analysed male pronuclear formation and DNA 

replication in incompatible embryos to better elucidate Cdk1 inactivation. 

Drosophila chromatin is organized into nucleosomes by histones, which are 

replaced by small and highly basic proteins called protamines during 

spermatogenesis, generating highly compacted sperm nuclei (Awe and 

Renkawitz-Pohl, 2010; Jayaramaiah Raja and Renkawitz-Pohl, 2005; Rathke et al., 

2007; Rathke et al., 2010). Following fertilization, but prior to DNA synthesis, 

protamines are replaced with maternal histones permitting decondensation 

(Loppin et al., 2005). Four core histones are incorporated into each nucleosome: 

H3 and H4, which form a tetramer, and H2A and H2B, which form two dimers 

(Akey and Luger, 2003). In Drosophila, H4 and histone variant 3.3 are deposited 

in a replication-independent manner early on and H3.3 is gradually replaced 

following the first mitotic division with the canonical H3 (Bonnefoy et al., 2007; 

Tagami et al., 2004). Landmann et al. (2009) found that protamine removal in CI 

embryos is normal, but deposition of maternal histone H3.3 and H4 is delayed. 

They then examined the timing of DNA replication by staining for Drosophila 

Proliferating Cell Nuclear Antigen (dPCNA), a DNA clamp which binds DNA so that 
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it may be processed by polymerase (McNally et al., 2010). dPCNA is therefore 

characteristic of S-phase nuclei (Easwaran et al., 2007; Yamaguchi et al., 1991) 

While synthesis is normally completed by the time the male and female 

pronuclei appose following fertilization, dPCNA was detected in the Wolbachia 

modified male pronucleus into metaphase, suggesting a delay or block in DNA 

replication (Landmann et al., 2009). In humans, PCNA is also a reliable marker of 

DNA damage, as it is involved in numerous repair processes (Moldovan et al., 

2007), including correction of the oxidative lesion 7,8-dihydro-8-oxo-2’-

deoxyguanosine (Burkovics et al., 2009; Maga et al., 2008; van Loon and 

Hubscher, 2009). Landmann et al. (2009) conclude that defects in DNA 

replication and nucleosome assembly in the male pronucleus activate S-phase 

checkpoints and inhibit Cdk1 activation, leading to incompletely segregated 

chromosomes at anaphase. Interestingly, DNA damage is known to activate cell 

cycle checkpoints during both replication and mitosis in eukaryotes (Dotiwala et 

al., 2010; Mikhailov et al., 2002; Nyberg et al., 2002; Paulovich and Hartwell, 

1995). Work presented here suggests that the replication defects observed in the 

male pronucleus may be the result of Wolbachia-mediated oxidative DNA 

damage during spermatogenesis, upstream of fertilization and pronuclear 

formation. 

 It is important to note that Landmann et al. (2009) crossed Wolbachia -

infected and uninfected D. simulans males with uninfected D. melanogaster 
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females in their experiments. Hybrids demonstrate strong incompatibility, yet 

permit the utilization of transgenic markers developed in D. melanogaster 

embryos (Ferree and Sullivan, 2006). Female offspring of control crosses using 

uninfected males survive to adulthood but are sterile, and male offspring die 

during late larval or early pupal stages (Sawamura, 2000). Developmental 

abnormalities observed in interspecies CI crosses should therefore be analyzed 

with caution. 

 Sperm chromatin modification is part of the CI story. When sperm from a 

Wolbachia-infected male enters a Wolbachia-infected egg, pronuclear formation 

and embryonic development proceed normally. Results in male Drosophila show 

that ROS associated with Wolbachia in the testes contributes to DNA damage in 

spermatocyte nuclei. The rescue mechanism in a Wolbachia-infected egg 

therefore likely depends on activating DNA repair. The Drosophila genome 

contains  a comprehensive array of DNA repair pathways (Sekelsky et al., 2000), 

and repair is known to occur in Drosophila early embryos (Hagmann et al., 1998). 

The zygote is transcriptionally silent until stage 14 of embryogenesis, until which 

time maternal RNAs deposited into the egg drive development (Foe et al., 1993). 

The presence of Wolbachia in the oocyte may initiate transcription and 

translation of appropriate repair proteins prior to sperm entry. As events 

following fertilization proceed rapidly in insects, and female chromatin 

remodelling progresses regardless of male chromatin status, this ‘priming’ of the 
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oocyte cytoplasm would be critical to restoring the paternal chromatin in time to 

replicate and segregate in synchrony with the female pronucleus. 

 Bidirectional CI occurs when the modification imparted by one Wolbachia 

strain in a population cannot be rescued by a differing strain (Bordenstein and 

Werren, 2007; Zabalou et al., 2008).  More research is needed to characterize 

this phenomenon, which presumes that different Wolbachia strains induce 

different modification-rescue systems (Werren, 1997). Some bacteria manipulate 

the host antioxidant system to induce specific types of oxidative damage 

(Devamanoharan et al., 1994; Eremeeva and Silverman, 1998b; Santucci et al., 

1992). Perhaps different strains of Wolbachia affect host redox homeostasis in a 

unique way, causing variations in sperm defects which are only recognized by the 

same or a similar strain. It also is possible that oxidative DNA damage is one of 

multiple factors underlying the mechanism of CI. A detailed analysis of sperm 

chromatin damage and oocyte repair pathways in different insects exhibiting CI 

will help elucidate the mechanism of this unique phenotype. 

 

4.3 The proteome of Wolbachia-infected Aedes albopictus cells:  Insight 

into symbiosis 

Several proteins identified in this study (Table 3.2.1) have functions 

independent of antioxidant pathways and provide valuable information about 

the ongoing interactions between Wolbachia and its host. These include host 
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(Ae. albopictus) actin depolymerizing factor (ADF) and bacterial single stranded 

binding protein (SSB), ribosomal protein L7/L12, translation elongation factor EF-

Tu, ribosome releasing factor (RRF), GroES, 3,4-dihydroxy-2-butanone 4-

phosphate synthase, and nucleoside diphosphate kinase (Ndk). 

 

4.3.1 Host actin depolymerizing factor: Bacterial manipulation of host  

 machinery  

 Numerous critical cell processes, including cell locomotion and cell 

division, rely on the organization of actin within the cell, including its constant 

assembly and disassembly (Bamburg et al., 1999). Following escape from the 

phagosome, the human pathogen Listeria monocytogenes uses host actin 

filaments to move through the cytoplasm and into neighbouring cells (Theriot et 

al., 1992; Tilney and Portnoy, 1989). To accomplish this, L. monocytogenes 

manipulates host actin depolymerizing factor (ADF), which contributes to actin 

turnover by disassembling filaments (Bierne et al., 2001; Pollard and Borisy, 

2003). Similar observations have been made of bacterial pathogens in the genus 

Shigella (Egile et al., 1999; Loisel et al., 1999) and Rickettsia (Gouin et al., 1999; 

Serio et al., 2010; Teysseire et al., 1992; Van Kirk et al., 2000). Although 

Wolbachia are predominantly vertically transferred, horizontal transmission is 

known to occur (Baldo et al., 2008; Batista et al., 2009; Huigens et al., 2004; 

Huigens et al., 2000; Vavre et al., 1999). When injected into a new and 
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permissive female host, Wolbachia cross several tissue layers in order to infect 

the germline (Frydman et al., 2006). It is plausible that such movement is 

associated with reorganization of host actin. There is evidence that Wolbachia 

interacts with the host cytoskeleton. The subcellular localization of Wolbachia 

during oogenesis in Drosophila is dependent on host microtubules, and 

contributes to efficient maternal transmission (Ferree et al., 2005; Serbus and 

Sullivan, 2007).  Additionally, Wolbachia associates with astral microtubules of 

Drosophila embryos, ensuring proper distribution among dividing cells (Callaini 

et al., 1994; Kose and Karr, 1995). Wolbachia localization during development 

and movement between cells thus relies on its ability to associate with the host 

cytoskeleton. 

 Significant actin reorganization is associated with the process of 

phagocytosis and phagosome maturation (May and Machesky, 2001). While the 

composition of the vacuole which contains Wolbachia is unknown, it has been 

proposed that it is a modified phagosome (Siozios et al., 2008). ADF may 

therefore play a role in maintaining the intracellular niche of Wolbachia.   

 

4.3.2 Bacterial replication and protein synthesis/folding:  The    

 maintenance of an intracellular lifestyle 

 Several bacterial proteins with functions pertaining to DNA replication 

and protein synthesis and folding were identified in in this study in Wolbachia-
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infected Ae. albopictus cells, including bacterial single-strand binding protein 

(SSB), Ribosomal protein L7/L12, translation elongation factor EF-Tu, ribosome 

releasing factor (RRF), and the chaperone GroES. 

Single-strand binding proteins (SSBs) bind ssDNA, and complex with 

proteins involved in DNA replication, recombination, and repair, anchoring them 

to the DNA (Glassberg et al., 1979; Lohman and Ferrari, 1994; Lu and Keck, 2008; 

Meyer et al., 1979). In E. coli,  SSB binds DNA polymerase III, primase, and 

proteins involved in DNA repair by homologous recombination (HR) through the 

RecF pathway, including the exonuclease RecJ, the helicase RecG, and RecO, 

which assists RecA in homologous DNA pairing (Butland et al., 2005; Handa et al., 

2009; Umezu et al., 1993; Yuzhakov et al., 1999). The RecF pathway is one of two 

recombinational DNA repair pathways described E. coli.  The RecBCD pathway 

repairs dsDNA breaks while the RecF pathway typically repairs ssDNA breaks but 

can also act on dsDNA breaks (Spies and Kowalczykowski, 2005). In addition to 

RecJ, RecG, and RecO, numerous proteins are involved in the RecF pathway 

including RecA, RecR, RecF, RecQ, RecN, RuvA, RuvB, RuvC, and UvrD. (Handa et 

al., 2009). Of these proteins, HelD RecA, RecF, RecJ, RecO, RecR, and RuvC, are 

required, while RecN, RecQ, RuvA, RuvB, UvrD, and HelD help (Kuzminov, 1999). 

The Wolbachia genome appears to contain homologs of all of these proteins 

except RecN and HelD (Wu et al., 2004), suggesting that the RecF pathway may 

be a viable repair mechanism in Wolbachia.  
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Since host DNA damage is induced by oxidative stress associated with a 

Wolbachia infection, and since Wolbachia are located at the foci of ROS 

generation, the bacterial genome is also vulnerable to damage. SSBs may 

mediate DNA repair and contribute to the preservation of bacterial genome 

integrity in a damaging environment. If they are present in the Wolbachia-

infected egg, they may also be involved in the repair of damaged sperm DNA and 

play a key role in rescue of CI. The Wolbachia RecF DNA repair pathway, which is 

dependent upon SSB, is a good candidate for repair of bacterial and host DNA, 

and should be further investigated. Additionally, SSBs likely play an important 

role in DNA replication of Wolbachia, which is required for vertical transmission 

and may influence CI induction (Clark et al., 2002a; McGraw et al., 2002; Ruang-

areerate et al., 2004).  

 Ribosomal protein L7/L12, translation elongation factor EF-Tu, and 

ribosome releasing factor are involved in bacterial protein synthesis, and were a 

identified in the protein screen of Ae. albopictus extracts. Wolbachia are actively 

transcribing and translating proteins intracellularly, thus these factors are 

expected to be present. 

 The GroEL/GroES complex is a bacterial chaperone involved in the proper 

folding of proteins (Hartl, 1996; Masters et al., 2009).  GroEL is cylinder-shaped, 

formed by two stacked heptameric rings (Braig et al., 1994b). GroES is a 

heptameric ring which forms a dome-shaped lid on GroEL (Hunt et al., 1996). 
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Hydrophobic residues within the GroEL cavity promote protein binding; the 

attachment of GroES causes a conformational change which buries these 

residues, creating a hydrophilic cavity which releases the protein for folding (Xu 

et al., 1997). The hydrolysis of GroEL-bound ATP triggers the release of GroES 

and the folded polypeptide (Weissman et al., 1995).  GroEL is essential for 

bacterial survival and growth under both normal and stress conditions (Fayet et 

al., 1989; Horwich et al., 1993). It has a large repertoire of candidate 

polypeptides: a proteome study in E. coli found that GroEL interacts with 

approximately 250 proteins  under standard conditions (Kerner et al., 2005). 

Other intracellular endosymbionts show unusually high expression rates of 

GroEL, including Buchnera, a common primary endosymbiont of aphids (Aksoy, 

1995; Baumann et al., 1996; Charles et al., 1997; Haines et al., 2002). Due to 

maternal transmission, small population sizes, and a lack of recombination, 

endosymbionts are prone to genetic drift and accumulation of slightly 

deleterious mutations (Funk et al., 2001; Mira and Moran, 2002). It has been 

postulated that overexpression of GroEL is a mechanism of compensating for 

mutations over time by salvaging proteins with incorrect conformations (Fares et 

al., 2002a; Fares et al., 2002b; Moran, 1996). Positive selection on GroEL  allows 

improved interaction with endosymbiont proteins, further encouraging 

endosymbiosis (Fares et al., 2002a; Fares et al., 2004). GroEL is an important part 

of the bacterial response to oxidative stress, as oxidized proteins can be 
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recovered through chaperone activity (Cabiscol et al., 2000; Ericsson et al., 1994; 

Farr and Kogoma, 1991; Susin et al., 2006; Walkup and Kogoma, 1989).  

Interestingly, GroEL itself is stable under oxidizing conditions, and retains its 

function as a chaperone (Melkani et al., 2004; Melkani et al., 2008). Constitutive 

overexpression of GroEL/S may permit Wolbachia survival under constant 

exposure to ROS within a cytoplasmic vacuole and is an important adaptation of 

Wolbachia to an obligate intracellular lifestyle. 

 

4.3.3 Bacterial 3,4-dihydroxy-2-butanone 4-phosphate synthase:   

 Evidence of a riboflavin supplement pathway 

 The enzyme 3,4-dihydroxy-2-butanone 4-phosophate synthase catalyzes 

the conversion of ribulose 5-phosphate to 3,4-dihydroxy-2-butanone 4-

phosphate, intermediates in the riboflavin (vitamin B2) pathway (Richter et al., 

1992; Volk and Bacher, 1990). While plants and many microorganisms use this 

pathway, all animals including insects are incapable of riboflavin synthesis and 

must assimilate it from their environment (Bacher et al., 2000; Long et al., 2010; 

Magee et al., 1994; Miller and Silhacek, 1995; Roje, 2007).  Riboflavin is an 

important component of the insect diet (Tatum, 1939, 1941). It is involved in 

numerous cellular processes including aerobic metabolism, ROS generation, 

antioxidant activity, and apoptosis (Arnér and Holmgren, 2000; Massey, 2000; 

Nordberg and Arnér, 2001; Susin et al., 1999). Buchnera synthesizes riboflavin for 
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its aphid host (Nakabachi and Ishikawa, 1999) and Wolbachia endosymbionts of 

the bedbug Cimex lectularius appear to provide B vitamins (Hosokawa et al., 

2010). In the latter case, Wolbachia reside at high densities in a bacteriome 

adjacent to the gonads compared to other tissues, and are vertically transmitted 

through the egg (Hosokawa et al., 2010).  In some cases, Wolbachia are the only 

symbiont found in the bacteriome and their removal causes delayed growth and 

sterility, emphasizing the importance of nutrient provisioning in this relationship 

(Hosokawa et al., 2010). Nutrient supplementation by endosymbionts is a 

common phenomenon (Akman et al., 2002; Feldhaar et al., 2007; Nogge, 1976; 

Sabree et al., 2009; Wu et al., 2006). It allows insects to exploit diets and 

environments that may otherwise be unfavourable, thus conferring a selective 

advantage and influencing their evolution and diversity (Douglas, 2009; Gosalbes 

et al., 2010).  

 

4.3.4 Bacterial nucleoside diphosphate kinase (Ndk):  Potential for a   

 unique bacterial – host interaction 

 Nucleoside diphosphate kinase (Ndk) is a ubiquitous enzyme which 

regulates the intracellular concentrations of nucleoside diphosphates and 

triphosphates and is therefore critical to numerous cellular processes. In 

bacteria, Ndks are  involved in DNA/RNA synthesis, polysaccharide and protein 

synthesis, cell division, and signal transduction, and are therefore important to 
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virulence and pathogenesis (Chakrabarty, 1998; Mukhopadhyay et al., 1997; 

Sundin et al., 1996). In Pseudomonas aeruginosa, Ndk is found as a 16 kDa 

cytoplasmic form, and a truncated (12 kDa) membrane-associated form (Shankar 

et al., 1996). The molecular mass of Wolbachia Ndk is nearly 16 kDa and it shows 

strong sequence homology to the 16 kDa form of P. aeruginosa, indicating that it 

is cytoplasmic.  

 Ndks from many organisms including the bacteria  Mycobacterium 

tuberculosis, M. bovis, Vibrio cholera, Burkholderia cepacia, P. aeruginosa and 

the parasitic nematode Trichinella  spiralis are secreted (Chopra et al., 2003; 

Gounaris et al., 2001; Kamath et al., 2000; Melnikov et al., 2000; Punj et al., 

2000; Zaborina et al., 1999). M. tuberculosis Ndk localizes to the nucleus of 

mammalian cells (human HeLa and monkey kidney COS-1), where it causes DNA 

damage through single-stranded nicks, contributing to host cell death (Kumar et 

al., 2005; Saini et al., 2004). Cleavage requires metal ions and molecular oxygen, 

and superoxide is generated  in the process (Saini et al., 2004). This work 

suggests that DNA damage by M. tuberculosis is mediated by ROS formation. 

Elevated levels of ROS and DNA damage occur in Wolbachia-infected 

spermatocytes. Wolbachia Ndk may be a factor in this activity, therefore it is 

important to investigate the localization and function of this enzyme. 

 In bacteria, various proteins complex with Ndk as a means of 

manipulating  NTP-synthesis (Shankar et al., 1997a). GTP-binding proteins (G-
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proteins) such as P. aeruginosa Ras-Like Protein (Pra), and EF-Tu which rely on 

GTP hydrolysis for activity bind Ndk and increase synthesis of GTP (Chopade et 

al., 1997; Mukhopadhyay et al., 1997). P. aeruginosa pyruvate kinase also 

interacts with Ndk to generate GTP’s, presumably for use by G-proteins (Sundin 

et al., 1996). Interestingly, P. aeruginosa Ras-Like Protein (Pra) can interact with 

eukaryotic Ndks, and M. tuberculosis Ndk can interact with mammalian G-

proteins to promote GTP synthesis (Shankar et al., 1997b). GTP is an important 

signalling molecule. By binding with G-proteins it activates a plethora of cellular 

processes (Neves et al., 2002; Oldham and Hamm, 2008). That the activity of 

bacterial and host Ndks are not restricted to substrates within their own 

proteome provides a novel mechanism for cellular interactions in symbiosis. 

Bacteria may directly alter host cell signalling in manner which benefits their 

survival. More work is needed to characterize Wolbachia Ndk and its interactions 

with host proteins and nucleic acids. 

  

4.4 Conclusions and future directions 

 The symbiotic relationship between Wolbachia and its insect host 

provides a valuable model for investigating prokaryote-eukaryote interactions. 

The goal of this thesis has been to gain an understanding of the exchange that 

occurs between symbiont and host at the cellular level, as these interactions 
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promote the evolution of a stable and heritable relationship and determine the 

effect on the host.  

 A proteome analysis of Wolbachia-infected Ae. albopictus cells revealed 

the presence of numerous proteins which contribute to this unique symbiosis. 

Bacterial proteins identified are involved in nutrient supplementation, cellular 

metabolism, protein folding, and DNA replication. Host actin depolymerising 

factor (ADF), which may play a critical role in Wolbachia localization and mobility 

was also identified. 

 The most interesting result of the proteome analysis was the presence of 

numerous genes of both host and bacterial origin which code for antioxidants, 

proteins which neutralize damaging reactive oxygen species (ROS). Further 

analysis revealed that Wolbachia symbiosis is also associated with an increase in 

ROS, which co-localizes with Wolbachia in the host cell cytoplasm. ROS may be 

generated as a by-product of Wolbachia metabolism or it may be part of a host-

mediated immune response; this is an important avenue for future research. 

Currently, Wolbachia are not believed to stimulate the immune response, based 

on a lack of AMP induction (Bourtzis et al., 2000; reviewed in Siozios et al., 2008). 

However, insects harbour the components of the NADPH oxidase complex, and 

are capable of generating an oxidative burst in response to bacteria (Bergin et 

al., 2005; Ha et al., 2009a; Ha et al., 2005a; Renwick et al., 2007). It remains to be 

seen if the Wolbachia-containing vacuole acts as a scaffold for phagocyte NADPH 
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oxidase activity, which would suggest a role for immune regulated ROS 

formation. Regardless of the source of ROS, expression of host and bacterial 

antioxidants maintains intracellular redox homeostasis, and preserves the 

symbiotic relationship. This represents a novel adaptation by both the host and 

Wolbachia to symbiosis.  

 ROS and antioxidant expression in the reproductive tissues of Wolbachia-

infected Drosophila simulans Riverside flies are also upregulated, agreeing with 

in vitro experiments. The response was strongest in the testes, where Wolbachia 

numbers are at their highest. This led to the hypothesis that while insects as a 

whole do not suffer from disrupted redox homeostasis when infected with 

Wolbachia, perhaps tissues which are heavily infected exhibit signs of oxidative 

damage. Significant DNA damage was measured in the spermatocytes of 

Wolbachia-infected Drosophila. This result has unique implications in the 

aetiology of cytoplasmic incompatibility, which is induced by a Wolbachia-

mediated modification to the sperm of infected males and causes failed 

development following fertilization of an uninfected egg. A Wolbachia-infected 

egg can rescue this modification; therefore future studies should be directed at 

characterizing the DNA repair capacity of the egg cytoplasm. 

 Wolbachia are fascinating endosymbionts which hold tremendous 

promise in understanding the intricacies of prokaryote-eukaryote interactions. 
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This research lends insight into the cellular basis of this symbiosis, and the 

interactions which permit its continuation.  
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APPENDIX I:  CULTURE MEDIUM RECIPES 
 
Schneider’s Insect Medium (Sigma, #S1046) 
Recipe according to (Schneider and Blumenthal, 1978) 
 
COMPONENT         g/L  
 
INORGANIC SALTS   
Calcium Chloride (anhydrous)         0.6  
Magnesium Sulfate    1.807221  
Potassium Chloride    1.6  
Potassium Phosphate Monobasic   0.45  
Sodium Bicarbonate        0.4  
Sodium Chloride     2.1  
Sodium Phosphate Dibasic    0.7  
   
AMINO ACIDS  
β-Alanine       0.5  
L-Arginine       0.6  
L-Aspartic Acid    0.4  
L-Cystine•HCl     0.026732  
L-Cysteine       0.06  
L-Glutamic Acid      0.8  
L-Glutamine      1.8  
Glycine         0.25  
L-Histidine     0.4  
L-Isoleucine     0.15  
L-Leucine      0.15  
L-Lysine         1.65  
L-Methionine       0.15  
L-Proline         1.7  
L-Serine     0.25  
L-Threonine     0.35  
L-Tryptophan      0.1  
L-Tyrosine•2Na•2H2O    0.720199  
L-Valine     0.3  
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OTHER 
Fumaric Acid      0.06  
D(+)-Glucose     2.0  
α-Ketoglutaric Acid    0.35  
L(-)Malic Acid        0.6  
Succinic Acid        0.06     
D(+)-Trehalose      2.0  
Yeast Extract        2.0  
 
 pH at RT         6.5 ± 0.3  
 
 
 
 
Mitsuhashi-Maramorosch Insect Medium (Handmade) 
Recipe according to (Mitsuhashi and Maramorosch, 1964) 
 
COMPONENT         g/L  
 
INORGANIC SALTS   
Calcium Chloride (anhydrous)         0.151  
Magnesium Chloride•6H2O   0.1  
Potassium Chloride    0.2 
Sodium Chloride    7.0    
Sodium Phosphate Monobasic  0.174 
Sodium bicarbonate    0.12 
   
OTHER 
D(+)-Glucose     4.0  
Lactalbumin Hydrolysate   6.5  
Yeast Extract        5.0  
 
   
 pH at RT         6.5 ± 0.3  
 

 


