
Music-Driven Character Animation
DANIELLE SAUER
University of Alberta
and
YEE-HONG YANG
University of Alberta

__

Music-driven character animation extracts musical features from a song and uses them to create an animation.
This paper presents a system that builds a new animation directly from musical attributes, rather than simply
synchronizing it to the music like similar systems. Using a simple script that identifies the movements involved
in the performance and their timing, the user can control the animation of characters easily. Another unique
feature of the system is its ability to incorporate multiple characters into the same animation, both with
synchronized and unsynchronized movements. A system that integrates Celtic dance movements is developed
in this paper. An evaluation of the results shows that the majority of animations are found to be appealing to
viewers and that altering the music can change the attractiveness of the final result.

Categories and Subject Descriptors: J.5 [Arts and Humanities]: Performing Arts; I.3.4 [Computer Graphics]
Graphics Utilities - Software support; I.3.7 [Computer Graphics] Three-Dimensional Graphics and Realism -
Animation
General Terms: Design, Experimentation, Human Factors
Additional Key Words and Phrases: Character animation, motion synthesis, music analysis, primitive
movements
__

1. INTRODUCTION

Animations, whether they are in movies, television or video games, always capture the

viewer’s interest more if they are accompanied by music. Music has the capability to set

the mood for a scene and can alter the viewer’s perception of what she is seeing. The

ability to tie the correct type of music in with an animation is a difficult and time-

consuming process. Not only is choosing the proper type of music important, but proper

synchronization of music with the events in an animation is essential when attempting to

secure the attention of a viewer. An interesting animation brings with it a “wow” factor,

enticing the viewer to watch and appreciate the work. This can be achieved through a

good combination of interesting movements and relevant music. This paper proposes a

method that attains this combination by using musical attributes such as the beat and

This research was supported by NSERC and AutoDesk.
Authors' addresses: Danielle Sauer, Department of Computing Science, The University of Alberta, Edmonton
AB Canada T6G 2E8; Yee-Hong Yang, Department of Computing Science, The University of Alberta,
Edmonton AB Canada T6G 2E8.
Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice,
the title of the publication, and its date of appear, and notice is given that copying is by permission of the ACM,
Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
© 2001 ACM 1073-0516/01/0300-0034 $5.00

dynamics to build an animation that fits user specifications and is tailored to the music.

The user is able to choose any type of music she desires and create an animation that is

not only automatically synchronized to the music, but also projects key elements of the

music’s intent as well. Our system provides a user-friendly method for creating a high-

quality character animation where the user chooses pre-designed movements to build a

motion sequence. Through the use of a script file, the user can choose the order of

specific movements and build a dance routine for a character, or set of characters, of her

choosing. Our technique concentrates on using simple movements to create complex

motion and providing maximum user control.

2. PREVIOUS WORK

Direct synchronization of an already existing animation with a piece of music is the

technique most similar to our music-driven character animation method. The purpose of

most synchronization methods is to take an already existing animation and synchronize it

so that movement changes line up with beats in a given piece of music. Movement

transition graphs are a popular technique for achieving this. Approaches proposed by

Alankus et al. [2005] and Kim et al. [2003] use transition graphs to synthesize new

motion sequences from motion capture data. The graph is used to choose which

movements best fit with the beats of the music, as well as create a movement ordering

where transitions between motions occur smoothly. Shiratori et al. also separate the

original motion capture data into smaller sections for synthesizing new motion [2004,

2006]. In their method, rhythmic similarity between music and movement segments is

used to synchronize the animation with the song. Some synchronization techniques use

motion curves rather than motion data. Cardle et al. [2002] implemented a system that

performs motion editing directly onto the keyframed motion signal. For example, motion

warping can be mapped to the musical beat by adding a point to the displacement map for

each beat, resulting in a jump in the signal at each displacement point.

It is our belief, along with others [Fod 2002,Woch 2004], that complex motion can be

simplified into a combination of basic movements called primitives. Dancing is a real-

world example that supports this theory. Long dance sequences can be split into routines

that consist of separate dance moves. The individual dance moves are the primitives that

are combined together to create dance routines and performances. Fod et al. [2002] also

implemented an algorithm for automatically detecting and segmenting primitives from

movement data. Another method exists in which the characterization of primitive

movements is built from the kinematic theory and its deltalognormal model [Woch ΔΛ

2004]. These techniques support the construction of complex motion from primitive

movements as performed by our system.

MIDI files are the most popular input format for songs because it is less difficult to

extract musical attributes from the data [Cardle 2002, Taylor 2005]. These files are not

easily accessible and imply musical knowledge by the user, so we choose to use .wav

files and use signal processing techniques to extract the tempo, beat onsets, and dynamics

from the music datum. Beats can be considered regular pulsations of music and

determine the tempo of the music, which is the overall pace of a composition of music,

e.g. fast, slow. Dynamics represent the variation of loud and soft levels in a song and

establish the emotion of the music. Methods for performing beat detection vary but the

use of tempo tracking is a popular technique. Both Scheirer [1998] and Dixon [2003] use

tempo detection to reinforce their beat detection algorithms. Scheirer uses filterbanks

and comb filters to track tempo changes and beat positions, while Dixon uses multiple

agents and clustering. These techniques led to the development of our beat detection

algorithm. We combine Tzanetaki et al.’s [2001] tempo detection algorithm with Goto’s

beat detection algorithm [1994, 1999, 2001] to create a technique that uses the tempo to

help determine the beat onsets. We develop our own algorithm for dynamics extraction

using the power spectrum.

The contributions of this paper are as follows:

• We develop a system that builds a new animation directly from musical

attributes, rather than synchronizing an already existing animation to music.

• We present a signal processing-based beat detection algorithm based on Goto’s

beat onset method and Tzanetakis’ tempo recognition method, as well as a novel

dynamics extraction algorithm.

• We present a script file that allows for the animation of several characters and the

ability to specify and build different movement routines for each character.

3. PROPOSED METHOD

Our character animation system is made up of two principal components. The first is

music analysis, where the musical attributes used by the system are extracted from the

input music file. All music analysis work is performed in Matlab 7.1. The second

component is character animation in the form of Celtic dance moves. This portion of the

system controls the motion of the character in the scene, including the timing and

expression of the movements. The animation system is built as a C++ plug-in for

Autodesk’s Maya, where Maya’s interface is used to create the character, background and

lighting, and the plug-in is called to perform the movement. The result of these two

components is a unique animation developed from movements chosen by the user and

timed according to the music.

3.1 Music Analysis

Music analysis involves analyzing an input signal and extracting specific musical

features. The features extracted by this system include the tempo, beat positions and

dynamics. These attributes are the most recognizable aspects of a piece of music,

especially to the untrained ear. Analysis on the song is performed by combining two

different algorithms: Tzanetakis et al’s [2001] tempo detection method and Goto’s beat

tracking method [1994, 1999, 2001]. Tzanetakis’ method was faithfully followed in the

implementation, but several changes have been made to Goto’s method in order to make

it work better for our purposes.

3.1.1 Beat Detection

The process behind beat detection is analyzing a musical signal and finding the positions

of all the beats. Goto’s original algorithm uses drum patterns and chord change

information to make the system more robust, but we have not included these features in

our implementation. Instead, we rely on Tzanetakis’ tempo algorithm to give us more

accuracy in determining a beat onset. Our system does not require the precision that

Goto’s algorithm strives for so we fashioned a simpler version of his system that runs in

close to real-time and does not require additional musical knowledge. Our changes to his

algorithm are discussed below.

Goto’s algorithm uses a power spectrum to extract the beat onsets from the signal. He

divides the beat onsets into seven frequency bands for further analysis. This can result in

a large number of possible onsets. To narrow down the range of possible beat positions,

a threshold is used to remove onsets with the smallest amplitudes. This is based on the

assumption that beat sounds are fairly high in amplitude compared to other musical

features. The threshold is computed by multiplying the maximum value of each

frequency band with a percentage value. The percentage value usually ranges from 80-

90% of the signal’s amplitude, meaning the onset components that fall within the highest

80-90% of the signal’s amplitude are retained and the rest are discarded. It is important

to note that the amplitude of the beat is dependent on the amplitude of the signal. If the

dynamics of the signal at a point in time are soft, then the amplitude of the beat will be

low to match this, as will the amplitudes of the other musical features. This detail is the

reasoning behind the choice of the percentage value. If the percentage value does not

cover the softer ranges of music then the beats are not detected in those time intervals.

The percentage value that works best for the threshold changes from song to song and is

manually set based on experimentation.

The estimated onset times are then compared across frequency bands and only the

positions where an onset has been detected in two or more bands are stored. The tempo

detected by Tzanetakis’ algorithm is then used to calculate an inter-beat-interval (IBI).

An IBI is the distance between two beats and can be approximated from the tempo. A

direct relationship occurs between the speed of the song and the distance between beats

and this relationship is used to compute the IBI directly from the tempo. The first

estimated beat is stored as the first true onset of the signal and used as a comparison point

for the next estimated beat in the list. The distance between this first actual onset and the

next estimated beat is calculated. If the distance is greater than the IBI-error, where the

error value is 5 frame-times, then it is stored as the next actual onset in the signal. This

distance threshold check ensures that the final beat onsets are not too close together, as

can be the case when the algorithm detects weak beat positions. Weak beats are the beat

sounds that occur between the actual beats of a song. They are generally found at twice

the tempo rate and half the distance between two actual beats and can be mistaken by

beat detection algorithms as real beats. Tracking of these beats is avoided by using the

IBI to ensure only beat positions that occur around or further than the known interval are

chosen. This procedure is followed for all the estimated beats in the list and the end

result is a vector of actual beat onsets for the entire song.

3.1.2 Testing and Results

Testing of the beat detection algorithm has to be performed manually in order to assure

accuracy. Both visual data and audio data are used to compare the generated results with

the true beat positions in the musical signals. Visual data is used for the synthesized

signals where the beat positions are discernable. Table I displays the results for testing

the beat detection algorithm on the ten synthetic signals with increasing amounts of noise.

The algorithm uses a threshold value of 90% to obtain the majority of the results seen in

Table I. The superscripts in the noise level row (the second row) denote that different

threshold values were used to obtain these results than the threshold used in the first six

columns. The threshold used by the algorithm in column 7 (1) is 72% while the threshold

used in column 8 (2) is 65% and the threshold for column 9 (3) is 25%. This indicates that

the new algorithm is quite robust because its threshold value can be altered to reflect the

signal. The results are consistently very good until the last noise level is reached, at

which they drop off considerably.

Table I: The results from performing beat detection with the new beat detection

algorithm on ten synthetic signals with a tempo of 153.3682. Each signal was created

with a different random seed and eight noise levels were used, ranging from 1/100 to ½ of

the beep’s amplitude.

Signal

Number of beats detected (/58) for each noise level

 1/100 1/50 1/25 1/16 1/8 1/61 1/42 1/23

1 58 58 58 58 58 58 58 27
2 58 58 58 58 58 58 58 22
3 58 58 58 58 58 58 58 18
4 58 58 58 58 58 58 58 22
5 58 58 58 58 58 58 58 17
6 58 58 58 58 58 58 57 11
7 58 58 58 58 58 58 58 19
8 58 58 58 58 58 58 58 17
9 58 58 58 58 58 58 58 19

10 58 58 58 58 58 58 58 16
Avg #
Beats

58
58

58
58

58
58

58
58

58
58

58
58

57.9
58

18.8
19

3.1.3 Dynamics Extraction

Dynamics consist of the louds and softs of the music, including transitions between the

two that are also known as crescendos (soft to loud) and decrescendos (loud to soft). The

dynamics levels are extracted because they are useful in creating corresponding

movements. The purpose of this extraction algorithm is to detect the 50 positions in the

music where the dynamic level is highest and 50 positions where the dynamic level is

lowest. These positions represent the loud and soft dynamics respectively. Dynamics are

extracted by using a moving window with a size of 44100 samples to compute the power

spectrum of the music signal. The power spectrum is performed on the information in

each window. The inverse FFT is performed on the outcome. Since the signal is

symmetric, the second half of the signal is removed and the algorithm proceeds to

calculate the absolute values for the signal’s first half. The regional maxima are detected

from the remaining values and the highest peak and the lowest peak are added to a list

before the window is moved. This technique is performed for each window until the

entire signal has been analyzed, with the resulting list being comprised of the highest and

lowest values from each window. Finally, the algorithm determines the 50 highest and

lowest values in the temporary list and stores them as the dynamic positions. The system

detects 50 of the highest and 50 of the lowest values because we believe that 100

dynamic positions are enough to build a complete representation of the dynamic structure

of the song. Crescendos and decrescendos can also be represented by the dynamic

positions. A transition over time from a high dynamic value to a low dynamic value

signifies a decrescendo while a transition from a low dynamic value to a high dynamic

value signifies a crescendo.

3.2 Celtic Animation System

This animation system integrates a unique music-driven approach to character animation.

It generates an animation that looks like Celtic dancing, but is a unique variation of

existing performances. Celtic dancing was chosen because it is an interesting and

exciting dance where the movements are performed almost entirely by the legs. Using

only three major body parts (two legs and the torso) simplifies the system and allows us

to concentrate on the main movements. The system is provided with knowledge of Celtic

dancing, including several preprogrammed primitive movements and routines.

Producing high-quality character animation has proven to be difficult for

inexperienced users. Animation systems such as Autodesk’s Maya are intimidating for a

new user because of the enormous amount of features they provide. Setting up and

animating a character is extremely time consuming and it generally takes practice and

experience for a user to satisfactorily manipulate a human body. This system provides a

user-friendly method for creating a high-quality character animation where the user

chooses pre-built movements to build a motion sequence. Through the use of a script

file, the user can choose the order of specific movements and build a dance routine for a

character, or set of characters, of her choosing. This ensures that she does not have to

struggle with positioning character joints in order to achieve a specific motion. The

system also gives the user the chance to experiment with different types of characters by

supporting interchangeable characters. The user can change the appearance of the

characters in the animation and easily use different characters in the same motion

sequence. Maximum user control is provided by this system without relying on the user

for the key components of the animation.

3.2.1 Script Files

Script files are utilized to give the user control over what occurs in the animation. They

are simple text files that list Celtic primitives and routines that the user wants performed

in the resulting animation. The system reads the script file using a specially designed

parser and records each movement in the system as it is read in the script file. The script

file is an easy and user-friendly method of allowing the user to create her own animation

through a combination of built-in primitives, built-in routines and user-designed routines.

The script file is also designed to allow for multiple characters in a scene. There is no

limit to the number of characters that can be specified by the user. The system is

designed so that multiple characters can use the same script file to perform the same

sequence of movements or they can use different script files to perform different

animation sequences. There are two script files that are used to define the animation.

The first script file is the master script and it defines the characters and which secondary

script file each one uses. The secondary script file is used to define the animation by

listing the movements in the order they should be performed.

Figure 1: An example of a master script file using two characters that are each mapped to different secondary

script files.

The system uses three main body parts: left leg, right leg and upper body (torso). In

order to manipulate a character, the system needs to be able to choose those body parts

from the scene. At the beginning of the main script file the user needs to define the name

of the object in the scene that corresponds to each of the main body parts in the system.

An example of this is

 LEFTLEG: leftLegCtrl

where leftLegCtrl denotes the name of the character’s left leg in the scene. It is the user’s

responsibility to ensure that she is mapping the correct scene object to its corresponding

system body part. The object will be picked out of the scene and connected to the system

so they can share information. Dynamics are one of the musical attributes that are

mapped to movements. The mapping of this attribute can be turned on and off through

the master script file. This gives the user the choice to allow dynamics to alter the

movements or to use a constant dynamic range through the animation. A complete

example of a character definition in the main script file is found in Figure 1 under the title

CHARACTER 1. Increasing the number of the previous declaration creates different

character definitions. This results in definitions that range from CHARACTER 1 to

CHARACTER n.

The secondary script file provides a blueprint of how the animation will look. This

script file defines the dance by using primitive movements, built-in routines and user-

designed routines. The user can construct her motion sequence simply by listing the

movements she wants included in her final animation. Each primitive movement and

routine has a corresponding name that needs to be specified in order to execute the

motion. The user must stick to these naming conventions when creating the secondary

script file or the correct movement will not be called.

In some cases it may be necessary to start the motion sequence at a certain frame or

divide the sequence up into large intervals of time. The system is implemented so that

the user can choose a start time for each segment using the keyword START. When a

user adds this keyword into the secondary script file, the system will perform the first

movement at the frame number specified directly after START.

A movement or routine can be performed several times in a row by specifying the

name of the movement and then the number of times it should be performed directly after

it in the script line. There is no limit to the number of times a movement can be looped

through. An example of this can be found in the second line of Figure 2. Along with

animation timing, the system provides the ability to control the timing of individual

movements. The user can influence the timing of the movements through the application

of brackets and rests. Brackets are used to indicate that more than one movement is

performed at the same time. In many of the built-in routines, several movements are

performed at the same time to create a realistic motion. The user can copy this by putting

brackets around the movements occurring in the same time interval. The first movement

of the interval is specified normally and the remaining movements are placed within

brackets. An example is

 LIFTLEG: RightLeg;

(HOP);

(LIFTLEG: LeftLeg);

Rests are used to stagger the starting and stopping times for movements. The concept

is adopted from music, where rests denote breaks between musical tones. The rest is

specified in the system by the ‘^’ character. Each rest is worth 1/8 of a beat, which

means that the length of a rest will change from one piece of music to the next. The

faster the song is, the shorter a rest will be. Rests can be placed before or after a

movement name and one movement can use several rests. If the rest is placed before a

movement, the movement will wait ⅛ of a beat before beginning. If the rest is placed

behind a movement, it will end ⅛ of a beat earlier. Examples include

^HOP;

 CROSS^;

 ^^STAMP^;

An example of a secondary script file is shown in Figure 2.

Figure 2: An example of a secondary script file in which the user designs her motion sequence.

3.2.2 Mappings

The main purpose of our animation system is to use music as the prime vehicle to drive

an animation. Musical attributes such as the beat are mapped to Celtic movements and

used to alter the motion based on the music. This system does not simply synchronize an

already existing animation with a piece of music, but it actually builds the animation

according to details extracted from the input song. Unlike synchronization methods, the

movements in our system change along with the music. We create a final animation that

is tailored to fit the music chosen by the user while providing an interesting and

entertaining sequence of motion.

The timing of the movements is based almost entirely on the tempo of the music,

where the faster the song, the faster the movements are performed. The position of the

beats are inputted into the animation component by the music analysis component and

used to determine the length of each movement’s time interval. Celtic dancing is a fairly

high-speed dance where several movements occur in the space of one beat. In this

system two primitive movements are performed for each one beat. This rule applies to

routines with multiple primitives as well. Several routines use three or four primitive

movements and result in taking 1.5 or 2 beats to finish. Rather than performing each

routine in a single beat, we choose to map two primitives to one beat because it provides

smoother motion and better transitions between primitives.

The dynamics extracted from the music can also be used to affect the movements

used to dance to a particular song. In real life, small and timid motions are not used on a

song that is loud, and large extreme motions are not used on a song that is consistently

soft. This system is designed to take this into account by creating a dynamics range that

is used to alter the movement of certain motions so that they correspond better to the

music. The dynamics levels in the system range from 1 to 5, where 1 denotes soft

dynamics and 5 denotes loud ones. There exist several primitive movements where the

dynamics level affects the distance moved by a body part or the height of a jump or kick.

The higher the dynamic level, the higher the height or the longer the distance will be. As

the dynamics in the song change, the dynamics level corresponding to the current frame

will change as well. If a movement is currently in progress, the system will not change

the dynamics level. This is to prevent jerky motions during the course of a movement. A

change in dynamics level will only be incorporated at the beginning of a primitive

movement. Incorporating dynamics levels into the performance helps to make the

resulting movement more tailored to the input music.

3.2.3 Constraints

Foot position is an extremely important aspect of Celtic dance. It can help to determine

the next movement in a motion sequence or the direction the character moves in around

the stage. In many cases, the front foot is used as the starting foot for a routine or

movement. This is the main reason that the system keeps track of which foot is in front

and which is behind at each frame. We incorporate this Celtic knowledge into the system

through the implementation of constraints. These constraints are used in some primitive

movements and all built-in routines. Their purpose is to ensure that a primitive or routine

is being performed by the correct body part according to the rules of Celtic dance. For

example, in a built-in routine the constraints ensure that the primitives are performed by

the correct body parts and in the correct order according to the Celtic routine it simulates.

The constraints incorporate system knowledge of the positions of the character’s feet with

Celtic knowledge of how movements and routines should be performed. The use of

constraints in a movement or routine is decided entirely by the animator and cannot be

altered by the user. Constraints are used to enforce the integrity of Celtic dance and

make it easier for the user to put together realistic motion.

3.2.4 Routines

The dance routines implemented in this system are more complex dance steps than those

provided by the primitive movements. In many cases, Celtic dance has a dance step that

consists of several primitive motions, but it is referred to by the name of the dance step

rather than the primitives individually. Combining several primitive movements allows

for these complex routines to be created and used by the system. The user can use these

routines by specifying them by name. The routine will automatically call the appropriate

primitive movements to create the movement. The system handles two different types of

routines. The first is the built-in routine, as programmed by the animator, and the second

is a user-designed routine.

The built-in routine is implemented directly into the system by the animator. It makes

use of several primitive movements and controls the timing of them to create an actual

Celtic dance step. The purpose of a routine is to make the animating process easier for

the user. Rather than having the user continuously specify small primitive movements in

the same order, she can call a routine that does the same thing. They save the user time

and frustration because the animator has already worked out the timing of the primitive

movements so that the routine is correct. This makes it easier for the user to create an

entire Celtic dance based on known Celtic movements. These routines are similar to how

a person would learn to Celtic dance and are taken directly from [Dunne 1996]. The

built-in routines are as follows:

• ClickZigZag • Shufflehopback

• Cut • SideStep

• CutBack • SlidingStep

• FrontClickJump • Turn

• JumpBack • ZigZag

• KneeBendHop

In some cases the user may want to use routines that are not implemented in the Celtic

system. The system allows for user-designed routines in which the user can define her

own routines through text files. The user can create her own dance moves by specifying

primitives or built-in routines and their order. There is no maximum length limit for a

routine, so the user is free to use as many primitives as necessary. The user-designed

routine makes it easier to create an animation sequence because the user can define

routines with combinations of movements that are used continuously in the animation.

For example, if the user finds that she is constantly using three primitives in the same

order in several places in her animation, she can put them into a routine. Rather than

specifying the three primitives each time she wants that specific combination, she can

specify her specially designed routine instead. The system will retrieve the routine as

input and perform the primitives found in that routine. Once the routine files are

designed they can be reused in any animation and changed easily by the user.

3.2.5 Primitive Movements

It is our belief that small primitive movements can be combined to create more

interesting and complex motion. One of the main purposes of the Celtic system is to

demonstrate that any type of primitive movement can be combined with other primitives

to create an interesting sequence of motion. The primitive movements implemented in

this system were determined by studying videos of Celtic dancing and establishing the

simple movements that make up the larger routines [Dunne 1996]. A total of twenty-four

primitive movements have been implemented into the system. They can be used in

different combinations to create routines. The primitive movements are listed as follows:

• ClickHeelsIn • LongStep

• ClickHeelsOut • ShortHop

• Cross • SlideBehindStep

• CutBend • Stamp

• DropLegBehind • StepForward

• DropLeg • StampDown

• HeelsUp • StepBack

• HeelsDown • SwingHeelsIn

• Hop • SwingHeelsOut

• HopForward • TapOut

Figure 4: Sequential images displaying the different positions involved in the “FrontClickJump” Celtic routine.

• KneeBend • TapBack

• LiftLeg • Wait

4. RESULTS AND EVALUATION

The main purpose of this animation system is to create a unique animation with the

structure of a Celtic dance but that is tailored to suit the chosen music. The resulting

animation needs to be interesting, exciting and expressive of the corresponding music.

Our results show that primitive movements can be grouped in different combinations to

create appealing motion. Figure 4 displays the “FrontClickJump” routine, which is built

from three primitive movements: “LiftLeg”, “DropLeg” and “Hop”. The use of these

three primitives on different body parts and in a certain order creates one of the most

interesting Celtic routines.

Some animations were created where multiple characters are involved in the dance

performance. The Celtic system supports two types of multiple character movement:

synchronized and unsynchronized. Synchronized movement involves all the characters

performing the same movement at the same time. Figure 5 demonstrates unsynchronized

movements of six dancers. The first and sixth characters are performing a “Sidestep”

movement in all the images, while the second and fifth characters are performing a

“Shufflehopback” routine. The third and fourth characters are performing a “Cut”

motion. Each group of characters is performing at the same time as the other groups but

their movements are not the same, resulting in an unsynchronized performance. These

results demonstrate how different characters can possess different personalities and yet

still fit into the overall presentation.

4.1 Evaluation

The evaluation of a piece of music or a dance performance is generally subjective and

extremely dependent on the preferences of the listener or viewer. This makes it

exceptionally difficult to quantitatively determine if an animation is good or not. A

qualitative evaluation was designed to assess the success of the Celtic system. There are

two objectives in performing this evaluation. The first is to determine if the approach

taken by the Celtic system is successful in creating appealing animations. The second is

to establish if changing the music can also create appealing animations.

The evaluation involves 3 groups of 6 users per group. Each group represents a

different user background. The first group incorporates users with dancing experience.

These users apply their knowledge of movement to determine if an animation is good or

not. The second group includes users with computer programming experience. This

group of users has a technical background and will view the animations less artistically

than the previous group. They will be able to focus on how well the parts fit together

rather than concentrating on how accurate the movements are. The third group consists

of users with neither dancing nor programming experience. These users can view the

animations without any previous prejudices or expectations and are representative of an

inexperienced user who may find the system useful.

The evaluation involves 8 animation videos with a single dancer in each. One of our

objectives is to determine how different music affects the end result, so a different piece

of music is used for each animation. The music types used include celtic, hip-hop, rap,

rock, country and classical. The tempos range from 67 bpm to 171 bpm. The evaluator

is asked to specify for each animation whether or not she liked the animation. The

answer choices are a simple “yes” or “no.” She is then asked to state reasons for her

answer. The reasons can give us a good idea of how a user’s background affects her

opinion. The evaluation document requests that the user form an opinion based solely on

the merits of a single animation, without comparison to other animations. The evaluation

Figure 5: Results from six characters performing unsynchronized movement. The characters are split into three

groups of two, with each group performing a routine different from the other groups.

concentrates on determining how successful our approach is by observing how the

changing system parameters affect the user’s opinion. Tables II and III display the

results of the evaluation according to the responses of all 18 participants.

Table II: Overall results of the evaluation, taking into account the responses of all 18

people involved in the assessment of the animations.

Animation Number of ‘yes’

responses

Number of ‘no’

responses

Percentage of

people who liked

the animation

BrownEyedGirl 12 6 67%

Eminem 9 9 50%

FieryNights 17 1 94%

Finale 13 5 72%

GetItStarted 14 4 78%

Nutcracker 7 11 39%

Warriors 16 2 89%

WideOpenSpaces 14 4 78%

The two animations with the highest number of ‘yes’ answers are both animations

using Celtic music. As noted in Table II, the FieryNights animation was found appealing

by 94% of the evaluators, while the Warriors animation was appreciated by 89% of the

evaluators. It is interesting to note that the animations with the highest tempo (Eminem

at 171 bpm) and the lowest tempo (Nutcracker at 67 bpm) are the animations found the

least appealing by the majority of evaluators. The Eminem animation was only enjoyed

by 50% of the evaluators, while the Nutcracker animation was liked by only 39%. These

songs, however, also belong to musical types that do not typically suit dancing. Both rap

and classical are difficult styles for an average person to dance to, so it makes sense that

most people would feel that the dancing does not suit the music. The majority of

respondents enjoy the remaining four animations, all of which correspond to music types

that are traditionally easy to dance to. GetItStarted and WideOpenSpaces were appealing

to 78% of evaluators, 72% of participants enjoyed the Finale animation, while

BrownEyedGirl was appreciated by 65% of those involved.

Table III: Results of the evaluation split up by group into evaluators with dancing

experience, evaluators with computer programming experience and evaluators with

experience in neither.

Animation Dancing

Experience

Computer

Programming

Experience

Neither

 Yes No Yes No Yes No

BrownEyedGirl 5 1 4 2 3 3

Eminem 4 2 1 5 4 2

FieryNights 5 1 6 0 6 0

Finale 4 2 4 2 5 1

GetItStarted 4 2 6 0 4 2

Nutcracker 3 3 1 5 3 3

Warriors 6 0 4 2 6 0

WideOpenSpaces 4 2 6 0 4 2

The results from Table III have been divided based on their respective evaluator

groupings. Several animations exist where all members of a group have found the result

appealing. Participants with previous dancing experience enjoy Warriors best, with

FieryNights and BrownEyedGirl tied for second. Those with computer programming

experience enjoy FieryNights, GetItStarted and WideOpenSpaces the most of all the

animations. Evaluators with no experience like FieryNights and Warriors the best, with

Finale a close second. It is interesting to note that the animations liked best by the

programming group all fall within the tempo range of 90-110 bpm. The participants with

no experience overwhelmingly enjoy the animations with Celtic style music the most.

The group of dancers also seems to enjoy the animations with Celtic style, as two of the

top three animations were paired with Celtic music.

5. CONCLUSIONS AND FUTURE WORK

This paper presents a new music-driven character animation system that supports data-

driven mappings of musical features to movements. The system helps users of all

experience levels to produce appealing animations based on input music of any type and

primitive dance moves and routines. One of the major contributions of this work to the

area of character animation is its ability to build a motion sequence directly from

extracted musical features. Unlike synchronization-based methods that simply alter an

existing animation’s timing in accordance to the musical beat, this system creates

movements based on the musical beats and dynamics. The movements can easily change

to reflect the mood and timing of the music, a feature that is not possible in systems

similar to ours.

Another feature that is not supported in other systems is the ability to control multiple

characters with different personalities in an animation. The user can build and easily

integrate a troupe of dancers into the system. The dancers are not limited to performing

the same movements, as the Celtic system is set up so that each character can use its own

script file. Synchronization between characters is encouraged, but individuality makes

the animation less mundane.

Our system is designed to be flexible for both the user and the animator. The system

is set up to support extra primitive movements, as well as more dance types than just

Celtic. The addition of other types of movements will encourage experimentation

between dance structures, allowing a choreographer to easily mix moves from across

different dance categories. Flexibility for the user is provided through both the script file

and the musical input. Any type of music with noticeable beats can be used by the

system to generate a specifically tailored animation that expresses the music. The script

file gives the user a high level of control over the final animation and results that reflect

her style and preference.

Figure 6: The system is easily able to accommodate multiple characters in the same scene, as demonstrated in

the picture above. Sixteen girls are utilized in this particular performance.

Future work is planned for both the musical analysis section and the animation

component. The occasional inaccuracy of the beat detection algorithm needs to be

addressed, as well as its need for manual tweaking. We plan to design an automatic

algorithm that is more accurate, as well as extract more musical features, such as the note

pitch and melody, from the input signal.

We also intend to add more primitives and routines into the system in order to more

faithfully represent Celtic dance. The system does not need to be limited to Celtic

motion, however. Different types of dances can be added to future versions in order to

increase the scope of the system and encourage experimentation between styles.

Ballroom dances such as the Waltz or culture-based dances such as the Spanish Flamenco

are among the possible dance types that could be incorporated into the Celtic system.

Lastly, the ability to randomly generate sections of a dance, or even an entire dance,

automatically is a concept that should be included in the Celtic system. This function can

be used to demonstrate the system to new users or fill in movements when a user has run

out of ideas. It would increase the flexibility of the system and provide extra help for

users with little experience or only a short amount of time.

REFERENCES
ALANKUS, G., BAYAZIT, A.A., AND BAYAZIT, B. 2005. Automated Motion Synthesis for Dancing
Characters. Computer Animation and Virtual Worlds16:3-4, 259-271.

CARDLE, M., BARTHE, L., BROOKS, S., AND ROBINSON, P. 2002. Music-Driven Motion Editing: Local
Motion Transformation Guided by Music Analysis. In Proceedings of Eurographics UK, Leicester, UK, June
2002, 38-44.

DIXON, S. 2003. On the Analysis of Musical Expression in Audio Signals. Storage and Retrieval for Media
Databases 5021, 122-132.

DUNNE, C. 1996. Celtic Feet. ISBN: 156938147X. Acorn Media.

FOD, A., MATARIC, M.J., AND JENKINS.O. 2002. Automated Derivation of Primitives for Movement
Classification. Autonomous Robots 12:1, 39-54.

GOTO, M. 2001. An Audio-based Real-time Beat Tracking System for Music With or Without Drum-sounds.
Journal of New Music Research 30:2, 159-171.

GOTO, M. AND MURAOKA, Y. 1994. A Beat Tracking System for Acoustic Signals of Music. In Proceedings
of ACM Multimedia, San Francisco, USA, October 1994, 365-372.

GOTO, M. AND MURAOKA, Y. 1999. Real-time Beat Tracking for Drumless Audio Signals: Chord Change
Detection for Musical Decisions. Speech Communication 27:3-4, 311-335.

KIM, T., IL PARK, S., AND SHIN, S.Y. 2003. Rhythmic-Motion Synthesis Based on Motion-Beat Analysis.
ACM Transactions on Graphics 22:3, 392-401.

SCHEIRER, E. 1998. . Tempo and Beat Analysis of Acoustic Musical Signals. The Journal of the Acoustical
Society of America 103:1, 588-601.

SHIRATORI, T., NAKAZAWA, A., AND IKEUCHI, K. 2004. Detecting Dance Motion Structure through
Music Analysis. In Proceedings of International Conference on Face and Gesture Recognition, Seoul, Korea,
May 2004, 857-862.

SHIRATORI, T., NAKAZAWA, A., AND IKEUCHI, K. 2006. Dancing-to-Music Character Animation.
Eurographics 25:3.

TAYLOR, R., TORRES, D., AND BOULANGER, P. 2005. Using Music to Interact with a Virtual Character. In
Proceedings of New Interfaces for Musical Expressions, Munich, Germany, August 2005, 220-223.

TZANETAKIS, G., ESSL, G., AND COOK, P. 2001. Audio Analysis using the Discrete Wavelet Transform. In
Proceedings of WSES International Conference on Acoustics and Music: Theory and Applications, Skiathos,
Greece, September, 2001.

WOCH, A. AND PLAMONDON, R. 2004. Using the Framework of the Kinematic Theory for the Definition of
a Movement Primitive. Motor Control 8:4, 547-557.

