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Abstract

Mode predictive control (MPC) is a paradigm that emerged in the late 1970’s. Intuitive
in design and computationally elegant, it has become synonymous with advanced process
control in the industry for applications where interactions and constraints have to be ad-
dressed. The design phase was somewhat heuristic until Rawlings and Muske (1993) gave
the tools, in the form of Lyapunov theory, for constrained stability analysis of model pre-
dictive controllers (MPC).

The purpose of this thesis is two-fold:

1. To harness the developments in numerical methods, multivariate statistics and iden-

tification techniques for improved design of model-based predictive controllers.

2. To develop tools for analysis of MBPC performance and implement them on industrial

applications.

Convex optimization methods have found several applications in the area of control
(Boyd et al., 1994). The linear matrix inequality (LMI) framework allows one to cast
several control design problems as suitable convex problems that can be solved efficiently.
In this thesis the LMI framework has been used to design MPC and apply it to real-time
control of pilot scale processes.

Partial least squares (PLS) gives a robust way of handling redundancies in the input-
output data and coming up with truly parsimonious models. The PLS framework was
integrated with the MPC methodology to conceive a novel way of designing linear and
nonlinear medel predictive controllers. The PLS based MPC was tested on a pilot scale
process as well as a simulated, nonlinear pH-level control process.

Control relevant identification attempts to bridge the gap between identification and

control objectives. The identification objective is chosen to be commensurate with the



control performance objective. In this thesis we use the finite impulse response (FIR) form
to pose and solve the control relevant identification problem for model predictive control.
Some steps are taken towards applying this methodology under closed loop conditions and
with constraints in place.

The present day control practitioner has to spend a significant part of his/her time on
maintaining the advanced control applications. Current assessment and diagnosis meth-
ods for MPC are largely heuristic and time consuming. Tools that systematically quantify
MPC performance and aid in diagnosing poor performance would be of immense value to
the practicing control engineer. As part of this thesis a simple way of quantifying MPC
performance has been proposed and demonstrated on an industrial application. This as-
sessment technique is comprised of comparing the designed objective function with achieved
objective function and is free from any statistical assumptions such as normality or station-
arity of the operating data. Uncertainty is part of the reality that most process control
engineers have to face on day-to-day basis. The effect of uncertainty on controller perfor-
mance is quantified as an aid to performance diagnosis. Other factors such as constraints,

nonlinearity and disturbance uncertainty are also considered.
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Chapter 1

Introduction

In the past two decades process control practice has progressed from simple PID controllers
to advanced model based controllers capable of handling interactions and constraints. On
the other hand, control research has evolved from the state-space techniques such as LQG
to robust synthesis techniques such as H,. and control relevant identification methods which
attempt a synergistic treatment of the identification and control problem. Researchers have
also attempted to harness these advances in linear control theory to nonlinear processes.
As a control researcher, one is often concerned with the synthesis of a controller for a
particular process. In other words, one would like to know what kind of inputs have to be
designed so that the system behaves in a pre-specified manner. Thus controller synthesis
is really concerned with the design of the controller. If we turn the problem around and
fix the inputs to the system, we are now interested in studying the behavior of the system.
This is known as analysis. Analysis attempts to investigate the structure and behavior of
the system. To a control practitioner, the analysis of an existing system provides valuable
insight into the behavior of the control system.

Model predictive controllers (MPC) belong to a class of model-based controllers which
compute future control actions by minimizing a performance objective function over a finite
prediction horizon. In a receding horizon fashion, they implement only the first of the
calculated control moves. These controllers usually have a step/impulse response model to
predict the future plant response. This family of controllers is truly multivariate in nature
and has the ability to deal with constraints on the inputs, slew rates, etc. It is for the
above reasons that MPC has been widely accepted by the process industry. Variations
of MPC such as dynamic matrix control (DMC) and quadratic dynamic matrix control
(QDMC) have become the norm in industry for processes where interactions are of foremost

importance and constraints have to be taken into account.



The field of model predictive control emerged in the late 1970s and has held centre
stage in the area of process control mainly due to its industrial successes. Researchers
have looked at developing tuning guidelines, a variety of formulations (state-space, transfer
function, internal model control, etc.), extension to nonlinear processes, and in the 90’s
the focus has been on robust design of MPC. Methods such as the min-max approach and

the {; optimal theory are now available for robust design of multivariate constrained model

predictive controllers.

1.1 Scope of this Thesis

In this work we study a wide class of techniques for design and analysis of linear and
nonlinear model predictive controllers. In more general terms MPC belongs to the class of

discrete controllers and can be single or multi-rate. In an industrial setting the challenge is

two-fold:

e Design a high performance model predictive controller for a complex process based

on, mostly, an empirical model estimated from input-output data.

e Monitor, maintain and if possible improve the performance of existing MPC applica-

tions.

The design phase involves (i) identifying an appropriate model from input-output data,
(ii) choice of tuning parameters to optimize performance and provide stability, (iii) on-line
implementation - which involves solving a potentially large optimization problem at every
sampling instant.

The monitoring and maintenance phase can split into three distinct tasks: (i) obtain-
ing performance metrics from operating data and design information, (ii) in case the per-
formance metric indicates less than satisfactory performance, establishing the underlying
causes (iii) determining the corrective actions to be taken for improving performance. The
last step is tantamount to re-design of the existing application and can even entail re-
identifying the process model. In a practical setting, the improvement of performance will

be achieved through some iteration between the design and analysis steps.

1.2 Research Objectives

More specifically the research objectives of this project included:



Development of novel ways of synthesizing model predictive controllers
and their evaluation on pilot scale processes

1. Use of convez optimization methods for MPC design.

Convex optimization methods are very reliable and efficient tools for control system
design. Interior point methods are polynomial time algorithms for solving convex
programs with guaranteed convergence to the global minima. We propose the use of
the linear matrix inequality (LMI) framework to solve the optimization step in MPC

via interior point methods.

2. Use of partial least squares (PLS) based dynamic models for MPC.

The PLS framework is particularly useful in dealing with colinear data. Constrained
model predictive control of linear as well as nonlinear processes, based on dynamic PLS

models is proposed and demonstrated on simulation as well as pilot scale processes.

3. Development of control relevant identification for model predictive control.

Until recently the identification step was considered as independent step with little or
no relation to the control objective. In order to overcome the discrepancies between the
identification and control objectives one must resort to control relevant identification.
The FIR form is naturally suited for MPC design. The control relevant identification
problem is posed and solved in the FIR form. It is one of the aims of this thesis

to study the properties of this identification algorithm in the context of closed loop

issues.

Development of tools for performance analysis of model predictive and
model based controllers in general

1. Development of performance assessment techniques for MPC.

The performance assessment of constrained model predictive controllers presents a
challenging research problem. Constrained MPC is essentially a linear time-varying
control law due to the changing nature of the active constraints. Current performance
assessment techniques compare performance against a benchmark which is typically
unrealizable. This is not very useful in diagnosing poor controller performance. A
more practical approach is to compare achieved performance with the designed per-
formance. The MPC design method offers a natural choice of such a design criterion-

the design objective function.



2. Development of methods for diagnosing poor performance in model based controllers.

A poor performance index can be the outcome of one or more of the following: (1) Poor
controller design (2) Persistent disturbances (3) Limits on achievable performance
with existing process control structure (4) Design constraints (5) Changes in plant
dynamics. How does one decide what is the contribution of each of these terms
towards poor performance? We propose to quantify the contributions of these factors

towards degradation in performance.

3. Industrial application of the proposed MPC performance analysis tools.

Maintenance of model-based predictive controllers is an important part of a control
engineer’s job in the process industry. It is one of the aims of this thesis to demon-
strate the suitability of the assessment and diagnosis techniques on industrial model
predictive controllers such as DMC or QDMC.

1.3 About the Thesis

As outlined in the earlier section this thesis deals with the development of synthesis and
analysis tools for model-based predictive controllers. To make the reader familiar with the
MPC concepts and terminology, Chapter 2 begins with an overview of model predictive
control. Key stability results are reviewed and the recent developments in robust MPC
design are surveyed. This chapter endeavours to explain the MPC philosophy in a tutorial
manner and it forms the requisite background for all of the remaining seven chapters.

Chapters 3, 4 and 8 deal with MPC design. In Chapter 3, the LMI framework for
MPC design is presented. This enables the solution of the optimization step in MPC via
the powerful interior point methods. The LMI based MPC is demonstrated in real time
on pilot scale processes. A new tuning method based on optimizing the condition of an
appropriate matrix is proposed.

Chapter 4 discusses the application of PLS based dynamic models for the design of
linear and nonlinear model predictive controllers. PLS based dynamic models are reviewed
and the role of constraints is highlighted. The proposed PLS based MPC is applied on a
nonlinear pH-level control problem.

Chapter 8 deals with control relevant identification for MPC. The area of control relevant
identification is reviewed in the context of MPC. The FIR form is utilized for estimating
the MPC relevant model. Some closed loop issues such as pre-filtering, constraints and

nonlinearities are also addressed.



Chapters 3, 6 and 7 focus on the development of analysis techniques for maintaining
model-based predictive controllers and their application to industrial applications. In Chap-
ter 5 a new method for assessing MPC is proposed. This method returns a performance
metric based on comparison the design objective function with the achieved objective func-
tion. Some useful properties of this performance metric are proved and its usefulness is
further demonstrated on a QDMC application.

Chapter 6 is step towards developing diagnostic tools for model based controllers in
general. Towards this end the effect of uncertainty on performance of a control system is
established. The effect of uncertainty on performance measures is quantified. This chap-
ter also discusses the impact of constraints, nonlinearity and disturbance uncertainty on
controller performance.

Chapter 7 presents an industrial case study consisting of two DMC applications at the
Mizushima plant of the Mitsubishi Chemical Co., Japan. Several practical measures of
performance are developed and applied in a case study manner. The role of the lower
control layers in analyzing DMC performance is emphasized. Some structural aspects of
DMC are highlighted, with particular attention to stability and performance issues of the
control system.

The significant contributions of this thesis are outlined in Chapter 9 and future research
directions are indicated.

The material is presented with a tutorial flavour so as to familiarize the reader with the
diverse fields such as linear matrix inequalities, partial least squares, perforrnance assess-
ment, iterative control and identification, covered in this thesis. Since this thesis is written
in a paper format, some degree of overlap could not be avoided. For example, the figure

explaining the IMC structure occurs more than once.

1.3.1 About the Notation

The notation used in this thesis, with the exception of Chapter 4, is consistent with the
MPC literature and the control literature in general. For Chapter 4, since it deals with
a multivariate statistical method - PLS, the notation is introduced at the start. The Z-
transform is used throughout the thesis to represent the discrete system in the frequency

domain. For the sake of completeness, we give the definition of the Z-transform here

y(z) = 3 ylk)z=* (1.1)
k=0



where z is a complex variable. The forward shift, backward shift and the difference operators
are defined as

qy(k) = yk+1) (1.2)
g 'yk) = yk-1)
Ay(k) = (1-q yk)=yk)—yk—1)

respectively. The symbol > is used to denote the positive semidefiniteness of a matrix,

P e Rnxn

P
zIPr > 0,vz#0,z € R".

A

0=

Conventional vector norms used in this thesis are the Euclidean norm or the 2-norm:
||z]|3 = =T,
the 1-norm:
) n
lizlls = X |z«
k=1
and the co-norm:

2lloc = max .



Chapter 2

A review of model predictive
control

2.1 Introduction

The termm MPC represents a family of model based predictive controllers. The MPC family
algorithms are designed on the basis of a multistep optimization objective. In general,
several controller moves in the future are computed but only the first control action is
implemented, hence these controllers are also referred to as receding horizon controllers. The
earlier versions of MPC are - the identification and command algorithm (IDCOM) proposed
by Richalet et al. (1978) and the dynamic matrix control (DMC) algorithm due to Cutler
and Ramaker (1980). Other well known variations of MPC include: model algorithmic
control (MAC) by Rouhani and Mehra (1982) , multivariable optimal constrained control
algorithm (MOCCA) from Sripada and Fisher (1986) and generalized predictive control
(GPC) due to Clarke et al. (1987) .

The underlying philosophy of MPC type control algorithms differs from conventional

PID controllers in several respects:

e An explicit model of the process is used within the control algorithm to determine the

control actions at every step based on the minimization of a cost function.

e This model is often in the finite impulse response (FIR) form which can be obtained
with relative ease from a large chemical plant. The FIR model has the ability to

capture complex dynamics.

e The formulation is truly multivariate in nature and can handle interactions in a con-

sistent manner.



e This family of controllers has the ability to deal with hard constraints on the inputs
and outputs in an optimal way. This represents a significant step in terms of practical

implementation.

e The computational complexity of the optimization step is restricted to a linear or

quadratic program in the worst case. Thus these algorithms can be easily implemented

on-line.

e At each sampling instant several control actions are calculated, only the first control

move is implemented. These controllers are thus known as receding horizon controllers.

The basic ideas behind model predictive control predate the methods proposed by
Richalet et al. (1978) and the DMC algorithm due to Cutler and Ramaker (1980). Garcia
et al. (1989) and Bannerjee (1996) give a historical background for the MPC concept which
originated in the early 1960’s. Simplicity of design combined with its ability to tackle re-
alities such as constraints and interactions has helped MPC achieve its current popularity
with the process industry. The industrial successes of these algorithms spurred the growth
of MPC as a research area in academia. Researchers have analyzed the MPC algorithm in
great detail. MPC has been reformulated and analyzed in the internal model control frame-
work (Garcia and Morari, 1982), the linear quadratic gaussian framework (Bitmead et al.,
1990) and also in the stochastic, input-output setting via generalized predictive control
(Clarke et al., 1987).

In this chapter, we give an overview of the key ideas involved in classical model pre-
dictive control with a tutorial flavor. Section 2.2 illustrates the control objective in its
commonly used forms and introduces the MPC terminology. Constraints are also high-
lighted with respect to their type and geometry. Standard model forms for predicting the
process response are compared in Section 2.3. The derivation of a closed loop expression
for the unconstrained predictive control law is given in Section 2.4, in the transfer function
and the state space forms. An illustrative example is used to demonstrate the effect of
the tuning parameters on the controller stability. The constrained solution for a quadratic
objective function and linear constraints is outlined in Section 2.5. Secticn 2.6 summarizes
methods for nominal design and analysis of MPC. The nominal performance issues are dis-
cussed in light of the tracking and disturbance rejection properties of predictive controllers.
Incorporating modeling uncertainty into the design of a MPC is crucial to its success. The

recent developments in the design of robust MPC are covered in Section 2.7.



2.2 The Control Objective

The underlying philosophy of model predictive control (MPC) consists of minimization of
a performance objective function with respect to future input moves, over a finite time
horizon. The standard objective function in model based predictive controllers consists of
the sum of (i) weighted norm of the control errors over a prediction horizon, p and (ii) a

weighted norm of the control moves over a control horizon, m,

P m m

Josipe = Y _lIr(k+i) — gk +i/R)IE, + ) llAu(k+i— 1)}, + Y llu(k +i - 1),
i=1 i=1 i=1 @1
here r € R™v is the reference signal, y € R™v is the predicted output,u € R™ is the control
input, I'; = 0,A; » 0, R; > 0 are the respective weighting matrices. ||.|| is used to denote
the Euclidean norm (2-norm) of a vector. In equation 2.1 the 2-norm is weighted with
appropriate matrices. Another commonly used objective function is based on minimizing

the 1-norm of the relevant signals,

p

m m
Josipe =Y Ir(k+4) — gk +i/k)r, + 3 [Buk +i - Dy, + 3 Ju(k +i — 1)|g,.

i=1 i=1 i=1 22

In MPC terminology, p is called the prediction horizon; m is known as the control horizon;
I'; is the output weighting matrix; A; is the input move suppression factor; R; is the input
weighting matrix. In recent literature the infinite horizon MPC has received much attention
(p — oo). If the model is linear, the convexity of the objective function is guaranteed, since
A, is positive definite. Other modifications of the objective function include formulation
in terms of the states instead of the input-output form and inclusion of the intersample

behaviour. These objective functions are shown here for the regulatory case,

14 m m
Jss = Yollatk+i/BE + 3 lIduk+i— DR, + S llutk+i-1)(Z,  (23)
] i=1 =1

1=P1 (k+i)h ) m ) ) m . ,
Jo = ;/t “-’E(t)”r,dt"*";”A"(k"rl—l)llA‘.+§Hu(k+z—1)|!h‘.

=(k+i—1)h
The control objective is to compute a sequence of control moves that minimizes one of the
above objective functions. In reality the inputs are limited to a region of allowable moves,

Qi € R™. Thus in practice, the following constrained optimization problem is solved at

every sampling instant,

min J(u)

9



where u; = [u(k)...u(k +m —1)]7. This is a finite dimensional optimization problem. How-
ever, after computing the optimal move sequence ug, only the first of these optimal moves
is implemented on the process. This is known as receding horizon control. The remaining

moves are discarded and a new optimization problem is solved at the next sampling instant,
u(k) = ug(1) = u*(k).

2.2.1 Constraints

A real plant has to work within certain physical limitations, e.g. a valve which can han-
dle only a particular range of flow rates, and market forces which result in rigid quality
requirements on the process outputs. Usually a real process involves rate and amplitude

constraints on the input, and may also require output constraints to be considered,

Aumin < Au(k) < Aupna, : Rate Constraints
Umin < u(k) < umax : Amplitude Constraints
Ymin < g(k) < Ymax - Quahty Constraints.

Often times the manipulated variables may have an undesirable impact on some key process

variables. This effect can be minimized through the incorporation of constraints on auxiliary

variables,
fein < f(k) < fmax : Quality Constraints on auxillary variables.

The constraints are not limited to the linear set. For example the 2-norm of the input/output

vectors can be constrained. A contraction constraint on the states can also be included to

ensure nominal stability,

lul} < o
gl < o3
llz(k +p/E)ll2 < allz(k +1)][2

Equality constraints may include terminal constraints on the state or the output,

9(k+p/k) = Ydes
z(k +p/k) = 0.

We define a region 0, € R™ "™ such that if ux € Q4 all the specified constraints on the

inputs and outputs are satisfied. Depending upon the model form used, the constraints can

10



define a convex or a non-convex feasible region, €);.. We define a region 2z C R™ "™ such
that if ux € Qi all the specified constraints on the inputs and outputs are satisfied. For a
linear model, the constraints of the above form lead to time-varying, convex .
Bemporad and Morari (1998) incorporate logical constraints into a predictive control
framework. The logical constraints may include physical rules, if-then-else rules, on-off
switches. The inclusion of logical constraints leads to presence of integer or binary (0/1)
variables in the constraint set. They propose the use of mixed integer quadratic program-

ming (MIQP) to solve the resulting mixed logical dynamical system thus arising.

2.3 Predictor

The key component of any model predictive control scheme is a predictor which is capable
of accurately predicting the process response over a prediction horizon, based on the current
and past measurements. Different model forms can be used to predict the process behaviour.
The commonly used model forms include: (i) the step response or the finite impulse response
model, (ii) the state space form and (iii) the transfer function form. The general model
forms for each of these are tabulated below.

N
gk) = ZS(j)Au(k —7)+s(N)u(k— N —1) +e(k) : Step Response
j=1
N
= Zh(j)u(k —j)+e(k): FIR
j=1
y(k) = C(Az(k —1)+ Bu(k — 1)) +e(k): State Space

A(z)y(k) ZZ; e(k) : Transfer function

B(z)u(k) +

where e(k) is a white noise process. The FIR model is equivalent to using an output error
(OE) model in the transfer function domain. The transfer function form given here is a
discrete autoregressive integrated moving average with exogenous input (ARIMAX) model.
The i-step ahead predictors for the respective model forms are compared below,

N

ga(k+ifk) = Y _s(j)Au(k+i—j)+s(N)u(k+i-N—1) (2.4)
j=1
gk +1i/k) = CA'z(k)+ CA'Bu(k) +...+ CABu(k +1i-1)
gk +i/k) = Gi(@QAuk+i-1)+ %’(%)Au(k -1)+ %y(k)

11



where G;(q), Gi(q) and F;(q) satisfy the following Diophantine identities (Bannerjee, 1996):

C(q) _ - _Fi(q)
aAlq) — B+ Ry
Ei¢B(g) _ . ~:Gi(@)
c@ - @+ gy-

The effect of unmeasured disturbances is incorporated to some extent in the FIR form

through a feedback term,
yk+i/k) = gya(k+i/k)+d(k+1i/k)
d(k+i/k) = g(k)—y(k)-

The full state measurements are rarely available. Hence a state estimator or observer
accompanies a state space based predictor. The state space model (Lee et al., 1994; Lj et
al., 1989) will include a disturbance model indirectly through a Kalman filter or any other

observer used for estimating the state,

z(k+1) = Az(k)+ Bu(k) + Biw(k) (2.5)
y(k) = Czx(k)+v(k)
zZ(k+1) = Axz(k)+ Bu(k) + L[y(k) — y(k)]-

The state space formulation for the predictor has some desirable properties such as the
presence of an optimal filter for incorporating the effect of unmeasured disturbances and the
ability to handle the multivariate case. The optimal i-step ahead predictor for the transfer
function model involves solution of certain Diophantine equations and also incorporates
an explicit model for unmeasured disturbances. The transfer function approach does not
extend easily to the multivariate and non-square case. Both the state space and the transfer
models can predict the response of unstable/integrating processes whereas the FIR form
cannot. One common way of accommodating the integrating outputs in the FIR form is to

formulate the prediction in terms of the differenced output which is the same as factoring

out the integrator,

y(k) = culk) e (2:6)
B N
Ay(k) = Zu(k)=)_h()uk-j).
=1

The differenced output is included in the control objective instead of the original vari-

able. The control of level is an example of the integrating output and is often handled by

controlling the changes in the level.

12



In a novel approach Bannerjee (1996) used Laguerre polynomials to represent the de-

terministic form of the input-output model,
N

§(k) =) g:Wi(q)u(k) (2.7)
i=1

where ¥;(q) are the orthonormal basis functions of Laguerre type:

\/_— (l—aq) 1‘ 28)

V.(q) =

Laguerre function models with a real pole a,(|la] < 1) are used to represent the dynamics
of an overdamped process. Since Markov functions belong to a special class of orthonormal

functions, the FIR model is known as a Markov model.

2.4 Unconstrained Control Law

The formulation of the model predictive controller for the MIMO case is discussed here
before expressing the unconstrained control law as a linear feedback controller. The model

assuming (i) linearity and (ii) an open loop stable process is:
Y = SAu; + fk + di (2.98.)

where the individual terms are given by:

o

S1 0
S22 S§1 0
S = 83 82 S1 0 0

o

Sp  Sp-1 *tt Sp-m+l Ny.pXny.m
Aug = [Aui(k) ... Aup (k) ... Aui(k+m —1)... Aup (k+m —1)]7
G = [91(k + 1/E) . g, (k + 1/k) .. .G2(k +p/k) .- - G, ( + p/R)]
fe=[filk+1)...fa,(k+1)... fi(k+D)... fn,(k+P)]
di = d(k){I...0N7 .
Each s; is a matrix of dimension n, x n, consisting of the step response coefficients of the
process model. The second term on the right hand side denotes the free response of the

system i.e. the response if there were no further changes in the inputs. This free response

13



is expressed in terms of the past (N) inputs and can be written as

fe = HiAu, + Hau, (2.10)
[ 3o S3  S4 ... sy ]
83 Sq4 ... sy O
S4 83 .o
H = . . s Ho = sl (2.11)
SN, [P SN 0
| SN+l --- SN 0 ... 0 J
Au, = [Au(k-1)...Au(k—N +1)]T, (2.12)
u, = [u(k-N).uk-N+p-1)T. (2.13)

The third term in equation 2.9a is the disturbance estimate d(k), which is found by sub-

tracting the model output from the actual output:
d(k) = y(k) — §(k). (2.14)

The disturbance is assumed to be constant over the prediction horizon. The objective
function for MPC type controllers describes the future deviations from the setpoint p moves
into the future and the differenced input moves, m moves into the future, both squared and

weighted,
J = (re — k) T(re — §) + Aul AAuy

where 74 = r(k)[I....I]T is the setpoint assumed to be constant over the prediction horizon.
In the above formulation the setpoint is assumed to be constant over the prediction horizon,
in general a trajectory can be computed for the future setpoint. I’ = diag(l'y,...,I'p). A =
diag(A1, .... Am) are the weighting matrices defined over the entire prediction and control
horizons respectively. I', A are positive semidefinite matrices usually diagonal in nature with
the individual weights indicating the relative significance of the different inputs/outputs over
the relevant horizons. The sequence of steps leading to the minimization of the objective

function with respect to the future input moves Auy is outlined below,

J = (re—SAu — fi —dp)TT(ri — SAui — fi — di) + Auf AAuy
= rilri + Aul(STTS + A)Aug — 2(r — fi — di)TTSAuy.

Differentiating the objective function with respect to the future control moves we get:

___.aaAJu = 2(8TTS + A)Auy — 27T (ri — fi —di) =0 & (2.15)
Au;p = (STTS+A)7'STT(rs — fi — d).

14



In receding horizon fashion only the first of the m moves, is implemented. Thus

Auk) = [I 0 ... 0](STTS+A)"'ST0(r — fi —dy) (2.16)
= K(re — fi —di)

The conditioning of (ST S) is critical to the implementation of model predictive controller.
A poorly conditioned S7S means that the controller will make large control moves to
compensate for the effect of small disturbances or mismatch. In other words the controller
will be very aggressive. A well conditioned $7S implies that the controller will be more
circumspect and make moves in proportion to the modelling errors or disturbances. Qi
(1997), Qi and Badgewell (1997) discuss ways to improve the conditioning of STS based

on matrix factorization techniques such as® singular value decomposition.

Substituting equations 2.10 and 2.14 into equation 2.16 we get,

Aulk) = K [r — HiAu, — Houp — [I...11T (y(k) — g(k))]
= KI[I..I" (r(k) —y(k) + §(k)) — K (HAu, + Hou,)
= Kile(k) + §(k)] — K (HiAu, + Hou,) .

Taking Z-transform on both sides we get

AU(z™Y) = K[E@Y)+Y(E ) -K{H [z! 72 ... 2=V ]TAU(z'l)
_+_H2[ 2=V Z—N-é-l . Z—N-—:-p—l ]TU(Z—I)}

= K[E(zY)+Y(Y -KH((z"YH)AU(z™!) - KHy(z"H)U(z7Y).
Letting H(z) = (1 — z~!)({ + KH,(27!)) + KH2(2"!) we have the linear control as
HEHWU () =K[REzY)-Y(EH)+Y(E)L (2.17a)
This control law can be explicitly stated as

U(z™) = QMR -Y(E)+Y(z™) (2.18)

Q(z™YH = H ' (z7HK,. (2.19)

As a result of penalizing the differenced input term in the control objective the predictive
controller can track step changes in the setpoint asymptotically. The controller transfer

function derived here is in the internal model control framework (Garcia and Morari, 1982).

Q is a high order (= N, number of step response coefficients) controller. The conventional
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Figure 2.1: The Internal Model Control structure
feedback controller which acts on the control errors is related to the IMC controller in figure
8.11 by
C=Q1-TQ)" (2.20)

If the future setpoints and/or the future disturbances are not assumed to be constant, a
setpoint filter and/or a filter in the feedback path have to be incorporated. Garcia and
Morari (1982) analyze the effect of the following exponential filter for the feedback term:

d(k +i/k) = ad(k +i—1/k) + (1 — a)d(k/k). (2.21)

The following results from Garica and Morari (1982) give some important properties of the

unconstrained predictive controller for the SISO, open loop stable case.

Theorem 2.1. For I # 0,A = O,selecting p = m < N yields the model inverse controller
Q=T"
Theorem 2.2. Assume that the system has a discrete monotonic step response and that

' =I1.,A=0,p= N. There exists a m < p such that the controller Q is stable.

Theorem 2.3. There exists a A* > 0 such that for all A > A*, the predictive controller,
Q. is stable forallm >1,p> l,and T > 0.

Example 2.1. Consider the follouing discrete time, SISO process:

_ (1-0.2271)

T= (1 -0.052"1)"
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Figure 2.2: The impulse response of T
The impulse response of T is shown in figure 2.2.A truncated FIR form of T is given by
T =1-0.15z"! - 0.0075z"% — 0.0004z3

For M = P = 4, the dynamic matriz is given by:

1 0 0 O

G = 0.85 1 0 0
0.8425 0.85 1 0

0.8421 0.8425 0.85 1

and the associated matrices for the prediction of free response are given by (N = 5):

0.85 0.8425 0.8421 0.8421 0.8421
H, = 0.8425 0.8421 0.8421 0 H, = 0.8421
0.8421 0.8421 0 0 ’ 0.8421
0.8421 0 0 0 0.8421

The controller gain matriz, K (A =0, = I), is given by:

K=[10 0 0](G"G)"'GT
=[1 00 0]G!
=[100 0]
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and

KHi[ 270 z72 273 274 |7 = 0.8527! + 08425272 + 08421273 + 0.84212~*
KHo[ z7% 274 273 272 |7 = 08421275

Ki=K[1 11 1] =1

HzHY=Q1-2"HY{1+KH (2"} + KH>(z"})

=1-0.15z"" — 0.0075z~2 — 0.0004z*

Note that H is the finite tmpulse response (FIR) representation of T. Thus the controller
is given by

1 _
Ql:H—(z‘—l)zT L.

This is a stable controller since T is a minimurn phase transfer function. Thus we have
an illustration of theorem 1. Let us derive the transfer function for a non-zero control
weighting, A = I. Repeating the above calculations yields the following controller:

0 K 0.6324
o = = -
2T H(z!)  1-04643z-1 —0.0031z2

The controller is no longer equal to the plant inverse, but notice that the controller gain
is equal to the inverse of the plant gain, Q2(1) = 1.1871 = 1/0.8421 = 1/T(1). Also the
effective controller is just second order. For A = 0 the controller was third order. Increasing
the control weighting further to 10 gives the following controller,

0= K1 _ 0.2291
8T H(z"') ~ 1-08091z—! — 0.0006z—2"

Figure 2.3 shows a plot of the dominant controller poles for different control weightings.
Notice that the controller pole moves towards the unit circle with increasing control weighting
t.e. the controller becomes sluggish with increasing A. Since the process is open loop stable,
a stable Q guarantees closed loop stability. It is also possible to ezpress the predictive control

law in the form of an integral controller using equation. 8.11.

2.4.1 State Space Form

Here we start with a state space from of the process model,

z(k+1) = Az(k)+ Bu(k) + Gu(k) (2.22)
y(k) = Cz(k) +u(k)
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Figure 2.3: Controller pole location (o) for different control weightings ( * corresponds to

the plant zero)

where w(k),v(k) are white noise processes. The predictions can be expressed in terms of

the future inputs and current state variables as

j(k +1/k) = CAz(k)+ CBu(k)
g(k +2/k) = CA>*i(k)+ CABu(k)+ CBu(k +1)

gk +m/k) = CA™Z(‘k)+CA™Bu(k)+ ...+ CBu(k+m —1)

gk +p/k) = CAPE(k)+CAPBu(k)+ ...+ CAP™2Bu(k +m — 2)

p—m .
+ Y CAP ™ 'Bu(k+m —1).
i=1

In matrix form the above predictions become

cA
g = | 4 | #k) + SAu
cAP
= Fi(k) + SAux

(2.23)

(2.24)

(2.25)

(2.26)

where S is once again the dynamic matrix made up of the step response coefficients. The

objective function remains unchanged except for the rephrasing of the free response in
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terms of the current state instead of the past (N +1) inputs. The disturbance estimate now

becomes,
d(k) = ym(k) — y(k) = C[z(k) — z(k)] (2.27)

where £(k) is the state estimate obtained through a Kalman predictor/filter. Thus the

objective function now becomes,

J = {ri - Fz(k) — SAux — d} T{ri — Fi(k) — SAui — di} + Auf AAu; (2.28)
= ri0lre + Aul (STTS + A)Auy — 2(r — Fi(k) — di)TTSAug.

Once again minimization gives us the same result, albeit in a different form,

Au(k) = K(Tk - F:i‘(k) - dk) (2.29)
= K[I.1]T(r(k) —y(k)) ~ K{F — C(I ... I]" }i(k)
= Kie(k) — Koi(k).

For the nominal case the feedback term will correspond to the noise term.

2.5 Constrained Case

A real plant has to work within certain physical limitations, e.g. a valve which can handle
only a particular range of flow rates, and market forces which result in rigid quality require-
ments on the process outputs. A model] predictive controller is well suited to handle such
constraints in an elegant manner. The constraints on the inputs, slew rates and outputs
can be grouped together into a single matrix inequality. Usually a real process involves

rate and amplitude constraints on the input, and may also require output constraints to be

considered,

Au(k +1) < Aumay,i=0,...,m—1 (2.30)

IA

Aumin
Umin < u(k + i) < Umax,t=0,..,m—1

Ymin < ﬁ(k + ’l/k) < Ymax,t = 1,..,p.

It is important that the controller satisfy these constraints. Through some standard matrix

algebra we can we define these constraints together in the form of a single inequality. If we
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define the following matrices,

Ll - [Aumin .o Aumin]T ; UI = [Aumax .. Auma_x]T
L, = : U= |
Umin — u(k - 1) Umax — u(k -1)
Ly = [ymin---ymin]T—f—d;Us = [ max-'-ymax}'r - f-d
0
R =
.. . 0
I I I

then in terms of these vectors/matrices the constraints can be rewritten as:

L, < Au < U; : Rate
L < RAu < Us : Amplitude (2.31)
L; < SAu < Us : Output.
If we let.
T
A=[-I -R -S I R S| . (2.32)
Bx=[Li Ly Ly U -U, -Us ]
then the constraint set (Equation. 2.31) can be represented in terms of the following in-

equality.
AAu + B > 0. (2.33)

Thus the objective function is minimized subject to linear constraints on the future inputs.
An optimization problem, e. g. quadratic program, is solved at every sampling instant
to arrive at the input values to be implemented on the plant. A priori one cannot say
which set of constraints maybe active at a sampling instant. In some cases only the slew
rate constraints are active, in other cases both slew rate and input constraints are active.
Though the constrained solution is obtained by solving a set of linear equations, the changing
nature of the active constraint set renders the overall control law piecewise linear.

The quadratic program solved at every instant is

min J = AuT(STTS + A)Au — 2(r — f —d)TTSAu (2.34)
- %AuTHeAu ~TAu (2.35)
s.t. AAu+B, > 0. (2.36)
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The free response vector f depends on the past (N + 1) inputs. Thus the objective function
has a fixed Hessian., He, but a time-varying c. The constraint region is also time varying.
For m = 2, the objective function contours will be ellipsoidal with a changing origin at each
sampling instant. Let (A*, B;) denote the active constraint set and A be the correspond-
ing Lagrangen multipliers. Therefore the constrained solution is obtained by solving the

following set of linear equations

FXultoREs]

The overall control law can expressed as
Au = f(u(k —1),....u(k — N).y(k). (k). (2.38)

The constrained cortrol law is linear time-varying and can be shown to be Lipschitz continu-
ous. The geometry of the constrained optimum is shown in figure 2.4 for m = 2. The reced-
ing horizon implementation is clearly suboptimal. Mutha (1990) attempted to obtain the
constrained solution, analytically, for small horizons. Since the constrained optimization in-
volves a potentially exponential search for the active constraint set, the numerical efficiency
of MPC can be improved by first checking if the unconstrained optimum indeed satisfies the

constraints.

duk+1) Unconstrained Optimum

Constrained Optimum

e
L it I

implementation

Figure 2.4: Graphical illustration of the MPC design procedure for the unconstrained and
the constrained cases.

The output constraints cannot always be satisfied. The presence of these constraints can
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lead to infeasibility. One common corrective measure is to introduce slack variables so as

to relax the output constraints temporarily,
Ymin — € < Y(k) < Ymax + €. (2.39)

It is for this reason that the output/state constraints are known as soft constraints. Rawlings
and Muske (1993) give lower and upper limits on the prediction horizon necessary for
satisfaction and feasibility of the state constraints. Other remedies include penalizing the

constraint violations over the prediction horizon in the objective function itself,

J = (re —9) T(re — ) + Aul AAu;

+(Ymax — gk)TQl (Ymax — U&) + (Gr — ymin)TQ2(gk — Ymin)- (2.40)

The last two terms are included if the predicted outputs are violating either the lower or the
upper bounds. In commercial implementation an output constraint is often left out of the
formulation if it leads to infeasibility. A priority ranking is used to decide the order in which
the constraints should be dropped out of the formulation in order to restore feasibility. In
an application of stochastic programming Schwarm and Nikolaou (1998) solved the MPC

optimization under uncertainty. The following variables were defined:

cmns(k £ i/K) = Yonax — Gk +i/K) (2.41)
Emin(k + z/k) = g(k + z/,‘7) — Ymax-

A term comprising the constraint violations weighted with the probability of constraint
violations is penalized in the objective function. The constraint violations are assumed to
be normally distributed. This is a limiting assumption since it holds if the modeling errors

are described by a white noise process.

Example 2.2. Consider the following continuous time model of a distillation column. The
transfer function of the distillation column with the top composition (z4) as the output and
the refluz flow rate (R) as the manipulated variable:

Xi(s) _ 1.0081e~0-35¢
R(s) =~ 4.36s+1

The sampling time was chosen as 0.35 minutes. The tuning parameters for MPC were set

to P=6,M =2\ = 0. The reflur rate is manipulated using a valve which has physical
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limmitations:
0 < u(k) < 100%
—-50 < Au(k) < 50%.

To demonstrate the effect of constraints, simulation were performed for unconstrained MPC,
rate constrained MPC, amplitude constrained MPC and rate plus amplitude constrained
MPC. For each of these simulations, the setpoint was a square wave between 30 and 50
units. The discretized model using a zero-order hold is given by

Xa(z71) 0.0778z2
R(2-') ~ 1.0000 — 0.9229z1"

For the above tuning parameters the dynamic matriz becomes

[ 0 0
0 0
0.0778 0

0.1495 0.0778
0.2158 0.1495
| 0.2769 0.2158 |

At k =1, the unconstrained law is given by

Au = (STS)"'ST(r, — f1)

! T
= | —16551 24217 ]5[30 30 30 30 30 30]

_ [ 119.72  —-165.51 ] [ 21.59 ]

_ [ 119.72  -165.51

~ | —165.51 242.17 13.29
_ [ 385.79 ]
—-356.03 |-
In receding horizon fashion only the first move is implemented, u(l) = u(0) + Au(l) =
385.79. From fig. 6.7 we can see that this is in fact the first control move implemented by

the controller. The response to this input move can be found as:

y(3) = 0.9229y(2) + 0.0778u(1)
=0+ .0778 « 385.79
= 30.01

This is deadbeat or the model inverse control. Fig.6.7 also shows the effect of the A as a
tuning parameter. As we increase \ the controller becomes more sluggish and the controller
is no longer the model inverse. It has been shown by researchers that this parameter plays

an important role in determining the stability of the MPC control law.
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Constrained MPC: . For the case where the unconstrained control law does not
violate any constraints, the solution to the constrained case remains the same as the uncon-
strained one. But as we saw in the previous Section the first unconstrained control move is
calculated as u(l) = 385.79 which cannot be implemented under the existing physical lirni-
tations on the valve-amplitude constraints. Nor is it possible to make such a large change
in the valve opening in a single step-rate constraints. Figure 2.6 illustrate how the input
profile changes as a result of the imposed constraints. For rate plus amplitude constraints
the first move is u(l) = 50. Figures 2.7 and 2.8 illustrate the time varying nature of the
constraints and the objective function. The unconstrained solution is indicated by '*’ and

the constrained solution is shown by a diamond and the receding hortzon solution by ‘o’.

&
=

Figure 2.5: Simulation of a distillation column under unconstrained DMC for increasing
control weighting (p=6,m =1,F =1)

2.6 Nominal Design
2.6.1 Stability

The nominal stability of MPC algorithms has been analyzed by researchers for the uncon-
strained and the constrained cases - Garcia and Morari (1982) , Clarke et al. (1987), Clarke
and Mohtadi (1989), Zafiriou (1990), Zafiriou and Marchal (1991). For the unconstrained
case a closed form expression can be derived (see Section 2.4) for the controller and stabil-

ity analysis is straightforward. Bitmead et al. (1990) show the stability properties of finite
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Figure 2.6: Simulation of a distillation column under rate plus amplitude constrained DMC
(p=6,m=1,=1,-50 < Au(k) < 50,0 < u(k) < 100)
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Figure 2.7: The closed loop response to a setpoint change.
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Figure 2.8: The shaded region shows the changing nature of the amplitude constraints at
sampling instants (a) k=3, (b) k=4, (c) k=5 and (d) k=6.
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horizon MPC to be poor . For the constrained case Zafiriou (1990) used the contraction
mapping principle to show that the closed loop system was indeed contractive irrespective
of the active constraint set. This involved checking the contraction condition for all pos-
sible combinations of the active constraints and becomes a intractable problem for large
constraint sets.

A survey of the recent literature shows that the following four approaches have emerged
to design stabilizing model based predictive controllers. The first and the most popular
technique is that of terminal state or output weighting. The optimal input sequence has to
be computed such that the states at the end of the prediction horizon are required to go
the origin. Kwon and Pearson (1977) showed that this approach guarantees nominal closed

loop stability,

P M
min Y _lz(k +9)If, + Y _llAu(k+i - i3, (2.42)
=1 =1
z(k+P) = 0

u. € Q.

The same effect can be achieved by putting a large weighting on the terminal outputs (Kwok
and Shah, 1994). For this method to work, the system needs to be controllable and the
input horizon should be larger than or equal to the state dimension. The stability is proven
using Lyapunov’s theorem.

For the second approach an infinite prediction horizon and a finite control horizon op-
timization problem is solved at every sampling instant. This method, first proposed by
Rawlings and Muske (1993), is known to guarantee nominal stability of open loop stable

processes for input and state constrained systems. The optimization problem is redefined

as follows,

min ;”x(k+z’)|[%‘+;Hu(k+i—1)|[it. (2.43)

U €

Asymptotic stability is proven using Lyapunov’s theorem. The optimal cost function, ¢, is
shown to be non-increasing. Since ¢, is bounded below by zero, ¢, reaches a constant as
k — oo. Thus z(k) — 0 and u(k) — O at large times. Muske and Rawlings (1993) extended
this approach to the case of unstable plants and showed that a terminal constraint on the

unstable modes of the system leads to stability. They showed that existence of a solution
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to the following optimization problem guarantees stability.

m-—1 m
min 3 | [lz(k + I, + D_llAu(k +i — DI, +[lz(k +m)||%(2.44)
=1

=1

Ayz(k+m) = 0

ur, € QU

As;z and A,z are the projections of z onto the stable and unstable eigen spaces of A

respectively. R, = A;QsA;, where Q; is the positive definite solution to the Lyapunov

equation
(ADTATAT Qs AsAAl - Q, +(ADT QAL =0

with A} = AT(A,AT)"!.

The third approach consists of imposing a contraction constraint on the state of the
system and was proposed by Polak and Yang (1993) . This is a weaker condition than the
terminal state constraint and the feasible region for the inputs is not so restricted. Their
algorithm can be summarized in the following optimization problem,

Pk pe—1
mm; llz(k + )i, + ; llAu(k +i = DII3, (2.45)
lz(k +pe)llr £ allz(k)|lr

u € Q.

where R is a positive definite matrix and a € [0,1). Polak and Yang (1993) included the
horizon length and the sampling time as optimization variables in their algorithm. Contrary
to the earlier approaches the entire sequence of control moves is implemented before solving
a new optimization problem. The contraction condition guarantees stability assuming that
there exist feasible inputs.

The fourth and the last approach is to adopt the infinite prediction horizon and the
infinite input horizon problem (Kothare et al., 1996; Scokaert and Rawlings, 19987?). The
optimization problem solved at every instant is:

min 3 [lz(k + I, + 3 _llulk +i - DI, (2.46)
i=1 i=1

This is equivalent to solving a constrained linear quadratic regulation (LQR) problem and
subsequently an infinite dimensional optimization problem. Scokaert and Rawlings (1998)

present an algorithm based on solution of a finite number of finite-dimensional convex
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quadratic problems. Stability properties of the constrained LQR is again proven via Lya-
punov arguments. Lee (1996) extends the stability results to the output feedback case based
on Lipschitz continuity of the feedback law.

In a recent article, Lee et. al (1998) propose a matrix inequality conditions on the
terminal weighting matrix under which closed loop stability is guaranteed for system with
state and input constraints. The authors show that such a weighting matrix can be obtained

by solving a linear matrix inequality (LMI).

2.6.2 Performance

Tracking

Traditionally tuning methods for MPC focused on heuristic selection of the tuning parameters-
p,m,I',A. The formulation of the predictor in terms of the differenced input, Au, results
in the closed loop system being a type I system (Astrom and Wittenmark, 1991) i.e., it
can asymptotically track step changes in the setpoint. Thus conventional MPC is able to

track step changes in the setpoint due to the presence of integral action,
u(k) = u(k — 1) + Au(k).

The speed of response, overshoot and other measures of tracking performance have to be
optimized by careful selection of the tuning parameters. It is possible to impose constraints
on the output to ensure minimal overshoot and speed of response, etc. Masuda and Shah
(1998) exploit the two degree-of-freedom structure to design state space based GPC for
better tracking. In other words the setpoint trajectory, r(k + ¢), offers an additional degree
of freedom. In general this degree of freedom can be utilized to optimize the closed loop

tracking performance.

Disturbance Attenuation

Measured disturbances can be easily included in the predictive formulation. The predictor

is suitably modified to include the effect of measured disturbances,

N N
(k) =D h*()ulk — 5) + Y _ h4(H)d(k — j). (2.47)

Jj
In the p-step ahead predictor the disturbance is assumed to be constant over the prediction
horizon. The objective function remains unaffected except for the change in predictor.
The input sequence is then calculated in such a manner so as to trade off the tracking
disturbance rejection requirements optimally as per the MPC objective function. This
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amounts to having a feedforward controller. The unmeasured disturbances are handled in
different ways depending upon the predictor. The transfer function form has a noise model
and incorporates the effect of unmeasured disturbances through a optimal p-step ahead
predictor. The state space form uses the Kalman filter to include the effect of unmeasured
disturbances. The OE form uses feedback to estimate the stochastic inputs and assumes
that the disturbances will stay constant over the prediction horizon.

The success of MPC has led many researchers to extend the finite horizon idea to
the state estimation problem (Muske et al., 1993; Michalska and Mayne, 1992). A finite
dimensional QP, which is a dual of the controller design optimization problem, is solved to
compute the receding horizon estimator. Nominal stability of this observer can be proven
on the basis of the stability of the Kalman filter. Furthermore the estimated states can be
constrained to lie within a feasible region. This is an attractive feature since it can prevent
infeasibility problems at the control stage.

In practice many disturbances are unknown in terms of their structure and effect on the
controlled variables. This gives rise to uncertainty in the disturbance model. Design of MPC
for robust performance with respect to uncertainty in disturbances is as yet an unresolved
problem. The receding horizon nature of predictive controllers is one such feature which

attempts to counter this kind of uncertainty.

2.7 Robust MPC
2.7.1 Modeling the uncertainty

The true nonlinear plant can be approximated by a linear model only up to a certain
degree of accuracy. This leads to an inevitable model plant mismatch (MPM) which can be
captured in several ways. The classical way of modeling this uncertainty consists of getting
norm bounds on the uncertainty in the frequency domain (see Doyle et al., 1992) . While
this form of unstructured uncertainty is suitable for design and analysis of unconstrained
controllers, the presence of constraints leads to formidable difficulties in utilizing the norm-
bounded description for design and analysis of constrained MPC. As a resuit the following
uncertainty descriptions have been found to be amenable for the design and analysis of

constrained MPC.

1. Interval uncertainty in the impulse response coefficients. The true plant is
represented by a family of impulse response models i.e. bounds on the impulse re-

sponse coefficients are used to capture the uncertainty. This way of representing the

31



mismatch is control relevant since the FIR form is the most commonly used model
form and the uncertainty is easily quantifiable,
N
Pep2{yk) =) h(julk-3)h(j) € b < ) < R} (2.48)
j=1
. Ellipsoidal bounds. Instead of bounding each FIR coefficient by a lower and
an upper bound, an ellipsoidal region quantifying the variability of the parame-
ters can be naturally derived as an outcome of the identification process. If we let

6 = [h(1).....A(N)]T then the uncertainty is described by the set:
6O =2 {0)(6—-0)TW(O -6 <e}. (2.49)

where W > 0 is the parameter covariance matrrix and € is a probability measure
indicating the confidence level. Thus the uncertainty set is described by an ellipsoid
centered at 6y. The eigen structure of W determines the orientation and size of this
uncertainty set. This type of uncertainty description captures the correlation structure

of the parameters.

. A multi-model description. Instead of relying on the parametrizing the process
in terms of a large number of impulse response coefficients, a state space model with
few parameters is used to represent the process. The model parameters belong to a
convex set described by
z(k + 1) = Az(k) + Bu(k) (2.50)
y(k) = Cz(k)

l 4
[A Bl ={d_ M4 B]d_A=1,x2>0}
=1 i=1

Similarly the other parameters of the state space description belong to respective

combinations of the multiple models (Kothare et. al, 1996).

Analysis of robustness properties has also been attempted by several researchers. Garcia

and Morari (1982) looked at the robustness properties of unconstrained MPC in the IMC
framework. Zafiriou (1990), Zafiriou and Marchal (1991) used the contraction mapping
theorem to analyze the robustness properties of constrained MPC. Bannerjee and Shah
(1995) used the Small Gain Theorem (SGT) to investigate the robustness of GPC type

algorithms. Non-parametric modeling was used to estimate an upper bound on the additive
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uncertainty. Genceli and Nikolaou (1993) used bounds on the impulse response coefficients
to study the robustness of /; norm based MPC. They propose de-tuning the controller to
improve the robustness of the controller. The input move suppression factor is increased to

make the controller more passive and thereby stabilize the closed loop system.

Robust Design

Campo and Morari (1987) and Zheng and Morari (1993) present schemes for robust synthesis
of MPC based on the min-max principle (minimizing the worst case value of the objective
function, where the worst case is taken over the set of uncertain plants). They use uncertain
impulse response coefficients for describing the uncertainty in the system. The following
min-max problem is derived from game theory,

14 m
. - o
uggkglgg;llx(kﬂ)llr,+§|Iu(k+z 1|12, (2.51)

In the case of a FIR model the optimization problem can be shown to be convex. Very
few stability properties of this feedback law have been proven (Zheng and Morari, 1993).
Furthermore this approach cannot be extended to the case of unstable plants.

Kothare et al. (1996) give an LMI framework for design of robust constrained MPC.
They derive control laws based on the multi-model description of uncertainty and also for
the case of structured feedback uncertainty. An infinite dimensional optimization problem is
solved at every instant by first deriving an upper bound on the following objective function
and then minimizing this upper bound,

2 o
. I -y112 . 2
Jnin max ,-§=1 Hz(k + )|, + ,-§=1 Hu(k+1i — 1llg,- (2.52)

The robust stability of the subsequent feedback law is proven by showing that the objective
function obtained from the optimal solution at time k, is a strictly decreasing Lyapunov
function. The issue of robust performance is also addressed by Kothare and co-authors.
Ralhan (1998) uses the ellipsoidal description of uncertainty to design robust MPC.
Robustness is ensured through addition of a quadratic constraint that prevents the achieved
cost on the true plant being more than the design cost. A cost function based on the nominal

model is minimized subject to this robustness constraint,

P m
JeCue,8) = Y llyk+oliE + 3 lluk+i - D, (2.53)

=1 i=1

min Je(u,8) (2.54)

subject to fk(uk,é) < Ji(ig,6).
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where 1, is defined as the restriction of the optimal input sequence at the past sampling
instant., k — 1. The robustness constraint can be expressed as a quadratic constraint on the
decision variables, wu;..

Recent developments in adaptive and nonlinear MPC are not covered here. Lee (1996)
gives an overview of the latest developments in these areas. The area of nonlinear MPC is
reviewed at a later stage. The review articles by Garcia et al. (1989) and Lee (1996) give

an in depth discussion of the issues presented in this chapter. To summarize the material

covered in this chapter:

e MPC is a very flexible controller. A variety of constraints can be accommodated in

the predictive control formulation and this remains its greatest asset.

e A variety of model forms are compatible with MPC. While the FIR, albeit with the
aid of a large number of parameters, can represent unusual high order behaviour, the
state space and the transfer function models are parsimonious and therefore can be

estimated more accurately.

e A large number of tuning parameters need to be carefully chosen in order to design
a satisfactorily working MPC. There are a number of heuristic guidelines available
but no consistent mathematical procedure to enable the optimal choice of these tun-
ing parameters. One approach considered by Bannerjee (1996) was to formulate a
mixed integer nonlinear program (MINLP) to compute the appropriate values of the

prediction and control horizons and the weighting matrices.

e Recent trends in literature reveal a surge in the infinite horizon formulation owing to
the ease of analyzing and designing this type of predictive control law. Use of Lya-
punov theory appears to be the method of choice for stability analysis of constrained

MPC.

e A number of methods for designing robust MPC are emerging. The multiple model
and the ellipsoidal representation of the model plant mismatch are elegant ways of

capturing the modeling uncertainty.

In the next chapter we will look at the use of linear matrix inequalities and convex

optimization in the design of predictive controllers.
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Chapter 3

Model Predictive Control via
Linear Matrix Inequalities

3.1 Introduction

One of the computational steps in MPC involves solution of a constrained optimization
problem. Depending upon the choice of the objective function, either a linear program or a
QP arises at every sampling instant. The numerical techniques such as the simplex method
or algorithms for solving QPs are exponential time algorithms i.e. the computational time
increases as an exponential function of the problem dimensionality. A class of numerical
methods known as the interior point methods were first shown to be polynomial time
algorithms for linear programs by Karmarkar (1984). This led to further development
and generalization of the interior point methods to the general class of convex problems.
The linear matrix inequality (LMI) framework gives a way of casting quadratic and linear
type of convex problems in terms of matrix variables (Boyd et al., 1994).

In this chapter we give a novel way of casting the constrained MPC scheme as a semidef-
inite program (SDP) which belongs to a particular class of convex problems. The SDP
formulation of the optimization step in MPC is outlined in a tutorial manner. Constraints
on the inputs and the outputs are also incorporated. The LMI framework is also exploited
to cast the selection of weighting matrices for MPC as a generalized eigenvalue problem
(GEVP).

This chapter is organized as follows: Section 3.2 gives the background material on
semidefinite programming. A brief overview of the applications of LMIs in process control

is presented in Section 3.3. In Section 3.4 we discuss the formulation of the model predictive

! A version of this chapter has been published as “Constrained Long Range Predictive Control : Exploiting
Convexity 7, 1997, R. S. Patwardhan and B. Huang, In Proceedings of IFAC Symp. Adv. Control. Chem.
Proc., pp. 317-322, Banff, Canada
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controller design as a semidefinite program for the SISO case. A novel method for choosing
the weighting matrices in the MPC objective function via the LMI framework is presented
in Section 3.5. The results of the real-time applications are presented and discussed in

Section 3.6, followed by concluding remarks in Section 3.7.

3.2 Semidefinite Programming

Convex problems have unique solutions. This makes them fundamentally tractable, both in
theory and practice. One of their desirable properties is that the locally optimal solutions
are globally optimal. SDPs are a class of convex optimization problems where the objective

function is linear (Boyd and Vandenberghe, 1994) :

min ¢’ (3.1)
st. F(z) = 0
where F(z) = Fp+xo1Fi+...+ZmFn

c € R™ and m + 1 symmetric matrices Fy,.., F;, € R™*™. The inequality sign F(z) = 0
implies F(z) is positive semidefinite, i. e., vT F(z)v > 0 for all nonzero v € R™. In addition,
the leading principal minors of F(z) must be positive. The constraint F(z) > 0 also defines
a LMI in the nonstrict sense. A strict LMI implies F(z) > 0 (Boyd et al. , 1994) .

Convex quadratic constraints can be expressed as LMIs using the Schur complement

result:

Q(z) S(z)
[ ST Rx) ] >0 (3.2)

which is equivalent to
R(z) » 0,Q(z) — S(z)R(z)~'S(z)T > 0 (3.3)
Q(z) > 0, R(z) - S(z)7Q(z)~'S(z) > 0

where Q(z) = Q(z)T,R(z) = R(z)7, and S(x) depend affinely on z. For the non-strict
case Boyd et al. (1994) give the following result

Q(z) S(z)
[ ST R(z) ] >0 (3.4)
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which is equivalent to
R(z) = 0,Q(z) — S(z)R(z)'S(z)” = 0,S(z)(I — R(z)R'(z)) = 0 (3.5)

where | denotes the pseudo-inverse.

Other instances of convex problems include linearly constrained quadratic programs
(LCQP) and quadratically constrained quadratic programs. A linear program (LP) is a
special case of a semidefinite program as the example from (Boyd and Vandenberghe, 1994)

illustrates,

min ¢z

st. Az+b > 0. (3.6)
This LP can be expressed as a SDP with F(z) = diag(Az + b), i.e.,
Fy = diag(b), F; = diag(a;),i=1,... ,m

where q; is the it" column of A.

Semidefinite programs can be solved very efficiently using interior point methods. In-
terior point methods are polynomial time algorithms for convex problems. They were first
developed by Karmarkar (1984) for efficient solution of LPs. Nesterov and Nemirovsky
(1994) were the first to generalize the interior point methods to general convex program-
ming. Wright (1997) gives a lucid description of the primal-dual class of interior point
methods for a class of convex problems.

Wright (1996) proposed an interior point method that exploits the structure of the
quadratic programming problem (QP) in MPC. An interior point based primal-dual ap-
proach to solving the QP is facilitated by rearranging the optimization variables. This
results in a banded tridiagonal structure for the linear equations to be solved at each iter-
ation of the interior point method. The inherent sparsity of the problem is thus exploited.
Wright (1996) also proposes factorization techniques for updating the gradient information

from one sampling instant to the next in an efficient way.

3.3 LMls in Process Control

The use of linear matrix inequalities as tools for model predictive control has been increasing
over the past few years. In this Section we review the applications of LMIs to process control

in general and MPC in particular. Kothare et al. (1996) use LMIs to solve the robust
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model predictive control problem. They derive an upper bound on the worst case infinite
horizon objective function and then minimize this upper bound via LMIs and semidefinite
programming to derive a time-varying state feedback law. The formulation of Kothare
et al. is quite general and includes contraction constraints on the states for speeding up
convergence. Conventional input and output constraints are handled by obtaining sufficient
LMI constraints. Robust stability is proved via Lyapunov arguments on the upper bound.

Genceli and Nikolaou (1996) proposed a novel approach to adaptive MPC which designed
an input sequence that simultaneously regulated and excited the plant. An additional

persistent excitation constraint was imposed on the optimization step in MPC,

xmg Jk(uk) (3.7)

urells

Persistant Excitation Constraint : m_ol Notk—j+i)ok—7+0)T = (pg — p)I
j=
where o(k) = [u(k — 1) u(k — 2)....u(k — N) 1]7. The persistent excitation constraint is
a non-convex quadratic matrix inequality(QMI). Genceli and Nikolaou approximate this
QMI with an LMI and use an ellipsoid algorithm to solve the resulting SDPs iteratively till
convergence is achieved.

Lee et al. (1998) propose a matrix inequality constraint on terminal weighting matrix
and show the stabilizing properties of the resulting constrained receding horizon law for
time-varying discrete linear systems. The following objective function is minimized,

p—1
Je = Y _(llz(k + IIE, + llutk +)IR) + llz(k + p)I[F,

=1

where the terminal state weighting matrix satisfies the matrix difference inequality
U, > FIW.  Fp + T + H A Hy.. (3.8)

H;. = A+ BH;, H;, € R™*™. This matrix inequality is then expressed as an LMI in terms
of appropriate matrix variables. For the constrained case an artificial invariant ellipsoid

constraint, which is a convex quadratic constraint, is introduced to relax the terminal state

constraint.

In a novel application of LMIs to a process control application, Thake et al. (1997) used
the SDP formulation to approximate a high dimensional multivariable controller using a
reduced order controller with special structure. The approximation problem was reduced

to a spectral norm minimization problem of the form

min [|X - Kl2 (3.9)
.J
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where K is the high dimensional controller and X has far fewer elements, e.g., a banded
tridiagonal structure. The approximation technique was demonstrated on paper machine

cross-direction (CD) profile control problem.

Several quadratic constraints considered in Chapter 2 can be expressed as LMIs. For

example the contraction constraint can be expressed as an LMI

llz(k +p)ll2 < allz(k +1)||2 <

Auf ST S, Au + Auf ST Fpz(k) + c(k) < 0)
where c(k) = x(k)Fg Fpx(k) — az(k)Tz(k). This is equivalent to the following LMI,

I Ay S
[ STAUT  Aul ST Fya(k) + c(k) ] =0. (3.10)

The robustness constraint of Ralhan (1998) can be expressed as an LMI,

Ji(ui,0) < Ji(tix, 0) & (3.11)

rgleaex(uz:uk —afa. + T (UFU. - 0F0)6) < 0o
ufup — @l + N T(UTUL - UF0L)6* < 0

where Uy, Ui and the derivation of §* are given in Ralhan (1998).

3.4 A SDP Formulation of model Predictive Control
3.4.1 The unconstrained case

In this Section we discuss the steps involved in posing the MPC design procedure as a

convex problem. The MPC objective function can be rewritten as:

J = (rie — fr —die)TT(re — fr — di) + Aul (STTS + A)Auy — 2Auf STTS(r — fi — di).
We can ignore the constant term in the objective function, (ry — fi — di)TI'(ri — fio — di).
We then define a scalar ~ such that

Auf (STTS + A)Auy — 2Au} STTS(ri — fi — di) < 7.

Having introduced an auxiliary variable that serves as an upper bound on the objective, we
can recast our optimization problem as

min 7y

subject to

Au{(STI’S + A)Aug — 2AUZSTFS(T}C —fe—di) <.
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In this formulation the objective function is linear with respect to ¢; the earlier quadratic
objective function appears as a quadratic constraint. This quadratic constraint can be
expressed in terms of a LMI using the Schur Complement for the non-strict case (Vanden-
berghe and Boyd, 1996) .,

min 7y

subject to (3.12)

I AukL <0
LTAUE 2re — fi — dk)TSAuk +v | =

where L7 L is the Cholesky Factorization of (STT'S + A). This is the standard form of a
SDP.

3.4.2 Extension to the constrained case

Usually a real process involves rate and amplitude constraints on the input, and may also
require output constraints to be considered. As per Section 2.5, the constraints can be

represented by the linear inequality,
AAur + B >0
which is equivalent to the following LMI,
diag(AAui + B) > 0. (3.13)

Incorporating equation 2.33 as an additional LMI, the earlier SDP (equation 3.12) now
becomes
min y
subject to
I AurL <0 (3-14)
LTAUZ 2(rk — fr —di)TSAur +v | —
diag(AAuk + Bk) =0
This formulation also belongs to the class of SDPs. Thus we have posed a linearly con-
strained quadratic program as a SDP. The MIMO case can be formulated as a SDP in a
similar manner. The case study discussed in Section 3.6.2 is an application of the MIMO
approach. The SDP approach can also be extended to receding horizon techniques based on
state space or impulse response models, etc. The convexity of the underlying optimization
problem is independent of the model structure and the type of disturbance models, provided

they are linear models.
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3.5 Choice of weighting matrices via LMIs

There are no general guidelines for choosing weighting matrices in the MPC objective func-
tion. Heuristic rules are often used to choose initial weighting matrices. In the ensuing
discussion we illustrate a systematic way of choosing the output and input weighting ma-
trices - I', A, so as to minimize the condition number of STI'S + A. Consider the example

in Section 2.5 with p = 6, m = 2, the dynamic matrix is given by:

0 0
0 0
0.0778 0

0.1495 0.0778
0.2158 0.1495
| 0.2769 0.2158 |

a Imax(S) _
cond(S) 2 gy = 199755

We solve the following generalized eigenvalue problem (Boyd et al. , 1994), to find out the

weightings I', A to minimize the condition number of STT'S + A,

s 2 -
min (3.15)

subject to
R"™P*"P and diagonal, I >0

R™M*™™ and diagonal, A >0

A M m

STrS + A <~°I.

The LMI toolbox in Matlab was used to solve the above GEVP. The following weighting
matrices gave a condition number of 1.0002 for STT'S + A,

T = diag(1.5735,1.5735,1.5766,0.0070, 0.0025,0.0014)
= diag(1.9901,1.9998).

This is an impractical choice of I" since the last three predictions have essential zero weights.
As a remedy, we constrained the choice of elements in I', A to the interval [0,10]. The GEVP
in equation 3.15 is solved subject to the additional constraints:

0

IN

r;<1o0
0

IA

A; £10.
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The following I', A gave a condition number of 1.0355:

I' = diag(5.5000,5.5000,5.5125, 1.5224,1.1889,1.1025)
= diag(7.2498, 7.2839).

This presents a systematic way of choosing appropriate weighting matrices for MPC. An
arbitrary choice of I' = I,A = 0.1I gives cond(STTS + A) = 3.15. The stability results
reviewed in last chapter can then be used to a stabilizing feedback MPC law.

3.6 Real-time Control using LMIs

The SDP formulation described above was evaluated experimentally on two computer-
interfaced pilot-scale processes. A MPC type controller was developed and the optimization
step was solved using a semidefinite programming solver, based on the projective method of
Nesterov and Nemirovsky (1994) available as part of the LMI Toolkit Gahinet et al., 1995.
In all the cases, the LMIs were set up in Matlab 4.0 using the LMI Toolkit.

3.6.1 SISO Process

The constrained MPC algorithm using the LMI toolbox was evaluated on a computer inter-
faced temperature control process. A schematic of the process is shown in figure 3.1. The
objective is to control the temperature in a region around the light bulb by manipulating
the voltage across the bulb filament. A constant speed fan provides the cooling action and
also serves as the source of a disturbance. A thermocouple measures the temperature in the
region of interest. The transfer function between the power(input) and temperature(output)

was first identified as:

Y(z) _ 0.0173z73 4 0.0047z"* + 0.0069z°

U(z) 1-0.8484z"1 +0.082-2 —0.14842—3" (3.16)

The real-time implementation was carried out using Realtime-Simulink workshop. The
sampling time was 5 seconds. The controller tuning parameters selected were p = 20, m =
2,A = 61. The following rate and amplitude constraints were imposed on the input: 0 <
u(k) <100, —20 < Au(k) < 20. The nominal operating conditions were uss = 55%; yss =
59.5%.

Figure 3.2 shows the tracking performance and the disturbance rejection characteristics
of the designed controller. Rate and amplitude constraints on the input were satisfied (see
figure 3.3). At the time instant 100, when the setpoint is changed by a large value from
60 to 80, the input saturates at its high limit and as expected the output cannot reach the
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Figure 3.1: Schematic of the light bulb experiment.

desired value and a bias in the control error is observed. The same phenomenon is observed

when another large setpoint change is effected at sampling instant 150.

3.6.2 MIMO Process

The SDP formulation of the model predictive controller was tested on a temperature-level
control of a mixing process. Cold water (5-10 °C) and hot water (45-50 °C) flow through
two inlet pipes into a glass tank. The exit flow rate of water from the glass tank is not
controlled. The control objective was to maintain the temperature (y;) and level (y») of
Tank 1 by manipulating the inlet hot water (u;) and cold water (u») flow rates. The input-
output relations were identified using a multivariable identification routine (Badmus et al.
.1996) based on canonical variate analysis (CVA). The transfer function matrix as identified

is:

0.0235z! --0.1602z-1l

P, -1y _ 1—-0.8607z-! 1—0.8607=—

P(z7') = 0.2043z-1! 0.2839z~1 . (3.17)
1-0.9827z-1 1-0.9827z—T

The multivariable MPC was implemented in a Realtime-Simulink environment. The sam-
pling time was chosen as 5 seconds.

The runs carried out demonstrate the applicability of the LMI based MPC. The MPC
tuning parameters were p = 10,m = 2, A = 0.11. The rate and amplitude constraints were

imposed on both inputs were respectively 0 < u;(k) < 100 and —20 < Au;(k) < 20,i=1,2.
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Figure 3.2: Performance of constrained LMI based MPC for the temperature control of a
light bulb process.
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Figure 3.3: Temperature control of a light bulb process: Effect of constraints.
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Figure 3.4: Tracking performance of the constrained MPC for the temperature and level
control of a miTing process

The steady state operating conditions were:
Uiss = 29%; u2ss = 16%; y1ss = 46.7°C, y15s = 16 cm.

The tracking and regulatory characteristics of the designed controller are shown in figs. 3.4
and 3.5, respectively. Rate and amplitude constraints on the input were satisfied during
the tracking run. Notice the instances in figure 3.4 when the inputs saturate at the above
specified limits. This illustrates that the algorithm indeed does enforce the specified limits.
The hot water inlet temperature showed a time-varying trend. Figure 3.5 illustrates the
ability of the controller to compensate for this time-varying disturbance and maintain the
outputs at their desired values.

We compared the computational effort required by the quadratic programming solver gp
and the semidefinite programming solver mincz. Both of these above solvers are available
as functions in the optimization and LMI toolboxes in Matlab® respectively. Table 3.1
presents the computational times (CPU time in seconds) and floating point operations
(flops), required by the two solvers for calculating the entire sequence of control moves
for the simulation case study in Section 3.4. The dimensionality (m) of the optimization

problem remains the same but the nature and number of constraints changes from case 1
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Figure 3.5: Controller performance in the regulatory mode.

to case 3.

e Case 1: Rate Constrained MPC (2m constraints)
e Case 2: Amplitude Constrained MPC (2m constraints)

e Case 3: Rate plus Amplitude Constrained MPC (4m constraints)

The semidefinite programming solver proves to be an order of magnitude slower than
the quadratic programming solver. The computational times for the mixing process (2x2)
case were compared with respect to changing dimensionality (2m). Table 3.2 reports the
CPU times/flops for computing a single control move for each solver. In this case the
dimensionality of both, the problem size and the constraint set increase with increasing m.
In this case the CPU times of the SDP solver increased rapidly whereas the QP solver showed
stable behavior. The floating point operations, however, were comparable. The quadratic
programming solver gp proved to be far more efficient than the convex programming solver
mincz. The ineffectiveness of mincz could be attributed to its inefficient handling of the

canonical form.
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3.7 Conclusions

The MPC design problem is cast as a semidefinite program and solved using a SDP method.
The proposed approach is demonstrated on SISO and MIMO processes- in a real-time
environment. To the best of our knowledge this is the first experimental evaluation of
the constrained MPC based on the convex optimization framework using interior point
methods. A systematic technique of choosing the weighting matrices based on minimizing
the condition number of a suitable matrix, via the LMI framework was also presented.

The following additional remarks are based on our experience with this method:

e The efficiency of the interior point methods can be better exploited for the multivariate

case, where large dimensionality and structure play an important role.

e The predictive control problem occurs naturally as a linearly constrained quadratic
program. Interior point methods developed for LCQPs may prove to be superior for

this case, e.g. Wright (1996).

e It should also be noted that the LMI control toolbox is optimized for block structured
LMIs with matrix variables. The toolbox is quite inefficient in handling inequalities
in the canonical form. This results in higher computational times as compared to
standard optimization software for solving QPs. This fact is also corroborated by

Kothare et al. (1996) .

e The performance of convex optimization methods vis-a-vis local methods needs to be

assessed. There is a need to quantify the benefits of using the above formulation.

Inspite of these shortcomings we would like to emphasize here that interior point methods
provide tools for developing very reliable design procedures. Convergence to the global
minima is guaranteed and interior point methods have polynomial complexity in the worst
case. As more efficient implementations are developed, the software will be able to match

the efficiency promised by these methods!.

!This was attempted in 1995-96. Currently available methods and software is more efficient.
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Table 3.1: Computational Effort for simulation casestudy (m=2)

CPU time (flops)

qp minct
Case 1 | 2.69(101385) 19.83(167312)
Case 2 | 2.59(104369) 20.05(163712)
Case 3 | 2.80(112985) 23.56(195740)

Table 3.2: Computational Effort for the MIMO case

CPU time (flops)

qr mincz
m =2 | 0.11(43184) 2.36(48784)
m =3 | 0.11(48064) 9.44(61912)
m =4 | 0.11(56179) 28.3(85316)
m =35 | 0.11(132350) 77.2(122090)
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Chapter 4

A Partial Least Squares Framework
for Model Predictive Control

4.1 Introduction to Modeling and Control via Partial Least
Squares

Partial least squares (PLS) has established itself as a robust alternative to the standard
linear least squares technique in the analysis of correlated data. First proposed by Wold
(1966), this technique has found application in many disciplines such as social sciences,
engineering, chemistry and medicine. In the field of chemical engineering, PLS has found
applications in the area of process monitoring, modeling, fault detection and control.

In PLS, the input (U) and output (Y) data is expressed as a sum of rank one outer

products,

U = t;p] +top] +...+tapt + Ensy =TPT + E,) (4.1)

Y = vqu+vgq§+...+van+Fn+1 =VQT +F,.,.

where n is the number of PLS dimensions, E,+1, Fr+1 are the residual portions of the inputs
and the output data respectively. In the above representation, T" and V denote the scores,
henceforth referred to as the latent variables (LVs). P and @ represent the loading matrices
for the U and Y blocks respectively. The first set of loading vectors p; and gq;, is obtained

by maximizing the covariance between U and Y. Projection of the U and Y data onto the

*Versions of some sections of this chapter have been presented or appeared as: (a) R. S. Patwardhan, S.
Laskhminarayanan and S. L. Shah, 1997, “Interactor Estimation and Multivariable Time Delay Compen-
sation in the Partial Least Squares Framework”™, AIChE Annual Meeting, LA. (b) S. Lakshminarayanan,
R. S. Patwardhan, S. L. Shah and K. Nandakumar, 1997, “A Dynamic PLS Framework for Constrained
Model Predictive Control”, In Procedings of IFAC Symp. Adv. Control. Chem. Proc., Banff, Canada.
and (c) R. S. Patwardhan, S.Lakshminarayanan and S. L. Shah, 1998, “Constrained Nonlinear MPC using
Hammerstein and Wiener Models- A PLS Framework™, AICREJ., 44(7), 1611-1622.
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loading vectors gives the first set of scores

t, = Uj (4.2)

v = Yq

where j; = %7-7‘;’» A linear regression between the scores results in the following inner
1

relationship,
"l;l = t]_bl. (43)

In equation 4.3 9;¢7 may be interpreted as the part of Y data that has been predicted
by the first PLS dimension; in doing so, the tlp{ portion of U has been utilized. The
above procedure is repeated on appropriate residuals from the U and Y blocks to find the
remaining scores/loading vectors till a major portion of the covariance between U and Y
has been explained. Figure 4.2 illustrates this iterative procedure. This procedure is known
as the PLS-NTPALS algorithm and was first developed by Wold (1966). The PLS technique
has also been cast into the Singular Value Decomposition (SVD) framework (Wise, 1991).

From a practical point of view, PLS can be considered as a technique that decomposes
a multivariate regression problem into a series of univariate regression problems. The PLS

based regression model can be written as

o~

Y = VQT +F,., =TBQT + F,; (4.4)
where B = diag(by,ba,... ,bn).

Here the b;’s refer to the coefficients of the inner SISO linear regression models.

4.1.1 PLS based Dynamic Models

If the U block were to include the past values of the inputs/outputs, then analysis based
on PLS would yield a dynamic model of the form

Y = UCyyn +e. (4.5)

With this approach , Cyyn can be interpreted as a matrix, whose elements are the finite
impulse response coefficients (Ricker, 1988) or multivariable autoregressive moving average
(ARMA) model terms (Qin and McAvoy, 1992). Kaspar and Ray (1992, 1993) developed
PLS based dynamic models based on filtering of input data. The major dynamic component
in the data was explained by filtering the data and then the standard PLS procedure is used
to model the steady state characteristics from the filtered data.
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Lakshminarayanan et al. (1997a) proposed a dynamic extension based on a modification
of the PLS inner relation. Instead of relating the input and output scores (¢; and v;) using
a static model, a dynamic component such as ARX is used. This gives the dynamic analog

of equation 4.4 as:
Y= G, (tl)q;r + G2(t2)qg +...+ Gn(tn)qg + Frs. (4.6)

Here G,’s denote the linear dynamic models (e.g. ARX) identified at each stage. In terms

of the latent variables we can write

Giz"Y) 0 -.- 0
veh=| ¢ GET) T IpeyseerEl). @)

: 0

0 0 Gn(z-l)

As per figure 4.1 the relationship between the original variables is given by:
Y (=) = {QG(z"")PTHU(z™h). (4.8)

Note that G is a diagonal transfer function matrix (inner relationship), but P and @ are full

U T \ Y

—> Pf G(Z" ) Q —

Figure 4.1: Partial Least Squares based Dynamic Model

matrices (loadings). As a result the overall relationship between U and Y is a full transfer

function matrix given by:
Go(z7Y) = QG(z"1) P!, (4.9)

Thus, despite the diagonal nature of the inner relationship, the overall model in terms of
the original variables is multivariable and does capture the interactions amongst different

inputs and outputs.

Remark 4.1. The dynamic PLS models are particularly well suited for controller design,
since in terms of the latent variable framework we have several univariate models which

can be used to design controllers based on SISO theory. This presents a strong case for
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Figure 4.2: A schematic diagram showing the PLS modeling procedure.

the design of controllers in latent space. Suitable pre- and post-compensators have to be
used to transform the variables from the latent to the original space and vice-versa. For the

unconstrained case, the MIMO controller design problem is thus reduced to several SISO

design problems.

Remark 4.2. The PLS estimation procedure is nonlinear by itself. Hence accuracy of
parameter estimates, variance of estimates, etc., is not easy to quantify. The goodness of a

PLS model has to be often determined through cross-validation and residual analysis alone.

The decoupled nature of the PLS models leads to a very intuitive interpretation of the
interactor matriz, which is the multivariate generalization of the time delay term as in the
univariate case. It plays a crucial role in controller design for linear, discrete systems. In the
latent space the delays in each channel can be factored out to yield a diagonal interactor.
Transforming back to the original domain gives the interactor matrix in the original or the
Euclidean basis space. This is a simple method of estimating the interactor matrix. Delays
can often be troublesome in controller design. For the MIMO case prior knowledge of the
interactor matrix is an asset in dead time compensation. When the controller design is
done using the PLS based dynamic models, Smith predictors can be designed for each PLS-
based controller and the overall effect is equivalent to that of a multivariable time delay

compensator based on the interactor factorization.
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Figure 4.3: Controller synthesis in the latent space framework

4.1.2 Controller Synthesis in the PLS Framework

The dynamic PLS models are particularly well suited for controller design, since in terms
of the latent variables we have several univariate models (equation 4.7) which can be used
to design controllers based on SISO theory. This presents a strong case for the synthesis
of controllers in latent space. For the unconstrained case the MIMO controller design
problem is reduced to several SISO design problems. It should be noted here that though
the controller design is SISO in the latent space, these univariate controllers are capable of
handling the interactions in the original space.

The univariate controllers C; through C,, are designed based on the PLS inner models
i.e., C; is designed based on G; (¢ = 1,...,n) using any of the available alternatives (e.g.
IMC, pole placement, frequency response techniques). T is the vector of scores computed by
the controllers. The scores are then transformed into the real physical inputs which drive
the process. Figure 4.3 illustrates the PLS based controller implementation. Thus, the
controller sees the error signals and the command signals in terms of the basis defined by
the columns of the respective loading matrices (Q and P). Because the dynamic part of the
PLS model has a diagonal structure, the choice of the input-output pairings is automatic
and is optimal in some sense. For further details of PLS based controller implementation
the reader is referred to Kaspar and Ray (1992, 1993) and Lakshminarayanan (1996). The
latter also discuss constrained control via PLS based dynamic models.

Remark 4.3. For square as well as non-square systems, pairing in terms of the latent vari-

ables is automatic. For n < min(ny,n,) there is a dimensionality reduction of the original
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system. For such cases the mapping from the original variables to the latent variables is
not ezact and a subsequent loss in information results. For controller synthesis in the PLS
framework this means that the correlations are taken care of and the controller design and

implementation will be in a reduced dimensional latent space.

In this chapter we focus on using the PLS based dynamic models for (i) interactor
estimation and multivariable time delay compensation; constrained model predictive con-
trol of (ii) linear systems and (iii) a class of nonlinear systems which can be modeled via
Hammerstein and Wiener models.

This chapter is organized as follows. Section 4.2 deals with the interactor estimation
through PLS based dynamic models. Several desirable properties of the PLS models, from a
control point of view, are highlighted. The multivariable time delay compensation strategy
based on SISO Smith predictors for each PLS based controller is outlined. The usefulness
of the proposed approaches is demonstrated via two simulation examples. A method for
constrained model predictive control in the PLS framework is presented in Section 4.2. The
constraint mapping frem the original to the latent space is highlighted and the proposed
approach is demonstrated on a simulation example and a pilot scale stirred tank heater.
Extensions to the nonlinear MPC using PLS based Hammerstein and Wiener models are
presented in Section 4.3. Application to a pH-level control problem is used to show the
efficacy of proposed control technique. Section 4.5 gives the concluding remarks.

With respect to the notation, in Section 1 we used the standard time-series notation,
wherein Y, U, V,T were row vectors; in the following Sections we will use standard control

literature notation wherein Y, U, V, T are column vectors with appropriate dimensions.

4.2 Interactor Estimation and Multivariate Time Delay Com-
pensation via PLS models

Time delays are common place in chemical processes and often pose problems in controller
design and implementation. For SISO systems time delay can be easily separated and its
effect can be analyzed. In MIMO systems time delays are difficult to factorize and their
interpretation is not as straightforward. The interactor matric is a generalization of the
time delay term, for multivariable, discrete systems. In 1976, Wolovich and Falb proved the
existence of the interactor matrix in a particular form, i.e., the lower triangular form. The
interactor matrix plays an important role in controller design (Sripada, 1988; Walgama,

1986 ; Garcia and Morari, 1982), performance assessment (Harris et al., 1997, Huang et
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al., 1996), optimal input-output pairing (Tsiligiannis and Svoronos, 1988Tsiligiannis and
Svoronos, 1988). A formal definition of the interactor matrix is provided below (Huang, et
al., 1996).

Definition 4.1. For any n X n proper, rational polynomial transfer function matriz G,
there ezists a unique, non-singular n x n lower left triangular polynomial matriz D, such

that det(D) = z" and

lilmoDG= lim G, =K

z—l—0
where K is a full rank matriz, the integer r is the number of infinite zeros of G, and G, is
the delay free part of the transfer function matriz G(z™') and contains only the finite zeros

of G,
G = D7'G,.

The matriz D is defined as the interactor matriz and D! is called the inverse interactor

matriz.

U Y
d .
G, z
(a)
u Y

(b)

Figure 4.4: The delay in the (a) SISO case and (b) the multivariable equivalent

For a given process, the interactor matrix is non-unique and several estimation algo-
rithms have been proposed. The algorithms of Wolovich and Falb (1976) and Goodwin and
Sin (1984), require prior knowledge of the transfer function matrix of the process. Shah et
al. (1987) give a method for estimation of the interactor matrix through a solution of a set
of linear algebraic equations of certain Markov parameters. Huang et al. (1996), extended
this approach to the estimation of an unitary interactor under closed loop conditions. The

best form of the interactor matrix is application dependent.
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Example 4.1. Thke first two examples are from Tsiligiannis and Svoronos (1992) and the
last two ezamples are from Huang (1997).
1) Simple Interactor:

2z7h 74 a4 [2 1
G(Z)=[ z™% z'dl]z:zdl[l 1]'
2) Diagonal Interactor:
2z~ z—d: z7h 0 21
G(Z)_[z“d2 z‘di’:l_l: 0 z‘d2][1 1]'

3) Triangular Interactor:

[ == il z 0
Gty = | TET TE D=| sl 5

123=-T T24=-T

4) General Interactor:

=t 2—t + 22 2
— oy zc z-—2z
G(z) = [ =7t 4257 ],D=0.5[ ";_23 240 ]
15321  1+4z-1 2 2

For ezamples 3) and 4 it is easy to verify that, , where K is full ranked. These two
ezamples also illustrate the non-uniqueness of the interactor. The interactor derived in
ezample 4] is an unitary interactor, DT (z~!)D(z) = I. The unitary interactor is known
to play a very important role in controller design and multivariate performance assessment

(Huang, 1997 and Harris et al., 1996).

PLS based dynamic modeling results in a decoupled system in the latent space. Con-
sequently, the interactor matrix in the latent space is a diagonal matrix and can be easily
obtained by factoring out the delays in each channel. A simple transformation yields the

interactor matrix in the original space. In terms of the latent variables we have,

z79h ... 0
V(™) = Do | Go(zThT(z 7Y
0 2z~
= D7'G,T. (4.10)

Thus D~!(z7!) is the inverse interactor matrix in the latent space and contains all the zeros

at infinity. G,(z7!) is the delay free part of the transfer function,
Gz Y =D 1(z"1HG,(z7).
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Now we apply simple linear transformations to express the model in the original basis space,
Y(z7') = QD7 (27")Go(z)PTU(z7Y) (4.11)
i.e., the original transfer function matrix in the Euclidean basis space is
G =QD 'GyPt.

Proposition 4.1. The matriz given by QD~'(z~1)Q' represents the inverse interactor ma-

triz in the original domain and will contain all the zeros at the infinity.
Proof. The poles of D~!(z~1) given by

det(D~1(z71)) = z~(di+d2+-+dn) —

Therefore

det(QD1(z7HQT) = det(Q)det(D!)det(Q")
= det(D71(z71)). (4.12)
Hence the poles of D™1(27!) are the same as QD~1(z71)Q' and correspond to the infinite
zeros of the transfer function matrix.
Remark 4.4. The interactor matriz thus obtained has a unity gain at steady state.
Proof. : The inverse interactor matrix in the original domain is defined by
b'(="1) 2 QDI(")Q!
-.D7'(1)=@D7'(1)Q!
= QIQ'

=1

Remark 4.5. G,(z7!) can be easily transformed to the Smith McMillan (for definition see
Chapter 6 of Kailath, 1980) form of the original transfer function and the poles and zeros

of the system, for square systems, are given by,
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where
-=1
e 0 0
0 na(z"*)
Go(z—l.) _ da(=—1)
0
na(z"1)
0 0 &,
= BA™l. (4.13)

The zeros and poles of G,(z~!) are unchanged when a linear transformation is applied.
The locations of poles and zeros contained in Gy are invariant to pre and post-multiplication
by square, constant matrices.

Thus the interactor matrix is estimated as a part of the PLS identification process at the
cost of an incremental effort. No additional effort, other than pre- and post - multiplication
by constant matrices, is required to estimate the interactor matrix. The diagonal nature of
the interactor matrix in latent space gives a new interpretation to the interactor matrix in
general.

Techniques such as Smith Predictor control scheme (Smith, 1957) and the Dahlin algo-
rithm (Dahlin, 1967) can be used to compensate for time delays in SISO systems. Ogunnaike
and Ray (1979) generalized the Smith Predictor approach to multivariable, continuous time
systems in such a way that the characteristic closed loop equation is free of the delay terms.
Jerome and Ray (1986) extended this method so that the closed loop system had one or

more of the following properties:
1. Delay free closed loop characteristic equation
2. The feedback term is a prediction of the control action on the process output

3. The plant is factored into a delay term and a delay free transfer function part.

Property 3 is similar to the interactor factorization discussed in the Section 2. However,
their approach is not general and the delay-structure is user defined. Garcia and Morari
(1982) propose an inner-outer factorization (72.7_) which is similar to the interactor factor-

ization. Their method also separates the non-minimum phase zeros along with the delays
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and a multivariable time delay compensator can be designed within the internal model con-
trol (IMC) framework . Note that the methods of Ogunnaike and Ray (1979), Jerome and
Ray (1986) and Garcia and Morari (1982) can be applied to both, continuous and discrete
systems, whereas the interactor factorization is defined only for discrete systems. Figure
4.6 shows the Smith predictor structure for the SISO case, while figure 4.7 illustrates the

multivariable delay compensation structure based on the interactor factorization.

Yo . u Y
— c » P z =
1 |

I § ?

|

g i
Q—— PP p— {

|

' |

Figure 4.6: The SISO Smith Predictor structure

The decoupled structure inherent in PLS models lends itself naturally to a simple dead
time compensation strategy based on the classical Smith predictor. We exploit the structure
of the PLS model to design n Smith predictors, one for each controller in the latent space.
The combined effect of this scheme is a multivariable Smith predictor control scheme. A
similar idea was proposed by Kaspar and Ray (1992), but they had the same delays in each
of the latent space models. Thus their PLS based Smith predictor is not equivalent to a
true multivariate Smith Predictor. In the case of no model plant mismatch (MPM) our
dead time compensator will satisfy all of the above three properties. The latent space based
Smith Predictor control structure is illustrated in Figure 4.8. C(27!) is diagonal matrix
with n SISO controllers, Ci(z~!), on the diagonal. Similarly G, and D~! are diagonal
matrices obtained from the PLS based model as per Section 4.1

Proposition 4.2. It can be shoun that PLS based dead time compensation approach is

equivalent to the multivariable time delay compensation based on the interactor factorization.

Proof. The PLS based Smith predictor is given by

vp = (Go — D™IG,)t.
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Figure 4.7: The interactor factorization based multivarable dead time compensation scheme
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Figure 4.8: Multivariable delay compensation in the latent space

Transforming to the original domain we get

yp = L YGo,—- D7'G,)Ru

= (G, - D 'G)u
which is the same as the interactor factorization based predictor. Here G,, D~! are original
domain representations of the delay free transfer function matrix and interactor respec-

tively.For the case of no MPM the PLS based delay compensator satisfies all the three

properties of Jerome and Ray (1986).

4.2.1 Numerical Example

The feasibility of the PLS based interactor estimation and dead time compensation strategy
is demonstrated on the following numerical example. The example illustrates the interactor
estimation via a PLS based dynamic model of a simulated distillation column and shows
the usefulness of the multivariable Smith predictor as well.

Example 1: Interactor Estimation and Time Delay Compensation for a Multi-

variable Process
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This methanol-water distillation column model is a 2x2 process with the controlled
variables being the distillate (y;) and bottoms (y2) compositions of methanol and the ma-
nipulated variables being the reflux ratio (u;) and the reboiler steam flow rate (u2). The

process model was experimentally obtained by Wood and Berry (1973),

[ yi(s) ] _ | #%E SuE [ u(s) ] , (4.14)
ya(s) P8eT —112:::-:-1 u2(s)

The above model served as the plant in the simulation runs. Identification runs were
performed on the simulation model and a discrete PLS based dynamic model was estimated
at the sampling rate of 1 minute. This model served as the basis for controller design in

latent spaces.
The PLS based dynamic model for the Wood-Berry column is given by

V =D7'GoT
where
I)_1 = ] 2—5 0-
0o =2
0.142
G _ F 1-0.43z—1-0.4Tz—2 0
0o = 0 0.053-+0.029z"1 .
| 1-0.23:-1-0.23=—2

The transformation matrices, including the scaling matrices, are given by

pt— [ 0154 06031 ,_[0049 0.063
= | —0452 0207 |'“ T | 0055 —0.055 |°

Interactor Estimation: The interactor matrix in the original domain is given by
QD '(z7HQ! =231

The interactor free part in the original domain is given by QG,(z~!)P’. Let us consider the

case where the delay in the first channel was 4 units instead of 5. The interactor matrix

now becomes

0049 0063 J[2"* 0 ][889 1015
-1t =
@b = [0.055 —0.055][ 0 23 } [8.81 —7.99J

[ 044327 +0.557z=° 0.506z% — 0.506z>
- 0.488z7% —0.488z75 0.55727%+0.443z7% |~

Verification:
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i) The determinant of the interactor matrix:

det(QD™'Q")
= 0.247278 40507279 +0.2472710 — (0.24727% + 0.493z7% + 0.247z"19)

= z79.

ii) The unity DC gain property:

D7'(1)
0.443 + 0.557 0.506 — 0.506
0.488 — 0.488 0.557 + 0.443

Multivariable Smith Predictor: The results for the Wood-Berry Column are presented
below (see Figures 4.9 and 4.10). In both cases, two PI controllers were designed based on

the PLS models,
T 1

T;z2~—1

Ci(z"!) =K1+ );i=1,2
where T is the sampling time. When used with the Smith predictors, higher gain controllers

could be used in both cases. The controller tuning parameters were

With Smith predictor : Ky =K. =5,(T/71r)i=1
Without Smith predictor : K, =Ko =2,(T/71)i=1

For the second run the delay in the plant was reduced by one sampling interval, thus
introducing a delay mismatch. The same controllers as above were implemented on the plant
and the results are shown in Figure 4.10. The Smith predictor based controller, with its high
gains still outperforms the conventional controller with more conservative gains. Similar
observations are made by Tan et al. (1996), who found that a mismatched Smith-system

yields a better performance over a conventional controller without delay compensation.

4.2.2 Discussion

Modeling in latent spaces offers several advantages for controller design purposes over con-

ventional identification methods

e The dynamics are decoupled leading to a diagonal transfer function matrix. Thus if
one wants to design the controller in the original space, the interactor matrix can be

obtained via a simple transformation
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Figure 4.9: PLS based Smith predictor for the case of no model plant mismatch (- with SP,
- - without SP)

e Non-minimum phase zeros and unstable poles can also be factored out along with the

delays in a transparent manner.
e The interactor matrix thus obtained is a unity gain matrix.

The poles and zeros of the system can be directly found from the PLS model.

A left coprime factorization of the transfer function is also obtained.

A SISO Smith predictor scheme can be employed in the latent variable subspace to do
multivariable time delay compensation. It was shown that this approach is equivalent

to the interactor factorization based dead time compensation in the original domain.

These attributes of the PLS based modeling and control scheme were demonstrated
through two simulation examples. The robustness of the Smith predictor based dead time
compensation was emphasized. Thus the PLS based model has properties close to that
of a canonical form and is unique in several ways. No single identification scheme has so
many desirable features from a control point of view. The accuracy of the PLS estimates,
however, is not easy to quantify (Phatak et al., 1993). Quantification of the uncertainty in
the PLS estimates could be utilized in robust PLS based controller synthesis. In the next

Section, constrained model predictive control of linear systems using PLS based dynamic

models is presented.
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Figure 4.10: PLS based Smith predictor for the case of a delay mismatch (- with SP, - -
without SP)

4.3 Model Predictive Control in Latent Spaces

Model Predictive Control (MPC) schemes are gaining increasingly wide acceptance in the
chemical process industries. Various forms of model predictive control schemes have been
reported in the last decade owing to great interest evinced both by industrial practitioners
and academic researchers. Besides their ability to handle large multivariable systems, the
key feature that makes these algorithms attractive for industrial applications is their ability
to handle constraints that arise in any real life process control situation. To achieve higher
profits, the supervisory control layer often forces the process to operate at the intersection
of constraints. MPC schemes incorporate the constraints explicitly in the control design
strategy by solving a constrained optimization problem at each sampling instant and imple-
menting the control moves in a receding horizon fashion. A variety of process descriptions
ranging from step/impulse response coefficients, discrete transfer function models to state
space models are employed by these MPC schemes - each having its merits and drawbacks.

A complete process model must be available in order to implement any of these con-
trol schemes. The multivariable process model is usually obtained empirically through an
identification experiment. In the identification of MIMO processes, a high degree of correla-
tion is often observed between process variables. In such cases, use of identification software

based on the ordinary least squares (OLS) technique will result in parameter estimates with



large variances owing to the ill-conditioned nature of the problem. Multivariate statistical
techniques such as PLS have proved to be robust when presented with such correlated data.
Consequently PLS and related methods (e.g. Principal Components Analysis (PCA), Ridge
Regression (RR)) have found applications in the area of process monitoring, fault detection
and identification (Kresta (1992), Wise (1991), Qin and McAvoy (1992), Kaspar and Ray
(1992,1993) , Nomikos and MacGregor (1995)).

In this Section, we combine the PLS based multivariable modelling strategy proposed
by Lakshminarayanan et al. (1996) with the MPC algorithm (Cutler and Ramaker, 1980)?
in order to provide constrained control of multivariable systems. Different ways of dealing
with process constraints will be explored - their merits and drawbacks will be pointed
out. Illustrative examples involving the simulation of the Wood-Berry column and an

experimental laboratory stirred tank heater will be presented.

4.3.1 PLS based constrained MPC of Linear Systems

The MPC objective function objective function in terms of the original variables is given

by

min J = Au}f(STTS+A)Aur—2(ry — fi — di)'TSAuy (4.15)
subject to AAu, +B >0

where S is the dynamic matrix comprising the step response coefficients, f; is the free
response vector, di. is the estimate of the disturbance vector and r; is the setpoint trajectory
that we want to achieve. For a more detailed account of the terms involved in the MPC
formulation, see Chapter 2. In the latent space the same problem can be reformulated in
terms of the latent inputs and outputs. In this case the MPC objective function is based

on the linear dynamic model between t (inputs) and v (outputs)

min Jp = AtI(SIT'SL +A)At~2(re — fi —di)TTSL AL, (4.16)

subject to A'At, + B, >0

where the primed quantities are the corresponding expressions in terms of the latent vari-
ables and S; is the dynamic matrix obtained from the PLS dynamic model in the latent
space. The free response and the disturbance estimate are also obtained from the PLS

model. The constraints are posed in the original space and transformed as per the previous

Section.
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Note that the latent variables are scaled variables, hence the control and output weight-
ings have to be chosen accordingly. The time scales however, are invariant to the trans-
formations and therefore the choice of the prediction and control horizons - p & m - will
remain the same in both the original and the latent spaces. In this Section we will dis-
cuss the constraint mapping when we pose the problem in terms of the latent variables i.e.

how to arrive at A’,B’. The individual transformations relating the original to the latent

variables are given by

t = Plu (4.17)
y = Qu

where P! is the generalized inverse of P.

Consider a 2 x 2 system which is modeled using 2 PLS dimensions. The constraints in the
original variables are decoupled if we restrict ourselves to input and slew rate constraints,
e.g. constraints on u; and u2 are independent of each other. For the sake of brevity only
the two variable case is illustrated here, but the concepts presented can be quite easily
extended to the higher dimensional case. To illustrate our point geometrically let us look
at the region where u;and uo are required to remain.

This region can be represented by the inequality

Unpin < U < Umax & (4-18)

Umin < Pt < Umax.

Expanding we get

ufpin piit1 + piate up
] <
[ ugin J [ ot pots < ul . (4.19)

This region is shown in figure 4.12. Thus the constraints get coupled in the latent space. The
rate (Au) constraints get affected similarly. The main outcome of posing the constraints
in the latent space is that the problem gets coupled through the constraints in spite of
the dynamics being decoupled in the latent space. Therefore a multivariate approach to
controller synthesis is needed to handle the constraints. In this situation SISO theory cannot
be used to design controllers in the latent space. If the output constraints are being used
then the constraints are coupled irrespective of the transformations. Often, the output

constraints are excluded since they often lead to infeasibility problems in the optimization

step.
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In the case of linear systems, equation (4.11) provides a model in terms of the original
variables. For the unconstrained case, the dynamic inner models can be used in two ways:
(1) Each inner model can be used to develop SISO MPC controllers and (2) A MIMO
MPC controller which utilizes all the n inner models together. If constraints are imposed
on the manipulated variables, the constraints in the latent space are coupled (as described
below). If strategy (1) is employed, then the controllers must act in a co-ordinated fashion.
Otherwise, constraints on the original variables will be violated. With strategy (2), a one-
time transformation of the constraints is adequate for efficient implementation of the MPC
algorithm.

In the original space, the constraints are represented as:

Umin < u(k) < Umaz (4'20)
AlUnmin < Au(k) < Aumgs (421)
Ymin < .fl(k) < Ymaz- (4'22)

For a case involving two manipulated variables, the amplitude constraints are shown in
figure 4.12(a) (mathematically expressed in equation (4.20)). In terms of the latent space

variables and the PLS matrices, the above equation may be written as:
Umin < PU(K) < Umasz. (4.23)

A graphical plot of the constraints in terms of the input space latent variables (T) is depicted
in figure 4.12(b). Use of the PLS inner models with the constraints as given in equation
(4.23), will ensure the satisfaction of constraints in the original space. Such a mapping is one
to one - each point in the constrained original space has a unique image in the constrained
latent space and vice versa. The outcome of transforming the original constraints into latent
space constraints is that the constraints that were decoupled in the original space become
coupled in the latent space. A similar analysis holds for the rate constraints as well. Hence
a multivariate approach to controller design is mandatory.

Let us pose the problem of mapping constraints differently. The constraints are now
posed in the latent space in a decoupled form. We now seek the maximum and minimum
values in the t-space, tmqr and tmin, such that the constraints in the original space are
satisfied i.e., find tmin < t(k) < tmar such that umi, < u(k) < umar. This approach
results in original space constraints that are coupled. When the constrained regions of the
previous approach and this approach are plotted together, we notice the suboptimality of
this approach (see figure 4.13) - not all of the original constraint region is utilized (space
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bounded by broken lines) because we seek to match only the necessary conditions i.e. the
maximum and minimum values. The constraints are satisfied but the controller does not
use some permitted regions in the input space implying that some set points cannot be

reached and some disturbances will not be rejected completely.

Simulation of the Wood-Berry Column

We revisit the distillation column model of Wood and Berry (1973) considered in Section
4.2. The model in equation 4.14 serves as the plant in the simulation runs. For this system,
Lakshminarayanan et al. (1996) developed a dynamic PLS model using input-output data
generated from equation (4.14). The PLS model is,

0.3228 0.9455
Po= [ ~0.9465 0.3256 ] Q=
0.14172-5
1 - 0.4305z~! — 0.470622
G, = 0.052923 +0.02912°
2 1-0.2336z"1 —0.2321z~2"

The comparison of the conventional and the PLS based MPC (figure 4.14) clearly indicates

0.3256 0.9465
-0.9455 0.3228

G =

the effect of scaling on the control weighting A. A = 100 in the original space yields the
same performance as A’ = 0.057 in the latent space (ISE values were compared for servo as
well as several regulatory runs). Since the variables are well scaled in the latent space and

the dynamics are decoupled, the choice of tuning parameters - I', A is easier.
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Figure 4.14: Effect of themove suppression factor on the tracking performance of the PLS
based MPC (solid line) and conventional MPC (dashdotted line).

70



98
=97 = 4
%6 . . : . .
o ] 100 150 200 250 300
2 ) - ‘ ' : ' |
’
‘;‘.1-’/ -
— |
. |
0 50 100 150 200 250 300
2 -
iR
1
= 195—1.\‘/-\,\ <
1.9 — - ‘ - - ;
0 50 100 150 200 250 300
B
VI i
¥ M
18- 4
t N
0 ) 100 S0 200 250 300
Samgies

Figure 4.15: Comparison of the PLS based MPC (solid line) with PID control (dash dotted
line).

In figure 4.15, we compare the performance of the MPC to that of the Vogel-Edgar
digital controller. Both the controllers were implemented in the latent space. The results

indicate the superior performance of the MPC controller.

Real-Time Control of the Laboratory Stirred Tank Heater

The laboratory stirred tank heater is a cylindrical tank of uniform cross Section where two
streams of water (one hot and the other cold) are mixed. The contents of the tank exit
through a long and winding copper tube. The flow rates of the hot and cold water streams
serve as manipulated variables to control the level of water in the tank and the temperature
of the exit stream. Facilities exist to introduce disturbances in the steam flow through the
heater coils, the inlet temperature of the hot water stream etc. The control algorithm was
implemented using a personal computer running Real-Time Matlab/Simulink.

The results of the laboratory run showing servo and regulatory responses is depicted in
figure 4.16. Two set point changes in each output variable were made. An unknown amount
of cold water was dumped into the vessel around the 1575th sample point. Satisfactory servo
and regulatory responses were obtained by employing m = 2, p = 20 and A" = 107 as the
controller parameters. The constraints placed on the amplitude (0-100%) and rate (+10%)

of the manipulated variables remained inviolate over the entire duration of the experiment.
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Figure 4.16: Ezperimental evaluation of the PLS based MPC scheme on a pilot scale stirred
tank heater.
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4.4 Constrained Nonlinear Model Predictive Control using
PLS based Hammerstein and Wiener Models

Most chemical processes are inherently nonlinear. Researchers have proposed several ways
to equip MPC with the capability to deal with nonlinear processes. The approaches to
nonlinear MPC (NLMPC) can be categorized into two groups: (1) those based on first
principles models of the process and (2) those based on black box models identified from
input-output data.

If the MPC objective function is to be minimized using the first principles, nonlinear
model, a dynamic optimization problem has to be solved at every sampling instant. Biegler
(1984) proposed approximation of the differential equations using orthogonal collocation
in order to reduce the optimal control problem to a nonlinear program which could be
solved using sequential quadratic programming (SQP). Patwardhan et al. (1990) extended
Biegler’s approach to the constrained nonlinear MPC problem. This technique requires
selection of appropriate orders for the polynomial approximations and increases the size of
the optimization problem manifold. Economou and Morari (1986) adopted the nonlinear
internal model control (IMC) framework wherein the nonlinear model inverse was obtained
by a Newton type method. Li and Biegler (1988,1989) improved the convergence properties
of this method by including a relaxation parameter. Constraints were incorporated through
a quadratic programming (QP) formulation.

Brengel and Seider (1989) proposed a NLMPC scheme using successive linearization of
the model equations at each sampling interval. This involves analytical/numerical evalua-
tion of the Jacobians and discretization. The linearized model is used for predictions and
only a quadratic program has to be solved at each iteration. Garcia (1984), used the full
nonlinear model for finding the effect of the past inputs and estimated disturbances on the
output and the linearized model for predicting the effect of the future inputs. Thus the
objective function remains quadratic and the computational burden is minimal. Gattu and
Zafirou (1992) extended this method by incorporating state estimation using a Kalman fil-
ter for better disturbance rejection. They successfully applied this scheme to a semi-batch
polymerization reactor and an unstable open loop process.

Patwardhan and Madhavan (1993) approximated the model equations using a second
order Taylor series expansion around the steady state. For processes showing highly nonlin-
ear behavior (e.g. input multiplicities) the second order approximation proves superior in

comparison to a linear model that includes only first order terms. Mutha et al. (1997) pro-
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posed a nonlinear MPC scheme for control non-affine systems based on a re-interpretation
of the prediction equation as a Taylor series expansion.

In a novel strategy based on the first principles model, Henson and Kurtz (1994),
Oliveira, et al. (1995) proposed feedback linearization of the nonlinear process followed
by linear MPC of the feedback linearized loop. Though the model used in MPC design is
linear, the nature of the mappings results in the constraints being nonlinear. Oliveira et al.
(1995) propose a suboptimal strategy in order to preserve the linearity of the constraints.
Henson and Kurtz (1994) formulate the constraint mapping as an optimization step, but
sacrifice optimality to maintain linearity of the constraints.

Fundamental models of large chemical processes involve a significant effort and rely on
complete knowledge of the process, plant operating conditions and parameters. This kind
of knowledge is often scarce and a practical alternative is the use of nonlinear identification
procedures to obtain the nonlinear mapping from input-output data.

Bhat and McAvoy (1990) developed artificial neural network (ANN) models of the non-
linear plant under consideration and proposed use of the ANN models for prediction in
MPC. Though ANN models are known to approximate any type of nonlinear behaviour,
the modeling effort is large and a difficult nonlinear program has to be solved at every
instant in order to calculate the control moves.

Hernandez and Arkun (1993) used polynomial ARMA models to capture the nonlinear-
ities; the model considers cross terms between past inputs and outputs and the estimation
problem is posed as a linear least squares problem. The MPC objective function is nonlinear
with the polynomial ARMA model as the predictor. Doyle et al. (1995) and Manner et al.
(1996) use second order Volterra models to describe nonlinear behavior. The Volterra model
considers the cross terms between the past inputs in the manner of convolution models. A
large number of coefficients are required for modeling purposes and the optimization step
is a nonlinear program. Carlemann-Rugh linearization of the mechanistic process model
enables estimation of the model parameters without resorting to experimentation.

Hammerstein and Wiener models are block oriented nonlinear models in which a linear
dynamic element is cascaded in series to a static nonlinear element. For Hammerstein
models, the nonlinear block precedes the linear dynamic element; for Wiener models the
order of the linear and the nonlinear blocks is reversed. Zhu and Seborg (1994) use a
modified Hammerstein model to do unconstrained MPC of a univariate pH control process.
Norquay et al. (1996,1997) demonstrate the use of a Wiener model based MPC on the same
pH process. Norquay et al. (1997) propose a heuristic scheme for handling constraints.
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In this work a novel approach to input constrained nonlinear MPC using partial least
squares (PLS) based Hammerstein and Wiener models is presented. It combines a powerful
statistical tool - PLS and two elegant representations of nonlinear systems namely Ham-
merstein and Wiener models with an advanced multivariate controller - MPC. Conventional
MIMO Hammerstein/Wiener models present numerical difficulties for multivariable control.
For control purposes, solution of a set of nonlinear algebraic equations is involved and this
can lead to numerical instability. The use of PLS framework decomposes the modeling
problem into a series of univariate problems in the latent subspace. The controller synthesis
is carried out in the latent subspace and facilitates the use of a series of SISO Hammerstein
and Wiener models, for MIMO processes.

The main contribution of this Section is to show that the proposed approach is effective in
handling multivariable processes and does not compromise the optimality of the constraints.
It is shown that, for Wiener models the input constraints preserve their linearity in the latent
space and only a quadratic program has to be solved to find the optimal input moves. For the
Hammerstein model the input constraints get transformed into a nonlinear region in terms of
the latent variables and a nonlinear program results. Henson and Kurtz (1994), Oliveira et
al. (1995) faced a similar situation with their feedback linearization+MPC scheme but they
opted for a suboptimal feasible approach to keep the constraint set linear. The proposed
constrained multivariable NLMPC strategies are demonstrated on a simulation case study

involving the pH-level control of a nonlinear acid-base neutralization process.

4.4.1 Nonlinear Modeling using PLS based Hammerstein and Wiener
models

For nonlinear systems a natural extension of the dynamic PLS approach proposed by Laksh-
minarayanan (1997a) leads to the use of nonlinear models for explaining the inner relation-
ship between the scores. In general any nonlinear modeling approach like ANN, polynomial
ARMA can be used. In this Section we discuss Hammerstein and Wiener structures for
modeling the inner relationship. The two approaches are best illustrated by figures 4.18
and 4.17.

The Hammerstein model structure consists of a nonlinear algebraic element followed by
a linear dynamic element. In contrast, the Wiener model configures the nonlinear static
element following the linear dynamic element. See Haber and Unbehauen (1990) for a
comparison of Hammerstein and Wiener structures with other input-output approaches to

nonlinear identification. Eskinat et al. (1991) used the Hammerstein structure for modeling

75



T T \'}
— G FT) b
Input Output
Scores Scores

Figure 4.17: Wiener Models in Latent Spaces

T T \'
—— F(T) G - —-
Input Output
Scores Scores

Figure 4.18: Hammerstein Modeling in Latent Spaces

a simulated distillation column and an experimental heat exchanger. Lakshminarayanan
et al. (1995) extended the cannonical variate analysis technique, a subspace identification
method, to the estimation of MIMO Hammerstein models. Verhagen and Westwick (1996)
modified the MOESP family of subspace methods for identification of Hammerstein type
systems.

PLS based Hammerstein models are obtained by relating the scores at each dimension
using a SISO Hammerstein model. A polynomial function is used to capture the nonlin-
earity of the process. The order of the chosen polynomial is an indication of the degree
of nonlinearity of the process. For an elaborate discussion of the PLS based Hammerstein
modeling approach the reader is referred to Lakshminarayanan et al. (1997a) .

The inner relation between the input and output scores is given by

Hammerstein Model : ] = fi(t:);v:i(z7!) = Gi(z"Hti(z )i =1,...,n  (4.24)
Wiener Model : ¢t{(z7!) =Gz Dti(z");v:i = fi(t]);i=1,...,n

4.4.2 Constrained NLMPC via PLS based Hammerstein and Wiener
Models

In this Section we discuss the nonlinear model predictive control using PLS based Ham-
merstein and Wiener models. The inherent structure present in Hammerstein and Weiner
models leads to a very intuitive control strategy. In both cases, a linear MPC is designed

with the linear dynamic element serving as the model and the nonlinear operator is inverted.
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The order in which the linear MPC and the inversion operation is carried out depends on
the model structure (see Figures 4.19 and 4.20). Assuming that the nonlinearity is well cap-
tured in the region of operation, this kind of control strategy results in an approximately

feedback linearized system.

Remark 4.6. It should be noted here that the inversion of nonlinear operator F is fairly

straightforward in the latent space since it is a decoupled system,
F(T)=[ filtr) fat2) - falta) ].

Each f; is a polynomzial equation in a single variable t;. Hence inversion is guaranteed since
robust numerical techniques are available for solving polynomial equations in one variable.
In general the polynomzial will have multiple roots, we choose the smallest real root. In this

regard it is safe to choose a polynomial with an odd degree to ensure the presence of at least
one real root.

Remark 4.7. In the ideal case of no model plant mismatch, the resulting feedback system
is linear and linear stability analysis can be used for assessing the closed loop stability of the
nonlinear system. However, in practice, model plant mismatch is inevitable and nonlinear

stability analysis will have to be carried out for the general case.

In the remairing discussion we shall concern ourselves with the application of constrained

MPC on nonlinear systems modeled using Hammerstein and Wiener models.

Constraint Mapping

Hammerstein Models

The MPC objective function is based on the linear dynamic element between t*(inputs) and

v (outputs),

min Jy = (At)T(STrS. + M)Aty — 2(r, ~ fr —d)TTS, At"  (4.25)
k

subject to g(tz) > O. (4.26)

For the sake of brevity, we use ¢ to denote the n x 1 dimensional latent space vector.
The nature of the transformations involved leads to the transition of the linear con-
straints in the original space to nonlinear constraints in the latent space. The following

steps illustrate our point,

AAu; + By 0«

AAty, +B. > 0=

v
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Fl(t*(k)) — F~'(¢"(k— 1))
—~174% _ —1 /74w
” F(t (k+1):) Fi(t* (k) “B > 0e
F-l(t'(k+m — 1)) — F-1(t*(k + m — 2))
gtz) > O. (4.27)

where g(t;) is nonlinear operator. The transformation from u to ¢ is linear and is given by:

u(k) = Pt(k)
A = Aldiag(P P ... P)], ...

The transformation from t* to t : t; = fi(t;), however, is nonlinear. The inverse operator is

not one-to-one and hence the constraint mapping is non-unique.

From equation 4.25, it is clear that computation of the control moves involves solution

of a nonlinear program at every instant. The nonlinear program comprises a quadratic

objective function and a nonlinear constraint set. The nonlinearity of the constraints arises

due to the particular structure of the Hammerstein model.

The steps involved in the implementation of the Hammerstein based NLMPC scheme

(see figure 4.19) are enumerated below:

.Cli

At sampling instant k, measure the output yn, (k) and the setpoint r(k).

Transform the output and setpoint in terms of latent variables using the following
relations: v(k) = (S,Q) 'y(k); vsp(k) = (SyQ)~'r(k). Send the transformed variables
to the PLS based MPC.

The controller is based on the linear dynamic part and will calculate inputs in terms
of t*(k). This is done by solving the nonlinear program using a suitable optimization
tool. The initial guesses for the solver are provided by equating the initial values to

the previous solution - t7 = t*(k — 1). For k = 1, the initial guess is set to zero.

The inverse operator is used to map these values onto the corresponding t(k): t(k) =
Fl(t*(k)).

The inputs in terms of the latent variables are mapped onto the inputs in terms of

original variables: u(k) = S, Pt(k).

Implement the calculated inputs, u(k), on the plant
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Wiener Models

The nonlinearity of the constraints can be avoided if a Wiener model structure is chosen.
The Wiener model structure succeeds in preserving the linearity of the constraints in spite
of the nonlinear mappings involved. However, this is not true if output constraints are also
involved. For the present purposes we restrict ourselves to rate and amplitude constraints
only since output constraints often result in infeasibility problems. In this case the MPC

objective function is based on the linear dynamic model between ¢ (inputs) and t* (outputs),

min Jy- = (Atp)T(STTSL + M)At — 2(ry — f. — di.)TTS Aty
subject to A’At;. + B, > 0. (4.28)

The linearity of the constraints is preserved since the nonlinearity is now on the output

instead of the input and the transformation from wu to t is a linear one:

AAu; + By 0 (4.29)
AAt.+ B, > 0.

v

The relationship between A and A’ remains the same as before. The geometry of this

constraint set is the same as in figure 4.12.

Thus a simple change in the model structure results in high gains in terms of the
computational complexity of the optimization problem. Only a quadratic program has to
be solved at every instant. In cases where the Wiener modeling approach is applicable, it
offers distinct advantages for design of a constrained controller over other NLMPC methods

based on black-box models.

Remark 4.8. In the latent space, Wiener models preserve the linearity of the input con-
straints. Hammerstein models result in the original linear constraints being mapped to a

nonlinear constraint region.

The steps involved in the implementation of the Wiener based NLMPC scheme (see

figure 4.20) are enumerated below

1. At sampling instant k, measure the output y(k) and the setpoint (k).

2. Transform the output and setpoint in terms of latent variables using the following

relations: v(k) = (5,Q) " 'y(k); vsp(k) = (SyQ@) ~'r(k)

79



3. Invert the nonlinear operator to express these values in terms of t* : t*(k) =
F~1(v(k));ts,(k) = F~'(vsp(k)). Send the transformed variables to the PLS based

MPC.

4. The controller is based on the linear dynamic part and calculates the inputs in terms
of t(k). This is done by solving the quadratic program using any standard QP solver.

5. The inputs in terms of the latent variables are mapped onto the inputs in terms of

original variables: u(k) = S, Pt(k).

6. Implement the calculated inputs, u(k), on the plant

4.4.3 Discussion
The ability to handle output constraints is one of the main advantages of constrained MPC.
The output constraints can be posed in the following manner for Hammerstein and Wiener

models respectively:

Hammerstein models:

Original Variables : Ymin < ¥ < Ymax
Latent Variables : ymip < vak < Ymax
Ymin < Qf{SLAtl‘c + fllc + d;c} < Ymax

where S, f and d are obtained from the linear dynamic element between v and t*. The

output constraints are linear in terms of the latent variables for PLS based Hammerstein

models.

Wiener models:

Latent Variables : ygin < vak < Ymax
Lt
trpoe1 | TR¥2
Ymin < Q {F } < Ymax
teip

where F' is the nonlinear mapping between v and t. Thus for the Wiener models the
output constraints are nonlinear in terms of the latent variables. These output constraints

can be included in the optimization step along with the input constraints.
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Figure 4.20: Control Strategy for PLS based Wiener Models
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PLS is generally associated with dimensionality reduction. The main purpose of this
work is not dimensionality reduction but to exploit the structural advantages of PLS based
models to do constrained control of a class of nonlinear systems. PLS is mainly used here
to facilitate transformation of variables to a new basis space where the relationship between
the input and output scores is decoupled.

In cases where there is dimensionality reduction the PLS model captures a large portion
of the covariance between the inputs and outputs. In such cases the lower dimensional
PLS model will still capture the dominant dynamics of the process. The dimensionality
reduction will, however, affect the constraint mappings. When there is a dimensionality
reduction the P and/or Q matrices will be, in general, non-square. This will lead to a loss
in information when the constraints are mapped from the original space to the latent space.
But this problem can be resolved by using the full P and Q matrices (without dimensionality

reduction) for constraint mapping alone.

4.4.4 Case Study: pH-Level Control of an Acid-Base Neutralization pro-
cess
The proposed approach was evaluated on a MIMO, pH-level control process. This example
is an acid-base (HCIl-NaOH) neutralization process performed in a single tank. pH neu-
tralization processes are challenging control problems due to the inherent nonlinearity in
the titration curve. The system description, the nonlinear process model and the operating
conditions are described in Henson and Seborg (1994). The level and the pH are the con-
trolled variables that are manipulated using the acid and the base flow rates. The buffer

flow rate serves as a disturbance. The nominal operating conditions of the process are:

QOutputs : pH = 7.075, level = 14cm
Inputs : acid = 16.6 ml/s, base = 15.6 ml/s, buffer = 0.6 ml/s

Control of this process was attempted using a linear PLS based MPC and compared with
the nonlinear MPC approach based on Wiener/Hammerstein models as proposed here. A
simulation model of the process was built in the Simulink/Matlab environment. The open
loop simulations shown in figure 4.21 indicate the nonlinear nature of the pH response.
Though the pH response is fairly nonlinear in terms of the gains, it should be noted that the
dynamics remain fairly unchanged. It is this feature that makes the pH system suitable for
modeling using Hammerstein and Wiener models which have a static nonlinear component.

The identification experiments have to be designed to capture the nonlinearity of the system
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Figure 4.21: Open-loop simulation: Level and pH responses to step changes in acid flow
rate (+1 ml/s)

i.e., the magnitude of the input changes is of prime importance and will decide what kind
of nonlinearities are excited. To capture the nonlinearity in the gain, the probing signals
were designed to be low frequency excitation spread over several levels of magnitude.

PLS based, linear and nonlinear, models were estimated for the system using data
collected from the identification runs. The model parameters are given below. Two PLS
dimensions (n = 2) were used to explain the information in the data set. Thus there was
no dimensionality reduction for this example. A fifth order polynomial was required for
the Hammerstein model whereas a third order polynomial proved sufficient for the Wiener
model. The inner relationship for the second PLS dimension was linear for both methods.

Linear Model:

The variables are normalized (unit variance, zero mean) by the scaling matrices:
S, = diag(1.135,1.0122), S, = diag(1.2875,1.3079).

The loading matrices are:

p= [ 0.7220 0.6796 ] Q= 0.0347 1

—0.6919 0.7335 - [ -0.9994 0.0081 ] ’
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The linear dynamic parts were estimated as:

_0.0267z"! —0.009422 Co — 0.0435z~! +0.05392z2
T 1-158852-1+0.006z-2" > 1—0.87942-! — 0.0556z—2"

G,

Hammerstein Model:

Scaling Matrices: The variables are normalized (unit variance, zero mean) by the scaling

matrices:

S, = diag(1.135,1.0122), S, = diag(1.2875, 1.3079).

The loading matrices are:

pP= [ 0.7220 0.6796 ] Q= 0.0347 1

—0.6919 0.7335 B [ —0.9994 0.0081 ] ’

The static nonlinear part is given by:
t; = 0.025t7 +0.1227¢} — 0.0978¢3 — 0.5909¢7 + ¢,
t; = t2_

The linear dynamic parts were estimated as:

9

_ 0.161z-! — 0.180z2 G 0.0458z~! +0.0522z2
= 1-0.88492-! +0.0388z-2" 2

G 2T 1208744z~ —0.0601z—2"

The cross-validation of the Hammerstein model is shown in figure 4.22. It is compared
with linear PLS based model. As can be seen from the figure, the Hammerstein model gives
a good fit for the pH whereas the linear model fails to capture the inherent nonlinearity for
the pH, but does well with the level part.

Wiener Model

The scalings chosen for the Wiener model were:

S. = diag(1.1989,1.0202), S, = diag(1.0664,1.0252).

The loading matrices are given by:

0.6806 0.7103] Q=[ 0.0665 0.9981 ]

pP= [ -0.7334 0.7039 —0.9978 —0.0611

The linear dynamic parts were estimated as:

_0.1740z"! Co — 0.1487z"!
T 1-08754z-1" 27 1-04322-! —0.4842-2"

G,
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Figure 4.22: Cross-Validation: Comparison of the Hammerstein model(- -) with a linear
model (..) and the actual data (-)
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The static nonlinear parts were given by:

v; = —0.1173t;3 — 0.3539t} + ¢]

Vg = tcz.

The cross-validation plots for the Wiener model are shown in figure 4.23. The Wiener
model gives a good fit for the pH part and appears to have captured the nonlinearity present

in the system.
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Figure 4.23: Cross-validation fit for the Wiener model

Three PLS based controllers were evaluated - (1) Linear MPC, (2) Hammerstein based
NLMPC, and (3) Wiener based NLMPC. For control schemes (1) and (3), the Matlab
function gp was used to solve the quadratic program whereas for (2) the nonlinear pro-
gramiming solver constr, available under the Optimization Toolbox in Matlab, was invoked.

The sampling time was 15 seconds.

Selection of Controller Tuning Parameters:
p=15,m=2,A=05II'=1,-1< Au;(k) <1,-10 < u;(k) <10
Figure 4.24 shows the performance of the three controllers in response to a setpoint
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change in pH (pH=9). The Wiener based NLMPC gives the best performance amongst
the three controllers. The change in pH is achieved in a satisfactory manner with no
overshoot in a settling time of 2 minutes. On the other hand the linear MPC showed very
poor performance in achieving the pH setpoint change. It appears to struggle with the
nonlinearities in the system before reaching the setpoint in 15 minutes. The Hammerstein
based NLMPC showed good tracking properties but its disturbance rejection for level was
less than satisfactory. As opposed to the linear MPC it gave smooth response in both the
channels. Thus both the Hammerstein and Wiener based MPC schemes appeared to annul

the nonlinearities in the system through feedback and gave responses similar to a linear

system.
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Figure 4.24: Comparison of (1) Linear MPC (- -), (2) NLMPC-Hammerstein (-) and (3)
NLMPC-Wiener (-.) for stepoint changes: pH=9, level=14.

Figure 4.25 shows the tracking properties of control schemes (2) and (3) for setpoint
changes in both level and pH. Clearly the Wiener based NLMPC gives a superior perfor-
mance. It is able to achieve this setpoint change into a highly nonlinear region in a settling
time of 5 minutes. The Hammerstein based NLMPC is able to reach the pH setpoint only if
the simulation was continued for long period. This was observed for other setpoint changes

as well. One of the reasons for the poor performance of the Hammerstein based NLMPC
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could a poor model in the neighborhood of the setpoint. In the Hammerstein model the
nonlinearity is at the input and hence the magnitude of input changes plays an important
role during the identification process. For example, in figure 4.25 the inputs undergo large
changes in magnitude in order to meet the desired setpoint. If the Hammerstein model is un-
able to capture the nonlinearities associated with these input changes then the performance
of the NLMPC will deteriorate. On the other hand for Wiener models the nonlinearity is at
the output and therefore the range of magnitude changes at the output affects the goodness
of a Wiener model. From figure 4.25 we see that the pH changes are not large in magnitude
and the experiment design included changes of this magnitude. Moreover pH is defined
as the negative of the natural logarithm of hydrogen ion concentration. This implies that
there is a significant nonlinearity at the output. Thus a Wiener structure is naturally suited
to capture the nonlinearity of this pH process. The importance of appropriate magnitude
changes in the input excitation is illustrated through this result. A priori knowledge of the
operating conditions of the plant should be taken into account while designing the input

sequence for identification.
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Figure 4.25: Tracking performance of NLMPC based on (1) Hammerstein models (..) and
(2) Wiener models (-) for stepoint changes: pH=4, level=18.

The disturbance rejection properties of the three controllers are illustrated in figure 4.26.
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Once again Hammerstein and Wiener based MPC schemes outperform the linear MPC. The
main nonlinearity of the process lies in the pH part and the linear MPC does not do a good
job of dealing with it. The integrator in the linear MPC, however, does take the pH back

to its steady state value.
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Figure 4.26: Response of (1) Linear MPC (-.), (2) NLMPC-Hammerstein (..) and (3)
NLMPC-Wiener (-) to a change in buffer flow (0.6 to 0.2).

The Wiener-NLMPC was able to meet several setpoint changes into nonlinear regions
which the other controllers could not handle. Figure 4.27 shows the performance of the
Wiener-NLMPC and figure 4.28 shows the constraints being satisfied in the original do-
main and the equivalent constraints in the latent space. To better illustrate the constraint
satisfaction and the geometry, the upper and lower limits on the inputs and the slew rates

were reduced for this run:

—-05 <Az <05, -5 <u; <5i=1,2.
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Figure 4.27: Performance of Wiener based NLMPC for a series of setpoint changes.

Discussion

A method of handling constraints for nonlinear model predictive control using Hammerstein
and Wiener structures in the PLS framework is presented in this paper. The feasibility of
the approach is demonstrated via a simulation case study of a MIMO system involving pH
and level control. The main contributions of this work are (1) a technique to effectively
use Hammerstein and Wiener structures for modeling and control of MIMO systems via
the PLS framework and (2) constrained NLMPC of nonlinear processes using these models.
The main advantage of using the PLS framework is that the dynamics are decoupled in the
latent space. The constraints, however, get coupled in the latent space. Thus a multivariable
approach to controller synthesis has to be adopted for constrained control. For Hammerstein
models, the constraints are mapped onto a nonlinear region in the latent space; for Wiener
models the constraints, though coupled in terms of the latent variables, maintain their
linearity.

For Wiener models it is shown that only a quadratic program needs to be solved, which is
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space (bottom graph). ‘T’ - denotes the constraint region and ‘o’ denotes actual data.
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a significant computational advantage over other NLMPC methods and makes them suitable
for controller design purposes. Since block oriented models serve as useful representations
for chemical processes such as distillation and acid-base neutralization (Norquay et al.,
1996). it is worthwhile to consider modeling and control of MIMO processes using these
structures.

The major advantage of the use of PLS based Hammerstein and Wiener models is
their ability to decouple the dynamics and the nonlinearities. Even though the presence
of constraints negates this advantage, it is important to note that the numerical inversion
of the static nonlinearities is restricted to a single variable root finding. In the absence of
the PLS structure, the root finding operation would be a multivariable one and is likely to

present numerical difficulties.

4.5 Conclusions
In this chapter we considered PLS based dynamic models for:

1. Interactor estimation and multivariable time delay estimation. Several at-
tractive features of the PLS model form were emphasized. The PLS model was shown
to be similar to a cannonical form identified from input-output data. The interactor
matrix can be easily estimated and multivariable time delay compensation requires

simply requires n univariate Smith predictors in the latent space.

2. Constrained model predictive control in the latent space. Constrained MPC
was formulated in terms of the latent inputs and outputs. The presence of constraints
leads to coupling between the latent inputs. For linear processes, this approach was
demonstrated on a simulation of the Wood-Berry column and a pilot scale stirred
tank heater. A class of nonlinear systems described by Hammerstein and Wiener
models was also considered via the PLS based MPC. A pH-level control problem
demonstrated the applicability of the nonlinear PLS based MPC.
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Chapter 5

Techniques for assessment of model
predictive controllers

5.1 Introduction

The area of performance assessment is concerned with the performance analysis of existing
controllers. Performance assessment aims at evaluating controller performance from routine
data. Several algorithms are now available for estimating a performance index from closed
loop data. Conventionally the estimation procedure involves comparison of the existing
controller with a theoretical benchmark such as the minimum variance controller (MVC).
Harris (1989) laid the theoretical foundations for performance assessment of single loop
controllers from routine operating data. Time series analysis of the output error was used
to determine the minimum variance control for the process. A comparison of the output
variance term with the minimum achievable variance reveals how well the current controller
is doing currently. Subsequently Huang et al. (1997) and Harris et al. (1997) extended
this idea to the multivariate case based on the generalization of the time delay term. The
multivariate interpretation of the delay term is known as the interactor matriz and this
entity plays a crucial role in determining the control invariant or the minimum variance
control for a MIMO process. However, estimation of the interactor matrix requires some
closed loop excitation and cannot be based on routine operating data alone. Huang (1997)
showed that the interactor matrix obtained under closed loop conditions is the same as the
open loop interactor. Kozub and Garcia (1993) proposed user defined benchmarks based on
settling times, rise times, etc. This presents a more practical method of assessing controller
performance. The settling time or rise time for a process can often be chosen based on oper-

ator experience. A correlation analysis of the operating data is used to determine whether

'A version of this chapter was presented as “Performance Assessment of Model Predictive Controllers”,
1997, Rohit S. Patwardhan, Biao Huang and Sirish L. Shah, CSChE Annual Meeting, Edmonton, Canada.
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the desired closed loop characteristics were achieved. Tyler and Morari (1995) proposed
performance evaluation based on likelihood methods and hypothesis testing. Performance
assessment of non-minimum phase and open loop unstable systems was also addressed by
Tyler and Morari (1995).

Huang (1997) also proposed the LQG control as the benchmark instead of MVC. The
main advantage of this technique is that the input variance is also taken into account. In
many processes the input variance is of major concern as this is often a utility such as steam,
power, etc. with significant cost. A model of the process and the disturbances is required
to do the LQG benchmarking. Kammer et al. (1996) used non-parametric modeling in the
frequency domain to ascertain the optimality of a LQG controller, based on the comparison
of the optimal and the achieved cost functions.

Model predictive controllers belong to a class of model based controllers which compute
future control actions by minimizing a performance objective function over a finite predic-
tion horizon. This family of controllers is truly multivariate in nature and has the ability to
deal with constraints on the inputs, slew rates, etc. It is for the above reasons that MPC has
been widely accepted by the process industry. Variations of MPC such as dynamic matrix
control (DMC) and quadratic dynamic matrix control (QDMC) have become the norm in
industry for processes where interactions are of foremost importance and constraints have
to be taken into account.

Performance assessment of MPC presents a challenging research problem. A constrained
MPC type controller is essentially a nonlinear controller, especially when operating at the
constraints. Conventional MVC benchmarking is infeasible and alternative techniques have
to be developed. Two such methods for MPC performance evaluation are proposed here -
(1) the use of LQG as a benchmark based on the knowledge of the open loop process and
noise models, and (2) use of the design performance as a benchmark.

The rest of this chapter is organized as follows: Section 5.2 gives a tutorial introduction
to the conventional performance assessment techniques based on minimum variance bench-
marking and closed lo;)p settling time specifications. In Section 5.3 we propose the use of
the design case as a benchmark for model predictive controllers. A performance measure
based on comparison of the design objective function with the achieved objective function
is defined and some properties of this measure are established. The design case benchmark
and the LQG benchmark are applied to evaluate the MPC performance for two simulated
processes in Section 5.4. The effect of constraints is highlighted. An industrial QDMC

application on a recycle surge drum level control is used to demonstrate the practical na-
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Figure 5.1: A conventional control system with unmeasured disturbances and measurement
notse
ture of the performance measures, in Section 5.5. The contributions of this chapter are

summarized in Section 5.6.

5.2 Conventional Assessment Techniques

5.2.1 Minimum Variance Benchmarking

Univariate Case

Minimum variance benchmarking is based on the concept, that under minimum variance
control the closed loop response will exactly match the setpoint change or cancel the dis-
turbance after d samples, where d is the process time delay. Consequently it follows that
the variance of a closed loop system within the first d samples is controller invariant and
corresponds to the minimum achievable variance. For a rigorous proof see Harris (1989) or
Huang (1997). Consider the following closed loop system.

The closed loop relationship between the unmeasured disturbances and the process
output is given by

u(k) = T pge®) = e

where d is the process time delay. The above relationship can also be expressed as an

infinite-order moving average (MA) process, for closed loop stable systems,
y(k) =(fo+ friz7' + ...+ fuar 27+ faz7 0+ L a(k).
The first d terms define the minimum achievable variance,
0w =+ i +...+ fi )0k
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The controller performance index is defined as the ratio of the minimum achievable variance

to the achieved output variance,

9

-

OSn(d)=Ua"-‘”<1-

2 =
y

If the performance index is equal to one then it implies that the process is under minimum
variance control. On the other hand if the index assumes the value of zero it implies
that the process is unstable under closed loop. Desborough and Harris (1992, 1993) give
statistical bounds on this performance measure and also extend it to assess feedforward
control. Theoretically this measure can also be extended to the case where there are setpoint
changes. In such cases, the output error can be expressed as a infinite order moving average
model. Huang (1997) gives the basis for extending this method to the case of deterministic

disturbances/setpoints.

Example 5.1. This is a simulation ezample from Desborough and Harris (1992), with time
delay, d=2:
1-0.2271
y(k) = ’u(k - 2) + ﬁ_—l—-a(k).
A simple integral controller was used for control, Au(k) = —Ky(k). For K=0.5, the closed
loop response is given by:

1-02z"1
yik) = T 05,12k

=(1+08271+0.3272-0.1273 — 0.2527* + .)a(k).

For K=0.2, we have

1-0.2z"1
yk) = T gare(k)

=(1+08271 +06272+0.44273+0.3227% + ..)a(k).

Notice that the first two terms in each case are identical. In fact they will be the same
irrespective of the controller used. The coefficients of the MA model, for the two proportional
gains are plotted in the figure 5.2. The performance indices for the two controllers can be
estimated by comparing the minimum variance with the achieved variance. This concept is

tllustrated by the shaded areas in the figure 5.3 .
K=0.5| K=0.2
n(d) | 0.8803 | 0.6808
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Figure 5.2: The closed loop impulse response coefficients for the two controller gains.
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Kozub and Garcia (1993) proposed the use of desired closed loop settling time as a bench-
mark of performance. We demonstrate this idea using the above example. Let us fic the
desired closed loop settling time as 6 samples i.e. the output variance should ideally reduce

to zero after size samples. The performance index is then defined as

2
o2
t) = d‘es
€t = 222
where 03,, = (f§ + f{ + ...+ f2_,)0%. The corresponding performance indices for the two

controller gains are given below.

K=0.5] K=0.2
£(to) | 0.9927 | 0.9754

Thus in this case both the controllers are achieving the design performance according to the

settling time based measure. It is clear from the figure 5.4 that this is a controller dependent

measure.

Multivariable Minimum Variance Benchmarking

Harris et al. (1997) and Huang et al. (1997) extended the idea of minimum variance
benchmarking to the multivariable case based on the knowledge of the interactor matrix.
First we state the result from Huang (1997) which proves the existence of the multivariable

minimum variance controller.
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Theorem 5.1. For a multivariable process
y=Pu+ Na
with the linear quadratic objective function (singular LQ objective function) defined by
J=E®F"9)
where §j = z~¢Dy, an explicit optimal solution is given by
u=-P 'RM;'Dy = —P 'RF~!(279D)y
where P = DP,Mr = 2%F,F and R satisfy the Diophantine identity:

2 DN =Fo+ ...+ Fy_1z7%1 + 279R

—

where R is a rational proper transfer function matriz and D is the unitary interactor.
The key steps involved in the multivariable minimum variance benchmarking algorithm

due to Huang (1997) are:

1. Filter the process outputs (errors) with the interactor. The interactor can be obtained
through a model of the process or from closed loop identification or through some prior

knowledge about the delays in each channel,

§(k) = (Do + D127 ! + ... + Daz"Y)y(k).

2. The filtered output now has a simple interactor, and the minimum variance bench-
marking can be applied in a manner quite similar to the SISO case. First the outputs

(errors) are pre-whitened using a multivariable auto-regressive (AR) model.

(Ao+ 41271 + o+ A2 7™)j(k) = e(k) &
(Bo+Bi1z7 ! + ...+ Bgz7% + ..)e(k) = §(k)
where e is a white noise process.

3. Multivariable cross-correlation analysis between the estimated white noise sequence
and the interactor filtered outputs gives the covariance matrix under minimum vari-

ance control,

02, = (Boo2BY + Bi1o?BT + ... + B4_,02BY_)).
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4. The multivariable performance index is then obtained as

_ tr(of,)
- tr(o3)

where tr denotes the trace of the matrix?.

In mere words, we are taking the ratio, of the sums of individual variances under MVC,
to the achieved variance. For a discussion of the theoretical issues involved in interactor
estimation and its application to minimum variance benchmarking see Huang (1997). See
Huang (1997) for an application of multivariable minimum variance benchmarking to a 2x2

simulation example.

LQG benchmarking

The linear quadratic Gaussian control law offers the best achievable control for a linear
plant. The minimum variance control law can be derived as a special case of the LQG

controller. For the regulatory case the infinite horizon LQG objective function can be

written as:
Jig = lim E {% ﬁj §(k)TTy(k) + Au(k — 1)TAAu(k — 1)}
S k=1
#(k+1) = Az(k)+ B,Au(k)

Ci(k)

y(k)

where E denotes the expected value. Here integral action has been included into the LQG
control law and the objective function is in the input-output form. The optimal linear

feedback control law can be derived through minimization of the above objective function,
Au(k) = —Kz(k) (5.1)
where
K = (R+ BfSB,)"'BTSA.
S is the solution of the steady state algebraic Riccati equation:
S =AT [S—PB;(A+BTSB,)"'BIS| A+T.
The optimal state estimator or the Kalman filter completes the LQG feedback law,

Z(k + 1) = Az(k) + B1Au(k) + L(y(k) — 3(k)).

n

*The trace of matrix is defined by tr(A) = 3" | a.; i.e. the sum of its diagonal elements.
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If the true process is described by

z(k+1) = Ax(k)+ BAu(k) + Guw(k)
y(k) = Cz(k) +v(k)
where w(k), v(k) are state and measurements noises with known covariance matrices E(ww?) =

o2, E(wvT) = 02, E(wvT) = 02,. The resulting closed loop system of equations can be

written as
z(k+1) _ A ~BK z(k) G 0 w(k)
[i(kﬂ)] = [LC A—BK—LC] [i(k)]+[ 0 L} [ v(k) ]
r'2y(k) . /2 a1/2 cC 0 z(k) 6 I w(k)
ey ] = wean{[ G20 ][0 o] [
In terms of new state and output variables we have,

n(k+1) = Acn(k) + Bs(k) (5.2)
v(k) = Cen(k)+ D.s(k).

If w(k) and v(k) are uncorrelated white noise sequences then it can be shown that E(J.og)
is the H> norm? of the closed loop system in equation 5.2,
s | Ac| B
¢ & &)
tr(D.DY + C.PCYT)

G113

where P is the solution to the Lyapunov equation, P = A.PAI + B.BY (Chen and Francis,
1995). For the case where w(k) and v(k) are correlated, the optimal cost function can be
found by solving relevant Lyapunov equations (see Huang, 1997).

The LQG performance curve in figure 5.5 is a graph of the design output variance against
the design input variance for different control weightings (A). The LQG performance index
is a measure of the distance of any controller from the achievable bound. A comparison of
the achieved objective function with the LQ objective yields one such measure:

p = L (5.3)
J = E{% ’:Z;:Iy(k)TI‘y(k) + Au(k - )TAAu(k - 1)}.

The LQG benchmark provides useful information about the re-tuning of a model based

2x

32-norm: ||Pl|2 = (& [ |P(e’*)|2dw)'/? = P(0)? + P(1)% + ....

o]
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Figure 5.5: The optimal performance curve obtained through LQG benchmarking

predictive controller given its similarity in structure and form to a MPC controller. The
weightings for the LQG criterion can be chosen to reflect the MPC objective. The LQG ap-
proach is more practical compared to MVC since it gives importance to the input variance.
The performance curve is sensitive to the ratio of the input to measurement noise variances
and the inexact knowledge of this quantity can result in inaccurate benchmarking. Uncer-
tainty in the process and noise models also results in an uncertain performance curve. A low
performance index does not always imply poor performance since it is based on comparison
of two different control laws, for example, MPC with LQG. The model predictive controller
may be delivering the nominal performance it was designed for and yet be far away from
the achievable performance curve. The LQG controller is an unconstrained controller and

provides a useful lower bound on the achievable performance of a model based predictive

controller.

5.3 Performance Assessment of Model Predictive Controllers

In this Section we will restrict ourselves to cases where a MPC type controller is in place and
the plant dynamics are linear. Conventionally a linear feedback controller is in place and
time series analysis of the closed loop data (output) can be used to evaluate the controller
performance. However, MPC gives a linear time-varying feedback law for the constrained
case. Evaluation of the MVC benchmark from the nonlinear closed loop data without resort-
ing to identification techniques is a challenging research problem (Harris, 1989). It should
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be noted here that for a linear plant, LQG offers the best achievable nominal performance

amongst the class of all stabilizing, linear or nonlinear, controllers.

Using the design case as a benchmark

An alternative approach is to evaluate the controller performance using a criterion commen-
surate with the actual design objective(s) of the controller and then compare the achieved
performance. This idea is analogous to the method of Kammer et al. (1996) which was
based on frequency domain comparison of the achieved and design objective functions for
LQG. For a MPC controller with a quadratic objective function, the design requirements

are quantified by:
Ji = (re — 9k)TT(re — Gic) + Auf ADug.

The model predictive controller calculates the optimal control moves by minimizing this
objective function over the feasible control moves. If we denote the optimal control moves

by Aug, the optimal value of the design objective function is given by
Jp = Je(Aug).

The actual output may differ significantly from the predicted output due to inadequacy of

the model structure, nonlinearities, modeling uncertainty, etc. Thus the achieved objective

function is given by:
— T T
Je = (re — yr) " T(re — ye) + Aug ADu.

where yi,Au; denote the measured values of the outputs and inputs at corresponding
sampling instants appropriately vectorized. The inputs will differ from the design value
in part due to the receding horizon nature of the MPC control law. The value of the
achieved objective function cannot be known a priori, but only p sampling instants later.
A simple measure of performance can then be obtained by taking a ratio of the design and

the achieved objective functions,
k) = & 4
’7( ) A (5 )

This performance index will be equal to one when the achieved performance meets the design
requirements. The advantage of using the design criterion for the purpose of performance
assessment is that it is a measure of the deviation of the controller performance from the

expected or design performance. Thus a low performance index truly indicates changes in
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the process or the presence of disturbances, resulting in sub-optimal control. The estimation
of such a index does not involve any time series analysis or identification. The design
objective is calculated by the controller at every instant and only the measured input and
output data is needed to find the achieved performance. The above performance measure
represents an instantaneous measure of performance and can be driven by the unmeasured

disturbances. In order to get a better overall picture the following measure is recommended:

J:

iMn

(5.5)

a(k) = d

>

J;
1

~»,
1

a(k) is the ratio of the average design performance to the average achieved performance
up to the current sampling instant. Thus a(k) = 1 implies that the design performance is

being achieved on an average. a(k) < 1 means that the achieved performance is worse than

the design.
j,: can be obtained from the optimization step in MPC and Ji can be found from the

operating data and the controller tuning parameters. Consider the quadratic form which is

present in the objective function of MPC. If we let

Je(y) = (e —ye) T(re —yx) (5.6)
Je(uw) = AulAAu;

then we have,

Jp = Jk(yk)'i*Jk(ul_c)
el = HdeCye)ll + e (ue)l]

where |].|| is the 1-norm as defined before and Ji(yx),Jx(ux) are the respective vectors
of [Ji(y:)]¥:[Ji(w:)]T,i = 1,...,k. By analogy we have a similar expression for the design

objective term,

Ji = Ji(gk) + Ji(u;) and
IRl = 3@ + 15l

Thus we have expressed the respective objective functions as a sum of the contributions
from the outputs and the inputs. Comparing each of these terms in the above sum with their

achieved counterparts can give an idea of which quantity, in a relative sense contributes the
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most to a loss in perforrnance. We also define performance indices based on the individual

terms in the objective function.

WGl e 2
13l “®) = 2@l

The objective function approach has the following advantages: (i) since it is free of any

ay(k) =

restrictive assumptions, it can deal with the multivariate and constrained nature of MPC,
(ii) it reflects the design criterion and answers the question - whether the controller doing

what it was designed for, (iii) it does not involve any estimation and therefore the measure

is exact.

5.3.1 Properties

In the ensuing discussion we prove several useful properties of the proposed benchmark
based on comparison of the design and achieved objective function. First a analytic way
of obtaining the expected value of the design cost function is described. As with the LQG
benchmark this involves solution of the relevant Lyapunov equations describing the closed
loop relationships. The analytic expression is derived for the case of stochastic and deter-
ministic inputs. The state space description of MPC is utilized in obtaining the desired
quantities. The effect of uncertainty on the design cost function is also captured in the
state space framework.

An important implementational aspect of MPC is its receding horizon nature. It is shown
here that the receding horizon implementation leads to a loss in the design performance as
per the cost function (Property 5). However, the receding horizon nature is known to combat
disturbance uncertainty and therefore may lead to lower achieved cost than a conventional
multi-step implementation.

We attempt to show the bounded nature of the proposed index under the assumption of
closed stability (Property 6). The convergence analysis provides insight into the controller

relevant terms that may affect the achieved performance.

1. Stochastic inputs. Here we derive the expected value of the design cost function
for MPC for the case of stochastic inputs described by

z(k + 1) = Az(k) + Bu(k) + Gw(k)
y(k) = Cz(k) + v(k).

where w(k),v(k) are uncorrelated white noise processes.
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The predictions can be expressed in terms of the future inputs and current state

variables as (see Chapter 2)

Y = Ff:(k) + SAu; +d;
where F=[ CA CA? ... car " (5.7)

where S is once again the dynamic matrix made up of the step response coefficients.

The disturbance estimate is given by

di = [I...1)" (y(k) - §(k))
= [I...ITCiz(k) — (k)]
= Ci(z(k) — £(k))

where Z(k) is the state estimate obtained through a Kalman predictor/filter. The
state space form of the MPC feedback law is given by (see Chapter 2),

Aup = K(ri — Fi(k) — di)
= K(ri — Ly(k) — (F — [I... T C)&(k))
= Ke(k) — K2z(k)
where Ky = K[I...I|T, Ko = (F - [I...I]TC). (5.8)

The objective function now becomes (see equation 2.28),

J = {ri — Fi(k) — SAur — di.} ' T{ri — Fi(k) — SAuy — dp.} + Aul AAuy.

For the nominal case the feedback term will correspond to the noise term. Take the

regulatory case where r, = 0. Therefore we have

k. — FE(k) — SAuy — di, = —Fz(k) — S(Ky(k) — K2&(k)) — Ci(z(k) — (k)
= (-F + SK» + C)i(k) — (SK1C + C1)z(k) — SKv(k)

#(k) & (—F + SK» + C)&(k) — (SK1C + C1)z(k) — SKyv(k)

Au, = -Kyy(k) — Kai(k)

= —K\z(k) — K23(k) — Kiv(k)

8(k) & —Kz(k) — Kai(k) — Kv(k)

J(k) = ¢(k)TTo(k) + (k)T AB(k).
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The expected value of the objective function can be easily expressed in terms of the

variances of the pseudo-outputs defined above,

E(J(k)) = El¢(k)"Te(k) + 6(k)TAG(k)]
= tr{TE[3(k)p(k)"]} + tr{AE[6(K)6(K)T]}.

Computing E[¢(k)@(k)T] and E[0(k)0(k)T] :
3(k + 1) = AZ(k) + Bu(k) + Ply(k) — §(k)]
Au(k) = —[I 0.0I(Kly(k) + K‘_):i:(k)) = —K{y(k) - Kr’_;.’i?(k)
For the integrator we define an extra state of the following form:
z(k + 1) = z(k) + Au(k) = 2(k) — Kjy(k) — K3&(k)
u(k) = z(k).
Writing the space description together we have

z(k +1) A 0 B z(k) B, 0 7. .
Z(k+1) |=| PC A-PC B||&k) |+| 0 P W(k)
z(k+1) -KiC -Kj I z(k) o —kj | LR ]

[ (k) ] _ [ _(SKiC+Cy) (=F+SK:+C1) 01 ] %) ]

ok) | ~ ~K, ~K» ol| :gg |
[0 T |8 ]

or

§(k+1) = Ar&(k) + Briy(k)
ys(k) = Cr€(k) + Dey(k).

The state co-variance matrices can be obtained by solving the equivalent covariance

matrices,

E(k + 1)E(k +1)T = (Ap&(k) + Bry(k))(AFE(k) + Bry (k)T (5.9)
= Ap&(k)E(k)T AT + 2ArE(k)w (k)T BE + Bry(k)w (k)T BE
Elg(k + 1)E(k +1)7] = ArE[E(k)E(k)T|AE + BrE[p(k)w(k)T|BE
0} = Apo}AL + Bro?Bf.

og , = CpagC,T.: + Dpaﬁ,Df
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where 02 = E[¥(k)y¥(k)T] is known covariance matrix. Thus the solution to the

above Lyapunov equation will give us the desired state and state error co-variance

2

matrices. Substituting the appropriate entries from o7, we get the expected value of
the design objective function for the regulatory case. The above derivation gives the
expected value of the design cost function for the unconstrained case. This provides

an useful lower bound on the performance for the constrained case.

. The deterministic case with no model-plant mismatch (open loop case): Let
us consider the case where there is no model plant mismatch and the only external
inputs are deterministic changes in the setpoint. In this case the disturbance estimate

will reduce to zero since there is no mismatch, y(k) — (k) =0,

J(k) = {rx — Fi(k) — SAw}} T {ri — Fi(k) — SAui} + Aul AAuy
Ay, = K(ri — F£(k)).

Substituting we get,

J(k) = (1 — F2(k))TQ(r. — Fi(k))
E[J(k)] = E[(ri — F2(k))TQ(rx — Fz(k))]
Q=UI-KS)'T(I-KS)+KTAK

N
. 1 )
= lim_ {N LZ;: nw(k)uQ} .
Finding E[J(k)] in this case requires a different approach

#(k + 1) = Az (k) + Bu(k)
Au(k) = [I 0..0|K(re — Fz(k)) = Kir(k) — K2&(k)

once again introducing the additional state to take care of the integrator we have,

z(k +1) = z(k) + Au(k) = 2(k) + K1r(k) — K2z (k)
u(k) = z(k).

The state space can be described by

s - I R T
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or

E(k+1) = Ap€(k) + Brr(k)
Y(k) = re — FZ(k)

=[ —F 0]&k)+[I...0Tr(k)
= Cr€(k) + Der(k).

We are interested in finding out the weighted root mean squared(RMS)* norm of ¥ (k)
which is equal to the expected value of the design objective function for this case,

N
E(J(k)) = Jim {;1\7 anas)ué}. (5.10)
k=1

—_—OC

The 2-norm of the above closed loop system will give the objective function for impulse

change in the setpoint.

3. The deterministic case with model-plant mismatch: Here we consider the case
where the true plant is different from the model. This analysis is useful in establishing
the impact of modelling uncertainty on the design performance. Let the true plant is
given by

z(k + 1) = Ax(k) + Bu(k)
y(k) = Cz(k)

and the estimator model is given by

#(k +1) = A'2(k) + B'u(k) + P(y(k) — §(k))
j(k) = C'z(k).

The relevant terms in the objective function are given by

di = [L..0]T (y(k) — §(k))
= [I..I|T[Cz(k) — C'z(k)]

“The RMS norm of a signal is defined as: rms(y) = limy —= /& 3o, [ly(k)!|2.
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and the feedback control law is given by
Auy = K(ri — Fi(k) — dy)
= K(re —yx — (F ~ [I...ITC")2(k))
= Kye(k) — Koz(k)
= Kr(k) — K\:Cz(k) — Ka2z(k) — K,Cv(k)
where K1 = K[I...I|T Ky = (F - [I...I|TC").
The objective function is described by
rie — Fi(k) — SAug — dy = . — Fz(k) — S(Ke(k) — Koi(k)) — C1(z(k) — £(k))
= (I...I|T — SK})r(k) + (—F + SK» + C,)z(k)
—(SK\C + Cy)z(k)
o(k) £ ([...1]T — SK)r(k) + (—=F + SK2 + C1)2(k)
—(SK,C + Cy)z(k)
Ay = Kir(k) — K1Cz(k) — Koz (k)
6(k) £ —K z(k) — Koi(k) — Kiv(k)
J(k) = ¢(k)TTo(k) + 6(k)TAO(K).
The expected value of the objective function can be easily expressed in terms of the
powers of the pseudo-outputs defined above,
E[J(k)] = E[(k)TT¢(k) + (k)T AO (k)]
N
= lim {1%, 3 otk + neoc)u;-’\} :
The state space system can be described by
EiiR SN
z(k+1) PC A -PC B k) | +| 0 |r(k)
2(k+1) -KiIC -K» I 2(k) K

k) ] [ ~(GKiC +C1) (—F+GK>+C;) 0 z(k)
[ 6(k) J - [ —-K, —K, 0 ] [ 2‘83

o[ U8R |

or
£(k +1) = Ar€(k) + Brr(k) (5.11)
ys(k) = Cr&(k) + Dfpr(k).
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For a given r(k) we can find out the power of the pseudo-outputs defined above and
they become the value of the achieved objective function for a specific mismatch.
The above analysis could be used in conjunction with the multi-model description of

uncertainty to evaluate its worst-case effect on the design performance.

. The case of deterministic and stochastic inputs: Let us consider the case where
there are both stochastic and deterministic inputs in the system as is the case with

most real systems. The true plant is given by
z(k + 1) = Az(k) + Bu(k) + Biw(k)
y(k) = Cz(k) + v(k)
and the estimator model is given by

#(k + 1) = AZ(k) + Bu(k) + P(y(k) — §(k))
§(k) = C&(k).

The relevant terms in the objective function are given by

di = (1.1} (y (k) — §(k))
= [[..I|T{Cz(k) + v(k) — Cz(k)]
= I,Cz(k) + Lv(k) — L,CZ(k)
and the feedback control law is given by
Auy = K(ri — Fi(k) — di)
= Kir(k) — K,Cz(k) — K2z(k) — K v(k)
where K1 = KIP,KQ = (F—IPC).
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The objective function is described by

re — Fi(k) — SAuy — di = 7 — FE(k) — S(K17(k) — K,Cz(k) — Kai(k)
—Kyv(k)) — Ip(Cz(k) + v(k) — Ci(k))

= (I, — SKy)r(k) + (—F + SK> + C)z(k) +

(SK1C — C))z(k) + (SK1 — Ip)u(k)

¢1(k) & (I, — SK\)r(k) + (—F + SK2 + C1)i(k)
+(SK1C — C1)z(k)

¢o(k) £ (SK1 — Lp)v(k)

AU = Kir(k) — KiCxz(k) — K2z(k) — K v(k)

01(k) £ Kir(k) — Kiz(k) — Kai(k)

62(k) £ —K1v(k)

J(k) = ¢ (k) T¢, (k) + 61(k)TAB1(k) + 26, (k) Too(k)
+26, (k)TT02(k) + ¢o(k)TTo(k) + 81 (k)T A8 (k).

The expected value of the objective function can be easily expressed as in terms of

the powers of the pseudo-outputs defined above,
ELJ(k)] = E{6(k)TTo(k) + 8(k)TA8(K)] + Elgo(k) Ta(k) + 61 (k)T A8 (k)]

‘\7
- 1 \ 9 2 2
= lim_ {F 2 Ul (I + nox(k)n:\} +tr{Ro}}.
k=1
Assuming [z(k), Z(k),ysp(k)] and v(k) are uncorrelated and
R=(SK; - Ip)TT(SK| - Ip) + KTAK,

the state space system can be described by

z(k+1) A 0 B z(k) 0 B 0 r(k)
[:i:(k-%—l)J:l: PC A-PC BJ[:&(k)J+[O 0 P ][w(k)

-

2(k+1) _K.C —K» I || z(k) Ki 0 —Kj || k)
[¢(k) ] _ [ _(SKiC+Cy) (—F +SK;+C) o] [ 283

o(k) —Ki —K> 01| 2k |
(Ip—SKy) 0 —Sk; 1| 7
+[ 0 0 -k ] ‘1‘]’((:))
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or

E(k +1) = Ap§(k) + Br¥(k)
ys(k) = Cr€(k) + Dr¥(k).

By principle of superposition of linear systems we first calculate the variance contri-
bution to the pseudo outputs defined above from the stochastic inputs assuming the

deterministic part or r(k) =0,

o1 (k) = 1 (k) + &i(k)
Elo,(k) T o, (k) = El6](k)TTei (k)] + 2Efd> {(k)TToi(k)] + Eloi (k) Tei (k)]

= lim = Z(lwl (K)|IF + tr{TE[7 (k)¢ (k)T}.

Assuming ¢9(k) and ¢} (k) are uncorrelated and E[¢5(k)] = 0. Similarly we can write

down for the other term in the objective function,

E[6:(k)TT61(k)] = lim — Z(H"’d(k)“r +tr{TE[8; ()6} (k)T }. (5.12)

k—l
The variance terms and the RMS norm terms can be estimated from the closed loop
system defined above using linearity and principle of superposition. Thus the effect of

the stochastic and the deterministic components on the cost function can be evaluated

separately.

. Loss in performance due to the receding horizon implementation. The re-
ceding horizon feature is a unique characteristic of MPC. In the following discussion
we determine the effect of the receding horizon nature on design performance. Under
the assumptions of closed loop stability we will derive the limi_. a(k) for the case
of no model plant mismatch,

E[J(k)]

dm a(k) = g k)

where Jrec(k) is obtained by substituting Aul, = [Au(k) 0....0]7 ie. the receding
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horizon implementation instead of the optimal moves,

Jrec(k) = {ri — Fz(k) — SAu} — di}T T{ry. — Fi(k) — SAuf — di.} + Aull AAu],
= {re — FZ(k) — di.} T{ri — Fi(k) — di} + Aul! (STTS + A)Auj
—2AuT ST {ry — F&(k) — di}

= {ri — Fi(k) — di} T {r — Fi(k) — d} + Au(k)*Hy,

—28u(k)JT {re — FE(k) — di}

where H = (STT'S + A, J= STT and JIT is the first row of J;

Au(k) = [I 0...0)(STTS + A)"'STC(ri — Fi(k) — di) = K1(r. — FE(k) — dy,)
where K = (STT'S + A)~'S”T and K, is the first m rows of K.

Substituting for Au(k) we get,

Jrec(k) = {ri — Fi(k) — di}T (T + Q1 — Qo) {rv — FZ(k) — di}
where Q; = KTH, 1 K1,Q2> = 2KT JT .
If we compare the receding horizon objective function to the design objective function
we have
J(k) = {rx — Fi(k) — SAus. — di}TT{r, — F#(k) — SAug — di.} + AuF AAuy,
= {ri — Fi(k) — di}TT{ry — Fi(k) — di.} + Aul (STTS + A)Auy
—2Aul STT{r, — Fz(k) — d}
Since Auy = (STTS + A)~!STr{r, — Fi(k) —di} we have
J(k) = {ri — Fi(k) — dp} ' T{ri — Fi(k) — di.} — AUTSTT{r\. — Fi(k) — di}
= {re — Fi(k) — dc} (T — Q){ri — Fi(k) — di}
where Q = FTS(STTS + A)STT.

If we define
¢(k) = {rx — Fz(k) — di}

then we have

E[J(k)] = tr{(T — Q)o3} (5.13)
E[Jrec(k)] = tr{{T — Q1 — Q2)02}.
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Therefore
tr{(T — Q)2
tr{(T — Q1 — Q2)0?
_ tr{(I — Q)ag}
tr{(T —Q)o2} +tr{(Q — Q1 — Q2)02
1
T 1+tr{(Q - Q1 — Q)2 }/tr{(T — Q)a2}"

klirgc a(k) = (5.14)

It is obvious that (Q — @; — Q-) is positive semidefinite (since Jrec(k) > J(k)). o2
can be found by the method described earlier. The above expression quantifies the
loss in performance due to the receding horizon nature of the control law. If m = 1,
Q = Q; + Q-2 and there is no loss in performance due to the receding horizon nature
of the control law. Subsequent simulation examples illustrate the loss in performance

due to receding horizon implementation.

. Convergence of the performance index, a(k) : It is important to know that the
performance index, a(k), will not diverge provided the closed loop system is stable.
What conditions are necessary to prove the convergence of the performance index?

Let us consider the case where we are finding the achieved objective function from

the true data,

J(k) = {r — ye}TT{re — yc} + Auf ADu;

= llre — yellE + || Buk[[3.
Therefore we have

J(k) = |Ire — Gk +Jx — yxllE + [|Aug — Aug + Aui3

< e = gell? + gk — wllE + [|Augl R + [[Bux — Aug]1}

= J(k) + |9k — ykll? + [|AOue — Aug|l}

J(k) > [J(k) — 1§k — yell} — l[Aux — Augl}]

J(k) = J(k) + (Gx —ye) T — yr) + (Aug — Aup) TA(Aup — Aug)
—2(ri — §x) T (G — yi) — 28u;T A(Auj — Aug).

Thus the achieved objective function equals the design objective function plus two
terms which are positive and additional two terms which could be either positive or

negative. Whether the achieved performance betters the design performance depends
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on how these last two terms behave,
1 < J(k) < 1
1+ Jo(k)/J(k) — J(K) = |1 = Ju(k)/J (k)]
Je(k) = |lgr — ykllE + llAux — Aug|3.

In the limiting case if the upper bound on a(k) is finite and bounded then it implies
that limg_.c a(k) if it exists, is finite, i.e. the series a(k) is not divergent. We assume

that for a closed loop stable system,

gk — yll? < 7, [|Aux — Aug||? < p, for all k > 0.

Therefore
E[J(K)] < E[J(K)]+%+p
E[J(K)] 2 E[|J(k) — ¥ — pll 2 |[E[J(K)] —7 — p|
If E[J(k)] =9 +5.
Hence
1 _ E[J(k)] < 1 (5.15)

1+ (3 +p)/E[J (k)] < el = E[J(K)] = 1 — (7 +p)/EJK)]
Thus under some assumptions, the performance index will remain bounded. In fact,
equation 5.15 provides useful lower and upper bounds on the performance index. The
tighter these bounds are the closer the achieved performance will be to the design
performance. In the subsequent Sections, simulation examples and an industrial

application will demonstrate some of the properties proved above.

5.4 Simulation examples

5.4.1 Mixing Process

The above approach was applied to a simulation example. The system under consideration
is a 2x2 mixing process. The controlled variables are temperature (y;) and water level (y2)
and the manipulated inputs are inlet hot water (u;) and inlet cold water (u2) flow rates.

The following model is available in discrete form,

0.0235z~1 . —0.1602:—11
~1y _ | 1-0.8607z~ 1—0.8607z—
P(z7') = 0.2043z~1! 0.2839z 1

1-0.9827z-1 T1-0.9827z-1
A MPC controller was used to control this process in the presence of unmeasured distur-

bances. The controller design parameters were:
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p=10,m = 2, A = diag([1,4]),T = diag([1,2]).

White noise sequences at the input and output with covariance equal to 0.1/ served as
the unmeasured disturbances. First the LQG benchmark was found, and the performance
of a constrained and unconstrained MPC was evaluated against this benchmark (see figure
5.6). The constraints on input moves were artificially imposed in order to activate the
constraints frequently. The unconstrained controller showed better performance compared

to the constrained controller with respect to the LQG benchmark.

24 v . —

IVar(y)IlIVar(w)

) 0.1 02 0.3 04
(Var(u)iliVar(wil

Figure 5.6: MPC performance assessment using the LQG benchmark

A plot of the LQG objective function compared to the achieved objective function is
shown in figure 5.7. A performance measure of 0.6579 was obtained for the unconstrained
controller.

Performance assessment of the same controller using the design case benchmarking ap-
proach yields contrasting results (Table 5.1). For the unconstrained controller a performance
index 0.8426 revealed satisfactory performance while the imposition of constraints led to
a performance index of 1. The constrained controller showed improvement according to
one benchmark and deterioration with respect to the LQG benchmark. The design case
approach indicates that the controller is doing its best under the given constraints while
the LQG approach which is based on comparison with an unconstrained controller shows a
fall in performance.

Figure 5.8 shows the input moves during the regulatory run for the constrained con-

troller. The constraints are active for a large portion of the run and are limiting the
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Figure 5.7: Comparison of the achieved performance with the LQG objective function.

Table 5.1: Effect of constraints on MPC performance

LQG | E(J)/E(J)
Unconstrained | 0.6579 | 0.8426
Constrained 0.4708 | 1.00

performance of the controller in an absolute sense (LQG). On the other hand the controller

cannot do any better due to design constraints as indicated by the design case benchmark.

5.4.2 Effect of reduced order modeling

A contrived example was considered to show the effect of mismatch on such performance
measures. The true plant is a third order overdamped process: G(s) = 1/(s+1)(3s+1)(5s+
1) whose discrete equivalent for a sampling time of Ts =1 is

0.0077z—! +0.02122"2 + 0.0036="3
-1y
G ) = {1 9031s-T + 1.15142 7 = 0.2158:-3 (5.16)

This plant is approximated by the following 1% order model which is estimated through

identification techniques:

0.0419z~! +0.0719z2
1—-0.89692"1

In practice such approximations are common and the controller design is often based on

reduced order models. It should also be noted here that both the plant and the model have

G(z™Y) = (5.17)
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Figure 5.8: The input moves for the constrained controller during the regulatory run

non-minimum phase zeros. The presence of non-minimum phase zeros is known to pose
fundamental limitations on achievable performance. The nominal regulatory performance
of a MPC controller relative to the optimal performance curve is shown in figure 5.9. The
effect of the prediction horizon on regulatory performance is illustrated in table 5.2. A
reduction in the prediction horizon leads to improved regulatory performance according to
both performance measures.

Table 5.3 shows the tracking and regulatory performances of the MPC based on the
design case benchmark for (1) the nominal case or the design case, (2) the achieved case
with model plant mismatch and (3) the achieved case for the constrained controller. The

MPC tuning parameters were:

P=8,M=2A=IT=1I
—1< Au(k) £1,-10 < u(k) < 20.

The MPC controller shows acceptable tracking performance but poor regulatory per-
formance. For the regulatory case unmeasured disturbance were added at the input and
output with variances equal to 0.01. For the tracking case a square wave of magnitude
+1 was used. A comparison of rows 1 and 2 of table 5.3 shows clearly the effect of model
plant mismatch on performance. Again, the imposition of constraints led to improvement
in performance (see rows 2 and 3). A comparison of columns 1 and 2 with column 3 shows
that the tracking performance dominates the combined case leading to a satisfactory overall

performance. Table 5.4 shows the regulatory performance for stochastic and deterministic
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Figure 5.9: Regulatory performance of a model predictive controller.

step type disturbances. The stochastic disturbances were added at the input and output
with variances equal to 0.01. The deterministic disturbance was a square wave of magnitude
+0.25 added at the output. The first column of this table is similar to column 2 of table
5.3. The MPC controller shows poor disturbance rejection for either type of disturbance.
The model plant mismatch does not affect the regulatory performance significantly. A sim-
ilar observation can be made in the presence of constraints. The constraints were never
activated in the regulatory runs.

Figures 5.10 (a) and (c) show the comparison of the design and achieved objective
functions for different control weightings. For A = 0 the achieved objective function is
significantly higher than the design values and the system shows a poorly damped servo
response (figure 5.10 (b)). For A = 0.5 the design objective has higher values and is closer
to the achieved values. The result is a comparatively satisfactory servo response (figure
5.10 (d)). It should be noted here that as a result of higher A, the design performance
requirements were lowered in order to reduce the difference between the achieved and the
design performance (performance degradation). For A = 0 the design requirements proved

to be too stringent and the achieved performance deteriorated considerably.
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Figure 5.10: Comparison of design (-) and achieved performance objectives (- -) for A =0
(a) and A = 0.5 (c) and the corresponding servo responses achieved by MPC - (b) and (d)

5.5 Application to QDMC assessment

A QDMC controller in Shell’s hydrocracker unit (HCU) was chosen for assessing QDMC
performance. The QDMC manipulates the mild vacuum column (MVC) bleed flow and
the two second stage weighted average bed temperatures (WABTS) to control the recycle
surge drum level. The real CV in the controller formulation is the change in level (Ah) .
Since the application controls one level with two WABTSs, an additional controlled variable,
the A WABT was added. The WABT is the difference between the train 1 and 2 second
stage WABTSs. Its setpoint may be adjusted to balance the hydrogen consumption gap
between the trains. Figure 5.11 shows a schematic of the process and the position of the
mild vacuum column with respect to the reactors whose WABTSs are the MVs. The QDMC
is implemented once every 10 minutes. This QDMC application currently has 2 controlled
variables (CVs), 3 manipulated variables (MVs), 1 permanently constrained manipulated
variable (PCMYV), 3 associated variables (AVs) and 2 feedforward variables (FFs). The
prediction horizon p = 20 and the control horizon m = 5.The HCU is in material balance
whenever the recycle drum level is steady, indicating the reaction severity is just enough

to crack all recycle material to extinction (Shell Application Manual - Howie, 1995). This
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condition is necessary to properly optimize the unit, whether through manual adjustments
to such variables as CFR or product cutpoints, or through on-line moves made by the HCU
optimizer. The purpose of this application is to make adjustments to reaction severity in
order to bring the unit back into balance after a disturbance has occurred.

The bleed flow rate has been included in this control application as a MV so that short
term fluctuations in the level will be carried out of the unit by adjusting the bleed rather
than being kept within the unit. The application will adjust the second stage WABTSs
slowly over a longer time frame to keep the daily average bleed flow at the desired target.

As long as the drum level is steady and remains within the constraint limits, the con-
troller will make minimal moves to the second stage WABT setpoints of both trains and
the bleed flow rate. Larger moves will be made when the level changes quickly and when
it appears that the recycle drum level high or low limit will be violated. The difference
between the reactor severity in each of the HCU trains is maintained by controlling the A
WABT: the difference between train 1 and train 2 second stage WABTs.

Total fresh HCU feed flow and the HGO draw flow are included as feedforward variables
in the QDMC application currently. The controller will anticipate the effect of changes in
these variables when computing the size and direction of moves to be made to reactor

WABT’s. Included amongst the associated variables are:

1. Recycle drum level with the purpose of providing a means of level flow smoothing i.e.,
the level is allowed to float within this range with fewer moves by the controller, but
once outside this range the control moves are more aggressive. The level is constrained

to lie within 40 and 60% of the maximum.

N

To prevent the MVC filter temperature limit trip, the temperature is constrained by

a maximum limit.

3. To maintain MVC bottoms level, the valve position of the level controller is con-

strained to lie above 5%. The level could otherwise be easily lost due to excessive

bleed Hows.

The degree to which the constraint limits are followed and the controlled setpoints are
relaxed depends on how the application tuned. The QDMC application is also programmed
to deal with hard constraints on the manipulated variables and their rate of change.

Figure 5.12 shows the step response models between the MVs.FFs and the CVs, AVs.
A QDMC based on the step response models is used to control the surge drum level.3
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Table 5.2: Effect of prediction horizon on regulatory performance

LQG | Design vs. Achieved
P=8 | 0.5161 | 0.6875
P=5 | 0.7027 | 0.8564

Table 5.3: Tracking and regulatory performance

Tracking | Regulatory | Combined
Nominal 0.9036 0.4724 0.8441
Achieved 0.7547 0.4621 0.7474
Constrained | 0.8120 0.4621 0.8038

Table 5.4: Disturbance rejection properties of MPC

Stochastic | Deterministic | Combined
Nominal 0.4721 0.4295 0.4559
Achieved 0.4617 0.4083 0.4353
Constrained | 0.4617 0.4087 0.4353
MV, My, PCMV FF, FF,
Ccv, L & \_ / \—
[} 10 20 0 10 20 o] 10 20 [} 10 20 0 10 20
ov, / \
b 10 20 o] 10 20
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- \ \ / \
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¢} 10 20
AVJ \
o 10 20

Figure 5.12: The step response models between the active inputs and outputs.
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Figure 5.13: Performance Measure based on comparison of the design and achieved objective
functions.

Data was collected for over two weeks and the next Section deals with the performance

of the QDMC based on this data.
Design vs. Achieved Objective function: The on-line predicted values were available
for the CVs, AVs and MVs. These projections were used to calculate the design objective
function and this was compared with achieved objective function. Figure 5.13 shows the
ratio of the cumulative design and achieved objective functions, a(k). The overall achieved
performance is 87.44% of the design performance amounting to an average 12.56% degra-
dation of performance. The sudden shift in the performance index was found to correspond
with the large drop in the total fresh feed flow rate (see figure 5.14).

Figure 5.15 shows the mean values of the design and the achieved objective functions
along with their components as discussed in Section 5.3. Once again the large increase in
the design objective function coincides with the drop in fresh feed. This observation leads
us to conclude that the increase in performance index in figure 5.13 is due to a lowering
of the design performance whereas the achieved performance is relatively unchanged. The
sudden drop in FF1 is later confirmed where the flow meter was taken out of service for
recalibration. The actual fresh feed is unchanged but a false reading is used in QDMC
to produce unnecessary moves. For the achieved objective function, the CV (78.43%) and
the MV (15.59%) terms are the two major contributors, whereas for the design objective
function the CV (84.42%) and the AV (15.44%) terms are dominant. Table 5.5 shows the
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Figure 5.14: The FFs time series plot.

Table 5.5: Contribution of various terms to the design and achieved objective functions

E(J) | CcVv MV PCMV | AV
522 | 84.42% | 0.08% | 0.05% | 15.44%
E(J)|CV MV PCMV | AV

596 | 78.43% | 15.59% | 1.31% | 4.68%

final mean value of the objective function and the percentage contributions of the various

terrmas.

Figure 5.16 shows the performance indices based on the individual terms in the objective
function. For the CVs the achieved performance is almost equal to the design performance
(94.13%), the MVs and the PCMVs the achieved is much worse than the designed perfor-
mance at 0.47% and 3% respectively. For the AVs alone, the achieved performance is much
better than design performance (288.4%).

To summarize the outcome of this industrial case study:

e The QDMC application for the recycle drum level control is delivering satisfactory

performmance. The performance index is 0.87, according to the objective function

method.

e The constraint handling, however, is not satisfactory. Constraints on the drum level

are violated 24.5% of the time. Constraint violations also cause poor performance in
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Figure 5.16: Performance indices based on comparison of the different components in the
objective function.
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CV2, the difference between the WABT setpoints for train 1 and train 2. The possible

reasons include a poor model for AV1 and/or unmeasured disturbances.

e There appears to be a sensor false reading for FF1, the total fresh feed flow at sampling
instant 533. This was confirmed by noticing that the achieved objective function is
unchanged whereas the design objective function undergoes a large change at this
point in time. The prediction error analysis also led to a similar conclusion since the
model predictions showed a large upset and the measured values of the outputs were

relatively unchanged.

5.6 Conclusions

Performance assessment of model predictive controllers based on (1) the LQG benchmark
and (2) the design case benchmark, is recommended in this chapter. The use of the LQG
benchmark requires knowledge of the process and noise dynamics. In practice only approxi-
mate models are available for either the process or disturbances. This can lead to inaccurate
benchmarking via the LQG approach. Qur future goals include the incorporation of the
effect of modeling uncertainty into the LQG benchmarking scheme.

The design case benchmark proposed in this work can be treated as a relative measure
of performance. The nominal or the design case serves as the basis for comparison with
the achieved performance. This approach makes indirect use of the prediction model used
by the controller. The multivariable nature of most chemical processes and presence of
nonlinearities does not pose a hindrance to the application of this method. The proposed
measure of performance has been shown to be sensitive to model plant mismatch, hard con-
straints, stochastic and deterministic disturbances through two simulation examples. Some
theoretical properties of this index were established. These include analytical estimation
of the design objective function, effect of the receding horizon policy on MPC performance
and conditions for convergence of the proposed index. An industrial case study was used
to illustrate the usefulness of this performance metric.

In summary the two approaches presented here are two different ways of evaluating
performance, the LQG approach is an absolute measure of performance while the design
case benchmark is a relative measure. The next logical step in performance assessment is

to determine the causes of poor performance as defined by either of the above measures.
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Chapter 6

Issues in Performance Diagnostics
of Model-based Controllers

6.1 Introduction

One of the primary objectives of performance assessment is to evaluate existing controllers
using routine operating data. Several researchers have proposed ways of automating this
assessment process through time series analysis and comparison with the minimum variance
controller (Harris, 1989; Huang et al. 1997). A poor performance index can be the out-
come of one or more of the following: (1) Poor controller design (2) Varying disturbances
(3) Limits on achievable performance with existing process control structure (4) Design
constraints (5) Changes in plant dynamics. After a preliminary investigation if the control
engineer finds that the controller is not doing well, one would also like to have a diagnosis
i.e. establish the reasons for poor performance.

Most of the recent work in performance assessment has focused on obtaining statistics
for performance from routine operating data. Little attention has been paid to the area
of diagnostics. If the statistics indicate poor performance there are no systematic ways
of detecting the underlying causes. Kesavan and Lee (1997) addressed this issue in the
context of multivariable model based controllers. They base their diagnostic scheme on a
mechanistic model of the process and analysis of the prediction errors. Presence of closed
loop excitation is necessary in order to implement their scheme. Stanfelj et al. (1993)
use the cross-correlation test to distinguish between plant modelling error and disturbance
modelling error. The cross-correlation between the setpoint changes and the model plant
mismatch is checked to verify which model needs attention. Tyler and Morari (1996) ex-

pressed a large number of performance measures as constraints on the FIR coefficients of

A version of this chapter has been accepted for presentation as “The Effect of Uncertainty on Controller
Performance”, 1999, R. S. Patwardhan, S. L. Shah and B. Huang, IFAC World Congress, Beijing, China.
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a pre-whitening filter. Subsequently hypothesis testing was used to detect if any of these
constraints are being violated leading to a deterioration in performance. More recently
Gustafsson and Graebe (1998) propose the use of statistical hypothesis testing to detect
whether an observed change in nominal performance is due to a disturbance or due to a
change in the process that has affected the robustness of the closed loop system.

The objective of controller design is to optimize the performance under feedback. The
characteristics of a problem decide the choice of the design objective. Of primary importance
is the stability of the closed loop control system. Conventionally a single measure of the
tracking/regulatory performance in either the time domain or the frequency domain forms
the design objective. More often than not the process has features which limit the achievable
performance of any controller. Amongst these limiting features are the presence of time
delays, non-minimum phase zeros, constraints on the inputs and outputs, etc.

It is important to know at the outset what is the contribution of these features towards
the minimum achievable performance. The knowledge of the minimum achievable perfor-
mance is useful in assessing the performance of any controller. The contribution of the
time delay term towards minimum achievable variance is well known and this forms the
basis of the minimum variance benchmarking in performance assessment (Huang, 1997). In
this chapter we have focused on the quantifying effect of (i) non-minimum phase zeros, (ii)
input and output constraints and (ii) the presence of modelling uncertainty and disturbance
uncertainty and (iv) the impact of nonlinearity on the performance of a linear model-based
controller.

The rest of this chapter is organized as follows: Section 6.2 gives the preliminaries
required for further analysis. This includes discussion of conventional feedback control,
introduction to some common norms for signals and systems and the internal model control
framework which we adopt throughout the chapter. Section 6.3 reviews known results on the
fundamental limitations on performance of a discrete controller due to (i) discretization, (ii)
nonminimum phase zeros and (iii) hard constraints. An interesting results due to Toker et al.
(1998) points out that directionality of external inputs can significantly affect the system
performance. In section 6.4 we derive bounds for the worst case achieved performance
for a uncertain system. The effect of uncertainty in time delay is highlighted and the
results are extended to the multivariate case. The combined impact of deterministic and
stochastic inputs is illustrated. The results are extended to the multivariate case and
the effect of uncertainty in the diagonal interactor on multivariable performance measures

is established. The impact of nonlinearity on the performance of a linear model based
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Figure 6.1: The conventional feedback system

controller is highlighted in section 6.5. The nonlinearity measure of Allgower (1995) as
defined under feedback is utilized in obtaining a bound on the deviation from the design
performance. A discussion of model predictive control is included. Simulation examples are
used to illustrate the main results in section 6.6. Section 6.7 gives the concluding remarks.

Throughout this chapter we have restricted ourselves to the case of stable plants. We
are looking at the class of discrete systems which are finite dimensional linear time invariant
(FDLTI). For the sake of brevity, we have omitted the argument 2 in writing the relations
between the signals and the transfer functions for discrete systems. Most of the theory
developed here is for SISO systems although it can be easily extended to the multivariable

case.

6.2 Preliminaries

Figure 6.1 shows the standard feedback configuration. The measurement error m is assumed
to be unknown and most frequently described as a white noise process. The disturbance d
is made up of measured and unmeasured disturbances. The measured disturbances may be
compensated via a feedforward controller.

For a SISO process, the closed loop relations between the inputs and the outputs can be

written as:
(1+ PC)y =d+ PC(r —m).
If we define the sensitivity function as
S=(Q1+PC)L
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and the complementary sensitivity function or the closed loop transfer function as
T=(01+PC)"'PC

then we have
y=5S8d+Tr —Tm. (6.1)

With this controller structure we have only one degree of freedom (C). Ideally we would
like to have S as small as possible at all frequencies to ensure good disturbance rejection
and T close to unity for acceptable tracking performance. On the other hand we would
like T to be small for the feedback loop to be insensitive to measurement errors. From the

above relations we have
T+S=1. (6.2)

Hence if we make S zero, then T will be unity and vice-versa. This leads to an unavoidable
trade-off in controller design between tracking and measurement noise attenuation. In
process control usually the setpoint changes and the disturbances occur in the low frequency
region, while the spectrum of measurement errors is uniformly distributed over a wide
frequency range. The solution often adopted is to make |S(e’*)| small at low frequencies (
[T(e7*)| = 1) and |T'(e’*)| small at high frequencies. Presence of right half plane zeros/poles
poses fundamental limitations on the range of frequencies over which sensitivity function can
be reduced. For a more detailed discussion of these factors the interested reader is referred to
Maciejowski (1989). Skogestad and Postlethwaite (1996) also give an informative discussion
on the role of different factors such as RHP zeros/poles, input constraints, uncertainty,
exogenous inputs in limiting achievable controller performance for SISO and MIMO systems.

Some idea of the size of a signal and the relevant transfer functions, such as the sensitiv-
ity function, are needed in order to quantify performance of a control system. Two norms

for capturing the magnitude of a signal are:

2-norm  : |ullz = {u(0)* +u(1)? +...}/? (6.3)

oc-norm  : ||u|loc = sz;plu(k)l.

The following system norms provide ways of capturing the magnitude of a linear time
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invariant system (Chen and Francis, 1995):

l-norm :  ||P||; = |P(0)] +|P(1)| +...= sup 71 (6.4)
fulleor0 (%]
1 [ a1 ) )
2n0m : |[Plh= (5 / |P(7)2dw) !/ = P(0)2 + P(1) + ..
0
conorm :  [|P|ja = sup |P(e%) = sup 1¥2.
w lfull=o |ll2

The 1-norm is defined in terms of the impulse response -P(0), P(1)..., whereas the 2-norm
and the oc-norm are defined in terms of the transfer functions. The 2-norm of a signal is
invariant with respect to the Z-transform. The oo-norm obeys the following property, in

addition to basic properties that define a norm:
1PLP2]loc < [[P1]loc]|P2floc- (6.5)

In fact this property is satisfied by any induced norm such as the 1-norm. A detailed discus-
sion on signal and system norms and their properties, for univariate as well as multivariate
systems, can be found in Boyd and Barrat (1991).

The internal model control (IMC) framework provides a way of re-paramaterizing the
conventional controller (Morari and Zafiriou, 1989). It is well known that this approach is
equivalent to the celebrated Youla-Kucera parameterization of all stabilizing controllers for
a stable system. Figure 6.2 shows a schematic of the IMC framework. The controller Q in
the IMC framework is related to the conventional feedback controller C in figure 1 by

Q=C{+PC)™!.

For stable plants a stable Q guarantees internal stability. The nominal sensitivity function

and the complimentary sensitivity function can be expressed in terms of Q as
S=(I-QP),T=QP. (6.6)

In the remaining part of this chapter we use the IMC framework for analysis purposes.

6.3 Fundamental Limitations on Performance
6.3.1 Effects of discretization

One of the most fundamental limitations on the performance of a discrete controller is due
to the sampling process. The sampling rate determines the information available to the dis-

crete compensator and limits its performance (Morari and Zafiriou, 1989; Chen and Francis,
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Figure 6.2: The internal maodel control stucture

1995). An inappropriate choice of the sampling interval can lead to loss of controllability
for the discrete systems (Chen and Francis, 1995). A large sampling interval relative to the
dominant process time constant limits the range of frequencies over which disturbances can
be attenuated. A poorly designed discrete time regulator can lead oscillatory intersample be-
haviour. These and other effects of discretization are well studied and we refer the interested

reader to Morari and Zafiriou (1989) and Chen and Francis (1995) for a detailed discussion of

these issues.

6.3.2 Limitations due to non-minimum phase zeros

Non-minimum phase zeros pose limitations on achievable performance under feedback. It is
a well known fact in performance assessment that the non-minimum phase part, imposes the
most basic limitations on minimum achievable variance. The minimum variance benchmark
is based on the idea that first few impulse response coefficients of the closed loop system
are controller invariant. In general we can have non-minimum phase zeros. The frequency
domain effects of such elements is well known, non-minimum phase zeros pose limitations
on the shaping of the sensitivity function. The following result from Morari and Zafiriou

(1989) is useful in quantifying the effect of non-minimum phase zeros on achievable controller

performance.

Theorem 6.1. Assume that P is stable. Factor the model, P into an all pass part P4 and

a minimum phase part Py

P =PyPy
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where

- vy A= (@) )(z—ay)
— N J 7
Fa=sz }1 1—a)(z—(a)™)

and aj,j = 1,..,h are the zeros of P which are outside the unit disk (D). The positive
integer N, is chosen such that Py; is proper i.e. its numerator and denominator have the

same degree. Factor the input, 0(z) similarly - i.e.
9(2) = Da(2)0ar(2)
The H. optimal controller is given by
Qi (2) = 2(Pyvar) Hz7 Pyl ).

where the operator {.}. denotes that after a partial fraction expansion of the operand only

the strictly proper and stable (including poles at z=1) terms are retained.

The proof for the general case can be found in Morari and Zafirou (1989). Here we
prove this theorem for the special case where the input v does not have poles on the unit
circle. Before embarking on the proof we need to briefly introduce the concept of H> spaces
(Chen and Francis, 1995). All real-rational, proper transfer functions with no poles in the
inside or on the unit disk make up the H, space. Its complement, the H5 space contains
those transfer function having no poles outside or on the unit disk. These two spaces are
orthogonal complements as defined by the inner product of two transfer functions®. For
SISO systems this decomposition can be obtained by a partial fraction expansion.

2The inner product of two transfer functions is defined by (f,g) £ 5= 02’ f(€%)g(e’*)dw where the
operator ~ denotes the complex conjugate.
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The above result is obtained by minimizing the 2-norm of the error:

min |lell} = min [|(1- PQ)?I
1= PRUIE = (1~ PaPrQ)oadarli3
= ||(1 = 2P1Prrz7' Q)0s|13
= [|zP4(27 P! — Py271Q) |13
= [|[{z71Py 0ar} — PrrzQinng||3
= [{z7 Py oarte, + {27 By o} g — Parz 7' Qiy|13
= [{z7 Py oar} 1B + 11{z7 Py oar ks, — Paz'Qbnl(3
ﬂgn (1 - PR3 = mcgn [[{z"" Py Oar}ter, — Purz"'Qinr|f3 &
Qu, = 2z(Pyroa) Yz Piroar},
The minimum error norm is given by

min|lel} = [[{z7" Py Oar}usll3-

Thus the right half plane zeros pose limits on the minimum achievable error norm. No
controller can be designed to overcome these limitations. Toker et al. (1997) extend this
result to the multivariate case taking into account the effect of input directionality on
multivariable performance. They show that even for non-minimum phase systems one can
achieve perfect tracking if the generalized step input is aligned in a direction orthogonal to
the zero directions. In other words, you can perfectly track only certain types of setpoints
and not any setpoint. We state their results for the sake of completeness. A non-minimum

phase, right invertible transfer function matrix P(z) can be factorized as
P(z) = P4(z)P(2)

where P4(z) is the all pass factor containing all the non-minimum phase zeros of P(z) and
Py;(z) has is the minimum phase part. If a;,7 = 1, ..,k are the non-minimum phase zeros,

then one specific factorization is given by

laza.,

k
Py(z) = [] P1i(2), Pai(2) & 1= ’7Jh +UUE.
=1 a; 1-

Here 7, are the unitary vectors obtained by factorizing the zeros one at a time, and U; are
matrices which together with 7, form a unitary matrix; nf denotes the complex conjugate

transpose.
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Theorem 6.2. Let u be the step input, u(k) = v,k > 0, where v is a constant vector with
[lvlla = 1. Assume that P(z) is stable, P(z) has full row rank for at least one z and v €

range space of P(1). Then
k 2
. 2 la:" -1
min ||e|]5 = ————cos‘ Z(n;,v
lelly = 3= 12— cos® £(m;,v)

where Z(1;,v) = |nfv].
This results implies that perfect tracking is achievable for MIMO nonminimum phase
systems. Consider the case where the plant has a single nonminimum phase zero, a with a

zero direction n7. The minimum tracking error reduces to
la]? — 1
la — 12

If the step input is aligned with a direction orthogonal to the zero direction, it follows that

min [[e[3 = cos? £(,v).

perfect tracking can be achieved.

6.3.3 Effect of hard constraints

One of the main objectives of a control system, in a practical setting, is to maintain the
controlled and the manipulated variables in a feasible region. Physical limitations on the
manipulated variables have to be respected and economic considerations require the con-

trolled variables to be maintained at certain desired values. Let us consider the following

constraints on the inputs:
u < u(k) <a.
We assume, without loss of generality, that u= —4. In terms of the co-norm we can then
write
llullee <.
For the case of deterministic inputs and no model plant mismatch the input in time domain
is given by:
u(k) = - Z:Q(z‘)r(k - e

Hulloe < 1@QIl1lIr]loe-

Therefore the following condition can guarantee satisfaction of input constraints

QIhlIrlle < @& (6.7)

u _
QI £ j=— = [yl < 2.
[I7]loc
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Now let us consider constraints on the output [|y||c < 7. For the case where there is no

MPM and the only external inputs are setpoint changes:

y = Tr <
gk) = zf(i)r(k—i)ﬁ
llle < NTlir]loc-

Therefore we can impose the constraints on the complementary sensitivity function,

Tl < ﬁz_x = [lille < 7- (6.8)

Similarly we can derive bounds for the satisfaction of constraints on the input moves -

Au(k) =ulk) —u(k —1) = (1 —271) Au,

= ||Auf|ec < Aupax- (6.9)

(1 —-2"H)Qlh <

The above analysis reveals whether a linear controller will satisfy the design constraints on
the inputs and the outputs. Alternatively one could design a linear controller which satisfies
the above constraints on the 1-norm. Such a controller will guarantee constraint satisfaction
although the design procedure will become more complex. The ; optimal control approach
of Dahleh and Diaz-Bobillo (1995) is based on minimizing the 1-norm of the relevant closed
loop transfer function under the above constraints.

The problem of quantifying the effect of constraints on the performance of a model
predictive controller is not a straightforward task. In chapter 2 we pointed out that the
constraint set for the inputs, uy is, in general, a time-varying convex set €. It is well known
that the constrained performance can be no better than the unconstrained performance and
this gives us a lower bound which can be analytically calculated (see chapter 5). The active
set of constraints is impossible to predict and therefore the exact loss in performance due
to constraints is an intractable quantity. The worst case loss in performance could be

established if for a known set of external inputs we knew which active set of constraints led

to highest cost function, i.e.,

JF¢ = max Jy = min —J; &
ur €% up €%
Jg¢ £ Jg S U

where J¢ denotes the unconstrained solution at sampling instant & and J; is the optimal

constrained solution.
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6.4 Effect of uncertainty in the plant model

In practice many components of the model, including the time delay, are never precisely
known. For example, the process time delay may be time varying duve to changing flow
rates. Furthermore most chemical processes are inherently nonlinear, and can be approxi-
mated by fixed linear models only in the neighbourhood of the operating point. These and
other factors lead to the presence of uncertainty in modelling. A controller whose design
is based on the nominal model of the process is unlikely to deliver the design performance
in the presence of model plant mismatch (MPM). The presence of uncertainty leads to a
gap between the designed and the ackieved performance. The knowledge of the contribu-
tion of uncertainty towards the possible deterioration of controller performance is vital to
performance assessment and diagnosis (Kozub, 1996).

The effect of uncertainty on closed loop stability is well known and is the topic of several
books and articles (see for example — Doyle, 1992; Morari and Zafiriou, 1989 ). The objective
of this work is to quantify the effect of modelling uncertainty on the achieved performance
of a linear model based controller. For the regulatory case with stochastic inputs, the use of
Parseval’s theorem is instrumental in obtaining bounds on the achieved input and output
variances, relative to the design case. For the case of deterministic inputs, the induced
H.. norm definition is used to derive bounds on the achieved performance in relation to
the design performance, with the 2-norm (sum of squared errors (SSE)) as a measure
of performance. A simulation example is used to illustrate the effects of uncertainty in
time delay on controller performance, in the context of minimum variance benchmark as a
measure of performance.

Uncertainty can be structured or unstructured. Two common ways of representing

unstructured uncertainty are given below (P is the model, P is the plant).

Additive Uncertainty : P=P+A (6.10)
Multiplicative Uncertainy : P =P(1+ An)
The perturbations belong to the set of stable transfer functions that preserve properness
of the P. A practical way of representing the uncertainty is through appropriate weighting
functions,
P = P+wA (6.11)
P =P 1+ W2AR)
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where W7, W, are chosen such that |[Allc < 1,]|Am|loc < 1. These weighting functions
describe the distribution of the model mismatch over the frequency range. In the remaining
discussion we consider the case W1 = W2 = 1 and the subsequent results are derived for a
specific perturbation. The results can be easily obtained in terms of the weighting functions
for the uncertain set described by 6.11. In this section we analyze the effect of modelling
uncertainty on the performance of a control system in terms of the 2-norm. In particular
we derive bounds on the achieved performance in terms of the design performance and the
oo-norm of a certain transfer function. The achieved sensitivity and the complementary

sensitivity functions, in the presence of the additive uncertainty, are given by
S=({I-QP){I+QA),T=QPI+QA)". (6.12)
Thus the achieved sensitivity function is related to the design sensitivity function by
S=8(I+QA)". (6.13)

In the remaining discussion we restrict ourselves to the case where there are no setpoint
changes i.e. the regulatory case (see figure 6.2). Using Parseval’'s Theorem we have for the
SISO case:

~ SN
y 0,2a21r
Var(y) = 22 /0 |SI2|N|2dw (6.14)

Il

%a / 71501 + QA) 2 N Pdw
0

IA

2|11+ QA) 1% /0 ISPV 2w

27
< N1 +Qa)THE Var(y).
In a similar way we get the following lower bound,
1
Var >
®) 2 QA

Therefore in time domain the loss in performance due to modeling uncertainty is given by

Var(y).

the following performance bounds,
1 < Var(y)
1+ QA% ~ Var(y)
The performance bound can be further simplified and expressed in terms of ||QA||~ for the
case where [[QA||o < 1, it can be shown that (see Boyd et al., 1992)

1 Var(y) 1
A+ QA1) = Var@) = (- [QAln) (6.16)

< [11+QA) k. (6.15)
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Var(y)

Var(u)

Figure 6.3: Illustration of the effect of modelling uncertainty on achieved performance

We can define an upper bound for the increase in input energy (variance) due to uncertainty

via a similar derivation.

u — _Q—Na
1+ QA
0,2 i o Y
Varw) = g2 [71Q0 +Qa) 1PN

IA

0.‘21 —1n2 27 5
sel+ @A)k [* QPN Paw
< 110 +QA) (L Var(a).

Once again we have the following time domain bounds on input variance due to MPM

1 < Var(u)

1+ QA|Z ~ Var(a) < ll(l‘*‘QA)_ngc (6.17)

Thus we have arrived at a single performance degradation measure for both the input and
output variances. The geometry of this region is highlighted in figure 6.3 in relation to the
LQG benchmark. If the MPM was negligible the shaded region would be very small and
the larger it is the bigger the possible degradation of the control system in terms of loss in

performance.

Remark 6.1. It should be noted here that this is an upper bound and therefore a con-
servative estimate. The actual loss in performance would depend on the spectrum of the

disturbances in relation to the spectrum of the uncertainty and the controller.
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Remark 6.2. The lower bounds derived in equations 6.16 and 6.17, being less than unity,
do not guarantee that the performance is worse in presence of model plant mismatch. This
is an interesting observation since it implies that the achieved performance can actually be

better than the design performance.
We can also express similar bounds on the achieved objective function of a linear
quadratic guassian (LQG) optimal controller:
Var(y) + AVar(u)
= 2= { [T1sa+r@a)r pnan+ [ 100+ @A) i

2

< 1 +QA)TYE% (Var®®) + AVar(a)) <
Soh < (1 +QA) 1% (6.18)
LQG

In case the above performance bounds indicate a significant MPM, the next step is to
determine the robustness of the existing controller with respect to the estimated uncertainty.
Let us assume that the controller design was done with the nominal model as the plant. A
controller C is said to provide robust stability if it provides stability for every plant in the

set. The following theorem provides us with a way of assessing robust stability.

Theorem 6.3. For the multiplicative uncertainty model, the controller C provides robust

stability iff ||TAm||oc < 1, where T is the nominal complementary sensitivity function
Proof. For the proof see Doyle et al. (1992).

This is also known as the Small Gain Theorem (SGT). A simple measure of robustness
follows from application of the SGT for the additive uncertainty case. In terms of the

additive uncertainty, for the system to be robustly stable we have

QA= < 1. (6.19)

Let

p £ ||QA||x : Robustness Measure (6.20)

The smaller the value of p the more robust is the control system, and conversely, the closer
it is to unity the closer it is to instability due to MPM. In terms of the robustness measure
the performance measure can now be rewritten as:

1 < Var(y) < 1

(1+p)* ~ Var(y) ~ (1-p)* (6.21)
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Therefore the smaller the value of p(< 1),the achieved performance will be close to
the design performance. It is well known that the design performance itself is lower for
a system with a large robustness margin. On the other hand if the feedback system has
poor robustness properties, i.e. p = 1, the higher will be the uncertainty in performance
t.e. we pay the price for being less robust by a possible loss in the design performance.
There is a higher risk of instability if there is a further change in the plant dynamics. The
above discussion portrays the traditional trade-off between performance and robustness
in a different light. Note that y.j are themselves functions of Q, A, P.In general, an
estimate of the uncertainty may not be available. Appendix A gives a way of estimating the
multiplicative uncertainty under closed loop conditions via non-parametric identification

techniques.

6.4.1 Deterministic Inputs

In a practical setting a process is subject to different kinds of inputs such as setpoint changes,
random walk type disturbances, measurement noise, etc. In this section we consider the
effect of modeling uncertainty in the presence of deterministic as well as stochastic inputs.

Let us take the case where we have setpoint changes, i.e., the tracking performance,

y = Tr
e = r—y=(Q1-T)r=Sr
e = S1+QA)'re

9

llellZ < 111 +QA)~Y 2 [1éli3-

Thus the we have a worst case bound on the sum of the squared errors (2-norm) using the
same transfer function (1 +QA)™! as before. The same limit can be re-derived for the case
where we have deterministic disturbances
e = S(r+d)s
llell3 < 11 +QA)~! 1% [lel]3.
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6.4.2 Mixed Inputs

Now let us consider the case where we have both, deterministic as well as stochastic distur-

bances,

y = Tr+Sd+SNa (6.22)
Sr+Sd+ SNa

(1+QA)"'S(r+v+ Na) &

llell3 < 111 +QA)7Y 2|3

®
I

6.4.3 Uncertainty in the time delay

Here we discuss the special case where the uncertainty is present in the process time delay.
In practice uncertainty in the process dead time is very common and it is a useful exercise
to determine the effect of this uncertainty on controller performance. First we re-derive
the results in the previous section in terms of the multiplicative uncertainty model. The
multiplicative uncertainty is particularly well suited for representing variable delay. The

multiplicative uncertainty is of the form
P=P(1+Amn).
The multiplicative uncertainty is related to the additive uncertainty by
A, =PA. (6.23)
The design complementary sensitivity function is given by
T =QP.
Therefore we have,

1+QA = 1+QPP'A
= 1+TAn.

The uncertainty in time delay can be characterized via the multiplicative uncertainty in the

following way,

P = Pz fnin <0 < 6Omax (6.24)
= P(1+2z7%-1)
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hence we have,

An = 279-1 (6.25)
Am(e?®) = e % 1
= cos(fw) — jsin(fw) — 1
|Am(e’)] = |cos(bw) ~ jsin(w) — 1
= /2 —2cos(6w).
For the worst case uncertainty in the delay, § = 6.y , [Am(e’¥)| is a periodic function

of frequency and takes the maximum values at the frequencies, w = T:::’ (A (e?%)] = 2.

Using this property the bounds on the worst case performance can be derived as:

= ; < g::gj; < 1 . (6.26)
(1+ 1T Al (1= 17 Amllx)
1 < Var(;c{)< 1 -
(1+1Fl=liAmlie)” — VDT (1= [l Amile )
1 < Var(y)< 1
(1+2fle)” VO T (1o gy

if ||T]| < 1/2. This condition may not be satisfied in practice and as a result the simplified
expression above will be applicable in limited situations. Notice that the above expression
has only the complementary sensitivity function appearing in the upper and lower bounds.
The uncertainty expression does not appear explicitly in the above inequality, it is true
irrespective of what the actual magnitude of the uncertainty in the delay is. It should be
noted here that these are very conservative bounds. Similar conditions can also be derived
for the case of gain mismatch and the case of joint mismatch in the delay and gain. These

derivations are omitted here for the sake of brevity.

6.4.4 Extension to the multivariate case

For the multivariable case similar results can be derived based on the definition of the

2-norm.
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SI+QA)t = (I+AQ)"'S (6.27)

y = (I+AQ)"'SNa
y = (I+4AQ)7 '3
1 llyll3 152
T+a0E = jpi SI0+4Q7 -
1 Il 1
1+6(AQ))° ~ IWl3 — a -aAaQ)*
similarly ——_1—0 < “1.‘“:,35 _1 5
(1 +a(AQ))? lalls = (1 -a(AQ))”

where
a(G(e')) = Sgpoi(G(ejw))-

o:(G(e’*)) are the singular values of G defined via the singular value decomposition (Morari
and Zafiriou, 1989).

Uncertainty in the Interactor: The Diagonal Case
Here we consider the case of the diagonal interactor for the 2x2 case. The plant is given by
- z_dl
ot ]

where d),d; are is the maximum change in the original time delays for the two input

channels. Therefore we have,

P = PU+D-I)=PI+An)

27— 1
Am = [ 279 -1 |7
The frequency domain bound on the uncertainty in the interactor is given by
—jw e Iwd 1
Am(e J ) [ e—jwd2 -1 ] (6-28)

= [ ]

O’(Am(e-jw)) [ IAII

fa%] ] )

This approach can be extended to higher dimensions assuming that the interactor remains
diagonal. In the last section we present a 2x2 simulation example showing the effect of the

uncertainty in the interactor on the LQG optimal cost function.
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6.4.5 Uncertainty in the noise model

A similar analysis is possible for a mismatch in the noise model. Uncertainty in the noise
model affects closed loop performance. Let AY be the multiplicative uncertainty in the

noise model,

N=NQ1+AY (6.29)

form of uncertainty in the noise model can be used to represent a wide range of disturbances
through a single uncertain noise model. Stochastic realization theory (Astrom and Wit-
tenmark, 1991 ) allows one to realize different kinds of disturbance signals as filtered white
noise processes. Thus a class of inputs could be represented by uncertainty bounds on a
fixed nominal noise model N. For the case where there is no uncertainty in the plant model,

the maximum contribution of A% to increasing output variance is given by

Var(y) = 22 / IS2| N 2dw (6.30)

27 J_o

R

2 o . o
- 2= [ IsPva+ AR

P2

IA

0'3 A2 Rl TSP
o 1L+ Am)IIs ISI"IN|"dw
—oc
< N1+ AR Var(®®).
Thus the combined effect of uncertainty in the noise and plant models can be expressed as

Var(y) N2 “1na
Var(g) <A+ Al +QA) - (6.31)

6.5 Impact of nonlinearity on performance

Chemical processes are inherently nonlinear. Several authors have proposed measures for
quantifying the nonlinearity of a process - Guay et al. (1995), Allgower (1995), Nikolaou
(1993) and Stack and Doyle (1997). Guay et al. (1995) used the curvature of the nonlinear
mapping to obtain a nonlinearity index over a specified operating region. Nikolaou (1993)
defines a nonlinearity measure based on the development of a nonlinear operator 2-norm via
a carefully constructed inner product for nonlinear operators. The residuals from the best
linear approximation are used to quantify the nonlinearity over a particular input interval.
Allgower (1995) used the following operator based measure to quantify nonlinearity,
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Definition 6.1. The nonlinearity measure ¢5* of a BIBO-stable, causal I/O system N :
R™ +— R™ for input signals u € Q C R™ is defined by the nonnegative number
[|F(u) — P(u)]|

Q .
= inf su 6.32
=BT (6:32)
with P : R* +— R™ being a linear operator , ||.|| defines a norm over the relevant input

and output spaces.

Allgower (1995) describes a way of parametrizing the input space using sinuosidal sig-
nals with different frequencies and obtaining the nonlinearity measure in equation 6.32.
The nonlinearity measure is thus defined as the largest deviation between the output of a
nonlinear system F and the best linear approximation P over a class of inputs, u €
with respect to a particular norm on the input and output spaces.

In practice a linear controller operating on a nonlinear process is the most common
scenario. Here we use the measure defined by Allgower (1995) to obtain an upper bound
on the deviation in the design performance due to the intrinsic nonlinearity of the process.
Assume that a linear model P has been chosen for purposes of designing a linear feedback
controller, C. The setpoints, r € A, C R™ drive the closed loop process. The closed loop
relations for the design and the achieved cases are given by

Design : j=Trie=r—4=_58r (6.33)
N N
Achieved : y = F.(r) = F[Y_ Cie(k —1i)] = F{3_ Ci(r(k —1) —y(k —1)}
i=0 i=0

where F, denotes the closed loop nonlinear operator relating r to y and C; are the impulse
response coeflicients of the linear controller. Assuming that the linear controller stabilizes
the nonlinear system we define the following measure cf closed loop nonlinearity with respect
to the linear closed loop system T,

[|Fe(r) — T(r)|]

¢7" = su (6.34
RS S T )

assuming that such an upper bound exists. This is a measure of the closed loop nonlinearity
of the system which can be lesser or greater than the open loop nonlinearity depending upon
the region of inputs in which the controller excites the nonlinear plant. It is also determined
by the class of setpoints which drives the feedback system. An application of the triangle
inequality on the 2-norm of the achieved tracking errors gives us the following relation,

lir—y+9-9ll (6.35)
< lr =9l +lly - 9ll

< e =gl + oz lirll-

llr — yif
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Thus we have
llell < l1él] + o7 lIr]

i.e. the maximum deviation of the achieved closed performance from the linear closed loop

performance is function of the closed loop nonlinearity scaled by the by the 2-norm of the

reference signal.

6.5.1 Effect of mismatch on model predictive controllers

The development of the design case measure for model predictive controller in Chapter 5
proves instrumental in quantifying the effect of nonlinearity on MPC performance. Recalling
the inequality for the achieved objective function

e — gk — yllE — [1Auk — Adkll3] < Je < Ji + |G — yl[E + [|Aux — Adg|3.  (6.36)
The achieved performance is significantly affected by the control relevant mismatch term
9 — yilI2

which consists of the modelling errors weighted and squared over the prediction horizon
under closed loop conditions. This mismatch is a function of the inherent nonlinearity of
the process, the model predictive controller and the external inputs, under feedback. It
is important to note that under feedback ||Aux — Adg||{ will be strongly correlated to
g — ykII%. The effect of this control relevant mismatch is often suppressed by ensuring
Jie >> |9k — yk||E + ||Auk — Ad||3. This is equivalent to relaxing the design requirements
and can be achieved by increasing the move suppression factors A in the design objective

functions.

6.6 Simulation examples

Example 1. Here we revisit the simulation example from Desborough and Harris (1992)
(see Chapter 5). The nominal transfer functions are given by

K (1—-2z71)
1-2z"1)Q-2"14+Kz72)

Q = CA+PC)' =

K
1-2"1+Kz72)
K272
(1-2"1+Kz"2)"

N,
|

QP =
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Figure 6.4: The performance and robustness properties of the control system with a unit
delay mismatch.

An additional delay was introduced in the plant,

_ -1
y(k) =u(k —3)+ 1——0'-22—_“;1—a(lc).

1-—-

Thus we have the multiplicative uncertainty of the form
An=2z"1-1.

Figure 6.4 shows the effect of the time delay mismatch on performance and stability of the
designed controller. Figure 6.4 (a) shows the achieved performance index in relation to the
nominal performance for different controller gains. The performance index is based on the

minimum variance benchmarking (Harris, 1989 ). The minimum achievable variance for the

process with two sample delays is given by
02, = (1+0.8%)02 = 1.6402.

The performance index is then calculated as a ratio of the minimum achievable variance to

the achieved variance,

The effect of uncertainty on the MVC performance index is quantified as follows:

2
o2 = o2 o2 ’
y Y y
2 A2
< p2a(ll +TAm|l%)-

(1 +TAm) %
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The design curve in figure 6.4 (a) was based on the performance index for the nominal case
and the achieved curve corresponds to the unit sample delay mismatch. The wcrst case
bound was derived using equation 6.15 . The controller shows a significant degradation in
performance due to an increase in the time delay of a sample interval. Figure 6.4 (b) shows
the robustness properties of the integral controller for a unit sample time delay mismatch.
As the controller gain increases, the robustness margin deteriorates. For K=0.2, the cor-
troller is highly robust and the achieved performance is close to the design performance (see
figure 6.4 (a)). For K=0.4 the robustness margin is small and the achieved performance is
significantly different from the design performance. Figure 6.5 (a) shows the achieved and
the design servo response when the time delay is underestimated. The achieved performance

is worse than the design performance,

Y
oo

=18117 < ||1 +TAR) Y3 = 4.84.

[TV

&

We also consider the case where the delay is overestimated i.e. the delay is assumed to be 2
units when the actual delay is 1 unit. Figure 6.5 (b) shows the achieved and design closed

loop step responses for the case of time delay overestimation (A, = 2! — 1),

The perturbation considered here, despite being non-causal, is valid since it preserves the

= 0.6428 > ! = 0.3486.

T +TAR)Z

s
v

)
o

properness of the closed loop transfer functions.

It is interesting to note that when the time delay is overestimated the performance
improves over the design case whereas when the delay is underestimated the performance
deteriorates. Thus this example serves to illustrate the point that achieved performance can
improve even in the presence of mismatch and both the upper and lower limits in equation
6.15 are meaningful.

Constraints: Let us consider the following constraints on the inputs: |u(k)| < 1. The 1-
norms of the controller transfer function for increasing values of K are shown in figure 6.6.
It follows from equation 6.7 that the input constraints will be satisfied for step change in
the setpoint (||r||c = 1) up to a controller gain K = 0.2. Beyond that there is no guarantee
that the input constraints will be satisfied by the controller. Figure 6.7 shows the input
profiles for a step change in setpoint. For K = 0.3,0.4 notice the constraint violations. For

K = 0.2 the input stays in the feasible region as predicted by equation 6.7.
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Figure 6.5: Comparison of achieved and designed closed loop step responses for the case
where (a) the delay is underestimated and (b) the delay is overestimated.
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Figure 6.6: The 1-norm of the controller transfer function Q, against increasing controller
gains.
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Figure 6.7: The controller response (u) for K=0.2 (solid line), K=0.3 (dash-dotted line)
and K=0.4 (dotted line)
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Figure 6.8: The phase and magnitude characteristics of the (multiplicative) uncertainty in
time delay.
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Example 2. Let us consider the example from Bannerjee (1996) again:
0.007z~! +0.0212z2 + 0.00362z3

1 -1.90312-1 +1.15142—2 — 0.21582—3

which is approximated by the first order model:

0.04192~2 +0.0719z3
1 — 0.89692—1
272(0.5828 + 2~1) 0.0719(1 + 0.58228z"1)

(1 + 0.5828z-1) (1 —0.8969z-1)

Non-minimum phase zeros: Consider a step change in the setpoint. The following cal-

P =

P =

PyPy =

culations based on Theorem 1, give the minimum error norm for the H» optimal controller.

Figure 6.9 verifies the tracking properties of the H, optimal controller.

. 1 .
U = ———— =Uyr
1—2-1

(1 +0.582821) 1

ply
Py 0ar 272(0.5828 + 2~1) (1 - z71)
-1
—-1p-1=~ — z—
{z7° Py O} = (1-210)
On = P-lo (1 —0.89692"!)
H2 = 721 = 0.0719(1 + 0.58228z1)

(1—PQu,)o = (1-Py)d
{1 _ 272(0.5828 +z‘1)} 1
(1+0.58282-1) [ (1 -271)
1+1.5828z"1 4 272
1+0.5828z"!
(1 — PQu,)8l3 = 2.2636

Constraints: The design complementary sensitivity function has the l-norm HT)1
2.1656. Thus for a step change in the setpoint, |[y|loc < 2.1656. From figure 6.9, [|y||o =
1.2431. Uncertainty: An unconstrained model predictive controller (MPC) was designed
using the first order model with two different control weightings - A = 0(Q1), A = 0.5(Q2).
For the unconstrained case the predictive control law can be expressed in the form of a
transfer function (see chapter 2). Figure 6.10 (b) shows the controller inverses, in the IMC
form, as a function of frequency in relation to the additive uncertainty (A). Q2 is seen to
be more robust in comparison to Q;. The achieved variances (normalized) for Q2 are shown

in figure6.10 (a). The following bounds were derived for the achieved variances:

QA = 0.4386 <>

Var(y)
. < —_ < 3.
0.4832 < Var(g) = 3.17
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Figure 6.9: Nominal closed loop step response of a Ho optimal controller

Example 3. The Wood-Berry column revisited. Consider the discretized model at the

sampling rate of 1 minute,

0.744 —~0.8789

_
-1 A—1 z - 1—0.9419z-1 1-0.9535z-1
G(z7')=D""Go = [ 24 ] 0.5786z % ~1.3015
1—0.9123z—1 1-0.9239z—1

We consider the uncertainty of 1 sample delay in each channel,

0(Am) = /2(1 — cosw)I.

A LQG controller was designed with I' = I, A = A based on Gp. The optimal cost function
for the LQG controller is shown in figure 6.11 along with the uncertainty intervals according

to equation 6.18.

The solid line in the center is the nominal cost function J.og vs. A. The achieved
performance for an actual change in delay is shown by the dashdotted lines and the upper
and lower solid lines are the bounds on the achieved cost function. The performance bounds

were derived using equation 6.18. Figure 6.12 shows the effect of A on the robustness of the
LQG controller.
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Figure 6.10: The effect of a structural mismatch on the performance and stability of a
MPC controller. (a) The design and achieved performance for Q; and (b) the robustness

properties of Q1 and Q.
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Figure 6.11: Effect of uncertainty in the interactor on the optimal cost function for LQG.
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Figure 6.12: Effect of control weighting on robustness maryin.

6.7 Conclusions

In this work we have considered the contributions of the following factors on the achievable

and the achieved performance of a control system:

1. Non-Minimum Phase Systems. Limitations on achievable performance due to
nonminimum phase zeros are reviewed for the univariate and multivariate cases. The

importance of directionality is emphasized in the result due to Toker et al. (1997).

2. Constraints. The presence of input and output constraints imposes limits on the 1-
norm of the controller and the complementary sensitivity transfer function. This was
shown using the induced norm definition of the 1-norm. The exact effect of constraints

on the MPC performance is intractable. However, the unconstrained performance

provides a useful lower bound.

3. Modeling Uncertainty. In this work we have considered the contributions of the
modelling uncertainty on the achieved performance of a control system. The presence
of uncertainty in the modelling step is reflected in uncertain controller performance.
Time domain bounds on the achieved performance are obtained based on the knowl-
edge of the uncertainty. As a special case, the effect of varying time delay is captured

using multiplicative uncertainty. Similar performance bounds are derived for the case
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of deterministic inputs. A simulation example is presented to illustrate the effect of
uncertainty in time delay on achieved performance. Similar results are derived for

multivariable systems.

4. Input Uncertainty. A process is often subject to different kinds of inputs such
as step changes in the setpoint, random changes in the unmeasured disturbances,
etc. The effect of uncertainty in the presence of a combination of deterministic and

stochastic inputs is illustrated.

5. Impact of Nonlinearity. A closed loop nonlinearity measure as per the definition
of Allgower (1995) was shown to bound the achieved performance of a linear model-
based system on a nonlinear plant. The choice of a suitable performance cost function

in relation to the impact of nonlinearity on model based predictive controllers was

highlighted.

Thus the effect of several factors on deteriorating performance has been quantified.
Some of these factors such as nonminimum phase zeros pose fundamental limitations i.e.
they are controller independent while others such as the effect of uncertainty or nonlinearity
under closed loop conditions are controller dependent. The task of isolating the contribution
of each of these factors to the overall degradation of performance is a nontrivial one. In
the next chapter we take a case study approach to performance diagnosis of an industrial

model predictive controller to illustrate the complexity of the diagnosis step.
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Chapter 7

Performance Analysis of Model
Predictive Controllers: Industrial
Applications

7.1 Introduction

The first industrial applications of model predictive control were reported by Richalet et al.
(1978) and Cutler and Ramaker (1980). Richalet et al. (1978) called their implementation
model predictive heuristic control (MPHC) and the commercial version was known as the
identification and command algorithm (IDCOM). Cutler and Ramaker called their version
dynamic matrix control (DMC) after the S matrix which they named as the dynamic matrix.
Qin and Badgwell (1996) give an excellent survey of the MPC technologies commercially
available and compare their merits and demerits. They report the total number of MPC
applications to be over 2200, with majority (67%) of the applications being in the refinery
area. The DMC corporation has the largest number of applications- over 600- in the area
of refining and petrochemicals. The largest single application reported by DMC Co. is an
olefins plant with 603 inputs and 283 outputs.

Dynamic matrix control (DMC) which was originally proposed by Cutler and Ramaker
in 1980 is a type of model predictive controller (MPC) . In practice, DMC is implemented

in two stages:

1. The dynamic error minimization step, which computes the manipulated variables.
The design objective function comprises of weighted deviations of the tracking error,
weighted control effort and a penalty on the deviation of the final input from the

1 A version of this chapter was presented as “Performance Analysis of Model-based Predictive Controllers:
An Industrial Case Study”, 1998, Rohit S. Patwardhan, Sirish L. Shah, Genichi Emoto, and Hiroyuki Fujii,
AICHE Annual Meeting, Miami.
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steady state targets (Qin and Badgewell, 1996) . The last term is tantamount to
having terminal state weighting which is known to guarantee nominal stability (Lee,
1996). The setpoint and the steady state targets are computed by

14 m
Jaes = D _ Ilyss — Gk +3/R)IIE, + D l[Aulk +i — )|}, + [lu(k +m — 1) —uyl},
i=1 i=1
(7.1)

where the terms are as explained in Chapter 2.

2. The linear programming (LP) stage which deals with steady state optimization and
constraint management. A linear program of the following form is solved at every
sampling instant (Emoto et. al, 1996). The objective function consists of a profit term
and a second term which penalized constraint violations on the controlled variables.
The constraints are made up of soft constraints on the controlled variables and hard

constraints on the manipulated variables.

u ny y
min E ciAuss,i + A’I(Z wmax.iAmax,i + Z wmin.i/\min.i) (7-2)
i=1 i=1

=1

subject to
Ny
Ymaxi = Y¥i+ Z KijAuss.j - ’\max,j
j=1
Nu N
Ymini < Yi+ Y KijQussj — Aminjyi=1,...,1y
j=1

Umini < Ui +AUssi < Umaxirt =1,...,ny

where K = [Kj;] : Steady state gain matrix, M: Large weight, A : Slack variable, w :
Penalty weight for constraint violations. A schematic of this control structure is shown in
figure 7.1.

Performance analysis of DMC presents a challenging research problem of significant in-
dustrial relevance. A constrained DMC type controller is essentially a linear time varying
controller, especially when operating at the constraints. The large dimensionality of the
problem is also an important issue. Any performance measure for DMC should effectively
deal with the multivariate nature of the system and the constraint issue. The main char-
acteristic of a desirable performance measure should be to relate the information contained
in a large dimensional data set to a single scalar measure of performance in a transparent
manner. Diagnosis of poor performance is of great practical importance. If a performance
index reveals poor performance then it is important tc establish the underlying causes and

suggest corrective actions to improve performance.
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Figure 7.1: Schematic of the DMC control structure. The controller in the conventional
sense is shown as the dynamic control module with the DMI model in the feedback path.
The LP part at the top sets the targets for the controlled and the manipulated variables.

The purpose and contribution of this chapter is to describe an industrial case study
involving performance analysis of two DMC applications at the Mizushima plant of the
Mitsubishi Chemical Company>. A propylene splitter DMC and a de-methanizer DMC were
the applications evaluated during this case study. Practical performance assessment and
diagnostic techniques were proposed and implemented on the aforementioned applications.

The main outcomes were:

e Practical measures to assess DMC performance.
e The role of constraints in analyzing MPC performance.

e Use of closed loop identification to assess the impact of mismatch on MPC type

controllers.

The role of the LP step of DMC in determining closed loop performance and stability.

An integrated approach to performance assessment which involves checking the lower

level PID controllers and upper level RTO.

The broad scope of this work is divided into three tasks:

2This project was carried out as part of a 3 month industrial internship program. The author was with
the Development and Engineering Research Center at the Mizushima plant, Japan during the course of this
work.
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1.

!O

How healthy is your control system ? This is the performance assessment stage. This
step is mainly concerned with quantification of performance. One or more perfor-
mance measures can be used to decide if the control system is delivering satisfactory
performance. The first objective of this project was to choose appropriate performance

measures for DMC.

Why is your control system in poor health? This is the diagnostics stage. If the
assessment step indicates poor performance, the logical step is to establish the reasons
for poor performance. This is a relatively new area of research. To the best of the
authors knowledge there is only one publication in open literature addressing this
problem in its own right - Kesavan and Lee (1997). Thus the second goal of this

project was to devise ways of diagnosing poor performance.

How do we tmprove performance? After isolating the causes of poor performance,
corrective actions should be taken to restore the health of the control system. The

success of this step is heavily dependent on the diagnosis step.

A schematic of the possible choices arising at each step is given in figure 7.2 . The list is

by no means exhaustive, it is representative. Several authors have realized the importance

of the diagnosis step -Kozub (1993, 1997), Kesavan and Lee (1997).

Remove

Unmeasured / Disturbances

Quantitative Measure | ! Disturbances
| : A \ Measure

Disturbances
Degradation of : I - I
Control Performance| : Distinction of Cause

Re-model
v /

Model-Plant Mismatch

Re-tune

Assessment Diagnostics Remedies

Figure 7.2: A representative diagram showing the various steps in performance analysis.

This chapter is organized as follows: Section 7.2 describes practical extensions of perfor-

mance assessment and diagnosis techniques described in chapters 5 and 6. The motivation

for proposing these practical methods comes from the fact that the implementation details
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of DMC make it quite unique and we need to tailor the analysis tools to suit its needs. The
first case study involving C3;F DMC application is described in Section 7.3. A diagnosis
of poor performance is attempted using closed loop identification and constraint analysis.
Section 7.4 gives the de-methanizer DMC analysis results. The role of LP part of the DMC
on performance and stability of the closed loop is highlighted. The role of the lower level
PID controllers in diagnosing DMC performance is also emphasized. Section 7.5 gives the

concluding remarks.

7.2 Practical Methods for Performance Analysis of DMC

We reviewed and developed some techniques for analyzing the performance of model based
predictive controllers in chapters 5 and 6. The application of conventional performance
assessment techniques such as minimum variance benchmarking depends on the linearity
of the closed loop data. A constrained controller such as DMC does not satisfy these con-
ditions. Also since we are dealing with a commercial control technology here, things like
the design objective function are not available. Another practical concern is the multi-rate
nature of many DMC applications especially when dealing with measurements of composi-
tions. As we will see in the applications presented in this chapter, compositions are available
at a slower sampling rate than the control sampling interval. In the face of these limitations
we had to tailor our analysis tools to suit the needs of DMC performance assessment and

diagnosis. In the following discussion we present these practical extensions to performance

analysis.

7.2.1 Assessment techniques

Multivariable Settling time based measure

Here we extend the performance measure based on the desired closed loop settling time to

the MIMO case:

1. Choose a desired settling time, t. samples. Filter the process outputs (errors) with a

simple interactor of the form z—<I,
g(k) = z7y(k).

2. The outputs (errors) are pre-whitened using a multivariable auto-regressive (AR)
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model,

(Ao + A127 1 + o+ Apuz ™)jj(k) = e(k) &
(Bg + B1z7 ! + ...+ By _z7t + )e(k) = §(k)

where e is a white noise process.

3. Multivariable cross-correlation analysis between the estimated white noise sequence

and the interactor filtered outputs gives the desired covariance matrix,

%7 = (Boo2B} + B16?Bf + ...+ B, ._102BL_)).

4. The multivariable performance index is then obtained as
tr(Z%)

= m (7.3)
In other words tr(£7 ) = tr(Es) if the achieved settling time under closed loop conditions
was equal to the desired settling time. If tr(X?) < tr(X2), then n < 1 and the achieved
settling time is greater than the desired one. The advantage of this approach is that
knowledge of the interactor is not needed and the desired settling time requires some a
priori information, but is otherwise an easily chosen quantity. Different settling times can
be chosen for each output channel in practice. The problem of missing measurements
was resolved by assuming a zero-order hold, i.e., the measurements were assumed to be
constant at the inter sample instants. This assumption is valid for the case where the

process dynamics are sufficiently slow. Theoretically a multi-rate approach to performance

assessment is the correct choice.

Achieved Objective function

The (numerical value of ) design objective function is not known in practice. In such
situations the achieved objective function alone can reveal useful information about the
relative changes in performance at every sampling instant. Consider the quadratic form

which is present in the objective function of DMC,
1
Je = 2 {(rk — y&)TT(ri — ) + Aul AAw} (7.4)

- % {efTex + AuTAAw) (7.5)

P
1
= ; {Z eZ+iriek+i + Au{_:_i_lA,-Auk.i.,-_l}

i=1
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where p is the prediction horizon, m is the control horizon, the output and the input

weightings are given by,
[ =diag(l'1,2,...,Tp), A = diag(A;, Az, ..., Ap)
and
Aup =Qupmi = ... = Aup = 0.

Also, in practice 'y = ... =T, = diag('yl...'yny),Al = ... = Ap = diag(A;...An, ). Now, with

an abuse of notation, if we define E(.) = % 3P ,(.) . then we have
J = E(el Qe + Aul RAw,)

where Q = diag(y?...72), R = diag(A\3...)2,). The expectation of the above quadratic form
can be expressed in terms of the means and variances of the individual quantities in the

following manner.

J = E(ef Qe+ Aul RAuy)

= mZQme + tr(Qo'z) + mqumAu + tr(Ra'?_\u)

where my = E(X),0% = E {(z — mx)(z — mx)T}. Thus the achieved objective function
is the sum of four quantities - achieved {output offset (m.) + error variance (02) + mean
input value (ma,) + input variance (6% ,)}. The output offset, output variance and input
variance are very important from a control point of view. Monitoring of these quantities
on a continuous basis can give insight into the contributing causes of poor performance -

offset, input and output variance.

Historical Benchmarking

Often times the controller is known to deliver good performance in a particular region
through some performance metric or a priori knowledge such as operator’s experience etc.
We propose a practical index of performance based on comparison of the achieved objective
functions in the good region with the current performance. The historical measure of

performance is given by

_Jn

=7 (7.6)

where

Jh = E{(ren — ykr) T(tih — Yen) + Auf ,ADuip }
Jo = E{(rk —y)TT(rc — yc) + Aul ADuy}
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Tk, Yx and u; are the measured values of the setpoints, outputs and inputs respectively. The

subscript h denotes the historical data.

7.2.2 Diagnostics
Effect of uncertainty on LP

It is important to consider the effect of gain mismatch on the steady state optimization step
in DMC. This step is based on the steady state part (or the gains) alone. Mathematically,
a linear programming problem of the following form is solved at every sampling instant in

the LP module,

Min a¥;s + BAU;;

s.t. AAU;;,+B > 0 (7.7)
Yss = KAUss

where K denotes the steady state gains of the step response model. First, we shall illustrate
the effect of gain mismatch on the optimum. Consider a 2 x 2 problem where the true gains
between u; and y;. and us and y» are higher than the model gains. It is clear from figure
7.3 that, in such cases the estimated optimum may be significantly different from the true
optimum depending on the extent of mismatch. In effect, the LP step will be setting the
wrong targets. Sensitivity analysis can be used to determine which gains are most important

and need to be accurately known.

Valve Related Problems

One of the practical issues that needs to be addressed is how do valve dynamics and non-
linearities such as hysteresis, saturation, etc. affect performance of the control loop system.
From a diagnosis point of view, if a controller is performing poorly when are valve related
problems responsible? For some types of valve nonlinearities it is possible to detect the
problem by looking at the appropriate input-output plot and detecting signatures of these
nonlinearities. For a simulation example, figure 7.4 shows the scatter plot of the output
against the manipulated variable for valve with significant hysteresis.The discontinuities
indicate the presence of a nonlinearity. Butterfly valves are known to exhibit nonlinear

behaviour such as hysteresis.
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Figure 7.3: The effect of gain mismatch on the linear programming step in DMC.
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Figure 7.4: Scatter plot showing a characteristic template for valve hysteresis.
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Figure 7.5: The control heirarchy in a chemical plant.

Hierarchial Issues

DMC is part of a plant wide control structure illustrated in figure 7.5. At the time of
evaluating a higher level control system it is necessary to ensure that all the lower level
controllers are functioning satisfactorily. For example a poorly tuned pressure controller in
a distillation column can lead to oscillations throughout the column and lead to poor DMC
performance. Assessment of lower level controllers can also help in arriving at an early
diagnosis of poor DMC performance. The real time optimization layer could set targets for
DMC which leads into a highly nonlinear region and thus deteriorate its performance. Thus
DMC performance is not independent of the optimization and control layers surrounding
it in one or more subsystems. A poorly performing DMC in a neighbouring subsytem will

cause disturbances for other DMC applications.

Other factors

Many a time a sensor failure leads to loss of measurement signals and this can be misinter-
preted as poor performance. A variety of statistical techniques such as principle component
analysis (PCA), PLS, ANN, etc. are known to have the kind of fault diagnostic capabilities
which can help in detection of sensor malfunction.

Apart from the fundamental limitations on performance discussed in Chapter 6, it should
be acknowledged at the outset that DMC is a linear model-based predictive controller
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operating on an inherently nonlinear plant. There are limitations which a linear controller
cannot overcome for a nonlinear plant no matter how well it is tuned .

In practice, degradation in performance can be caused by a combination of the above
factors. It is a challenging research problem to isolate the contribution of individual factors
towards poor performance from routine operating data with or without excitation. For the
problem under consideration, the propylene splitter DMC, we have resorted to a case study
approach. A fair portion of this chapter is devoted to establishing the effect of uncertainty;
in order to do this analysis one needs an estimate of the open loop MPM. Closed loop

identification is thus necessary to establish changes in plant dynamics.

7.3 Case Study 1: Propylene Splitter DMC

The process under consideration is a propylene splitter (CsF) column. A schematic of
the process is shown in figure 7.6. A dynamic matrix controller (DMC) is currently used
to control the key variables of interest which, in this case, are the top and the bottoms
impurities. The natural logarithm of the top impurity is controlled as it shows a more
linear response. There are a total of 6 controlled variables (CVs), 5 manipulated variables
and 2 measured disturbances. The models are available in a step response forrn obtained
from the dynamic matrix identification (DMI) algorithm. The measurements of the main
CVs are available at the rate of 20 minutes each.

The controller in place is a multivariable dynamic matrix controller (DMC). The column
is operated under normal, low and high load (feed flow rate) conditions depending upon
the production requirements (see figure 7.7) . The step response models were originally

identified under normal load conditions.

7.3.1 Assessment Results

Perforrnance assessment was carried for different load conditions. Three methods were
applied for performance assessment - (1) multivariable settling time benchmarking, (2)
historical benchmarking and (3) achieved objective function. The results of the performance

assessment step are presented in this chapter.

Normal Load Data

The operating data for the normal load conditions is shown in figure 7.8. The top part
of the graph shows the outputs along with the setpoints and the bottom part shows the
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Figure 7.6: A schematic diagram of the distillation column showing the relevant controlled

and manipulated variables.
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Figure 7.8: The input-output data for the normal load conditions

manipulated variables. The sampling time for control is 6 minutes and the data shown here
corresponds to each control sampling interval.

A desired settling time of 5 samples was chosen for each of the outputs based on the
open loop settling time and the recommendations of the plant personnel. Since the settling
time index was (0.86) high for this data set we chose the normal load data as our benchmark
data for historical benchmarking. Figure 7.9 shows the performance indices for the cases
where (1) the weightings were taken into account and (2) the raw data was used. For this

DMC application the output weighting matrix is given by:
I’ = diag(200, 2).

The top impurity is the economically important variable and is weighted by a factor of
100 times more than the bottom. It is important to consider these weightings in any
benchmarking scheme.

For the normal data set the settling time measures showed good performance irrespective
of the weightings. The historical benchmark measure equals 1 since this data set itself is
the benchmark data set. The achieved objective function could not be calculated due to
insufficient data. For the remaining data sets we do not show the data trends but the
assessment results are summarized below.

The results for the high load data are reported below. The settling time and the his-
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torical measures are shown in figure 7.11. Both the measures indicate a significant drop in
performance compared to the normal load conditions. In the later Sections we will attempt
to isolate the cause for this drop in performance. The achieved objective function for the
last 60 samples is shown in figure 7.10. The achieved objective function shows a decreasing
trend, which implies improving performance. The output variance term is dominant com-
pared to the offset and the input energy terms. For the first low load data set, both the
settling time and the historical measures indicate a drop in performance for the low load
case. For this case the achieved objective function was dominated by the offset term. The
contribution of the input variance term is negligible.

The overall performance assessment results are shown in figure 7.11. The settling time
approach indicates good performance in the normal load region, poor performance in the
high load region. The first low load data set showed poor performance. The constraints were
active throughout this run. The second low load data set showed satisfactory performance.
The constraints were active only for the initial part of this run (see figure 7.12).

The historical benchmarking method confirmed the settling time approach based results
except for the second low load data set. For this data, the historical benchmark indicated
no significant improvement in performance. This can be attributed to an increase in input

variance or output offset, since the historical benchmark takes them into account explicitly.

172



Achieved otjective tunction Achieved autput vanance

44 42
42 40
40 3s
a8 36
36 34
Q 20 40 &0 ae 0 20 4C 60 8¢
Achiaved input vanance Achiaeved gutput Dras:citset
3 0.5
0.4
2.5
03
2%
2 Q
0.1
1.5 [
Q 20 40 60 80 a 20 40 60 8¢

Figure 7.10: The achieved objective and the contributing factors for the high load data.

g9 e - A v - A v
Good
sal “ a9
Sausfactory
ca
LR2 §
2.7]
cep
J 6 i
Ssp Poor £
0.5
5
Poor c4
'] § 03
ozg LV ’ 92| %
RN & 5t
Q [*]
- < Y T v 4 T
(@) (b)

Figure 7.11: (a) The MVC performance indices for different data sets (1-Normal, 2-High,
3-Low A, 4-Low-B) and (b) the historical performance measures.

173



yi

ul
)

110

1000
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7.3.2 Diagnostics

Analysis of constraints

During the low load conditions the lower constraint on reflux flow rate was activated. Ma-
terial balance considerations can be used to explain this phenomenon. The lower limit on
the input constraint was an operator specified quantity. Since the reflux flow rate was at
the constraint, the control system was effectively reduced to a single input two output sys-
tem. Theoretically this is an uncontrollable system. Economically, the top impurity is more
important than the bottom impurity, and due to the emphasis placed on this output, the
bottom flow rate was devoted entirely to controlling output 1 during this period. An offset

was observed in output 2 for a part of the low load region.

Prediction Errors in the closed loop

In order to investigate the reasons for poor performance we investigated the prediction
errors for the DMC controller. DMC uses a step response model of the process combined
with an estimated disturbance to predict the process outputs over the prediction horizon.

The disturbance is estimated through feedback:
d(k/k—1) = y(k~1) - §(k — 1)

where y is the measured value and y is the predicted output.
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| DMC

Figure 7.13: The internal model control structure for DMC

The open loop predictions are updated with this disturbance estimate. This step in DMC
allows us to rewrite the DMC controller in the IMC form. For the propylene splitter DMC,
the step response model is also used to predict the compositions between two measurements.
This is equivalent to an observer in control terminology. From figure 7.13 we can write down

the prediction errors in the closed loop as,
d=AI +QA) 'w+ NI +QA)la+QA(I+QA)"!r (7.8)

where A is the uncertainty, a is disturbance, r is the setpoint and w is the dither signal or

external excitation. If w = 0, we have,
d=N{I+QA) la+QA(I+QA) 'r = (I + AQ) '{AQr + Na}.

Thus, the prediction errors, under closed loop, are influenced by the controller, @ and the
extent of uncertainty, . However, notice that if there is no MPM and no external signals (r
and a), d = 0 irrespective of the controller. This observation forms the basis for deciding if
the model is satisfactory. If several factors, other than mismatch, could be held responsible
-Q,N,r,a.

In an effort to isolate the reasons of poor performance we looked at the infinite horizon
prediction errors of the step response model under closed loop conditions. The following
figures (7.14 and 7.15) shows the prediction errors for the low and high load conditions
respectively.The model seemed to worsen considerably under high load. It should be noted
here that we are dealing with closed loop data. Hence, the controller and/or unmeasured

disturbances can affect the predictive capabilities significantly, under closed loop. Kesavan
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Figure 7.14: Prediction errors for the DMI model: low load.
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Figure 7.15: Prediction errors for the DMI model: high load.
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Figure 7.16: The top graph shows the output errors of y2 vs. yl and the bottom graph
shows the corresponding prediction errors. The circles (o) denote the data from the low load
conditions while the crosses (+) denotes high load data. Every sizth point from the high
load data set is numbered.

and Lee (1997) also suggested looking at the prediction errors for diagnosis of poor perfor-
mance. Their approach consists of looking at the prediction errors in conjunction with the
output errors or deviations from the setpoints. Figure 7.16 shows these trends jointly for
both the outputs.

Figure 7.16 shows that the predictions are considerably worse for the high load conditions
and the predictions have deteriorated in two stages - set 1 (13-181) and set 2 (187-241).
However the output errors are decreasing for set 2 (see top graph in figure 7.16). Thus it is
useful to look at these two quantities together. Note that the measured disturbance, feed
flow rate, was part of the prediction model.

Low Load Data Set 1

The prediction errors for the low load data are shown in figures 7.18 and 7.19. For the
second low load data set the predictions for output 2 appear to have worsened considerably.

Quantification of prediction errors is important in establishing model quality. Kozub
(1997) proposed the use of minimum variance benchmarking on the prediction errors to
obtain a prediction index. We applied this idea for the C3F splitter DMC with the following
results.

This measure can be treated as a necessary test for goodness of model quality. If it

equals unity, then the model quality is good. If it is less than unity, several reasons can be
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Figure 7.17: The prediction errors for low load data set A.
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Figure 7.18: The prediction errors for low load data set B.
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Figure 7.19: Measures for prediction errors based on the minimum variance benchmark.

listed for its deviation from unity and no statement can be made about the model quality.
For our data sets, the MVC measure indicated satisfactory model quality for the normal

load case relative to the other data sets.

Identification in the Closed Loop

It is of great practical and theoretical interest to estimate the model parameters under
closed loop to evaluate the change in plant dynamics. Many different approaches to closed
loop identification have been proposed in literature to estimate the open loop model pa-
rameters. These include - direct identification, indirect identification and joint input-output
identification. It is beyond the scope of this report to discuss these methods in detail. The
interested reader is referred to Van den Hof and Schrama (1995) for a survey of the closed
identification methods.

Direct closed loop identification involves the direct use of input-output data in closed
loop and an appropriate noise model. It is necessary to remove the effects of feedback when
using the input-output data directly. A high signal-to-noise ratio and/or changes in the
controller are necessary to prevent the controller inverse being identified. For our data sets,
surprisingly, single variable correlation analysis (see the cra function in Matlab) yielded the

best results,

.
y(k) = hiu(k —i) + e(k). (7.9)
=1
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Figure 7.20: The finite impulse response models between the top tmpurity and the refluz flow
rate. These models were estimated for the low and high load conditions using univariate
correlation analysis (after prewhitening) and are compared with DMI model.

The results for single variable correlation analysis (finite impulse response models) are shown
below for the relationship between top impurity and the reflux flow rate.

The estimates during the high load conditions are noisy due to the small number of
samples (241) available for estimation. From the general trend, it can be inferred that the
gain increases during the high load conditions and decreases during low load conditions. This
was verified through simulation using a steady state model of the process. The magnitude
of the gain changes, however does not appear to be significant.

Chapter 7 addresses the issues of identifiability under closed loop conditions using cor-
relation analysis. The second observation, while using correlation analysis, was the effect
of the pre-whitening filter on the estimation process. Shown below are output error (OE)
models between the top impurity and the reflux flow rate. When the OE structure is used
without pre-whitening, a positive gain is identified and dynamic response is entirely differ-
ent from the open loop model. When a pre-whitening filter is used to whiten the inputs,

and the output is filtered using the same filter, the estimated model is much closer to the
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Figure 7.21: Output error (OE) models between the top impurity and the refluz flow rate
with and without pre-whitening. The effect of feedback s clearly seen when no pre-whitening
is done.

open loop characteristics,

N
y(k) = Y hiu(k —i)+e(k) = H(z"")u(k) + (k) (7.10)
i=1

L(z7Yy(k) = H(z"Y)L(z Yu(k) + L(z')e(k)
yr(k) = H(z Ya(k) + es(k)

where L is the pre-whitening filter. This phenomenon is explained in Chapter 8 in more

detail.

Discussion

The statistics for assessment of control errors and the prediction errors are reported in Table
7.1. We have resorted to a case study approach for the diagnosis of poor performance, in
the high and low load regions. The main results of the performance diagnosis phase are
summarized in Table 7.2. The different possible causes of poor performance are ranked in
order of importance (1 is highest). Currently this ranking is done qualitatively. Quantifying
the contribution of different factors is a challenging research problem. It should be noted
that the different factors are often correlated. For example, during the high load conditions
there was a disturbance in the feed flow rate which caused a change in plant dynamics and

the controller tunings could be inappropriate due to these changes.
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Constraints were shown to play an important role in the analysis of performance. Some

evidence of MPM was found through correlation analysis.

7.4 Case Study 2: De-methanizer DMC3

The DMC application, on the de-methanizer Section of the plant, consists of 18 CVs and
15 MVs. The dynamic matrix has 87 non-zeros (30%). In the subsequent discussion we
focus on a 6x6 subsystem. The main CVs of interest are top and bottom impurities, column
pressure, a tray temperature and the reboiler level. The three compositions are sampled
at 30 minute intervals, the control sampling interval is 4 minutes. The output weighting

matrix is given by
I’ = diag(0.0133, 5.556,0.10, 10.00, 1.00, 0.10).

At the outset, we would like to mention that this appeared to be a highly de-tuned appli-

cation with most of the move suppression factors being of the order of 100.

7.4.1 Assessment Results

Here we give the performance metrics based on the desired settling time idea. The data
was divided into two batches and the performance was assessed for desired sampling times
of 7 and 8 samples (28 and 32 minutes) respectively. The choice of the desired settling time
was based on the sampling interval for the 3 compositions which was 30 minutes. The
multivariate performance indices are shown in figure 7.22. The relative performance for
the second batch of data is poor. Since the data is weighed heavily by the second and the
fourth outputs, we also looked at the univariate measure for these two outputs separately.

Figures 7.23 and 7.24 show the individual performance indices for output 2 and output
4 respectively. Clearly the multivariable performance index shows trends similar to that of
CV 4. The data for the second batch shows a large upset. It was found that the DMC
was taken offline for a short period between sampling instants 3250 and 3375 for some
maintenance work and this indeed reflects in the multivariate and univariate performance
rmeasures.

In addition a large offset was observed in the pre-fractionator bottoms impurity shown
in figure 7.25.

Only the reboiler flow rate has any effect on the pre-fractionator bottoms impurity. The
step response model between these variables indicated a low gain (-0.0141). This coupled

with the fact that the move suppression factor for the reboiler flow rate is very large - 200

182



Table 7.1:  Performance measures and the prediction measures for the propylene splitter
DMC application.

Normal Load | High Load | Low Load 1 | Load Load 2

Performance
Measures
Settling time

Benchmark 0.8572 0.4026 0.2423 0.6790
Historical
Benchmark
Achieved
Objective

1.000 0.2637 0.2544 0.4181

- 42.24 105.07 25.2

Constraints
Input i :
Cfnstraints Active Active
Output
Constraints

Violations Violations

Prediction
Measures
Settling time
based index
Prediction
error index 1.000 0.0254 0.0620 0.0803
(Historical)

0.6841 0.1440 0.1196 0.1647

Overall

Peformance Good Poor Poor Satisfactory

Figure 7.22: Multivariate performance measures for the demethanizer DMC based on the
settling time indexz.
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Table 7.2: Summary of performance diagnosis results for the propylene splitter DMC ap-
plication.

High | Low 1 | Low 2 Remarks
Diagnostics
Model plant The extent of MPM was
. 1 2 3 assessed through closed
mismatch . . f
loop identification
. These indices
Constraints ) 1 2 consider both
. Poor tuning is often related
Poor Tuning 3 3 4 to factors 1 and 2.
Sensor No sensor failures were
Failures ) B B detected
Disturbance- No unmeasured disturbances
Unmeasured ) B i were detected
In this case the main measured
Disturbance- 2 4 1 disturbance is the feed flow rate
Measured which in turn leads to MPM
and activation of constraints
E:ﬁdence high | high | high
ggfzai)lance Poor | Poor | Satisfactory

Figure 7.23: Individual performance measures for output 2, along with the output control

error trends.
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Figure 7.24: The univariate performance indezx for output 4.
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Figure 7.25: The pre-fractionator bottoms impurity shown along with the setpoint.
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Figure 7.26: Performance assessment for the PID loops.

- means that there is a controllability problem with this bottoms impurity and no other

input can move it to the desired value.

7.4.2 Diagnostics
PID tuning

As part of the DMC performance assessment, the lower level PID loops were assessed for
possible poor performance. The performance assessment results based on desired settling
time are shown in figure 7.26. The desired settling time was chosen as 4 minutes, since
that is the DMC sampling interval, and the PID dynamics should not be seen at the DMC
stage. According to this measure, a temperature loop was found to be poorly performing.
The remaining pressure loops showed satisfactory performance.In order to diagnose the
temperature loop, closed loop identification was carried with the setpoint as the input and
the temperature as the output. It should be noted here that the setpoint to this loop is
a manipulated variable for DMC and thus there is sufficient excitation available to carry
out closed loop identification. A second order output error model was identified. Figure
7.27 shows the closed loop pole locations for the temperature loop. The poles show very
poor damping properties. Also surprising is the presence of a non-minimum phase zero
since this cannot be explained in terms of the physical understanding of the process. The
interaction of the temperature loop with the DMC application on top is suspected to be
the reason for this inverse response in temperature. The closed loop step responses of the
temperature loop are shown in figure 7.28. The transient response shows the poor damping

properties in time domain, the closed loop settling time is of the order of 90-100 minutes.
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On the time scale of the DMC application this is equivalent to 23-25 samples which is not

desirable.In order to improve the performance of the PID controller an open loop test was

Poles (x) and Zeros (0)

—p - T v v

08}
06}
044

02}

021
041
06}

-08L

Figure 7.27: Closed loop pole locations for the temperature loop.

conducted. The open loop test revealed severe nonlinearities which included variable time
delay, changing dynamics (heating & cooling) and an integrating response. Re-tuning of the
PID controllers was attempted based on this open loop test but it did not lead to improved
performance. The severe nonlinearity of the temperature process was believed to limit the
performance of a PID controller and an advanced control scheme is needed to compensate

the inherent nonlinearity of the process.

The LP targets

The setpoints (LP targets) for the column pressure and the reboiler level are shown in
figure 7.29. For this data set, the LP targets or the setpoints showed greater variability
than the outputs. This is a very surprising fact since the DMC controller is ideally designed
to track step changes in setpoint whereas in this case it is being made to track an oscillating
signal. In fact the setpoints or the LP targets to the controlled variables looked more like
a stochastic input than a regular setpoint. In an effort to understand this phenomenon, we
looked at the DMC structure in detail.

The combined structure of DMC is illustrated in figure 7.30. The main steps in DMC

can be explained in the following manner.

187



Step Response

0 10 20 30 40 50 60 70 80 80 100
Time

Figure 7.28: The closed loop step responses for a period of time spanning over 11 days.
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Figure 7.29: The LP targets along with the outputs for the column pressure and the reboiler

level.
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Figure 7.30: Interpretation of the DMC structure including the LP step.

. U) is the control move calculated as a result of the unconstrained least squares min-
imization. C is a transfer function that can be derived on the basis of the least
squares solution (see Chapter 2). This unconstrained move may violate one or more

constraints on the inputs\outputs.

. The LP step uses the previous implemented input, u(k —1), and the measured output,
y(k — 1), to set up the constraints and obtain targets for the inputs through steady
state optimization - uss. This is a nonlinear step, since different constraints may be

active at any given instant.

. H is a transfer function closely related to C, and can be calculated from the uncon-
strained least squares solution. us> (= Hu,,) is used to correct the unconstrained

control move u; and make it conform to the constraints in the least squares sense.

. The steady state targets for the controlled variable (setpoints) are obtained by mul-
tiplying the input steady state targets with the gains, K.

The main outcome of the LP step choosing the setpoints is that the feedback decides

setpoints, and variability is transferred from the input/output to the setpoint. From a

control design view point, the linear programming step is really a part of the feedback

control system and any stability and/or performance analysis would have to include the

LP part. The design of the LP cannot be performed independent of the dynamic error

minimization step. The stability of the dynamic error minimization step does not guarantee

the stability or performance of the overall system.

189



Figure 7.31: The feedback representaion of DMC LP step.

Ideally the setpoint changes should be implemented at a rate which matches the closed
loop settling time of the control system. A low pass filter on the setpoint could be used to

achieve this effect.

Stability analysis of the DMC controller

Clearly the preceding discussion indicated that the LP step affects the stability of the
closed loop system. In the ensuing discussion we will try to analyze the closed loop stability
analysis of DMC including the LP step. The LP step is in reality a nonlinear operator
the output of which depends on the set of active constraints and the input data at any
given sampling instant. This, in turn, makes the overall closed loop system nonlinear and
the stability analysis is rather difficult. Here, we treat the LP step as an uncertain gain
element (bounded) and then invoke classical robust stability analysis results, the small gain
theorem, to derive sufficient conditions for closed stability of the combined DMC system.

Theorem 7.1. For the feedback system in the figure 7.81 , the closed loop system is robustly
stable if and only if

[ICU + PC) 'Kl <1<« (7.11)
. -1 1
[ICI + PC)™ | < K=

For a SISO system wnth positive K we have the following condition for robust stability

=S e < L
1+PC"* T K

Proof. Consider the feedback system in figure below

where K is an uncertain gain matrix depending upon the set of active constraints. The

above figure is equivalent to
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This can then be expressed in the classical M-A structure for feedback uncertainty

r K e

with M = C(I + PC)~!. Therefore using the small gain theorem we have for robust

stability
HMA”x < 1l
HICUI+PC) K|l < 1
QED s

Corollary 7.1. For a SISO system, such that wa has a monotonically decreasing mag-
nitude response and C has an integrator (pole at z=1), the robust stability condition reduces

to
K < P(1)

where P(1) is the process gain.

7.5 Conclusions

The main objectives of this work were to assess the performance of the C3F splitter DMC
and subsequently analyze the reasons for poor performance. At the assessment stage, per-
formance was found to be poor in the low and high load operating regions. Settling time

(Kozub and Garcia, 1993) and historical benchmarks were found to be useful in quantifying
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DMC performance for this application. The achieved objective function is useful in quanti-

fying the different contributions towards poor performance and is recommended for future

online use.

At the analysis stage, constraints were found to be the main reason for the degradation

of poor performance. When the column went into the low load region, material balance

considerations led to the activation of the lower constraint on the reflux flow rate. The

controller was effectively reduced to a single input two output system in this period. In the

high load region a combination of measured and unmeasured disturbances were responsible

for loss in performance.

The chief conclusions of this case study are as follows:

o

Even advanced controllers like DMC may be delivering poor performance. Univariate
and multivariate controller performance assessment is necessary to monitor these loops

regularly and detect performance degradation.

It is necessary to document the design performance of advanced and lower level con-
trollers. This would be extremely useful in performance assessment as well as diagno-
sis. A controller database which documents the basic process characteristics such as
time delay, time constant, gain, and the design expectations such as designed closed
loop response, etc., would go a long way in developing consistent performance mea-

sures and diagnostic tools.

Diagnosis of performance was performed on a case study basis. Automated perfor-
mance diagnosis and subsequent remedial action is a long term goal of this work. The
experience gained during this work will prove useful in establishing a performance

analysis framework.

Constraints were shown to play an important role in the diagnostics step. The inter-
action of the constraints and the induced variability in the LP targets or the setpoints

was found to be related to implementation issues in DMC.

Closed loop identification has great potential in establishing the causes of poor perfor-
mance. Effective multivariable closed loop identification methods need to be developed

for use with large dimensional industrial data sets.
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Chapter 8

Towards Iterative Control and
Identification for MPC

8.1 Introduction

The area of control relevant identification or joint identification and control focuses on
the need to have matching identification and control criterion in order to design high-
performance controllers. In conventional system identification the focus has been on con-
sistency and estimation of the true plant from the measured data. In practice, bias (un-
dermodelling) and variance errors will always be present in the estimated model. Control
relevant identification realizes the need to put emphasis on shaping the bias and variance
errors so as to minimize their impact on closed loop performance of the control system. In
the following discussion we give an outline of the area of control relevant identification as
per Van den Hof and Schrama (1995). In model-based control a controller C is designed
based on a nominal plant, P, based on some design objective denoted by J (P,C). This
controller is then implemented on the true plant P. The controller will robustly stabilize

the true plant only if
(P-P)CUI+PC)Y <1 (8.1)

based on the small gain theorem. The achieved performance will in general be different
than the designed performance. For example the degradation in tracking performance is
given by the difference in the achieved and designed complementary sensitivity functions,

PC(I +PC)"! — PC(I + PC)™! (8.2)
= (I+PC)Y(P-P)CU+PC)™.

°A version of this chapter has been submitted for possible presentation at the 1999 AIChE annual meeting
in Dallas, TX., as “Control Relevant Identification for Model Predicitive Control: Some Closed Loop Issues”,
R. S. Patwardhan, R. Gopaluni and S. L. Shah.
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If 8.2 is small then robust performance is guaranteed. In the IMC formulation the robust
stability and robust performance conditions respectively reduce to
lRAll. < 1 (8.3)
”5[(1+QA)-1 - 1]” < e
o

The design criterion J(P, C) depends on the design philosophy adopted for controller design.

Many design methods are based on minimization of a single measure of performance, e.g.:

1. LQ Tracking: The LQ criterion,

tim L5 B(fr(k) -y + 2R} (8.4)

N—x N (%

is equivalent to [|J(P,C)|[3 with
J(P,C) = [r(k) — y(k) du(k)]"
assumed to be a quasi-stationary signal®.

2. Mized sensitivity optimization: The design objective is indicated by the frequency

domain terms,

(8.5)

_ Wil + PC)!
J(P.C) = [ WoPC(I + PC)~! ]

with the weighting function W;, W2 and the corresponding cost function given by
(P, C)ll-

3. Model predictive control: The MPC objective function,
P 2 i 2
S lr(k+4) —y(k + IR, + 3 l1Auk +i - D3,
i=1 =1
is equivalent to ||J(P,C)||3 with
J(P,C) = [['3(r ~y)  AV3(Auy)]” (8.6)

where |[|.||2 is the conventional Euclidean norm of a vector, ri,yx and Au, are vec-
tors of appropriate dimensions defined in Chapter 2 and I' = diag(T,...,[,),A =
diag(Ai,...,Am).

?|l./l2 is used to denote the correponding semi-norm, defined by ||z(|3 £ limy—o & S, ElzT (k)z(k)].
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The survey by Gevers (1993) gives an excellent justification of the need for joint design
of identification and control. The objectives of control relevant identification are illustrated
below (Van den Hof and Schrama, 1995)

IJ(P.O)| = I(P,C) = J(P,O)||| < IIJ(P,O)|| S IIJ(B,C)|| + |(P,C) — J(P,C)|I.

(8.7)
In this triangle inequality,
[|J(P,C)|| is the achieved performance,
[lJ(P,C)|| is the designed performance,
|J(P,C) — J(P, C)|} is the performance degradation.

Clearly if the performance degradation is small, the achieved performance will be close to
design performance. This is the robust performance condition. Iterative schemes based on
control relevant identification use the past performance degradation term as the identifica-

tion objective to estimate the model parameters,
Piiy = min ||J(P,C) — J(P,C))||. (8.8)
P

Thus the identification criterion is commensurate with the control criterion and will decide
what errors are relatively more important from the controller’s point of view.

The identified model is then used for controller design subject to the constraint that the
future performance degradation term, which is function of the newly estimated model and
the to be designed controller, is significantly less than the designed objective,

Cirr = min|lJ(Pr, Ol (8.9)

subject to
IJ(P,C) = J(Pit1,O)ll < ||J(Bis1, O)I-

It is necessary to have an uncertainty description in order to ensure the satisfaction of the
robust performance constraint. In general the controller may not satisfy this constraint. In
such cases it is necessary to either choose a higher complexity controller or re-parametrize
the model in order to reduce the uncertainty. The iterative scheme is implemented in semi-
adaptive mode. Zang et al. (1995) gave an iterative scheme based on the LQ objective
function. The LQ-relevant performance degradation term was chosen as the identification
objective. The following pre-filter when used with the conventional identification objective

function led to minimization of the LQ-relevant identification criterion,

IL:|2 = (1 + A[C[?)|S|2. (8.10)
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where S is the sensitivity function. Lee et al. (1993) proposed an iterative identification
scheme based upon the internal model control paradigm. This approach is referred to as

the windsurfer approach in the literature. The IMC performance criterion is chosen as

PC
1+ PC

T (8.11)

lJrarc(P,C)|l . =

o ]
where T, is some desired complementary sensitivity function. This performance criterion

induces the identification criterion
[131c(P.C) = Jissc(,0)|| -

Schrama and co-workers used a criterion similar to the mixed sensitivity function in 8.5
except that their criterion is more general and incorporates disturbance rejection, sensitivity
and robustness margins. Their performance objective can be considered as a more general
form of the IMC criterion in 8.11.

Recent work by Hjalmarsson et al. (1995) has been directed at proving the convergence
of such iterative schemes. Hjalmarsson et al. (1998) discuss some applications of iterative
identification and control to real time control. These include the application to PID control
of temperature in a distillation column and the control of a DC-servo motor with backlash.

In this chapter, we focus on developing a method for estimating the control relevant
models for MPC under closed loop conditions. Techniques for control relevant MPC are
reviewed in Section 8.2. A new interpretation for control relevant pre-filtering is presented
followed by discussion of the merits and demerits of the existing methods. Section 8.3
outlines the FIR formulation of the control relevant identification scheme. The control
relevant FIR estimate is shown to be independent of the output weighting matrices in
MPC. Furthermore, closed loop issues such as constraints, the role of pre-filtering and the
impact of nonlinearity are assessed in the remaining part of this Section. Section 8.4 gives

the concluding remarks.

8.2 Control Relevant Identification for MPC

Shook et al. (1992) considered the following open-loop identification objective

N—p p

Jirpr = Y > (y(k +ifk) — gk +1))? (8.12)

k=1 i=1
which is compatible with the MPC objective for the case I' = I,A = 0. The process

was assumed to be of the autoregressive integrated moving average with exogneous input
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(ARIMAX) form,

- n -1
A y(k) = Btk ~ 1) + S g

The j-step ahead predictor is derived using the Diophantine identity,

N ;B
y(k+3/k) = Fy(k) + =5
Substituting the predictor into JLgps; we get
B B :
JLrpr = uk+j-1)| . (8.13)
x5 (5-5)

Using Parseval’s theorem, a control relevant pre-filter, L;(g~!) is derived such that
|Ls(e™) Z |Ej(e™)[?.

The existence of an unique L, is guaranteed and spectral factorization is used to obtain the

pre-filter. This pre-filter reduces the least squares objective function to the control relevant

case,
Jirpr(y,u) = Jrs(yys,uy)
yr(k) = Ls(g " )y(k),us(k) = Lo(qg™")u(k).

The least squares objective function with the pre-filtered data is then equivalent to the
control relevant identification objective.

Huang and Wang (1999) used the prediction error model to formulate a multi-step
ahead prediction error criterion under closed loop conditions. The process is assumed to be

of the form

y(k) = G(a™")u(k) + H(g"")a(k) (8.14)
and a model of the form

§(k) = G(g™"u(k) + H(g™)a(k).
The optimal p-step ahead predictor based on the PEM model is given by (Ljung, 1987):

§k/k —p) = W,Gu(k) + (1 — Wp)y(k) (8.15)
W, = FH™!

-~

p=l
F, = Z%g(z)Q’
1=
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where g(i) are the impulse response coefficients of G. The control relevant objective function
for identification is the same as in equation 8.12. Using a similar approach (Parseval’s

identity) a control relevant pre-filter is derived as

L= ¥ |Fi(e™). (8.16)

Jj=1
The approach of Huang and Wang is more general as it is based on the PEM structure
rather than the ARX structure used by Shook et al. Huang and Wang show that their

approach gives superior MPC performance under closed loop conditions.

An Interpretation of the control relevant pre-filter.

In the following discussion we lend a new interpretation to the control relevant pre-filter.
At each sampling instant we consider the p-step ahead prediction errors weighted suitably.
Let us assume, I"' = diag(~,, 72, ...‘yp), in general I" need not be a diagonal matrix,

N-p p
Jer = XY vlyk+i/k) — gk +1))> (8.17)
k=1 =1
p N—p
= D %) (yk+i/k) — gk +1))?

P N-p
= > 7a 20N (ylk +p/k) — ik +p))?
i=1 k=1

N
= L¢7") ) (k) —9(k)?
k=p+1
Jer = L*gq ')Jis.
There exists no real, linear L(g~!) such that L2(¢”!) = -7 | 4,¢72~9. Let us see how
the frequency response of L2(q~!) looks for p = 5, v; =i/p

L*(g™') = (0.2¢g7% +0.4¢75 +0.6g~* +0.8¢~> +1).

For very large N, we invoke Parseval’s relation to express the LS objective function in the

frequency domain,
N 1 T .
YWk -7 = g [ Gedw
k=P -7

Jor@™) = Lz [ #(e)du

Jerle™) = <De)o [ L) (e )dw
. 1 /[~ - .

Jer(e)l = g [ 1Le)Igk(e)du.

—_—
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Figure 8.1: Magnitude response of L*(q™!) for different weightings

Thus the effect of the weighting matrix and the prediction horizon on the control relevant
pre-filter is illustrated in an intuitive manner through the preceding derivation.

Banerjee (1996) presents a comparison of different control relevant identification schemes
for predictive control. The identification schemes of Shook et al. (1992), Rivera et al. (1992)
and Zang et al. (1995) were evaluated in an iterative framework for MPC under closed loop
conditions. The third order process of Section 5.4 served as the plant while a first order
ARX structure was chosen for the model. The control relevant pre-filter of Shook et al.
was shown to emphasize the low frequency errors. The control-relevant pre-filter of Rivera
et al. gave the best achieved performance among the three schemes compared.

Some remarks are in order here with regards to the schemes of Shook et al and Huang

and Wang:

e The control relevant identification objective matches the performance degradation
term for (i) a particular choice of weighting matrices I' = I, A = 0 in the closed loop
case or (ii) the open loop case with I = I. The performance degradation term under

closed loop conditions for a general choice of weighting matrices is given by

IJ(P,C) = J(B,O)]| = llyx — gxlIf + ||Aux — A |3 (8.18)
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e It is not clear how the receding horizon nature of MPC will relate to control relevant
identification scheme. The receding horizon estimator of Muske et al.(1995) does cap-
ture this control relevant feature of MPC for estimating the states. The performance

degradation term in 8.18 becomes
IJ(P,C) ~ J(P,O)| = llyx — il I} + [|Au(k) — Ad(k)|}

i.e. we just look at the mismatch between the predicted and the actual input over one
time step. In the absence of any input noise or valve type nonlinearity these quantities
will be the same. Consequently only the output part of the performance degradation,

llyx ~ Ux||?, remains as the control relevant mismatch.

e The effect of constraints under closed loop conditions is to give a time-varying nature
to the control law. How does this affect the implementation of control relevant identi-
fication under feedback? Under the assumption of persistent excitation (Ljung, 1987)
it is possible to apply direct open-loop identification schemes even under closed loop
conditions. This separates MPC from the conventional control schemes where effects

of feedback have to accounted for before applying any identification scheme.

e The linearity of a chemical process is more an exception than rule. The derivation
of a control relevant pre-filter is of limited use in such cases since it is based on the
assumption that the true process is indeed linear and has a structure similar to the

model form.

8.3 Control Relevant Identification in the FIR form

In this Section, the control relevant formulation of the finite impulse response is described.
An appropriate least squares solution gives the control relevant estimate for the FIR form.
The control relevant estimate is shown to be independent of the output weighting. The
effect of constraints, nonlinearities and pre-filtering is analyzed in the context closed loop

control relevant identification.
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8.3.1 Open loop case
In the FIR form the p-step ahead predictor can be expressed as follows,

Gk +1/k) = h)uk)+ h(2uk —1) + .A(N)u(k—N+1) =uTH

gk +2/k) = h(u(k+1)+h(2u(k)+ . .h(N)u(k—N+2) =ulfH
gk +m/k) = h(Duk+m—1)+h(Quk+m—2)+ . .h(N)u(k —N +m) =uLH
yk+p/k) = hNulk+m—-1)+hQuk+m—1)+..+h(p—m)u(k+m —1)

+h(p-m+1Nulk—m—-2)+..+h(N)u(lk+ P —N)
= u'H

In vector form we have,

Y. = UH
uf
U = : =
ul
[ u(k) u(k —1) ulk—-N+1)
u(k+1) u(k) u(k - N + 2)
wk+m—1) u(k+m—2) .. u(k — N +m)
uk+m-1) ulk+m-1) .. ulk—-N+m—+1)
_u(k-&-;n—-l) ulk+m-1) ... u(k+n.l—1) u(k + m — 2) u(k+ P — N)

Thus the control relevant identification problem in equation 8.17 reduces to identifying the
Markov parameters of the system by minimizing the following objective function,
min E{(Yi — Yi)TT(Yi — Yi)]

= min E[(Yk — UcH)TT(Y;, — U H)

= ugn{E(YkTFYk) + E(HTUITUH) - 2E(HTUTTY,)}

= min{EHTU{TU:H) ~ 2E(HTU{TY)}.
Assuming H is a deterministic variable, we have the least squares solution as,

Hcr = I7'Z,. (8.19)
L. = EWUITU.), L, = E{UITY:).
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H is the impulse response representation of the process. From this one can always back
out the state space representation of the process. Note that this is exactly the dual of the
control problem without the input term. An interesting property of the control relevant
solution is that it is invariant to the output weighting matrix. This is certainly a counter-
intuitive result. In order to prove this property we first state a result from linear algebra

for generalized inverses of non-square matrices from Campbell and Meyer (1979),

Theorem 8.1. Suppose A € C™**.B € C"*P, and rank(A) = rank(B) = n. Then
(AB)" = BYTA' where A" = A*(AA*)~!,Bt = (B*B)~'B*,* denotes complez conjugate

transpose.
Therefore we have
. = EU{TU)=EWUITY’T'V2U,) = E(UfU:) =070
Sp = E(UITY:)=EOIY:)=0TY

yu
O = [[V2U, TV2U, ... TY?Uy] = FY2[U, Us ... Uy] = FY2U
Y = fl/‘l[Yl Ys ... YN] — fl/'zY

fwl/l = diag(rl/‘zmrl/g)

28, =0'Y
Using the earlier result on pseudo-inverses, we have assuming full row rank for U.
Ot = (P20 = UH(EY2)t = ptE-172
since [''/? is a square matrix with full rank. Therefore we have,

£Il8,, = UIT-Vrllly
= U'Y.

Thus the control relevant FIR estimate is independent of the output weighting matrix. Let
us compare this solution to the conventional least squares estimation of the impulse response

model of the system,

gk+1) = hQQuk)+hQuk -1)+ . .A(N)u(k—N+1)=ulH
gk+2) = h(lu(k+1) +h(Qu(k) + .h(N)u(k —N +2) =ul H

gk+N1) = h(Quk+ N1 —-1)+h(2uk+ N, —2)+  .h(N)u(k+N; —N) = 1_1‘7\}1[{
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i.e.
Y =UH.

Therefore the conventional least squares problem is

min(Y — V)I(Y —Y)

= min(Y - UH)'(Y —-UH).

The least square solution is given by

Urs = (UTU)"'WUTY. (8.20)
What is the difference between the conventional least squares solution and the control rele-
vant estimate of the Markov parameters? The answer, as the subsequent example reveals, is
very little. The reason is that for a linear, stable process there is no under parametrization
with the FIR form. As a result there are no bias errors. Hence the question of distributing
the bias errors in a control relevant fashion never really arises. As far as the variance of
the respective estimates is concerned it can be shown that the control relevant estimates
show lesser variation when compared with the least squares solution. Figure 8.2 shows the
comparison of the control relevant estimates with the least squares estimate for the third

order process in Chapter 5. They are almost identical. The control relevant estimate was

found to have a covariance matrix which was an order of magnitude lower than the least
squares estimate.
8.3.2 MIMO extensions

The FIR approach extends very naturally to the MIMO case. We illustrate the MIMQO

problem for a 2x2 case. The generalization to higher dimensions is straightforward,
n®) = ¥ huGulk=i)+ 3 halua(k - )
= };ﬁgl(k) + Hiyuz(k) i
y2(k) = Hlui(k)+ Hua(k)

ya(k) H}, HIL uz(k)
H;, H
vi7 = (o) W® ]| 5 R ]
The conventional least squares problem is equivalent to finding the solution to
y(1)T ul (1) ui(1)
y@T | _ ul(2) uf(2) [ Hy Hye
Hp Hz |-
y(N)T ul (M) ul(Ny)
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Figure 8.2: Comparison of control relevant FIR identification with conventional least squares
method. True impule response (o), control relevant model (*) and conventional least squares
estimate ()

For the control relevant case we have the prediction vector Yj instead of y(1) for each of

the outputs and the matrices Uy, for each input in place of ul (1) etc.

8.3.3 Closed loop issues

We presented an industrial application of correlation analysis to closed loop identification
in chapter 7. Here we will try to analyze the utility of using the FIR model in closed loop
identification with the pre-whitening filter. Consider the closed loop system given in figure

8.3. The closed loop relations are given by,
y=Tr + SPw+ Sv
where w is the excitation at the input, we assume an excitation sequence of the form,

w = Fe
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Figure 8.3: The feedback structure

where e is a white noise process. Take the case where r =0, v =0

U = u+w
y = Pu
u; = Sw
= SFe.

If a pre-whitening filter is estimated for u,, as Lu; = é, then the question is under what
conditions is L~! = SF? If this holds than the pre-whitening filter accounts for the feedback
and should still be able to give an estimate of the open-loop relationship between the inputs
and outputs. Figure 8.4 shows the magnitude response of the pre-whitening filter for a
closed loop system comprising of the third order process (equation 5.16) and a proportional
feedback controller, C = 6. A white-noise type dither signal (F = 1) was used to excite the
closed loop. In this case L~! matches the sensitivity function response very closely. Figure
8.5 shows the role of the pre-whitening filter on closed loop identification of the FIR model.
When the pre-whitening filter is used the FIR model between the filtered input and output
matches the true step response. Without the pre-whitening filter the FIR model shows
influence of feedback and estimates a negative gain with a highly oscillatory response.We
also investigated the role of the pre-whitening filter on estimation of output (OE) models
which are essentially the same as FIR models in terms of structure. Figures 8.6 and 8.7 show
the role of the pre-whitening filter on the OE structure in the time and frequency domains
respectively. Once again without the pre-whitening filters the OE model shows bias. The
small bias in the OE model, with pre-whitening, at steady state could be attributed to the
fact that the sensitivity function acts as a high pass filter and the pre-whitening filter is not
able to reconstruct the low frequency signals with desired accuracy.
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Figure 8.4: The magnitude response of the pre-whitening filter (dashed line) and the sensi-
tivity function (solid line).
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Figure 8.5: Estimation of the step response coefficients using correlation analysis under
closed loop conditions with pre-whitening (dash-dotted) and without pre-whitening (dotted)

shown with the true step response (solid).

206



Figure 8.6: The effect of pre-whitening on the OF structure: OF with pre-whitening (dotted
line), without pre-whitening (dashdotted line) and the true response (solid line).
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Figure 8.7: The frequency domain fits for the OF models with and without pre-whitening. OF
with pre-whitening (dotted line), without pre-whitening (dashdotted line) and the true re-
sponse (solid line).
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Effect of constraints

The presence of constraints in a controller changes the feedback system from being a linear
time invariant one to a linear time varying one. In effect it modifies the linear correlation
structure under feedback. One cannot express the closed loop relationships in terms of
transfer functions. From an identification standpoint this is a desirable property since it
enables application of direct input-output identification under feedback. The two conditions
necessary for applicability of direct input-output identification in the closed loop are:

1. The controller is time-varying or changing.

2. The presence of a persistent excitation signal.

Condition 1 is satisfied by a constrained controller when the active set of constraints
is changing at every sampling instant. This is a very useful fact for estimating models in
closed loop. The constraints can act as an extra degree of freedom for the design of closed
loop experiments. For example, for the duration of the identification run, the constraints
can be altered in such a way that the excitation sequence hits a different constraint every
sampling instant. The following example illustrates the role of constraints in closed loop
identification.

In the closed loop system of the previous example, we added rate and amplitude con-

straints on the proportional controller:
-2 <u(k) £2,-05 < Au(k) <0.5. (8.21)

Figure 8.8 shows the effect of constraints on direct identification without any pre-filtering.
For the unconstrained case there is non-trivial bias whereas for the constrained case there
is very little mismatch. We also studied the effect of time span for which constraints are
active on the direct identifiability scheme. In figure 8.9 the dashdotted line refers to the
constraints in equation 8.21. The constraints are active for over 85% of the time, during the
closed loop experiment. Subsequently the rate constraints were relaxed to —1 < Au(k) <1
and the constraints were active for 66% of the run. The direct identification scheme is less
accurate in this case as shown by the dotted line in figure 8.9. When the constraints were
further relaxed to —5 < Au(k) < 5 the active period reduces to 15% (see the dashed line in
figure 8.9) and the result from the direct input-output identification scheme is close to the

unconstrained case.
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Figure 8.8: Effect of constraints on closed loop identification: direct identification with con-
straints (dashed line), without constraints (dashdotted line). The solid line gives the true
step response.

Figure 8.9: Effect of constraint activation on closed loop identification.
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Figure 8.10: Effect of valve nonlinearity on closed loop identification schemes.

Impact of nonlinearity

As with constraints, the presence of nonlinearity also makes the linear time invariant closed
loop relationships infeasible. We studied the effect of a simple backlash type nonlinearity on
the direct identification scheme with and without pre-filtering. Figure 8.10 shows the effect
of backlash in the control valve. The direct identification without any filtering (dashed line)
is able to capture the steady state part of the process response accurately. In the presence
of filtering with a pre-whitening filter (dashdotted line) the model shows a large bias at

steady state but gives a better fit at higher frequencies or initial times.

8.4 Conclusions

The main contributions of this chapter can be summarized as follows:

e A control relevant identification scheme is formulated for the finite impulse response
model. It was shown that the output weightings have no effect on the outcome of
the control relevant estimation scheme. The conventional least squares method and
proposed scheme were shown to give similar results on a simulation problem. The

proposed scheme led to estimates with lesser variance.

e The effect of the pre-whitening filter in closed loop identification with the FIR and
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OE forms was analyzed. It was shown that the pre-whitening filter is equivalent to the

sensitivity function for the case of high signal to noise ratio and persistent excitation.

e The role of constraints and nonlinearity on direct closed loop identification was demon-
strated via an illustrative example. It was shown that activation of constraints enables
application of direct identification under closed loop conditions. The frequency with
which the active constraint set changes is important to the accuracy of identification
in closed loop. The impact of nonlinearity is not so obvious. A backlash type of
nonlinearity is used to illustrate the dangers of using filtering under feedback.

We have taken some steps towards implementing iterative control and identification
under closed loop conditions. Further work is required to design a robustly performing
iterative MPC scheme based on the FIR form. In theory, the iterative scheme provides an

ideal solution to the continuous maintenance and improvement of model predictive control

applications.
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Chapter 9

Conclusions and Recommendations

9.1 Concluding remarks

The main contributions of this thesis are:

e A tutorial overview of model predictive control and the prevalent research directions.
The basic principles of MPC are explained in a transparent manner using illustrative

examples. Current research in the design of robust MPC is presented.

e Application of linear matrix inequalities in the design and tuning of model predictive
controllers. The LMI approach, as shown by Kothare et al. (1996), gives an elegant
framework for casting and solving the robust MPC problem efficiently. We present
some real time applications of the LMI based MPC and give a new way of choosing
the MPC weighting matrices via the LMI framework.

e Design of linear and nonlinear MPC in the partial least squares framework. The PLS
framework is useful in modeling correlated data. The dynamic extensions of PLS
based models are shown to have some theoretically desirable properties. Linear and

nonlinear MPC using PLS models is proposed, and demonstrated via simulation and

real time applications.

e Development of a new assessment technique for MPC based on comparison of the
design and achieved objective functions. Using the state space form it was shown how
to estimate the design objective function analytically. Receding horizon was shown

to lead to a loss in performance.

e Quantifying the effect of uncertainty, constraints, mismatch in the disturbance model,
nonlinearity on loss in controller performance. This presents an important step to-

wards diagnosing poor performance. Closed loop tests based on external excitation
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can help eliminate some of the above factors. Future work needs to be directed de-
veloping factor specific tests that will aid the diagnosis procedure.

e Application of the performance assessment and diagnostic tools to two industrial DMC
applications. The DMC structure was analyzed and effect of the LP part on closed loop
stability was established. Several practical measures and diagnostics were emphasized
in this study. The role of PID tuning and constraint activation in determining DMC

performance was illustrated.

e A control relevant identification method for the FIR form was proposed and evalu-
ated. The role of filtering under closed loop conditions was ascertained. The effect of
constraints and nonlinearity on model estimation, under feedback, was highlighted.

The proposed synthesis and analysis tools were evaluated on a variety of real time and

simulation examples:

e The LMI approach was implemented on two pilot scale process - a light bulb temper-
ature control process (SISO) and a stirred tank heater process (MIMO).

e The linear PLS based MPC was also evaluated on the stirred tank heater. The
nonlinear PLS based MPC was applied on a simulated pH-level control process.

e The proposed assessment and diagnostic tools were implemented on (i) a commer-
cial QDMC application at the Scotford refinery of Shell Canada and (ii) two DMC
applications at the Mizushima plant of Mitsubishi Chemicals, Japan.

e Apart from these applications, appropriate simulation examples were used to illustrate

the design and analysis tools in a tutorial manner.

Thus this thesis has taken some steps towards improving the design and analysis of
model predictive controllers. The presented techniques are simple and appealing to the
industrial practitioner. The experience gathered in analyzing industrial applications will
lead to better understanding of the industrial technology for MPC.

9.2 Future research directions

A wealth of tuning and design methods are available for MPC. However, relatively little
work has been done in the area of analyzing performance of existing MPC applications.

Some progress was made in this work towards establishing performance metrics suited for
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MPC. A great deal of work needs to be done in the area of diagnostics, in establishing the
contributing factors to performance degradation and the extent of the contribution. A MPC
application needing little maintenance would be one which monitors its own performance
and can iterate between the design and analysis phase intelligently.

A self learning controller which finds out when things are not right, establishes the un-
derlying causes and implements corrective measures or at least makes suggestions would be
the dream of any industrial practitioner. The iterative control and identification (Van Den
Hof and Schrama, 1995 ) framework is ideal for such a controller. The identification scheme
where the controller itself injects the dither signal automatically (Genceli and Nikolaou,
1996) is also well suited for purposes of re-identifying the process or merely establishing the
degrading factors such as disturbances, constraints, etc.

Towards this end, some of the problems that need to be investigated are:

e Establishing systematic methodologies for diagnosis of poor controller performance.
This includes answering questions such as: when are disturbances responsible for a

loss in performance? Is it a combination of disturbances and model plant mismatch?

e Development of factor-specific closed loop tests. For example, injecting an excitation
signal at the input may help in determining the model plant mismatch. Other kinds

of signals may aid detection of nonlinearities.

e Studying the effect of nonlinearity on performance of linear mode-based controllers.

In other words, what is the loss in performance due to linear a controller working on

a nonlinear process?

e The state space framework provides a powerful tool for designing and analyzing MPC.
Development of control relevant state space estimation techniques would prove useful

in implementing iterative MPC schemes based on the state space model.

e Techniques for on-line re-tuning of model predictive controllers. If the performance is
not up to the mark, what tuning parameters need to be changed and by how much?

This is not a trivial problem and often addressed in a heuristic manner in industrial

practice.
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Appendix A

A method for closed loop
estimation of uncertainty

In chapter 5 we presented bounds on performance of an uncertain system. The knowledge
of uncertainty was presumed. Here we present a non-parametric method to estimating the
uncertainty in modelling under closed loop conditions, for open loop stable processes. The
internal model control framework once again comes to the rescue, reducing the closed loop
problem to the open loop one. Consider the IMC structure once again. We have the following

relationships in the presence of feedback and assuming r = v = 0.
7 = PI+QA) 'w
= y—g=(P-P)I+QA)'w
In terms of the relevant spectra we have:
b = |PU+QA)s,
b = |(P—PYI+QA) s,

Dividing the second equation with the first we get
¢du: P - p

~

Do - P
Consider the simulation example with the delay mismatch in chapter 5. We will apply the

£ Ay

above method for estimating the frequency domain bound on the multiplicative mismatch.

The true MPM in the multiplicative form is given by
A./\f =1- Z_l

for a delay mismatch of one sample. Figure A.2 shows the estimated mismatch along with
the actual mismatch. The estimated mismatch shows a good fit except in the low frequency

region.
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Figure A.2: Comparison of the estimated mismatch (dashed line) with the actual mismatch
(solid line).
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