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Abstract

Any free presentation for a finite group G may be used to construct an infinite group
F having G as quotient modulo a central subgroup, having finite commutator subgroup F’
determined up to isomorphism by G, and having the projective lifting property for G over all
fields. This thesis is concerned with the study of those irreducible representations of F which
arise as lifts of irreducible projective representations of G over fields of characteristic zero.

If k is such a field, we obtain a bijective correspondence between the set of primitive central
idempotents of the group algebra kF and the set of F-orbits of irreducible k-characters of F”.
In the case where k is algebraically closed, this correspondence extends to the set of projective
equivalence classes of irreducible projective k-representations of G.

In general the group algebra &£ F embeds in a completely reducible ring A" F having dimension
|G| [H?*(G,C*)| over a purely transcendental field extension A of k. Analysis of the simple
components of K F yields information on the general structure of certain simple k-algebras
which appear as homomorphic images of £F, and on possible values of their Schur index and
degree. These algebras determine irreducible projective representations of (G over &, since they
also appear as simple compouents of twisted group rings of G over k.

The problem of realizability of projective representations over small fields is considered in
the light of the close connection between the equivalence classes of irreducible projective C-
representations of G and the F-orbits of absolutely irreducible characters of F’. In particular it
is shown that if the field £ C T is an ordinary splitting field for the finite group F’, then every
complex projective representation of G is projectively realizable in 4.

Finally a detailed discussion of the irreducible projective representations of finite metacyclic

groups over subfields of the field of complex numbers is included.
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Chapter 1

Introduction

The projective representation theory of finite groups was introduced by Schur in 1904, and
has received considerable attention since, particularly in the case of representations over alge-
braically closed fields. The subject is a natural but not entirely straightforward generalization
of the theory of linear representations - a projective representation of a group G over a field &
basically consists of two cormponents : a homomorphism of G into a projective (not general)
linear group over k. and a cocycle. which is a function of G x G into £*. It is the appearance of
this cocycle which leads to [Lmitations on any far-reaching general analogies between projective

and linear representations.

Throughout this thesis we will assume that all fields under consideration have characteristic
zero. although for many (though not all) of the results. the hypothesis that the characteristic
of the field should not divide the order of the finite group under discussion would suffice. Also,
G will always denote a finite group. The layout of the thesis is as follows : Chapter 1 is
introductory, and consists mainly of standard definitions which are central to the subject. In
Chapter 2 we introduce the iclea of a generic central extension for a finite group, an object whose
linear representation theory will be of fundamental importance. Chapters 3 and 4 concern the
structure of the group algebras of these generic central extensions, and in Chapter 5 we consider
the finite dimensional irredu cible representations of such group algebras. In Chapters 6 and 7
we reach some conclusions a.bout projective representations of finite groups over fields. These

conclusions, and the general theory discussed earlier. are applied in Chapter 8 to the specific
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case of metacyclic groups.

1.1 Projective Representations and Twisted Group Rings

Let G be a (finite) group and let & be a field. A linear representation of G over k is of course a
group homomorphism of & into a general linear group over k. A projective representation of G
over k 15 a mapping T : G — G L(n, k), which is not necessarily a group homomorphism, but

which sends lg to /gL (n k), and for which
moT :G — PGL(n, k)

ts a group homomorphism. where 7 is the usual projection of GL(n.k) on PGL(n,k). The
positive integer n is called the degree of T. The kernel of T is the kernel of the homomorphism

wmoT, and T is said to be faithful it ker T is trivial.
Of course the fact that @ o T is a group homomorphism means that
T(xy) € T ()T (y), V2, y €G.
Thus implicit in the definition of T is a function f: G x G — k* defined for z,y € G by
T(zy) = f(£,9)T(x)T(y)- (L.1)
If r,y,- € G, we can use [.1 to write T(xys) in two ways :-

T(xyz) = flzy,2)T(+y)T(=)

T(xyz) = flz.y=:)T(¢)T(y=)

Further expansion of the right hand sides of these equations leads to the following condition on

f o=
e y) fley, 2) = fle.yz)fly.2). Vz,y,z€G. (1.2)

Also. from the requirement that T(lg) = lgg(nx) (which is a simplifying convention and

imposes no real restrictions), combined with 1.1 we obtain

fllg,z) = f(z,lg) =1, Vz €GC. (1.3)
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Any function f :G x G —+ k> satisfying 1.2 and 1.3 is called a cocycle of G in k. The set of
all such cocycles is denoted Z*(G, k*) and forms a group under multiplication which is defined
pointwise:-

fifa(z.y) = filz.y) falz.y). for fi1,fa € Z*(G. k™). z.y€G.

The identity element of Z*(G, k*) is of course the trivial cocycle - the one which sends every
element of G x G to I. We note that if T : G — GL(n, k) is a projective representation of
G with cocycle f € Z*(G, k*), then T is in fact a linear representation if and cnly if f is the
trivial cocycle. If f € Z2(G, k) is the cocycle associated to a projective representation T of G

by equation 1.1, T is often referred to as an f-representation.

Now let g be any function taking G into the set of nonzero elements of the field &, and let

T:G — GL(n, k) be as above. Then we may define a function 7' : G — GL(n, k) by
T'(z) = p(x)T(r), for € C.

That 7" is again a projective representation of G is clear, since o7’ = 7o T. For z,y € G,

we have

T'(zy) = p(zy)T(xy)
= plzy)fle.y)T(£)T(y)
= plzy) fle.y)plc) ' T (x)p(y) " T (y)

= pley)p)” w(y) " e 9T (@) T (y).
Thus T7 : G — GL(n.k) is a linear representation of G if and only if
flz,y) = pl@)pplzy)™ Yo,y €G. (L4)

A cocycle f which satisfies 1.4 for all .y in G is known as a coboundary of G in k. The subset
of Z*(G. k*) consisting of the coboundaries is denoted by B2?(G.k*) and forms a subgroup
under multiplication. This leads to the definition of H*(G, k*), the second cohomology group

of G with coefficients in k. as the quotient group :-
H*(G. kX)) := Z2(G, kX)) B*(G, k*).
The name dp is generally given to the coboundary determined by the function i : G — £* i.e.

sp(r.y) = ple)u(y)p(zy)™. Vr.yed.
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If T" and T are projective representations of G defined as above, then the cocycle f/ of T is
fép. and in particular f and f’ belong to the same class in H>*(G, k*). For an arbitrary choice
of k the group H*(G.k*) may be infinite, but it is finite in the case where k is algebraically
closed. This is a consequence of the divisibility of the multiplicative group of an algebraically
closed k. which guarantees that every coset of B2(G, k) in Z*(G.![*) includes a representative
which takes values in the (finite) group of |Gjth roots of unity in k£*. The finite abelian group

H?(G.T*) is called the Schur multiplier of G and denoted by M (G).

We now give a module-theoretic description of projective representations, which is directly
analogous to the familiar interpretation of linear representations of groups as modules over their
group rings. A projective representation of a group G over a field & is a module, not over the
ordinary group ring kG, but over a slightly more general object. A twisted group ring of G
over k is a k-algebra R having basis & = {e;,9 € G} as a k-vector space, and in which the
multiplication of the basis elements does not exactly replicate the multiplication in &G (as in the

case of ordinary group rings), but in which for r,y € G we have
erey € k™ ezy.
Thus there exists a function f:G x G — £* defined by
erey = flr.ylery. Yo.yed.

We may extend the multiplication on £ by k-linearity to a multiplication on R. Then the
stipulation that multiplication in R should be associative leads to the requirement that f must
satisfy the relation given by 1.2 on G. That f also satisfies 1.3 follows if we require that the
identity element of R should be lxe;,. Thus f € Z*(G,k*). Finally addition in R is defined

in the obvious way :-

Z ageg + Zbgeg = Z(ag + bgley, forag,bg €k, geG.

The ring R defined by these conditions is called the twisted group ring of G over k determined
by f, and is usually denoted by &/G. Suppose the cocycles f’ and f represent the same class
in H*((:, K'X), so f' = fdu for some function g : G — k*. Let & = {e}.g € G} be a basis

for the twisted group ring /' G for which
e'xe; = f'(.t,y)e'ry, Ve yed.

Then it is easily checked that the map ¢ : /G —+ k/'G defined on & by d(eg) = eg and
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extended by k-linearity to &/ G is an isomorphism of k-algebras. In particular, &/ G is isomorphic

to the ordinary group algebra &G if f is a coboundary.

Now suppose for some f € Z*(G, k*) that T is a projective f-representation of G of degree
n. Then we may regard 7" as a mapping from G into GL(V'), where V' is a vector space of
dimension n over k. Then the relation 1.1 defines the structure of a &f G-module on V. On the
other hand the choice of a &-basis for any &/ G-module defines a mapping of G into some general
linear group over k, which is a projective f-representation of G. Thus we have an alternative

characterization of projective representations of & in terms of modules over twisted group rings.

1.2 Irreducible Projective Representations and Projec-

tive Equivalence

Notions such as irreducibility and equivalence of projective representations are defined by direct
analogy with the linear theory. We give these definitions in this section, and also try to indicate
some of the limitations of this analogy, in particular why some of the most elementary results on
completely reducible linear representations do not really translate smoothly into the projective

setting. and why the definition of projective equivalence is inherently somewhat problematic.

Let T : G — G L(n, k) be a projective f- representation of the finite group & over the field
k. Thus T defines the structure of a A/ G-module on a vector space V" of dimension n over k.
Then T is said to be irreducible as a projective representation of G if V" contains no proper

kS G-submodule.

If £ is a field extension of k. we may define a projective representation TE of G over E
by composing T with the inclusion of GL{(n.k) in GL(n, E). If T* remains irreducible for all

choices of E. T is said to be absolutely irreducible.

In the case where char & = 0 or char k does not divide the order of G, every &fG-module
can be written as a direct sum of irreducible £/ G-modules. This is a consequence of Maschke’s

theorem applied to twisted group rings.

Theorem 1.2.1 (Maschke) Let GG be a finite group. and let k be a field for which chark =0
or chark does not divide |G|. Then if f € Z*(G, k), the twisted group ring k/ G is completely
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reducible. O

A proof of Maschke’s theorem for twisted group rings can be found in [15].

It 15 worth mentioning that while twisted group rings share the property of complete re-
ducibility with ordinary group rings (under the hypothesis of Maschke's theorem) it is possible
for a twisted group ring to be simple though this is not possible for any ordinary group ring of
a nontrivial finite group over a field. Let & and G be as in the statement of Theorem 1.2.1, and
assume that G is not trivial. It is easy to see that the ordinary group ring 4G contains at least
two simple components, for

==
Tl gecy

1s a central idempotent of AG which is equal to neither 0 nor 1.

However, examples of twisted group rings which are simple are easily found. If £ generates

a cyclic group C of order 2. let f € Z2(C,&*) be the cocycle given by
f(L1)y=f(lL,z) = f(z,1) =1 f(z.z)=2.

Then the twisted group ring @/ C is isomorphic to the quadratic field extension Q(v2) of Q.
There also exist examiples of twisted group rings which are central simple over their ground
fields. This means that it is possible for the regular representation of a twisted group ring to

be irreducible, even over a field which is algebraically closed.

For example, let G = C x C2 and let 2 and b be generators for G. Let f be the cocycle in

Z2%(G,T) defined by the table
fl1 a b ab

1|1 1 L 1
a -1 I -1
b 1
ab | 1 I =1 -1

— -
|

—

|

—

Then T/ G = (;é%) = AM»(C), and the mapping T : ¢ —s GL(2.C) defined by

—-i 0 0 1 0 —i
a—> . ob— . ab —
0 -1 0 —1 0
6
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is an irreducible projective representation of G over ‘. with cocycle f. We observe that f
as defined above cannot be a coboundary in Z3(G,T*) since the twisted group ring & G is
noncommutative and cannot therefore be isomorphic to CG. Since C is algebraically closed, T
is an absolutely irreducible representation of G. Thus Ca x C» has faithful absolutely irreducible
projective representations. although all of its absolutely irreducible linear representations have

degree | and are certainly not faithful.

If T) and T, are projective representations of G of degree n over the field &, they are said

to be linearly equivalent if for some 4 € GL(n, k) we have
Ta(g) = A™'Ti(9)A, Vg€EG.

It is easily observed that the same cocycle f € Z3(G,k*) is associated to both T} and T»
if they are linearly equivalent, and it is a consequence of Theorem 1.2.1 that every projective
f-representation of G is linearly equivalent to one which can be written as a sum of irreducible f-
representations. The irreducible constituents which appear in such a decomposition are unique

up to linear equivalence.

Our original definition of projective representations, essentially as homomorphisms into pro-
Jjective general linear groups, suggests that “equivalence classes™ of projective representations
should perhaps be more inclusive than those determined by the above definition of linear equiv-
alence. As above, suppose 7} and 7> are projective representations of degree n of &G over the
field &. We would like to declare T; and T+ to be “equivalent” if for some 4 € GL(n, k) the

representation T;' defined for g € G by
Ti'(g) = A7 Ti(g) A
satisfies 7oT{' = woT5. where & as before denotes the usual projection of GL(n, k) on PGL(n, k).

The representations T} : G — GL(n, k) and To : G — G L(n, k) are projectively equivalent

over k if there exists a matrix A € GL(n, k) and a function g : G — &% for which
n(g)A I Ti(g)A =To(g), Vg€G. (1.5)

It is easily seen that if 77 and T» are as above, their cocycles need not be equal, but differ by
the coboundary du. We remark for later reference that in the special case where u is a group

homomorphism the same cocycle is associated to both 77 and 7». Even in this case however, T}

-1
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and 7> need not be linearly equivalent. Thus in general the cocycles associated to projectively
equivalent representations belong to the same class in H?(G,k*). This is consistent with
our comments on isomorphism of twisted group rings at the end of Secticn 1.1 : projectively
equivalent representations correspond to modules over isomorphic twisted group rings. Since
H?*(G,k*) is typically infinite for an arbitrary choice of G and k, a finite group may have

infinitely many projective equivalence classes of projective representations over a given field.

Projective equivalence is the analogue in projective representation theory of the concept
of linear equivalence in linear representation theory. This correspondence is fairly tenuous i
some respects however. Great caution is required in drawing any conclusions based on regarding
projectively equivalent representations as “the same”. For example. as we shall see in Chapter
6, the Schur index over a given field of an absolutely irreducible projective representation, which

is defined exactly as in the linear setting, is not invariant under projective equivalence.

Another initially surprising and somewhat unsatisfactory fact is that a projective represen-
tation is not determined up to projective equivalence by the projective equivalence classes of its
irreducible constituents. For let ¢ = (z) be a cyclic group of order n, and let £ be an nth root
of unity in C. We may define for i = 1...n a (linear) representation R; of G by R;(z) = £°.
Each R; is of course trivial when regarded as a projective representation of G, since it sends
G into {C* . Moreover, the same cocycle in Z3(G, C¥), namely the trivial one, is associated to

each R;. Now let R be the linear representation of degree n of G defined by

R(z) = diag(l.£.€2,. ... enh.

As a projective representation of G over C. R is not only nontrivial but faithful, although each
of its irreducible constituents is projectively trivial. This situation is caused by the general
difficulty that if T} and T» are projectively equivalent irreducible representations of G which
determine the same cocycle f in Z*(G, k%), the irteducible &£/ G-modules determined by T} and

T> need not be isomorphic.

Another significant difference between the projective and linear representation theories is
that the sum of two projective representations need not be a projective representation, unless
the same cocycle is associated to both summands. In addition, projectively equivalent represen-
tations generally do not have the same character, which means that one of the most powerful
and beautiful aspects of linear representation theory, namely character theory, loses much of its

scope when carried into the projective situation. Although there is a well-established and cohe-
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sive theory of projective characters (see [10]. for example), it can necessarily apply only to one
cocycle at a time. Also, the product of two projective characters is not in general a projective

character, even if the same cocycle is associated to both of the corresponding representations.

Throughout the remainder of this thesis, if two projective representations of a group or
algebra are described simply as “equivalent”, we shall understand that they are projectively

(and not necessarily linearly) equivalent.
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Chapter 2

Covering Groups and Generic

Central Extensions

Let R : G — GL(n.k) be a linear representation of a finite group G over a field k. Then

{R(g).9 € G} generates a finite subgroup of GL(n, k) which is isomorphic to G/ker(R).

Now suppose T : ¢ —+ GL(n.k) is a projective representation of . and consider the group
GT generated in GL(n. k) by {T(4).9 € G}. The order of GT need not be finite; however if
A denotes the intersection of G7 with Z(GL(n.k)) = k%, then G := GT/A is isomorphic to
the image of G in PG L(n. k) under the homomorphism 7o T, where 7 is the usual surjection
of GL(n, k) on PGL(n, k). Now G7 is of course an extension of its central subgroup 4 by the
homomorphic image G of G; the abelian group - is not in general finite but is certainly finitely
generated since its index in G7 is finite. We remark that if £* is identified with Z(GL(n,k))
then all values assumed by the cocycle f € Z*(G, k*) associated to T appear in A; this follows

from the fact that T(¢,)T(92) = f(91,92)T(g192) for all g1,g2 in G.

Definition A central ertension for the finite group & is a triple (4, B, ¢) where B is a group
having A as a finitely generated subgroup of its centre. and ¢ : B —+ G is a surjective group
homomorphism with kernel A. Associated to the central extension (A, B) is the short exact
sequence

l—mA—B—G—71.

10
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It will be convenient sometimes to refer to this sequence (instead of to (A, B, #)) as a central
extension for G. We will also sometimes avoid explicit mention of ¢ and refer to a central

extension for G simply as (4, B).

From the comments preceding the above definitions it is apparent that every projective
representation of G can be related to a linear representation of some central extension for the
image of (¢ under the homomorphism 7o T which sends (7 into a projective general linear group.
Thus one approach to the study of projective representations of finite groups is to investigate
the linear representations of their central extensions. This approach has been particularly
fruitful in the case of projective representations over algebraically closed fields (see, for example
[4]). One reason for this success is the fact that if & is an algebraically closed field, then every
cocycle in Z*(G, k*) is cohomologous to one which takes values in the group of |G|th roots of
unity in &% : this is a consequence of the divisibility »f the multiplicative group of k. Thus
if T : G — GL(n.k) is a projective representation, T is projectively equivalent, over k, to a
representation T} for which GT* := (Ty(g), g € G) is a finite subgroup of GL(n.k). In fact the

situation is somewhat better than this, as we shall see in the next section.

Returning to the case where the field k is arbitrary, we cannot necessarily arrange for the
group GT = (T(g). g € G) to be finite for every projective k-representation 7. but G7 will
always contain a subgroup of finite index which is frec abelian of finite rank and central not

only in GT but in GL(n, k).

2.1 Lifts and Finite Covering Groups

In this section we state without proof some fundamental results from the foundations of the
theory of projective representations. All of these results are due to Schur, who introduced and
extensively developed the subject in the early years of the twentieth century. We begin with

an important definition.

Definition Let G be a finite group and let T : G — G'L(n, k) be a projective representation
of G over a field k. Then if H is a group having G as a homomorphic image under the mapping

o. T is said to lift to H if there exists a linear representation T : H —s G L(n, k) for which the

11
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following diagram of group homomorphisms commutes :-

H L GL(n,k)
. -
G 7 PGL(n.k)

In this situation we will refer to T as a lift of T to H.

On the other hand, given a linear k-representation T of H which sends ker ¢ into k%, we
can obtain a projective representation T of G, by choosing a section n for G in H and defining
T(g) = f’(n(g)). for g € . Of course T then depends on the choice of section n, but only up

to cohomelogy in Z%(G, kX).

In the case where T is a lift to H of some projective k-representation T of G, it is clear that
T is an irreducible representation of A if and only if T is an irreducible projective representation
of G. This follows for instance from the fact that the images of T and T generate the same

k-subalgebra of GL(n. k). if n is the degree of T

Now let G~ be a group having & as a homomorphic image. \We will say that G~ has the
projective lifting property for G over the field k if every projective k-representation of G is
equivalent (over k) to one which can be lifted to G*. The following result of Schur states that
every finite group G has a finite central extension having the projective lifting property for G

over C. A proof can be found in Chapter 2 of [11].

Theorem 2.1.1 (Schur) Let G be a finite group. Then there exists a central extension G of
a finite abelian group A by G for which the following conditions hold :-

i) A= M(G)
i) AC Z(G)NC”

i) G has the projective lifting property for G over C. O

A group ( having properties i}, ii) and iii) of Theorem 2.1.1 will be called a covering group

for G.

12
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It is easily observed that if two projective representations of a finite group G over a field &
have linearly equivalent lifts to some central extension H for G, then the original representations
are projectively equivalent over &. For this reason there is no hope of proving a version of
Theorem 2.1.1 which would apply without restriction on the field. The group H*(G.k*) is
typically infinite for a given finite group G and field &. and thus ¢ may have infinitely many
inequivalent irreducible projective k-representations, which cannot be described by the finitely
many irreducible linear representations of any proposed finite covering group. However, for
every finite group G there exists a group F having (G as a quotient by an infinite central
subgroup, and having the projective lifting property for G over all fields. The main theme
of this thesis is the investigation of central simple algebras arising from finite dimensional

irreducible linear representations of these ~infinite covering groups™.

2.2 Generic Central Extensions

As usual let ¢ be a finite group, and let £ be a free group of finite rank for which ¢ : F — G
is a surjective group homomorphism with kernel R. Let

(=31

1 ~ 4 ~ H ~ (7 1

be a central extension for . Since F is a free group, we can find a homomorphism a : F —» H
for which ¢;0a = @. Then a(f{) C A since 0, oa(lri) = L. Therefore a maps R into Z(H) and
so [F, R] C kera. Thus the map ¢ : £ —» G induces a group surjection

¢' - FJ[F,Rl — G; ker¢’ = R/[F,R]

This leads to the following lemma, after we define

F=F/[F.R;; R=R/[F.R].

Lemma 2.2.1 Let (A. B, @) be a central extension for the finite group G. Then if F and R are
defined as above for G. there exists a group homomorphism 8 : F — B for which the following

diagram commutes :-
)

~ R ~
teln La !id
>~ 4 B

[~

13
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Note that Riscentral in F and so (R, F) is a central extension having the universal property
described in Lemma 2.2.1 amongst all central extensions for G. For this reason we shall refer
to a central extension (R, F) (or just F') obtained as above from a free presentation for G as a

generic central ertension for G.

We now show that any generic central extension F for G has the projective lifting property
for ¢ over all fields. To do this we need only show that every projective representation of G
lifts (over the field in which it is realized) to some central extension for G. This well-known

fact is the content of the next lemma.
Lemma 2.2.2 Let T : G — GL(n.k) be a projective representation of a finite group G over
a field k., and let o € Z*(G, k*) be the cocycle associated to T. Define a group G, by
Ga={(a.g}lack*.g€G},
with multiplication given by
(a,g){b,h) = (aba(g, h),gh), for a,be k™, and g,h € G.

Then

1) G is a central extension of k* by G.

ii) The map T : Go —+ GL(n.k) defined by T(a,g) = aT(g) is a linear k-representation of
Go and is a lift to G, of T.

Both conclusions of Lemma 2.2.2 follow immediately {rom the various definitions. The group
G, is sometimes called an “a-covering group”™ for G over k. Lemmas 2.2.1 and 2.2.2 have the

following important consequence.

Theorem 2.2.1 Let G be a finite group, and let (R, F') be a generic central extension for G.
Let T : G — GL(n,k) be a projective representation of G over a field k. Then there ezists a
Lift T:F —s GL(n, k) of T to F.

14
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Proof Let « € Z%(G,k>) be the cocyle associated to T, and let G, and T be defined as in
Lemma 2.2.2. Then by Lemma 2.2.1 we can find a2 group homomorphism ¢ : F —+ G, for

which the following diagram commutes :-

=y
&Y
Q
pos

~—
=
o
-~
@
.
a,

1 kx Ga G 1
t'f' L’I‘ovr
GL(n. k) —== PGL(n. k)
Then T:=To#is alift of T to F. O

Theorem 2.2.1 is the miotivation for much of the work in this thesis : if (R, F) is a generic
central extension for (, then every projective k-representation of G can be described in terms
of a linear representation of F which sends R into & *, where the field k& is entirely arbitrary.
Rephrasing this statement in the language of simple rings, we see that every k-algebra arising
as a simple component of a twisted group algebra of &G over k can be realized as an image
of the ordinary group algebra &#F under a k-algebra homomorphism which sends &R into k.
In the next section we discuss some properties of generic central extensions which will lead to
conclusions about the structure of their group algebras and the nature of their finite dimensional

representations.

2.3 Properties of Generic Central Extensions

Throughout rhis section let (R, F) be a fixed generic central extension for . The group F is not
determined Ly G up to isomorphism: its isomorphism type depends on a choice of presentation
for G. We now describe some important and useful properties which are however shared by all

generic central extensions.

We begin with the statement of a celebrated result of Schur. A proof can be found in Section

2.4 of [L1].

Theorem 2.3.1 The central subgroup F'N R of F is Zsomorphic to M(G), the Schur multiplier
of G. O
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The isomorphism mentioned in Theorem 2.3.1 will be of great use later, but for now we
need only the fact the F' N R is finite. This will enable us to prove the next lemma, which is

also due to Schur.

Lemma 2.3.1 Let t(F) denote the subset of F consisting of all the torsion elements. Then
t(F)=F'.

Proof Let » € F’. Then. since R has finite index in F. ™ € F' (1 R for some positive integer

n. Then z has finite order by Theorem 2.3.1.

On the other hand the group F/F' is free abelian, since

~/[F.R -, =
F/F' = M = F/F'.
F'/[F.R]
Then any element of finite order in F must belong to F’. a

Let (A, B1) and (42, B2} be generic central extensions for G. 'hen by Lemma 2.2.1, there
exists a mapping § : By — B> which takes 4; into 4, and whose kernel is contained in 4,. So
the imageof (A;, By) in (A2, B2) is again a generic central extension for G. The homomorphisms
defined in this way between different generic central extensions are not in general isomorphisms.

However they restrict to isomorphisms on the commutator subgroups.

Lemma 2.3.2 Let {A. B) and (R. F) be generic central extensions for G. Then B’ = F'.

Proof By Lemma 2.2.1, there exist group homomorphisms & : B — F and § : F — B, for

which the following diagram commuctes :-

1 ~ 4 B ~ 1
s E—
1 ~ R -~ F « 1
L@lR La lid
4
1 A B >~ 1

Define a map n : B — A by n(z) = z¥?z~!, for z € B. That n(z) € A is clear {from the

16
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commutativity of the above diagram. Now let z. y be elements of B. Then

n(ry) = (zy)*’y~'e7?

we, —1.

= .z:""gy Yy z!

= 2%y~ since Py~ € A C Z(B)
= n(x)n(y)
Thus 7 is a group homomorphism of B into the abelian group 4, and so B’ C ker(y). It
then follows from the definition of n that § o ¥ : B — B restricts to the identity mapping on

B’. Sinmilarly ¥ o8 : F — F restricts on F’ to the identity mapping. Of course ¥(B’) C F’

and 8(F’) C B’, so we conclude B’ = F'. o

The following is another result of Schur, which relates generic central extensions to the finite

covering groups of Section 2.1. A proof can be found in [11].

Theorem 2.3.2 Let (R, F) be an essential generic central extension for G, and let S be a

torsion free romplement in R for its torsion subgroup F' O\ R. Then

t) F/S is a covering group for G.
ii) If G is any covering group for G, then G = F/S for some choice of complement S for

F'nR min R. a

It is a consequence of Theorem 2.3.2 that F’. and lience the commutator subgroup of any

generic central extension for G, is isomorphic to G’, where G is any covering group for G.

17
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Chapter 3

Group Algebras of (Generic

Central Extensions

Let (R. F,¢) be a generic central extension for tue finite group ¢, and let & be a field. We
are interested in finite dimensional irreducible k-representations of F which send R into &%
and thus arise as lifts of irreducible projective representations of G : every such representation
defines a finite dimensional simple k-algebra, which is the image of the group ring &£ F under

the k-linear extension of the representation.

The group ring &£ F has infinite dimension over & and is not completely reducible. In this
chapter however we shall see that #F embeds in a natural way it a ring which is completely
reducible and has finite rank as a mnadule over its centre, and in which we have recourse to all
the results and methods from the theory of finite dimensional central simple algebras, yet from

which we will later find we can recover all the relevant information about &F itself.

3.1 Extending the Centre

The torsion subgroup of R is F' N R by Lemma 2.3.1; let S be a torsion free complement for
F'NRin R. Then S is a free abelian group of rank r=rank F, and kF contains the central

subring &S, which is isomorphic to a ring of Laurent polynomials in » commuting variables.

18
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Then £S5 is an integral domain, and moreover no element of £S can be a zerodivisor in £F : this
follows from the centrality of £S in £ F', and the fact that any transversal for S in F forms a basis
for kF as a right module over £S. Thus we can form from kF a ring of quotients (kS)~'&F, in
which every nonzero element of £S is invertible. We will denote this ring of quotients by K F,
where R” denotes the field of quotients of £S. Then K is a purely transcendental field extension
of k of transcendence degree r. Any basis for the free abelian group S forms an algebraically

independent generating set for K over k.

Any transversal for S in F is a R-basis for K'F, so KF is a finite dimensional K-algebra.
Furthermore. K F is completely reducible. This is a consequence of the following lemma, of

which a more detailed proof can be found in Section 1.2 of [14].

Lemma 3.1.1 K F is isomorphic to a twisted group ring of the finite group G = F/S over K,

and ts completely reductible.

Proof Choose a section g for G in F : i.e. for each r € G. choose a preimage pu(x) € F for
z. Then T = {u(z),z € G} is a transversal for S in F, and thus forms a K-basis for KF.
We can define a map f : G x G — K* by f(z.y) = u(z)p(y)p(zy)~t, for z,y € G. Then
f € Z*(G, K<) and the bijective correspondence between G and T defined by = «— u(x)
establishes a A -algebra isomorphism between A'F and A'/G. The complete reducibility of K F

is now immediate from Maschke’s theorem, if char & does not divide the order of G. O

3.2 Primitive Idempotents of A'F

Since A'F is a completely reducible ring, it can be written as a direct sum of simple K'-algebras,
and its identity element is a sum of nonzero primitive central idempotents. These idempotents
are the projections of 1 on the various simple components of K F, and they are pairwise or-
thogonal (i.e. the product of any pair of them in A F is 0). In this section we show that
the primitive central idempotents of A'F belong not only to £F but to the finite dimensional

completely reducible k-algebra kF’.

We begin by considering the central idempotents of £F. The following result is extremely

useful, particularly in the light of Lemma 2.3.1. A proof can be found in [14], Section 4.3.

19
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Lemma 3.2.1 Let G be any group, and let F be any field. Then the support of any central

tdempotent of the ordinary group algebra FG generates a finite normal subgroup of G. a

Since the set of torsion elements of F is equal to its commutator subgroup F”’, it is an
immediate consequence of Lemma 3.2.1 that every central idempotent of kF belongs to kF’.
Let I denote the set of primitive central idempotents of kF’. Of course a central element of
kF’ need not be central in kF: F acts on [ by conjugarion. For each f € I, the sum in AF of

the F-conjugates of f is a central idempotent in kF. Let Z denote the set of elements of this

type :-

I=¢> f.fely,

IGT!
where for each f € [, Ty is a transversal in F for Cg(f). We will show that 7 is the full set of

primitive central idempotents of K F.

Theorem 3.2.1 Let ¢ be the sum in kF of an F-orbit of primitive central idempotents of kF'.

Then A := KN Fe is a stimple ring.

Proof :

1. Let Z denote the centre of A. Then Z is a direct sum of fields as 4, being a two-sided ideal
of K'F . is a completely reducible ring. To show that 4 is simple, it suffices to show that Z is a

field.

Suppose the contrary, so that e = ¢’ + €, where ¢’ and ¢’ are nonzero central idempotents
of K'F for which e’e” = 0. The ring A’ F is obtained from & F by adjoining (to the centre) the
field of quotients of £S5, where S is a torsion free complement for F'N R in R. Then we can find
central elements a’ and a” of kF (of £S in fact), for which a’e’ and a”¢” are central elements
of kF. Then

alelallell — alallelell —_ 0-

To complete the proof of Theorem 3.2.1 then. it is enough to show that the centre of kFe

contains no zerodivisors. The remainder of this section will be devoted to a proof of this fact.

2. Let e; be a primitive central idempotent of AF’ for which ee; = ¢; (so ey = e if e is

primitive in AF'). Then e is the sum in &F of the distinct F-conjugates of ey, and if we define
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Fy = CF(e;) we have
kFe’EM, (kFllil). (3.1)

where s = [F : Fi] (see [14], Section 6.1). Certainly F; D Z(F), so F, has finite index in F;
also Fy D F’ since e; is central in £F’. The set of torsion elements of F} is F’, so all central
idempotents of the ring k& F; have support in F'. Hence e; is a primitive central idempotent of

kFy.

3. We now establish some notation. Let .4‘1" = kFye,, By = kF’e;. Then B; is a simple
component of kF'. so B, = M,(D,)} where D, is a finite dimensional division algebra over k.
Let £ = {Eij}lsi.an be a system of matrix units in B,. Then D, = Cp,(£) and AX = M, (AF),

where A* = Ca(€); DL C A* obviously.

4. Let T be a transversal for F’ in F;. Then T generates 4'{ = kF\e, as a right module over
B, = kF'e; (of course e; commutes with each element of T, by definition of F}). Furthermore,

since e; € kF’, T is right independent over Bj.

Then Af is a crossed product over B; by the group F,/F’. Since Fi/F’ is a subgroup of
finite index in F/F", it is a free abelian group of finite rank (equal to the free rank of F). We
will use this crossed product structure of A¥ over B, to describe A* as a crossed product over

D, again by a free abelian group, and to conclude that A* contains no zerodivisors.
By = kF'e, is invariant under conjugation by elements of F7, and for each ¢ € T the set
& = {t—IE,‘jt, Eij € 5}

is a system of matrix units in By. Then £ and &£ are conjugate in By (see [6], theorem 2.13) :

that is, we can find an element 6(¢t) of & (B;) for which
t™ et = b(t) "leijb(t), Veij €€
Then c(t) := b(t) "'t centralizes £. Thus each ¢ € T can be written in the form
t =b(t)e(2).

where b(t) € U(B,), c(t) € U(AF).

5. Let S = {c(t),t € T}. Then

21
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i) S is right independent over Dy:-
Suppose that
> dic(t:) =0
i=1

ford,.....da € DY, ty,...,t, €T. Then

Zdb(t Y~ b(t:)e(ts) Zd b(t;) 't =

i=1 i=1

This contradicts the right independence of T over By, since d;b(t;)~! € B; for each i.

ii) S generates A* as a right D;-module:-
D, [S] C AF clearly. On the other hand, suppose a € A¥. Then, since a € 4%, a can be

written uniquely in the form
n
a= E bi s,
i=1

where b; € By, t; e Tfori = 1L...n. Then since a € A*, for each ¢ € £ we have

cax = ag,
n n n -
— Zfb,'ti = Zb,‘lg‘:‘:Zb,‘Ez' [
=1 i=1 i=i
= cb; = [),‘i;&'f‘-_l.
= cb;t; = bitie, fori=1...n

Then b;t; € AF for each i. Now b;t; = b;b(t;)c(t;), and since c(t;) € U(AF), we have
bib(t;) € A* also. Then
8 = bib{t;) € AF N By = Dy,

and a = Zﬁ;c(t,—), where 8; € D, c(t;) € S. Hence A* = D,[5].

i=1
iii) Suppose t;,t2 € T and t1to € F't, t € T. Then c(t)c(t2) € Dic(t) :-

We require to show ¢(t;)c(t2)c(t)~! € D,. By definition of ¢(¢;) we have

c{ti)e(t2)e(t)™r = b(t1) " e1b(E2) " eat T 0(1) !
= b(t1)7! (216 (t2)THeTY) tatatTrE(E) ™
22
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Since b(t2)~! € B; = kF'e;, and t; € Fi. certainly t;b(t2)" 7' € By. Also, tjtat™! €
F' C By, so c(ti)e(ta)c(t)~t € By N A¥ = D;. Then c(t|)e(t2) € Dic(t), as required.

6. By 5. above, A¥ is a crossed product over D; by a group isomorphic to Fi/F’. Then, by

the following lemma (see [19]), A is a domain.

Lemma (Higman) Suppose S C R are rings for which R is a crossed product over S by a group
H having the property that every finitely generated subgroup has an infinite cyclic image. Then

R 1s a domain whenever S is a domain.

Since A* is a crossed product over a division algebra by a free abelian group, the lemma

applies and we conclude that A¥ is a domain. Now

kFe= M,(kFie,) = M,,(AF),
and Z(kFe) = Z(AF). so kFe contains no central zerodivisors. The centre of A = K Fe is then
also a domain, hence it is a field since R Fe is a completely reducible ring. This completes the
proof of Theorem 3.2.1. O

We conclude Chapter 3 with some observations on the proof of Theorem 3.2.1.

Lemma 3.2.2 In the context and notation of Theorem 3.2.1, suppose that Fy is a subgroup of

Fy, for which (R, F'Y C Fy. Then A := R Fge, is a simple K-algebra.

Proof Once we observe that &k Fpe; is a crossed product over £F’e; by the free abelian group

Fy/F', we may apply steps 4-6 of the proof of Theorem 3.2.1 to conclude that Ag is simple. O

It is worth remarking also that the proof of Theorem 3.2.1 reveals more about the structure

of the simple components of K F than simply its statement. The following theorem follows
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Theorem 3.2.2 Let ¢ be a primitive central idempotent of K F. and let e be a primitive central
idempotent of kF' for which ee; = e;, so kF'e; = M, (D,) where D, is a finite dimensional
division algebra over k. Let Fy be a subgroup of Fy for which F’ C Fy. Then K Fpey = My, (Aa),
where Ag D D; is a finite dimensional diuision algebra over K. In particular any set of n’

matrir units in kF'e; is a full set of matrir units for KN Foey. contained in kF'. 0

24
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Chapter 4

Structure of the Simple
Components of KF

Let A'F be the completely reducible ring defined in Section 3.1. Throughout this chapter we
fix a primitive central idempotent e of A'F, and let - denote the simple algebra K Fe. If e is
not primitive in AF’, let e; be a primitive central idempotent of & F’ for which ee; = e;. Then
we have seen that if ¢; has s distinct conjugates under the action of F. then A is isomorphic

to a ring of » x s matrices over a simple A'-algebra isoiiorphic to A Fie;. where Fy = Cr(ey).

We now establish some notation which will be used throughout the remainder of this work,

and define some objects which will be central to our discussion of the structure of A.

4.1 Notation and Background

Let 4; = K Fle;; A; is a simple subring of 4 by Lemma 3.2.2. and A, contains the finite
dimensional simple k-algebra B; = kF'e;. If kF'e; = M, (D,) for some division ring D; then
A = M, (D) where D is a division ring containing D,. In particular any set of n? matrix units

in kF'ey 1s a full set of matrix units for ;.

Let Z denote the centre of A;. and let X denote the group Fie;. Of course X = F/F*1,
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where F®! is the subgroup of F’ defined by
Fer={z & F:ze; =e,}.

That F©' is normal in F is clear since F) centralizes e;. Let Tx denote the torsion subgroup
of X; Tx = F'e;. Clearly X’ C Tx, but this is not in general an equality since F{ need not be

equal to F'.

Let £ denote the centre of By = kF’e; = k[Tx]. Then E is a finite field extension of k. Let
Fo =CFr(F).Xog =Cx(F), and g = K[Xg]. It is easily checked that Xg = Fge;. Then 4g is

a simple ring by Lemmna 3.2.2 and the centre L of Ag contains E.

4.2 Normal Field Extensions in Z(4;)

We will show that Ag is precisely the centralizer in A of E; hence Z C 4p. Also .X/.Xo acts as

the full Galois group of the finite field extension Z{Aq)/Z.
Lemma 4.2.1 C4(£) = ¢

Proof We will show that Crpr (E) = KFy. Then C4,(E) = KFyN A, = K Fage = Ag-

That KFy C Cgr,(E) is clear. To prove the other inclusion we use the fact that kFj is a
crossed product over kF’ by the [ree abelian group F;/F’'. Let 7 be a transversal for F’ in
Fi.and let a € Cip (E). Multiplying by a suitable element of A™ if necessary, we can assume
a € kF|. Then a can be written uniquely in the form

a= Z a.t.
teT
where o, € kF', a; = 0 for all but finitely many {. Now let § € £. Then

o = af —> Zﬂatt = Z gt = Z a0t

teT teT teT
= > (0—0)at =0.

teT
Then (6 - 6*)a, = 0 for each t, and since § - 8* € E (a field) we have either

0=6"VY6cE, and t € Fy

26
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or

a, =0

Hence supp(a) C Fo, Ya € Ckr,(E), and Cxr,(E) = K Fo, Ca,(E) = Ao O

It follows from Lemma 4.2.1 that Ag contains Z, the centre of ;. Let L denote the algebra
generated by Z and E. Then L is a field, since it is contained in the centre of the simple algebra

Ag. In fact L is precisely the centre of Ay, for
Ao = Ca(E) = CA(ZE) = Cal(L).

By the double centralizer theorem, C4(C4(L)) = L, since L is a simple Z-subalgebra of the

central simple Z-algebra A;. Then
Ca(Ao) =CalCa(L)) =L

and Z(Ag) = L since L C Ag.

Thus L is a finite field extension of Z. since L = ZE and E = Z(kF’e) has finite dimension

over k.

Lemma 4.2.2 L/Z is a normal eztension of fields. with Galois group isomorphic to X/Xo

(= F1/Fo).

Proof That the extension is normal is easy to see, since L is generated over Z (as E is over k)
by sums in By of conjugacy classes from Tx. These are central in B, but not necessarily in A4;.

If C is such a class sum, then the polynomial H(t — C*), where 2 runs through a transversal

for Cr(C) in F, has coefficients in Z and splits in L, hence the normality of L over Z.

Now X acts by conjugation on L and the kernel of this action is Cx (L) = Xo. The fixed
field of L under the action of X/ Xg is just Z(A4) = Z, hence Gal(L/Z) = X/ Xo. O
4.3 Tensor Product Structure of 4,

Let B denote the subalgebra of 4y generated over Z by Tx = F'e;. and let C = C,4,(B). Then

we will see that B is a central simple L-algebra, whence Aq = B @. C. Furthermore, since
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B, B, Ag and A; all have the same set of matrix units by Theorem 3.2.2, C is a division

algebra.
To show that B is central simple over L. we make use of the following lemma (Proposition

12.4a in [16]) :-

Lemma 4.3.1 Let A be a finite dimensional algebra over a field F. Let B and C be F-
subalgebras of A for which

t) B is central stmple over F.

i) C centralizes .

iii) A= BC.

Then A=BoxC. a

Theorem 4.3.1 B = Z[Tx] is a central stmple L-algebra.

Proof : First we show that B is semisimple. Suppose not, and let / be a nonzero nilpotent
ideal in B. Let I denote the two-sided ideal generated by I in 4g. A typical element of (I)¢
is a A-linear combination of elements of the form rjojzaaa...apLpi;, where ap,...qp are
elements of /. z;,...rp4) are elements of g, and p > ¢. Suppose ¢ is the nilpotency class of

I. We now show that [ is also nilpotent. of class at most q.
Since every element of Xj is invertible, the expression
a=uzrja;...rqaqlqy1 I € Xo,a; €1, (4.1)
can be written in the form
a=zaj...a, (4.2)

where » € Xy and for i = 1...¢ a} is of the form z' "oz’ for some z' € Xg. Since Tx < Xo
and Xy centralizes E. conjugation by z’ induces a central automorphism of ¥F’e; and hence

of B, since B is generated by Ty over the centre of Ag. Furthermore, since kF’e; is simple,
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this automorphism is inner by the Noether-Skolem theorem (see [7], Section 4.6). Thus for
i=1...q,a}= cl-'lo:,-c,- for some ¢; € U(k F'er). whence a} € I. [t then follows that a = 0 in
4.2, since ([)? = 0. Thus Iis nilpotent of class at most g, which contradicts the simplicity of

Ag. We conclude that B is semisimple. Since L is a field. it now suffices to show that Z(B) = L.

The subalgebra of B generated by K" and E is a field, since it is contained in the centre of
Ag. Also
KE = K& E,

since R is purely transcendental over k, and E ix a finite extension of &. The algebra B is finite

dimensional over A'E. since K F has finite dimension over K .

It is apparent that any E-basis of By = k/”e¢; remains independent over the field KFE,
whence dimg(B;) = dimpg(KN[Tx]). and K[T] = KE g B, isee [16], Proposition 9.2c).
Then K'[Tx] is a central simple A" E-algebra. since K E is simple and B is central simple over

E (see Lemma 12.4b of [16]). Then

Now R[Tx]= KR ¢ B, is a simple subalgebra of B. and its ceutre is A @ E = K E. Also,
B is generated by L and K[Tx], and L cemtralizes K'[Tyx]. Then we can apply Lemma 4.3.1 to
conclude
B = 4L 3 [\-[T,\'].
Since A[Tx] is a central simple A" E-algebra and L is simple. B is then a simple ring and its

centreis L&y KE = L. O
Thus B is a central simple subalgebra of the finite-dimensional simple L-algebra Ag, hence

so also is the division algebra C = C,,(B), and we reach the following conclusion (see Theorem

4.7 in [7])=-

Theorem 4.3.2 4 =B 3 C. a
The simple ring B, is a ring of n x n m.atrices over a division algebra D;, and by Theorem

3.2.2, any set € of n® matrix units for By ts a full set. of matrix units for Ao and hence for B,

since By C B C 4¢. Thus B = M, (D), where D is a division ring containing a copy of D;.
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Also, since B = L D g R[Tx], we have

dimge(B) = dimgg(L)dimge(K[Tx])

=$din1[_(B) = dim[{E[\'[T,\'].

Furthermore. since A’/ k is a purely transcendental field extension, any E-basis for By isa K E-
basis for K[Tx], whence dimgg A{Tx] = dimg(kF'r|). Then dim,(B) = dimg(kF’e;), and
the degrees of the simple algebras B and kF’e; coincide. Since these algebras also have the
same set of matrix units, their Schur indices also coincide. Then the degree and Schur index of

B depend only on the simple component (e;) of £F".

We now define Tx ¥ = X N B. The notation. and the idea of studying this group are both
suggested by [18]. Then Tx™* contains Tx, and Tx ™ is a subgroup of Xo = Cx (L), since B
centralizes L. For z € F}, let Cr denote the sum in &F of the (finitely many) F-conjugates of

z. Define
P:{J:EFl Céxfl #0}

We note that P C Fy. For suppose £ € P : then 0 # Cze; € Z = Z(A4,). Since e; € kF', we

have C.e; = rc, where ¢ € kF’e; = B;. Then z must centralize E = Z(B1),soz € Fp.

Lemma 4.3.2 Tx ' consists precisely of elements of X of the form cxre,. where ¢ € F' and

reP.

Proof : Certainly Tx C Tx*. Suppose r € P. Then C; = 18, where 8, € kF’. Since
C: € Z%, 0 e, is a unit in U(kF'ey). Then f.e, € U{B). and re; € B, as zf,e, € Z.

On the other hand, suppose t € Fj satisfies te; € B. Then, since B = Z(Tx), we can write

tey in the form

te; = E a-Crey,
r€P,y

where 0 # ar € KF' forx € P,. PL CP.

If S is a free abelian subgroup of R for which A is the field of quotients of £S5, we can find

an element ¢ # 0 of &S for which

atey = E aa;Crey,
reP,

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and aa, € kF'[S] for each z € P;. Also, for z € Py, Cre; = 28, where 8. € U(kF’e;). Then
ate; = Z aa.zrf.€;.
rePy
We now regard each of these expressions as an element of the group ring £F. Let y € supp(ate; ).
Then since a € &S and e, € kF’. y = sct for some s € S and ¢ € F’. Then sct must appear in
the support of Z:G‘Pl aarzrfrey. where .0, € kF' for each z. Then. since e; € kF’ also, we
must have
sct =s'c'z,

where 5" € 5. ¢/ € F', and £ € P. This completes the proof of the lemma since z € P —
s't €P.as s’ € Z(F). a

We remark that if £ € Fy satisfies (fzel # 0 where C. denotes the sum in kFy of the Fp-
conjugates of z, then re; € Tx¥. This follows from the fact that B contains the centre of

Ao.
We will denote the preimage of Tx % in F by F'*| ie.
F'" ={z€F :ze, € B}, (4.3)

and we will denote the image of F'* in G by G*. Thus G+ is a subgroup of Gy = ¢(Fo), and

Gt contains G'.

Fix a transversal T for Tx in Xy. with the property T = T S, where 7 and S are transversals
for Tx in Txt and Txt in Xo respectively. Now let a; € C. We can multiply a; by a nonzero
element a of K if necessary, to obtain a = aa; € kF, and using the crossed product structure
of kF over kF’ we can write o uniquely in the form

a = Z agl.
teT
where each o, belongs to AF’. Of course C4,(B) =C,,(Tx), so let ¢ € Tx. Then

ca = ac —> an,t = Zatc‘_lt

teT teT
= cor =aqulct”!, VtEeT

= coyt =aite, Vit €T

Then for each t € T, a,t centralizes X', so a;t € C.
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Now B) is a simple ring, and Xg centralizes £ = Z(B)), so conjugation by any element of
Xy induces an inner automorphism of B), by the Noether-Skolem theorem. Then for each t € T
we can choose an element 8; of U{B;) for which 8t € C,4,(Tx) = C. Also B, is determined
by ¢ up to multiplication by elements of E*. From now on we fix for each ¢t € T an element
v of C for which v, = Bit, B: € U (kF'e;). We remark that since B; C kF’, v belongs not
only to K Fg but to kFy. [t is clear from the above discussion that C is generated over L (over

K. in fact) by B = {7:},cr- This set is linearly independent over £ but not in general over L.

However a certain subset of B will constitute an L-basis of C.
Theorem 4.3.3 Let t € T. Then v € L if and only ift € Tx™+.

Proof (—>) Suppose v, € L. Then v, = 5t. and 3, € B;. Since t € Xy = Fye;, we have
v € Z{(kFpey); in particular v, belongs to the centre of the group ring k£F3. Then

it = E a-Crer. ar €K%,

re.X
where .U is some subset of Fy and C, denotes the sum in g of the distinct Fy -conjugates of
z; Crey # 0 for z € X'. Then Cr = byr where by € kF'e, (bz is a sum of simple commutators),

and we can write

rekX

where a, € kF’. Finally each z € .V can be written as r = c.t; where ¢ € Tx, t, € T. Then

T = et = Z O_Irl.c,

reX
where o, € kF’ for each 2. Then, since the elements of T are independent over k£F’, we must
have t; =t for each z € X'. Then = € Txt, Vz € X, and in particular there exists an element ¢

of F’ for which C.e; # 0, whence t € Txt by the remark following the proof of Lemma 4.3.2.
(=) Suppose t € Txt. Then, by Lemma 4.3.2 t = cz, where ¢ € Ty and ¢ € F, satisfies
Crey # 0. Now Crey = 0.2, where 0, € U(LkF'e,).

Crey = 0,c ter = 0,7,

where 8,.¢™! € U(kF'e;). Then 3.t € EXf.c™'t, since f.c~'t € L and in particular §.c~'t

centralizes B. Hence v, = 53t € L. a
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Recall that T = 7S, where S is a transversal for Tx T in Xg, and T a transversal for Tx in

Tx¥. The elements of B possess the following important properties :-

Lemma 4.3.3 1) Supposet,.ta € T and lett € T represent the coset Txtita. Then vy, ve, €
Ex“{[ .

17) Suppose s1,s2 € S and let ts € T represent the coset Txs152. wheret €T, s €S. Then

Tsy Vsa e Lx‘/a-

Proof : i)

-1
AL
Ve = B t18e.t2 = 3, 8,) tita
1

= ﬁtl;ig ct, where c € T'x.
Then 8, ct € C, and B, B} c € U(kF'e,), and
8.8} c€ EXB = 5, i} ct € EXByt

x
7‘17(3 e E Te-

i) By i), ¥s,¥s. € E*vs. Also by i). vivs € E*v7vs. Then
V1 T € Ex‘/t—/s-

However t € Tx ¥ = ~ € L*. hence 4,7, € L*7,. a

4.4 The Centre of 4;

The field L = Z(Ag) is generated as a vector space over A'E by {+ };e7, for suppose A € L*,

and choose ¢ € R for which aA € kFF N L. Then aX can be written uniquely in the form

al\ = Zx\;l,

teT
where A\, € £F’, \; = 0 for all but finitely many ¢t € 7. Then it follows easily from the centrality
of aX in A that A,z € L foreach t,i.e. A, =0ort €Tx" and A\, € EX+,. Then

A= Z a A,

teTh
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where 77 is the subset of 7 upon which A, # 0, and A, = /\cﬂt—l e EX forteT;.
Next we determine a transcendence basis for L over E.

Tx'*'/Tx is a free abelian group, of which (Re1,Tx)/Tx is a subgroup of finite index (since
R has finite index in F). Then both are free abelian groups of the same rank. Since

(Rel,TX)/TX = Rel/Rel ﬂT,\- = R/F'ﬂ R,

this rank is r. which is the rank of the finite abelian group GG/G’ and is equal to the transcendence
degree of K over k. Now we can find a basis {;.....{} of Tx+/Tx. for which {tvl’ te-..Hr}is

a basis of (Re,Tx)/Tx - Here {; denotes the coset ¢;Tx.and t; € T fori=1...r.

Theorem 4.4.1 L/E is a purely transcendental field ertension with transcendence basts

[‘:{73(1"'17!:—}'

Proof: First we show that K is contained in E(T), the algebra generated by I" over E. For
this it suffices to show that E(T) contains Re,;, since A is the field of quotients of a subring of

kR. Note that the torsion subgroup Re; N Ty of Re; is contained in £*.

For i =1...r we have t{' € Re Tx, so t{‘ = s;ci, where s; € Rey, ¢; € Tx. Here s; and c;

are determined uniquely up to multiplication by elements of Re; N Tx. Then
(Re1, Tx) = (sici, TxYi=1..r ={s5i.Tx)i=1..r-
Then since Tx is finite and r is the rank of the free abelian group
R/F'NR= Re;/Re; NTx.

(s1.-...5) must be a torsion-free complement for Re; N Tx in Re;.

Now fori =1...r. it follows from Lemma 4.3.3 that (v, M+ = s;0;. where §; € LNkF'e, = E.
Hence s; € E([) for { = 1...r, E(T) contains Re;, and E(T) contains A. In fact KE is

generated as an E-algebra by

Coo={(%,)*. ... (e, Y} (4.4)

Now E/k is an algebraic field extension. and K /k is purely transcendental of transcendence
degree . Then the transcendence degree of NE/FE is also r, and so [} is a transcendence basis

for AE/E. In particular T'; is an algebraically independent set over £, and so also is .
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That L = E(T) now follows from Lemma 4.3.3 and the fact that {v:}:e7 generates L
as a vector space over K E. This completes the proof of Theorem 4.4.1 : L/E is a purely
transcendental field extension of transcendence degree r. and I is a transcendence basis of L/ E

for which L = E(T). a

4.5 The Division Algebra C

Let B = {¥s},¢s- It is apparent now that B is an L-basis for C. [t is immediate from Lemma
4.3.3 that C = L[B], since C = K[B], and v+ € L whenever t € 7. That B is independent
over L follows from the independence of T over kF’¢,. For suppose we have {{,} C L for
which 2365 lsvs = 0. Multiplying by a suitable element of A if necessary, we can suppose that
ls € Z(kFge;) for each s € S. Then each [, can be written in the form
[s = Z Aeses
teT

where a,;; € E, and a,, = 0 for all but finitely many ¢. Then

Z Z aesveys = 0.

s€SteT

Now 7;vs = aj,ts for some aj, € U(kF'e;), by Lemma -.3.3, and so

D bists =0
s.t

where b,; = aj,a;s € £F’e;. Then b, = 0 Vt,s since T is independent over kF’e;, and so

a;s =0V t,s. Thenl, =0, Vs €S, and B is independent over L.

The centre of C consists only of L, since A9 = B 2y C and L = Z(Ag) = Z(B). Also,
dimg (C) = [Xo : Tx*] since B is an L-basis for C. Then of course [Xo : Tx*] is a square. Now
Tx* < Xo, and the quotient Xo/Tx ™ is abelian since Tx ™+ D Tx D X', and finite since Tx*

contains Z(.X) which has finite index in X, hence in Xj.

For s € S. let 5 denote the element sTx ™ of X¢/7Tx . Then we can find elements s, .. ., sk

of § for which

‘\-Q/Tl\'-i- =(51) x --- x (5),
where §; has order d; in Xo/Tx ™, dp [de—1---|dy for i=1...k. Let &1 denote the subset of

§$ consisting of the elements sy, ..., sg.
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Theorem 4.5.1 C is a twisted group ring of the finite abelian group Xo/Tx™ over L.

Proof : Let H denote the subgroup of C'* generated by {,}ses, and let H = H/H N L*.
Define a map ¢ : Xo/Tx+t — H on S; by

Q)(§,) = Vs

Then it follows easily from Lemma 4.3.3 that & extends to an isomorphism of groups.

Now the assignment

s 32 =k ry.ra i
Sy 8a oSk T Vs Ven oo Tsk

where 0 < r; < d; for i = L...k. defines the structure of a twisted group ring on C. It is

immediate from Lemma 4.3.3 that for each choice of ry..... Tk,
ATt A T2 Tk xX .
15: :’:—_- IR EL I

and so C is generated over L by elements of the form v]!+72...47%. That these elements are

independent over L for different choices of ry, ..., Is clear, since B is independent over L.

Then C = LI (Xo/Tx™*), where the cocycle f € Z* (Xo/Tx™*,L*) is defined by

st Tk @ STk) — -1 ~Tkaq Tk (oT1 T ~retqe) L
Y sk st s = ey e (T :
Of course a different choice for S, will vield a cocycle which differs from f by a coboundary

in 2% (Xo/Tx*,L). 0

[t is well known (see [21]), that if a finite abelian group A has a central simple twisted
group algebra over a field F, then A must be a group of symmetric type (i.e. the direct product
of twe isomorphic abelian groups). and F must contain a root of unity of order equal to the
exponent of A. For clarity we include a proof of these facts; in the process we obtain a fairly
explicit description of twisted group rings of this type as tensor products of symbol algebras.
This (applied to C) will be useful later in determining possible values of the Schur index and

degree of irreducible projective representations of G over various fields.

Lemma 4.5.1 Let A be a finite abelian group, let F be a field, and let f € Z*(A, F*). Then
the map
d:AxA— F*
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defined for a,b € A by

o(a,b) = __fgzg

is an antisymmetric pairing on A.

Proof: We require to show for a,b, c € A that

é(ab,c) = o(a.c)o(b,c), or flab,c) _ fla,c) f(b.c)

fle.ab) = f(c,a) f(e.b)"

This follows easily from the usual cocycle law : if z.y, - are elements of a group G, and

a € H*(G, A) for any abelian group A, we have
a(r.y)a(zy, z) = a(z, y=)a(y, ).

Note

flab.c) _ fla, be)f(b,c)

Flc.ab) — flca.b)f(ra)

so we need only show f(a,bc)f(c.b) = f(ca,b)f(a.c). Since A is abelian we have
fla,bc)f(c.b) = f(a.cb) f(c,b) = f(a,c)f(ac,b) = f(a,c)f(ca,b).

Then ¢ is a pairing; that o is antisymmetric is clear. d

Theorem 4.5.2 Let A be a finite abelian group of exponent d, let F be a field of characteristic
zero, and suppose that the twisted group algebra F/ A is a central simple F-algebra for some
FeH*A,F*). Then

i} F contains a root of unity of order d.

i) A is of symmetric type.

117 [j.A = (Cd| X C.dl) x (C»'d2 X C-'d..,) X ---X (Cdn X (—'d..)v where dn [ dn_1 [ l dg l dl = d,

Ay, B Al By An. B
f( gy =~ P10 02 e ny Bn
f(A)—<€1vk>bk(fz,k)w" M‘(Eu,k)'

where fori=1...n, A;, Bi € F* and &; is a root of unity of order d; in F.

then
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Proof : For z € A let £ denote the basis element of F/.A corresponding to z. Consider the
antisymmetric pairing ¢ on A defined as in Lemma 4.5.1. For a,b € A. é(a, b) has order in F*
equal to the least common multiple of the orders of ¢ and & in A. Also the restriction of ¢ to

C x C is trivial for any cyclic subgroup C of A. since
(2f. 1) = (o(r. )7 = 1. Vz € A.
That F/ A is a central simple over F means that o is nondegenerate. for suppose for some

a € Athat g(a,z) = 1. Vo € A. Then f(a.r) = f(z.a) Yz € A. and a belongs to the centre of
FIA.

Now choose an element a; of order d in A. There exists an element b, of A (also of order
d) for which é(a;,b,) has order d in F*, otherwise some (@)? with ¢’ < d would be central in

Ff A. (This proves i}). Finally {(a;,b,) = C4 x Cy, and

= \d (1 \d
Flar, by) = (-———(“‘éljgﬁl) ) i

Now let (?; denote the orthogonal complement of (&[.l_)l) in A. with respect to ¢ =-

Oy ={r€A : ola,z) = 6(by,z) = 1}.

Certainly O is a group. and since é(a.b) is a power of (a;.b;) for all a. b € A, it is easily
checked that A = {a;.0,, ). Also {a;.b) N O, ={1}.s0 A ={a;.b,) x O;. Let

C = Crra(F(ar.br)).

Then C is generated as a vector space over F by {z : r € O, }, for suppose

o = ZS,’&,’ ecC.

a,EA
Then
a e = Z sif(ay,ai)aya; = ea, = Z sif(ai.a;)aia;.
a,€EA a, €A
Then for each i, either s; = 0 or
flar,a:i) = f(ai,a1), and o(ay,a;) = 1.
Similarly for b;; hence o € F(O), and by Lemma 4.3.1

FLA = Fla,b)er F(O).
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F(O) is again a central simple F-algebra, and we can repeat the argument to complete the

proof :-
A, B Ao, B A, B
/ ~ 1: 1 g <12, P .. . ney n
fA_(—&v_y_.)@A(&’j__)@L ®L(Em}_)
where
A = (ay) x {b1) x {aa) x (ba) x ...{an) x (b,).
(a,-) X (b,’) = Cd' X CdK. |

We have proved the following :-

Corollary 4.5.1 We can find a subset

So={ri.st,---. k.5 }
of 8§ for which
l) -‘\-Q/TX+ = (1:1> X (51) X .. ~<7—'k) X (§k),

where #; = r;Tx ¥, §; =s; Txt.

ll) Ol'd(f'i) :Ol‘d(g,') = di; dk I dk—L I . I dl_
"Nz P \er ) T Vel L

where R; = (r, )% € L*, Si =(v,,)% € L* and & s a root of unity of order d; in E.

Since C is a central division algebra over L, each symbol algebra appearing in iii} above is

. S, :
a central division algebra over L. The algebra (};"L ) has index d; and exponent d; over L.

The index of C itself is
d=dyds...dix =\/|.Xo/Tx ¥,

and its exponent is d; = exp(Xo/Tx *).
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4.6 Cyclic Division Algebra Extensions

Now Ag = B& C, where B = M, (D) for some division algebra D. Then Ag = M, (), where

Ag = D @ Cis adivision algebra, and

ind(Ag) = ind(B)ind(C) = ind(B)/[Xo : Tx *].

As before, let
E={ej:1<i,j<n}

be a system of matrix units for B. (So & C B, and by Theorem 3.2.2 £ is also a system of

matrix units for each of the rings £ F’e;, Ap. and 4,.)

Ay = K Fier = Mn(A), where A = C,4,(€), and A4, is obtained from 4y by adjoining the
elements of a transversal for X in .X'. Since X/ Xj is a finite abelian group. we can find elements
zy,...xr; of X for which

X/Xo =(F1) x ---x (&),

where I; = r;Xg in .X/Xy. and the order of Z; is m;: my {my_y | ---| my.

By Lemma 4.2.2, the conjugation action of .X' on L induces an isomorphism between X/Xj

and Gal{(L/Z). For i =1...[, let ¢; denote the automorphism of B defined by
oi(a) =;L'i'la.1:,-. for a € B.

Of course ¢; restricts to a Z-automorphism of L, which we also denote by ¢;. Now £° is
another system of matrix units for B, and is therefore conjugate in B to £ (see [6], theorem
2.13). Then we can find a unit b, of By for which 8., := b, z; € C4,(£) = A. Now B = Z(Tyx),
and U( B) is invariant under the action of X. and so for r > 0 we have (6, )" = bzT € A, where
beU(B); also 0,0, =bzr;zj € A: again b € U(B). It then follows. if H denotes the subgroup

of A* generated by 6-,,...,0,,. that
X/ Ne=H/HNAJ.
Also. since Ag D B. A, is generated as an Ag-module by
B={6}...0% :0<t; <my}.
Also, since B C A, A is generated by B as a module over Ag.
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Counsider the algebra :\; := Ag(8;,). Since §;, = b, z1 and b, € U(B), b, centralizes
L and conjugation by 6., induces the Z-automorphism ¢; of L. Let L, denote the fixed field
of ¢1. Then. since L/Z is a Galois extension with Galois group X/Xq, L/L; is a cyclic field
extension of degree m;, with Galois group {©). Hence A\ is a generalized cyclic extension (see
[8]) of Ag, and A, is a central division algebra over L;. Similarly A» := A(f,,) is a generalized

cyclic algebra over A ;. etc: we can build A up from g by a series of cyclic algebra extensions.
Now A4; = M, (A)}. Finally. since 4 = Af(4,), s = [F : C-'p(el)], we have 4 = M,,(A); 4
is a central simple Z-algebra of degree snind(A).

Theorem 4.6.1 The Schur Inder of A divides the order of G.

Proof : 4 = M,,(A) and ind(4) = ind(A). Certainly ind(A) = [.Y : Xo]ind(A4q), and
ind(4) = [X : Xo]y/[Xo : Tx *]ind(B).

Now let G;. Go and G denote the images of Fy, Fy and F'T respectively in G. Note that

G' CG* C Go C G,. Also, since Rey C Tx ™ C Xg C .|, we have
[X : Xo] =[G} : Go] and [Xo : TxT] = [Go : GY].

Then [.X : Xo]y/[Xo : Tx ] divides [G : G*]. Furthermore, ind(B) divides | G’ |. To see this,
let @ denote the irreducible A-character of F’ determined by the component kF’e; of kF’, and
let x be an absolutely irreducible character of F’ appearing in . Then ind(B) = my(x), the
Schur Index of x over k. and so ind{B) divides the degree \ (1) of \. Now (1) divides [F”: 4],
where A is any abelian normal subgroup of F’. In particular then. since F'N R = M(G) is
central in F’, we can conclude that ind(B) divides [F’ : F' N R] =| G’ |. Then ind(A) divides
|Gl since [X : Xo]y/[Xo : Tx ] divides [G : G*], and GT D G O
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Chapter 5

Irreducible Projective

k-Representations of G

In this chapter we consider the finite dimensional simple k-algebras which arise as images of the
group ring kF under k-linear extensions of lifts to F* of irreducible projective k-representations
of G. Much of the structure of the simple components of the completely reducible ring K F,
as described in Chapter 4, is reproduced in these algebras. This is not really surprising, for let
A be a simple component of A F. Then A is isomorphic to a ring of matrices over its simple
subring A;, and by Relation 3.1, kF contains a system of matrix units for this extension of
rings. Furthermore. by the discussion in section 4.6. 4, is obtained from its subring Ao by a
series of generalized cyclic extensions. each of which entails the adjunction of an element of £F.
The algebra 4g 1s the tensor product over its centre L of the central simple L-algebras B and

C: here C is a division algebra which by Corollary 4.5.1 can be written as a tensor product of

( ()¢ ('/s)d>
[‘1 Cd ’

where v., v € kF, and (4 is a dth root of unity in Z(kF’). The L-algebra B is generated

symbol algebras of the form

over L by a subring of AF’, and L itself is a purely transcendental field extension of a field
E C Z(kF') generated over E by a transcendence basis contained in kF (Theorem 4.4.1). The
central point here is that 4 can be described largely in terms of the behaviour of various elements

of kF. Many of the properties of these elements (not including algebraic independence over & of
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course) survive under finite dimensional k-representations of £ F', leading to a useful resemblance
between the simple components of A F described in Chapter 4 and the finite dimensional simple

images of kF.

5.1 Ordinary k-Characters of F”

Let Irri(F’) denote the set of irreducible (ordinary) k-characters of F’. There is a natural
bijective correspondence between Irri{F’) and the set [ of primitive central idempotents of the
group ring kF’ : for each 8; € Irrx (F”’), let R; be an irreducible representation of & F’ affording
the character #; on F’. and let ¢; be the (unique} primitive central idempotent of kF’ which is

not annihilated by R;.

There is a well known relationship between the coefficients from & appearing in the elements
of I, and the values assumed by the characters in Irri(F'). We give a brief description of this

relationship below: for the details see Section 14.1 of [14].

Throughout the following let & be a finite field extension of & which is a splitting field
for F'. We can assumne that k is a cyclotomic extension of k. hence Galois. Let the set of
primitive central idempotents of kF* be I = {f,...., fe}. Then I is in bijective correspondence
with the set [rr(F’) of absolutely irreducible characters of F’ (all of which are afforded by
k-representations). For i = 1...t, let y; € [rr(F’) denote the character of that irreducible
representation of kF' which does not annihilate f;. Then the coefficients appearing in f; are
related to the values assumed by y; according to the foilowing formula :-

_sx(l)

fi= xilzThE, (5-1)
e 1

where C is a set of representatives for the conjugacy classes of F’, and for z € F’, & denotes

the sum in k£ F’ of the distinct F’-conjugates of z.

Now the Galois group G of &k over k acts on kF’ by

r 4 r
(z a.-u:;) = Za}’.r,-.
i=1 i=1

foray.....a, €k, z,..... - € F'. and o € G. Every element of the subring kF’ of kF' is of

course fixed by this action. and every primitive central idempotent of AF’ is the sum in &F of

the distinct G-conjugates of some f; € I.
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We also have an action of G on Irr(F’) defined for z € F’, x € [rr(F’), and ¢ € G by

X7 (z) = (x(z))?

The sum of the distinct G-conjugates of \ € [rr(F’) is an irreducible k-character of F’, and
every element of Irrx(F') is such a sum of absolutely irreducible characters. Let f; € I be the
primitive central idempotent of kF’ corresponding to \; € Irr(F’). Then it follows from 5.1
that f° € I corresponds to \§ € Irr(F’). for ¢ € G. Consequently. if e; € [ is the sum of the
distinct G-conjugates of f;. and 8; € [rrx(F’) is the sum of the distinct G-conjugates of x ;. we

have

(L= 6[119 01 (+~4) i, (5.2)
rec

where C and r are defined as in 5.1.

In this situation we have the following result concerning the centre of the simple k-algebra

Bl = kF’el.

Theorem 5.1.1 If 8 is an irreducible k-character of F' corresponding to the primitive central
idempotent e, of kF'. and x; is an absolutely irreducible constituent of 8y, then Z(kF'e;) s
tisomorphic to the fleld k(y\ 1) obtained by adjoining to k all values assumed by 1 on F’.

Proof Suppose f; is the primitive central idempotent of kF”’ corresponding to y;. Then the
projection ¢ of the sitnple ring kF'e; on kF'e1 fi = kF'fi C kF'f, restricts to an embedding
of the centre. This centre is generated over k by elements of the form re,, where £ is the sum
in kF’ of the distinct F’-conjugates of r € F’. The formmula
'

i= Z; £ \if' el 5. (5.3)
which is related to 5.1. expresses & as a k-linear combination of primitive central idempotents
of kF’, with coefficients involving absolutely irreducible character values of F’ (see Section 14.1
of [14]). Then ¢(£) has the form ay;(z) fi;, where a € £*. This completes the proof since the
field Z(kF'e1) = Z(kF')e, is isomorphic to its image under . O

Now for e; € [, let 6; denote the irreducible k-character of F’ corresponding to ¢;. We have

an action of F on the set of k-characters of F’ defined for z € F’, y € F, and a character 8 by

6Y(z) = O(yzy™').
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This action restricts to an action of F on Irrg(F’), under which 67 = 6; if and only if e} =¢;.
Of course F also acts on [ by conjugation and, as mentioned in Chapter 3, the primitive central
idempotents of &F are the sums in kF of the F-orbits of elements of [. Ife; € [, let 7 be a

right transversal in F for Cr(e,). Then e = Z ey is a primitive central idempotent of kF,

yeT
and

As r runs through the set C of representatives for the conjugacy classes of F’, so also does

r¥, and so we have

g -t .
e S5 l‘[f__,l[)o{ (r~ Yz (5.4)
r€C yeT
=3 o(1) 8(c=1)s. (5.5)

2 [F Cren]IF

-1 . . . . . . . .
where § = E 6Y is a k-character of F’ which is invariant under the action of F and irreducible

yeT
with respect to this property. Thus we obtain a bijective correspoudence between the set Z of

primitive central idempotents of A F and the set of irreducible F-invariant k-characters of F”’.

For e € 7, it is clear that Z(kFe) N kF' is a field, since it is contained in the field Z =
Z(K Fe); in fact Z(kFe)NkF'is isomorphic to a particular character field for F’. The following
result can be established by an argument similar to the one given in the proof of Theorem 5.1.1
where the primitive central idempotent f; of A F’ is replaced essentially by the sum of its distinct
F-conjugates - by a primitive central idempotent f of kF for which ef = f, where k is as before

a Galois extension of & which is a splitting field for F'.

Theorem 5.1.2 [f 8 s the irreducible F-invariant character of F' corresponding to e € I, let
x be the sum in Ire(F') of the distinct F-conjugates of some absolutely irreducible character x;
of F' which is a constituent of §. Then Z(kFe)NkF’' is isomorphic to k(x), the field obtained
from k by adjoining all values assumed by \ on F’. O
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Finally, in the situation where e; € [ corresponds to the character 8, € Irri(F’), we remark
that the inertia subgroup (i.e. the stabilizer) of 8; in F is precisely the centralizer F| of ey,
which certainly has finite index in F. The following version of Clifford’s theorem ([1]) then
asserts that every finite dimensional irreducible &-representation R of F, for which 4, is a

constituent of the character of R|p/, is induced from an irreducible k-representation of Fj.

Theorem 5.1.3 Let + be the character of a finite dimensional irreducible k-representation of

F. and let 6 € Irri (F') be an irreducible constituent of the k-character Resglr of F'. Then
T= indg@.

where @ is an irreducible k-character of the inertia group Fy of 8 in F, whose restriction to F’

ts an integer multiple of 6. O

For a proof of Theorem 5.1.3 see [2], Chapters 49-50.

5.2 Lifting of Projective Representations

Let T : G — GL(d, k) be an irreducible projective representation of G over k, and let (R, F., d)
be a generic central extension for . By Theorem 2.2.1 we can find an ordinary irreducible

representation T : F — G L(d. k). for which the following diagram commutes :-

Ll GL(d. k)

G —= GL(d, k) —= PGL(d. k)

™

Here = is the usual projection of GL(d, k) on PGL(d.k),so noT : G — PGL(d,k) is a

homomorphism of groups.

Of course T extends by k-linearity to a ring homomorphism of A F into Mg(k), which we also
denote by T. The subring AT of M, (k) generated as an algebra over & either by {T'(g),g € G}
or by {T(z),z € F} is simple; it is isomorphic as a k-algebra to some simple component of the
twisted group ring &/ G, if f € Z2(G. k*) is the cocycle associated to T. Thus T annihilates all
but one of the primitive central idempotents of &F and AT = T(kFeT), for some er € Z. To

Justify this notation we need the following lemma.
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Lemma 5.2.1 er depends only on T and not on the choice of lift T.

Proof : Suppose T and 7" are lifts of T to F. Then the map ¥ : F — k* defined for £ € F
by

¥(z) = T(2)T'(z™")
is a group homomorphism. for let z,y € F. Then

T(ey)T' (xy™")

U(xy)
= T()TWT'(y "HT (7"
= T(o)T' (" HTw)T' (y™")
= ¢(x)¢(y)

Since ¥ is a homomorphism from F into the abelian group &%, %|g is trivial. Then 7 and 7"
have the same restriction to F’, which contains the support of every central idempotent of &£

It then follows that 7" and T determine the same primitive idempotent of kF'. |

We say that the irreducible projective k-representation 7" of ( belongs to the component

kFer of kF (or to the idempotent er) if T(er) = 1 in M, (k) for any lift T of T to F.

If a study of the group ring #F and its components is to be successful in determining
information about the projective representations of G over k, we might at least hope that
{projectively] equivalent irreducible representations of (¢ should belong to the same component

of kF. [t is easily checked that this is indeed the case.

Lemma 5.2.2 Let Ty and T» be projectively equivalent irreductble projective representations of

G over k, of degree d. Then T and Ta belong to the saine component of kF .

Proof: For some A € GL(d, k) and for some function p : G — &>, we have
Ta(g) = nlg) A Ti(9) A, Vg e G.
Define T3 : G — GL(d, k) for y € G by
Ta(9) = u(a)T1(9)-

Then T3 is another projective k-representation of G, equivalent to both 77 and T». Let Ty :

F — GL(d,k) be alift of T> to F, and for z € F define

Ti(z) = ATa(z)A™L.
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Then Té is a lift of T to F. Cleacly T> and f"g’ are linearly equivalent ordinary representations
of F. and thelr restrictions to F’ are linearly equivalent. Then T» and T’-_{ determine the same
component of kF. Finally, since T3(g) = u(g)T1(g) for all g € G, any lift of T3 to F is also
a lift of Ty. I[n particular if 7} is a lift of 7} to F, theun Ty|r = T4|p+ by Lemma 5.2.1. This

completes the proof. a

From now on we fix a primitive central idempotent e of £F, an irreducible projective k-
representation T of G of degree d belonging to e, and a lift T of T to F. The simple k-subalgebra

of My(k) generated by the image of G under T will be denoted by AT.

If e is not primitive as a central idempotent of kF’, let e; € [ satisfy ee; = e;. By Theorem
5.1.3, T is induced from an irreducible representation T, of F, = Cr(e1) of degree dy = d/fs

(where s = [F : F]). The image AT of kFe; under Ty is a simple k-subalgebra of My, (k).

Thus we may confine our attention to the subring AY = kFie; of A¥ = kFe and its simple
images. If A is the usual transcendental extension of k. defined as the field of quotients of a
central subring of £ F . our knowledge from Chapter 4 of the simple K'-algebra A; = K Fie; will
lead to some conclusions concerning possible values of the Schur index and degree of irreducible
projective representations of G over k. at least in terms of the corresponding invariants for

irreducible linear representations of F".

In the following discussion involving the rings A% and A;, we use much of the notation
established in Chapter 4, some of which we recali here for convenience. Thus By = kF'e;, E =
Z(By), and Fy = Cp(E); A denotes the simple R-algebra i Fpe,. and A5 the subring k Fge;
of A¥. The centre of Ay is denoted L. L = ZE where Z is the centre of A;. and Ao is the tensor
product over L of B = Z{F')e; and the division algebra C = C,,(B). We define E| to be the
field ENZ.

We will denote by A'{ and Ag' respectively the images of kFie; and kFge; under fl. So Ag

is a k-subalgebra of A7.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.3 The Simple k-Algebra AT

Let T. denote the restriction of T} to the subgroup F’T of Fy determined by e; as in 4.3.
Then T,:, may not be irreducible, but it is certainly completely reducible since it is a lift of a
projective k-representation of G*. Let Ag denote the k-subalgebra of AZ generated over k by
the image of F'* under Tw.. Of course T} (hence T:) restricts to an embedding of the simple
ring By in Al (or AL). We let BT denote the image of By in A7 . and by abuse of notation
we identify the fields £ and E; with their images under ’fl. It is immediate from Lemma 4.2.2
and the injectivity of Y:IIE that the conjugation action of F := f'l(Fl) on E in AT induces an

isomorphism of FT/FT and Gal(E/E,) (where FJ = T1(Fo)).

The purpose of the next series of results is to describe the centre of the completely reducible
algebra AT as the tensor product over E; of the fields £ = Z(BT) and ZT = Z(A4T). Some of

the methods used are suggested by arguments appearing in [9].
Lemma 5.3.1 ZT C 47.

Proof: First we show that the image in -ilT of any transversal for Fp in F} is right independent

over AT. If not. let 1n be the least positive integer for which there exists a transversal r =

{zy,....z1} for Fy in Fy. such that for some nonzero elements «;.. ... a, of Ag we have
alrg:+--~+amx:pm =0in AT. (5.6)
Here .r}r denotes the image under 7} of xj € 7. We may assume that z; = I, since 7 =
-1 —iy - R .
{rrz .-, riz; "} is again a transversal for Fo in F). and

ay +ag(x3;)“1 4 tamel (D) =0.

T VI

Since the Ej-automorphisms of £ defined as conjugation by the elements z7, ..., .'L,T generate
the full Galois group of E over £, we can find an element ¢ of £ which does not commute

with all of 27

iar- "

.,z¥ . Then

aa;—}-aag:z:;{ + -»--i-aam.r;rm =0 (5.7)
aay + a’z.r?; + -+ aain.z:?:n =0, (5.8)

where for j = 2...m, o} = a5zl a(z])~! € A7. Since o} # «; for at least one j, subtracting

5.8 from 5.7 leads to a contradiction to the minimality of m. This proves the right independence

over AT of the image of 7.
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That ZT C A7 is then an immediate consequence of the remark preceding the statement of

Lemma 5.3.1 : every element z of AT can be written in the form

{
r = E a,—;r?,

i=1

for some ay,....oq in AJ. Since the automorphisms of £ defined by conjugation by z7,...,z7

generate the Galois group of E over E|, z centralizes £ if and only if a; = 0 for all those i for

which T ¢ FQ. O
Lemma 5.3.2 Z(A]) C AT

Proof : We begin as with Lemma 5.3.1 by showing that the image in A of any transversal
for F'* in Fy is right independent over AT. If not. again let m be minimal for which there

exists such a transversal § with the property that for some nonzero elements oy, ..., am of .-1_7::,
aly?l+---+amy?m=0in .4{. (5.9)
Here y! denotes the iinage under Ty of yi, € 8.
Let So = {r1.s1..... r..5r} be as in Corollary 4.5.1. We recall that
Fo/ F'™ 2= (F) x (51) x -+ - x (7} x (5k).

and (7;) = (5;) = Cy,. Also, if the units ., and v, are defined as in Section 4.3, then [v- ,vs,]

is a d;th root of unity in E, and v, and v,, commute with those v, and 7,, for which j # i.

Furthermore these commutator relations survive in AZ since T} embeds E in A7 .
[t follows from Lenima 4.3.3 and Corollary 4.5.1 that each y; € § can be written in the form
yi = 0i(r ) O (g, ) G (i ) B (g, ) 0, (5.10)

where d; is an invertible element of kFge; (J; is the product of an element of the group F't

and a unit of B;). Thus the expression 5.9 may be written in the form

> bl =0, (5.11)

1
Jj=1

where a} = angl € kFy and

Loy (8)) Ly (15) Lep ()] Ly ()
= ) G T

ai, - sy Sk
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As usual 73: and —/Z: denote respectively the images of 4., and v, under T;.

There is no loss of generality in assuming that for some 7 either +,, or v,, appears in some
but not all of the 0';-"; in 5.9. Certainly m > 2 and so some 5[ (or 77 - say %) appears with
different exponents in two different o{. Then we may eliminate 7?{ from some, but not all, of
the 0',7; by multiplying the expression 5.11 on the right by a suitable power of 7. What we
obtain still has the general form of 5.9 for some transversal for F'T in Fy, since (*,'z; )j is the

~T i H T
product of %/ with a unit from By .

Now some but not all of the 0',7; commute with the unit 7 of AT For each a’,?; we have

is

T\-1 _T.T T
(vs,) " 08, vs, =80

15 £3g

Here £ is a root of unity in E, which is equal to 1 for some but not all z;. Then comparing
the expression 5.11 to its conjugate by -7,7: will (as in the proof of Lemma 5.3.1) lead to a
contradiction to the choice of m. This establishes the right independence over _-lg of the image

under T} of a transversal for F'F in Fp.

Finally A7 is generated as a right module over AZ by the image of any such transversal.
The result then follows from the commutator relations among the elements v7 and 7T, since

any central element of AT must centralize every 7',?: and */ST'. 0

We will make further use of Lemmma 5.3.2 and its proof shortly. in a discussion of the structure

of the simple components of ~1Z First however we investigate the Z7-dimension of Ag.
Lemma 5.3.3 The dimension over E; of .-lz:: is equal to dimgl(ZT) dimg, (By).-

Proof : It follows from the original definition of F'™ that AT is generated over ZT by BT;

hence dimg, (A%) < dimg, (Z7) dimg, (BT ).

The simple ring B, is a ring of n x n matrices over a central E-division algebra D;, and if £
is a system of n? matrix units in By, then it is easily checked that the image £T of £ under the
k-linear extension of T} to kFye; is again a set of n> distinct elements satisfving the identities

of matrix units. Thus

e
BN
I

M, (C’Ag &7 )) :

(see [14], Lemma 6.1.5).
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Certainly C sz (ET) contains DT =Ty (D) and ZT. Let B be a basis for Z7 over E| in AT

We now show that B is right independent over DY . Suppose not. and let m be minimal for

which we can find elements b;,,....b;  in B and nonzero a;,...,ay, Iin D'f‘ such that :-
m
> ajbi, =0. (5.12)
Jj=1

Since DT is a division algebra, we may multiply 5.12 on the left by (a;)~! - thus there is no
loss of generality in assuming that a; = 1. Since B is linearly independent over E7, not all of
the a; belong to E;. If not all of them belong to E. we can find an element d7 of DY which

commutes with a; but not with all of aa,...,an. Then
alb;l + a-_,b,-z + .- -+ amb,-m =0

crbi, + (dT) taadT by, + -+ (dT ) tamd b, =0

m
Thus E a’b;, =0, where af =aj — (dT)~'a;dT. This contradicts the choice of m since each

j=2

o’; belongs to DT but not all of them are equal to zero.

In the case where every a; belongs to £, we may apply the same argument, but using
a suitably chosen element 7 of FT in the place of d¥. Certainly E = Z(DT) is stabilized
under conjugation by elements of FT, and the fact that the automorphisms defined by such

conjugations generate all of Gal(E/E}) guarantees the existence of a suitable 7.

Thus B is right independent over DY, and the dimension over E; of C,r(ET) is at least
e

equal to dimg, (DT)[ZT : E1]. Then
dimg, (AT) > n?dimg, (DT)[Z7 : E1] = dimg, (BT ) dimg, (27).
This completes the proof. a
The following corollary is an immediate consequence of Lemma 5.3.3 (see [16], Proposition
9.2c).

Corollary 5.3.1 Ag is the tensor product over Ey of ZT and BT . a

In particular then, the centre of Ag is isomorphic to the tensor product over E; of ZT and
E, which is a direct sum of field composita of E and ZT. Thus Ag is simple if and only if £ and

ZT are linearly disjoint. Otherwise Z(Ag) is a direct sum of isomorphic fields, and its centrally
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primitive idempotents are conjugate under the action of Gal{ £/E,}. Hence the components of
Z(AZ::) are all centralized by FJ and are permuted transitively by FT. The transitivity of this

action of course follows from the isomorphism FT/FT = Gal(E/E\).

Let AT be a simple component of Ag and let T, be the irreducible representation of F’* (or
kF'T) defined as the composition of T. with the projection of -lg on AT. Then by Clifford’s
theorem

Ty = ndf} (Tor) -
where [+ is the inertia subgroup of T, in Fy and T,+ is an irreducible representation of I+
whose restriction to F'" is a sum of irreducible constituents each equivalent to T,. From the
fact that Fp centralizes E, and hence every primitive central idempotent of Ag, it follows that

I+ D Fy.

Before investigating the irreducible representation T,+, we digress briefly to consider the
field Z7 and how it arises as a finite extension of k. By Lemmas 5.3.1 and 5.3.2. the algebras
A% and Ag have the same centre £Z7 : from the proof of Lemma 5.3.1 we know that AT
is obtained from 4: by the adjunction of elements which are centralized by .47_; but do not
centralize each other. It follows from Lemma 5.3.3 that the Ti-image BT of any E,-basis for
By is right independent over ZT; a dimension count ensures that if 5’ is an E-basis for By,
then the image of B’ under T} is independent over EZT = Z(AY). Recall from the remarks
following Theorem 4.3.1 that

dimg (B) = dimg(B,).
where B and L are defined as in Section 4.3; i.e. R is the purely transcendental extension of k
of Section 3.1, B is the simple ring generated over Z = Z(K Fie,) by F’',and L = Z(B) = ZE.
It follows that any E-basis for B; is an L-basis for B and hence a basis for kF'"e; as a right
module over its centre. We conclude that ZT E is precisely the image under T} of the centre
LN kFoe, of kFge;. By analogy with the notation of Chapter 4, we will denote this algebra by

LT. Recall from Theorem 4.4.1 that Z(kFpe,) is generated as an E-algebra by

where <, has the form v,, = ;¢ for some {; € F'te, and Be, €EU(B1). Thus LT is generated

as an E-algebra by I'T := T (I).

Now let LT be the centre of AT : then LT is the image of LT under the projection of AZ

on AT

T, and is of course a field compositum of ZT and £.
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We have from 4.4 a sequence ji, ..., j- of positive integers for which

ro={#}_ .

is a transcendence basis for AE/E, and KN E = E(I'1). Moreover, for each ¢, 7{" = s;a,,, where
s;i € Rey, a;, € E*, and (s1,...,s,) is a torsion-free complement for {( F' N R)e; in Re,. In fact

KE =E(sy,...,sr) and {s;...., s-} is another transcendence basis for A'E over E.

Since s; € Rey for i = 1...r. and T is a lift to F of a projective k-representation of G,
we have T, (s;) € k* for each i. Let T\ (s;) = sT € k*: since {sy....,s-} is an algebraically
independent set over E. we are free to choose each sT € k* completely arbitrarily. This amounts
to a choice of group homomorphism T|g : R — k*. We will see later that the choice of T|g
does not fully determine the irreducible projective representation T of G, but that it does
determine (up to a coboundary) the cocycle in Z3(G, £*) associated to 7. Furthermore it is
the choice of {sT }i=1. . which determines the field LI, which is a finite field extension of E,

obtained by adjoining for i = L...r a root of a polynomial of the form
pi(X) = X9* — o, sT € E[X].

This may not necessarily determine LI up to isomorphism: for a given i, adjoining roots of
different irreducible factors of p;(.X) in E[X] may not lead to the same field extension. However

we can say that the degree of the field extension LT/E is at most equal to

Jiee= [F'* : RF’] =[G+ ¢]. (5.13)

It is easily seen that the action of /T on LI (via its image under T,+) has kernel Fy and

leads to the isomorphism /*/Fp = G'al(LI/ZI).

The restriction f‘o+ to Fy of the irreducible representation f‘,-‘-— is also irreducible : this
follows from the fact that the completely reducible algebras AT and 47 have the same centre
and therefore have the same set of centrally primitive idempotents. Let AT, denote that simple
component of AT which contains AT as a central simple subalgebra. The role of A7, in the
following description of the structure of A7 is similar to that of Ag in the description of A; in

Chapter 4.

In fact the structure of AT, as an extension of AT is fairly easily discerned in the light of

Lemma 5.3.2 and the results of Section 4.5. The projection of .47_2: on AI certainly restricts to
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an embedding of E. and the argument given in the proof of Lemma 5.3.2 can be reproduced
to show that the image under T,+ of any transversal for F'* in F; is right independent over
.-11'. Let CT denote the image under T.+ of the subalgebra of kFie; generated over E(T) by

the elements vr,,¥s,,- -+ ¥re, ¥s. Of Corollary 4.5.1 and Lemma 5.3.2.

In Ag the algebra C generated over L by {7vr,,7Vs.----:7re»Ysi } is precisely equal to the

centralizer of F’ in Ay, and by Corollary 4.5.1 it decomposes as a tensor product of symbol

o (AL o (1R g, (T
&,L ) &L )~ &L )7

i) Each (%-,)% and (7s,)% belongs to E(T).

algebras :-

where:-

it) Fori=1...k. & is a root of unity of order d; in E. Also d|dx_,|...|d;-

If for each i we now define R; = (v-,)% and S; = (7s,)%, then R; and S; belong to E(T)
and their images R,T‘" and .S'?*‘ respectively in AT, have been determined by the choice of
Tlg : R — k*. Now the images vi+ and vT* of v, and v,, are roots of the polynomials
X4 — R?* and X% — S?"’ respectively in LT[X]. Since E contains a root of unity of order
dy and d;|d; for each /. this determines the image of the ring E(T, ., vs,) up to isomorphism.

Since &; is a root of unity in E, we have

. RrT+ T+
To+ (E(T,9r,.74.)) = (—ﬁ%) ,

and CT is a tensor product over LT of symbol algebras :-

RT ST RT . sT RT sT
T __ 1) - 2 2 — ko Ok _
cy = (s‘hLT ) @rr <__£3,LT ) Spr o DT <€k,LT ) . (5.14)

This tensor product decomposition of C'Z is a consequence of Lemma 4.3.1. In particular CZ
is a central simple LZ algebra, and since 'ﬁ_ embeds B in AZ,. it is easily seen that C'I 1s
precisely the centralizer in AT, of B, = T.(B1). Then by Lemma 4.3.1, AT, has a tensor
product decomposition similar to that of Ay described in Section 4.3. Here B_{ denotes the

algebra generated over LT by BT, -

7+ =Bl Ci. (5.15)
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The central simple Zf-algebra AT, = T,+(kI*) may now be built up from AT, by means
of a series of cyclic extensions. Unlike the corresponding subalgebra C of Ao, the ring CT may
not be a division algebra : its index depends on the values of RT , ST, ..., RZ, SZ' in LI. In any

case AT, is a simple ring, and for some division algebra D7 and some ¢ > 1 we have
T o~ T
A = M (DT).

Let T be a system of ¢? matrix units in A7, so D7 is the centralizer in A7 of £7. The group
I/ Fq is abelian: suppose [¥/Fy = (§1) x --- x {§p), where §i = y; Fo and the order of §; is /;;
lpllp—1|...|li. Fori=1...p.let y]* denote the image of y; under T,+ : the conjugation action
of (y1) on kFoe; defines an action of (y;’) on A7, by

(¥1")

f:ﬁ.(a)y{’ = ’.0+(y1—loy1). for a € kFye;.

This action is well-defined since T,+ maps kFpe; onto AT, . Let ¢, denote the automorphism of
AT defined as conjugation by ylr’ (note ¢ is not an Lz-algebra automorphism, its restriction
to LI Is a Zf-automorphism of order [;). Then (£7)?! is another system of matrix units for
A7, and so by Theorem 2.13 in [6] (£T)°! is the image of £T under an inner automorphism of
AT, :i.e. there exists a unit 67 of AT, for which

-1
<1 by

€ij =€
for each e;; € £T. s0 §,, := y," b, centralizes £T. Now
(y1)'* € Fo = (y7")"* € AL.
and (8,,)" = To+ {(y1)"*) a. for soine a €U(ALL). Then
(6,,) € C'AZ'+ (&7 = DY

So (8,,)"* centralizes LT, and since b; centralizes LT. the automorphism of LT defined as
conjugation by 8y, is the restriction to LT of ¢,. Since [*/Fy = Gal (LY/ZT), the order of
this automorphism is [;. Let L{ - LI denote the fixed field of LI under ¢;. Then L'_{/L'f is a
cyclic field extension of degree /1, and the algebra generated over D7 by 8, is a cyclic algebra

extension of DT. of degree [;ind(DT) over its centre L. Then
DI(6y,) = M, (AT)
where AT is a central LT-division algebra and

tlilld(.’l'{)

Lind(DT),
AT (U7') = ATe(6y,) = Me, (AT) = My (A]).
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Similarly, AT, (y1’.y3') = M, (AF), where t5ind(AT) = l2t]ind(AT) etc., and we may build

A7, up from A7, by adjoining the y;* one by one for i = 1 ...l. If after i — 1 steps we have
AT (gl - it ) = M (AT)

for a division algebra A7_; with centre LT_; for which LT /LT | is an abelian extension of degree

lilo. . l;_, then

ATe ("o wi") = M e (AT). (5.16)

where :-

i} M, (A7) is a cyclic extension of ,_\:_1'_1_

ii) tind(AT) = Lind(AT_,).

i) If Z(A7) = L7, then LT_,/LT is a cyclic field extension of degree /;.

Hence AT, = A;}.(yf’ voerya") = Tye (kFo) has the form
ATy = Mo (A7),
where AT is a ZT-central division algebra and
t'ind(A7) = ltind (DT ).
where { ={1ls.. .1, = [[T: F).

The irreducible representation T; of F) is induced from 7,4+ and ALT is isomorphic to a ring
of m x m matrices over AT,. where m = [F; : [*]. Finally A7. the image of kF under T,
is isomorphic to a ring of ms x ms matrices over AT,. Ve conclude this chapter with some

observations on the degree and Schur index of AT.

Lemma 5.3.4 The Schur inder of AT divides ind(By)[[T : Foly/[Fo : F'F].

Proof : Since AT is a ring of matrices over AT, , which is itself a ring of matrices over the
division ring AT. ind (A7) = ind (AT). The simple ring AT, is obtained from AT, through a

series of cyclic extensions, and so its index is of the form I ind(AT) where |l (for a detailed

[S3]
-1
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discussion of cyclic extensions of division algebras see [8], Section 1.4). By 5.15, the index of
AT, divides ind(B;)d, where d = dida...dy = \/[Fo: F'*]. Of course ind(B;) is the Schur
index over k of any absolutely irreducible constituent of the irreducible k-representation of F’

determined by the centrally primitive idempotent e; of £F”. O

For later reference we now gather together some information on the degree of the irreducible

k-representation T of F.

Theorem 5.3.1 The degree of the irreducible k-representation T is given by

gT G GQ \/ Go G+ deg(B ZT : L] ind(-4:+)>

Proof : The degree of T is equal to deg(AT)ind(AT)[Z7 : k], where deg(AT) denotes the degree
of the central simple Z7-algebra AT ie. deg(AT) = m Since AT is isomorphic to
Mms(AT,) where ms = [F : [*]. we have deg(AT) = msdeg(A7,). The central simple Z7-
algebra AT, is an extension of AT, of degree [/* : Fy)], and by 5.15 deg(AT, } = deg(B;)deg(CT).
Thus since deg(CT) = \/[Fy : F'*].

deg(T) = [F : [F][[* : Fo)\/[Fo : F'¥]ind(AZ,)([ZT : k]

whence the result. (]

In Chapter 7 we will consider the case in which the k-representation T of F is absolutely
irreducible, which will lead to considerable simplification of the situation described here in
Section 5.3 - in particular the centre of AT will be precisely &, so that the centre of A7 will be

simply A ©r £ = E, and T, will restrict to an irreducible representation of Fp.
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Chapter 6

Projective Equivalence and

Projective Schur Index

Suppose T, and 7> are projectively equivalent irreducible projective representations of G over
a field £. Then by Lemma 5.2.2, T} and T» belong to the same component of kF, where F is
a generic central extension for GG. However since kF has only a finite number of components,
and G generally has infinitely many mutually inequivalent irreducible projective representations
over k, at least in a case where H?*(G,k*) is infinite. we cannot hope that components of kF
should always distinguish projectively inequivalent irreducible projective k-representations of G.
In this chapter we show that in the case where k is algebraically closed, the components of £ F
correspond precisely to projective equivalence classes of irreducible projective representations

of G over k.

For an arbitrary field &, the equivalence relation on the set of irreducible projective k-
representations of (G defined by belonging to a particular component of kF' is obviously some-
thing weaker than projective equivalence over &. However we shall see that this relation does
have an interpretation in terms of equivalence over extensions of £&. We should bear in mind
that, as mentioned in Chapter 1, two representations which are projectively inequivalent over

a given field may become equivalent over some of its extensions.
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6.1 Cocycles

Let T be an irreducible projective representation of G over a field k, and let f € Z%(G, k%)

denote the cocycle associated to T, so for z.y € G,

T(xy) = f(z. y)T{x)T(y)-

Let [ denote the class of f in H*(G.k*). If (R. F,¢) is a generic central extension for G and
T is a lift of T to F. then T sends every element of R to a scalar matrix in GL(n, k), so

T|r € Hom(R. k*).
Associated to the central extension
l—-R—F—G—1

we have the transgression map tra : Hom(R. k*) — H?*(G.k*) defined as follows for n €

Hom(R.k*) and z,y € G:-
First define ' € Z3(G. k%) for any section p of G in F by

n'(z.y) = n (u(z)u(y)pulzy)~h)

Then tra i is the class of n’ in H*(G, k%), and is independent of the choice of section.
We also have the Hochschild-Serre eract sequence (see [L1]):-
o —> Hom(G. k*) =2 Hom(F, k%) —2> Hom(R. k*) 2> H2(G. kX) — - --
Here inf is the inflation map : if § € Hom(G,k*) then inff € Hom(F,k*) is defined by

inf@ = 8 o ¢. The mapping denoted by res is the usual restriction mapping.

Lemma 6.1.1 Let T be any lift of T to F. let f € HX(G.k*) denote the cohomology class
corresponding to T, and let n € Hom(R. k>*) denote the restriction to R of T. Then f = tra7.

Proof: Let g :G — F be asection of G in F, and use it to define n' € Z*(G, k%) as above.

We will show 7 ~ f in H%(G,k*), where f is the cocycle corresponding to the projective
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representation 7. For g, h € G we have
7(g.h) = n(ulg)ph)p(gh)™t)
= T (u(g)u(h)u(gh)™")
= T(u) T (u(h) T (u(gh)™").
flg.hy = T(g)T(h)(T(gh))™"
Define a map ¢ : G — &* by
¢(9) =T(9) "' T(ule) (= Tue)T(9)™)
forg € G. Then
g, k) (g, k) = T(gh)T(h)™'T(g)~ T (9T (r(h))T (pe(gh)) ™"
= d(g)v(h)i(gh)™t.

So f~!1 is a coboundary in Z2(G. k%), and f = tran in HX(G, k*) a

Note : traz is independent of the choice of T. for suppose T; and T» are both lifts of T to
F. Then we have already seen that the map ¢ of F into &* defined for r € F by v(x) =
Ty (z)T2(z)~" is a group homomorphism. Then if g, and 5, denote respectively the restrictions
of T; and T- to R, we have mr]z_,_L = ¥|r. So r)lr)._,—1 is the restriction to R of an element
of Hom(F,k*); i.e. mny ' is in the kernel of the transgression map and tram = trana, by

exactness of the Hochschild-Serre sequence.

6.2 Algebraically Closed Fields

From now on we replace the field & by C, the field of complex numbers {or by any algebraically

closed field of characteristic zero). In this section we will prove the following theorem :-

Theorem 6.2.1 Let Ty and T» be irreducible projective C-representations of a finite group
G. Then Ty and Ta are projectively equivalent over T (f and only if they belong to the same

component of CF.

We require to show that if 77 and 75 belong to the same component of CF, then they are

projectively equivalent (we already know the other direction). First we show that the cocycles

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



associated to 77 and 7> belong to the same cohomology class in M(G) = H*(G,C*).

Let T be any irreducible projective C-representation of &, and as before let 7 denote the
restriction to R of a lift 7 of T to F. We will show that tran depends only on n|snr. which
is a linear C-character of F’ N R and is independent of the choice of 7. First suppose that
nlFiar is trivial. Then 7 factors through F' N R and can be regarded as a homomorphism of
R/F'NR into C*. But R/F'NR = RF'/F', so we have a map n of RF’/F’ into C* for
which n'(rF’) = n(r). ¥Yr € R. Finally, since C* is divisible, i’ extends to a2 homomorphism
of F/F' into C*. which can be inflated to F. Hence 7 is the restriction to R of an element of

Hom(F.C*}. and tran = 1 in M(G).

Suppose that T} and 7> are complex projective representations of G having lifts T and T»
respectively to F, for which 71|snr = M2|r'ar, where 1; = f‘;[g for t =1,2. Then 111172'1 has
trivial restriction to F' N R and so mn;! € ker(tra), whence tran; = tran.. Thus tran in
general depends only on the restriction of n to F/ N R. Moreover, if 7]z/qg is not trivial, then
7 is certainly not in the kernel of the transgression map. since no homomorphism of F into the

abelian group &> can have nontrivial restriction to F”’.

Now if 71 and 7> are irreducible projective C-representations of GG belonging to the same
component of CF and having lifts 77 and 75 respectively to F. then the ordinary representations

’fllp: and Tglp: afford the same complex character of F’. Hence
Tilpar : FFNR— C* = Ta|piar: F'ONR — C¥
and the cocycles associated to 71 and T4 represent the same class in M(G).

~x

We now fix some notation. If « € M(G). let np € Hom(R. C*) satisfy a = tran, and define
fc = 1|r'ar. We have seen that 6, determines a and does not depend on the choice of ¢.
Also, since M (G) = FFNR=Z Hom(F' ' NR.Z*) (as F'N R is a finite abelian group and hence

isomorphic to its dual}, we have
{ba. @ € M(G)} = Hom(F' N R, T*).

If T is an irreducible projective C-representation of G whose cocycle belongs to the class o €

M(G), and T is a lift of T to F, then it follows from Lemma 6.1.1 that

T|rar = 0o € Hom(F' N R,C¥).
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We will show by a counting argument that the number of centrally primitive idempotents
of CF is equal to the number of pairwise inequivalent irreducible projective representations of

G over C. We need some definitions and background.

Definition : Let f € Z3(G,C*). Then an element z of G is called f-regular if

f(z, h) = f(h,z), YVh € Cg(z).

Thus £ € G is f-regular if whenever z and h commute in G. the basis elements corresponding
to r and h commute in the twisted group ring T/ G. It is easily checked that if r € G is f-
regular. it is also f’-regular whenever f' € Z*(G.C*) is cohomologous to f, and that any
G-conjugate of = is f-regular. Thus for o« € M(G) we can define an a-regular conjugacy class

of G. We will make use of the following (see [20]) :

Theorem 6.2.2 (Tappe. 1977) If o € M(G). the number n, of mutually inequivalent irre-
ducible a-representations of G over T is equal to the number of a-reqular conjugacy classes of

G contuined in G'.

Let Z denote the set of centrally primitive idempotents of CF, and let S and S denote
respectively the set of conjugacy classes of F contained in F’ and the set of conjugacy classes

of G contained in G’. We require to show that

Zl= > na

a€M(G)

For each C € Sp. let ¢ = Z z in CF. Then |Z| = |SF|. since T and {C, C € Sr} are bases for
reC
the same vector space over C, namely Z(CF) N CF’.

Let C € S¢ and let C € Sp satisfy ¢(C) = C. In this situation we will say that C lies over

C. Choose some X € C and define
Ze:={Ze F'"R:ZX e(}.
Z¢ is a subgroup of F' N R, for suppose Z1,Z2 € Z¢;say X® = Z; X, X® = Z,X, for some

a,b € F. Then X% =2, X%=2,2.X, and Z,Z2 € Z¢.since Z; € F'NR C Z(F). It is easily

checked that Z¢ does not depend on the choice of X € C. It does not depend on the choice
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of C either; for suppose ' € Sr is another conjugacy class lying over C. If X € C then some
element X’ of C’ has the same image in G as X. Then X/ = r.X. where r € F' N R. Since
F'NRC Z(F). X'* =rX®% Vae F, and rC C (. Similarly r='C’ C C. and ¢’ = rC. Then
if ZX € C for some Z € F' N R. we have ZrX € (’. and so the subgroup Z¢ of FFN R is

well-defined for each ' € Sg.

Furthermore, if Z € F' N R and C € SF lies over C € Sg. then either ZC =C and Z € Z¢,
or ZC is another element of Sr lying over C. Thus the number of conjugacy classes of F which

are contained in F’ and lie over C € Sg is [F'N R : Z¢|. Hence

ISrl= D> _ [F'0R: 2] (6.1)
CeSg

For a € M(G), we define the subgroup I, of F' N R as the kernel of the homomorphism
bo : FFOR— C*.

Lemma 6.2.1 Let C € Sg. and let o € M(G). Then C is a-regular if and only if Z¢ C I4.

Proof: An element x of G is a-regular if and only if f(r.y) = f(y.z) whenever f € Z3(G,CTx)
is a cocycle representing a. and y € Cg (). This can be restated as follows : z € GG is a-regular
if and only if T(z)T(y) = T(y)T(x) for all y € Cg(z) and all irreducible a-representations
T : G — GL(nC). Let T be such a representation. let y € C¢{z), and let X and Y be

preimages in F for £ and y respectively. Let T be a lift to F of T. Then T(X) = cx7(X) and
T(Y) = cyT(Y) for some cx and cy in C*: so
T(YXYTIXTY) = ey T(y)exT(e)T(y) " ep! Tix) ey

= T(T(x)T(y)"'T(z)~"

So we have the following characterization of a-regularity : z € G is a-regular if and only if for
each X € ¢~!(z) we have T(YXY~!X~1) =1, YY € 0~ !(Cg(z)), whenever T is a lift to F

of an irreducible a-representation T : G — GL(n.C) of G.

Now suppose r € (i’ and let C € S¢ denote the conjugacy class of r in G. Note that

Yeo Y Cs(z)) < YXY 'X"'eF'NR
— YXYl'e(FFNRX

— YXYIX~!leZ..
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Hence Z¢c = {Y XY 'X~|Y € ¢~}(Cq(z))}, and = is a-regular if and only if Z¢ C ker(T).
However, by Lemma 6.1.1, the restriction to F'N R of T', regarded as a homomorphism of F'N R
into C* | is simply 8. This proves the lemma; C is a-regular if and only if Z¢ C ker(6a) = Io-

O

Proof of Theorem 6.2.1: The number of components of CF is

|SF| = no. of conjugacy classes of F in F’

Let a € M (G). By Theorem 6.2.2 the number n, of inequivalent irreducible a-representations
of G over C is equal to the number of a-regular conjugacy classes of G contained in G’. For

each C € S¢. let
Mce = {a € M(G) : C is a—regular}

Then Z |Mc| = Z Ne, and

Cesa «€M(G)
Me = {a e M(G):2¢c C I}

= {a &€ M(G) : 6, factors through Z¢}.

Then (since {fa}oesricy = Hom(F' N R, C*) ), we have

N
|Mcl = {Hom <F7CR,CX) [=[F'NR: 2]

and by 6.1
Z |Me| = Z [F'NR:Zc] =Sk = Z Ng.
CESs CESs a€M
Hence the number of primitive central idempotents of CF is equal to the number of inequiv-

alent irreducible projective C-representations of G. d

[t is interesting to note that the finite covering groups of Section 2.1 do not share the
property of generic central extensions described in Theorem 6.2.1. Let G be a finite covering
group for G. Then G is an extension by G of a subgroup A of G’ N Z((), for which A = M (G),
and every complex projective representation of G lifts to a complex linear representation of G.
However, projective equivalence of irreducible projective representations of G does not imply
linear equivalence of their lifts to &; thus an absolutely irreducible projective representation of

G does not “belong to” a unique component of the group ring CG. For example, in the case

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where G is cyclic of order d, M (G) is trivial and G is its own covering group. In this case the
d distinct absolutely irreducible linear characters of G all correspond to the same projective
equivalence class of irreducible projective representations of G {namely the trivial one). In this
case if F is a generic central extension for G (arising from a one-generator presentation}), then

F is infinite cyclic and CF has only one component.

In general let p be an absolutely irreducible character of G afforded by the representation
R:G— GL(n,T). Then R sends A into T* and the choice of a section p for & in G defines

an irreducible projective representation Rp of G by
Rp(g) = R(u(g)), fory €G.

Suppose now that v € Hom(G.CT*). Then RY : G — G L(n.C) defined for y € G by R¥(g) =
R(g)¢(v) is another irreducible representation of G which is linearly equivalent to R if and only
if ¥(g) = 1 whenever p(g) # 0 on G. However since # o R = 7o RY, where 7 : GL(n,C) —
PGL(n.T) is the usual projection, the projective representations of G determined by R and
RY are projectively equivalent. The number of additional absolutely irreducible characters of
G (or of simple components of CG) which determine the same projective equivalence class of
irreducible projective representations of G as p is at least equal to the number of homomorphisms
of G into C whose restriction to G* is not the identity. where G* is the subgroup of G generated
by those conjugacy classes upon which p is nonzero. Since C* is divisible every element of
Hom(G*, C* ) which restricts to the identity on G’ NG extends to an element of Hom(G,C*),

hence

1+ |{v € Hom(G,T*) : p(G?) # 1}| = |Hom(GP/C;Pn G| =GP GFn ).

6.3 Projective Schur Index and Projective Characters

In this section we use Theorem 6.2.1 and the results of Section 5.3 to reach some conclusions
concerning possible values of the Schur index of absolutely irreducible projective representa-
tions. We begin with some general background information and terminology. Throughout the
following discussion, if R is a (linear or projective) representation of a group G, and £ is a
field containing all entries appearing in the matrices T(g), g € G. we will denote by Rg the

E-representation of (& defined by

Re(g) = R(g), Vg € G.
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Now let T be an absolutely irreducible complex projective representation of degree d of G, and
let 7 : G — C be the character of 7. If E is a subfield of C, then T is said to be (linearly)
realizable over E if there exists a matrix A € GL(d,C) for which the projective representation
T’ of G defined for g € G by

T'(g) = A7'T(g)A

sends every element of G into GL{d. E).

In this case it is clear that the representations T and 7" have the same character, and also
that the same cocycle f € Z*(G.C*) is associated to each of them. Thus any field £ C C
over which 7T is realizable must contain all values assumed by the character T, and all values

assumed by the cocycle f.
Now let & be a subfield of C. The projective Schur indez of T over k is defined as
mg(T) = min(E : k(7. f)),

where k(7. f) is the field obtained from & by adjoining all character and cocycle values of T,

and the minimum is taken over all extensions £ of & over which T is realizable. It is clear from

the definition that my(T) = mg(r £y(T).

There is another characterization of the projective Schur index. in terms of the index of divi-
sion rings associated to irreducible representations. Thix is described in the following theorem,

of which a proof can be found in [10]. Section 8.3.

Theorem 6.3.1 Let k be a subfield of C. and let P be an irreducible projective k-representation
of G. with cocycle h € Z*(G,k*). The image of k/G under the k-linear extension of P is a
stmple k-algebra; let m be its index. Finally let T be an irreducible constituent of the compler

projeclive representation Pg of G. Then my(T) = m. a

We observe that in Theorem 6.3.1, there is no loss of generality in assuming at the outset
that £ contains the character and cocycle values of every absolutely irreducible constituent of

T. This is equivalent to the assumption that the centre of the simple algebra T'(k/G) is just k.

The next theorem establishes a connection between absolutely irreducible projective charac-
ters of (¢ and a particular subgroup of G which was encountered in Chapter 4. Recall that ife is

the primitive central idempotent of CF to which the irreducible projective representation T of
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G belongs, then the choice of a primuitive central idempotent e; of TF’e determines subgroups
Fy, Fo, and F'* of F. Here Fy = Cir(e1), Fo = Cr(Z(kF’e1)), and F'Y is the subgroup of F
consisting of those r € F for which me; belongs to the ring generated by F’ over the centre of
kFpe,. Let Gt denote the image of” F'* in G. We will arrive shortly at an interpretation of
G7 in terms of the character of 7. e begin with a pair of lemmas, both of which follow from

Lemma 4.3.2.
Lemma 6.3.1 G% is independent ojf the choice of e, .

Proof Suppose e; and ea are primittive central idempotents of kF'’e, and let

Fl = Cple1). F}=Cr(Z(kFley)). F'T ={cre&F!:re, € Z(kFe)[F}
Fl =Cr(e2). F§=Cr(ZqkF'es)). F'5 ={c € F :zes € Z(kFe2)[F']}

We will show that F'{ = F'3. By Lemma 4.3.2. Ft is generated by F’ and the set
P ={ze Fll : C;}.EI = 0},

where C?} denotes the sum in kF of the F|- conjugates of x. Choose y € F for which e> =

y~tery. Then it is clear that F = y—!Fly. Furthermore, if we define
Pr ={z € F}:C2e2 =0},

where C;—’ is the sum in kF of the FZ-conjugates of x, then P» = y~!Pyy. In particular

P2 C(Py. F’). Similarly P, C (P2. F¥). hence F'{ = F']. and the result. a

Lemma 6.3.2 Let T be an irreducibsle complex projective representation of G belonging to the
primitive central idemipotent e of CF | and let k be a subfield of C for whiche € kF. Let f be

a primitive central idempotent of kF'e, and let e} be a primitive central idempotent of CF' f.

Define
Fy =CF(er) Ff = Cr(f)
Fo = Cr(Z(CF'e1)) F§ = Cr(Z(kF'[))
F'f ={z € F:ze, € Z(CFye)[F')} F'F={x€F:xfe Z(FEfF}
Then
i) FL C F¥
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ii) Fo = Fk

. +
i) F'g = F'

Proof Let &; be the field obtained from & by adjoining all coefficients of e;. Then by Section
5.1, f is the sum of the distinct Galois conjugates of ¢; under the action of Gal(ki/k). Any

element of F which centralizes e; also centralizes each of these conjugates, hence i).

Now suppose z € F§, and for ¢ € F' let ¢ denote the sum in kF of the F'-conjugates of c.
Then r centralizes ¢f for all c € F’. Since e, is central in CF’, it is a (C-linear combination of
elements of the form ¢, ¢ € F’; say e; = > _ a;¢;, where each a; is a nonzero complex number
and each ¢; is an element of F’. Then e; = e;f = Y a;é;f, and e, is a C-linear combination
of central elements of £F'f. Then z centralizes e;, and F§¥ C F;. However F) = Fy since the

centre of CF’e; is just C.

To complete the proof of ii), let r € Fy. So z centralizes ée; for all ¢ € F’. Then z also
centralizes ¢f which is the sum of the distinct conjugates of ce; under the action of Gal(k,/k).

Thus £ € F§ and Fy = F§.

To prove iii), let » € Fy, and let C; and CZ:' denote respectively the sum in AF of the
distinct Fj- conjugates of z and the sum in kF of the distinct FF- conjugates of z. First
suppose CA'Qf # 0. Then C.f # 0, since C’;f is a sum of Ff-conjugates of C.f. as f is
centralized by Flk. Then C.e, # 0. since C, f is a sumn of Gal(k;/k)-conjugates of C.e,.

On the other hand suppose C.ey # 0. Then C;,,f # 0 since C-"_,,-el = C,;fel. By ii) then, the

sum of the Fy-conjugates of z has nonzero projection on kFgf, hence r € Ff.
That F'§ = F’{ is now immediate from Lemma 4.3.2. O

Thus the subgroup F'F of F and its image Gt in G depend only on the choice of a primitive
central idempotent e of CF and not on the subsequent choice of simple component of CFe, or
on the choice of underlying field & (provided that e € AF’). We now return to the absolutely
irreducible complex projective representation T of G belonging to €, and show that G+ can be
related to the character 7 of T. First we briefly discuss some general properties of projective

characters.

Projective characters differ greatly from linear characters, even in their most fundamental
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properties. For example a projective character is generally not a class function, since a projective
representation is generally not a homomorphism into a general linear group. Also, projectively
equivalent representations normally do not have the same character, since they are not merely
conjugate but may also differ by any function of the group into the set of nonzero field elements.
However, if p is the character of a projective representation P of G, we can define a function
p~:G— {0.1} by

0 if p(g)=0

p(9) = ) . forged.
L if p(g) #0

It is easily seen that p” is a class function on G. and that if p; is the character of a projective
representation P of P which is projectively equivalent to P, then p]} = p*. We also remark that
if P is a lift of P to a eneric central extension (R. F.6) of G. and if 5 denotes the character of

P, we may define a function g~ : F — {0, 1} by

0 if p(z)=0
p(z)= i alz) . forrekF.
1

if plz) #0
Then g~ = p~ 0.
Theorem 6.3.2 Let T be an absolutely irreducible projective representation of G belonging to

the primitive central idempotent e of CF, and let T be the character of T. Let Gt be the image
in G of the subgroup F'V of F defined by € as in Section {.3. Then Gt D (G, (7")-1(1)).

Proof For r € F. let C; denote the sum in CF of all the F-conjugates of z. Let T denote
both a lift of T to F and its extension to CF, and let & be the character of 7. Then
(F) Y1)y ={z € F:Cre #0}.

This follows from the fact that 7 maps CF onto a full matrix ring over C. For suppose Cre # 0.
Then T(C.) is a nonzero scalar matrix, hence 7(z) # 0 since 7 is a class function on F. Similarly

F(z) =0 if Cre = 0.

Let e; be a primitive central idempotent of CF’e, and as usual let F, = Cr(e;). Then F1<F;
this follows from the fact that F” centralizes e;. Thus (#*)~'(1) C F; since by Theorem 5.1.3,

T is induced from an irreducible representation T; of F.

For r € Fy, let C, denote the sum in CF of the Fi-conjugates of x, and let

P:{zeFl:C;;el;&O}.
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We now show that (P. F') D ((¥7)'(1), F’).

Let r € (r')_l(l). Then Cye #0, and Cre; # 0, since Cy is centralized by F and e is a sum

of F-conjugates of e;. Let S be a transversal for Fy in F. Then

ér = Z s-lé,s,

SES
and
Z s Cpse; # 0 = ds, € S for which sflérslel #0.
SES
Finally s7'Crs) = Cs{‘rsx; hence s7'zs; = [s1, 7 Je € P, and z € (P. F'). Thus z € F'*, by
Lemma 4.3.2. O

The following theorem is the result of combining Lemma 5.2.1, Lemma 5.3.4, Theorem 6.3.2,

and Theorem 6.3.1.

Theorem 6.3.3 Let T be an irreducible compler projective representation of G with character
T, and let T be a lift of T to a generic central ertension F for G. Let k be a subfield of C, and
let my(T') be the Schur inder over k of some irreducible constituent T’ of the representation

T|p of F'. Then the Schur index m(T) of T over k hus the form
m(T) = m'd,

where m’ divides my(T") and d divides [G : (G', (=)~ (1))]. a

If f is the primitive central idempotent of CF to which T belongs, and e is the primitive
central idempotent of &F for which ef = f, then e defines the usual subgroups Fy, Fg and F'*
of F. Then the factor d which appears in the statement of Theorem 6.3.3 has the form d = d d»

where d, divides [Fy : Fo] and d3 divides [Fp : F'+].

It is well known that the Schur index over a given field of an absolutely irreducible projective
representation of G is not invariant under projective equivalence. The reasons for this somewhat
unsatisfactory situation are explained by Theorems 6.2.1 and 6.3.1. To see this let T be an
irreducible complex projective representation of G, and let (R, F) be a generic central extension
for G. If e is the primitive central idempotent of CF to which T belongs, let k& be a subfield of
C for which e € kF. From the discussion in Section 5.3 it is apparent that there may be many

possibilities for the value of the index of a simple k-algebra arising as an image of kFe under
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an irreducible representation sending R into £*. However, by Theorem 6.3.1, each of these is
the Schur index over & of some absolutely irreducible representation T of G belonging to e.

Finally T} is projectively equivalent to 7" by Theorem 6.2.1.

A theorem of Fein [3] states that every irreducible commplex projective representation of G is
projectively equivalent to one having Schur index 1 over . This representation is then linearly
realizable, not over @@. but over an extension of QQ obtained by adjoining the relevant cocycle
and character values. Fein’s theorem is related to the fact that every cocycle in Z2(G,T*) is
cohomologous to one taking values in the group of |G|th roots of unity in {C*, and to questions

concerning realizibility over cyclotomic fields, which will be discussed in Chapter 7.
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Chapter 7

Projective Splitting Fields

In this chapter we investigate some questions on the subject of realizability of projective rep-
resentations over different fields. If k is an algebraically closed field with a subfield kq, and
T : G — GL(n, k) is a projective representation of a finite group G over &, then we say that T
is projectively realizable over ko if T is projectively equivalent over k to a representation sending
every element of G to a matrix in GL(n, kq). We say that kg is a projective splitting field for G

if every projective k-representation of G is projectively realizable over kg.

The problem of determining projective splitting fields for a given finite group G bears some
resemblance to the corresponding problem in the theory of linear representations, but the two
are far from being entirely analogous. The differences arise mainly from the differing notions

of projective and linear equivalence of representations, as outlined in Chapter 1.

If T, and T are projectively inequivalent projective representations of G over the field &g,
they may become projectively equivalent over an extension & of &y,. Examples are extremely
easy to find, even for cyclic groups of very small order. For instance, let G = {a) be cyclic of
order 2. and consider the rational projective representations T; and T» of G defined by

1 0 0 2
Ti(a) = ; In(a) =
0 -1 1 0
Of course both 77 and 7> must send the identity element of G to the identity matrixin GL(2,Q).

The representation T} is linear so its cocycle is the identity element of Z*(G, Q*), and the cocycle
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f € Z*(G,Q*) corresponding to 7> is given by
fla,a) =20 fla.l) = f(lo) = f(1, 1) = 1.

The twisted group ring /G of course has dimension 2 over Q@ and is isomorphic to the field
Q(\/’f). The representations 7 and 7> are certainly not equivalent over J, since 7% is irreducible
as a projective Q-representation of G and T} is not. However. over the field Q(v/2) we have
V2 0 2 —V2
Ti(a) = A~ Ta(a)d = - where A = V2 V2 G (2,@(\/-5)) .
0 —Vv2 1 1
Thus T is equivalent over Q(v/2) to the representation T3 defined above. It is apparent that T3
is projectively equivalent over G (v2) to Ti. The cocycle f is a coboundary in Z2(G, Q(V2)*)
but not in Z*(G.Q*). In fact for g.h € G we have

w(g)p(h)

flg:h) = p(gh)

where 1 : G — Q(V2) is defined by p(1) = 1. p{a) = V2. Although the example G = Ca is

a particularly simple one, it demonstrates the general point : to discuss projective equivalence

of representations, we need to specify a field over which to work.

The same is not true in the linear case. for suppose now that R; and R, are ordinary
representations of degree n of a finite group G over a field k3. Then if & is an extension of &g,

R; and Ra are equivalent over & if and only if there exists a matrix A € GL(n, k) for which
Ra(g) = AT'Ri(9)A. Vg € G.

It turns out that if such a matrix A exists in GL(n, k), one also exists in GL(n, ky). In the case
where R, and R» are irreducible, this is a consequence of the Noether-Skolem theorem, and
the general case follows. Thus R; and R» are linearly equivalent over an extension of kg if and

only if they are linearly equivalent over kg itself.

Let & deuote the algebraic closure of ky. Then k, is an ordinary splitting field for G if
and only if every k-representation of G is linearly equivalent to a kg-representation of G. This
means rhat every absolutely irreducible representation of G can be realized over kg, and that
every irreducible kq-representaion of G is absolutely irreducible (i.e. remains irreducible when
regarded as a representation over any extension of &g). This last remark follows from the fact

that every ordinary character of G can be afforded by a kg-representation, and that a linear
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representation of G is determined up to linear equivalence by its character. If kg is an ordinary
splitting field for G. then the group ring koG is a direct sum of matrix rings over kg, and the

representations of G over k are essentially identical to its representations over kg.

In the search for projective splitting fields, the situation is not quite so rigid. Again let & be
the algebraic closure of a field k. and now suppose thart kg is a projective splitting field for G.
This means that every projective k-representation of G is projectively equivalent over & to one
which sends every element of G to a matrix having entries in kg. However this does not require
that every irreducible projective kg-representation of (¢ remain irreducible over extensions of
kg, or that all simple components of twisted group rings of G over &g have Schur index 1. The
Q@-representation 7> of Ca mentioned earlier provides an example : @ is certainly a projective
splitting field for Ca, since all absolutely irreducible projective representations of cyclic groups

are trivial: however T3 is a non-trivial irreducible projective representation of C» over Q.

7.1 Necessary Conditions for Projective Splitting Fields

Suppose k is an algebraically closed field, containing 4 as a subfield. Theorem 6.2.1, which
establishes the one-to—one correspondence between (projective) equivalence classes of absolutely
irreducible projective representations of G and primitive central idempotents of kF. will be
extremely useful in determining conditions under which & may be a projective splitting field for

G.

Let T be an irreducible projective representation of G over k, belonging to the component
(e) of kF. Suppose T is projectively equivalent (over k) to the k-representation 7 of G. Then
T’ is absolutely irreducible, and the central idempotent of A F to which it belongs must remain
primitive in kF. Them e € kF, and if k is a projective splitting field for G, kF and kF must
have the same set of primitive central idempotents. The following lemma is now an immediate

consequence of Theorem 5.1.2.

Lemma 7.1.1 Suppose k is a projective splitting field for a finite group G. Then if F is a

generic central extension for G, k must contain all F-invartant character values of F’. a

If k is a projective splitting field for G, Z*(G, £*) must of course contain a representative for

-1
(4}
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every element of M (G). We remark that this is true of any field & which contains all F-invariant
character values of F’ : this follows from the centrality of F N R in F. If 6 is a character of
F’' N R, then some integer multiple of @ arises as the restriction to F’ N R of an F-invariant
character of F’. To see this note that # can certainly be extended to a character 8§’ of R, since
F'N R is a direct factor of R. Then the induced character Ind56’ of F restricts on F’ to an F-
invariant character, each of whose irreducible constituents restricts to 8 on F'N R. That @ itself
is F-invariant is obvious since F'N R C Z(F). Then any field & which satisfies the condition of
Lemma 7.1.1 must contain all character values of F’ N R and must in particular contain a root
of unity of order exp(M(G)). Then since every element of Z>(G.k*) is cohomologous to one
taking values in the group of exp(M(G))*™ roots of unity. Z*(G, k*) contains a representative

from every cohomology class in Z*(G, k).

As we might guess by looking at the corresponding situation in the theory of linear represen-
tations. the condition of Lemma 7.1.1 is not sufficient to guarantee that & will be a projective
splitting field for G. Suppose that & is any field. and that T is an irreducible projective repre-
sentation of (G over k, belonging to the component (&) of & F; as usual let T be a lift of T to F.

Then by Theorem 5.1.2, we have
Z(kFe)NkF'e = k(x),

where x is the sum of an F-orbit of absolutely irreducible characters of F’ appearing in ’f’[p:.

Thus £ and &(x) must be equal if T is absolutely irreducible.

The analogous result in the the theory of linear representations of finite groups says that if R
is an irreducible linear representation of G over a field k. then the centre of the simple algebra
generated over k by {R(y),g € G} is isomorphic to the character field &£(6), where @ is the
character of any absolutely irreducible constituent of R. Thus R can be absolutely irreducible
only if & = &(8) for all such §. Of course a field & which contains all character values of G need
not be a splitting field; the group ring A#G may still have simple components of Schur index

exceeding 1.

The following example shows that the same situation arises in the projective case : even
over a field & which contains all F-invariant character values of F’, where F is a generic
central extension for the finite group G, division algebras apearing in the simple components of
kF' can sometimes (though not always) obstruct the realizability over k& of certain projective

representations of G.
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Example : Let S; be the group of permutations of the set {a,b.c.d}. The Schur multiplier of

S4 has order 2, and the group S; defined by
Sa=(z,ti,ta,t3]=2 = 1,87 = =, [t;, =] = L (titye1)® = =, [ti, ;] = = for |i — j| > 1)
is a covering group for S; (see [4]}). The map ¢ defined on generators by
o(z) =1, o(t1) = (a b). é(t2) = (b c), o(t3) = (c d),

extends to a surjection of S5 on S;. The subgroup A; = ¢~ (A1) of Sy is a covering group
for A4, and it includes the element = in its commutator subgroup, for it follows easily from the
above presentation for S4 that
z=[e, 8 e d.

where a = t,l3, 8 = t,lat, totats. a.3 € A;. Then A, is a central extension of Ca by C2 x Ca
(which is isomorphic to the commutator subgroup of 4;. Furthermore A, is not abelian, for
the elements é(a) and ¢(J) are pairs of disjoint transpositions in S4 and therefore belong to
A%, hence = € (A.ql)l. Then .L, is isomorphic to either to the dihedral group Dg of order 8 or
the quaternion group Qg of order 8. and is generated by « and 3. It is easily checked that both
« and 7 have order 4 in .-‘{4; hence .-L;’ = @3 as it is generated by two non-commuting elements

of order 4.

Now let £ be a generic central extension for A4. Then F’ = Qg, and Q contains all character
values of F’. However { is not an ordinary splitting field for F’ since the group ring Q F’ has
a quaternion division algebra as one of its simple components. Let e be the primitive central
idempotent of Q F’ corresponding to this component; of course Q@ F’ and CF’ have the same set
of primitive central idempotents. The idempotent e remains central in QF, since the character
of F' corresponding to e is non-zero only on the subgroup (=), which is central in F. We now
show, by considering the structure of the simple rings Q F'e and CFe in the context and notation
of Chapter 4. that no absolutely irreducible complex projective representation of 44 belonging

to e can be realized over .

Certainly Cr(e) = F and so F, = F in ) Fe, and in ©Fe. Also, since QF’e and CTF'e are
central simple algebras over @ and C respectively, Fy = F for each of these rings. Moreover, in

each case F'T = F also, since [Fy : F'*] must be a square dividing [44 : A,] = 3.

By Theorem 5.3.1. the degree of the absolutely irreducible representation T is 2, since the

minimal F-invariant character of F’ determined by e has degree 2, and [F : F'*] = 1. Then
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T cannot be realized over @@, since QF’e is a quaternion division algebra over Q, and the

Q-representation of F’ corresponding to e has degree 4.

This example demonstrates the type of problem that can arise in attempts at realizing
representations over various fields. In general however the existence of matrix rings over non-
commutative division algebras as simple components of & F” need not always preclude the realiz-
ability of projective representations of G over k. [f as usual (R, F') is a generic central extension
for a finite group G. let x| be an absolutely irreducible character of F’ having Schur index m
over a field & which contains all F-invariant character values of F’'. Let y denote the sum of
the F-conjugates of ) {, so x is a minimal F-invariant character of F’. Then x determines a
primitive central idempotent e of kF, and ¢ remains primitive in £ F for all field extensions &k
of k. Each simple component of the ring k£ F'’e is a matrix ring over a division algebra of index

m, having a field isomorphic to &(x) as the centre.

Now let T be an (absolutely) irreducible projective representation of G belonging to e,
and let % D k be an algebraically closed field containing all entries appearing in all matrices
T(g). y € G. Let f be a primitive central idempotent in the conxpletely reducible ring kF'e.

Then if F; = Cr(f), let Z denote the centre of the ring kF,f, and define
F¥ ={ze F|cf e Z{F)}.
Then by Theorem 5.3.1, the degree of the representation T is given by

deg(T) = [F: B \/[Fr: 7] a0

Now let e; be the sum of the conjugates of f under the action of Gal(k/k). Then e; is a primitive
central idempotent of kF"e. Let F; = Cp(e,), Fo = Cr{Z(kF'e1)). and Z = Z(kFpey). Define

the subgroup F'T of Fy as in 4.3 :
F't = {z € Flze, € Z(F')}.

Then Fo = F, and F't = £t by Lemma 6.3.2. Let T» be an irreducible projective k-
representation of G belonging to e. having a lift 7> to F. If Tb is absolutely irreducible as a
projective representation of G, then 75 must map kFe onto a matrix ring over &. By Theorem

5.3.1, the degree of T3 is given by
deg(Tg) = [F M Fo]dl\/ [Fo : F'+] dgxl(l),

8
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where d; is a divisor of [F| : Fy] and da is the Schur index of the simple k(x)-algebra A3* =
T>(k Fo). Thus T> is absolutely irreducible (and projectively equivalent over & to T) if and only

if di = da = L. in which case
deg(T) = [F : Fol\/[Fo : F'*]deg(x1) = [F : Ei)\/[Fy : F'¥] deg(x1) = deg(T).

This requires (at least) that Ag* be a ring of matrices of degree \/[Fo : F'*]deg(x1) over a field
isomorphic to k(x1). Since the character of T5[ps is a multiple of y, the Schur index m of y

over A must divide /[Fp : F’+], if T is realizable over 4.

We obtain the following necessary (but generally insufficient) conditions for a field k to be

a projective splitting field for G :-

Theorem 7.1.1 Let G be a finite group with generic central extension (R, F) and suppose k

is a projective splitting field for G. Then

i) k contains all F-invariant character values of F'.

it) If m is the Schur index over k of some absolutely irreducible (ordinary) character of F',
then some subgroup of G/G' has a homomorphic tmage of symmetric type, whose order

ts divisible by m*. a

7.2 A Sufficient Condition for Projective Splitting Fields

Suppose k is a field satisfving the conditions of Theorem 7.1.1 for the finite group G with
generic central extension F. Then & is a projective splitting field for G if and only if every
(projective) equivalence class of absolutely irreducible projective representations of G includes
a representative T lifting to an ordinary representation T of F which maps kF onto a full
matrix ring over k. Of course this is equivalent to the statement that T'(g) should have entries
in &k for all g € G. but our approach to the realizability problem will be to use the results from
Chapters 4 and 5 to investigate the structure of simple k-algebras which arise as images of kF

under k-linear extensions of ordinary representations of F which send R into A*.

Let ¢ be a centrally primitive idempotent of kF. and let e,. and subsequently Fy. F;, Ag and

A; be defined as in Section 4.1 for the component (e) of kF. Then L = Z(Ag), and it follows
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from Theorem 4.4.1 and the discussion in Section 5.3 that there exists a transcendence basis
L = {y1.72,...,7} for L over Z(kF’e;), for which irreducible projective k-representations of
G are determined up to equivalence by the choice of images for v;,...,v, in their lifts to F.
These images must always be algebraic over k. and in cases where the associated projective

representations of G are to be absolutely irreducible. they must be inside £*.

[f now T is an absolutely irreducible projective representation of G belonging to e (which is
a centrally primitive idempotent of k for all extensions & of k), then T is projectively realizable
over k if and only if some choice of vT,...,~7T in &% defines an irreducible linear representation
of F which sends e to 1, R into &%, and under which the image of kFie; is a matrix ring over

k.

There is one situation in which we can guarantee the existence of such choices for 'ﬁ', ey 7,T
: namely when k is an ordinary splitting field for F”. In this case the problem simplifies in two
ways. Firstly, if & is a splitting field for F’. then every simple component of £F’ is a matrix
ring over &, and so there is no danger of difficulties arising from division algebras appearing at
the level of kF’, as in the example of A4 over Q. Secondly, in the case where k is a splitting
field for F’ the centre of every simple component of kF” is just k. whence F), = Fy for each
component of F. Thus we need only show that a suitable choice of 47 ....,~7 will ensure that
every symbol algebra appearing in the tensor product description of Al (see 5.14) is a matrix
ring over k. The proof of the following theorem indicates how such a splitting can always be

arranged.

Theorem 7.2.1 Let G be a finite group with generic central extension F, and let k be an
algebraic number field contained in T. Then if k is an ordinary splitting field for F', k is a
projective splitting field for G.

Proof Choose a centrally primitive idempotent ¢ of ZF. Then e € kF of course, since &
contains all character values of F’, hence all coefficients appearing in central idempotents of
CF'. The rings kFe and CFe resemble each other closely; this is a consequence of the fact that
the field & splits F’. [n particular, if e; is a centrally primitive idempotent of CF’ for which
ere = €, then e; € kF’ also, and the subgroup Fy of F defined as in Chapter 4 is the same
for the rings kFe and TFe - in each case this is just Cr(e;). Also. by Lemma 6.3.2, the rings

kFe, and CFe; define the same subgroup F't of F (F'% is the intersection of F with the ring
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generated by F' over the centre of kFje; or CFie;).

Now let s = [F : Fy] and let d be the degree of the absolutely irreducible linear character
of F’ determined by ¢,. Let K¢ denate the usual purely transcendental field extension of C,
obtained by adjoining to T all quotients from [S], where S is a torsion-free complement for
F'NRin R. Let K, denote the corresponding paurely transcendental extension of k, (i.e. R is
the field of quotients of k[S] ); and let Z¢ and Zi denote the centres of the simple rings KcFie;
and A Fie; respectively. These simple rings are similar in structure : by the results of Chapter

4, each is a ring of d x d matrices over a division algebra of index m, where m? = [Fp : F'™].

By Theorem 6.2.1. all absolutely irreducible projective representations of G belonging to e
are projectively equivalent (over C). Let T : G — G L(n,C) be one of these. Then n = sdm
and any lift 7 of T to F maps CF onto a ring of n x n matrices over {C (of course all symbol

algebras over C are split).

On the other hand. any irreducible linear k-representation 7" of £ belonging to (e), sending
R into &* and having degree n, defines (by restriction to a section for G in F) a realization of
T over k. In what follows we show how to construct an absolutely irreducible representation

f’l of Fy for which we may define such a T by
7' = Ind£ (T1).

Since k is a splitting field for F’. we may assume that T}|f is a k-representation of F’ of degree
md, which we need to suitably extend to [y. The free abelian group F’*/F’ has finite index
in Fy/F’, and the quotient F()/F’+ is of symmetric type, by Theorems 4.5.1 and 4.5.2. Then

we can invoke the fundamental theorem of finitely generated abelian groups to find a basis

B = {&l:blr--waqybqvc_l--":és}y

of Fy/F', for which

-d, 7d _ 7 - _
B = {a'.b ‘,...,ag",bﬁfq.cl,...,cs}

is a basis for F'Y/F’ and dgldg—1]...|d,. Here 2¢ + s = r is the rank of the free group F, and
we have

Fo/F'™™ =Cq, x Cay, x...Caq, x Cq,-

Fori=1...qand j =1...s, choose representatives a;,b; and c; for the F’-cosets a;, b; and

¢; respectively in Fy. Then as in Section 4.3 we can find units a;, 3; and d; in kF’e; for which
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every

“Ya, = @iai, Vb, = b;%:, and v, = c;d;
centralizes F’' in kFge,. Then by Theorem 4.4.1
d
[o={(a)™ ()%, (Fa) ™ (5 et -7,

is a transcendence basis for Z; over k. Furthermore, after applying the procedure of Theorem

4.5.1 if necessary. we can assume that

- (Ya )dl {76 )dl ) (Ya )d" (e )dq
Ky Foey = M, ) ®--- | :
TR 4 [( Zk, Ca, Zk. G4,

where for i = 1...q, {4, 1s a root of unity of order d; in Z; (hence in k, since Z is purely

transcendental over &).

We can now extend T} to Fy by choosing images A4,.By...... 1,.B4.C1,...C, in k> for the
elements (74, )%". (‘,‘bl)‘l‘ ..... (Ya, )da, (v, )4 . Yey- - - -+ 7e. of . as in Section 5.3. The image Ag‘

of kFyey under Ty is a ring of d x d matrices over a tensor product of symbol algebras :-

Ay, By Aq. B\ 1
Al =1 ( ) @0 (——"_ ")
0 4 [ k. G4, < k.Ca, J

Suitable choices of Ay, By, ..., Aq. Bq will guarantee that each of these symbol algebras splits

over k : for instance we may choose each B; from the group of d;th powers in &£* to ensure for

t=1...q that

. Ai, B;
Bi [ ."\lk /X /k (k( d\'/ .4{)") . and < kcd ) = -t[d‘(/»)

Under such a choice. T} sends kFpe; onto a simple ring which is isomorphic to Mq(k)-

Finally, T = Indf.:ofl is a linear representation of F whose restriction to any section for
G in F defines as in Section 2.1 an irreducible representation of G which is realizable over &
and which belongs to e and is therefore projectively equivalent to the original T by Theorem
6.2.1. This completes the proof of Thecrem 7.2.1: given an irreducible complex projective
representation T of G belonging to the component (e) of CF, the assumption that kF' is a
direct sum of matrix rings over k for a field & C C is enough to guarantee the existence of an
absolutely irreducible projective k-representation T3 of G belonging to the component (e) of

kF. a

The following result, due to H. Opolka (see [L3]), is an easy cousequence of Theorem 7.2.1,

in view of the fact that a field F which contains a root of unity of order equal to the exponent
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of the finite group G is an ordinary splitting field for . This well-known result is originally due

to Brauer, who obtained it as a consequence of his celebrated theorem on induced characters.

Details can be found in [5].

Corollary 7.2.1 Suppose G s a finite group. and k 15 a field containing a root of unity of
order exp(G) exp(M ((5)). Then k is a projective splitting field for G.

Proof Let F be a generic central extension for . Then since F’ is a central extension of M (G)
by G’, its exponent is a divisor of exp(G)exp(M(G)). Then k contains a root of unity of order
exp(F’) and is therefore an ordinary splitting field for £’. Then k is a projective splitting field

for G by Theorem 7.2.1. a
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Chapter 8

Metacyclic Groups

In this chapter we apply the methods developed so far to the case where G is a finite metacyclic
group. In this case it is possible to describe a generic central extension (R, F) for G quite
explicitly, mainly due to the fact that F' is cyclic and A F’ is a direct sum of cyclotomic field
extensions of k. We obtain a detailed description of the irreducible projective k-representations

of G. where k is a subfield of C. The main results are :-

i) Determination of minimal projective splitting fields for metacyclic groups, and

it) Determination of those metacyclic groups which have faithful irreducible projective rep-
resentations over C. This result is originally due to Ng (see [12]). We give an alternative

proof.

8.1 Generic Central Extensions of Metacyclic Groups

Throughout this chapter we let G denote the metacyclic group defined by:-
G=(r.ylz™ =1,y =z y lzy=2z"). (8.1)

Here ged(r,m) = 1, m|t(r — 1), and r* = 1 mod m. Also, we may assume (by suitable choice

of the generator z) that ¢t|m.
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Let F be a free group of rank 2, with generators X and Y, and let R be the kernel of the

homomorphism of F onto G defined by

X —z, YV —y

Then F := F/[F.R] is a generic central extension of R := R/[F, R] by G. Let X and Y denote

the images of X and Y respectively in F. Then R C Z{F), and
R=(X™ Y XY IXYX™).

Moreover, R = S x (F'N R) where S is a free abelian group of rank 2, and F'N R, the torsion

subgroup of R, is isomorphic to the Schur multiplier of G.

We will use the following notation in the description of F:-

9 { A _‘1 .
a(f) = 1+r+r“+...r“‘='—-—l—, fori>0
r—
J = gcd(m,r—1)
n = ged{a(s),t)

Let ¢ denote the element [Y 7!, X] = Y"'!XYX~! of F. Then ¢ = aX"~! where a =

Y7IXYX™"€R. In particular then [X,c] = l in F. Also, since XY = ¢X, we have
' =@ ) =aqeX) P =alT X ="

Thus (¢} < F. Also. XYV = c* X, for i € Tso.
Lemma 8.1.1 (c) = F'

Proof : Since YX = XYc¢ we can write every element of F in the form X?¥7c* for some

integers ¢, j and k. Then we need only check that
[XTry ek Xfaydzcka] e (c),

for all choices of {;.j;.4; and ia,ja. k2. In fact by the normality of {c) in F, it is enough to

check
(X7 Y7, X2Y92] € (c), Vii.j1, 2, ja-

For any i € Z, (X*)Y = ¢! X7, and since ¥ normalizes () we have (X?)¥” € (¢).X?, Vi,j. Thus

[‘\’ix }'jl , _\-x': Y—‘h] = "\-ix _X'i.v_\' —iy _\'—i: ((_‘).
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ie. [X1+Y7, X2Y72] € {(c) , proving the lemma. O

The commutator subgroup G’ = (z"~!) of G has order m/j, and so F' N R = (¢™/1). Also,

since [X,c] = 1l in F, we have

[}

¢ = YUIXYX-ly-lyyx-t
= X 'YTIXY(YTIYY XY

= X~ ly-ix?yx-!

= YTIx?yyx—?
= [¥~l.X7
Similarly we find that
¢ = [~ X7] (8.2)

in general. Then

Ct — [Y._l, .Yt] — [Y'—I' .\-t },——s] - 1’
since X'Y~% € R. Also, since XY = ¢2() X for all posirive integers i, we find that
Gl =Y X]=[X*'Y . X] =L

Then the order of ¢ in F divides n = ged(a(s). ¢). In fact rhis order is exactly n, since by theorem

2.3.1 F'N R is isomorphic to the Schur multiplier of &G. which is cyclic of order nj/m. In general
ged(a(s), t) ged(m,r — 1) ' For
m

if G is the metacyclic group of 8.1, then M(G) is cyclic of order

a proof of this fact see [12] (for example).

Finally we remark that it is not difficult to find : pair of generators for a free abelian

complement S for F'N R in R. We have
R=(X"y* X ¥ '\yxY)

Also,
R=(R/FFNRYx(F'NR); R/FFNR=RF'/F'.

This latter group is of course free abelian of rank 2, siuce it has finite index in F/F’. Under

the usual surjection of R/F' N R on RF'/F’, we obtain

XM — XM, YOXTP — VX, YTIXY X XY
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Then RF//F" = (XJ) x (¥*X~*), where j = ged(m,r— ). If j = s;ym —sa(r — 1), the elements
a; :==Y*X"" and a» := (X™)* (Y TILXY X ")*2

generate a free abelian complement S for F N R in R.

8.2 Primitive Idempotents for Metacyclic G

As usual let & be a field of characterisitic zero; we will assume & C C, and let G be the
metacyclic group with the presentation of 8.1. Then the group ring A F contains the central
subring £S. Let I denote the field of quotients of £S: ' = k(ay, @2) is a purely transcendental

field extension of & of transcendence degree 2. The ring A'F is completely reducible.

Now let & denote a primitive nth root of unity in =, and for each d|n let £; denote the

primitive dth root of unity £*/¢. Of course

CCn =P Q(ca)-
d|n
and
kF'=kC, = k&yQC,
= Prog ity
din

[kNQ(Ea) : Q]k(&a)
PiknQ(c) : Qlk(Ea)

din

N

k ©g Q(&4)
kF'

12

The group ring &F’ is a direct sum of cyclotomic field extensions of & by nth roots of unity.

[t is possible to fully describe the primitive central idempotents of £F’, and hence of AF.

For:=0,1....,n—1, let f‘/\c denote the element Z(Sic)j of CF’, and let f; = %5"2 It is
ji=1
routine to check that F = {fo,..., fa} is the full set of primitive idempotents of CF’, which

is of course isomorphic to the direct sum of n copies of C. In the component (f;) of CF’, ¢
is identified with €%, since £~ f; = cf;. Given a field automorphism 7 of C, we can define a
Q-algebra automorphism of 7/ of CF' by

n—1 ™ n-—-1
E a;ct = E ajc'. a; € C.
i=0

=0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In particular this defines a faithful action of Gal(Q(€)/Q) on F. For d|n, let F4 denote the
subset of F consisting of those f; for which ged(i.n) = n/d, so £ has order d. Then the subsets
Fq are the orbits of F under the action of Gal(Q(£)/?). This action restricts to an action
of G := Gal{(‘Q(&)/k N Q(E)). under which F; splits into further orbits. Since each element of
Fq¢ has the form %E/’\c where &' is a primitive dth root of unity in C, each of these orbits has
[2(&4) - Q(E«) N k] elements. and the number of them ix
O(Eq) - Ti
[@(gdi Qg = le€an k=l

Note that this is also the number of copies of Q(&;) which appear as simple components of kF”’.

Each primitive idempotent of kF’ is the sum in CF’ of an orbit of F under the action of G.

Let [ denote the set of primitive central idempotents of £F’, and for each d|n let Iy denote

the subset of / comprising those e’ for which ce’ is a root of unity of order d in the field kF’e.

Now each element of I, is the sum in kF’ of G-conjugates of some f; € Fy; € is a primitive
dth root of unity. Observe that every such f; has the same coefficient set - namely the set of

dth roots of unity in C -
n—1

1 i \J
fi= = (Ea).
n 4
j=0
Then every element of I4 also has the same coefficient set, consisting of some rational multiples

of elements of & of the forin
Trermepm(63). j=1...d. (8.3)
where &4 € T has order d.

[t follows from the primitive element theorem that the set of coefficients appearing in any
e’ € I4 generates QQ(&4) Nk over Q, for let a be a primitive element for this extension. Then «

can be written in the form
— o(d)—1
a = ag(dy-184 + -+ aiy+ag, ao,-.--,8a4-1 €Q.

Then E o’ is an integer multiple of a and clearly belongs to the field generated over Q by
c€g
elements of the type of 8.3.

In general I is not a central subset of kF’; conjugation by elements of F' induces F-actions

on F and I, under which the subsets F4 and [y are stabilized for all divisors d of n. The action

8
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of F on F can be described in terms of the Galois group of {Q(&) over 9 in the following sense
: X of course cemtralizes F’ and hence F, so every F-conjugate of f € F has the form fY" for

some a € Z. Now ¢¥ =c¢ andsofori=1...n— 1 we have
e 1 - id l -
] _ i Y — iar
ol c - C .
Y = —(Fo)Y = (&)
Certainly ¢” has order n in F since ged(r,n) = 1. Let ' be an inverse for r in Z,, so ¢ = c.

- . , . .t
Then the coefficient of c in f} is L&, and
g L ir’ —_
fi = (&)= fir.
n
- g ;
Since ged(#'.n) = L. &' has the same order as &'.

Let p denote the automorphism of Q(€) defined by &# = €. Then p extends in the usual

way to a Q-algebra automorphism of @ (£)F”’, under which

=1

3 P vfi e f-
The same applies to elements of /. since each of them is a sum of elements of F. It is easily
seen that the subsets Fy and [y of F and [ respectively are stabilized by (p), for each divisor

d of n.

Each primitive central idempotent of AF is the sum of all elements of a (p)-orbit of /. Fix
d|n. Then all elements of I; have the same coefficient set, and so all have the same number of
{p)-conjugates. Since this coefficient set generates G (£4) N & as a field over @, the number of
conjugates of ¢/ & [4 is the order of the restriction of p to Q(&4) N k. For example [ is central

in kF if and onlyw if the fixed field of p contains J(&4) N k. Let E denote this fixed field :-
E={zxeQ(&):z" ==z}

In general the number of elements in a (p)-orbit of [; is [T(&q) Nk : Q(&g) Nk N E]. The
primitive central idempotents of & F corresponding to components upon which the projection
of F’ has order & are of course the sums of the elements of these orbits. The number of simple

components of K”F of this type is

Q€0 k:Q]
Qe nk:SEanknE] ~ =Nk E L

obviously a divisor of ¢(d). In the case where & = @ this is 1; in the case where §; € k it is
[Q(Eg) N E : Q). We will denote by Z the full set of primitive central idempotents of £F', and by
Z4 the subset of Z consisting of those elements e for which F’e has order d, d|n. The coefficient

set of any element of Zy4 of course generates Q(&4) N E as a field extension of Q.
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8.3 Cyclic Algebras in K'F

Throughout this section let e4 € Z4. We will investigate the simple algebra A" Feq in the context
of the discussion in Chapter 4. [f k F'eq is not simple, let €;4 be a centrally primitive idempotent

of L F’ for which ejqeqy = €14. Then
KFeq= M, (KFZeia),

where F = Cr(e1q) and [F : Fi] = l4 is the number of conjugates of €4 under the action of

F. From the description in Section 8.2 of the primitive idempotents of kF we have

lg =[Q&) Nk :QP(Eg) NEN E].

Since X centralizes ¢ and hence k£ F’, we observe that F{‘ = (X.Y!4 F’). For the remainder
of this section we assume that eg behaves as the multiplicative identity element, and by reference
to an element, subset. or subgroup of F we shall understand its projection on the simple ring

Af == N Fey.

Now kF’eyq is a field isomorphic to k(&) and so Fy := Cp(Z(kF')) is just the centralizer
in F® of c. The element Y* centralizes ¢ in A¢ if and only if

Y 7leY P =" =c.

i.e. if and only if d|rf — 1. Let b = ordq(r). Then F¢ = (X. Y%, ¢). and F2/F§. which is cyclic

of order b/l4. is isomorphic to the Galois group of the field extension k(&4)/k(E4) N E, since
Z(AYY NEkFleig = k(E4) N E.
Let A% be the centralizer in A¢ of kF’'eqs. By Theorem -1.3.2 we know that
Ag =B®; C,

where 3 is the simple algebra generated by F’ over the centre L of A%, and C = Ca¢(B). In
this case B = L, since F' is central in .-13. Then F'T := FuNB 1s just the centre of Fy. It follows
from the centrality of ¢ in Fg that F'Y is generated by c¢, (X) N Z(Fy), and (Y'®) N Z(Fu). We
need to find generators for each of the latter cyclic groups : suppose X* generates (X)N Z(Fy).

Then
Y XYl = WX = X = d]ia(b).
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On the other hand, suppose (Y°)! € Z(F;). Then Y% centralizes X, and

y XYY = 2O X = X = d|a(ib).
Clain 8.3.1 d|a(ib) if and only if d]ia(b).

Proof Let g = d/ gcd{d, a(b)). Note that b = ordy(r) so d|r® — 1, d|a(b)(r—1). Then g|r — 1,
and r = 1 mod g. Also note that
a(ib) = (L +rb +r? 4 ... 4 =184 (h)
- this is immediate from the definition of a(5).
dla(ib) <— d|(l+ et rE=18a(6)
= gll+rP 4. 40
= gli.
This proves the claim. since g divides i if and only if g gcd(d, a(b)) divides i ged(d, a (b)), i.e. if
and only if d divides ia(b). O
Thus (X) N B = (X9), and (Y®) = {(¥Y?)9). where g = d/gcd(d, a(b)). We observe that
gb = ordgj, (r) where jq4 = ged(d. r — 1), since d|a(gb) <> djq|(r9% — 1).
Then X9 and Y9° generate L as a purely transcendental field extension of k£ F’e; 4, which is

isomorphic to £(§q). Now B = L = Z(Ag) and so C' = C4,(B) = Ag. Then 4g is a symbol
X9.(Y?)9
Ag= ———— .
° ( L
Here ¢ = [Yb.X] is a primitive root of unity of order g in L.

algebra of degree g over L :-

Let Z denote the centre of 4,. a subfield of L. Theu. by Lemma 4.2.2, the Galois group of

L/Z is cyclic of order h/l4. generated by the automorphism o defined as the restriction to L of
g: .-{1 —_— ."1
% .= gv'" (8.4)

That & restricts to the identity mapping on Z is clear. since Y'¢ € A;. The central simple

Z-algebra A, is cyclic of degree d’ = gb/l4.

A = (L(.\')/Z, a,(Y‘d)“’)
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A1 is a symbol algebra if and only if the dth roots of unity in kF'’e 4 are centralized by Fi. In
this case F} = Fy and 4; = 45. The field Z is purely transcendental of transcendence degree
2 over

ZNkF'eyg=k(E4)NE.

Now L = kF'(X9,Y"%), and Y% € Z since it is centralized by X. By Lemma 4.3.2, there exists
some ¢’ € F’ for which the sum of F)-conjugates of X9¢' has nonzero projection on (e;4); thus
we obtain an element Cxs = X9 of Z : ¢/ € kF’. Finally, Z is generated as a field over
ZNkF' by the set {Cxq, Y9}, To see this note that L is generated over (Z N kF'){Cxs, ¥'9°)

by c. and that c is a root of a polynomial of degree b/l; over Z N kF’.

8.4 Irreducible i-Representations

The construction of an irreducible projective k-representation T of G belonging to ¢4 now
entails the determination of images under a lift T of T to F for the elements Cxs and Y9,
which generate Z over kF'N Z in KN Fie,. The images of Cx, and Y9 need not belong to £,
but are certainly algebraic over k; for example since (¥Y) N R = (¥*), gb|s and the image of
Y9 under T satisfies (T(Y'gb))./qb € k*. Similarly (f(.\'g))m/g € k*, and Cxs = X9¢ where

¢’ € kF" and the image of ¢/ is determined (up to a choice of basis) by e;4-

Let A7 be the k-algebra generated by {T(y),g € G}, or {T(z),r € F} : then AT is a
central simple algebra over a field ZT which is a finite extension of &, and by Theorem 5.1.2
zT ﬂf’(kF’) = k(x) where x is a sum of the F-conjugates of any absolutely irreducible (linear)
character of F’ appearing in T|g:. From the results of Section 5.3 we know that AT =T (kFy)
is a direct sum of simple components each of which is a symbol algebra of degree g over a field
which is generated by ZT and a copy of kF’e;4. The number of such components depends upon
the field Z7 and in particular on the tensor product ZT DzTatr! T(kF’). If T - f'(Fl) is
the stabilizer of the simple component AT, of .407 under the conjugation action of T(Fl) on
AT, then the subalgebra AT of AT generated by [ over AT, is simple, and is a symbol algebra
of degree gb/l4 over a field ZI which is isomorphic to Z7. In this situation AT is isomorphic

to a ring of matrices of degree [F : [] over AT, where [ = T (7).

We are interested in particular in absolutely irreducible projective representations of G, i.e.

representations which remain irreducible when regarded as maps into general linear groups over
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C. The representation T described above is absolutely irreducible if and only if AT is a full
matrix ring over k: this requires firstly that Z7 = %, so the images P and Q respectively of
Cxs and Y9° are elements of k*. Also, by Theorem 5.1.2, we must have k& = k(x), whenever x
is the sum of the F-conjugates of an absolutely irreducible character of F’ appearing in T'|pr.

Finally. in order for T to be absolutely irreducible we require that ind(AT) = ind(AT) = 1.

The stipulation that ZT = k of course means that 47 is a simple ring and much of the

complexity of Section 5.3 is avoided. In this case

T (PEDQ

Slg = C, LT +
where /T = T(c’). and LT = T(kF'). Furthermore if (Y"‘)T denotes the image under T of
¥4 then

AT = AT (V') = (k(XT)/k. 0T, Q)

is a cyclic algebra of degree d’ = gb/l4 over k. Here XT = T(X) and o7 is the automorphism
induced in AT by the automorphism & of kF defined in 8.4 as conjugation by Yi¢. Now
AT = Mp(k) if and only if Q = N, x7,,.(a) for some a € £{XT). This can easily be arranged
by the choice of P and @ in &% : for example we may choose Q € (k*)¥ . Then AT = Mgs (k)

and T is an absolutely irreducible projective representation of G.

Theorem 8.4.1 Let G be the metacyclic group of 8.1. and let n = |G'||M (G)|.- Let k be a
subfield of the field T of complexr numbers, and let £ € T be a primitive nth root of unity. Then
k is a projective splitting field for G if and only if k contains the fired field of Q(€) under the

automorphism o which sends £ to &".

Proof : Suppose that & C {C is a projective splitting field for &. Then by Theorem 7.1.1 &
contains Q(£)7, since this is precisely the field obtained from @ by adjoining all F-invariant

character values of F’. where F as usual is a generic central extension for G.

On the other hand. suppose k& D Q(£)°. Then kF and CF have the same set Z of primitive
central idempotents. Let e € Z, and let x denote the F-invariant character of F’ corresponding
toe. Then & = k(x), and as above we may construct k-representations of F which behave as
lifts of absolutely ireducible projective representations of G belonging to e. The result is then

a consequence of Theorem 6.2.1. a
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Example : Let G,k and o be as above. Then @ is a projective splitting field for G if and
only if o generates the full Galois group of Q(£)/C. This Galois group, which is of course
isomorphic to U (Z,), is cyclic if and only if n = p® or 2p® for an odd prime p, or if n = 2 or 4.
The metacyclic groups for which Q is a projective splitting field are described by the following

theorem.

Theorem 8.4.2 Suppose J is a projective splitting ficld for the metacyclic group G of 8-1.
Then one of the following holds :-

1) n = p® or 2p®, where p is an odd prime, a > 0, and ord.(n) = o(n).
i) n=4 and |G'| =4, M(G) trivial, r =3 mod 4.
tir) n=4 and |G'| =2, M(G)=C>, r=3 mod 4.

tw) n=2 and |¢'| =2, M(G) trivial.

v) n=2and |G’ =1, M(G)=Ca: G=Cax Cy, 2.

vt) G is cyclic.

8.5 Faithful Projective Representations

Let T : G — G L(n, k) be a projective representation of the finite metacyclic group G over a
field k. We recall from section L.l that the kernel of T is defined as the kernel of the group
homomorphism
T=ro0T:G— PGL(n,k).

i.e. ker(T) = {g € G : T(g) € k*}. The representation T is said to be faithful if ker(T) = {1};
in this case 7 embeds G in the projective general linear group over k. We will determine the
metacyclic groups which have faithful absolutely irreducible projective representations, and the
smallest fields over which these representations can be realized. A related question asks which
metacyclic groups have central simple twisted group rings over a given field k. We will give an

answer to this question also.

Lemma 8.5.1 Suppose the metacyclic group of 8.1 has a faithful absolutely irreducible repre-
sentation T over the field k C C. Then ged(t. a(s)) = m.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Proof : Let T be a lift of T to F, extending to a surjective ring homomorphism T : kF —
My (k). Since T is absolutely irreducible, T sends the centre of &F into k. Let (e) be the
component of £F to which T belongs (e as usual being a primitive central idempotent of £F)
and let d be the order of the group F’e. Then X4 € Z(kFe) since Y1 XY = ¢?X%. Thus
T(X%) € k* and T(z%) € k*, so z% € kerT. Certainly d}m since ged(t, a(s)) = |F’| divides m

(as t{m). Then d must be equal to m since T is faithful. a

We observe that the condition m|t in Lemma 8.5.1 implies immediately that y* =1, i.e. G

is a semidirect product of (x) by (y).

Now if AT = T(kF) where T is a lift to F of the representation T of Lemma 8.5.1, then
from Section 5.3 we know that T(kFe) = A (k) is isomorphic to a ring of [, x [, matrices over
the cyclic algebra

AT = (K(XT)/k, o, (¥ T)oem (1)

where X7 and YT denote respectively the images of .X and ¥ under T. The degree of AT is
ordm;(r)/lm. and since

(Y)NE(F) = (yeordm (D)

it follows that
(y) Nker(T) D (y°™4m(r)).

The reverse inclusion also holds, since 7 embeds F” in M;(k) as |F'e| = |F’|. Then if [Y?, X]# 1

for some i, T(Y") & k. Thus T sends no element of {¥") which is not central in F into k. and
(y) Nker(T) = (y°™m (r)).
Since T is faithful, we conclude that s = ordm;(r).
Certainly ordmj(r)|s as

m = ged(a(s), m) mla(s)
mjla(s)(r — 1)

mjlr® — 1

AN

ordmj(r)|s.

Of course this is not true for all metacyclic groups; it uses the condition m = n = [G’||M(G)|.

We require that s be minimal with the property that m|a(s) in order to ensure that the
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projective representation T of G be faithful. This condition is sufficient, for suppose now that
T(X'YY e k*.

Then, since the action of (¥') on X survives under 7. }" must centralize X* in Fe. Then m|i

and T(X?) € k*, hence T(Y') € k* also, so s|[, and £’y =1 in G.
Then T is a faithful projective representation of G. of degree s = ordmj(r), where j =

ged(m, r — 1). We summarize these results in the following theorem :

Theorem 8.5.1 The metacyclic group G of 8.1 has faithful absolutely irreducible representa-
tions if and only if the following conditions hold :-
i) mlt; G = (z)  (3).
i) mla(s). and s is minimal with this property. a
This theorem is originally due to H.N. Ng -see [12]. The next corollary is an immediate

consecjuence of Theorem 8.5.1. for suppose that for some f € Z(G..C*) the twisted group ring

T (G) is central simple of degree s over C. Then |G| = dime(Tf (G)) = s? and the isomorphism
o (G) ———— M, (T)
restricts to a faithful absolutely irreducible f-representation of G of degree s.

Corollary 8.5.1 The metacyclic group G of 8.1 has a central simple twisted group algebra over
© if and only if G satisfies both conditions of Theorem 8.5.1 and in addition m = s. O

If (¢ is a metacyclic group satisfying the conditions of Corollary 8.5.1, we have m = s,
J = gecd(s,r — 1). and ord,;(r) = s, whence s|¢(sj). The order of G’ is s/j, and the order of
M(G) is j.

Now let (¢ be the metacylic group with presentation
(z.yle® = 1,¢° =1L,y lay = 27),

and suppose & is a subfield of T over which G has a central simple twisted group ring. Let T

be the associated faithful irreducible projective k-representation of G, and let f € Z*(G, k>)
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be the associated cocycle. The degree of T is s’ = srs, where s; denotes the Schur index of T,
which is equal to the Schur index of the simple algebra kfG. Let T : F — GL(s’, k) be a lift
of T to F', extending to a ring homomorphism T : kF — M, (k). Then, by Theorem 5.1.2, the
centre of T(kF) contains the values assumed by the sun: of the F-conjugates of any absolutely
irreducible character of F’ appearing in T|p.. Then the idempotent e of kF to which T belongs

remains primitive in CF.

Now if & is a primitive sth root of unity in C, k& contains the fixed field of (&) under the
automorphism sending &, to &7, which is generated over {Q by the coefficients appearing in e.

Then k is a projective splitting field for G by Theorem 3.4.1. We obtain the following result :-

Theorem 8.5.2 If G is a metacyclic group possessing central simple twisted group algebras

over a field k, then k is a projective splitting field for . O

In the above setting A Fe is a cyclic algebra of degree s = ord,;(r) over its centre Z.
Moreover, A Fe is a ring of matrices over the central simple Z-algebra A; generated over Z by
X and Y, where

Iy = [Q‘(E') Nk:C (63)017

A is a cyclic algebra of degree s/l; given by
A =(2(X)/Z2.6.Y7%):

o is as usual defined as conjugation by Y. Now if T is a lift to &F of an irreducible projective

k-representation T of G belonging to e, we have

T(LF) = M, (k(\'/F)/L-.oT,Q) ,

/

o
T
Al

where P,Q € k* satisfy T(X*) = P, T(Y*) = T((Y!)*/!) = Q. The degree of the k-algebra
T(kF) is s; its index is ind(A7), a divisor of s/l,. By different choices of P and Q we can

arrange for ind(T'(kF)) to be any divisor of s/l,. In particular choosing

Q € Ny ypy/k (k( v -'Ux)

will vield an irreducible k-representation T} of G for which {T1(9).¢ € G} generates the ring

of s x s matrices over k. The representation T} of G is of course absolutely irreducible and
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corresponds to a twisted group algebra of G over & which is isomorphic to M, (k). Also, if d
divides s/l, G has a central simple twisted group algebra over & which is isomorphic to M, /4(D)

where D is some central k-division algebra of degree . \WWe have proved the following theorem.

Theorem 8.5.3 Let G be a metacyclic group and let k be a field of characteristic 0. Then
if G has a central simple twisted k-group algebra of inder s, it also has central simple twisted

k-group algebras of index d, for any diwvisor d of s. a
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Chapter 9

Conclusion

We conclude with some general remarks, and by mentioning some possibilities for further work,

arising from or suggested by the material included in tlis thesis.

The study in Chapter 8 of the projective representations of metacyclic groups was obviously
expedited by the fact that a generic central extension of a metacyclic group has cyclic commu-
tator subgroup. In particular the fact that £F’ is a direct sum of fields when G is a metacyclic
group facilitates the search for absolutely irreducible representations and splitting fields, since
no complications arise from a requirement to split division algebras appearing in & F”’. [t is likely
that the approach of Chapter 8 may be extended to yiel:l specific information on the projective
representations of a broader class of groups, perhaps some or all finite groups having metabelian
generic central extensions. This class does not include all metabelian groups; however it does
include all groups which are nilpotent of class 2. If F is a generic central extension for a group
G which is nilpotent of class 2, then +4(F) is trivial, whence F’ is abelian (see [17]). The class
also includes all abelian groups, whose generic central extensions are nilpotent of class 2, and

whose projective representations have been extensively studied.

Although there is very little explicit reference to cocycles, and cocycle computations are
avoided completely in the approach taken here to the study of projective representations, it
is perhaps worth mentioning the implicit role of a particular cocycle, namely the one which
is defined by Lemma 3.1.1. The simple K-algebras which are investigated in Chapter 4 arise

as simple components of twisted group rings of (finite) covering groups for G, not over & but
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over purely transcendental extensions A of k. These projective R-representations of G =
F/S might be described as “generic” projective k-representations of G, since all projective k-
representations of (7 arise from “specializing” elements of certain transcendence bases for A'/k
to values in k. Over algebraically closed fields, Theorem 2.1.1 relates linear representations
of G to projective representations of G; over more general fields, Lemma 3.1.1 relates certain
projective representations of G to projective representations of G. It is easily seen that these
representations are in gencral genuinely projective - th- cocycele in Z2(G. K>} determined by

Lemma 3.1.1 can be a coboundary only in a case where G is perfect.

[t may be possible to improve some of the results of Chapter 7 on projective splitting fields.
For example it would be of interest to know under what conditions on the group G a field &
satisfying the first conclusion of Theorem 7.1.1 is a projective splitting field for G. This is
certainly not always the case : however in constructing k-representations of F arising as lifts
of projective k-representations of G, and belonging to a particular component of &F, we have
some freedom in choosing images for certain central elements of & F which are transcendental
over k. [t may be possible. perhaps under some assumptions on G. to investigate the existence
of choices which might split not only the symbol algebras appearing in the image of £F'Y, but
also any division algebras appearing in kF” as well as the further cyclic extensions which arise
from the action of Fi/Fy as a Galois group, as described in Chapter 5. It would also be of

interest to know for which groups the converse of Theorem 7.2.1 is true.
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