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ABSTRACT

The formulation and testing of a variable order infinite wave envelope element and
a direct collocation multi-domain boundary element method for analyzing acoustic
radiation and scattering problems in an unbounded domain are presented. These methods
have been developed to provide efficient numerical modelling tools, in terms of
computation time and computer data-storage requirements, compared to existing finite
element and boundary element methods.

The variable order infinite wave enve!spe element is based on a finite to infinite
geometry mapping and a wavelike representation within the element shape function. It
allows for the specification of an arbitrary number of acoustic degrees of freedom in the
radial infinite direction, yielding a 1/r* expansion for the proper modelling of the
amplitude decay. The element can be incorporated into a standard finite element scheme,
yielding computationally efficient banded system matrices. Both two-dimensional and
axisymmetric problems are presented to show the use, accuracy and limitations of the
element. In addition to this, different acoustic modelling aspects are focussed upon. These
include the modelling of acoustic wave propagation above infinite homogeneous
impedance planes, different methods to prescribe acoustic sources and alteraative
postprocessing procedures. Special attention is given to limitations encountered for this
finite element based modelling of wave propagation in unbounded domains. The
limitations are assessed by analyzing the higher order multi-poles of an infinitely long
oscillating rigid cylinder and an axisymmetric pulsating rigid sphere.

A direct collocation multi-domain boundary element method for acoustic radiation
and scattering problems in unbounded domains is introduced. For effective modelling of
the acoustic field variables along the infinite interfaces of adjacent subdomains, a new
variable order infinite boundary element is formulated. The element is based on the
variable order infinite wave envelope element, and thus features a finite to infinite
¢:ometry mapping and a special shape function, combining an appropriate amplitude
decay and wavelike variation. Both two-dimensional and axisymmetric modelling of
acoustic radiation and scattering problems are presented, indicating the use, the
advantages and the limitations of the method. The benefits of this multi-domain boundary
element method include banded system matrices, for better computational efficiency, and
the elimination of singularities, due to the non-uniqueness problem, common for
conventional boundary integral methods.
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CHAPTER 1

INTRODUCTION

Noise control engineering has become an important aspect of mechanical design.
A great deal of research effort is devoted towards the dynamic analysis of structures to
improve the acoustic performance of the product. The analysis is not only focussed upon
the improvement of existing structures, but moreover, upon the optimization of new
products in the early stages of the design process. Guidelines for this design optimization
include noise control regulations, limiting the allowable noise levels emitted by the
product, e.g. for appliances, car and aircraft industry, and prescribed desired sound
radiation patterns for products such as hifi speakers and ultra-sound detection probes. In
all cases, the acoustic pressure field, interior or exterior to the vibrating structure, has to
be evaluated.

Over the years, a large number of modelling tools have been developed for
analyzing these dynamic structural-acoustic problems. In general, a structural-acoustic
model comprises three parts, i.e. the model of the structure, the acoustic field modelling
and the coupling between the two models. The elasto-acoustic coupling effect can be
omitted in many cases, when the radiation loading of the acoustic medium on the
vibrating structure is negligible. The acoustic response can then be evaluated within the
acoustic model itself, based on boundary conditions, e.g. prescribed surface velocity

patterns, obtained from the structural model.



The research conducted for this thesis involves the harmonic acoustic modelling
of radiation and scattering from a vibrating surface within an infinite domain. This type
of problem is governed by the classical Helmholtz equation with prescribed boundary
conditions on the radiating surface and a suitable radiation condition, simulating an
infinite acoustic domain [1.1-1.3]. Sommerfeld stipulated that, in order to have a well-
posed radiation problem in an infinite domain, it is not sufficient to only satisfy a
condition of finiteness, as is the case in static potential problems, but in addition, a
radiation condition has to be specified, only permitting outgoing travelling waves into
infinity. The finiteness and radiation conditions are combined into the so-called
Sommerfeld radiation condition. In general, the application of the latter condition in
mathematical models is not an easy task.

Closed-form analytical solutions to the acoustic radiation problem are only
available for a limited number of special cases. These involve radiation and scattering
problems from simple geometries such as spheres and cylinders, where the technique of
separation of variables is applicable. Various textbooks on acoustics [1.4-1.10] give
detailed analyses of these classic solutions.

For the analysis of radiation problems from vibrating bodies of arbitrary geometry
and boundary conditions, a more general solution method is necessary. A variety of
numerical methods have been developed, ranging from approximate analytical solutions
to boundary integral and finite element based methods. An overview of these different
methods is given in References [1.11-1.13].

Boundary integral methods are very well-suited for the modelling of infinite
domains from a theoretical point of view. Through the use of the free-space Green's
function and Green's theorem, the problem can be reduced to the solution of the
Helmholtz surface integral equation on the boundary of the acoustic domain. The
Sommerfeld radiation condition is inherently satisfied within the Green's kernel and the
number of dimensions of the problem is reduced by one. Boundary integral methods in
general consist of two phases. In a first phase, the acoustic variables on the surface are
solved for using the surface Helmholtz integral equation. Secondly, the acoustic field

variables at an arbitrary field point can be determined by evaluating the Helmholtz
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boundary integral, based on the calculated surface field variables.

A wide range of numerical implementations of these boundary integral methods
have been developed. These are the so-called Boundary Element Methods (BEM). In these
formulations, a discretized Helmholtz integral equation is solved. Both direct and indirect
formulations of the boundary element method have been developed. The direct
formulation solves for the field variables of interest, i.e. acoustic pressure and particle
velocity, on the surface direstly, while the indirect approach solves for the acoustic
pressure and velocity jumps, the double and single layer potentials. All these boundary
element methods are well documented in the literature [1.14-1.17].

A well-known problem of the boundary integral methods is the non-uniqueness
problem. The surface Helmholtz integral formulation does not have a unique solution at
certain frequencies. These critical frequencies correspond to the eigenfrequencies of the
corresponding interior problem [1.18-1.20]. Different formulations have been proposed
for solving this problem. Schenck proposed a combined Helmholtz integral equation
formulation [1.18], where both the surface and the interior Helmholtz integral equation
are discretized, to calculate the field variables on the surface. The resulting over-
determined system of equations is then solved by a least-squares method to obtain the
unique solution. The problem for this method lies in the chioice of the interior over-
determination points. Points chosen on the nodal lines of the interior modes do not aid
in reducing the singularity. An adequate choice of these over-determination points can
therefore be difficult at high frequencies where the modal density of the interior problem
becomes very high. Another method is proposed by Burton and Miller [1.20]. They
suggest a combination of the surface Helmholtz integral equation and its derivative for
solving the non-uniqueness problem.

Another practical problem for the boundary element methods is the fact that the
formulation is non-local. This means that every unknown acoustic field variable is
coupled to every other unknown of the system. The system matrices are thus fully
populated complex matrices. This is in contrast with finite element based methods, where
the system matrices are banded, due to element interconnectivity. Therefore, despite the

fact that only the radiating surface has to be discretized, computer data storage can
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quickly become a problem, resulting in excessive computation times for the solution phase
of the method.

In an effort to obtain a more local application of the Sommerfeld radiation
condition, researchers have been developing finite element based methods for acoustic
radiation in an infinite domain. A straightforward implementation is the simple truncation
of a conventional finite element mesh by the pc-impedance condition, at a finite but
distant boundary from the radiating body, stipulating local outgoing travelling waves. This
quickly leads to a very large number of acoustic degrees of freedom, because a large
region surrounding the radiator or scatterer must be meshed, according to the
discretization rule of thumb of seven degrees of freedom per wavelength. Moreover, it
should be noted that spurious reflections occur due to the finite implementation of the pc-
impedance condition. This can lead to large errors, since acoustic waves are allowed to
flow back towards the radiating body, possibly establishing standing wave patterns in the
acoustic near-field. Higher order boundary conditions have been developed to improve the
application of a radiation condition at a finite distance. These boundary dampers have
been described by Bayliss, Gunzberger and Turkel [1.21] and more recently implemented
by Assaad, Bossut and Decarpigny [1.22-1.23]. Their mono- and dipolar damping
elements are capable of absorbing, respectively, the first and the first two contributions
of the asymptotic expansion of the outgoing acoustic waves, reducing the size of the
conventional finite element near-field mesh to some degree.

Another finite element based method is the implementation of so-called infinite
elements by the group of Zienkiewicz and Bettess [1.24-1.26]. These infinite elements
span as a single layer around the acoustic near-field of the radiating body, extending the
domain into infinity. An appropriate (1/r) amplitude decay and wavelike variation is built
into the element shape functions for adequate modeliing of the outgoing acoustic waves.
The difficulty in the implementation of these elements lies in the integration involved in
the calculation of the element contributions to the system matrices, due to the complex
exponential in the integrand, used to model the wavelike variation. Special integration

procedures have to be used, rather than the conventional Gauss-Legendre quadrature rules.



Astley and Coyette [1.27] introduced the wave envelope principle to the
formulation of the latter infinite elements. The wave envelope principle involves a finite
element procedure, whereby the complex conjugates of the shape functions are used as
weighting functions in a modified Galerkin weighted residual scheme. This particular
choice of weighting functions leads to the cancellation of the complex exponentials in the
integrand of the element system matrices. All harmonic spatial variations have therefore
been removed from the integrand allowing for simple Gauss quadrature integration. In
essence, these infinite wave envelope elements only mode! the envelope of the outgoing
travelling waves. The resulting assembled system matrices are no longer symmetric, but
still reveal a banded form, due to the element connectivity. This results in a reduced need
for computer data-storage as compared to the global boundary element methods. Both
infinite elements and infinite wave envelope elements are matched to a conventional finite
element mesh, modelling the acoustic near-field. Again, in order to avoid spurious
reflections of the outgoing acoustic waves, the near-field mesh has to extend sufficiently
into the acoustic domain, before the infinite elements can properly be matched to it.

The first part of this thesis is focussed on an extension of the infinite wave
envelope element formulation, in an effort to be able to move the infinite wave envelope
elements closer to the radiating body and, therefore, drastically reducing the size of the
conventional near-field finite element mesh. Wilcox [1.3] formulated a generalization of
the theorems of Rellich and Atkinson on acoustic radiation, which states that, in general,
an arbitrary radiation function for the region exterior tc a sphere of finite radius can be
written as ar infinite series of radiation patterns of increasing order. In order to
adequately model all the subsequent radiation patterns by a single layer of infinite
elements, not only the angular discretization has to be sufficient, but also, an adequate
number of terms in the (1/r)"-expansion have to be present for modelling the amplitude
decay. Therefore a variable order infinite wave envelope element is proposed, allowing
for a flexible choice of the number of acoustic degrees of freedom along the radial edges
of the element extending out to infinity. In general, this more powerful infinitc wave
envelope element is able to model the acoustic radiation more accurately. The need for

a conventional finite element mesh for the acoustic near-field can be minimized and in
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some cases even omitted.

The formulation of the variable order infinite wave envelope element is introduced
in Chapter 2. Special Lagrangian type shape functions for the amplitude decay modelling
are developed, along with an explanation of the other important aspects of the element,
such as the finite to infinite geometry mapping, the wavelike variation and the wave
envelope principle for the modified weighted residual scheme. Furthermore, the
implementation of an inverse geometry mapping routine is introduced, used in a post-
processing routine to evaluate the acoustic field variables at an arbitrary point in the
acoustic domain. Examples of two-dimensional and axisymmetric radiation and scattering
problems are shown to illustrate the use and the performance of the variable order infinite
wave envelope element.

Chapter 3 is devoted to a thorough investigation into the use and the limitations
of the variable order infinite wave envelope element. A systematic study of the modelling
of higher order cylindrical and spherical multi-poles is performed, revealing limitations
of the variable order infinite wave envelope element modelling due to the local
implementation of the Sommerfeld radiation condition. In the same chapter, different
methods of acoustic source application for modelling scattering problems from rigid
bodies are explained. An altemative post-processing method, based on the Helmholtz
boundary integral equation, is also introduced. In addition, special radiation applications
are studied, such as the modelling of acoustic sources above homogeneous impedance
planes.

In Chapter 4, a multi-domain boundary element procedure is developed in an effort
to merge the accurate modelling of the Sommerfeld radiation condition of the boundary
integral methods with the computational efficiency of the finite element based methods.
Zeng et al. [1.28] introduced a variational multi-domain boundary element method for
two-dimensional modelling of acoustic radiation and scattering problems. Within their
formulation, the infinite interfaces between the different subdomains, along which
continuity of the acoustic field variables is prescribed, are modelled using a finite number
of conventional interface boundary elements, followed by a single infinite interface

boundary element. The formulation of the latter infinite element is based on the infinite
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element of Zienkiewicz et al. [1.24-1.26]. In this chapter, a direct collocation multi-
domain boundary element method is developed for two-dimensional and axisymmetric
acoustic radiation and scattering. A special variable order infinite interface boundary
element is created for accurate modelling of the infinite subdomain interfaces. The infinite
boundary element is based on the formulation of the variable order infinite wave envelope
element, discussed earlier. An arbitrary number of acoustic degrees of freedom can be
chosen along the interface, rendering a more powerful element and thus reducing the reed
for conventional interface boundary elements in the acoustic near-field. Again, the
performance of the multi-doraain boundary method is tested, analyzing higher orders of
multi-pole radiation patterns. The effects of the degree of subdomaining and the order of
the infinite interface elements on the accuracy of the method are studied. Advantages and
limitations of the method are discussed.

Finally, Chapter S contains conclusions for this work, summarizing the advantages
and limitations of both the variable order infinite wave envelope element and mult-
domain boundary element modelling. Suggestions for future research within the area are
also included.

The following Chapters 2, 3 and 4 have all been written as separate stand-alone
papers. that have either been published or submitted for publication. At the end of the
thesis a number of appendices are given with more detail on certain topics. Appendix 2-A
details the finite element weighied residual formulation for exterior radiation. A closed
form of the derivative of the radial shape function of the variable order infinite wave
envelope element is given in Appendix 2-B. The inverse geometry mapping is explained
in Appendix 2-C, while a study on the effect of acoustic source shift of the variable order
infinite wave envelope element is included in Appendix 2-D. In Appendix 3-A, a
summary of the derivation of an approximate analytical solution for the modelling of a
mono-frequency line source above an homogeneous impedance plane is given. Finally,
Appendix 4-A outlines the derivation of the surface Helmholtz integral equation and an
efficient numerical integration procedure for the evaluation of the singular boundary

element integrals is presented in Appendix 4-B.
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CHAPTER 2

A VARIABLE ORDER INFINITE ACOUSTIC WAVE
ENVELOPE ELEMENT'

2.1. INTRODUCTION

Infinite physical domains are commonly assumed when developing mathematical
models for engineering problems, where the region to be analyzed is of very small
dimensions compared to those of the surrounding medium. One example is the calculation
of the acoustic properties of radiating bodies in an unbounded field.

In the past. these wave propagation problems have been analyzed by different
numerical methods. Using the finite element (FEM) method, an obvious way to deal with
an infinite domain is simply to truncate the finite element model at an arbitrary distance
and to apply a suitable boundary condition, such as the Sommerfeld radiation condition
[2.1,2.2], at the distant boundary. In general, this will yield a huge number of acoustic

degrees of freedom, considering the acoustic finite element rule of thumb requirement of

'A version of this chapter has been published in Journal of Sound and Vibration (1994)
171(4), 483-508.
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approximately seven nodes per wavelength. Other methods involve the matching of an
analytical far field solution onto a finite element near field model, boundary element (BE)
methods and so-called infinitc element methods. A paper by Zienkiewicz, Bettess, Chiam
and Emson [2.3] gives a concise overview of all these methods.

In recent years, much research effort has been put into the development of
different boundary element formulations [2.3-2.6]. This formulation is well-suited to
model infinite domains from a theoretical point of view, because it is inherently based on
a boundary integral representation that takes into account the Sommerfeld radiation
boundary condition. The related discrete boundary element method only requires a
discretization of the sound radiating surface and enables one to solve, first, for the
acoustic variables on the surface and, then, at an arbitrary field point using surface results.
A disadvantage, from a practical point of view, is that the formulation yields full,
complex system matrices which can lead to computer data storage problems, although the
dimensionality of the problem has been reduced by the boundary element process.
Another difficulty is the so-called non-uniqueness problem that occurs at certain critical
frequencies. Different methods to overcome this problem have been suggested. Some of
these are inexpensive [2.7], but require the appropriate selection of over-determination
points, while others are more reliable, but tend to be computationally costly [2.8].

Simultaneously, research has been done to try to accommodate the infinite
boundary within finite element analysis [2.1,2.2,2.9-2.20). The idea is to model the
acoustic near field, i.e., the immediate surroundings of the radiating body, by conventional
finite elements (CFE) and to match a single layer of special elements, which stretch out
to infinity, to model the acoustic far field. The radiation condition not only requires zero
acoustic pressure conditions at large distances, but also the existence of outgoing
travelling waves exclusively, such that all acoustic energy is radiated outward. Therefore,
an appropriate asymptotic amplitude decay and wavelike variation has to be incorporated
within the infinite element. Different strategies have been used in an attempt to extend
the finite element method (FEM) in this way. Both exponential and reciprocal decaying
shape functions have been adopted in conjunction with a wavelike variation exp(-ikr). In

all these infinite element formulations, special numerical integration techniques, other than
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the conveniently used Gauss-Legendre quadrature formulae, have to be used in order to
deal with the complex exponential in the integrand of the system matrices. These infinite
elements do not introduce a large number of acoustic degrees of freedom, and can easily
be incorporated in a standard finite element program by matching the infinite element
mesh, modelling the acoustic far field, onto the conventional finite element mesh,
mcdelling the acoustic near field.

Recently, a new infinite wave envelope element has been developed by Astley and
Coyette [2.21]. A finite to infinite geometry mapping is used in combination with a
reciprocal decaying wavelike variation in the shape function, along with the wave
envelope approach [2.22-2.29] in a modified Galerkin weighted residual procedure for
evaluating the system matrices. This involves the choice of the complex conjugate of the
shape function as the weighting function, which eliminates the complex exponential
factors in the integrands, resulting in simple integration of the acoustic mass, stiffness and
damping matrices. They also suggested the use of a geometric weighting factor (~1/%)
to make sure that all integrals in calculating the system contributions are finite. With
these modifications, the symmetry of the element matrices is lost, but the banded nature
of the global system matrices is preserved due to the element connectivity.

The element developed in this chapter uses the latter infinite wave envelope
element as a basis. Because of the finite to infinite geometry mapping present in the
infinite wave envelope element derivation, an n”* order polynomial in the parent finite
element will yield an expansion of the form a/r + a/F + ... + a,/r" in the radial infinite
direction of the real infinite element. This created the idea of a powerful element for
modelling acoustic radiation. By the use of Lagrangian polynomials as shape functions
in the parent element, an arbitrary number of terms in the 1/r expansion can be generated
for modelling the amplitude decay of the outgoing travelling wave. The implementation
of the element as such allows a flexible choice in the number of acoustic degrees of
freedom in the radial infinite direction. The infinite wave envelope eiements, discussed
above, require several layers of conventional finite elements for appropriate modelling of

the acoustic near field. The move to higher order elements however, will allow the
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infinite wave envelope element to model the acoustic near field better, and, in some cases,
the need for conventional finite elements is totally eliminated.

In the following, the formulation and implementation of the variable order infinite
wave envelope element (LWE; where L denotes a linear discretization in the angular
direction of the element) will be presented. Results of different acoustic radiation and
scattering problems, both two-dimensional and axisymmetric, will be shown and
compared with boundary element and, if possible, with analytical solutions.

2.2. THEORY

2.2.1. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The acoustic pressure field generated by a rigid vibrating body in an infinite

domain can be described by the classical linear acoustic wave equation, given as

p(x,t
V. - L ZE&D xeV @.1)
c?  oar?
where p(x,?) denotes the acoustic pressure and ¢ the speed of sound in the acoustic
medium. If only harmonic steady-state conditions are considered, the pressure p(x,?) can
be written as p(x,?) = p(x) e'®, where w is the circular frequency. Substitution into the

classical wave equation (Equation (2.1)) yields the Helmholtz equation
VPp) + kpx) = 0 xXEV (2.2)

where k = w /c is the acoustic wave number.

Suitable boundary conditions include prescribed acoustic pressure, velocity or
acoustic impedance on the surface §, of the body and a radiation condition at a surface
at infinity S, (Figure 2.1). For example, a commonly applied prescribed velocity profile

on the radiating body is given as
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Ww.an,=-ipwv, €S, (2.3)

where n_ is the unit normal on the surface §_, p the density of the acoustic medium and
v, the prescribed normal surface velocity.

An appropriate radiation condition is given by the Sommerfeld radiation condition,

y - @

lim re (%l:- . ikp) -0 2.4)

where @ = ! for three-dimensional and @ = 1/2 for two-dimensional problems, simulating
an unbounded acoustic field (r is the radial coordinate). This is equivalent to stipulating

the pc-impedance condition at a boundary at infinity,
Yp.u_ = -ikp XE S, (2.5)

prescribing outward travelling plane waves at infinity.
2.2.2. WEIGHTED RESIDUAL FORMULATION

Application of the weighted residual formulation to the Helmholtz equation, as given in
detail in Appendix 2-A, yields

/
fVWf'VP’dV-wzf%"’;P’dV-fV";%n-ds=0 (26)
c
| 4 | 4 S

where p/ denotes a trial function for the acoustic pressure and W, a weighting function.
In general, the surface integral in Equation (2.5) consists of two parts, one on the

radiating body and one on a surface at infinity. This is depicted as

/ / /
w, P 4s - WiidS*{W,.Q—dS 27
s s,
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By applying the boundary conditions of Equation (2.3) and (2.5), we can write

/ —
fm%ds=-mfpw,.v,ds—imf%w,-p’ds (2.8)
s S.

o

Since p’— 0, as S_— ®, will be prescribed by a suitable choice of shape functions, the
damping term in Equation (2.8) at §_ will vanish. As a result, a set of simultaneous

equations can be formulated in the form

[IK] - w0 [M]] ) = ) 9)
where related coefficients are given as
K, = fVW, * UN; v (2.10)
v
M = fc—’z W, N, av 2.11)
| 4
F,=—impr,-ﬁd5 (2.12)
S,

o

In Equation (2.9), [K] and [M] are the acoustic stiffness and mass inatrices. {F} is the
acoustic forcing vector corresponding to the prescribed velocity input on the sound

radiating body, while {p} are the unknown nodal pressure values to be solved for.
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2.2.3. VARIABLE ORDER INFINITE WAVE ENVELOPE ELEMENT

The variable order infinite wave envelope element is based on the infinite wave
envelope element developed by Astley and Coyette [2.21]. The formulation of the element
involves three main aspects that will be discussed individually, i.e., the infinite geometry
mapping, the special shape functions and the weighting functions, followed by the actual
derivation of the element system matrices. Only the formulation of a two-dimensional and
axisymmetric element is presented in this chapter. Implementation of a three-dimensional

element is conceptually the same.

2.2.3.1. Infinite geometry mapping

The infinite geometry mapping can be best explained by observing the one-

dimensional case. The mapping is obtained from the general one to one transformation

x(t) =¢c, + lcf (2.13)

with
t=-1 —= x=yx

(2.14)
t=0 —- x=x,

These conditions define the coefficients ¢, and c, in Equation (2.13). The infinite domain
of the element is mapped onto a unit parent element by this infinite geometry mapping,
as illustrated in Figure 2.2 [2.14]. The element mapping is completely defined once the
position of node 1, x, at the finite-infinite boundary interface, and node 2, x,, are

specified. The position of this node 2, x;,, sets the parameter x,, defined by

x, = 2x, - x, (2.15)

and is the pole of the inverse transformation, which will also be referred to as the source.
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The mapping of local to global coordinates can then be written as

n
) =Y M) x, (2.16)

i=l

with the mapping functions M, defined as

-2¢

M@ - 2L
! 11 . 2.17)

MO - 7

Independency of the choice of origin of the coordinate system is preserved, given

that

M@ + My =1 (2.18)
Solving for ¢ in Equation (2.16) gives the inverse mapping

t=1-2849 (2.19)

where a = x; - x; = x; - x,. The parameter g denotes the distance from the source to the
finite boundary of the element, while r is the distance to an arbitrary point in the element
from the source at x,. On examining these mapping functions, it is apparent that the local
coordinates ¢ = -1, 0, +1 correspond to the global coordinates x = x,, x;, e, respectively.

This infinite geometry mapping can readily be extended to two- and three-
dimensional geometries. The infinite mapping in the radial infinite direction, as in the
one-dimensional geometry above, is combined with a linear mapping in the angular finite
direction, as shown in Figure 2.3. The mapping functions are obtained by multiplying the

respective shape functions, yielding [2.14]

Mi(si) = ;t—_f@ M,,,(s,z) -1+ -s)

Ll 20 (2.20)
M, = —Jl_—tsl My (s8) = ( 2(1)(_ 0 5)
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The mapping from local to global coordinates can then be written as

x(s,t) = g M () x; y(se) = {; MGy, (2.21)
i= i

The domain of the two-dimensional infinite element is, thus, defined by the
position of the four geometry nodes (7 to 7V), as shown in Figure 2.3. Care must be taken
in defining these four geometry nodes, such that the radial infinite edges (1 and 2 as in
Figure 2.3) are divergent. From a mathematical point of view, these radial diverging edges
ensure that uniqueness of the infinite geometry mapping is preserved. But, moreover, it
is apparent that, from the physics of the problem, the geometry of the element should

agree with the ray paths and constant phase surfaces of the solution.

Note that independency of the origin of the coordinate system is preserved, i.e.,
4
EM.'(S”) =1 (2.22)
il

and that the inverse infinite mapping along each infinite edge is again of the form

1=1-23% (2.23)

2.2.3.2. Shape functions

The shape functions of the infinite wave envelope element involve both the
modelling of an appropriate amplitude decay and a wavelike variation of the field

variable p.
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A. Amplitude decay

The geometry mapping, discussed in Section 2.2.3.1,, can also be applied to the
modelling of the field variable p. An interpolation, using standard finite element
polynomial shape functions of the pressure p in the parent element, will yield a 14"
expansion in the real element, as a result of the infinite geometry mapping. This can
easily be shown by considering a one-dimensional example, as in Figure 2.4.

In the local three-noded element, the field variable is interpolated using second

order shape functions, which gives

3
- 1) 2 t(t+1
P=EN,~P,-='U2 Pl*(l—t")p2+_(2_)p3 (2.24)
i1

The inverse infinite geometry mapping for this one-dimensional case is given in
Equation (2.19). Therefore, substituting Equation (2.19) into Equation (2.24) yields an

expansion of the pressure p in terms of the global coordinate r, resulting in
a a?
P =Py Py + 4Py - 3p3) — + (2P, - 4p, + 2p3) prl (2.25)

It is seen that the value of the pressure p asymptotically approaches the nodal value of
node 3, p;, which is mapped to infinity. Note the importance that the source location,
specified by the distance a, has on the rate of decay of the field variable p. It represents
the pole of the reciprocal expansion, used in modelling the amplitude decay of the
outgoing travelling wave. From a physical point of view, it can thus be interpreted as its
acoustic source.

The boundary condition of the problem at hand stipulates a zero pressure value
at infinity. This can be satisfied by only including the contributions by the finite nodes
in Equation {2.24) or (2.25), i.e.. nodes 1 and 2. In general, for an n* order
approximation, only the contributions of the n finite nodes will be considered through
their respective shape functions, which all tend to zero at infinity. The value of the n+1"

node, at infinity, is assumed to be zero.
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An n™ order polynomial approximation of the pressure p, using n degrees of
freedom, in the parent element will yield an expansion of the form 1/ in the real

element, as in

@y + at+ayt+ . sa "
; 2.26
() Bf2] (L) .
r r r

Therefore. in using n™ order polynomial shape functions in the radial infinite ¢
direction of the element, an appropriate amplitude decay for the field variable p can be
achieved.

A flexible way for specifying an n” order polynomial in the parent element is
through the use of Lagrangian polynomials. The n” order Lagrangian polynomial is
determined by n acoustic nodes equally spaced between the finite geometry nodes. as
shown in Figures 2.3 and 2.5. The n+1"* acoustic node at infinity is prescribed to zero.

The n shape functions in the radial infinite ¢ direction can therefore be written as

Ty - —™0 1< s
O e T &=
with
n+l
w(@t) = [[ @) (2.28)

i=]

By using the local mapping ¢ =1¢ + 7h = 7/ (n-1)-1 as in Figure 2.5, where
h =1/(n-1) and £; = -1, the radial shape functions can be rewritten in the form,
T"(r) =C" 7(r-1)(7-2)..(7-(i-2))(7-1)..(v-(n-1))(r-2(n-1))
n-1
-c, [ I1 ('r‘j)] (r-2(n-1)) (2.29)

j=0
jo» i-1

with,
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" e 2.30
P T ) (230)

The radial shape functions for the fifth order element are shown in Figure 2.5.
Again, it should be noted that the shape function for the n+1" node at infinity, i.e.,
node 6, is not considered, since its nodal value is prescribed to be zero.

As previously mentioned, the use of .hese radial shape functions in the parent
element yields a 1/r expansion in the real element, which is a suitable amplitude decay
modelling for three-dimensional and axisymmetric acoustic wave propagation problems.
In two-dimensional problems however, the amplitude decays approximately as 1 / /.
This can be shown by observing the monopole solution to the Helmholtz equation
(Equation (2.2)), i.e., the zeroth order Hankel function of the second kind H,®(kr), with
wave number &k and radial coordinate r, for large values of r. It can be shown that
[2.4,2.19]

lim H®(%kr) « L it 231)

r = ﬁ

Therefore, an appropriate shape function for two-dimensional problems can be
achieved by multiplying the radial shape functions T ”, by a \/r factor, in order to achieve
a 1/yr expansion. This is equivalent to a J/J(1-1)/(1-1) factor in the parent element. For

the two-dimensional radial shape functions we obtain
T",.ZD(T) =R"(r) C", v(7-1)(7-2)..(z-(i-2)) (7-i)...(z-(n-1))(r-2(n-1))
n-1
=R"(r) C", [/I'EO (r—j)] (r-2(n-1))
i-

(2.32)
- -1

with

R"(r) = | 2-D-C1) (2.33)
i 2(n-1)-7

Note that the /r factor is normaiized in order to preserve a unit absolute value at the

22



acoustic node at hand.
The shape functions in the angular finite s direction are chosen to be linear, i.e.,

S,6) - l;s
he (2.34)
L

depending on which edge (1 or 2) of the element the acoustic nodes are located at, as in
Figure 2.3.

B. Wavelike variation

To account for the wavelike variation, a periodic component of the form exp(-ikr)
is introduced into the shape function. One should note that in order to maintain
compatibility between the shape functions of the conventional finite elements in the near
field and the infinite wave envelope elements of the far field, the phase must be set to
zero at the finite-infinite element interface at ¢ = -1. The wavelike variation in local
coordinates is, therefore,

. 1+
g -ik-a) = g-iku@d) - e"k“(’)T-? (2.35)

The phase function u(s,7) in Equation (2.35) uses an interpolated source location a(s),

given by

a(s) = %‘- a, + lz"ﬁ a, (2.36)

indicating that the outward travelling wave is emanating from a source, located in the near
field, at a distance a(s) away from the finite-infinite element interface, as shown in

Figure 2.3.

Finally, combining the modelling of the amplitude decay and the wavelike
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variation, the following form of shape function is obtained for the 2r acoustic degrees of

freedom,

N " (s) = T" (1) S,(s) e s 1sisn (edgel) (2.37)

N".(s0) = T () Ss)e ¢ 1 sisn (edge?) (2.38)

where the radial part 7" is either taken from Equation (2.29) for axisymmetric problems

or Equation (2.32) for two-dimensional problems.

2.2.3.3. Weighting functions

In conventional finite element analysis, the shape functions are chosen as
weighting functions in the weighted residual formulation, the so-called Galerkin method.
The great advantage of this method is that symmetric system matrices are obtained. The
Galerkin method in the formulation of the infinite elements yields complex exponentials
in the integrands involved in the evaluation of the system matrices, which complicates the
numerical integration a great deal. The conveniently used Gauss quadrature formulae are
no longer applicable and special quadrature rules (Gauss-Laguerre for example) have to
be used but require more sampling points.

The wave envelope approach uses the complex conjugate of the shape functions
as weighting functions in a modified Galerkin procedure [2.21]. Due to this particular
choice, the complex exponential factors in the integrands of the system matrix formulation
will cancel out. Therefore, Gauss quadrature numerical integration can be used for the
evaluation of the system matrices. It should be noted that the number of Gauss points will
depend solely on the order of the interpolating polynomial of the shape function, and not
on the wave number k of the travelling wave, since all harmonic spatial variations have
been removed from the integrals.

In order to deal with the infinite diverging element geometry, Astley and Coyette
[2.21] suggested the use of a (a/r)* geometric weighting factor to ensure finiteness of the

integrals involved in the evaluation of the system matrices. This particular choice of
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geometric weighting function is based on the observation that, for a three-dimensional
clement, the element domain, over which the residual is weighted, expands proportional
to 7. The addition of this geometric weighting factor, therefore, provides a better balance
between near and far field weighting.

The weighting functions for the modified Galerkin formulation can, therefore, be
written as

W) = G () N"(st) = G (t) T™(t)S(s)e sikp(sd) (2.39)
where the geometric weighting factor in local coordinates is given by

6.0- (5" - am-(1-355) (2.40)

2.2.3.4. Element system matrices

Based on Equation (2.10), the characteristic stiffness coefficient for a two-

dimensional variable order infinite wave envelope element is

11 oN".
W, W, &
e ff< | ' >L’_I]T b Wil dsdt (241
x & aN"
-1 ot

where J denotes the Jacobian of the geometry transformation from global to local
coordinates.

The local derivatives of the weighting and shape functions, respectively, defined
in Equations (2.39), (2.37) and (2.38) can be worked out as follows

wr,

o, e, Bi ik, T, 5, | grite (2.42)
' ds s
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- [dG" 5,6, 2 s ik G, T", S, L|es (243)
a dl i w dl i a

N dS, o ou) i 2.44
acu[rj;}i-zkrjsjgeu (2.44)

aN"} _ (dT“j s ik Tn S. ﬂ e-iky (245)
o d ] ot |

The derivatives in these equations can easily be evaluated. Appendix 2-B deals with the
derivative of the radial part of the shape function. Substituting the expressions from

Equations (2.42) to (2.45) into Equation (2.41) yields

, G n
G T" S, ik 15 &T",.s,. + G, ar iS. + ikG,T" S
Y4 Bs dt dt 'a
2.46)

as, (
T S0 ke s, B
ds 17 Bs

x U] 1§ dsdt

ar”, o
S, -ikT", S, %
dt ! ot

In a similar way, the characteristic mass coefficients of the variable order infinite

wave envelope element can be determined as

11
M7 = ff S{G.T™ S} [ TS, | Widsar (2.47)
-1 -1

based on Equation (2.11).
In both element matrices, the complex exponential has been removed from the

integrand. Gauss quadrature numerical integration can be used. The element interpolation
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functions consist of a linear variation in the finite angular direction and an n™ order
variation in the infinite radial direction. n+1 Gauss-Legendre integration points are needed
in the radial direction for convergence of the system matrix coefficients.

The element stiffness matrix, obtained through this modified Galerkin procedure,
is no longer symmetric and has complex coefficients; although, after the element
assembly, the sparsity of the global system matrices is preserved because of the element
connectivity. A special sparse complex solver is used to take full advantage of this

sparsity.

2.3. PRACTICAL IMPLEMENTATION

Infinite elements can easily be incorporated in a conventional finite element
program. In the following, different aspects involved in the implementation of the variable
order infinite wave envelope element will be explained, such as the use of geometry and
acoustic node connectivity, the sparse full complex solver and the post-processing of the

results.

2.3.1. ACOUSTIC NODE CONNECTIVITY

The variable order infinite wave envelope element is completely defined by its
four geometry nodes and the specification of the order of the radial shape function. In
order to have the flexibility of changing the order of the element while keeping the same
initial geometry mesh, the acoustic node connectivity is determined within the program.
Based on the geometry connectivity and the specified order n, acoustic degrees of
freedom are inserted along the infinite edges between the geometry nodes 7/ and 7V, and
Il and 1Il, as depicted in Figure 2.3. The strategy of this routine is as follows. The
geometry connectivity, based on internal node numbering (i.e., 1 to # of nodes), is copied
into the acoustic connectivity (i.e., all geometry nodes become acoustic nodes). Then, all
geometry nodes that are on the finite-infinite element interface are determined (i.e.,

position 7 or II). For all these interface nodes, n - 2 acoustic degrees of freedom are
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inserted along the infinite edge of the wave envelope element. The global dimension of
the problem is updated by adding the total number of inserted acoustic degrees of
freedom.

Note that this renumbering scheme is only required for subparametric infinite wave
envelope elements, i.e., order higher than 2. Special cases involve the isoparametric
second order infinite wave envelope element, in which case the geometry nodes coincide
with the acoustic degrees of freedom, and the superparametric first order infinite wave
envelope element, where only the geometry nodes at the finite-infinite element interface

are taken to be acoustic degrees of freedom.
2.3.2. SPARSE SOLVER

As a result of the element formulation, the element stiffness matrix is no longer
symmetric and consists of fully complex coefficients. The global system matrix, after
assembly of all the element contributions, will therefore no longer have the familiar
banded symmetric form, characteristic of finite element models. However, sparsity is
preserved through the acoustic element connectivity.

Although a complex non-symmetric banded solver can be used for solving the
system of equations, a special full complex solver has been chosen, i.e., the CSPSLV
routine from the NSWC library [2.33]. This solver only requires the storage of the non-
zero elements of the matrix in a single complex one-dimensional array (Yale storage
format). Two integer arrays are used to store the information regarding the position of the
different non-zero elements in the original global matrix.

The use of this solver ensures minimal data storage requirements. Also, there is
no longer concern about the size of the maximum bandwidth, which can quickly become
large, due to the number of acoustic degrees of freedom connected in higher order

elements.
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2.3.3. POST-PROCESSING

Post-processing of the results includes contour line plots of the acoustic pressure,
using a field point mesh of the field of interest, polar plots of the acoustic pressure at a
certain radial distance from the sound radiating body and frequency response functions
of the acoustic pressure at specific field points. The field point mesh for generating
contour line plots is a linear grid of field points. Example meshes are shown later in
Figures 2.10 and 2.22, which can be processed by a conventional FEM post-processor.
In general, the discretization of the post-processing mesh will be much finer than the
geometry mesh, in order to give a proper representation of the pressure field obtained by
using the higher order infinite wave envelope elements. Care must be taken that all tield
points lie within the modelled acoustic domain.

Pressure values are assigned to these field points by determining the element of
the acoustic finite element model within which limits they are located and by then
interpolating among the acoustic degrees of freedom of that element, using the element
shape functions. To determine whether or not a field point is situated within a certain
element, the inverse geometry mapping is performed on the global coordinates of the field
point, as explained in Appendix 2-C. If the field point lies in the element, the local
coordinates will fall within the unit limits of the parent element (i.e. -1 S s <1 and
-1€¢£11).

2.4. DISCUSSION OF RESULTS

In what follows, different examples of acoustic radiation and scattering from a
rigid body are presented to illustrate the use of the variable order infinite wave envelope
element. Both two-dimensional and axisymmetric models are used to calculate acoustic
pressure fields generated by the radiation or scattering of an infinitely long cylinder or
sphere. A two-dimensional model of scattering of an acoustic plane wave by a double
barrier configuration is also investigated. Results are presented in the form of contour line

plots of the pressure field, polar plots and frequency response functions. Numerical results
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are compared with analytical (if available) or boundary element solutions. The boundary
element calculations have been done using the direct/collocation option available in
SYSNOISE software [2.4]. In all examples, the acoustic medium is air with density
p = 1.21 kg/m® and speed of sound ¢ = 340 m/s.

2.4.1. INFINITE CYLINDER

The acoustic field around an infinite cylinder of radius R = 1 is modelled using
different geometry meshes, shown in Figures 2.6 to 2.9. All meshes assume symmetry
with respect to the x-axis. The meshes differ in the choice of source locat: :n and whether
or not conventional acoustic finite elements are used. It is apparent that the source, for
the modelling of a vibrating cylinder or sphere, should be located at the centre for
symmetry rcasons. However, in general, the location of the source is not known. The
sensitivity of the solution to changes in source location is therefore investigated. In order
to easily compare numerical resuits, a single post-processing mesh is used, as shown in
Figure 2.10. The effects of using higher order infinite wave envelope elements and their

sensitivity to the geometry mesh, i.e., source location, is studied.
2.4.1.1. Analytical solutions

The analytical solutions for the pressure fields of two-dimensional monopole,
dipole and quadrupole acoustic radiation are given in cylindrical coordinates as [2.30]
— H ®(kr)

p(rb) = -ipcV

—2 —_~ cos(nb (2.48)
" H,®(kR) 0

where H,@ is the n* order cylindrical Hankel function of the second kind, and n = 0,
1, 2 for monopole, dipole and quadrupole radiation, respectively.
The corresponding normal velocity distribution on the vibrating surface of the

infinite cylinder is
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V,(0) =V, cos(n9) V <R (2.49)

where V_ is the velocity amplitude.

The scattered acoustic pressure generated by the scattering of an acoustic plane

wave p,(x) = P, exp(-ikx), travelling along the symmetry axis (x-axis), by an infinite
cylinder can be analytically evaluated as [2.30]

2 J' (kR) H,®(kr)

rf) = - P, €, i"
p(r) = H_ ®V(kR)

cos(no) (2.50)

where J, is the n™ order Bessel function of the first kind, €, is the Neumann function
(e,=1ifn=0ande, = 2if n > 0), P, is the amplitude of the incident plane wave and
@ is measured from the direction of the incoming plane wave. The summation converges

rapidly and was truncated after ten terms for the results in this chapter.
2.4.1.2. Geometry mesh with exact source location

In Figure 2.6, the geometry mesh with exact source location is shown. Only
infinite wave envelope elements are used for modelling the acoustic domain. The source
location is located at the centre of the cylinder (the origin of the coordinate system) for
symmetry reasons. All elements are therefore aligned radially. The discretization in the
angular direction is directed by the classical rule of thumb of seven acoustic degrees of

freedom per wavelength.
A. Acbustic radiation: dipole and quadrupole

The amplitude of the acoustic pressure field due to dipole and quadrupole radiation
for kR = 7 is shown in Figure 2.11. The acoustic wave number is chosen such that the
diameter of the cylinder corresponds to exactly one wavelength. Normal velocity
boundary conditions are imposed according to Equation (2.49), with —V; = 0.001 m/s.

Both pressure patterns can be accurately modelled using second order infinite wave
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envelope elements. Only two degrees of freedom are needed in the radial direction,

yielding two terms in the 1/\7 expansion.
B. Acoustic scattering

Next, the modelling of scattering of an acoustic plane wave, travelling in the
positive x-direction, by a rigid cylinder is considered. The scattered acoustic pressure field
can be calculated by reformulating the problem as an equivalent radiation problem. The
normal scattered velocities q' on the surface of the body are prescribed, based on the
normal component of the particle velocity '3; of the incident plane wave, such that the
rigid body condition, v—"' = f»: + v_”, = 0, of the total field is satisfied on the body.
Contour lines of the amplitude of the scattered acoustic pressure field, normalized to the
amplitude P, = |P;| of the incident plane wave, for kR = 7 are shown in Figure 2.12. As
can be seen from the comparison with the analytical solution, at least three degrees of

freedom in the radial direction are needed to model the pressure pattern adequately.

2.4.1.3. Geometry mesh with combined use of conventional and infinite wave envelope

elements

For the modelling of arbitrary geometries, the use of conventional finite elements
(CFE) is required, due to the geometry restrictions of the infinite wave envelope element.
In general, the acoustic medium between concave-shaped structures has to be modelled
using conventional elements, such that a single layer of diverging infinite wave envelope
elements can be matched onto it. In the following, the combined use of these elements
is tested. The geometry mesh used, shown in Figure 2.7, consists of a single layer of
infinite wave envelope elements matched on six layers of conventional acoustic finite
elements. Again, the scattering of an acoustic plane wave from a rigid cylinder for kR = =
is modelled. Contour lines of the normalized amplitude of the scattered acoustic pressure
field are shown in Figure 2.13. A third order infinite wave envelope element is needed

to provide an accurate modelling. The use of lower order elements results in spurious
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reflections into the near field, indicating an improper impedance match at the
finite-infinite element interface.

2.4.1.4. Geometry mesh with random source location

In general, for an arbitrary sound-radiating body, the position of the acoustic
source is not apparent. Therefore, sensitivity of the infinite wave envelope element to the
source location is investigated. In this example, a geometry mesh is chosen with a single
layer of infinite wave envelope elements, radially aligned through the origin (exact
source), but with a random source location for each separate element, as shown in
Figure 2.8. The acoustic scattered pressure fields of the normalized amplitude for kR = ,
evaluated using second, third and fourth order infinite wave envelope elements, are shown
in Figure 2.14. For this random source location, a fourth order intinite wave envelope
element is necessary for adequate modelling of the scattered pressure field, whereas only

a third order element was required for the exact source location.
2.4.1.5. Geometry mesh with shift of source location

The geometry mesh, shown in Figure 2.9, has a single acoustic source for all
infinite wave envelope elements shifted half the radius in the positive x-direction from the
exact source location at the origin. The amplitude of the acoustic pressure field is
observed for quadrupole radiation for kR = 7 and 7” = 0.001 m/s. From the results,
shown in Figure 2.15, it can be seen that the symmetry, destroyed by the geometry mesh,

is gradually restored by going to higher order infinite wave envelope elements.

The results shown in Sections 2.4.1.4. and 2.4.1.5. indicate that the inaccuracy in
acoustic source location can be accounted for by adding more acoustic degrees of freedom
in the infinite radial direction of the infinite wave envelope element. A simple one-

dimensional example, given in Appendix 2-D, shows a similar tendency.
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2.4.2. SPHERE

The acoustic field around a rigid sphere of radius R = 1 is now considered, using

an axisymmetric model. Both radiation and scattering problems are investigated.

2.4.2.1. Analytical solutions

The acoustic pressure generated by monopole radiation of a rigid s-here can be

written analytically as

: - (R kR -ik(r-
p(r) = pcl, (7) Ti—lk—R— e kR (2.51)

where V, is the velocity amplitude.

The scattered acoustic pressure caused by the scattering of an acoustic plane wave,
travelling along the symmetry axis (z-axis), by a rigid sphere can be analytically evaluated
as [2.30]

. p s (2n+1)i" Pcos(8)) U,(kR)
p(r8) = - P, ng kr [U"(kR) + V,,(kR)]

[S,(kr) + i C (k)] (2.52)

where P, is a Legendre polynomial of zeroth order and degree n. The Stenzel functions
§,. C,. U, and V, in Equation (2.52) are defined as follows [2.30]

S (kr) - ‘”2’" J..1(kr)
: (2.53)
C k) = - |TEX N k)
2 !
and
Ukry = krS (kr)-nS (kr
k) »a(KT) HkT) (2.54)

V,(kr)

it

kr C . .(kr) - n C (kr)
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where J, and N, are the n™ order Bessel function of the first and second kind.

respectively. Again, the infinite series was truncated after ten to fifteen terms.

2.4.2.2. Geometry mesh with exact source location

A. Acoustic radiation: monopole

A frequency response function (0 < kR < 61r) for the amplitude of the acoustic
pressure for a field point, at r = SR, is shown in Figure 2.16. The axisymmetric geometry
mesh used consists of a single layer of sixty variable order infinite wave envelope
elements (LWE) with an exact acoustic source location. The infinite wave envelope
solution is compared to the boundary element collocation method solution (60 linear BE).
The latter shows the characteristic singularity problems at the critical frequencies, kR = nw
(n = 1, 2,...). The infinite wave envelope solution is obtained only using a first order
element. This provides virtually the exact solution, since the required 1/r decay can be
modelled. Note that no singularity problems are present for the infinite wave envelope

element modelling.

B. Acoustic scattering

For the following results, an axisymmetric geometry mesh of thirty variable order
infinite wave envelope elements is used with an exact acoustic source location at the
origin. The scattering of an acoustic plane wave, travelling in the negative z-direction,
from a rigid sphere is evaluated at different wave numbers, ie., kR = 1, 2, 4 and 8.
Results are presented in the form of a polar plot of the normalized scattered pressure
amplitude at r = SR. From the comparison with the analytical solution, shown in
Figures 2.17 to 2.20, it can be seen how the numerical solution improves by going to

higher order elements. At least three to five acoustic degrees of freedom are needed in
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the infinite radial direction to accurately model the scattered pressure pattern. The case
of kR = 8 required an increased angular resolution of fifty variable order infinite wave
envelope elements for appropriate modelling of the boundary conditions of the scattered

acoustic pressure field.
2.4.3. SCATTERING BY A DOUBLE BARRIER

The last example presented consists of a two-dimensional configuration of two
barriers of height # = 0.3W, a distance W = 1 apart. The geometry mesh used is shown
in Figure 2.21 and the post-processing mesh in Figure 2.22. The geometry mesh consists
of a single layer of thirty variable order infinite wave envelcpe elements, with their
acoustic source located at the origin, matched on a conventional finite element mesh,
modelling the concave region in between the two barriers. The two-dimensional scattering
of an acoustic plane wave, travelling in the positive x-direction, is modelled at kW = 3.
Since no analytical solution is available for this type of problem, the infinite wave
envelope element solution is compared with the boundary element collocation solution.

- The amplitude of the total acoustic pressure field is shown in Figure 2.23.

The numerical solution, obtai. ising the infinite wave envelope elements,
gradually improves by going to higher order elements. The fifth order element modelling
provides good comparison with the boundary element solution. Great calculation speed
is observed for the infinite wave envelope modelling, being virtually five times faster than
the boundary element solution (total solution and post-processing time). Even though the
dimensionality of the infinite wave envelope element model is greater than that of the
boundary element model, where only the boundary is being discretized, great speed
advantage is obtained due to the sparsity of the element system matrices due to the global

element connectivity.
2.5. CONCLUSIONS

The two-dimensional and axisymmetric formulation and implementation of a new
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variable order infinite wave envelope element for acoustic radiation and scattering
problems have been presented. The infinite geometry mapping, the special shape
functions, modelling a reciprocal wavelike variation, and weighting functions, used in the
wave envelope approach, have been discussed.

The geometry of the element is defined by the geometry nodes at the finite-infinite
element interface and the location of the acoustic sources, resulting in a divergent infinite
element domain. An arbitrary number of acoustic degrees of freedom can be specified on
the radial infinite edges in order to accurately model the amplitude decay of the
propagating acoustic waves.

Different two-dimehsional and axisymmetric acoustic radiation and scattering
problems have been presented to show the use and accuracy of the variable order infinite
wave envelope element. Results were evaluated by comparing contour plots of acoustic
pressure fields, polar plots and frequency response functions at specific field points with
their analytical or boundary element solutions.

From the formulation of the element, it can be seen that the geometry of the
element, i.e., the acoustic source location and the direction of the infinite edges, are of
great importance. Ideally, the element geometry should correspond to the ray paths and
constant phase surfaces of the solution. It was shown that uncertainty in the acoustic
source location can be accounted for by using higher order elements. The addition of
extra acoustic degrees of freedom allows an adequate modelling of the amplitude decay.

Conventional elements can be used for modelling the acoustic near field. A single
layer of diverging infinite wave envelope elements is fitted onto the conventional finite
element mesh. The order of the infinite wave envelope element has to be sufficiently high
in order to avoid spurious reflections into the acoustic near field. The results of this work
have shown that the use of higher order infinite wave envelope elements restricts the need
for conventional elements to fill concave regions of the radiating or scattering body.

It is shown that the infinite wave envelope element method provides a great
alternative for the boundary element method for modelling exterior acoustic problems.
The non-uniqueness problems occurring at critical frequencies are non-existent in the

infinite wave envelope problem. The method also shows a great calculation speed
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advantage, due to sparsity of the system matrices, as opposed to the full, complex
matrices involved in the boundary element formulation. Furthermore, the variable order
infinite acoustic wave envelope element can be incorporated in a finite element scheme

for elasto-acoustic coupling [2.31,2.32].
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Figure 2.6 Cylinder: Two-dimensional geometry mesh (30 lwe).
Exact source at origin.



Figure 2.7 Cylinder: Two-dimensional geometry mesh (30 * (6 cfe + 1 lwe)).
Exact source at origin.
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Figure 2.8 Cylinder: Two-dimensional geometry mesh (30 lwe).
Random source.
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Figure 2.9 Cylinder: Two-dimensional geometry mesh (30 lwe).
Source shift.
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Figure 2.10 Cylinder: Two-dimensional post-processing mesh (630 field points).
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Figure 2.11 Acoustic radiation by a vibrating cylinder (kR = ).
Contour lines of radiated acoustic pressure amplitude.
1. Dipole - Analytical; 2. Dipole - 2* order lwe; 3. Quadrupole -
Analytical; 4. Quadrupole - 2™ order lwe
(A=0 P=.04 C=.08 D=.12 E=.16 F=.20 G=.24 H=.28 1=.32 J=36
K=.40)
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Figure 2.12 Scattering of an acoustic plane wave from a rigid cylinder (kR = 1r).
Contour lines of scattered acoustic pressure amplitude P IAP,.
Geometry mesh with exact source location.
1. Analytical; 2. 2™ order lwe; 3. 3" order lwe; 4. 4" order lwe
{A=0 B=.15 C=.30 D=.45 E=.60 F=.75 G=.90 H=1.05 1=1.20 J=1.35
K=1.50)
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Figure 2.13 Scattering of an acoustic plane wave from a rigid cylinder (kR = ).
Contour lines of scattered acoustic pressure amplitude IPIAP,.
Geometry mesh with combined use of conventional finite elements and
infinite wave envelope elements.
1. Analytical; 2. 1** order lwe; 3. 2 order Iwe 4. 3" order lwe
(A=0 B=.15 C=.30 D=.45 E=.60 F=75 G=.90 H=1.05 1=1.20 J=1.35
K=1.50)
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Figure 2.14 Scattering of an acoustic plane wave from a rigid cylinder (kR = ).
Contour lines of scattered acoustic pressure amplitude |P,IAP,I.
Geometry mesh with random source location.
1. Analytical; 2. 2™ order lwe; 3. 3" order Iwe; 4. 4™ order lwe
{A=0 B=.15 C=.30 D=.45 E=.60 F=.75 G=.90 H=1.05 I=1.20 J=1.35
K=1.50)
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Figure 2.15 Acoustic quadrupole radiation by a vibrating cylinder (kR = ).
Contour lines of radiated acoustic pressure amplitude.
Geometry mesh with shift of source location.
1. Analytical; 2. 1* order lwe; 3. 2™ order lwe; 4. 3" order lwe
(A=0 B=.04 C=.08 D=.12 E=.16 F=.20 G=.24 H=.28 1=.32 J=.36
K=.40)
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Figure 2.16 Acoustic radiation by a sphere - monopole.
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Figure 2.17 Scattering of a plane acoustic wave from a rigid sphere (kR = 1).
IPIAPJ at r = SR.
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Figure 2.18 Scattering of a plane acoustic wave from a rigid sphere (kR = 2).
IPIAP} at r = SR.
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Figure 2.19 Scattering of a plane acoustic wave from a rigid sphere (kR = 4).
IPJAP, at r = 5R.
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Figure 2.20 Scattering of a plane acoustic wave from a rigid sphere (kR = 8).
IPJAP} at r = SR.
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Figure 2.21 Double barrier: Two-dimensional geometry mesh (100 cfe and 30 lwe).
Source at origin.

59



v —X

Figure 2.22 Double barrier: Two-dimensional post-processing mesh (542 field
points).
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Figure 2.23 Scattering of an acoustic plane wave from a double barrier (kW = 3).
Contour lines of total acoustic pressure amplitude |PJ. (IP] = 1).
1. bem; 2. 1* order lwe; 3. 2™ order lwe; 4. 5* order Iwe
(A=0 B=.24 C=.48 D=.72 E=.96 F=1.20 G=1.44 H=1.68 1=1.92 ]J=2.i6
K=2.40)
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CHAPTER 3

ON THE USE OF VARIABLE ORDER INFINITE
WAVE ENVELOPE ELEMENTS FOR ACOUCTIC
RADIATION AND SCATTERING'

3.1. INTRODUCTION

The modelling of acoustic radiation and scattering in unbounded domains is of
great interest in many areas of acoustic research and design. Some of the main research
fields involve the modelling of sound barriers for attenuating outdoor sound propagation,
noise control of jet cagine turbines and speaker design, to name a few. Different
mathematical modelling tools have been developed to help solve these acoustic wave
propagation problems, ranging from pure analytical methods, restricted to special
geometry cases, to more generally applicable numerical methods such as finite element
(FE) and boundary element (BE) methods.

The ability of various analytical and numerical methods to model acoustic

!A version of this chapter has been submitted to Journal of the Acoustical Society of
America for publication
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radiation and scattering problems depends largely on how well the Sommerfeld radiation
condition is satisfied [3.1-3.4]. It is a well-known fact that in order to obtain a unique
solution for wave propagation problems in infinite fields, the condition of finiteness at
infinity is not srificient, as is the case in static problems. In addition, a radiation
condition is rccessary, ensuring that all acoustic energy is radiating outward, by only
allowing outgoing propagating waves. The latter condition is very important, since failure
of complying to it, causes an energy built-up within the region yielding erratic resulis.

Applying the Sommerfeld radiation condition accurately in discrete numerical
methods is a difficult task. Only the so-called boundary integral methods [3.5,3.6] can
satisfy the conditions at infinity exactly, through the use of kcrnels that inherently fulfil
the governing equations for infinite domains. The down side of these methods is that full
system matrices result from the formulation, due to the global application of the radiation
condition. Data storage and calculation time quickly become a problem.

The finite element based methods employ a local approach in applying the
radiation condition, in an effort to preserve the advantages of finite element modelling,
i.e. banded system matrices. One of the methods applies a radiation condition at a distant
but finite boundary, using mono- or dipolar damping elements [3.7-3.9]. These damping
elements are desigued to filter the monopolar or dipolar components of the radiation
function. They will only perform well as long as only those lower order multi-poles are
present in the radiation function at the finite boundary. In order to accomplish this, the
finite boundary ofien has to be moved a substantial distance away from the radiating
body, resulting again in large system matrices due to the great number of acoustic degrees
of freedom needed to model the near-field.

Another method of locally applying the radiation condition is the infinite element
approach and the use of the variable order infinite wave envelope elements [3.10-3.17].
These elements span the whole infinite acoustic domain and model the outgoing
propagating waves by including an appropriate amplitude decay and wavelike variation
in the trial functions. The wave envelope elements differ from the standard infinite
elements by the choice of weighting functions in a modified Galerkin weighted residual

formulation. This wave envelope approach [3.12-3.15] permits the use of standard Gauss
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quadrature integration in the evaluation of the element system matrices.

In this chapter, the modelling possibilities and limitations of the variable order
infinite wave envelope element for acoustic radiation and scattering problems are
investigated. The limitations of the variable order infinite wave envelope modelling aze
addressed by investigating the higher order multi-poles of the infinitely long radiating
rigid cylinder, for two-dimensional modelling, and the axisymmetric oscillating rigid
sphere, for axisymmetric three-dimensional acoustic modelling. Then, the possibility of
modelling infinite homogeneous impedance planes is analyzed and compared to an
approximate analytical solution. Different methods for applying acoustic sources are
proposed, i.e. the superposition of scattered and incident fields and the direct nodal source
application. Finally, an alternative post-processing method, based on the boundary integral

method, is introduced.

3.2. THEORY
3.2.1. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Harmonic, steady-state acoustic radiation and scattering in an infinite medium,

with speed of sound ¢ and density p, is governed by the Helmholtz equation, given as

Vp(x) + k%p(x) = 0 xeV (3.1

where k = w/c is the acoustic wave number.
Appropriate boundary conditions involve prescribing acoustic pressure {p = p on
S,), normal velocity (v, = v, on S,,) or impedance (Z, = 1/4, = p/v, on §,,)

conditions on the surface of the radiating body and stipulating the Sommerfeld radiation

condition at a surface at infinity S,,, as [3.14,3.15]
@) .n_ = -ikp(x) x€S, (3.2)

for modelling local outward travelling plane waves.
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3.2.2. FINITE ELEMENT SYSTEM MATRICES

Applyinz standard finite element procedures, results in a set of simultaneous

equations that can be written in the form [3.15]

[K] - @® M] - iw 4] | {p} = iw (F)

with related coefficients

K,.l.=fVW,.-VdeV
| 4

M..:f.‘.W.N.dV
ij PERMAE R
v

A..=pr;WideS

y

(3.3)

3.4)

(3.5)

3.6)

3.7

[K], [M] and |4] are the acoustic stiffness, mass and damping matrix respectively in

Equation (3.3), while {F} is the acoustic forcing vector and {p} the unknown nodal

pressure values. The weighting functions and shape functions are indicated as W, and N,

respectively.
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3.2.3. VARIABLE ORDER INFINITE WAVE ENVELOPE ELEMENT

The development of the variable order infinite wave envelope element stems from
the observation that a three-dimensional radiation function p(r), for the region exterior to

a sphere |r - r,| = R, can be written as an infinite series of the form [3.3]

e 2 [0, ,
plkr) = = )_;f"(r" ) (3.8)

where (r,0,¢) are spherical coordinates relative to the origin r, The infinite series
converges absolutely and uniformly in r, 8 and ¢ in any region r 2 R + € > R. The
coefficients f (8,¢) for n > O can be determined from the radiation pattern f(8,¢) by

the recursion formula

2ikn [ =nn-1f_, + Df,_, n=12 .. 3.9)
where
1 8§(. ,6 1 &
4 sin@ so(sm 80) * sin?0 8¢ ( )

is Beltrami's operator for the sphere. The radiation function p(r) is therefore determined
in the region r > R by its radiation pattern.
In a similar way the two-dimensional radiation function can be written as [3.9]
— F,.(9)

> G (0)
kr) = H ®(kr 2+ H@(kr 7
(k") 0" )n=0 (kn)" H" ( )Z; (kr)"

3.11)

or

7w & 1,6)
kry ~ = e 2 n (312)
plkr) \J-rrkr 2 by

using the asymptotic expansions for the Hankel functions of the second kind H, @ In the

latter asymptotic expansion, the radiation patterns F,(6) and G (@) are combined into
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a complex radiation pattern f, (6).

It is observed that, in order to model the acoustic pressure field in an unbounded
domain using a single layer of variable order infinite wave envelope elements (see
Figure 3.1), sufficient degrees of freedom in the radial direction are needed to model the
amplitude decay of the outgoing propagating waves. As welil, satisfactory angular
discretization is required for modelling the angular radiation pattern. The elements span
over a radial slice of the acoustic medium and extend out to infinity. They have a defined
acoustic source location and model the amplitude decay and the wavelike variation of the
outgoing wave-forms [3.14,3.15]

The geometry mesh, used in modelling acoustic radiation and scattering problems,
consists of a semi-circular layer of variable order infinite wave envelope elements,
matched onto a conventional finite element mesh, modelling the acoustic near-ficld. The
geometry of the elements is oriented according to the ray paths of the solution, i.e. radial
edges perpendicular to the outgoing wave-fronts. In practice, this means that the source
locations of the variable order infinite wave envelope elements should closely coincide
with the actual physical acoustic source location. Reference [3.15] discusses the
importance and the sensitivity of the method to this geometric orientation aspect.

The formulation of the variable order infinite wave envelope element involves
three main aspects, i.e. the infinite geometry mapping, special shape and weighting
functions, all of which are explained in detail in Reference [3.15] and summarized in the

following sections.
3.2.3.1. Infinite geometry mapping

The infinite geometry mapping consists of a one to one mapping of a unit parent
element onto a real element extending to infinity. This type of geometry mapping is

obtained by introducing a singularity in the radial direction (at £ = I or r = o) in the

mapping functions, yielding an inverse mapping of the form
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t=1-284 3.13)
r

where g and r respectively denote the distance from the source to the finite boundary and

the source to an arbitrary point of the variable order infinite wave envelope element.
3.2.3.2. Shape functions

The special shape functions of the variable order infinite wave envelope element
are chosen such that both the amplitude decay and the wavelike variation of the field
variable p caa be modelled.

An appropriate amplitude decay is obtained through the use of Lagrangian
polynomials of order n in the radial direction of the parent element, which transform to
1/r" expansions in the real element, due to the infinite geometry mapping. As such, an
arbitrary number of degrees of freedom can be specified for representing the amplitude
decay of the outgoing travelling waves. Since the amplitude decay for two-dimensional
waves resembles that of a 1/ expansion, a /r factor is added to the radial shape
functions for two-dimensional modelling.

In previous implementations of this method, only linear shape functions have been
used in modelling the pressure field in the angular direction, along with a discretization
rule of thumb of seven acoustic degrees of freedom per wavelength. In this chapter, an
angular quadratic and cubic discretization is introduced. The angular quadratic variable
order infinite wave envelope element is implemented as an isoparametric element in the
angular direction by also using quadratic mapping functions for the geometry mapping.
The angular cubic element, on the other hand, is formulated as a subparametric element.
This higher order modelling in the angular direction allows for a better modelling of the
curved wave-fronts of the outgoing travelling waves.

The wavelike variation is taken into account using a periodic component in the

form of a complex exponential given as
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exp(-iku(s,1)) (3.14)

where the phase function u(s,f) = a(s) (1+)/(1-t) uses an interpolated source location
a(s) in order to maintain phase compatibility of the shape functions with any conventional
finite elements that may be used to model the near-field.

Finally, combining the different aspects discussed above, the shape function results

in the following form
N "(s,8) = T"(t) S(s) e "knt:D (3.15)
where the radial part 7" is a Lagrangian polynomial of order n and the angular part S can

be a linear, quadratic or cubic polynomial.

3.2.3.3. Weighting functions

The wave envelope approach involves the use of a modified Galerkin procedure
[3.12-3.15]. The complex conjugate of the shape functions are used as weighting

functions, combined with a (a/r)’ geometric weighting function G, (1), given as

2
G.(1) - (12‘_‘.) (3.16)

This results in a weighting function of the form
Ws,t) = G (1) N"(s,8) = G (t) T"(t) S(s) e kr&1) (3.17)

such that the complex exponentials cancel out of the integrands of the system matrix
formulation, allowing for regular Gauss quadrature integration. All harmonic spatial
variations have thus been removed and only the modelling of the envelope of the outgoing

travelling waves remains.
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3.2.4. MODELLING OF IMPEDANCE PLANES

The modelling of sound radiation and scattering using variable order infinite wave
envelope elements requires a discretization of the total acoustic field. The field variable,
e.g. acoustic pressure, along an infinite half-plane is thus represented through the shape
functions along the edges of the conventional finite elements and the infinite radial edges
of the variable order infinite wave envelope elements that coincide with the infinite haif-
plane. It is therefore possible to directly apply impedance boundary conditions along such
an infinite half-plane. The contribution of the infinite radial edges to the damping matrix

A from Equation (3.6) can be written as

i}

A, fpr"W.-N,-ds

Se. dee
1

f pA, G, (VT (T ) VI dt

-1

(3.18)

!

where J denotes the Jacobian of the geometry transformation from global to local
coordinates.

As such, the implemeatation of a finite impedance boundary condition along
infinite boundaries is very easily accomplished, in comparison with boundary element

methods where special kernels are required in the formulation [3.18,3.19].

3.2.5. APPLICATION OF SOURCES

Two methods for applying acoustic sources are investigated. The first method
involves the superposition of the scattered and incident acoustic pressure fields, while the
second method consists of a direct application of a source term at a nodal acoustic degree

of freedom.
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3.2.5.1. Superposition of scattered and incident acoustic pressure fields

The superposition procedure consists of modelling the scattered acoustic pressure
field p,, using boundary conditions obtained from the known incident pressure field p, ,
due to the acoustic source. The boundary conditions are applied in the form of prescribed

normal velocity boundary conditions, given as

V. = (A, B, v,)+Ap, (3.19)

4

In order to obtain the total pressure field p, , the known incident pressure field can be
superimposed onto the scattered field. Note that for hard wall A = 0 and the boundary

condition v. =v_ + v_ = 0 is satisfied.
"I "l "l

A problem arises when sources are to be modelled that are situated above, instead
of on an infinite half-plane. Such source configurations require an adequate modelling of
the normal velocity profile along the infinite edge of the variable order infinite wave
envelope element, based on the normal velocities evaluated at the acoustic degrees of
freedom and the element shape functions. This cannot be accurately imposed unless the
prescribed acoustic source is in the near vicinity of the source of the variable order
infinite wave envelope element, in which case the element shape function, with its
amplitude decay and wavelike variation, can be used. For an acoustic source located
elsewhere, the modelling of the imposed normal velocity boundary conditions will be
poor.

When considering 2 source above a flat hard plane, i.e. a symmetry plane, an
image source may be used as depicted in Figure 3.2. Using this method, it is only
necessary to find the normal velocities due to the incident fields of the two sources on
the scattering body, as the condition v_n = 0, is automatically satisfied along the edge of

the infinite half-plane, alleviating the above described problem.
3.2.5.2. Nodal source application

A spherical (3D) or cylindrical (2D) source can be applied to an acoustic degree
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of freedom to directly yield the total acoustic pressure field. The acoustic pressure field
generated by a point source (also referred to as acoustic monopole) can be written as
[3.20,3.21]

p(r) = —-——P""'P e ikr (3.20)
r

where the monopole amplitude P, is the pressure at a sphere of unit radius and r the
radial distance from the source.

The pressure field due to a radially vibrating sphere of radius R is given as
[3.20,3.21]

i poR?V,

PRPOR™ Yo ,-iker) (3.21)
r(1 + ikR)

p) =
where 70 is the radial surface velocity of the sphere. If the radius can be considered
small such that kR << 1, Equation (3.21) becomes

p@) = 1LOQ i (3.22)
4mr

where the volume source-strength Q is defined as the area of the pulsating sphere times

its surface velocity
O - 4mR?2 I—/—O (3.23)

A point source can be considered as a limiting case of a radially vibrating sphere,
where the radius R tends to zero, while simultaneously the radial surface velocity T/_O
becomes larger, such that the volume source-strength Q remains constant. In doing so, the
radially pulsating sphere is being idealized as a point.

From Equations (3.20) and (3.21), the volume source-strength can then be written
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= _amp 3.249)
ipw
In the finite element model, a point source can therefore be applied at an acoustic
degree of freedom i by considering an infinitesimal small pulsating sphere of radius € at
that location, as shown in Figure 3.3. The coefficient of the forcing vector F; becomes

F.

[

¢~0

lim [ipm fVo'_dSJ
s'

ipw lim (41re’70‘) (3.25)

e -0
=ipw@
= 41rPamp
In a similar way, a pulsating cylinder of infinitesimal small radius € can be
considered for the two-dimensional modelling of a cylindrical source. The coefficient for

the forcing vector becomes

F, = 4P (3.26)

i amp

From the nature of the nodal source application, it is understood that only sources
in the near-field can be modelled, i.e. in the conventional element region. A source
application within the variable order infinite wave envelope element region will yield
irregular results due to the inappropriate acoustic source location of the infinite elements
with respect to the point source position.

If the point source does not coincide with an acoustic degree of freedom, the
source strength is distributed among the acoustic degrees of freedom of the element, using

the element shape functions, as in
F*, = 4Pamp N, (3.27)

for a two-dimensional cylindrical source.
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3.2.6. POST-PROCESSING OF RESULTS

In order to obtain the field variables, i.e. the acoustic pressure and particle
velocity, at an arbitrary point, two different methods can be used. One method involves
determining the element within which the field point is located. Then a simple
interpolation can be performed among the acoustic degrees of freedom of the element,
using the element shape functions [3.15].

Another method makes use of the boundary element method formulation [3.5,3.6].
Using the calculated surface pressures p(Q) and normal velocities v,(Q), the pressure p(P)
at an arbitrary point P in the acoustic field can be evaluated (see Figure 3.4).

In general, this relationship can be written as

P(P) - f p@) 2682 i v Ger.C) vi@) arc@) (328

T
with

G(P.Q) = 7 HO(kr(P.Q)) for 2D

.- nP.0) (3.29)

CCP.D = PO

for 3D

where G is the free-space Green's function.
3.3. DISCUSSION OF RESULTS

3.3.1. LIMITATIONS OF THE VARIABLE ORDER INFINITE WAVE ENVELOPE
ELEMENT MODELLING

From observation of the infinite series, outlined in Equations (3.8) and (3.12), two
important aspects can be considered. First of all, the angular discretization has to be
sufficient, such that the radiation patterns can adequately be modelled. Furthermore, it

seems plausible that a quadratic trial function would be more effective in the angular
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direction, in order to model the lobe-shaped radiation patterns, as opposed to the simple
linear discretization.

A second aspect involves the radial discretization. The more terms are present in
the (1/r) expansion, i.e. “eher ..zder element, the better the radiation condition will be
satisfied in general.

In order to asc..s the importance of the previous aspects, tests have been
performed, both for axisymmetric three-dimensional and two-dimensional acoustic
modelling, i.e. the radiating rigid sphere and the infinitely long radiating rigid cylinder
respectively. The acoustic medium is air, with speed of sound ¢ = 340 m/s and density
p = 1.21 kg/m®. The computational mesh for such type of configuration can be ideally
shaped, i.e. circular layer of variable order infinite wave envelope elements with a
common source in the origin, thus avoiding possible additional errors due to the geometry
sensitivity of the formulation, as discussed in. Reference [3.15]. The variable order infinite
wave envelope elements are directly matched onto the radiating body, as shown in
Figure 3.5, in order to solely concentrate on the performance of the infinite element itself.

In the following sections the multi-pole radiation of the axisymmetric oscillating
sphere and the oscillating infinitely long rigid cylinder are investigated. Before proceeding
to the analysis of thc modelling of the multi-poles, the important aspect of the critical
wave number for multi-pole radiation from curved shells is introduced. This critical wave
number constitutes the transition from a poor to a good radiator. The phenomenon can be
explained as presented in Reference [3.22], for the case of an infinitely long oscillating
cylinder. At the critical wave number, the circumferential wave number of the velocity
distribution k. = n/R, where n is the order of multi-pole, is equal to the acoustic wave
number k. If the acoustic wave number is smaller than the critical wave number, i.e.
k < k_, destructive cancellation will occur from adjacent zones of positive and negative
volume velocity distribution, rendering inefficient radiation. For acoustic wave numbers
above the critical wave number, efficient radiation is obtained. The same reasoning can

be made for spherical multi-poles.
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3.3.1.1. Axisymmetric oscillating sphere

In general, the surface velocity of an axisymmetric oscillating sphere (radius = R)

can be written as a sum of Legendre polynomials [3.20]
Vo0) = V2 + VOPu) + VEP,() + . + VIP () + ...

where u = cos@, P, is the Legendre polynomial of order n and

”

Vo - (n . —;—) f Vo(8) P,(u) sind do

0

The acoustic pressure, generated by the n” component can then be written as

kZRZ S"(kr) + iC"(kr)

PA(r8) = ipe VI Pw) S S R

where §,, C,, U, and V, are the Stenzel functions of order n defined by

S, (kr) =.|’—’551 1 (kr)

2 ™3
C k) = -| TN 1 (ir)

2 "3
Ukr) = kr S, (kr) - nS,(kr)

V.(kr) =kr C  (kr) - nC (k)

(3.30)

(3.31)

(3.32)

(3.33)

with J, and N, the Bessel functions of the first and second kind respectively. The

components, described in Equation (3.32), are the so-called zonal spherical harmonics.

They form a complete system of orthogonal functions that can be used to describe any

type of axisymmetric vibration of a spherical shell.

In the following presentation of results, spherical multi-poles of order n have been

modelled. Results are presented in both polar plots and frequency response functions.

Figures 3.6 and 3.7 show a frequency response function of a spherical monopoie
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modelled by variable order infinite wave envelope models with linear (referred to as
LWE) and quadratic (QWE) angular discretization. The angular quadratic elcments are
able to model the monopole exactly for all orders, while the angular linear elements show
slight deviadons from the analytical solution for the different orders. The angular
quadratic elements therefore prove to be superior for modelling the curved wave-fronts
of the outgoing waves. No further improvement was found by going to a cubic angular
discretization.

In Figures 3.8 to 3.11, polar plots of different order multi-poles at an acoustic
wave number of kR = 20 are shown. The geometry mesh for the numerical model consists
of a single layer of seventy-five quadratic variable order wave envelope elements, directly
matched onto the radiating body, as shown in Figure 3.5. Results are compared to
analytical solutions, calculated from Equation (3.32). The low order multi-poles of order
one and two can be modelled without any difficulty, since the acoustic wave number is
well above the critical wave number of these multi-poles. When multi-poles of higher
order have to be modelled, an increasingly higher number of acoustic degrees of freedom
in the radial direction is needed, as shown in the modelling of the tenth order multi-pole.
Finally, when modelling at the critical wave number, as is the case for the multi-pole of
order twenty in Figure 3.11, even a wave envelope model of ninth order shows some
discrepancy from the analytical solution. When considering variable order infinite wave
envelope elements beyond order nine, tests have shown that the condition number of the
system matrices increases drastically. Elements of order 2 10 (for double precision
arithmetic) have shown to yield ill-conditioned system matrices, producing erratic results.
It is seen that as the radiation efficiency decreases, the modelling performance of the
variable order infinite wave envelope models diminishes.

To emphasize that the above shown limitation of the variable order infinite wave
envelope modelling can be attributed to the lack of radial, rather that angular,
discretization, tests were done with increased angular discretization. Figure 3.12 shows
results of the limiting case, i.e. the oscillating sphere of order twenty (kR = 20), for
geometry meshes of seventy-five angular quadrativ, seventy-five angular cubic and

hundred and fifty angular quadratic ninth order infinite wave envelope elements. All
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models result into the same solution, showing no improvement for the higher angular
discretization.

The frequency response functions in Figures 3.13 to 3.16, show how well the
elements of different order perform in the various frequency ranges. The greatest errors
occur for kR acoustic wave numbers around the critical wave number. The error decreases
when models of higher order elements are used. At wave numbers above the critical wave
number all variable order infinite wave envelope element approximations converge to the
analytical solution. This can be explained by looking at the asymptotic expansion of
Equation (3.32), which can be written as [3.21]

e -ikr

kr — o (3.34)
kr

Po(r8) ~ P, (R)

Thus as kr —» o, a simple I/r modelling is sufficient for modelling the press.-e
amplitude decay. It can be observed from Figures 3.13 to 3.16 that the transition from a
poor to a more efficient radiator occurs at the critica! wave number kR = n, where n is
the order of multi-pole.

From this it is important to note that the wave number at which the acoustic field
is evaluated, is of great importance when determining the highest order of multi-pole that
can be modelled by a particular variable order infinite wave envelope element model.
Basically one can state that all multi-poles in their radiating mode can be modelled
adequately, i.e. when the condition k > k_ is satisfied. Intuitively this comes not as a
surprise, since the formulation of the variable order infinite wave envelope is developed

as a radiating element, with its built in amplitude decay and wavelike variation.
3.3.1.2. Infinitely long oscillating cylinder

In a similar way, the oscillating cylinder (radius = R) of order n is investigated,
where [3.9]
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— H®kr
——"——S—l cos(nf) (3.35)

based on a prescribed radial surface velocity, given by
V,(0) =V, cos(n8) V_ <R (3.36)

The different multi-poles are studied in Figures 3.17 to 3.20 and 3.21 to 3.24, revealing

identical observations for the axisymmetric oscillating sphere.
3.3.1.3. Scattering from a rigid body

In the following, the performance of the variable order infinite wave envelope
elements for the modelling of acoustic fields, due to the scattering from a rigid body, is
investigated. Again, ideally shaped bodies, i.e. an infinitely long rigid cylinder and a rigid
sphere, are being used.

A frequency response function of the scattered acoustic pressure amplitude at
x =-5R andy = 0for 1 < kR < 30, due to the scattering of an acoustic plane wave
of unit amplitude, travelling in the positive x-direction, from a rigid cylinder (radius = R)
is now considered. Again, the geometry mesh for the numerical model consists of a single
layer of seventy-five quadratic variable order infinite wave envelope elements. Results for
wave envelope element modelling of orders seven to nine are compared to the analytical

solution, given as [3.20]

J,kR) H O ks
,. ”(H 32”(1:1{)( ) cosns (3.37)

p(r8) = - P, E € i
n=0

where €, is the Neumann function (¢, = 1 if n = Oand €, = 2 if n > 0).

Figure 3.25 shows how the frequency range of the numerical modelling gradually
can be extended up to a limit of kR = 20, by moving to higher order variable order
infinite wave envelope element modelling. This can be easily explained by examining the

analytical solution from Equation (3.37). The scattered acoustic pressure field can be
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interpreted as a superposition of an infinite series of multi-poles. The higher the
frequency, the higher order of multi-poles, i.e. the more terms in the infinite series, are
needed for convergence of the analytical expression. The ninth order infinite wave
envelope element has been shown to be able to model multi-poles up to order twenty,
which is about the number of multi-poles required for establishing the scatiered pressure
field for kR = 20, for convergence of the analytical series of Equation (3.37) within
satisfactory accuracy. For modelling higher frequency scattering, superior modelling is
necessary in order to be able to filter the higher order multi-poles. A polar plot of the
scattered acoustic pressure amplitude at r = SR, for the limiting case kR = 20, is shown
in Figure 3.26.

In a similar way, axisymmetric modelling of the acoustic scattering of a plane
wave, travelling in the negative z-direction, from a rigid sphere (radius = R) can be
studied, as illustrated in Figures 3.27 and 3.28. The analytical solution in this case can
be written as [3.20]

= (21 + 1) i" P (cos8) U,(kR)

Prf) =~ Py 3 —¢ [UJkR) + i V,(kR)]

[S,(kr) + i C, (k)] (3.38)

The results reveal identical limitations in analyzing acoustic scattering at higher wave
numbers. Failure of modelling multi-poles of order higher than twenty leads to a
frequency limitation, i.e. kR < 20, for scattering problems.

As indicated earlier, all of the above tests can be considered ideal cases for
numerical modelling using variable order infinite wave envelope elements. For the
modelling of acoustic radiation and scattering from bodies of arbitrary shape, performance
can be expected to be poorer, mainly due to errors induced by the inability to generate
a geometry mesh that closely reflects the nature of the problem. In general, the source
location for the variable order infinite wave envelope elements is not known. It is
understood that the performance of the variable order infinite wave envelope element can
eventually be improved by adding conventional finite element layers for modelling the
acoustic near-field. These conventional finite element regions have to extend far enough

into the field, such that the variable order infinite wave envelope element layer can
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properly match onto it, and thus, provide an adequate radiation condition for the
unbounded acoustic domain. In practice that quickly results in a fairly large conventional
finite element regions, yielding a large number of acoustic degrees of freedom. In this

case, boundary integral type methods will prove to be more efficient.

3.3.2. MODELLING OF A COHERENT MONOFREQUENCY LINE SOURCE ABOVE
A HOMOGENEOUS IMPEDANCE PLANE

In the following two-dimensional application, the acoustic pressure field due to a
coherent monofrequency line source above a homogeneous impedance plane is calculated.
This type of acoustic wave propagation problem has been thoroughly analyzed by S. N.
Chandler-Wilde and D. C. Hothersall [3.18]. They derived an approximate analytical
solution, Gp(c,zo). to the problem, outlined in Reference [3.18] and briefly summarized
in Appendix 3-A.

The coherent monofrequency line source is located at L, = (x9-¥p)- The receiver
at r = (x,y) is situated in the half-space S, y > 0, above the homogeneous impedance
plane &S, y = 0, as shown in Figure 3.29.

Results, obtained by using variable order infinite wave envelope element models,
are compared to the G,-solution. The geometry mesh consists of a single layer of sixteen
variable order infinite wave envelope elements with quadratic angular discretization
(QWE), matched on to a circular near-field region (radius r = 0.5, centred around the
origin x = 0; y = 0), filled with fifty-eight quadratic conventional elements. The source,
applied by the direct nodal source application, is located at x = 0; y = 0.25.

Figures 3.30 to 3.32 show results for frequency response functions of the
amplitude of the acoustic pressure for a receiver at x = J0; y = 0.25. Relative surface
admittance varies from 8 = 0.005, B = 0.1 toB = 0.5. Higher order infinite wave envelope
element modelling proves to be necessary to accommodate the increasing relative surface
admittance.

As an illustration, contour fields of the acoustic pressure field (k = 10) of the

modelling of a cylindrical source above a hard plane (8 = 0) and an impedance plane

85



(B = 0.5) are given in Figures 3.33 and 3.34, respectively. Again, results compare well
with the Gg-solution. A second order infinite wave envelope element was used for the

hard plane modelling, while a fifth order element was required for the impedance plane.

3.3.3. MODELLING OF ACOUSTIC SCATTERING OF A CYLINDRICAL SOURCE
FROM A DOUBLE BARRIER CONFIGURATION

In this section, the two-dimensional scattering of a cylindrical source from a
double barrier configuration is studied. Results obtained by applying the different acoustic
source application methods are investigated, as well as the two post-processing methods,
explained in the theoretical Sections 3.2.5. and 3.2.6. respectively. The geometry mesh
for this problem is shown in Figure 3.35. The region between the two barriers is modelled
by thirty quadratic conventional finite elements (referred to as CFE). A single layer of
twenty variable order infinite wave envelope elements, with quadratic angular
discretization, models the acoustic far-field. The source is located in the symmetry plane
at x = 0 and y = 0.2W, with g the characteristic dimension of the problem.

Figures 3.36 and 3.37 show frequency response functions of the amplitude (dB)
of the acoustic pressure for a receiver at x = SWand y = 0.15W, for respectively a rigid
(B = 0) and a soft platform (B = 0.5). B is the complex relative surface admittance and the
platform is the horizontal boundary between the two barriers. Three different eighth order
infinite wave envelope models are shown. The first two models differ in the source
application method, i.e. the direct source application at an acoustic degree of freedom
and the superposition method, while the third model illustrates the alternative boundary
element post-processing method. Results are compared to the boundary element method
(collocation-pro~edure from SYSNOISE software [3.23]). The boundary element method
mesh comprised fifty-eight, equally sized, linear elements.

Both source application methods yield virtually identical results over the whole
frequency range. Each of the methods however has its advantages and limitations. The
superposition of scattered and incident field method relies on the adequate modelling of

velocity boundary conditions along the boundaries of the acoustic field, for calculating
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the scattered acoustic field. As discussed before, problems can arise along the infinite
edges of the variable order infinite wave envelope elements, i.e. when modelling infinite
half planes. In general, the normal velocity profile can not be modelled accurately along
the infinite edges of the element by using the shape functions of the element formulation.
It is therefore recommended to only use the method of field superposition when the
infinite half plane is also a symmetry plane, as is the case in the problem at hand. The
method of image sources can then easily be applied, yielding normal velocity boundary
conditions only on the radiating body.

The direct nodal source application relies on the availability of an acoustic degree
of freedom in the near vicinity of the source. In practise, this means that only near-field
sources can be modelled, i.e. at a node of or distributed among the nodes of a
conventional finite element. As such, the source can always be modelled within A/6 of the
actual source location, pending on adequate field discretization according to the rule of
thumb of about seven acoustic degrees of freedom per wavelength. The method proves
to be very efficient. A straightforward search technique is used in order to determine the
acoustic degree of freedom associated to the source. The forcing vector is then modified
accordingly, as outlined in the theoretical Section 3.2.5., and the total acoustic pressure
field is promptly calculated.

The boundary element post-processing method is now investigated. Although slight
deviations to the interpolation method are noticed at the higher frequencies, both methods
yield virually identical results over the whole frequency range. The boundary element
based post-processing method relies strongly on the accuracy of the surface field
variables, i.e. surface pressure and normal velocity. The accuracy of these values
inherently depends on the quality of the modelling of the whole acoustic field, i.e. near-
field as well as far-field. Therefore, if accurate surface field variables are obtained, the
interpolated field variables will be of comparable accuracy.

The advantages or disadvantages of the two methods therefore largely lie in the
practical implementation. The interpolation method requires a search strategy to determine
within which element's limits the different post-processing field points lie. As soon as

these elements are assigned, a simple interpolation among the nodal degrees of freedom,
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using the element shape functions, yields the acoustic field variables, as outlined in
Reference [3.15]. The boundary element based method demands an integration across the
radiating boundary, according to Equation (3.28), for every single field point.

The efficiency of either method is very case dependent, i.e. number of degrees of
freedom in the computational model and number of field points where the acoustic field
variables have to be evaluated. in general, the interpolation method proves to be efficient
when results at a large number of field points have to be evaluated, e.g. calculation of
large pressure fields. While the boundary element based method is practical, when results
are sought at a few distinct field points. In the latter case, the interpolation method again
becomes more beneficial if frequency response functions are calculated. The identification
of the element, associated to the tield point, can be done before the frequency sweep.

Then a simple interpolation after each frequency step renders the result at the field point.

3.4. CONCLUSIONS

7. "“ferent modelling aspects and limitations of the variable order infinitc wave
envelope element modelling for acoustic radiation and scattering have been discussed. The
emphasis in this chapter is on the analysis of the limitations of this finite element based
modelling tool for wave propagation in unbounded acoustic fields.

The study of the limitations involves an investigation into how well the
Sommerfeld radiation condition is satisfied. The formulation of the variable order infinite
wave envelope element stems from the observation that any radiation function can be
written as an infinite series of a (1/r ”) expansion, for a region exterior to a given sphere
of radius R [3.3]. This suggests that, in order to model the acoustic far-field using a single
layer of variable order infinite wave envelope elements, sufficient degrees of freedom in
the radial direction are needed to model the amplitude decay of the outgoing propagating
waves. As well, satisfactory angular discretization is required for modelling the angular
radiation pattern.

A systematic study of the modelling of the higher order multi-poles of the

infinitely long radiating rigid cylinder and the axisymmetric pulsating rigid sphere,
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revealed the importance of the critical wave number of the multi-pole, which constitutes
the transition from a poor to a good radiator. Multi-poles can be modelled accurately as
long as the acoustic wave number is greater than the critical wave number of the muiti-
pole. The modelling accuracy at wave numbers around the critical wave number can be
improved by going to higher order wave envelope element modelling. The limit of ninth
order modelling in the radial direction is due to numerical limitations for double precision
arithmetic, as ill-conditioned system matiices are obtained for higher order modelling.
Furthermore, the importance of quadratic trial functions in the angular direction can be
attributed to the need for accurate modelling of the lobe-shaped radiation patterns of the
multi-poles.

In general, the radiation function of an arbitrary radiating body can be interpreted
as a superposition of a series of multi-poles. The apparent frequency limitation of
kR < 20 for acoustic scattering from an infinitely long rigid cylinder or rigid sphere can
therefore be explained by cbserving what order of multi-poles are present in the
expansion for the scattered acoustic pressure field.

The acoustic wave propagation above an impedance plane due to a coherent
monofrequency line source was also studied. A homogeneous impedance boundary
condition was prescribed along the infinite radial edge of the variable order infinite wave
envelope element. Results compared well to the approximate Gg-solution.

Two different methods of applying acoustic sources were analyzed. The standard
approach involves the superposition of scattered and incident acoustic pressure fields. The
calculation of the scattered acoustic field requires adequate modelling of the normal
velocity boundary conditions along the boundary of the acoustic domain due to the
incident pressure field of the acoustic source. In general, this can not be imposed
accurately along the infinite edges of the variable order infinite wave envelope element,
unless the prescribed acoustic source is located on the infinite half plane or, for sources
above the plane, that the source closely coincides with the acoustic source of the infinite
wave envelope element. For acoustic hard infinite planes this can be avoided through the
use of image sources. The other method consists of a direct application of a source term

at an acoustic degree of freedom. This method proves to be very efficient, but requires
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an acoustic degree of freedom to closely coincide with the prescribed source location.
Therefore only sources within the acoustic near-field can be modelled.

Since the total domain is discretized, for variable order infinite wave envelope
element modelling, acoustic field variables at arbitrary field points can be calculated by
interpolating among the degrees of freedom of the element. Another method is introduced,
where the acoustic pressure at a field point is evaluated, based upon the acoustic pressure
and normal velocity values on the boundary of the acoustic domain, using the boundary
integral formulation. Both methods proved to be of similar accuracy and their advantages
and disadvantages can solely be attributed to their practical implementation.

The study of the use of variable order infinite wave envelope elements for acoustic
radiation and scattering, as an alternative for boundary element modelling, has revealed
both advantages and limitations. These limitations become especially apparent in the
modelling of high frequency scattering problems. It is believed that the limitations can
be attributed to the local approach of applying the Sommerfeld radiation condition, as
opposed to the global technique used in boundary integral type methods. The
computational efficiency (i.e. compared to the boundary element method), due to the
banded system matrices, seems to be paid for by a lack of generality in imposing the
Sommerfeld radiation condition. It is desired to merge the advantages of both modelling
strategies closer together, i.e. the precise application of the radiation condition in the
boundary element method and the efficient computational scheme of the variable order
infinite wave envelope element modelling. An extension of the boundary element method
can be considered, by the development of a variable order infinite boundary element, that
could be used for so-called boundary element subdomaining [3.24,3.25]. It would be
desired to seek out an optimum degree of subdomaining to strike a balance between
computational efficiency and the generality of the imposition of the Sommerfeld radiation

condition.
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Figure 3.1  Modelling an infinite acoustic domain using conventional finite elements
and variable order infinite wave envelope elements.
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Figure 3.2  The use of image sources in acoustic scattering problems above a hard
plane.
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Figure 3.3  Applying a two-dimensional cylindrical source at an acoustic degree of
freedom.
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Figure 3.4  The boundary element post-processing concept.
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Figure 3.5 A single layer of 75 quadratic infinite wave envelope elements for two-
dimensional modelling of acoustic radiation or scattering from a cylinder.
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Figure 3.6  Acoustic radiation by a sphere - monopole.
Geometry mesh used: 90 lwe.
Frequency response function of the amplitude of the radiated acoustic
pressure at r = SR.
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Figure 3.7  Acoustic radiation by a sphere - monopole.
Geometry mesh used: 45 qwe.
Frequency response function of the amplitude of the radiated acoustic
pressure at r = SR.
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Figure 3.8  Spherical multi-pole of order 1.
Geometry mesh used: 75 qwe.
Polar plot (0 < 8 < 90) of the amplitude of the radiated acoustic pressure
at r = SR for kR = 20.
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Figure 3.9  Spherical multi-pole of order 2.
Geometry mesh used: 75 qwe.
Polar plot (0 < 6 < 90) of the amplitude of the radiated acoustic pressure

at r = SR for kR = 20.
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Figure 3.10 Spherical multi-pole of order 10.
Geometry mesh used: 75 qwe.
Polar plot (0 < 8 < 90) of the amplitude of the radiated acoustic p: ssure
at r = 5R for kR = 20.
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Figure 3.11 Spherical multi-pole of order 20.
Geometry mesh used: 75 qwe.
Polar plot (0 < 8 < 90) of the amplitude of the radiated acoustic pressure
at r = 5R for kR = 20.
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Figure 3.12 Spherical multi-pole of order 20.
Different angular discretization in geometry mesh.
Polar plot (0 < 8 < 90) of the amplitude of the radiated acoustic pressure
at r = SR for kR = 20.
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Figure 3.13 Spherical multi-pole of order 1.
Ceometry mesh used: 75 qwe.
Frequency response function of the amplitude of the radiated acoustic
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Figure 3.14 Spherical multi-pole of order 2.
Geometry mesh used: 75 gqwe.
Frequency response function of the amplitude of the radiated acoustic
pressure at x = 0; y = SR.
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Figure 3.15 Spherical multi-pole of order 10.
Geometry mesh used: 75 qwe.
Frequency response function of the amplitude of the radiated acoustic

pressure at x = 0; y = SR.
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Figure 3.16 Spherical multi-pole of order 20.
Geometry mesh used: 75 qwe.
Frequency response function of the amplitude of the radiated acoustic
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Figure 3.17 Cylindrical multi-pole of order 1.
Geometry mesh used: 75 qwe.
Polar plot (0 < 8 < 90) of the amplitude of the radiated acoustic pressure
at r = SR for kR = 20.
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Figure 3.18 Cylindrical multi-pole of order 2.
Geometry mesh used: 75 qwe.
Polar plot (0 < 8 < 90) of the amplitude of the radiated acoustic pressure
at r = SR for kR = 20.
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Figure 3.19 Cylindrical multi-pole of order 10.
Geometry mesh used: 75 qwe.
Polar plot (0 < 8 < 90) of the amplitude of the radiated acoustic pressure
at r = 5R for kR = 20.
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Figure 3.20 Cylindrical multi-pole of order 20.
Geometry mesh used: 75 qwe.
Polar plot (0 < 8 < 90) of the amplitude of the radiated acoustic pressure
at r = 5R for kR = 20.
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Figure 3.21 Cylindrical multi-pole of order 1.
Geometry mesh used: 75 qwe.
Frequency response function of the amplitude of the radiated acoustic
pressure at x = SR; y = 0.
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Figure 3.22 Cylindrical multi-pole of order 2.
Geometry mesh used: 75 qwe.
Frequency response function of the amplitude of the radiated acoustic
pressure at x = 5R; y = 0.
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Figure 3.23 Cylindrical multi-pole of order 10.
Geometry mesh used: 75 qwe.
Frequency response function of the amplitude of the radiated acoustic
pressure atx = SR; y = 0.
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Figure 3.24 Cylindrical multi-pole of order 20.
Geometry mesh used: 75 qwe.
Frequency response function of the amplitude of the radiated acoustic
pressure at x = SR; y = 0.
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Figure 3.2§  Scattering of an acoustic plane wave (— +x) from a rigid cylinder.
Geometry mesh used: 75 qwe.
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Figure 3.26 Scattering of an acoustic plane wave (— +x) from a rigid cylinder.
Geometry mesh used: 75 qwe.
Polar plot (0 < 8 < 180) of the amplitude of the scattered acoustic pressure
IP,IAP} at r = SR for kR = 20.
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Figure 3.27 Scattering of an acoustic plane wave (3 -z) from a rigid sphere.
Geometry mesh used: 75 qwe.
Frequency response function of the amplitude of the scattered acoustic
pressure |PAP] at x = 0; y = SR.
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Figure 3.28 Scattering of an acoustic plane wave ({ -z) from a rigid sphere.
Geometry mesh used: 75 qwe.
Polar plot (-90 < 8 < 90) of the amplitude of the scattered acoustic
pressure |PIAP| at r = SR for kR = 20.
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Figure 3.29 Cylindrical source above a homogeneous impedance plane: Configuration
sketch.
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Figure 3.30 Modelling of a cylindrical source, at x=0; y= 025, above a
homogeneous impedance plane (8 = 0.005).
Geometry mesh used: 58 cfe and 16 qwe.
Frequency response function of the amplitude of the acoustic pressure at
x=10;y = 0.25.
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Figure 3.31 Modelling of a cylindrical source, at x=0; y = 0.25, above a
homogeneous impedance plane (8 = 0.1).
Geometry mesh used: 58 cfe and 16 qwe.
Frequency response function of the amplitude of the acoustic pressure at
x=10;y =025
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Figure 3.32 Modelling of a cylindrical source, at x=0; y= 025 above a
homogeneous impedance plane (8 = 0.5).
Geometry mesh used: 58 cfe and 16 gwe.
Frequency response function of the amplitude of the acoustic pressure at
x=10;y = 0.25.
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Figure 3.33 Modelling of a cylindrical source, at x = 0; y = 0.25, above a hard plane
(B = 0). (1) Gg-solution; (2) 2™ order infinite wave envelope element
modelling.

Geometry mesh used: 58 cfe and 16 qwe.
Contour plot of the amplitude of the acoustic pressure for k = 10.

123



e
LRl

Figurc- 3.34 Modelling of a cylindrical source, at x=0; y = 025, above a
homogeneous impedance plane (8 = 0.5).
(1) Gg-solution; (2) S™ order infinite wave envelope element modelling.
Geometry mesh used: 58 cfe and 16 qwe.
Contour plot of the amplitude of the acoustic pressure for k = 10.
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Figure 3.35§ Geometry mesh for the modelling of a double barrier configuration:
30 conventional finite elements (cfe) and 20 qwe.
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Figure 3.36 Scattering from a double barrier with rigid platform (8 = 0).
Cylindrical source at x = 0; y = 0.2W.
Geometry mesh used: 30 cfe and 20 qwe {order B).
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CHAPTER 4

A VARIABLE ORDER INFINITE ELEMENT FOR
MULTI-DOMAIN BOUNDARY ELEMENT
MODELLING OF ACOUSTIC RADIATION AND
SCATTERING'

4.1. INTRODUCTION

The modelling of acoustic radiation and scattering from arbitrary shaped bodies
in an infinite domain is an inherent part of noise control engineering. Acoustic modelling
involving jet engine noise, speaker and road noise barrier design, to name a few, have
been widely investigated. In all these applications, the acoustic field variables at arbitrary
field points, due to a vibrating body within the infinite acoustic domain, have to be
determined.

The problem is governed by the Helmholtz equation, with appropriate boundary
conditions on the radiating body, and the Sommerfeld radiation condition [4.1-4.4].

'A version of this chapter will be submitted to Journal of Sound and Vibration.
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Numerous numerical procedures have been developed for analyzing these type of wave
propagation problems. Amongst all these methods, different boundary integral and finite
element based methods have proven to be effective.

The boundary integral methods are very attractive from a theoretical point of view
[4.5-4.9]. Through the use of the free-space Green's function, satisfying the Helmholtz
equation and the radiation condition, and Green's second theorem, the problem can be
reduced to solving a boundary integral equation. Therefore, only a discretization of the
sound radiating surface is necessary. In a first stage, the field variables on the surface are
solved for, whereafter the field variables at an arbitiary field point can be determined. The
boundary element method reflects an accurate global application of the radiation
condition. The global implementation implies that all acoustic degrees of freedom are
interconnected. The resulting system of equations therefore includes full complex system
matrices. quickly leading to computer data-storage problems, and in turn high calculation
times, in spite of the reduced problem size, obtained from the limited discretization
requirements. Another disadvantage is the non-uniqueness problem [4.10-4.13]. The
boundary integral equation methods fail at critical frequencies, where no unique solution
can be obtained. These critical frequencies are the eigenfrequencies of the complementary
interior problem. Different methods have been developed for solving this singularity
problem, most of which tend to be computationally costly.

A wide variety of finite element based methods have been developed, in an effort
to incorporate the advantages of the finite element formulation. Although the whole
acoustic domain has to be discretized, in general resulting in a large number of degrees
of freedom, favourable computational efficiency can be obtained, due to banded system
matrices. Methods range from truncation of conventional finite element schemes by
analytical expansions [4.4,4.14], damping elements [4.15-4.17] or pc-impedance
conditions [4.4,4.14], to infinite element formulations such as the infinite wave envelope
element method [4.18-4.24]. The latter elements span to infinity and have an appropriate
amplitude decay and wavelike variation incorporated for modelling the outgoing
propagating waves. It has been shown that this local application of the radiation condition

leads to modelling limitations [4.24]. In essence, only good radiators can be accurately

132



modelled, that is, those cases where the acoustic energy predominantly flows towards
infinity along the infinite elements.

The multi-domain boundary element method aims at providing a compromise
between the computational efficiency of the finite element based methods and the accurate
global modelling of the Sommerfeld radiation condition. An indirect variational multi-
domain element method has been successfully implemented by Zeng et al. [4.25]. A
quadratic infinite boundary element is matched onto a number of conventional boundary
elements for modelling the acoustic field variables along the infinite interfaces of adjacent
subdomains. Along these infinite edges, continuity of the acoustic pressure and its normal
gradient is enforced. The formulation results in banded symmetric system matrices, due
to the chain assembly of the different boundary element subdomains. The method has
been proven to accurately model acoustic radiation and scattering problems. A great
advantage of the method is that no singularities are encountered due to the non-
uniqueness problem of the conventional boundary integral methods.

In this chapter, a multi-domain boundary element scheme is presented using the
direct collocation boundary element method. Special variable order infinite boundary
elements are developed for accurate modelling of the acoustic field variables along the
infinite interfaces. These variable order elements are based on the variable order wave
envelope elements presented in Refe: [4.23,4.24]). An arbitrary number of acoustic
degrees of freedom can be specified along the infinite edges, for proper modelling of the
amplitude decay. In most applications, conventional boundary interface elements in the
acoustic near field can therefore be omitted. Again, the set of linear boundary element
equations results in banded system matrices and a unique solution can be obtained for all
frequencies.

Numerous examples of two-dimensional and axisymmetric radiation and scattering
problems have been investigated, exploring the performance of the present multi-domain
concept. It will be shown that going to a high degree of subdomaining of the acoustic
field, results in a more local application of the Sommerfeld radiation condition, and
consequently reduced performance in modelling general radiation and scattering problems.

Therefore, in general, a trade-off must be made between computational efficiency and
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generality of the implementation of the Sommerfeld radiation condition.
4.2. THEORY

4.2.1. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The acoustic pressure field, due to radiation or scattering from a rigid body into

an unbounded inviscid domain, is governed by the classical wave equation, given as

1 9%p@x.0)
Vip(x,t) = — ——=
p(x,) e,

where p(x,t) denotes the acoustic pressure and c the speed of sound in the acoustic

xXeV .1

medium. When only harmonic steady-state conditions are considered, the classical wave

Equation (4.1) reduces to the Helmholiz equation
VipR) + k’p@x) =0 x€V 4.2)

where k = w /c is the acoustic wave number.

In general, three types of boundary conditions can be applied. These boundary
conditions include prescribed acoustic pressure, velocity or acoustic impedance on the
surface of the body, which are referred to as Dirichlet, Neumann and mixed or Robin
boundary conditions respectively. A commonly applied prescribed velocity profile on the
radiating body §, is given as

w@).n, = -ipwv, xES, (4.3)

where i is the unit noimal on the surface §_, p the density of the acoustic medium and
v, the prescribed normal surface velocity.

Furthermore, in order to obtain a well-posed problem, the pressure field must be
constrained to vanish at infinity. This is accomplished by imposing a radiation condition
at infinity. An appropriate radiation condition is given by the Sommerfeld radiation
condition [4.1-4.4])
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rew or
where a = ] for three-dimensional and a = 1/2 for two-dimensional problems. This
condition ensures that no sources at infinity contribute to the acoustic field. Only outgoing
travelling waves are allowed, guaranteeing a net acoustic energy flow towards infinity.

4.2.2. THE DIRECT BOUNDARY ELEMENT METHOD

Different boundary integral methods have been developed for solving acoustic
problems. These integral formulations typically consist of two phases. The first phase
involves solving for the unknown acoustic field variable distributions on the boundary
from a set of integral relations within the domain of the vibrating boundary S_. In a
second phase, the acoustic field exterior or interior to the vibrating surface can be
determined from an explicit integral representation involving the previously calculated
surface distributions.

The boundary integral methods can be classified, in general, based on their
formulation approach, i.e. direct or indirect, and their solution method, i.e. collocation or
variational. In the direct formulation, the field variables are the acoustic pressure and
normal particle velocity, while the indirect approach uses the pressure and normal velocity
jumps, also referred to as the double and single layer potentials respectively. In the
collocation solution method, a set of equations is assembled by writing the Helmholtz
surface integral equation for each unknown field variable on the boundary, which leads
to a full non-symmetric complex system matrix. The variational solution method is based
on the minimization of a functional equivalent to the boundary integral equation and leads
to a full symmetric complex system matrix. In general, the direct formulation is combined
with a collocation solution method, while a variational solution method is most suited for
the indirect formulation. All these boundary element methods are well documented in the
literature, i.c. References [4.5-4.9,4.26]. The direct collocation boundary element method,

chosen for this work, will be explained in some detail in the following sections.
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4.2.2.1. Surface Helmholtz integral equation

As outlined in Appendix 4-A, the equivalent integral equation for the Helmholtz
equation (Equation (4.2)) can be reduced to a boundary integral equation, through the use
of the free-space Green's function and Gauss' integral theorem. The dimension of the
problem is therefore reduced by one, i.e. a volume integral becomes a surface integral.

The Helmholtz integral equation can be written as

cPPP) - f p@ 2629 - 6ro) #O) as) 45
SO
where
cP) - 1 PeEV
- % PeS (4.6)
= 0 PeV

This equation relates the acoustic pressure in a particular point P, to the acoustic pressure
and normal particle velocity distribution on the radiating boundary.

G(P,Q) = G(|R,-R,|) is the free-space Green's function, given as

al

-i
G(R,-R,]) = Py HO(Z)(klRp_RqD 20
) 4.7
“TkiR,-Ry|
G(R,-R,) = £—_ 3
(iRP Q|) 4"IRP_Rq| D

for two- and three-dimensional acoustic radiation and scattering, respectively. H,@ is the
zeroth order Hankel function of the second kind and |Rp —qu is the distance between the
two field points P and Q, as depicted in Figure 4.1.

The essence of the direct collocation boundary element method is to relate the
acoustic surface pressure at a particular point on the surface, to the acoustic pressure and
normal particle velocity distribution of the rest of the radiating body. The key identity is

therefore the surface Helmholtz integral equation. For this integral equation, the factor
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C(P) takes on the value /2 in Equation (4.5). This is only valid for smooth surfaces,
for which the surface normal takes on a unique value. For special cases, e.g. corners,
where the surface normal is not unique, a more general expressicn for the factor is

necessary, given as [4.8]

= + _1- ..é.. 1 {
CP) =1 yp 8n(|R,,-R,,|) dS{Q) (4.8)

The factor C(P) can be interpreted as the exterior solid angle at point P on the surface
§,. In general, the surface Helmholtz integral can be written as

1 8 1
4 f EE(IRP _qu) 1@ pP)
S (4.9)

_ sGPPQ) 5(Q)
f(p(e) PO - Gro) 2K )dS(Q)

S

(4

4.2.2.2. Two-dimensional numerical implementation

The surface Helmholtz boundary integral equation for two-dimensional acoustic

radiation can be expressed as

P p(P) - f p@ LA - ) 2@} ar) (4.10)
L
where the solid angle factor is given by
-1+ 1 51
cP) =1 3 f Sn(IRp-Rq]] ar(Q) (4.11)
r,

o

and the free-space Green's function as in Equation (4.7).
The boundary element procedure now proceeds by discretizing the radiating

boundary into M, elements of length T'_, which yields
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T

The elements are chosen to be isoparametric, where the geometry I', is mapped onto a

parent element [ -1, 1]. Within each element the acoustic pressure p_ and the gradient

of the acoustic pressure —8_;:-' can be approximated using conventional shape functions

N(s), given as

Pa(S) = 3 Ni) P,

5 7=t 5 (4.13)
I () . P,
én B jz:l NJ(S) _Er;i

where s is the local coordiggtc. a is the number of acoustic degrees of freedom within
the element and, Pm, and —s—;l are the values of the acoustic pressure and the gradient
of the acoustic pressure at the node, respectively. The surface Helmholtz boundary
integral equation for an arbitrary degree of freedom i on the surface, can then be written

as

1
M,
a 5G,
Cip - MZI f{( j‘_‘:l Ni(s) ij] ﬁ’ WMids |-
|

£

-1

4.14)

Wi ds

a 8pm
G, N(s) —
' (;El ) n ]
where G, denotes the free-space Green's function between point i and an arbitrary point
on the surface, and |/ is the determinant of the Jacobian of the geometric transformation
between the real element and the unit parent element. The equation can then be

rearranged, yielding the following expression

Mo Mo sp
- = i 4.15
3 (o) n) - Cpi= 3, () {2 19

with
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8G;
m; fN,-(s) >y 71 ds

;l (4.16)

- = f N(s) G, V| ds
-1
These integrals can be evaluated using standard Gauss-Legendre quadrature. Respectively

two and three Gauss points are used for linear and quadratic boundary element

L)
"

O
|

formulations. A singularity problem occurs though, when evaluating the local
contributions of the elements directly connected to the node i at hand. The integrand, i.e.
the Green's kernel, becomes singular as the distance }Rp - qu approaches zero. The
approach of Telles [4.27] is adopted to deal with this singularity problem. The method
consists of an additional transformation through which the quadrature points are shifted
towards the singularity of the integrand, as explained in Appendix 4-B.

This equation can be expressed for all acoustic degrees of freedom of the radiating

boundary. The assembled set of equations can therefore be written as
5
1411116y 1 ) = 181 {2} @1

For a standard acoustic radiation problem, the normal velocity profile of the
radiating body is given. The system of boundary element equations then yields

[4] {p} = - ipw [B] {v} (4.18)

where the solid angle terms, C(p), are assumed to be incorporated within the matrix A.
The array {p} denotes the vector of the unknown nodal acoustic pressures, while {v} is
the prescribed normal velocity vector. The acoustic surface pressure at the acoustic
degrees of freedom can be solved for from this set of linear equations, after which the
acoustic pressure at an arbitrary field point can be evaluated by means of the Helmhoitz

integral equation (Equation (4.5)).
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4.2.2.3. Axisymmetric numerical implementation

For axisymmetric acoustic radiation, the surface Helmholtz boundary integral
equation can be written in the form

v v
) pP) - f r© |[ 24 ao|-|[ aroras| ER lar@)  (19)
0 0
where the solid angle factor is given by
2w
cor -1+ || [ alwtsg) @ | @ @20
il ;o IRy =Ryl
LS

and the free-space Green's function as in Equation (4.7). In these equations, @ is the
angular coordinate and T, is the generator of the axisymmetric surface S, of the radiating
body. The only added difficulty for the axisymmetric boundary element formulation lies

in the evaluation of the integrals in the angular 8-direction, given as

o
-ik[R,-Ry|
K4PQ) = | &——— do(Q)
A |Rp—Rq|
2 4.2
K3P,Q) -

Y e‘“‘}kr'kql ]
21 e " las)
.[8”[ IR, -R,|

These integrals can be evaluated in terms of elliptic integrals, as introduced by Soenarko
[4.8]. His approach is to split the integrals into a non-singular and a singular part, as

follows
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K8PQ) - KAPQ) + KAP.Q)

r14 2w

5 [ e PRl _ g ]do f 5 ( 1 )
- | —— Q@+ | = de(Q)
[8"[ IR,-R,| én { |R,-R,|

0

i

The non-singular parts K;# and K,? can then be evaluated by a conventional Gauss-
quadrature scheme, while the remaining singular integrals K,* and K,# can be
transformed into complete elliptic integrals of the first and second kind, as explained in
detail in Reference [4.8]. The number of Gauss-quadrature points used for evaluating the
non-singular integrals K,4 and K,? depends on the acoustic wave number k of the
problem and the distance R, from the element to the axisymmetry axis. Tests have shown
that accurate results can be obtained as long as the number of Gauss quadrature points
along half the axisymmetric circumference is greater than 1.25 kR,. Note that, due to
symmetry, only half the angular integral has to be evaluated numerically, i.e.
0s0 s 7.

4.2.3. THE MULTI-DOMAIN CONCEPT

The direct collocation boundary element method, as explained in the previous
sections, renders a full complex sysiem of linear equations, i.e. all acoustic degrees of
freedom are interconnected. The fully populated system matrix can therefore quickly
become very large. This causes computer data storage problems and in turn longer
calculation times in the solution phase of the boundary element method. To reduce the
interconnectivity of the acoustic degrees of freedom, the multi-domain concept of the
boundary element method is introduced. This concept has been used in many different

applications such as muffler design, non-homogeneous structures and fracture mechanics

141



[4.28,4.29].

For this procedure, the acoustic domain is divided into a number of subdomains.
In general, each subdomain can have different material properties. For this study the total
acoustic field is assumed to have a constant speed of sound ¢ and density p. The different
subdomains are separated by imaginary surfaces or interfaces. Each subdomain can
separately be modelled by the direct collocation boundary element method. A global
assembly of the boundary element subdomains is then performed by forcing continuity
of the acoustic pressure and the normal gradient of the acoustic pressure at the subdomain
interfaces.

For example, a two domain boundary element model is given for the acoustic
modelling of an infinitely long rigid cylinder I'°, as depicted in Figure 4.2. The
subdomains are separated by an infinite radial interface r, along which the continuity
conditions are specified. Another special interface is introduced, i.e. ", modelling a hard
infinite half plane or symmetry plane. Along these surfaces the gradient of the acoustic
pressure is forced to zero.

First, each domain is treated separately. The Helmholtz equation is satisfied in

both domains
Vip(x) + k2 pyxy) = 0 x €85,
VEPi(x) + kP pax) = 0 n €S,

(4.23)

The corresponding Helmholtz integral equations can then be written as

P., L)
C,(P) p,(P,) - f pi@ 82 _ gp,0) Q) | ar@
1 l

T=Ttery o 1y’ sGip (4.24)
Py PPy - f p@) 22 G0 Y Z‘Q’ dT(Q)

n, n,
[=r*re-r,

After discretization into elements, two seis of equations are obtained, in the form
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Applying the continuity conditions along the domain interfaces and setting the normal
acoustic pressure gradient to zero on the hard plane, leads to the following global set of

equations
P (
Ak 4 B/ 0 Pli B° 0 (28
1 S, {apit =] {om (4.26)
0 A4 B A" 3—‘ 0 BS||%:
" ~8n2
P

The problem unknowns are therefore the acoustic pressure along all the boundaries and
the gradient of the acoustic pressure along the subdomain interfaces. For a standard
Neumann problem, with prescribed velocity profile along the radiating boundary, the
global system can be expressed as

( Pl
i i Pli P -
[Al Al "Bl 0 Bl 0 | ¥
ib =g 1 ,
[ 0 4, B 4, | 125 (S B | | @2
én,
{ P, )

where the superscripts h+o are dropped for convenience.
The concept can now easily be expanded to an arbitrary number of subdomains.

The global assembled system reduces to a banded form, given as
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4.2.4. VARIABLE ORDER INFINITE BOUNDARY ELEMENT

(4.28)

where the superscripts of type jj+1 denote the interface between subdomain j and j+/.
A chain assembly of N subdomains results therefore into a banded non-symmetric system
matrix, which can be stored in banded form. This, notwithstanding the increased number

of acoustic degrees of freedom, results in considerable data storage reduction and

The added difficulty in applying the multi-domain concept to acoustic radiation
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problems in unbounded domains is that the interfaces between the different subdomains

are of infinite extent. An efficient way of modelling these infinite interfaces is of crucial



importance. The added number of acoustic degrees of freedom has to be held to a
minimum in order to be able to take full advantage of the banded structure of the system
matrices. In the variational multi-domain approach developed by Zeng et al. [4.25], the
acoustic field variables along the infinite interfaces are modelled by a limited number of
conventional boundary elements, followed by a special infinite boundary element to extent
the solution to infinity. This infinite boundary element is based upon the finite element
based infinite elements, introduced by the group of Zienkiewicz et al. [4.14]. The later
element was also the basis for the infinite wave envelope element formulation, as
explained in ref. [4.22-4.24).

An infinite geometry mapping is used to map the infinite element region on to a
finite parent element [-1, 1). Due to this geometry mapping a polynomial shape function
in the parent element renders a (1/r)-expansion in the real infinite element, which is well
suited for modelling the amplitude decay of the field variables. A complex exponential
is added to model the wavelike variation of the outgoing waves.

In this chapter, an infinite element of variable order is proposed. It was seen from
the formulation of the variable order infinite wave envelope element [4.23,4.24], that a
higher order element was able to more accurately model the outgoing travelling waves
and that in many cases the need for conventional elements in the near field was
eliminated. The important aspects of the variable order infinite boundary element are

explained in more detail in the following sections.
4.2.4.1. Infinite geometry mapping

The infinite geometry mapping is illustrated in Figure 4.3. The one-to-one
transformation is completely defined by the positions of node 1, X; (%7, ), at the finite
boundary of the infinite element, and node 2, Xy (X4, ¥, a distance @ away from node
1. The parameter g denotes the distance from the pole of the inverse transformation
Xy (Xgs ¥,) to the finite boundary at node 1, given as

":Ifz"fnlzlfu"ﬁ 4.29)
The mapping from local to global coordinates can thus be written as
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i
x() = Z, M) x,
' (4.30)

n
y(@) = Zl M) y;

where the mapping functions are defined as

-2t

M@ = T
1+t 4.31)

M) = 1=
The inverse geometry mapping can be found by solving for ¢ in Equation (4.31), which

vields

t=1-212 (4.32)

r

In this equation, r is a radial coordinate along the infinite element with the origin at the
pole x,. From inspection of the mapping relationships, it is seen that the local coordinates

t = -1, 0, 1 correspond to the global coordinates x = x;, x,;, ®, respectively.
4.2.4.2. Shape function

The shape function used for modelling the acoustic field variables along the
infinite boundary element, are based on the shape functions used in the formulation of the
variable order infinite wave envelope element as in Reference [4.23]. These functions
combine a suitable amplitude decay and a wavelike variation for modelling outgoing

travelling waves. In the following, both aspects are explained in more detail.
A. Amplitude de. 1y

The infinite geometry mapping, discussed in section 4.2.4.1., transforms a
polynomial function in the parent finite element into a (1/r) -expansion in the real infinite
element. This can easily be verified by considering a one-dimensional example, as

presented in detail in Reference [4.23]. The asymptotic value for the field variable at
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infinity is set to zero, according to the radiation boundary condition. This can be
accomplished by forcing the value of the acoustic degree of freedom at infinity to zero.
Therefore, in case of an n™ order irfinite boundary element, only the n finite acoustic
degrees of freedom of the infinite element contribute, through their respective shape
functions, to the modelling of the acoustic field variable at an arbitrary point in the
infinite element. The shape functions are of the form

Gy +at+at+ . +at”

()b (1)”+ sy -

r Ar "r
which are very suitable for modelling a decaying travelling wave.

The use of Lagrangian polynomials once again ensures full flexibility in the choice
of the order of the polynomial for modelling the amplitude decay. The Lagrangian
polynomial is fully determined by the choice of n acoustic nodes within the element and
the n+]" node at infinity. The position of these n acoustic nodes are in essence arbitrary.
In case of the variable order wave envelope element, they are equally spaced between the
first two geometry nodes, as shown in Reference [4.23]. For the variable order infinite
boundary element at hand, they will be chosen to suit the numerical integration scheme,

as explained later in Section 4.2.4.3.
In general, the decaying factor of the shape function can be written as

Thg) - — "0 l1<isn
A ) (¢t 1) (4.34)
with
n+l
m@) = 0 (1 - 1) (4.35)
i=1

The amplitude of a propagating wave in a two-dimensional domain decays
approximately as a (1/y/7)-expansion. To accommodate the shape functions for modelling
two-dimensional acoustic radiation problems, a /r factor can be premultiplied. In local

coordinates this leads to a factor given as [4.23]
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R"( = |— (4.36)

B. Wavelike variation

The wavelike variation consists of a periodic component in the form of a complex
exponential exp( -ikr). In order to maintain compatibility with the shape functions of the
conventional boundary elements in the acoustic near field, the phase of this periodic
component must be adjusted at the finite-infinite element interface (¢ = -1), i.e. set to
zero. The wavelike variation component therefore results into the following form in local

coordinates

. 1 +1
e -ik(r-a) o p-ikul) _ 4 “ika 1 (4.37)

The phase function u(r) simply represents the radial distance to the finite-infinite element
interface along the infinite element.

Finally, the shape functions for the n acoustic degrees of freedom of the variable
order infinite element can be expressed as a combination of the amplitude decay and the
wavelike variation, as in

N"@) =R"@) T" (1) e "0 2D

N"(@®) = T (1) e k0 3D (axisymmetric)

(4.38)

The field variables p and gg along the variable order infinite boundary element can now
n

be approximatzd, as in Equation (4.13), yielding

> NP

Jj=1
8p£12 = - N n f4 5p .j
én Jg:l j( ) én

Here the nodal quantities are marked with a star * since they do not exactly denote the

pQ@)
(4.39)

acoustic pressure or the normal gradient of the acoustic pressure, respectively, at the
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acoustic degree of freedom at hand. To obtain the proper values of the acoustic field
variables, the phase correction e "), incorporated in the shape functions, must be
applied.

Two different types of variable order infinite bounda.y elements will be used. A
first type, denoted as a variable order infinite interface boundary element, is applied for
modelling the acoustic field variables along the infinite interfaces that separate the
individual subdomains. Along these elements both the acoustic pressure as well as the
normal gradient of the acoustic pressure are considered acoustic degrees of freedom. For
the other type, referred to as a variable order infinite rigid half plane boundary element,
only the acoustic pressure is considered as an acoustic degree of freedom, while the
normal gradient of the acoustic pressure is forced to zero. The latter element is used for

modelling symmetry planes or infinite rigid half planes.
4.2.4.3. Numerical integration

The contribution of the variable order infinite elements to the surface Helmholtz
equation involves integrals along an infinite domain. The integrals in local coordinates,
invoived in the formation of the system matrix for two-dimensional analysis, are of the

form
1

. 8G,
a; = fR"J.(t) T" () e k0 —8;,—' i de

? (4.40)

%=[mmwmeQmm

-1
where /| is the determinant of the Jacobian for the infinite geometry transformation. In
the following an approximate integration method for this type of integral will be
explained.
The integrals of Equation (4.40) are evaluated acccrding to the scheme developed

by Zeng et al. {4.25]. The method consists of truncating the infinite element region at a
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finite distance r__ . as shown in Figure 4.3. This semi-infinite boundary is set to be at
r.. = 8 + 154, or fifteen wavelengths away from the finite-infinite bourdary. The
contribution to the integral of the region beyond this boundary has proven to be negligible
for the applications considered in this chapter. The truncated integral can be evaluated by
dividing the semi-infinite domain of the real element into a number of finite subelements
of equal length, as illustrated in Figure 4.4. Each of these subelements can then
subsequently be integrated by conventional Gauss-Legendre quadrature. Convergence tests
suggest a scheme of thirty-two subelements and four quadrature points, respectively, to
be adequate. Each subelement therefore spans about half a wavelength in this integration
scheme.

The truncation of the infinite integral has consequences on the position of the
acoustic degrees of freedom within the element. The fact that the contribution beyond r_
is negligible, means that in practise the acoustic pressure can be forced to vanish at the
semi-infinite boundary. The n+I™ acoustic degree of freedom of the n" order infinite
boundary element is therefore assumed to be zero at this position r__ . The first acoustic
degree of freedom is located at the finite-infinite interface for obvious compatibility
reasons with the conventional boundary elements of the acoustic near field. The position
of the remaining n-1 acoustic degrees of freedom are chosen as depicted in Figure 4.4 for
a fourth order infinite boundary element. The acoustic degrees of freedom are positioned
as the end-nodes of the first n-] subelements. This particular choice has a practical
advantage, in that the integration singularities can be easily dealt with on the subelement
level. For each subelement, a check can be performed to detect whether or not a
singularity occurs. In case of a singularity, the approach of Telles [4.27], as outlined in
Appendix 4-B, can be adopted for integrating the subelement in the same way as for the
integration of conventional boundary elements.

It should be noted that the numerical integration of the variable order infinite
boundary element becomes very costly in terms of computation time for the axisymmetric
formulation. For each Gauss-quadrature point in the radial direction, the non-singular
integrals in the angular direction, i.. K, and K,# from Equation (4.22), have to be

evaluated. Depending on the acoustic wave number this involves a considerable number
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of Gauss-quadrature points, as indicated in Section 4.2.2.3.

4.2.5. Post-processing of results

After solving the set of complex linear equations of the boundary element method,
the acoustic pressure and the normal surface velocity are known. The value of the
acoustic field variable at an arbitrary point in the field can then be evaluated by applying
the Helmholtz integral equation (Equation (4.5)). For the multi-domain boundary element
method, this can be done in two ways. One method consists of applying the Helmholtz
integral equation only for the subdomain within which the particular field point lies. Each
field point therefore has to be assigned to its subdomain. Another method, which has been
used for the work in this chapter, is to use the global Helmholtz integral equation along

the real boundary I'y, as in the conventional boundary element method.
4.3. DISCUSSION OF RESULTS
4.3.1. SIMPLE ACOUSTIC RADIATION AND SCATTERING EXAMPLES

To illustrate the use and performance of the multi-domain boundary element
method, different examples of acoustic radiation and scattering from a rigid body are
presented in the following sections.

In the first two sections, acoustic radiation models of the infinitely long rigid
cylinder and the axisymmetric sphere are chosen to thoroughly test the two-dimensional
and axisymmetric implementation of the multi-domain direct collocation boundary
element method, respectively. Results are compared to conventional direct collocation
boundary element models and analytical solutions.

A typical boundary element mesh of an infinite acoustic subdomain is shown in
Figure 4.5. The boundary of the radiating object is discretized using conventicnal linear
or quadratic boundary elements, according to the rule of thumb of seven acoustic degrees

of freedom per acoustic wavelength. The different subdomains are separated by means of
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interface boundary elements, along which the continuity of the acoustic field variables is
prescribed. A single variable order infinite interface boundary element can be combined
with a number of conventional interface boundary elements in the acoustic near field of
the infinite interface. The computational meshes for the test cases at hand are chosen as
depicted in Figures 4.6 and 4.7. In order to thoroughly explore the performance of the
higher order infinite boundary element, the conventional interface boundary elements are
omitted in most test cases. The symmetry planes in the two-dimensional models are
enforced by implementing variable order infinite rigid half plane boundary elements. In
all examples, the acoustic medium is air at ambient conditions, with density
p = 1.21 kg/m® and speed of sound ¢ = 340 m/s.

4.3.1.1. Acoustic monopole radiation by an infinitely long rigid cylinder

Figure 4.8 shows the frequency response function, within a frequency range of
0 < kR < 40, for a uniformly pulsating infinitely long rigid cylinder cf radius R.
Results are compared with the direct collocation boundary element solution and the
analytical solution, given as [4.30]
— H®(kr)

p() = -ipcV,

—_— 441)
° H®/(kR)

where H,® is the zeroth order cylindrical Hankel function of the second kind and ¥ is
the velocity amplitvde of the vibrating cylinder. A boundary element discretization of one
hundred and twenty linear boundary elements is chosen for raodelling the radiating
boundary of the cylinder, for both the conventional and the multi-domain boundary
element calculation mesh. As a first test, only two subdomains are created at this stage.
In the figure legends, the multi-domain boundary element methods are labelled with the
number of subdomains and the order of the infinite boundary element, e.g. 2 dom -
order 1 indicates two domains and an infinite element of order one. A single infinite
interface boundary element of order one is used for modelling the infinite radial interfaces

between the subdomains. Note that this simple multi-domain mesh has the same number
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of acoustic degrees of freedom as the conventional boundary element mesh.

As shown in Figure 4.8, the multi-domain solution models the monopole radiation
accurately for all frequencies. It doesn't share the non-uniqueness problem of solution at
certain critical frequencies, as found in most boundary element formulations. The direct
collocation boundary element method does reflect non-uniqueness problems at these
critical frequencies. The occurrence of the singularities at critical frequencies is a purely
mathematical problem arising from properties of the boundary integral equation. No
physical meaning for the exterior radiation problem can be attributed to this phenomenon,
since an exterior boundary value problem has a unique solution for all frequencies. As
explained in Reference {4.12], the critical frequencies for an exterior Neumann boundary
value problem are the eigenfrequencies of the complementary interior homogeneous
Dirichlet problem.

The monopole radiation problem of the infinitely long rigid cylinder is formulated
as a Neumann boundary value problem with uniform velocity boundary conditions
v_” = V. The critical frequencies are therefore the resonant frequencies of the interior
standing modes of the infinitely long cylinder, subject to pressure-release boundary
conditions p = 0, given as [4.7,4.34)

koqR = ag, 4.42)
where aBo' is the g™ root of the zeroth order Bessel function of the first kind, which can
be found from

Jo(ag,) = 0 (4.43)

In general, it can be shown, that the critical wave numbers, kan , for a cylindrical multi-
pole of order n can be solved from [4.7,4.34]
J,_(an) =0 n=901,2, . (4.44)

From tables, as in Reference [4.35], the first four critical wave numbers are therefore
given as £, R = 2.405, kR = 5.520, k,,R = 8.654 and kR = 11.792.

For acoustic radiators of arbitrary shape, these critical frequencies can not readily
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be determined. A good indication of their occurrence, however, is the condition number
of the system matrix A. Around critical frequencies the condition number increases
rapidly.

Different methods to overcome this non-uniqueness problem for boundary element
formulations have been developed. All these methods have been documented in the
literature as in References [4.10-4.13]. The most popular method consists of combining
the surface and the interior integral equations, the so-called CHIEF-method as formulated
by Schenck [4.10]. The idea is to over-determine the systems with equations from the
interior Helmholtz integral. The over-determined system is then solved by a least squares
procedure. The problem for this method lies in the choice of the interior collocation
points, as points chosen on the nodal lines of the interior standing modes do not aid in
reducing this problem. For high frequencies this can quickly become a problem.
Numerous over-determination points may have to be chosen for certain frequency ranges
in order to effectively solve the non-uniqueness problem. Dealing with singularities can
thus become very costly in terms of calculation time.

As mentioned before, the multi-domain boundary element method doesn't reflect
non-uniqueness problems. From the previous discussion, this can intuitively be explained
from the observation that the complementary Dirichlet problem of each subdomain
boundary value problem has no eigenfrequencies, simply, because the complementary
domain is of infinite extent as well. No standing modes can exist in the complementary
problem, as it too is an exterior boundary value problem. The multi-domain boundary
element method can therefore be used to avoid singularities caused by the non-uniqueness

problem of the boundary integral equation.

4.3.1.2. Acoustic monopole radiation by an axisymmetric rigid sphere

A similar test is conducted for the axisymmetric monopole radiation due to a
uniformly pulsating rigid sphere of radius R. Figure 4.9 shows the frequency re nonse
function, again within a frequency range of 0 < kR < 40. Resuits are compared with

the direct collocation boundary eiement soluticn and thc analytical solution, given as
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[4.30]

- pcV [B) kR _ ,-iwe-m 4.45
p(r) peVo(r)l+ikRe (4.45)

where ¥, is the velocity amplitude of the pulsating sphere. The computational mesh for
the multi-domain boundary element method consists of two domains separated by a single
infinite interface boundary element of order one. Figure 4.9 shows excellent agreement
between the multi-domain and the analytical solution. The direct collocation boundary
clement method is again subject to the non-uniqueness problem. Similarly, for the
pulsating sphere, these critical frequencies are the eigenfrequencies of the standing modes
within the sphere subject to pressure-release boundary condition. These critical
frequencies can be found from the solution of [4.7,4.8]

jo(quR) =0 (4.46)

and therefore are
koqR =qmw q9-=1223 . 4.47)

where j, is the zeroth order spherical Bessel function of the first kind.

As noted earlier, the axisymmetric multi-domain boundary element method quickly
becomes very costly in terms of calculation time for higher frequencies, due to the
expensive numericai integration of the infinite interface elements. As mentioned earlier
in Sections 4.2.2.3. and 4.24.3,, cach evaluation of the free-space Green's function
involves a numerical integration in the angular direction, requiring a considerable number
of Gauss-quadrature points as the frequency and the distance form the symmetry axis
increases. The multi-domain boundary element method is therefore less attractive for

axisymmetric radiation models.
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4.3.1.3. Acoustic plane wave scattering from an infinitely long rigid cylinder

In the following, the acoustic plane wave scattering from an infinitely long rigid
cylinder of radius R is modelled using the multi-domain boundary element method. The
scattering problem is reformulated as an equivalent radiation problem through the
application of the superposition method [4.24]. The normal velocity boundary conditions
for the calculation of the scattered acoustic pressure field p, are obtained from the known

incident pressure field p, in the form ‘T = -v, for a rigid scatterer. Results are

compared to the analytical solution, given as [4.30]

S, n JkR) H Ok
€
= H,®/(kR)

p(rf) = - P, cos(nb) (4.48)
where J, is an n™ order Bessel function of the first kind, €, is the Neumann function
e,=1ifn=0ande, =2 if n>0), P,is the amplitude of the incident plane wave
p(x) = P, exp(-ikx), travelling along the symmetry axis (x-axis), and @ is measured from
the direction of the incoming plane wave. The infinite series converges rapidly and can
be truncated according to a suitable convergence criterium.

In Figures 4.10 and 4.11, poiar plots are shown of the scattered acoustic pressure
field at a radius of r = SR for a wave number of kR = 2.405 and kR = 8.654 respectively
(i.e. the first and third critical wave numbers). These specific wave numbers are chosen,
since they constitute critical frequencies for the problem at hand. A simple two subdomain
poundary element model is used for modelling the scattered acoustic field. Results for
infinite interface elements of order one, two and three are compared with the analytical
solution. In both cases good agreement is observed, even for the low first order boundary
element modelling. The results for the modelling of order two and three are virtually
indistinguishable, with a slight edge for the third order modelling of the side-scattering
region, i.e. around @ = 90°. Again, no singularity problems are observed for the multi-
domain boundary element modelling at these critical frequencies.

Next, the forward, sideward and backward scattered acoustic pressure is observed

in the frequency range 0 < kR < 30, for both the near (r = 1.1R) and far
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(r = 100R) field. These tests give an overall view of the performance of the simple two
subdomain boundary element model i1 the whole frequency range of interest. Figures 4.12
to 4.14 show the results for the near field, while the far field results are presented in
Figures 4.15 to 4.17. As in the previous polar plots, at least a second order infinite
boundary element model is needed for accurate modelling of the acoustic pressure field
within the frequency range. One should also note that the results for the far field appear
to be better than those of the near field. This can be explained following the reasoning
in the next section. It will be shown that a scattered pressure field can be interpreted as
a superposition of multi-poles. In order to model the local scattering phenomenon in the
vicinity of the scatterer at increasing wave numbers, higher order multi-poles are
necessary. The multi-domain boundary element method will reveal limitations in
modelling <hese higher order multi-poles, resulting in reduced accuracy for those

scattering fields tha: require a contribution of these multi-poles.

43.2. LIMITATIONS OF THE MULTI-DOMAIN BOUNDARY ELEMENT
MODELLING

In all u. examples studied up to now, only a simple multi-domain model with two
subdomains has been used. For this low degree of subdomaining, the infinite interface
can be adequately modelled by a single infinite boundary element of order two in the
frequency range of interest, i.e. 0 < kR < 30. In the following, multi-domain models
of higher degree of subdomaining will be studied. The higher the degree of subdomaining,
the more banded the system matrices will be, resulting in data-storage advantages and
computational efficiency. On the other hand, from the discussion of the variable order
infinite wave envelope element in Reference [4.24], one can expect that a high degree of
subdomaining inevitably will lead to a more local implementation of the radiation
condition, and thus a limitation in the modelling capability of arbitrary radiation patterns.

The sideward plane wave scattering from an infinitely long rigid cylinder of radius
R is chosen as test case to explore the limitations of the multi-domain boundary element

modelling. The frequency range is selected as 0 < kR < 20, since results in this range
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already reflect the modelling problems for the multi-domain models under investigation.
The i:oundary of the cylinder is modelled usine sixty quadratic conventional boundary
elements. Models of two, four, twelve and twenty subdomains are used, while the order
of the variable order infinite elements varies from one up to five. Again, in most cases
the infinitc interface is modelled by a single variable order infinite element, to fully
concentrate on the performance of the new element.

Figures 4.18 to 4.21 show the scattered acoustic pressure amplitude for a field
point at x = 0 and y = SR, for first, second, third and fourth order multi-domain
modelling respectively. For each particular order, results for respectively two, four, twelve
and tweaty subdomain models are presented and compared to the analytical solution. On
the ott . aand, Figures 4.22 to 4.25 present the same results, grouped per individual
multi-aumain model, while varying the order of the infinite boundary element.

Overall, one can state that for a given order of the infinite boundary element the
performance of the multi-domain boundary element modelling decreases when going to
a higher degree of subdomaining. While for a given level of subdomaining, the modelling
accuracy improves when the order of the infinite boundary element is increased. The
effect becomes more apparent at higher wave numbers. It should be noted here that the
madelling problems at low wave numbers, for a high degree of subdomaining combined
with a high order boundary element modelling, can be attributed to another phenomenon,
that will be explained later at the end of this section.

The fact «hat more acoustic degrees of freedom are needed along the infinite
interfaces, when the level of subdomaining of the acoustic domain and the acoustic wave
number of the scattering problem increases, can be explained according to the same
reasoning presented in Reference [4.24] for the variable order infinite wave envelope
element method. The scattered field from a rigid infinitely long cylinder can be
considered as a superposition of multi-poles of different order, which are of the form
[4.30]

. H®%)
pr8) = -ipcV

, ——————— cos(nf) (4.49)
Hn(Z) (kR)
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where the prescribed radial surface velocity is given by

V,(8) = V, cos(nf) V.<R (4.50)

As is the case for the variable order infinite wave envelope element modelling, the
ability for modelling higher order multi-poles requires not only satisfactory angular
discretization for modelling the lobe-shaped pressure patterns, but moreover, a sufficient
number of acoustic degrees of freedom along the infinite interfaces are needed, for
modelling the amplitude decay. This reasoning is based on the observation of the
asymptotic infinite expansion of an arbitrary two-dimensional pressure field within a
region r > R [4.17]

2 it & f,(0)
kr) ~ l__ e aSe) 4.51)
p(kr) i § 7

where f (8) is a complex radiation pattern.

It was found, from the study of the limitations of the variable order infinite wave
e:xvelope element, that only the radiation patterns that constitute a good radiator can be
modelled accurately. This means that the multi-poles of different order can be modelled
as fong as the acoustic wave number k is greater than the critical wave number k_ = #/R,
as indicated in Reference [4.24,4.31]. Furthermore, it was observed that the error in
modelling radiation patterns with acoustic wave numbers around and below the critical
wave number, can be reduced by going to a higher order element modelling.

In case of the multi-domain boundary eiement modelling, a similar behaviour is
expected when the acoustic domain is subdivided into a fair number of subdomains,
rendering a local application of the radiation condition. In Figures 4.26 to 4.28, polar
plots of the acoustic pressure amplitude of the cylindrical multi-pole radiation of order
five, fifteen and twenty-five are presented. The acoustic response was taken at aradius r = 5R
for an acoustic wave number of kR = 20. The multi-domain mesh consists of twenty

subdomairs, with a single infinite interface boundary element of order one to four, and
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has a boundary element discretization of sixty quadratic conventional boundary elements
along the radiating boundary of the cylinder.

In Figure 4.26 the radiation pattern of a multi-pole of order five is shown. Since
the acoustic wave number kR = 20 is well abcve the critical wave number kR = 5. no
problems are expected for this case. The results of the multi-domain mcdels of order one
to four correspond perfectly to the analytical solution. A cylindrical multi-pole of order
fifteen is then considered in Figure 4.27. For this car= the acoustic wave number is fairly
close to the critical wave number kR = 15. Some problems are now detected for the
jower order multi-domain modelling. The fourth order infinite boundary element reflects
the best performance in this case. Finally a poor radiator configuration is investigated in
Figure 4.28. The acoustic wave number is now lower than the critical wave number
kR = 25 of this cylindrical multi-pole of order twenty five. As can be seen irom the
figure, all multi-domain models fail. In the following figure (Figure 4.29), an attempt to
mode! the same multi-pole, using infinite boundary elements of order five, is shown.
Some improvement can be detected due to the fact that at least the pattern of the different
lobes are being modelled. The amplitude of the differsnt lobes though still reflect major
discrepancies. The same figure also reveals that even a multi-doinain model of only four
subdomains fails in a similar way.

From the above tests of th. multi-domain boundary element modelling with
interfaces modelled by a single variable order infinite toundary element, one can conclude
that only good radiators can be modelled. Figures 4.30 and 4.31 show contour plots of
the amplitude of the radiated acoustic pressure field for a cylindrical multi-pole of order
ten, evaluated using the analytical expression of Equation (4.49). The field in Figure 4.30
is calculated at an acoustic wave number of kR = §, which is below the critical wave
number of kR = 10. The pressure pattern obtained consequently reflects a - 0T
The acoustic energy flows back and forth within the acoustic near field, the so-called
short circuiting phenomenon. On the other hand, the pressure patiern showa in
Figure 4.31 is calculated at a wave number of kR = 1§, above the critical wave number
of the cylindrical multi-pole. The pressure pattern now reveals the characteristic field of

a good radiator, where the acoustic energy predominantly flows towards infinity. From
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the observation of these pressure patterns, the limitations of the multi-domain boundary
element modelling with interfaces of single variable order boundary elements come as no
surprise. Due to the nature of the infinite boundary elements, i.e. outgoing wavelike
variation and prescribed amplitude decay, little transfer of acoustic energy from one
subdomain into the other is possible.

The observation presented above suggests that, for modelling poor radiators below
the critical wave number, it can be beneficial to model the interface in the near field with
conventional interface boundary elements. These elements can be seen as a window for
acoustic energy transfer between the different subdomains. Figure 4.32 shows a polar plot
of the previously modelled cylindrical multi-pole of order twenty five at an acoustic wave
number of kR = 20. Very good agreement is obtained for the results obtained from a
multi-domain model where the near field of the infinite interface is modelled by four
quadratic conventional interface boundary elements, confirming the above reasoning.

Finally, another aspect of the multi-domain boundary element modelling should
be re-addressed. It was noted earlier in this section, that modelling problems occur when
calculating scattered pressure fields at very low wave numbers, using multi-domain
models with a high number of acoustic degrees of freedom along the infinite interface.
The scattered field at these low wave numbers consists predominantly of a superposition
of the contribution of the multi-poles of low order, i.e. the monopole, dipole, etc.. From
the discussion in this section, these low order multi-poles can be modelled accurately by
very simple multi-domain models. A first order infinite interface boundary element has
proven to be sufficient. Therefore, when using more flexible multi-domain boundary
element models, i.e. with more acoustic degrees of freedom, a numerically unstable
system can be obtained. The likelihood uf this numerical instability is confirmed by a
high condition number for the system matrices, indicating an ill-conditioned set of

boundary element equations for these multi-domain models.

4.3.3. CYLINDRICAL SOURCE SCATTERING FROM A SINGLE RIGID BARRIER

In a last example, a two-dimensional cylindrical source scattering from a single
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rigid barrier is studied. The barrier is of height H = 1 and width W = 0.2H. The
cylindrical acoustic source is located at x = -1.5H and y = 0.15F, as shown in
Figure 4.33. The computational meshes used for this problem have a boundary element
discretization of eighty-eight linear conventional boundary elements along the radiating
boundary of the barrier. The multi-domain meshes employ the variable order infinite
rigid hard plane boundary elements along the plane y = 0. The single subdomain mesh
spans the whole region from the one infinite rigid half plane boundary element to the
other, while the two subdomain mesh reveals a variable order infinite interface element
along the symmetry plane x = 0. All infinite elements used are of order one in order to
add the least number of acoustic degrees of freedom.

Figure 4.33 shows a contour plot of the pressure amplitude of the total acoustic
field at a wave number of kH = S, obtained from the two subdomain model. The total
acoustic pressure field is obtained from superposition of the calculated scattered pressure
field and the incident field due to the cylindrical source. The standing wave patterns in
front and the acoustic shadow zone in the region behind the barrier can be observed.

Frequency response functions of the amplitude of the total acoustic pressure at a
field point located at x = SH and y = 0.1H are given in Figures 4.34 and 4.35. The
results are compared with calculations obtained from direct collocation boundary element
methods. The conventional boundary element methods reflect singularity problems at
wave numbers around k = 16 and k = 32. These singularities can be drastically reduced
by applying the over-determination procedure. Figure 4.34 reflects the rcsult when using
ten randomly spaced over-determination points within the barrier geometry. The two
subdomain boundary element model shows no signs of singularities and proves once again
to be a convenient method for completely excluding the non-uniqueness problem. The
multi-domain method is not only efficient, in that no extra degrees of freedom are added,
but it also avoids the need for finding the appropriate number and, especially, the location
for the interior over-determination points. The latter is not an easy task for arbitrary
geometry configurations.

Figure 4.35 reveals an interesting aspect. When the acoustic domain is modelled

by a single subdomain, weak singularities appear at similar wave numbers as detected for
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the conventional direct collocation boundary element method. This can be explained by
the fact that the domain of the complementary problem allows for local resonances. In
this case, the interior of the single barrier can act as a local resonator. As soon as two
subdomain- :ce defined the possibility of a local resonator is removed.

A gr:at advantage of the multi-domain boundary element modelling is thus the
fact that one can always make sure that the different acoustic subdomains are well
defined. In doing so, not only the singularities can be removed, but moreover the well-
known difficulties with boundaries folding back onto each other, as in thin slender
structures, can be avoided [4.28].

Finally Figure 4.36 shows a plot of the insertion loss in dB of the single bar.ler
for the same source-receiver configuration. The insertion loss is defined as

P
A

IL(dB) - - 20 log (4.52)

where p, is the acoustic pressure at the receiver location due to the source above a rigid
half plane, without the barrier in place. The results produced by the multi-domain model
show a characteristic insertion loss curve for this type of barrier, while the conventional

boundary element method obviously shows problems due to the non-uniqueness problem.

4.4. CONCLUSIONS

A new variable order infinite boundary element for direct collocation multi-domain
boundary element modelling of acoustic radiation and scattering problems has been
presented. The special aspects of the finite to infinite geometry mapping, the variable
order Lagrangian shape functions and the wavelike variation have been adopted from the
formulation of the variable order infinite wave envelope element.

The main difficulty for the implementation of the element lies in the integration
within the infinite domain. In a first attempt, the approach of Zeng et al. [4.25] is used.
The integral is iruncated at a finite distance and divided into a number of subelements,

which are integrated separately by conventional Gauss quadrature. Singularities are taken
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care of by the method of Telles [4.27] within each subelement. The integration scheme
is therefore quite costly in terms of calculation time, especially, in case of axisymmetric
modelling, where earh evaluation of the free-space Green's kemel involves an integration
in the angular -rection. In future research, Gifferent integration schemes can be
investigated for more efficient evaluation of the infinite integral.

Due to costly integration of the axisymmetric formulation, test cases have been
focussed on the two-dimensional multi-domain boundary element modelling. The acoustic
modelling of radiation and scattering from an infinitely long rigid cylinder is investigated
to evaluate the performance of the direct collocation multi-domain boundary element
method. A great advaniage is the fact that no singularities are present due to the non-
uniqueness problem, common for conventional boundary element formulations. However
slight singularity problems manifest themselves, when local resonances in the
complementary interior problem can be established. The latter can always be avoided by
a proper choice of subdomain geometry. In fact, through an adequate selection of
subdomauins, the boundary of each subdomain can be well defined, in a way that problems
of near-singular behaviour, involved with thin siender structures, can be avoided.

Tests have been performed with different computational meshes, where the degree
of subdomaining and the order of the infinite boundary element has been varied. It was
found that going to a higher order of subdomaining results in a more local application of
the Sommerfeld radiation condition and thus limitations in modelling general radiation
and scattering problems. In fact, at a high degree of subdomaining similar behaviour is
noticed as in the case of the variable order infinite wave envelope element [4.24]. It is
seen that in general good radiators, where the acoustic energy predominantly flows
towards infinity, can be modelled without any problem. For poor radiators, where energy
flows within the acoustic near field, adequate transfer of acoustic energy is necessary
across the subdomain interfaces. This can be accomplished to some degree by going to
higher order infinite interface elements, but eventually, a so-called acoustic window of
conventional interface boundary elements is necessary to allow for sufficient acoustic
energy exchange from one subdomain into the other.

The multi-domain boundary element method has great promise to be an adequate
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tool for modelling scattering problems from arbitrary barrier configurations. Even with
a minimal degree of subdomaining, the great advantage of avoiding the non-uniqueness
problem is prominent. Furthermore, the fact that infinite half planes can be modelled by
means of the variable order infinite boundary elements, opens up a whole new class of
barrier configurations. Barrier configurations with half planes elevated at different heights
can now be modelled. One can also think of applying a uniform impedance along these
infinite edges. These infinite impedance planes have been modelled before to some extent
by the implementation of special Green's kernels in the boundary element formulation,
as in Reference [4.31]. In the latter formulation, only a single infinite impedance plane
can be considered, while by using the multi-domain approach different impedance plane
configurations, e.g. again at different heights, can be analyzed. Scattering models of this

type can prove very useful in the study of road noise barriers.
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Figure 4.1

Radiating body in an infinite domain: geometric configuration for

boundary integral formulations.
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Figure 4.2  Multi-domain boundary element configuration.
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Figure 4.3  Infinite boundary element geometry mapping.
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Figure 4.4

O Geometry node

® Acoustic node

Finite Subelement

Variable order infinite boundary element.
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Figure 4.5  Sample subdomain boundary element discretisation.
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Figure 4.8

Acoustic radiation by a rigid cylinder - monopole.
Fraquency response function of the amplitude of the radiated acoustic

pressure at r = SR.
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Figure 4.10 Scattering of an acoustic plane wave (= +x) from a rigid cylinder.
Polar plot (0 < 6 < 180) of the amplitude of the scattered acoustic
pressure |P AP, at r = 5R for kR = 2.405.
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Figure 4.11 Scattering of an acoustic plane wave (= +x) from a rigid cylinder.
Polar plot (1 < 8 < 180) of the amplitude of the scattered acoustic
pressure {PIAPJ at r = 5R for kR = 8.654.
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Figure 4.12 Scattering of an acoustic plane wave (— +x) from a rigid cylinder.
Frequency response function of the amplitude of the scattered acoustic

pressure IP AP} at x = 1.IR; y = 0 (Near field - forward scattering).
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Figure 4.13 Scattering of an acoustic plane wave (— +x) from a rigid cylinder.
Frequency response function of the amplitude of the scattered acoustic

pressure IPJAP| at x = 0; y = I.IR (Near field - sideward scattering).
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Figure 4.14 Scattering of an acoustic plane wave (— +x) from a rigid cylinder.
Frequency response function of the amplitude of the scattered acoustic
pressure IPJAP| at x = -1.IR; y = O (Near field - backward scattering).
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Figure 4.15 Scattering of an acoustic plane wave (= +x) from a rigid cylinder.
Frequency response function of the amplitude of the scattered acoustic

pressure |PIAP| at x = I00R; y = O (Far field - forward scattering).
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Figure 4.16 Scattering of an acoustic plane wave (= +x) from a rigid cylinder.
Frequency response function of the amplitude of the scattered acoustic

pressure |PJAP,| at x = 0; y = 100R (Far field - sideward scattering).
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Figure 4.17 Scattering of an acoustic plane wave (= +x) from a rigid cylinder.
Frequency response function of the amplitude of the scattered acoustic
pressure |PJAP;| at x = -100R; y = O (Far field - backward scattering).
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Figure 4.18 Scattering of an acoustic plane wave (- +x) from a rigid cylinder.
Frequency response function of the amplitude of the scattered acoustic
pressure {PIAP| at x = 0; y = 5R.

Results obtained for infinite boundary elements of order 1, while

varying the degree of subdomaining.
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Figure 4.19 Scattering of an acoustic plane wave (— +x) from a rigid cylinder.
Frequency response function of the amplitude of the scattered acoustic
pressure |IPAP| at x = 0; y = 5R.

Results obtained for infinite boundary elements of order 2, while

varying the degree of subdomaining.
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Figure 4.20 Scattering of an acoustic plane wave (— +x) from a rigid cylinder.
Frequency response function of the amplitude of the scattered acoustic
pressure |PJAP) at x = 0; y = 5R.

Results obtained for infinite boundary elements of order 3, while

varying the degree of subdomaining.
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Figure 4.21 Scattering of an acoustic plane wave (— +x) from a rigid cylinder.

Frequency response function of the amplitude of the scattered acoustic
pressure |PAP}! at x = 0; y = SR.
Results obtained for infinite boundary elements of order 4, while

varying the degree of subdomaiaing.
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Figure 4.22 Scattering of an acoustic plane wave (— +x) from a rigid cylinder.
Frequency response function of the amplitude of the scattered acoustic
pressure IPJAP| at x = 0; y = 5R.

Results obtained for a mesh with 2 subdomains, while varying the order

of the infinite boundary element.

187



0.35
[
0.30 }
E’ 0.25 [
& 0.20 |
; 0 analytical
[ -8 4 dom — order 1
0.15 -a-- 4dom - order 2
{ --©-- 4dom - order 3
I —e&— 4dom - order 4
o.lo’»LJIJAI*AJJAAJ[ALAALJAll‘J_LAI“lllllllllw | P
4 6 8 10 12 14 16 18 20
kR

Figure 4.23 Scattering of an acoustic plane wave (— +x) from a rigid cylinder.
Frequency response function of the amplitude of the scattered acoustic
pressure |PIAP,| at x = 0; y = 5R.

Results obtained for a mesh with 4 subdomains, while varying the order

of the infinite boundary element.
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Figure 4.24 Scattering of an acoustic plane wave (— +x) from a rigid cylinder.
Frequency response function of the amplitude ..f the scattered acoustic
pressure |PIAP| atx = 0; y = 5R.

Results obtained for a mesh with 12 subdomains, while varying the
order of the infinite boundary element.
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Figure 4.26 Cylindrical multi-pole of order 5.
Polar plot (0 < @ < 90) of the amplitude of the radiated acoustic
pressure at r = SR for kR = 20.
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Figure 4.27 Cylindrical multi-pole of order 15.
Polar plot (0 < 8 < 90) of the amplitude of the radiated acoustic
pressure at r = 5R for kR = 20.
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Figure 4.28 Cylindrical multi-pole of order 25.

Polar plot (0 < 6 < 90) of the amplitude of the radiated acoustic

pressure at r = SR for kR = 20.
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Figure 4.29 Cylindrical multi-pole of order 25.
Polar plot (0 < 8 < 90) of the amplitude of the radiated acoustic

pressure at r = 5R for kR = 20.

Effect of degree of subdomaining.
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Figure 4.30 Cylindrical multi-pole of order 10.
Contour plot of the amplitude of the acoustic pressure for kR = 5.

Example of a poor radiator.
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Effect of local resonances.
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CHAPTER §

CONCLUSIONS AND FUTURE RESEARCH

5.1. SUMMARY

The numerical modelling of the acoustic pressure field generated by an arbitrary
vibrating body in an infinite domain is a challenging task. The major difficulty lies in the
adequate application of the Sommerfeld radiation condition. In theory, this radiation
condition has to be satisfied at an imaginary surface at infinity, prescribing local outgoing
travelling plane waves.

The boundary element formulations satisfy this condition exactly through the use
of the free-space Green's function, and are therefore suitable for modelling this type of
wave propagation problem. From a practical point of view however, in general, two major
problems are encountered in the use of these boundary element methods. One problem
is the fact that the boundary element method is in essence a global acoustic numerical
modelling tool. This means that all acoustic degrees of freedom are directly coupled to
all other acoustic degrees of freedom of the model, leading to fully-populated complex

system matrices as compared to the banded symmetric matrices resulting from finite
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element analysis. This necessitates very large computation times and memory
requirements, rendering large-scale problems unsolvable. The other problem is the well-
known non-uniqueness problem at certain critical frequencies. Modified boundary element
methods, that have been developed to reduce these singularity problems, have proven to
be impractical, i.e. adequate choice of interior over-determination points, and can be
costly in terms of computation time.

The finite element based methods for acoustic radiation and scattering administer
a local application of the Sommerfeld radiation condition. Through an adequate choice
of element connectivity, computational efficient banded system matrices can be obtained
for this class of methods. The recent developments in this area involve the higher order
boundary dampers and a special class of infinite elements, the so-called infinite wave
envelope elements. These infinite elements are matched onto a conventional finite element
mesh, modelling the acoustic near-field. The near-field mesh has to extend sufficiently
into the acoustic domain to avoid spurious reflections of the outgoing waves at the finite-
infinite element interface.

The objective of this thesis was to enhance the formulation of the infinite wave
envelope element for two-dimensional and axisymmetric acoustic modeiling. A variable
order infinite wave envelope element was developed, allowing for the specification of an
arbitrary number of acoustic degrees of freedom in the radial direction of the element,
going out to infinity. The element is capable of modelling the outgoing waves more
accurately, and can therefore be moved towards the radiating body, minimizing the need
for conventional finite elements in the acoustic near-field.

The different aspects of the formulation of the variable order infinite wave
envelope clement have been discussed in Chapter 2. The flexible choice of acoustic
degrees of freedom has been implemented by using Lagrangian type element shape
functions for modelling the amplitude decay. An inverse geometry mapping was
developed for post-processing results at arbitrary field points within the acoustic domain.
Preliminary tests have shown the improving ability of modelling general radiation and
scattering problems by going to higher order elements. The sensitivity to acoustic source

location of the variable order infinite wave envelope elements has been investigated. It
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was shown that the higher order elements can reduce the geometry mesh sensitivity of the
method.

Chapter 3 was devoted to an investigation into the performance of the variable
order infinite wave envelope element modelling. The formulation of the variable order
infinite wave envelope element was enhanced by providing quadratic and cubic trial
functions in the angular direction, for better modelling of the curved wave-fronts of the
outgoing acoustic waves. Special modelling techniques, such as nodal acoustic source
application and boundary element integral based post-processing, were introduced and
tested. A very interesting application involved the modelling of acoustic scattering above
a homogeneous impedance plane. In the past this has only been possible by means of very
specialized boundary element methods with complicated Green's kemels, while the
impedance condition along the infinite edges of the variable order infinite wave envelope
elements can be readily incorporated into the finite element based modelling scheme.

A wide range of tests of radiation and scattering problems from an infinite rigid
cylinder and an axisymmetric sphere were setup to explore the modelling limitations of
the variable order infinite wave envelope element. In all models, the geometry mesh
consisted of a single layer of infinite elements, directly matched onto the radiating body,
to thoroughly test the performance of the element itself. A systematic investigation of the
mecdelling of the different higher order multi-poles revealed that, although performance
ircreased by going to higher order infinite wave envelope elements, in essence only good
radiutors can be modelled within the variable order infinite wave envelope element layer.
The transition from poor to good radiator occurs at the critical wave numbers of the
different order multi-poles. These same tests showed the importance of quadratic trial
functions in the angular direction of the element, for modelling the lobe-shaped radiation
patterns of the multi-poles.

The study of the variable order infinite wave envelope element indicated the
limitations of a local application of the Sommerfeld radiation condition. The local
application within the infinite element is only satisfactory when the acoustic energy
indeed predominantly flows along the edges of the element. This only occurs when the

vibrating body is radiating efficiently. The computational efficiency of the banded system
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matrices has a trade-off of a limited generality in modelling the radiation condition.

In an effort to merge the accuracy of boundary element methods and the
computational efficiency of the variable order infinite wave envelope element models, a
multi-domain boundary element method was then developed. The method is based on the
variational multi-domain boundary element method by Zeng et al.. A special variable
order infinite interface boundary element was incorporated in a direct collocation multi-
domain boundary element scheme, as outlined in Chapter 4. The trial functions of the
infinite interface element are based on the shape functions of the variable order infinite
wave envelope element, again in an effort to minimize the need for conventional interface
boundary elements in the acoustic near-field.

The main difficulty encountered in this multi-domain boundary element
implementation is the numerical integration of the infinite element contributions to the
system matrices. The integral was truncated at a finite distance and divided into a number
of subelements. Integration singularities are dealt with in each subelement separately by
the approach of Telles. In future research, different integration schemes should be
investigated for more efficient evaluation of these infinite integrals.

The great advantage of this multi-domain boundary element method is the fact that
no singularities occur due to the well-known non-uniqueness problem of conventional
boundary element methods. However it was shown that minor singularity problems can
occur when local resonances in the complementary problem are possible. But, in general,
these problems can be avoided by a proper choice of subdomain geometry.

A similar set of tests were performed to test the performance of the multi-domain
boundary element method. The interfaces between the different subdomains were
modelled by a single variable order infinite interface boundary element. Models of
increasing degree of subdomaining were investigated. It was found that going to a high
degree of subdomaining, and thus a more local application of the Sommerfeld radiation
condition, revealed similar limitations as compared to the variable order infinite wave
envelope element modelling. In order to properly model the acoustic field variables along
the infinite interfaces, a higher order element is needed as the degree of subdomaining

increases. In the case of very poor radiators, a so-called acoustic window of conventional
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interface boundary elements is needed for proper acoustic energy transfer between the
different subdomains.

The multi-domain boundary element method has proven to be a very attractive
method for modelling acoustic radiation and scattering in infinite domains. The
formulation is very flexible due to the fact that the degree of subdomaining can be chosen
depending on whether or not computational efficiency, i.e. computer data-storage, or
accuracy in the application of the Sommerfeld radiation condition, is important. The
method shows a great advantage, even with a minimal degree of subdomaining, due to
the fact that the non-uniqueness problem is completely eliminated.

The fact that infinite faces can be modelled with a single variable order infinite
boundary element, opens up the possibility of modelling different types of half planes. It
was shown how infinite rigid half planes can be modelled very easily. In future research
the possibility of applying impedance conditions along these infinite edges can be
considered. This would give the ability of modelling a whole new class of scattering and
radiation problems. For example, scattering from barrier configurations with elevated
impedance planes at different heights, important in the study of road noise barriers,
would become possible. These barrier configurations cannot be modelled with
conventional boundary element methods.

Finally, it should be noted that, in general, the finite element based variable order
infinite wave envelope element method, as well as the direct collocation multi-domain
boundary element method can be easily incorporated in existing elasto-acoustic coupling
schemes for modelling the full interaction between the radiating structure and the acoustic

pressure field.
§.2. CONCLUSIONS
The major conclusions of this thesis are as follows.

A variable order infinit> wave envelope element for modelling acoustic radiation and

scattering problems has been developed.
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@ the infinite wave element formulation was enhanced by providing the flexibility of
specifying an arbitrary number of acoustic degrees of freeGom in the radial direction, for
adequate modelling of the outgoing sound waves. The element minimizes the need for
conventional finite elements in the acoustic near-field.

8 the finite element based formulation yields complex banded system matrices, allowing

for efficient computer data storage and computation time requirements.

® the performance of the variable order infinite wave envelope is shown to be sensitive
to the acoustic source location of the element. This element geometry sensitivity <an be

reduced by using higher order elements.

® two alternative post-processing methods were implemented, i.e. interpolation among the
element acoustic degrees of freedom and the BEM-based method. Both methods were
shown to be of comparable accuracy. As well, two methods of applying acoustic sources
were introduced. A part from the familiar superposition of incident and scattered fields,

a direct acoustic source application at an acoustic degree of freedom was developed.

® an impedance boundary condition can be applied along the infinite edges of the variable
order infinite wave envelope element for modelling homogeneous infinite impedance
planes. In the past, this type of modelling has only been realized in some specific cases
by means of very specialized boundary element methods.

® a systematic study of the modelling of cylindrical and spherical higher order multi-pole
radiation revealed limitations of the variable order infinite wave envelope element
modelling, due to the local imposition of the Sommerfeld radiation.
o quadratic shape functions in the angular direction of the element prove superior
to the linear shape functions for modelling the lobe-shaped radiation pattems of

the higher order multi-poles.
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© in essence only good radiators can be modelled, i.e. where the acoustic energy
predominantly flows towards infinity.

o the performance of the variable order infinite element improves by going to
higher order elements.

o the order of the variable order infinite wave envelope element is limited to order
nine. Higher order elements yield ill-conditioned system matrices.

A variable order infinite boundary element was developed to be used in a direct
collocation multi-domain boundary element method, in an effort to merge the accuracy
of boundary element methods and the computational efficiency of the variable order

infinite wave envelope element models.

® the variable order infinite boundary element was developed based on the variable order
infinite wave envelope element, again to minimize the need for conventional boundary

elements in the acoustic near-field along the infinite interfaces between the subdomains.

® the main difficulty in the implementation of this method lies in the numerical
integration of the contributions by the infinite elements to the system matrices. The
method of simple truncation and the division into subelements proved to be adequate but

costly in terms of computation time.

® a similar study of the cylindrical and spherical higher order multi-poles was performed
to test the performance of the multi-domain boundary element method.
o models of increasing degree of subdomaining reveal similar limitations as those
of the variable order infinite wave envelope element modelling.
o for modelling poor radiators the use of a so-called acoustic window of

conventional interface boundary elements proved to be necessary.

@ the great advantage of the multi-domain boundary element method is the fact that there

are no singularities due to the non-uniqueness problem of conventional boundary element
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methods.

@ the multi-domain boundary element method allows for a flexible choice of degree of
subdomaining, depending on whether computational efficiency or accuracy in the
application of the Sommerfeld radiation condition is important.

§.3. RECOMMENDATIONS FOR FUTURE RESEARCH

Topics for future research, stemming from the completed work in this thesis, are mainly
focussed upon the improvemen: of the multi-domain boundary element method, as listed

below.

® altemative numerical integration methods can be investigated to evaluate the

contributions by the infinite boundary elements to the system matrices more efficiently.

® a method for post-processing acoustic field variables at an arbitrary field point using the
boundary values within a specific subdomain, rather than based on the surface values of

the whole radiating body, can be implemented.

® homogeneous impedance conditions can be applied alung the infinite boundary elements
for efficient modelling of impedance half planes. Scattering problems from a special class
of barrier configurations, e.g. with infinite impedance planes at different heights, can then
be modelled.

® a multi-domain boundary element method with different material properties in the

subdomains can be developed.

® both the variable order infinite wave envelope element and the multi-domain boundary

element method can be incorporated in an elasto-acoustic coupling scheme.
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APPENDIX 2-A

Finite Element Weighted Residual Formulation for
Exterior Radiation

As in all finite element analysis, the residual formulation starts with the choice of

a trial solution of the form

P'ex) = [N®)] i) 2.A.1)

where the acoustic pressure p’/(x) is approximated by internolating among the n nodal
values p; by means of interpolation (or shape) functions N (x). This approximated
pressure field p/(x) no longer satisfies the Helmholtz equation exactly, but leads to a
residual R(x), defined as

Vip/x) + k3p/(x) =Rx) x€V (2.A.2)

The objective is now to optimize the trial solution. Therefore the residual is
orthogonalised over the entire domain V by means of a series of weighting functions

W.(x). We get an integrated weighted residual, given as

[w,Rav -0 (2.A3)
| 4
and, using Equation (2.A.2)
[w,¥p'av + k*[w, p'av -0 (2.A4)
vV | 4

Then Green's first theorem is applied to this integral equation, yielding,
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/
[oW, - W’ av - k* [W,p'av - [W, %ds -0 (2.AS)
| 4 4 S

In general, the surface integral in Equation (2.A.5) consists of two parts, one on the
radiating body and one on a surface at infinity. This is depicted as

! / /
w X oas-(w P oas (w P gs
{,a” !‘an Sf..a" (2.A6)
By applying normal velocity boundary conditions on the radiating body S, and the
Sommerfeld radiation condition on the boundary at infinity §_. we can write

/
w P as - —ipkc [W.v dS - ik (W p'dS 2.A.7
{‘an P sf sf.,p 2.A7)

Since p/—» 0 as S_—» = will be prescribed by a suitable choice of shape functions, the
damping term in Equation (2.A.7) at S_ will vanish. As a result, a set of simultaneous

equations can be formulated in the form

[ K] - @? [M] ] {p} = {F) (2.A8)

where related coefficients result from substitution of Equation (2.A.1) into Equation
(2.A.5)

K, = [wW, - WN;av (2.A9)
14
_r1
M, - _[ S Wil v (2.A.10)
F --ipo [Wvds 2.A11)
S

o

In Equation (2.A.8), [K] and [M] are the acoustic stiffness and mass matrix. {F} is the
acoustic forcing vector corresponding to the prescribed velocity input on the sound

radiating body, while {p} are the unknown nodal pressure values to be solved for.
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APPENDIX 2-B

Derivative of the Radial Shape Function

All local derivatives of the shape functions in Equation (2.42) to (2.45) are easy

to evaluate. The derivative of the radial shape functions however, is somewhat more

involved and can be written as follows

ar®,  dT"; d4r
dt T dr dt
o ar",
= (- dr
LR 2.B.1
= (n-1)C", di L (*‘J')] (r - 2(n-1) ] ( )
T je0
jwi-l

k-1 n-1 n-1
I1 ¢ II EH|e-2-1)) |+ T] (=)
o A I P %

j*i

) 'ln-l
("l)Cl E
]k o

kwi)

Note that the R " (r) factor has to be considered in case of two-dimensional shape

functions.
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APPENDIX 2-C

Inverse Geometry Mapping

To determine whether or not a field point is situated within a certain clement, the
inverse geometry mapping is performed on the global coordinates of the field point. If the
field point lies in the element, the local coordinates will fall within the unit limits of the
parent element (i.e. -1 Ss<land-1<ts 1)

Unfortunately the inverse of the element geometry mappings, used in the acoustic
finite element modelling, are not easily obtainable in general, yielding a set of two non-
linear equations in the local coordinates s and ¢ For the infinite geometry mapping used
in the formulation of the »™ order infinite wave envelope element given in Equation

(2.20), this set of non-linear equations can be written as

fi)= X+ X, s+ Xt+X;5t =0

2.C.1)
gst) = Yo+ Y, s+Y,t+Y,st =0
where
Xy = 2x +x; + x,
X, = x4 x,
X, =2t -2, - 2q, + X3 + X, 2C2)
X;= 2% + 2 - x; + x,
and similarly
Yo=-20+y;+Y,
Y= 93+,
Y,=2% -2y -2y, +y; * ¥, (2.C.3)
Yi= 2, +2, - Y3+,
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In the above equations, x and y are the global coordinates for the field point under
investigation, while x; and y; are the global coordinates of the geometry nodes of the
element at hand.

The set of non-linear equations, given in (2.C.1), can iteratively be solved for by
the Newton-Raphson method, as follows

o

- =||As f

& o - 2.C.4)
2 &

x a8 8

An obvious initial guess is the local origin, i.e. s = C and ¢ = 0. The functions f
and g are very well behaved within the unit domain of the parent element. When the field
point is within the element, the method converges to the local coordinates of the field
point within a few iterations. Whereas when the node lies outside the element, the
solution immediately jumps outside the unit area of the parent element. Therefore, the
current values of s and ¢ are checked with the unit element limits after each iteration. As
soon as Isl > 1 or l7l > 1, the routine is aborted with the conclusion that the field point
does not lie within the element. When convergence is obtained, a flag is set showing that
the field point is situated within the limits of the element and the local coordinates are
past through for use in the interpolation of the results among the acoustic degrees of

freedom of the element.
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APPENDIX 2-D

Effect of Source Shift

A one-dimensional example is used to show the effect of a source shift on
numerical modelling of an amplitude decay, using variable order infinite wave envelope
elements. For convenience, the spatial wavelike variation is omitted. The differential

equation to be solved is

dp() _ 2p(®) _ (2.D.1)
dx? x*

with the boundary condition,

(2.D.2)

& &
||

The exact solution to this problem is a simple reciprocal decay. It can, therefore,
be modelled exactly using a variable order infinite wave envelope element with its source
at the origin x = 0.

In order to asses the power of higher order elements, the source location is now
shifted to x = 1, yielding the following infinite element configuration

x=1 =2 xp=3

The infinite geometry mapping is now given by

t1=1-28_.1_2 2.D.3)
X X

From the results in Table (2.D.1), the effect of the source shift is substantial for

the first order infinite element modelling. Going to higher order elements drastically
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reduces the error introduced by the improper source location. This indicates that a higher

order element may possibly account for the poor location of the acoustic source.

p(x)

0.50000

Infinite element order

0.44788

0.49841

3!\!
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4&
0.50000
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0.50000

0.50000

0.50000
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APPENDIX 3-A

Modelling of a Coherent Monofrequency Line Source
above a Homogeneous Impedance Plane.

The coherent monofrequency line source is located at ¢ = (X9+¥o) - The receiver
at r = (x,y) is situated in the half-space §, y > 0, above the homogeneous impedance
plane 85, y = 0, as shown in Figure 3.29.

Consider Gy(r,r,) as the acoustic pressure at a receiver point r , due to a unit line
source at r,, above an impedance plane with normalised surface admittance 8. As
discussed in Reference [3.18], GB(c,zo) , further referred to as the Gg-solution, can then

be written as a sum of G, and a correction term P,

Gu(t,r) = Gotr) + Pylror) (3.A.1)

where G, is the acoustic pressure above a rigid plane, B = 0. G, can easily be calculated
by superimposing the contribution of the line source at r, and its image source at L’o

given as

Gy.t) - —%Ho‘z)(kR) - i—Ho‘z)(kR’) (3.A.2)
where R = |t - r | and R "= r- L/cl are the distance from the receiver to the source
and image source respectively.

The correction te'm P, can be written as a Laplace-type integral representation,

as outlined in Reference [3.18]. For B = 1 this results in
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m/p

0

i 21
Py(riry) = Be? f s ? e*f(%) ds , Imp =0 (3.A.3)

while for g = 1

erfc(e ¢ ,/pa‘) (3.A4)

Piery - 222 [ 73 eng() a
Lr) = —— § e gl— +
A 0) "ﬁ

with p = kR’ and erfc(x), the complementary error-function. The functions f{t) and g(1)

are defined as

fo) = - ,/z—le(z Y(,la) '(? o R0
__"‘1 \/E' (3.A.5)
g() = f0) - 2\/1‘:’_132 . : - Reyi - = 0
where
a, =1+By = y1-p2y1-y?%, Rey1 -F 20 (3.A.6)

with ¥y = cos@, and 6, the angle of incidence (see Figure 3.29).
Equations (3.A.3) and (3.A.4) are well suited for numerical approximation by

Gauss-Laguerre quadrature, resulting in the following expressions [3.18]
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&

P, -~ P, -rr\/Ejszx wa o

ip m X. ie(l -a) -iw
PB © Pzn.m = Be E Win g(_l‘;!] + Ee—— e’fc(e ‘ pa‘)
j=1

wve J 2‘/1_p2

respectively. As discussed in Reference [3.18], optimal results, with respect to
computational efficiency and accuracy, are obtained using a (n = 40, m = 22)-rule,
neglecting the weights for j > 22.
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APPENDIX 4-A

The Helmholtz Integral Equation.

It is desired to obtain the pressure field p(x) in terms of an integral equation that
satisfies the Helmholtz equation in the domain V and the velocity boundary conditions at
the boundary. The equivalent integral equation for the Helmholtz equation can be written

as

[ @ [V + kPp@]aV -0  xeV @AD
4

where ¢ is an arbitrary function, single valued and bounded within the domain V. Through
the use of the free-space Green's function and Gauss' integral theorem, this integral
equation can be simplified to a boundary integral equation, reducing the dimension of the
problem by one. Next, the free-space Green's function is introduced and the boundary

integral equations are derived.
Green's function

The free-space Green's function G(P,Q) = G(|Rp—Rq|
imposing two mathematical conditions, which also have apparent physical meaning.
|RP-Rq| is the distance between the two field points P and Q.

Primarily, the Green's function is defined as the solution of the inhomogeneous

) is constructed by

Helmholtz equation, formulated as [4.33]
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(V2 + k?) G(R,-R,|) = - 8(R,-R,)) (4.A2)

The right hand side denotes the three-dimensional Dirac delta function defined as

[#®R) SRR\ aV = 6(R) R EV
| 4

4.A3)

®(R,)
—z—e— RPES

-0 R, ¢V

The free-space Green's function thus constitutes the response in field point P, due to an
acoustic point source of unit strength in field point Q. Note the symmetry in this
definition, in that point P and Q are interchangeable.

Secondly, the free-space Green's function has to satisfy the Sommerfeld radiation
condition. This can be written as

. SG(R,-R,) | ,
-R|® + ikG(|[R.-R =0 (4.A.49)
'R’_}::T‘_.' IRI’ QI ( 8|Rp_Rq| ! (I P QI)

This radiation condition ensures that only outgoing travelling waves are present in the
boundary integral equation for the acoustic pressure field.

Based on these two mathematical conditions, the free-space Green's function for
the Helmholtz equation can be determined as [4.33]

-i
G(IR,-R,|) = ) HOG)(kIRp—RqI) 2D
e e . (4.A.5)
(IRP ql) - 4"|'Rp_Rq|

for two- and three-dimensional acoustic radiation and scattering, respectively. In

equation (4.A.5), H,® is the zeroth order Hankel function of the second kind.
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Boundary integral equation

Gzuss' integral theorem, given as

!}'v-z dv = {E*g‘, ds (4.A.6)

relates the volume integral of a vector field F to the surface integral of the outer normal
component of F. If one considers the vector field defined as

E = p(Q) VG(P,Q) - G(P.Q) Vp(Q) 4.A.7)

the identity of equation (4.A.6) results into the following expression,

8G 8
(P — -G —3) ds (4.A.8)

V:G - G V’p)dV = -
f(P P) sn  n
| 4

§=5,+8,

known as Green's second formula, where n is the unit normal pointing towards the
domain V. The surface integral is taken over the surface of the radiating body S, and the
surface at infinity S_. The volume integral on the left hand side can be evaluated by
solving for V% and V°G from the Helmholtz equation and the inhomogeneous
Helmbholtz equation (4.A.2), respectively. After substitution into equation (4.A.8), the
integrand of the volume integral reduces to P(R) 8(R,-R ). Therefore, referring to the
definition of the Dirac delta function, stated in equation (4.A.3), the boundary integral

equation becomes

CPPP) - f P LD - oo ¥ )as@)  was)

S + S

o L J

where
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cP) - 1 Pev
- % PeS 4.A.10)
-0 PeV

Helmholtz integral equation

The boundary integral equation (4.A.9) shows a contribution by the surface at
infinity to the acoustic pressure in an arbitrary field point P. It can be shown that this
contribution vanishes [4.7], due to the Sommerfeld radiation condition. The Helmholtz

integral equation than becomes

CPPP) - f o) 2629 - o) EL )as@) @A

S,

o

The acoustic energy can therefore only flow from the vibrating body towards infinity.
From a physica! point of view, equation (4.A.11) states that the acoustic pressure at a
field point P is equal to the response due to a distribution of forces, weighted according
to the acoustic surface pressure, and a distribution of point sources, weighted by the
surface normal velocity, respectively. If the surface acoustic pressure and normal particle
velocity distribution on the radiating body is known, the acoustic pressure at an arbitrary

field point can be evaluated by means of the Helmholtz integral equation.
Surface Helmholtz integral equation

The key identity, used in the direct collocation boundary element method, is the
so-called Helmholtz surface integral equation. This equation relates the surface pressure

in a particular point P on the surface, to the acoustic pressure and normal particle velocity
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distribution of the rest of the radiating boundary. As shown before, this means that the
factor C(P) takes on the value //2 in equation (4.A.11). This is only valid for smooth
surfaces, for which the surface normal takes on a unique value. For special cases, e.g.
comners, where the surface normal is not unique, a more general expression for the factor C(P)

is necessary, given as [4.8]

CP) -1+ _1_ 5('R1 I) ds(Q) 4.A.12)
P

The factor C(P) can be interpreted as the exterior solid angle at point P on the surface
§,. In general, the surface Helmholtz integral can therefore be written as

. _1_ 5( 1
! f i 45| PP
f P 202 - aro) D) as)

S,

o

(4.A.13)
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APPENDIX 4-B

Efficient Numerical Integration of the Singular
Boundary Element Integrals

A singularity occurs when the field points P and Q coincide in evaluating the
boundary integrals. As the distance |‘Rp - Rq| approaches zero, the free-space Green's
function becomes singular. Although the total integral remains finite, special integration
methods have to be adopted to accurately integrate the rapidly changing function around
the singularity.

The approach by Telles [4.27] is an efficient method to deal with this type of
singularities for two-dimensional and axisymmetric analysis. The method consists of an
additional co-ordinate transformation whereby the Gauss-Legendre quadrature points are
shifted towards the location of the singularity.

Let the singular integral in local co-ordinates be as follows

1
1= [ fG) ds (4.B.1)
-1

and let the location of the singularity be at 5. In case of linear conventional boundary
elements, the singularity occurs at s = -1 or 5 = 1, i.e. the corner nodes of the element.
The quadratic element has an additional singularity at the midside node s = 0.

A new variable y is defined as
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where s* = 52 - 1. The integral can now be written as
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The integral is then integrated in the local co-ordinate y, using ten Gauss-Legendre

quadrature points.
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