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Chapter 1

Introduction

1.1 Motivation and Objective

In computer graphics, character animation is an important research area and many
research works focus on creating realistic and natural human animations. Recently,
the price of motion capture hardware has dropped significantly, and hence, tech-
niques based on motion capture data have become commonly used alternatives to
the other two animation techniques, namely, keyframing and physical-based simu-
lation. Because of the ease of use, realistic and natural motion capture data have
become widely used in commercial applications; in particular, with the development
of practical motion capture and editing techniques [4, 5, 6, 14, 16, 18, 20, 22].

To generate new motion patterns by reusing existing motion capture data is still
an interesting open problem. Two major approaches exist. One is to use motion
blending by combining two or more motion examples to form a new motion clip (16,
18, 20, 22]. The other approach is motivated by the video texture technique [2, 11,
12, 13}, by which a new motion sequence is generated by stitching the original motion
clips in a new order. Because it directly reuses the source motion sequences, it is able
to preserve realism and high-level details of the original motion. Moreover, motion
blending focuses on creating an individual motion clip, while motion reassembling
focuses on generating a new motion sequence. Both of the approaches mentioned
above have the same goal to create new motions from exiting motion capture data.

In this thesis, the focus is on techniques to stitch the original clips in a new order,
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in particular, in locating the best transition points in connecting two clips.

To use the raw motion capture data directly is difficult because of the unstruc-
tured and high complexity nature inherent in the data. Thus, motion analysis tools,
especially for analyzing human body motion, are indispensable and have become a
very important research topic in the context of motion editing. Motion similarity
analysis provides the foundation for many recent research works. For example, in
(2, 11, 12, 13], similar frames are detected first to find candidate transition points.
Then a new motion sequence is synthesized by reordering motion clips. As dis-
continuities are introduced at transition points, they must be carefully selected.
Thus, a smooth transition between clips is generated. While in motion blending
[4, 16, 18, 20, 22], time warping is performed to align the example motions in the
time domain (synchronization) according to the motion similarity.

Some motion editing techniques require the user to determine the similarity man-
ually [18, 20]. The animator specifies similar motion frames according to his/her
perception and experience. Therefore, the quality of the resulting motion depends
significantly on the animator’s skills. Moreover, it is a labor-intensive process. In
order to reduce the burden on animators and to increase the speed of motion sim-
ilarity analysis, some methods [2, 11, 12, 13] have been proposed to automatically
detect motion similarity.

Two main types of motion similarity metrics based on different motion features
are defined in previous works. The first one is based on joint orientations and veloc-
ities [2, 13], and the other on the distance between sample points (point clouds) [12].
Both of them emphasize on the pose similarity of two frames. In order to capture
kinematic information, such as velocity and acceleration, the first approach directly
incorporates these features, while the second approach considers the difference be-
tween the neighborhoods of the two frames. For the first approach, as the motion
capture data are directly represented by the joint angle of a skeleton, the similarity
metrics based on joint orientations can be easily computed directly. The disadvan-
tage of this technique is that it uses a weighted sum of multiple joint attributes as
a measure. The optimal attribute weights are very difficult to identify and may be
dependent on motion patterns. As a result, the dynamic information of the source

data may not be incorporated well. The second approach is very time consuming
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and dependent on the coordinate system. The assumption that a motion is not
changed by a rigid 2D transformation restricts its application to the movements on
the same ground plane.

In order to tackle the problems mentioned above, the present work introduces two
novel similarity features to reuse realistic motion capture data. Curvature, one of the
intrinsic properties of space curve, is used to capture the kinematic information. The
difference between joint positions in their own parent coordinates is used to evaluate
the similarity of body configurations. Both of these two features are coordinate
invariant and can be computed efficiently. Most importantly, no attribute weight
is needed in our approach. Additionally, to evaluation the performance of different
motion similarity methods, this thesis also presents a general criterion that helps
to determine optimal attribute weights used in other approaches. The experimental
results demonstrate that our approach for motion similarity analysis can generate
visually acceptable results and that the other methods’ performance can be improved

by using our new evaluation criterion.

1.2 Outline

This thesis is organized as follows. Chapter 2 concerns the related previous works.
In particular, motion capture data representation, motion synthesis by reusing mo-
tion capture data, and motion similarity analysis are discussed. The new motion
similarity analysis is presented in Chapter 3. Chapter 4 shows the experimental re-
sults to compare the new approach with other approaches. In Chapter 5, conclusion

and future work are discussed.
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Chapter 2

Related Work

2.1 Motion Capture

Realistic articulated figure animations have played an important part in a vari-
ety of applications including advertising, entertainment, education and simulation.
Though there are many animation techniques in this research area, to generate natu-
ral and realistic animation for a virtual human body is still a challenging task. There
are several reasons for this. First, we are very familiar with human movements. It
is quite easy for a person to identify any unnatural artifacts. Another reason is the
complex structure of a human body. This complexity makes it difficult to mathe-
matically define human motions and accurately control an articulated character in
a virtual environment as well as to model their interactions. Finally it is the fine
details inherent in the human motions that makes the animation of human body so
challenging. Thus, to provide a practical solution is still much desired.

Motion capture is a standard character animation technique, by which the move-
ment of a live subject is recorded and then mapped onto a computer generated
graphical model. Both facial motion and body motion can be captured. In this the-
sis, the focus is on full-body human motions. The major benefit of this method is
that the motion capture data contain all the high-level details of live motion, which
reveal the personality or mood of the recorded live subjects. On the other hands,
some disadvantages exist in this technique. First, except for planning the capture

session, animators have little control over the generated animations. Moreover, the
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motion capture data are difficult to edit. Typically motion capture data record the
pose in each frame of the motion, not just important instants of the movements as
in the case of keyframing. Thus, editing means a lot of data need to be dealt with.

Recently with the improvement of motion capture techniques and the lowering
cost of the hardware, realistic and natural motion data have become very popular.
For example, an animator can easily acquire a highly detailed motion clip with the
desired motion pattern, and then use it to drive a graphical character to produce a
stream of convincing or visually appealing animation. Indeed, in the recent movie,
“The Lord of the Rings: The Two Towers,” the character Gollum was animated
using this movement retargeting technique and won the MTV Best Digital Perfor-
mance Award in 2003 [10]. To make use of such abundant motion sources, many
research works have been proposed based on directly reusing motion capture data.
Typically they are divided into two categories, interpolation-based synthesis and
reassembling-based synthesis.

The remainder of this chapter is described as follows. First, the representation
of motion capture data is described. Then two categories of motion synthesis al-
gorithms based on exiting motions are discussed, namely, motion interpolation and
motion reassembling. As transition techniques are an integral part of motion re-
assembling, and an application of motion blending, they are discussed next. Since
motion similarity analysis is a critical stage for the selection of motion transition
points, previous approaches for motion similarity analysis are reviewed and the re-

lated problems are identified in the last section of this chapter.

2.2 Motion Capture Data Representation

Generally, motion capture data are represented in the form of joint angles plus 6
degrees of freedom for the rotations and translations of the body. In most cases, the
BVH file format is used. The name BVH stands for BioVision Hierarchical data.
A typical BVH file consists of two parts: a header section and a motion section.
Appendix A shows the header section of a standard BVH file. The first part defines

the skeleton’s hierarchical structure and its initial configuration, which is illustrated
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in Figure 2.1. The second part records the motion information.
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Figure 2.1: The hierarchical structure defined in the header of a BVH file.

In the motion section, each row corresponds to the pose of a frame, each column
corresponds to a channel (a degree of freedom). Usually the root joint (hips) has
6 channels, 3 for each axis of translation, 3 for each axis of rotation. While each
of the other joints has 3 channels to represent its orientation with respect to its
own parent. Thus, all the channels along with the skeleton structure can completely
define the configuration of a character at a frame. The global position of a joint can
be easily derived from the BVH file. In the following example, the foot position in

the global coordinates is calculated according to Equation 2.1.

P; = THips RHips TUpLegRUpLegTLowLeg RLowLeg V foot (2 1 )

where vy, 18 the offset vector of the foot relative with its parent LowLeg, Tpps and
Rpyips are, respectively, the translation matrix and rotation matrix of the root joint.
TvpLegs RupLeg, TLowLeg, and Rpgwieqg are similarly defined for the joint UpLeg and
LowLeg.

Compared with the motion data generated by traditional methods like keyfram-

ing, motion capture data are difficult to work with. One reason is that every frame
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Figure 2.2: Calculating joint position in global coordinates.

of a motion is recorded, and each frame has about 57 channels. Thus, there are a lot
of data to be processed. Another reason is that the data provide little clues on the
important properties of a motion and the effects on the motion when the properties
are changed. As a result, reusing motion capture data has become an open problem

in the context of animation.

2.3 Interpolation Synthesis

Motion interpolation is one of the typical motion edition techniques, by which new
motions are generated by combining two or more motion examples. Usually, a
continuous parameterized motion space is constructed from a small set of motion
examples by multi-target blending, then the in-between motion can be derived from
the parameter space. Generally, motion synthesis is restricted to a small number of
parameters because a higher dimensional parameter space requires a larger motion
dataset and the cost of storage and computation increases significantly. Currently,
many research works belong to this approach. In the remainder of this section, some

typical interpolation synthesis schemes are investigated.
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2.3.1 Multi-linear Interpolation

The researchers in [22] present a very simple but efficient multi-linear interpolation
method to generate a new motion clip from a given database. First, according to the
specification of the required motion, a subset of motion clips that are most similar
to the desired motion are selected. Then the new motion is synthesized by linear
interpolating the selected data. The process is illustrated by the following example.

Considering that the hand of an articulated figure is required to reach a particular
space position. In this setting, the motion clip is parameterized by the 3 coordinates
of the hand’s global position. In this example, the motion parameter space is 3
dimensions and is defined by the position that the hand is required to reach. To
facilitate searching for the required subset of data, the original motion data are
resampled so that the resampled data form a regular grid of the parameter space
(see Figure 2.3). As a result, the selection of the required data subset does not
require a search. Instead, the motion data at the grid points closed to the required

hand position are directly selected as the interpolated dataset.

+ + : T+ T
+ + + +
+ +
4 * . O s O O?- ¢
+ Re-sampling +
+ o+ + e ——— + |+ +
+
+ + + + 4
+ o+ O F——0
+ + + +
+ + + + + + +
+ + &} L + + 4

Figure 2.3: Left: Initial hand position data denoted by “+.” Right: Re-sampled
hand position data denoted by circles. Note that the 3D hand positions are illus-
trated with 2D points.

After the required motion subset is found, the resulting motion is generated

by successive interpolations in each dimension. In Figure 2.4, point t is the desired
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Figure 2.4: Linear interpolation.

hand position, d000 to d111 are hand positions of the selected data which are closed
to point t. First, four interpolations along the x-axis are performed and i00, i01,i10
and i1l are the intermediate interpolation results. i00 is computed in Equation
2.2, where u is the interpolation factor, which is derived from the desired hand

geometrical position relative to the interpolated motion data (Equation 2.3).

i00 = (1 — u) x d000 + u x d100, w € [0,1] (2.2)
_t, —d000,
~ d1000, — d000,

Then, two interpolations along the y-axis are performed to the intermediate

u (2.3)

results generated in the previous step. Similarly, i0 and 11 are obtained. Finally one
interpolation is performed between i0 and il along z-axis and the resulting motion
is achieved.

Besides the hand-reaching example discussed above, the authors in [22] also
present a walking example on different slopes, where one parameter, the slope is
used to construct the parameter motion space. As walking clips may have different
length in one cycle, a simple synchronization mechanism is applied to the selected
motions before interpolation. All the walking clips with the same cycles are uni-
formly (linearly) resampled to the same length. Thus, all the clips are synchronized

on a cycle-by-cycle basis.
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This interpolation synthesis requires at least 2P motion data, where p is the num-
ber of parameters. In general, for p parameters, 2P — 1 interpolations are performed
with a window of 2P motion data. A denser motion dataset can produce more accu-

rate resulting motions but it increases the storage and computation requirements.

2.3.2 Verbs and Adverbs Mechanism

In [18], C. Rose et al. describe an interpolation method (called verbs/adverbs mech-
anism) to generate a wide variety of motions from some existing motion examples.
In this technique, motions are characterized by emotional contents (happy or tired)
or kinematic aspects such as turning left, going uphill or downhill. These param-
eterized motions are called verbs and the parameters that control them are called
adverbs. Radial basis function and low order (linear) polynomials are used to inter-
polate the verbs in a multidimensional parameter space defined by the adverbs.

In the framework of [18], each joint of an animated character contains one or
more rotational degree of freedom. Thus, each motion example is defined by a
number of DOF functions. The j** DOF function of the i** motion example M; is
denoted by ©;;(T"), where T is the clock time or frame index. Each ©;; is represented
as a uniform cubic B-spline curve specified by NumCP control points as shown in

Equation 2.4.
NumCP

04(T) = Y bixBx(T) (24)

k=1
where By (T') is the B-spline, and b;;; is the control point of the B-spline. i is the
index of motion example. j is the index of DOF function. k is the index of control
point.

Verbs are constructed from sets of similar motions with distinct styles. For
example, within a set of walk cycles, they should have similar poses at starting
points, ending points, and have the same step number, etc. Their difference only
exists in the emotional aspects or kinematic aspects. Then for each motion example,
a set of appropriate adverb values are identified manually by the user. And a

corresponding point is added into the adverb space. So a verb M is defined by a set

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of similar motions in Equation 2.5.

i=1... NumMotions,
M; ={0i; (T),p; Km} j=1... NumDOF, (2.5)
m=0... NumKeyTlimes
where ©;;(T) is the j* DOF function for the i** motion data M;. p; is the location
of M; in the adverb space. K is the set of keytimes which describes the instants
when important motion structural elements happen, such as heel-strike and toe-off.
Since the motion examples in a verb have similar structure elements, as a result,
they should have similar keytimes. In other words, the same important event should
happen in all the motion examples of a verb. In the framework presented in [18], the
keytime set K is manually detected by the user and is used to synchronize different
motions. The synchronization process is called time warping and it is achieved by

a piecewise linear mapping. The details are described as follows.

f
A

WEL ) - /O //)
s/ . . .
, S — Kevtimes for motion A
: .
/
s - -« Kevtimes for motion B
///
23(Kg)- o o

1/73(Ky)

O(KL) » T
(K1) T T,

Figure 2.5: Mapping between clock time T and generic time ¢ by keytimes.
NumKeyTimes is 4. At clock time T4 and Tp, motion A and motion B have
similar movements.

In this step, the keytimes are used to define a linear mapping from a clock time
T € {0... K NumberKeyTimes} to a generic time ¢t € {0...1}. The first keytime of the
verb, K is mapped to be 0, while the last keytime, KyumberKeyTimes t0 1. And the

generic time t for a clock time T between 0 and the last keytime KnyumkeyTimes 18
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defined in Equation 2.6.

when T € [Kp,, Km+1]
(2.6)

The mapping process is illustrated in Figure 2.5. Once the motion examples are

T - Kp, } 1

D=0

NumKeyTimes — 1

re-parameterized from the clock time 7" to the generic time ¢, all the motions and
their interpolated results will have similar structure elements for a given ¢. The
corresponding B-spline control points for each DOF in each motion will specify
similar movement in each motion.

After verbs are constructed with sets of motion examples with its associated
keytimes and adverb settings, a new motion with a set of specified adverb values,
can be derived by interpolation in the multidimensional space defined by adverbs.
The dimension of this space is defined by the number of adverbs. One adverb axis
describes one emotional (happy or sad) or kinematic (uphill or downhill) charac-
teristic of the motion. The interpolation is applied individually to each B-splines
control point for each DOF and at each keytime. And each interpolation is for-
mulated as a combination of linear polynomials and radial basis functions. “The
polynomial function provides an overall approximation to the space defined by ex-
ample motions. The radial bases locally adjusted the polynomial to interpolate the
examples motions themselves” [18]. Thus, given a set of required adverb values p,
the interpolated k* control point in the j* DOF function of the resulting motion

is defined in Equation 2.7.

NumEzamples NumAdverbs
bjk(p) = > rgpRP)+ Y. ajAilp) (2.7)

where r;;; and R; are, respectively, the weight of the radial basis function and the
radial basis function. aj and A; are, respectively, the coefficient and the basis

function. The m!* interpolated keytime is similarly defined in Equation 2.8.

NumEzamples NumAdverbs
Km(p) = Z TimRi(p) + Z almAl(p) (28)
i=1 =0

There are NumC P x NumDOF control point interpolations (Equation 2.7) and

NumKeyTimes keytime interpolations (Equation 2.8) to generate a new motion. In
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[18], the authors demonstrate how to evaluate the coefficients and the basis functions
in 2.7 and 2.8.

Verbs and adverbs mechanism is similar to the work of D. J. Wiley et al. [22]
discussed in the above section. Both techniques make use of interpolation in a
multidimensional parameter space to generate a new motion. Verbs and adverbs
mechanism uses a combination of radial basis functions and linear polynomials to
approximate an in-between motion. And it requires O(n) motion examples to con-
struct the parameter space and O(n®) to compute the resulting motion. The work
of D. J. Wiley directly applies linear interpolation and requires O(2") motion ex-
amples and O(2") to compute the resulting motion. n is the number of parameters.
Thus, verbs and adverbs mechanism is a more general method and scales better with
the dimensionality of the parameter space. The additional difference is the different
synchronization methods they apply before interpolation. The first one is based on
key events, while the second one on a cycle-by-cycle basis. Note that a cycle also
can be thought of as a coarse-level event.

The interpolation synthesis discussed above is performed in the time domain.
In the following subsection, we discuss interpolation performed in the frequency

domain. Most of them are adapted from standard signal processing methods.

2.3.3 Interpolation by Multi-Resolution Analysis

A. Bruderlin et al. in [4] propose to generate a new motion by blending the cor-
responding frequency bands at different resolution levels of different motion data.
This approach is based on the following intuition: the low-level frequency bands
control the general motion patterns, while the higher-level frequency bands contain
motion details, such as mode, style and personality. Thus, the change of coarse
level affects the main pattern of the motion, while the change of finer level affects
the style of motion. In this technique, motion data are decomposed into different
lowpass and bandpass levels by a multi-resolution filter. Then during blending, dif-
ferent interpolation coeflicient is used at different frequency levels independently.
As a result, this may generate a rich variation of motion with a wide range of styles.

After blending, the resulting motion is reconstructed by adding up all the blended
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bandpass sequences plus the DC (direct current) term.
Motion decomposition is done by successively convolving the motion data with
a B-spline kernel filter with a width of 5, while at each iteration, the motion data
is down-sampled by a factor of two. In this way, the number of frequency bands is
determined by the number of frames of a decomposed motion and is computed in
Equation 2.9.
let 2" <m < 2"t then fb=mn (2.9)

where fb is the number of frequency bands. m is the number of frames or motion
length. Before decomposing, all the blended motion data need to be synchronized by
re-parameterizing with a generic time (time-warping). Thus, the blended motions
have the same length m and the same frequency level fb after decomposing.

In the framework of [4], the dynamic time warping algorithm is applied to au-
tomatically synchronize the blended motions. This involves two steps. First, the
optimal correspondence frames are automatically detected based on different simi-
larity analysis (discussed in the last part of this chapter). A grid is constructed to
represent the frame correspondence. In the grid, rows and columns, respectively,
represent the frames of two blended motion clips. Each cell records the distance
measure between the two corresponding frames. An optimal path, which minimizes
the sum of the distance, is computed using dynamic programming. The second step
is to warp the second motion clip with the first clip based on the optimal path.
It is done by a non-uniform mapping and includes three operations: substitution,
deletion and insertion. In the optimal path (shown in Figure 2.6), a diagonal line in-
dicates that one frame in clip B corresponds to one frame in clip A; a horizontal line
means that multiple frames in clip B correspond to one frame in clip A; a vertical
line means that one frame in clip B corresponds to multiple frames in clip A. During
warping, for the first case, the frame in clip B is kept. In the second case, the mean
of multiple frames in clip B is used to replace the corresponding multiple frames of
the mean in clip B. In the last case, a cubic B-spline is used to interpolate the frame
and its neighbor to get the required inserted multiple frames. After warping, clip B
has the same length as clip A.

The details of the blending algorithm based on multi-resolution filtering are

described in the following. Step 1 to 5 are performed simultaneously on all the

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Clhp B

0

1

2

3

. 4
Clip A 5
6

7

8

9

0 1 2 3 4 5 6 7 8 9

A

Joint angles

warped B&—@~

Figure 2.6: Top: the optimal path computed by dynamic programming. Bottom:
the warping process based on the optimal path.
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degrees of freedom for each motion dataset.

1. Calculate all the lowpass sequences by successively convolving the original
motion data with a B-spline filter kernel. While at each iteration, the motion

data is down-sampled by a factor of 2.
G/H_l:wXGk; 0§]<I<fb

where Gy is the original motion sequence, G is the DC term, w is the B-
spline filter kernel. At each iteration, the motion sequence is kept at the same
length. The down-sampling is achieved by expanding the filter kernel at each
level while zeros are inserted between the elements of the kernel. For example,

the following shows the first three kernels.
wy=[1/16 1/4 3/8 1/4 1/16 |
we=1[1/16 0 1/4 0 3/8 0 1/4 0 1/16 ]
wg=[1/16 0 0 0 1/4 0 0 O 3/8 0 0 0 1/4 0 O 0 1/16]

2. Calculate all the bandpass sequences by repeatedly subtracting two successive
lowpass sequences. As all the lowpass sequences have the same length, the

lowpass band at a lower level (Gg41) does not require to be expanded first.

Ly=Gr—Gry1 0ZE<fb

3. Adjust the amplitude of each band and multiply L; by their modified am-
plitudes. This step increases the variations of the resulting motions. For
example, increasing the high frequency band can add a nervous twitch to the
movement, whereas increasing the lower frequency band can generate an at-

tenuated, constrained action with reduced details.

4. Interpolate different bands at different levels. Each resolution level has an

independent interpolation factor.
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5. Reconstruct the resulting motion by adding up all the bandpass with the DC

term.
fb—1

Go=Gp+ Y Ly
k=0

Another similar approach is the work described in 1], which incorporates wavelet
analysis with motion blending to generate a new motion. Similarly, the original mo-
tion data are decomposed into multi-resolution levels by applying discrete wavelet
transformation and normal blending is performed to each resolution level indepen-
dently. Then the inverse discrete wavelet transform is applied to the resulting

blended motion to reconstruct the final result from different resolution levels.

2.3.4 Interpolation by Fourier Expansion

In the work of [20], human locomotion with new emotions is synthesized by inter-
polation on the basis of Fourier expansions of the original motion data. For the m®"
joint, its orientation is represented as a Fourier expansion series shown in Equation
2.10.

Om(t) = Amo + Y Amnsin(nt + ®mp) (2.10)
n>1

Here, for simplicity, one ©,,(t) denotes 3 DOF for each axis, that is, ©F(t), ©7()
or O©7*(t). As this technique is applied to periodic motion only, such as walking
and running, the period of ©,,(t) for each joint in one motion data is the same
value Tg. And the Fourier coeflficients can be estimated from the discrete sample
values ©,,(t,), tp € [-To/2,Te/2]. After re-scaling the time parameter ¢ (called
time re-parametrization), the period of the Fourier expansion series is normalized to
27. In this way, the blended motion data are synchronized. Similarly, the Fourier

representation of another motion data is defined in Equation 2.11.

I (t) = Bo + Y _ Bmnsin(nt + ¥y, (2.11)
n>1

The re-scaled Fourier representation of the original motion data can be used to
generate new motions with different styles. The interpolation between two sets of

motion data are defined in Equation 2.12.
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o (5,8) = (1= 8) Ao+ 5Bmo+ Y _ (1= 8) Amn + 5Bmn) sin (0t + (1 = 8) @ + 5¥mn) (2.12)

no1
where s is the interpolation coefficient, and s € [0, 1]. If s varies from 0 to 1, then
the interpolation result =, continuously varies from ©,, to Il,,. In this case, s is
a parameter defined in the frequency domain. Another interpolation form based on
the Fourier representation is defined in Equation 2.13, where s is a parameter in the
time domain. Both forms can generate similar variations of the original motions by

using different interpolation coefficients.

Em(s,t) = (1 = 8)On(t) + sln(t). (2.13)

In addition, the authors also demonstrate how to use the Fourier representation
to control some high-level motion characteristics, which involve step length, speed,
hip position, etc. For example, in Equation 2.10, replace Amyn with stepApmy, thus,
the step length can be adjusted by modifying the spectrum component in its Fourier
representation. An alternative way to generate motion with new characteristics is
also illustrated. Actually the idea is very simple and based on the interpolation tech-
niques. Motion characteristics (called emotion component in the original paper) are
extracted by taking the difference of the Fourier representations of two motion data,
then the extracted characteristic is applied to the third motion. A new motion with
the required characteristics is generated. For example, the method gets “briskness”
from a normal walk and a brisk walk, Then a brisk run is generated by adding the
“briskness” to the Fourier expansion series of a normal run.

The major limitation of this method is that it only addresses similar periodic
human motions, like walking and running. Thus, motion synchronization is easily

dealt with by uniform scaling.

2.3.5 Summary of Interpolation Synthesis

Motion interpolation is a purely geometric technique, and cannot guarantee to pro-
duce physically possible motions. In general, the interpolation of two dissimilar

motion clips may generate distorted and unnatural results. Because the input data
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implicitly contain the kinematic and dynamic constraints and if the two clips are
similar enough, the result is also similar to the source, and most likely satisfies the
constraints and looks realistic. This is the reason why most interpolation synthesis
techniques are performed over a set of similar motion examples.

Additionally, the interpolated data must first be aligned in the time domain.
In other words, interpolated motions need to be re-parameterized with the generic
time. Thus, at a given generic time, all the motions and their interpolation results
have similar structure elements. The similarity between interpolated motion data
is further improved by motion synchronization. Now there are two approaches to
address this problem. In some interpolation techniques like the one in [4], non-
uniform time scaling is applied. Others [18, 20, 22] use a uniform time scaling

approach.

2.4 Reassembling Synthesis

Inspired by the research work of video texture, a number of reassembling-based
motion synthesis algorithms are proposed to create a new motion sequence by di-
rectly stitching different motion pieces together [2, 12, 13]. This category of motion
synthesis is based on the fact that possible transitions can be generated between
different motion clips when appropriate transition points are carefully selected. Af-
ter cutting and pasting, different source motion pieces are reordered to compose a
new sequence, while at the same time, the smooth and natural transitions between
them are generated. Thus, a richer variety of motion sequence can be created from
a given motion capture dataset.

Meanwhile, instead of directly using the original motion data, some researchers
use a statistical model to simplify human motions for motion synthesis [3, 15]. As
the statistical approach uses a generalization of motion, they cannot preserve the
subtle details of the original motion. Moreover, the statistical approach does not
involve motion similarity analysis. In the following subsections, we only focus on
the reassembling synthesis approaches that directly use motion capture data and

apply motion similarity analysis.
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Most motion reassembling schemes generally include three steps: detecting tran-
sitions, constructing motion graphs, and searching the graph for an optimal path
that determines the required motion sequence satisfying the user specifications. The
motion transition points are detected based on different motion similarity analy-
sis. The quality of the resulting motion sequence directly depends on the similarity
analysis results. And typically, similarity analysis requires O(n?) computation time,
where n is the number of frames in the dataset. Therefore motion similarity analysis
is a very important but a time-consuming step. The second step is to build graph
structures based on the detected possible transitions between different clips. Three
types of graph structures exist in the current research area, namely, one-level graph,
two-level graph and hierarchical graph. Generally, the graph encodes the motion
data and their possible transitions. A path or a walk in the graph infers a possible
motion sequence. A random path can create a continuous motion sequence that is
regularly applied to generate a crowd animation or screen saver programs. However,
in most situations, different user interface techniques are used to control the syn-
thesized motion. According to user specifications, an objective function is defined
to evaluate possible paths. Different searching strategies are applied to efficiently
find an optimal path in the graph.

So in the following subsections, three typical motion reassembling schemes are
introduced. First we introduce the graph structure, then discuss how to build it,
and finally how to use motion graphs to generate a new motion sequence. Due
to the importance of motion similarity analysis, it is discussed at the end of this
chapter. The work of L. Kovar and his colleagues [12] generates a one-level motion
graph. Then according to the path the user specifies, the combination of incremental
search and the branch and bound search is performed to synthesize a new motion
sequence. J. Lee [13] proposes to construct a two-level motion graph. Three interface
techniques are used to control the search process, in particular, the user selects from
a list of available choices, sketches a path and acts out an action in front of a video
camera. In the video-based interface, the best fit of the performed action is found
in the graph. O. Arikan and D. A. Forsyth [2] construct a hierarchy of graphs to
represent the connectivity of a motion database and perform randomized search to

find the motion that meets user specified constraints. In the following, the review
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focuses on the graph structure, the searching strategies and the way in which the

user controls the search process.

2.4.1 One-level Motion Graph

The one-level motion graph presented in [12] is a directed graph that represents how
the captured clips can be re-assembled in a new order. Each edge corresponds to a
motion clip. Some edges are original clips, while others are generated transitions.
Each node represents the point at which the incoming clips can be seamlessly fol-
lowed by the outgoing clips. Then a path or a walk in the graph composed of a
sequence of edges suggests a possible new motion sequence. Figure 2.7 shows the

structure of a simple motion graph and a possible motion sequence.
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Figure 2.7: The structure of a one-level motion graph.

Building motion graphs includes the following steps. First, based on the results
of motion similarity analysis, similar frame pairs with local minimal difference are
selected as transition points; then the transitions between different clips are gener-
ated by linear blending. Finally, the problematic nodes are eliminated to obtain a
more connective graph as described in the following. There are two kinds of prob-
lematic nodes to remove. One is called dead node, which does not belong to any
cycle. Once such a node is entered, no more clips can be added to the synthesized

motion. The other is called sink node. It belongs to only part of one or more cycles,
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but is only able to reach a small fraction of the graph. So when a sink node is
entered, the generated motion is confined to a small part of the graph (see Figure
2.8). The graph pruning is done as follows. Each frame is associated with a set
of labels, which describe the motion patterns and possible constraints. The labels
are manually annotated before the graph is built. For each label set, all the edges
(motion clips and their transitions) whose frames with the exact label set, form a
subgraph. Then the strongly connected components (SCC) are computed for each
subgraph, where SCC is a maximal set of nodes such that there is a connected path
between any two nodes in the SCC. Then edges that do not belong to the SCC and
nodes with no edges attached are deleted. The pruned graph guarantees that an

arbitrarily long motion sequence can be generated by traversing the graph.

'tn

Figure 2.8: The problematic nodes in the graph. Node 5 is a dead node. Node 4 is
a sink node.

The goal of constructing motion graphs is to generate a new motion stream
that conforms to user specifications. This is achieved by searching for an optimal
path that minimizes an objective function in the graph. The objective function is
defined to evaluate how well a possible path meets the user requirements as shown

in Equation 2.14.

n

flw)=f(ler,- - ea]) =Y g(ler, - eim], ) (2.14)

i=1
where path w is composed of a sequence of edges e1, ..., en; f(w) is the cost of path

w; g(w, €) is a non-negative scalar error function, which describes the error when an
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edge e is added to an existing path w.

While searching, a halting condition is specified by the user to decide when to
stop the search process. The search cost for a global optimal path is too expensive,
even within a small dataset ( 20 ~ 200 sec in [12] ). Thus, a branch and bound local
search strategy is used to increase the search efficiency. The purpose of searching
is to find a path that minimizes the error function f. As the error f(w) of path w
is the lower bound on f(w + v) for any edge v, so only the current optimal path
wopt is kept and the other branches whose error exceeds fwgp can be discarded
immediately. Although this strategy can reduce the number of searches to some
degree, but the searching is still exponential. So an incremental searching is used to
tradeoff some optimality for the searching speed. At each step, the optimal path of
n frames is found by the branch and bound searching, then the first m frames are
kept, the m + 1 frame is used as the starting point for another search. In their
implementation, the value of n varies from 80 to 120 (2.67 to 4 sec), while the value
of m varies from 25 to 30 (about 1 sec).

In [12], the authors also demonstrate how to adapt the general searching process
discussed above to the problem for path synthesis. The projection of the root joint
on the floor at each frame forms a piecewise planar curve, which is called a path.
The distance between the synthesized path and the specified path is defined as the

edge error function. And it is computed as in Equation 2.15.
g(w,e) =Y [|P'(s(es)) — P(s(e:))|f? (2.15)
i=1

P’(s) is the point on the synthesized path whose arc length from the starting point
is s. P(s) is similarly defined for the desired path. s(e;) is the arc length from frame
0 to frame 7 for edge e. The halting condition for path synthesis is when the current
path length equals or exceeds the length of the specified path.

This approach can create realistic and controllable motion sequence from a small
dataset (the largest dataset involves thousands of frames and takes over 200 sec).
Path synthesis is a simple and easy way to control the locations and orientations
of the resulting motion sequence. Additionally, the motion pattern constraint (like
walking or running) is satisfied by confining the search to a subgraph defined by an

annotated label set. The major problem of the one-level graph approach is the scal-
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ability. The edges of one node will quickly increase with the size of motion dataset,

which will make the search for an optimal path very difficult, if not impossible.

2.4.2 Two-level Motion Graph

Higher level ( \)

e
A
clustering

Lower level O-> O->0->0->0->0-> 0->0

RO202P>0

Figure 2.9: The structure of a two-level motion graph. The lower level encodes
source motion data and their possible transitions on a frame-by-frame basis. The
higher level records the clusters and their connections.

In [13], a two-level graph is constructed as shown in Figure 2.9. The lower layer
keeps the details of the original motion data and their possible transitions on a
frame-by-frame basis. The higher layer is the generalization of the lower layer by
grouping the frames with similar poses into clusters. At the lower layer, the motion
data in the database is represented as a first order Markov process. The transition
from one frame to another frame depends ounly on the similarity between these two

frames. The transition probability is computed as in Equation 2.16.
P;; x exp(—D;;/9) (2.16)

where D; ; is the similarity metric between frame ¢ and frame j. ¢ controls the

mapping from the similarity measure to the transition probability. Smaller values
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of § emphasize very smooth transitions, while the larger values of § trade some
transition smoothness for a wider variation of the resulting motion.

If the tested motion database has n frames, then the number of possible transi-
tions becomes O(n?). So the lower layer graph needs pruning. The following four

pruning rules are used to reduce the number of transitions.

e Contact constraint. Transitions should happen between two similar frames
only when they have similar contact states. It is because the contact state
is a very important constraint for the motion. For example, a transition is
not allowed from a frame when the foot is leaving the floor to another frame
when the foot is touching the floor. For a motion clip, the system detects the
contact state by considering the relative velocity and proximity between the

characters and other objects in the same virtual environment.

e Similarity constraint. Only the transitions between similar frame pairs are
kept. That is when the similarity measure between two frames is below a user

specified threshold, the transition probability is set to zero.

o Local maximum constraint. Among the similar transitions, only the best tran-

sition with the maximum probability is retained.

e Connectedness constraint. Dead ends or sink nodes are discarded. This is

similar to the pruning process in the one-level motion graph.

Even after pruning, the lower layer representation is too complicated to efficiently
determine the required motion. So it needs to be further simplified. The higher
layer is built based on clustering analysis. Each cluster is a group of similar frames
which have similar poses. Then for each frame, all the possible clusters that may
be transitioned to from this frame are found. These clusters are organized as a
tree structure, called the cluster tree. In this case, clusters capture the similarities
between frames, while the connections between different frames are captured by the
cluster trees. The process to build a cluster tree for frame 7 is described as follows

(see Figure 2.10):

e the cluster to which frame ¢ belongs becomes the root of the tree
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Lower level

Higher level

Figure 2.10: The process for building cluster trees. First row: Original motion data
on a frame-by-frame basis. Each node is a frame, and each edge between two nodes
means that one frame can be seamlessly followed by the second frame. Second row:
Transitions denoted by arrows in the lower layer are generated. Third row: Similar
frames are grouped into clusters. Last row: Two cluster trees are formed for the 2
frames marked with red circles. (This figure is taken from the original paper.)
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e find the transition with the maximum transition probability to another cluster

e if the number of frames required to reach that cluster is within a specified

threshold, add the cluster as a child to the current node

e repeat step 2 and 3 until no more clusters are found.

Each frame in the lower layer is associated with a cluster tree. The cluster tree
encodes the valid transitions for this frame. The cluster trees for all the frames
in the motion database form the higher level graph, also called the cluster forest.
Thus, the two-level graph structures are closely linked by cluster trees.

This two-level graph structure not only makes efficient search possible, but also
provides the presentation in the user interface. For example, in the case of choice-
based interface, a list of options is provided to the user to select according to the
cluster tree of the current frame (state). Here the concept of a cluster path is
introduced. A cluster path is a path from the root (current frame) of a cluster tree
to one of its leaves. If a cluster tree has k leaves, then it has &k cluster paths. Each
cluster path defines a set of possible motion sequences that can follow the current
frame. For each set of possible motion sequences available to the current frame, the
one with the highest probability, also called the most probable motion, is found as
follows. Within one cluster path, all the possible paths that start from the root node
are searched and evaluated by computing the sum of probabilities along the path.
The path with the maximum probability is the most probable path. Each cluster
path has one most probable path. Then according to all such paths, a set of possible
action choices next to the current frame is provided to the user to choose. Typically,
the available action choices at the current frame are represented as example poses,
paths, or footprints.

The researchers in [13] also demonstrate two other interface techniques to control
the graph search. One is path sketches, and the other is video performance. In the
path sketches interface, the user specifies a desired path and the graph is searched
to find a motion sequence that follows the path. Two ways are implemented to
find the resulting motion. One is to select the most appropriate action available
at the current time based on cluster paths. The distance between the desired path

and the synthesized motion defined by the most probable path within each cluster
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path is evaluated. The path with the minimum distance is selected. In the second
method, clustering is not involved and searching is directly performed through the
lower graph, which is similar to the path synthesis in the one-level motion graph.
The distance between the desired path and the actual path is computed and the
path with the minimum distance forms the resulting motion.

In the case of vision-based interface, a user acts out the desired motion in front
of a camera, then the best fit of the performed motion in the graph is found. The
difference between the performed action and the synthesized motion is defined as
the path cost to evaluate each possible path. Visual features based on silhouette are
extracted from the video and are used to compute the distance between a possible
action and the performed action. In practice, as the direction of the user with
respect to the camera is unknown, the original motions in the dataset need to be
represented with different viewpoints. 18 different camera viewpoints are used in
[13].

In this work, the authors mainly focus on how to use the three types of user
interfaces to control the synthesized motion sequence. The vision-based interface
provides a complete control over the synthesized motion due to the high dimensional
input, but it is not a general interface as special devices are needed. The choice-
based interface is most helpful to provide the user with the information what motions
are available to the current state in the dataset. And the sketch-based interface
is a simpler and more natural way to control the directions and positions of the
animated character. Though the two-level graph structure is used to increase the

search efficiency, its scalability with large databases is a potential problem.

2.4.3 Hierarchical Motion Graph

In the hierarchical motion graph approach, the motion database is represented as
a hierarchical structure, defined as G; «— Gg « G3 «— ... «— G, «— G, where (;
is the coarsest level graph, G is the finest level. Random search is performed at
a variety of levels to generate an optimal motion sequence which meets the user
specified constraints.

The lowest level G is also a directed graph, which captures the details of the
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original motion data and their possible transitions. But its structure is different
from that of [12]. At this level, a node represents an individual motion clip, and an
edge between two frames represents a possible transition between the two frames.
Here, s; denotes the it frame in clip s, while t; denotes the j** in clip ¢. Then an
edge from s; to t; means that frame s; can be smoothly followed by frame ¢;. A
cost value is also associated with an edge that describes the transition probability
between the frame pair. The cost of an edge is computed based on a similarity
measure discussed in Section 2.6. Therefore an edge e from s; to t; is labeled by the

following 5 terms:
e fromClip(e) = s
o toClip(e) =t
e fromFrame(e) =1
o toFrame(e) = j
e cost(e) = D ;

where D; ; is the similarity measure between the two frames 7 and j. In this set-
ting, any sequence of edges ey, eg, ..., en, defines a valid motion sequence, when the

following two conditions are satisfied.
toClip(e;) = fromClip(eit1)

toFrame(e;) < fromFrame(e;y+1)

A valid path involving 6 edges and the resulting motion sequence are illustrated in
Figure 2.11.

From similarity analysis, it is known that there are many possible transitions
between any two motion sequences. Thus, the finest level graph involving a huge
amount of edges is too complicated to search for an optimal path within a reasonable
time. To increase the search efficiency, the finest level graph is summarized and the
coarsest level graph G, is used to help in the search. The highest level graph G is
built by clustering all the edges of G. The clustering process is described as follows.

All the edges between two nodes s and ¢ can be represented in a matrix Pg, where
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Start

End

Corresponding motion sequence

time

A 4

Figure 2.11: A valid path and its corresponding motion sequence. The path involves
6 edges and 4 clips. The first edge and the last edge are, respectively, used to mark
the starting and end point of the path. If e4 is replaced with e, the path becomes
invalid because fromFrame(e) appears before toFrame(es) in time, the second
condition is not satisfied.
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the 45" entry is the cost value of the edge connecting the frame pair s; and ¢;. If

no such edge exists, then infinity is assigned (Equation 2.17).

(Pst)ij = {

If two frames are similar, then the frames in their neighborhood most likely

C(ss,t;) if the similarity measure > threshold;
00 otherwise.

(2.17)
are similar too. Hence, the resulting similar frame pairs after similarity analysis
between two nodes will form several small groups (shown in Figure 2.12). In the
matrix Py, columns correspond to the fromFEFrame term, rows correspond to the
toFrame term. In this approach, the clustering between two nodes are found based
on the two terms, fromFrame and toFrame, instead of based on frame poses that
are used in the two-level graph approach. For simplification, clustering is performed

over any two nodes separately.

#| Clustering ﬁ o #
o

Figure 2.12: The clustering process for building top level graph G;. Every edge
between two nodes is represented as an entry in a matrix. Similar frame pairs in a
neighborhood form a cluster (marked with a blue circle). The center (marked with
a red star) of these edges becomes one of the edges of G

After clustering, the nodes in G are kept the same as GG, while the edges in
G represent the clusters of edges in G. Hence, one edge in the top level graph G;
represents many edges in the lowest level graph G. Then each edge in G; is split
into two parts to generate a lower level G by the k-means clustering method with

= 2. In a similar way, the intermediate levels are generated until the lowest level
edge of G is reached. Thus, at the highest level graph G, each edge is the root of
a binary tree and represents all the edges in a close neighborhood. The leaf edges
represent possible transitions of the original motion data and the intermediate edges

represent the averages of all the leaf edges beneath them (Figure 2.13).
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Figure 2.13: An edge at the top level graph is represented by a binary tree.

's
Leafedge / \

This hierarchical structure makes an efficient search possible. Before searching,
the user specifies two types of constraints that the resulting motion sequences need
to satisfy. A hard constraint means that it must be satisfied exactly. For example,
the character is required to have a specific pose (like a ballet dancing pose) at a
particular time. This kind of hard constraints will restrict the search to within a
particular part (some nodes) of the graph. A soft constraint means that it can not
be met exactly. Some soft constraint examples are listed as follows. Soft constraints
provide an objective function that reflects how well soft constraints are satisfied and

how close a valid path is to the required one.

e The total number of frames for the resulting motion should be a particular

number.

The motion should not penetrate any objects in the environment.

The body should be at a particular position and orientation at a particular

time.

A particular joint should be at a particular position at a particular time.

The motion should have a specified style (such as happy or energetic) at a

specific time.
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During graph searching, a random search strategy is performed to find an optimal

path which best satisfies the specified constraints. The search process is as follows.
1. Start with some random seed paths at the top level Gy.

2. Evaluate all the current paths and their possible mutations. The two types of

mutations are described later.
3. Keep the current optimal path.
4. Add new seed paths.

5. Repeat step 2 to 4, until no better path is found or the user is satisfied with

the current optimal path.

All possible motion sequences indicated by the valid paths are scored according
to how well they meet the soft constraints. For each soft constraint, the difference
between the actual value and the constraint is defined as the constraint cost. A
path cost is the sum of costs of all the imposed soft constraints plus the sum of
costs of all the edges along the path in Equation 2.18. The edge cost term controls
how smooth the transitions between motion pieces are, or the smoothness of the
resulting motions. Note that the hard constraints are always satisfied by restricting

the searching to some particular nodes.

s(er...en) = we X Zcost(ei) +wp X F4wyx B+wjxJ (2.18)

i=1
where we, wy, wy and w; are, respectively, the weights for the smoothness of motion,
the length of motion constraint, the body constraints involving position and orien-
tation, and the joint constraints. F'is the difference between the specified number of
frames and the actual number of frames in the path. B is the distance between the
position and orientation of the constraints versus the actual position and orientation
of the body. J is similarly defined to the joint constraint.

During searching, two types of path mutations are considered.

1. Delete the portion of the path between any two edges and replace it with one

or two edges at the top level. This will introduce a better motion sequence
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(the path with a lower cost is kept), and the computation time is O(n?), where

n is the average of edge number going out from a node at the top level graph.

2. Replace every two edges with their children. This mutation will push the
searching down to a finer level and find the substantial difference among a

group of edges.

In this framework, the motion synthesis is modeled as an under-constrained
problem. For many types of constraints, different motion sequences can be found to
meet the soft constraints. The under-constrained nature motivates that the random
search strategy and two possible mutations can be applied. So after the random
search, a possible solution is found, but it is not guaranteed that the generated
motion is the one user wants. Since the synthesis is an interactive process, at
anytime, users can check the current resulting motion, and then adjust or add
more constraints to get their required motion sequence. Hence, the flexibility of
the constraint types a user can specified is one of its advantages. The appropriate
constraint set complied with the original database plays an important role to the
success of this technique. For example, the specified constraint set may involve only
one constraint: catching a ball at frame 100. If no source motion includes this type
of motion, the specified constraint will not be satisfied. The other advantage is the
graph’s hierarchical structure that makes the interactive search (O(n?)) possible,

where n is the average of edge number going out from a node at the top level graph.

2.4.4 Summary of Reassembling Synthesis

Reassembling-based synthesis techniques are able to create continuously varied mo-
tion sequences based on a set of motion captured data. The rich variety of the
resulting motion sequence is achieved by identifying possible transitions between
different motion clips. Therefore, the transition points selection is a critical part
and directly affects the quality of the resulting motion sequence.

Since the synthesized motions are strictly bounded to the original motion data,
the size and quality of the dataset also become key to the success of this approach.

For example, if the motion source does not contain any “turning left” motions,
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the reassembling based synthesis will not be able to create motions that involves
“turning left.”

The main problem related with this approach is the scalability of algorithms.
Different motion graph structures motivate different efficient searching algorithms.
In the one-level graph, the incremental search and the bound and branch search
are used. For the other two graph approaches, an efficient search is achieved by
clustering. In the two-level graph, a cluster is a group of similar frames, then a
cluster tree is built to encode several groups of possible transitions to each frame.
In the hierarchical graph, a group of similar transitions in terms of fromFrame
and toFrame are directly clustered to become a top-level edge. The latter two

frameworks scale better than the one-level graph scheme.

2.5 Motion Transition Mechanisms

Motion transition is an integral part in the approach to generate a motion sequence
by reordering different motion segments. It is also an important application for mo-
tion interpolation. Based on motion similarity analysis, different transition mecha-
nisms can be used to generate motion with different qualities. Three main transition
schemes exist in the current research field of computer animation, namely, spacetime
transition, motion stitching, and motion blending as described in the following. But

first we discuss the issues related with candidate transition point selection.

2.5.1 Candidate Transition Point Selection

In order to create a smooth transition between two motion clips, the poses, veloc-
ities, and constraints should be matched at the transition point. In other words,
the two frames together with their neighboring frames should be similar enough in
terms of body configuration, velocities and constraints. In some situations, to create
seamless transitions between two different motion clips is impossible. One practical
example is the direct transition from a back flip to a dance. This is because the

two motion clips are too different and direct transition between them is not allowed.
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So a similarity threshold for candidate transitions should be specified to mark the
lower bound similarity for a possible smooth transition. And different practical ap-
plications require different thresholds. For example, the transition between walking
and running requires a higher threshold, as people are very familiar with these two
movements. A lower similarity threshold maybe used in the transition between two

less familiar motions, such as two different dancing clips.

2.5.2 Transition by Using Spacetime Constraints

In [19], the authors propose a complex semi-automatic algorithm to generate smooth
and dynamically plausible transitions between two motion clips. During the tran-
sition period, the motion of the root, support limbs and non-support limbs are
respectively dealt with. Here, a support limb is defined as the kinematic chain from
the support point (e.g. a foot on the floor) back up the kinematic tree to the root.

This involves the three processes described as follows.

The root motion is computed by linearly interpolating between the end of the
first clip and the beginning of the second clip. The y-component of root translation
is directly interpolated between the y-component at the beginning and the end of
the transition. The x and z coordinates of the root position are linearly interpolated

based on the integration of velocities (shown in Equation 2.19).

P(t)ZP(tl)—l—/tf{w(l—a—tl)-i—vgtc::ill}da (2.19)

to —t;

where v; and vy are the root velocities in the xzz plane at time ¢; and t2. p(t) and
p(t1) are the root positions in the zz plane at time ¢ and ¢;, respectively.

The motion of the support limbs is controlled by inverse kinematic constraints.
Solving the inverse kinematic problem is an optimal procedure, which minimizes
the deviation from the desired constraints. First the support points that serve as
footprint constraints are detected by the system or by user’s specifications. The sys-
tem can automatically locate them by finding the frames in which the foot remains

within a small bounding box over an extended period of time. Solving the inverse
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kinematic constraints is an optimizing process which minimizes the difference be-
tween the actual positions and the desired positions of the support limbs over the

constrained frames. For each constraint k, the deviation is defined in Equation 2.20.

mi(8) = Ipy(t) — Be(V)II” (2.20)

where p, is the actual position of the constraint frame and py(t) is the desired
position. So the total error R is the integral over the constrained time interval of

the sum of all the n constraints (see Equation 2.21).

R= /tz f: re()dt (2.21)

B k=1
The motions of non-support limbs, which do not support the body, are evaluated

by the spacetime constraints optimization. Over the transition interval, joint torques
are minimized to simulate metabolic energy minimization. So the objective function
is formulated in Equation 2.22, where 7; is the torque of the " joint, 4 is the joint

index.

12
e= min/ ’ S ri(t)dt (2.22)
t1 t

As this technique uses a combination of kinematics and dynamics, the results it
generated can preserve kinematic constraints and basic dynamic properties. How-
ever, the disadvantage of this method is the high computational cost and its limited
short transition period (0.3s ~ 0.6s). Typically, when the speed of two motion
clips are quite different, the short transition period cannot satisfy the natural and
realistic requirements. Additionally, the source motion segments are also assumed
to be processed in advance. For example, the proper transition points have to be

manually selected by the user.

2.5.3 Transition by Stitching

Motion stitching is a fast and easy way to generate a transition between two motion
clips. This approach directly connects two clips at one frame while the discontinuity

at the joined point is distributed in a small window around the joined point. When
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the transition point is selected carefully, the discontinuity at the joined point is small,
and after smoothing, seamless transition can be generated. For the cases when the
difference between the two motion data is not small enough, the resulting motion
typically have noticeable artifacts. In practice, a variety of smoothing methods are
used to deal with the discontinuities at the connected point. One example is given

as follows.

/\

[
— Smwothing function
o5 /

s Spaoothing Window s

. )
discontinuty

Smoothed result

S—

Figure 2.14: Transition by stitching: a quadratic smoothing function controls the
amount of displacement of two connected clips in a smoothing window. Left top:
The magnitude of discontinuity between two clips. Left bottom: The smoothing
function. Right: The resulting transition after smoothing. (This figure is adopted
from the original paper.)

In [2], a quadratic smoothing function is defined in Equation 2.23 and illustrated
in Figure 2.14. The product between the magnitude of the discontinuity and the
smoothing function determines the amount of displacement for every frame in the
smoothing window. At the joined point, the end frame of the first clip has half the
discontinuity, while the starting frame of the second clip has the left half. Thus,

after smoothing, the discontinuity at the joined point goes away.

0 f<d—s
)L (f=ddey? d—s<f<d
y(f) = i%x(f—g+s_2)2 d<f<d+s (2.23)
0 f>d+s

where d is the frame number at the joined point. s is half the size of the smoothing

window. f is the frame index.
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2.5.4 Transition by Interpolation

Aclip

Figure 2.15: Transition by linear interpolation. t, and t. are the start transition
point and end transition point, respectively.

Motion interpolation is one of the most important computer animation tech-
niques, which “create a new motion by combining two or multiple different motion
clips according to time-varying weights” [11]. In the case of motion transition, two
motion clips are combined while the weight of the first clip changes from one to
zero while the other varies inversely. In Figure 2.15, transition from clip A to clip B
is achieved by linear interpolation. In some research works [4, 18], the blending is
performed in the frequency domain, where the source motion data are decomposed
into multi-resolution levels, then interpolation is performed in each level, the final
motion is reconstructed by composing the interpolation at multiple levels. Gener-
ally, linear interpolation is performed to the root positions (Equation 2.24), while

spherical linear interpolation is performed to the joint orientations (Equation 2.25).

Pc=uXpy+(l-u)Xpp (2.29)

: sin(uW) i sin((1 — w)W)

i = X —— X
dc = 44 +4p Sin (W)

Sn(W) (2:25)

W = cos™(dly * q)
where p4 and pp are, respectively, the root positions of clip A and B. p¢ is the

root position of the interpolated motion. u is the interpolation coefficient. g is the

quaternion that represents the orientation of the i joint of clip A. i is the joint
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index. q% and qic are similarly defined to clip B and the interpolated result. W is
the angle between the joint orientations of two source clips.

Motion transition based on the idea of motion interpolation has been applied to
online or interactive generation of transition between two example motions, while the
spacetime approach has been applied to off-line processing because of its expensive
computational cost. Additionally, transitions by linear interpolation can be regarded
as a special case of motion stitching, where discontinuities are linearly distributed

over the transition region.

2.6 Motion Similarity Analysis

Motion similarity analysis is a critical stage in many motion editing techniques.
In this section, two typical types of distance functions in recent research work are

reviewed, and then the problems related to them are identified.

2.6.1 Similarity Based on Joint Attributes

Because motion capture data are usually directly represented by the joint angles,
many research works prefer using similarity distance functions that are based on a
weighted sum of multiple joint attributes, such as joint angles, joint velocities, root
velocities and root accelerations. Two typical examples are given below.

J. Lee et al. in [13] present a similarity metric based on joint angles and joint

velocities. The similarity between two frames is computed as follows.
D; ; = wpdp + weda + wydv (2.26)
dp = |lp;o — Ii’j,on2

m
da =" willlog(ajap) Il
k=1

m
dv = Z wkHvM - Vj,lc”2
k=1
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where p; ; and p;, are the root joint (pelvis) translations at frame ¢ and frame
Jj, respectively. q;; is the quaternion that represents the orientation of the kth
joint at frame 1. log(qj',,iqi,k) is the angle by which the kth joint rotates from the
orientation at frame ¢ to the orientation at frame j. v; is the velocity of the kth
joint at frame i. q;; and v, are, respectively, the joint orientation and velocity at
frame j. k is the joint index, m is the number of joints, and wy the joint weight to
control the importance of the kth joint. wy, w, and w, are the attribute weights to
accommodate for the relative importance of the different joint attributes.

The similarity function between frame ¢ and j consists of three terms. The first
one is the difference between root velocities. In the original paper [13], it is the
difference between the global root translation with respect to the previous frame; in
which case, it is the same as the difference in the root velocities. If we use the root
positions instead of velocities, this method will become coordinates dependent. Then
only the frames that are located nearby in the 3 dimensional space can be selected
as the similar frame pairs. Hence, the similarity analysis results largely depend on
the root positions. The other two terms are the difference of joint angles and the
difference of joint velocities. The joint angle term captures the pose information.
While the other two terms incorporate the kinematic information of the joints.
From Equation 2.26, we can see that there are 3 weight parameters each for the 3
attributes. In the original work, no information is given on how to determine the
values of these parameters. In this thesis, different attribute weights have been tried
and it is found that the results can be quite different depending on the attribute
weights (see Figure 2.16).

O. Arikan and D. A. Forsyth [2] define a similar distance function in Equation
2.27, except that it incorporates joint accelerations as well. This measure is based
on joint positions and velocities in the root joint (pelvis) coordinates. There are
four components in the equation, each of which represents a contribution to the
similarity measure. Y p-; widpy and > jo, wgdvy are, respectively, the difference in
joint positions and joint velocities with respect to the root coordinates; dvg and dag
are the difference of root velocities and accelerations. Each of the last two terms
includes translation and orientation. k is the joint index, m the number of joints.

wy, is the joint weight to control the importance of the kth joint; wp, wy, wyo and
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Figure 2.16: Similarity analysis based on joint angles with different attribute weight
sets between left and right (columns correspond to frames from the first clip, rows
correspond to frames from the second clip). Top: The distance matrix. Bottom:
The resulting similar frame pairs are denoted by blue dots.
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wqo are the attribute weights to control the relative importance of the different
joint attributes. The difference of joint positions in the root frames defines the pose
similarity. The other components incorporate kinematic information like velocities

and accelerations.

m m
Dij = wyp Z wrdpy + Wy Z Wi dvg + Wy, dvg + Weedag (2.27)
k=1 k=1

The major drawback of this metric is on how to determine the optimal attribute
weights. In the original work [2], the authors provide a clever way to handle the at-
tribute weights. The maximum difference between sequential frames in the database
is used to normalize each term. The normalization process could better balance the
effects of the four features on similarity analysis. But the attribute weights after
normalization might be dependent on different motion databases. In other words,
the attribute weights are likely to change when the database includes motion streams
with different special patterns. Figure 2.17 shows the different similarity analysis

results generated for the same two clips in two different datasets.

2.6.2 Similarity Based on Point Clouds

In [12], two point sets driven by a skeleton are used to estimate the similarity between
two frames. In fact, the point set of a frame can be formed by the joint positions at
the frame and its neighboring frames, which form a window of the current frame.
Each frame in the window has a different weight, called frame weight, which controls
the relative importance of the frame with respect to the other frames in the window.
Typically, the frame weight is tapered off towards the end of the window.

The similarity metric is defined as the minimum difference between the two point
sets. In order to calculate the minimum difference in joint positions, an optimal 2D
transformation matrix must be computed first. After transformation, the second
point set can be aligned with the first point set. The similarity measure is defined

in Equation 2.28.

F m
Dy = emin Z wy Z wkllp}wc — Tgnm,z()p{c’f“2 (2.28)
YmO’ZO
f=1 k=1
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SRR

Figure 2.17: Similarity analysis based on joint velocities and accelerations in differ-
ent datasets. Left: The dataset has only 2 clips. Right: The dataset has 25 clips.
Top: The distance matrix. Bottom: The resulting similar frame pairs are denoted
by blue dots.
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where p,‘c ;s the kth joint position in the fth frame of the point set at frame i.
pi’ f is similarly defined to the point set at frame j. k is the joint index; m is the
number of joints; wy is the joint weight. w; is the frame weight; f denotes the
frame index within the window and F' is the number of frames in the window. T
is the transformation matrix for rotating by an angle 6 around the vertical axis,
translating on the horizontal plane by (zo, zo). In the original paper [12], a solution

is given to find the transformation matrix T as in the following equations.

6 = arctan 2 Wi (@i2i = 23%1) (jz:/ ~ i’_z) (2.29)
i wi (zix) + zizh) — (2’ + 22)

@y = Z — x} cos§ — z]sinf (2.30)

20 = % + x}sinf — 2} cos b (2.31)

where Z = Y, w;z; and the other barred terms are similarly defined.

In this approach, as joint positions are directly used, the similarity between body
configurations of the frames can be captured. Also the consideration of a frame’s
neighborhood (8 frames in length) incorporates the kinematic differences between
the two sequences.

The major disadvantage of this metric is that it uses a 2D transformation matrix
as the optimal transformation matrix. The method assumes that all the motions
happen at the same level as the ground. The optimal transformation matrix in [12]
does not consider translation along the y-axis, and rotations around the x-axis or the
z-axis. For example, when in one motion clip a character is running on a flat floor;
and in the second clip, the character is walking on a ramp, the similarity result is
shown in Figure 2.18. Obviously, when the vertical distance between the root joints
of the two clips increases, their distance also increases. As a result, only the frames
with root joints at the same level are selected as similar frame pairs. To solve this
problem, one way is to compute the 3D transformation matrix by which the two
point sets can be aligned. However, computing the 3D transformation matrix can

be very time consuming.
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Figure 2.18: Top row: Two motion clips on the different level. Middle row and
bottom row: Similarity analysis based on point clouds. Left: Two clips on the same
level. Right: Two clips on the different level. Middle: The distance matrix. Bottom:
The resulting similar frames.
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2.6.3 Joint Weight

In the motion similarity metrics discussed above, different joint weights are used
to control the importance of different joints. In real life, different joints surely
have different visual importance to the perception or understanding of motion. For
example, the hip joint, knee joint, shoulder joint, elbow, pelvis and spine are more
important than the others. In [13], the important joint weights are set to one,
while the unimportant ones are set to zero. J. Wang et al. [21] propose a set
of optimal joint weights (shown in Table 2.1) for the similarity metrics proposed
in [13]. They also compare their optimal joint weight set with the one in [13] by
running a user study and found that the results using the optimal joint weight set
are more robust and superior than the results using the original joint weight set
in [13]. However, they indicate that their experimental results may be affected by
the motion database and the different transition techniques applied. As all motion
similarity analysis techniques have to specify a joint weight set used to control the
importance of different joints, in the novel approach presented in the next chapter,

we adopt the joint weight set as specified in {13].

Joint name Optimal joint weight
Right and Left Hip 1.0000
Right and Left Knee 0.0901
Right and Left Shoulder | 0.7884
Right and Left Elbow 0.0247

Table 2.1: The optimal joint weight set in [21]. Only the joints with non-zero weights
are shown.
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Chapter 3

A Novel Approach for Motion
Similarity Analysis

Motion similarity analysis is an integral step in the reassembling-based synthesis
approach, and has direct effects on the qualities of the resultant motion sequence.
Moreover, in the previous similarity analysis methods, there are problems that are
not addressed properly. In this chapter, we present a novel motion similarity analysis
to help reusing motion capture data. But first we discuss how the two new features

are selected in our approach.

3.1 Feature Selection

In this research, we are concerned with finding visually similar frames in two motion
streams automatically. This means that the skeletal poses, joint velocities and
accelerations of these two frames and of their neighboring frames should be similar
enough. Thus the smooth and natural transitions between these two frames are able
to be generated. In order to efficiently and accurately identify corresponding similar
frames in two motion clips, suitable features are required to satisfy the following

criteria.

e Coordinate invariant. This is important because the motion should not change
after 3D rigid transformations. It is also called translation and rotation in-

variants. Here, we only consider the motion data with the same skeletal size.
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e Efficient computation. Since similarity analysis is performed on a frame by
frame basis, the computation time is at least O(n?), where n is the frame
number in the motion database. For this reason, the feature computation cost
is expected to be lower. Thus, the similarity computation can scale well with

large motion databases.

e The similarity of skeletal pose and kinematic information should be incorpo-

rated.

e The method should not require determining the attribute weight parameters.

walking | running

Figure 3.1: Two space curves formed by the movement of the LeftLowArm joint in
two walking sequences.

Our goal is to find new motion features satisfying the above criteria. The move-
ment of a joint forms a space curve, and a motion stream can be represented as a
set of space curves formed by the trajectories of all the joints. This way, two motion
sequences forms two sets of space curves. In Figure 3.1, two space curves are formed
by the movements of the joint leftLowArm in two motion clips. From the viewpoint
of space curve, the corresponding similar frames can be seen as two corresponding
point sets in the two sets of space curves. From the theory of space curve, it is
well known that curvature and torsion are the most important intrinsic properties
of space curves. In the following section, we explore if these two properties can
be used as the new features to detect frame similarities. First, the definitions of

curvature and torsion are given by introducing Frenet formulae.
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Typically, the parametric form of a space curve is represented as follows in

Equation 3.1.

Clu) = [z(u), y(u), 2(u)] (3.1)

where x(u),y(u) and z(u) are the three components of curve C(u), u is a function

of arc length s of the curve.

Binormal

Normal
plane

Tangent
Line

Osculating

plane Principle

normal

Figure 3.2: The Frenet frame of space curve

Every point P of a space curve is associated with an orthogonal triple of unit
vectors: the tangent vector t, the principal normal vector n and the binormal vector
b (Figure 3.2). They are defined as follows. The osculating plane at P is defined to
be the plane with the highest order of contact with the curve at P. The principal
normal vector n is the vector perpendicular to the curve at P and lies on the
osculating plane. The binormal vector b is formed by the cross product of t and
n. Thus the frame formed by these three unit vectors is called the Frenet Frame at
point P. The plane where n and b lie on is called the normal plane, while the plane
containing b and t is called the rectifying plane. The derivatives of t, n and b with

respect to the arc length parameter s give the following formulae.

dt

— = Kh
ds
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d—;l:—fit-f—Tb

db
ds

These formulae are called the Frenet formulae of space curve. The coeflicients «

—Tn

and 7 are called the curvature and torsion of the curve, respectively. By definition,
curvature represents the rate of change of the tangent vector, while torsion represents
the rate of change of the osculating plane (or binormal vector b) with respect to the
arc length. Their geometric interpretation suggests that curvature and torsion reflect
the tendency of change of space curve at a point. For that reason, these two intrinsic
properties of space curve can be used to represent the movement information at
that point (frame). However, the following examples suggest that more features are

required for motion similarity analysis.

- torsion A . curvature B

torsion B

Ceurvature A 1

Figure 3.3: Left: Two spiral curves. Middle: Curvature and torsion for Curve A.
Right: Curvature and torsion for Curve B.

Given two spirals defined as follows.
A : [cos(t/V/2),sin(t/V/2), ]
B : [cos(2t/V2), sin(2t/V/2), 1]

On each spiral, the curvature and torsion at each point are constant except at the
boundaries (shown in Figure 3.3). Note: As B-splines are used to approximate the
spirals, the boundary values of the curvatures and torsions are not reliable. We can
say that any two frames of the two spirals match in terms of curvatures or torsions.
In fact, the blue dot on Curve A is expected to match with the yellow dots on Curve
B. Tt is due to the fact that these two features only capture motion information.

Therefore, another feature is required to capture the joint position difference. In
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this research, the joint relative position with respect to its parent is selected to
represent the joint position information. Moreover, the torsion computation involves
third order derivatives, which need high-order spline approximation to compute it.
Thus, we only use the curvature to capture the movement information that can be

computed using cubic B-splines.

3.2 Similarity Analysis

Two novel features are used in our similarity analysis method. The first is the joint
relative position in its parent’s coordinate system. The second is the curvature of the
global curve formed by the movement of each joint. Both of them are coordinate
independent and can be easily computed from the motion capture data. In the
approach developed in this thesis, there are two stages as shown in Figure 3.4,

which are described in detail in the following sections.

Clipl :> Drp Computation :> Curvature Similar
Chp2 cross-correlation frame pairs

Figure 3.4: Motion similarity analysis process.

3.2.1 D,, Computation

The joint (except for the root joint) relative position and its difference in two motion

frames are computed according to Equation 3.2 and 3.3.

rp = R, R, R,v (3.2)
m
Dyp, ; = Z wk“rpi,k - I'Pj,lc”2 (3.3)
k=1
52
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v is the vector that represents the offset of a joint, R,, R, and R, are the rotation
matrices of its parent; ¢ and j are the frame indices; k is the joint index; m is
the number of joints; wy is the joint weight to control the importance of the kth
joint. Note that in this feature, the root joint (pelvis) is excluded. Since the root
joint’s parent is the global world, its relative position is the same as the root’s global
position. If the root joint were included in the difference sum, then a coordinate
dependent factor would be introduced. The joint relative position reduces the effects
of its parent’s movements on the joint. The difference of this feature represents the
position difference after the origins of their parents’ coordinates have been aligned
and hence, can capture the pose similarity more accurately. After this step, only
the candidate frames that are similar enough will go to the second stage. Figure

3.5 shows the D,, matrix and candidate similar frame pairs between walking and

running.

Figure 3.5: D,, computation between walking and running. Left: D,, matrix.
Right: candidate similar frame pairs.

3.2.2 Curvature Cross Correlation

In the second stage, the global motion curve of each joint is generated and its
curvatures are calculated. Then cross-correlation is used to find the corresponding
similar frames based on the curvature information.

The space curve of a joint is calculated as given in Equation 3.4. The offset
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vector of joint v is multiplied by the transformation matrix of its parent, then
the transformation matrix of its grandparent and so on, until the transformation
matrix of the root is reached. Each transformation matrix involves translations and
rotations along each axis. This operation is performed in the same manner as that

in determining the joint positions in the global coordinate frame.

I'(t) = Mroot s MgrandparentMpa'rentV (34)

M =TR.R;R,
When a space curve is represented in parametric form, its curvature is calculated

according to Equation 3.5.

_ fExw

BE (3:5)

In coordinate form

. _ VAP + B +TCT?
()2 + (§)2 + (2)2)?

a=(53) ==(i3) e=(53)

r and T are, respectively, the first and second order derivatives of the space curve,

where

respectively. &, v, 2, %, 4 and Z are similarly defined. Since the motion capture data
is represented in discrete form, the space curve formed by the joint’s trajectory is
represented as a set of discrete 3D points Py, P ... P,. In order to get the curvature
of the motion curve of a joint, cubic B-splines are used to approximate the intervals
between 2 sequential points.

The curve between two control points P; and P;1 is only affected by its 4 nearest
points: Pj_1, P;, P;41 and P49 (shown in Figure 3.6). Note the curve does not pass
through the control points. Given n + 1 points, there will be n — 2 cubic spline
segments. The spline curve between P; and P;1) is defined in [9] by Equation 3.6
or 3.7, where t; <t < t;41.

-1 3 -3 1 P,

1 3 -6 3 0 P,
r(t)zg( (t—t)3 (t—1t) t—t 1) e 0 3 0 Pi—:—l (3.6)

1 4 1 0 Piio
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Figure 3.6: B-spline approximation between two control points P; and Pi1.

r(t) = At —t)*+ Bt —t;)> +C(t —t;)+ D (3.7)
where
= 3(=P—1 + 3P, — 3P, 11 + Piy)

(3P,_1 — 6P, +3P;11)

O

(—=3Pi—1 +3F;41)

=

D= %(Pi—l + 4P, + Pip1)

Since cubic B-spline has C! and C? continuity, the first and second order deriva-
tives at any point of the space curve can be evaluated using Equation 3.8 and 3.9

respectively, where ¢ = ¢;.
) 1
r(t;) = 6(“3Pi—1 +3Pi11) (3.8)

1
f‘(ti) = 5(3131'._1 —6P; + 3Pi+1) (39)

Before the B-spline approximation, the motion curves of joints are smoothed by
a Gaussian filter to make the curvature values more stable. First, a suitable kernel
is computed according to the Gaussian distribution function defined in Equation
3.10. o is the standard deviation of the distribution that determines the degree of
smoothness. In our experiment, the kernel size is 9 and o is 2. Then the smoothing
is achieved by a 1-D convolution operator. In Figure 3.7, the left image shows the
convolution kernel used in our implementation, and the right image demonstrates the

difference between the results of curvature with and without Gaussian smoothing.
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Figure 3.7: Left: The kernel used in Gaussian smoothing. (o = 2, size = 9) Right:
The curvature of the motion curve for the joint leftLowArm in a walking clip, where
the top signal is the curvature (shifted up by 3) calculated with a Gaussian filter,
and the bottom signal is the curvature calculated without a Gaussian filter.

CL‘2

" 20?

G(z) = \/;_M exp(

Curvature is an unsigned value that measures how rapidly the curve pulls away

) (3.10)

from its tangent. Therefore, it is used to represent the kinematic information of
joint movements. The curvatures of each joint at frame ¢ form a feature vector for

one motion stream. The dimension of the vector is determined by the number of

joints.
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Figure 3.8: Cross correlation operated on the feature vectors of two motion clips.
One dimensional feature formed by the trajectories of the left shoulder between a
running and a walking sequence.
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To identify similar movement pattern, cross-correlation is used, which is a stan-
dard method of estimating how two signals are correlated. It is a widely used
technique in computer vision to identify similar 2D patterns. Here, the feature vec-
tor defined above in the neighborhood of a frame forms a pattern mask. The mask
slides over the second motion clip. If a similar pattern can be found in the second
clip, then the corresponding frame is similar to the frame in the middle of the mask
in terms of curvature (see Figure 3.8). The cross correlation between two frames 3

and 7 is defined as in Equation 3.11.

m I<N/2

corr; j = Zwk Z (Kitt,e — mean; k) (Kjq1k — mean; ) (3.11)
k=1  [=—N/2

where N is the size of the neighborhood, wy is the joint weight to control the
importance of the kth joint. Frame ¢ and its eight neighbors form a mask. We
have found empirically that 9 frames is suitable for the size of the mask, since
most transitions are in a short interval, ranging from 10 to 30 frames. x;1; is the
feature’s k™ dimension value of the I** neighbor of frame i; mean; i is the feature’s
k" dimension mean value of frame 1. Kj+i,k and mean;y are similarly defined for
frame j. According to the cross correlation result, the corresponding frame pairs
with larger correlation values are considered as similar frame pairs. The left image
of Figure 3.9 shows the cross correlation result between a walking and a running
sequence, where the whiter areas have larger cross correlation values. Note that only
the cross correlation results for the candidate frame pairs are computed, while the
others are assigned the minimum of the computed cross correlation values to have
the gray scale drawing. The right image in Figure 3.9 shows similar frame pairs as

the output of our system.
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Figure 3.9: Left: Cross correlation results. Right: Similar frame pairs.
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Chapter 4

Experimental Results

In this chapter, we present the experimental results on motion similarity analysis
using the novel approach described in the previous chapter. The other 3 previous
approaches for motion similarity analysis are also implemented. Then experiments
designed to compare the performance of different methods are carried out. We focus
on three major performance aspects: efficiency, accuracy and visual acceptability. In
this research, three different ways are used to represent joint orientations, ie. Euler
Angles, rotation matrices and quaternions. Appendix B contains their definitions
and the conversion algorithms between them. All approaches are implemented on an
average PC (1.16 GHz P4 with 2 GB of memory running Windows XP Professional)
using C++, OpenGL and Maya 5.0. The motion dataset includes a wide variety
of human motions, such as walking, running, dancing with different styles, and on

different levels.

4.1 Run Time Comparison

Table 4.1 shows the run time comparison between different approaches, where the
similarity computation time between walking (300 frames) and running (236 frames)
is shown. Given a motion dataset involving n clips, the total time needed for motion
similarity analysis is Run Time (in Table 4.1) x ﬂ%ﬂl, when the number of frames
for each motion clip is in the same range, that is, from 230 to 300 frames. The run

time of the different motion similarity analysis methods ordered from fast to slow

is: curvature and D,,, joint positions and velocities, joint angles and velocities, and
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point clouds. The results demonstrate that our approach is very eflicient and can

significantly improve the run-time performance for motion similarity analysis.

Approaches Run Time (seconds)
curvature and Dy 1.842
joint positions and velocities 7.585
joint angles and velocities 9.844
point clouds 65.422

Table 4.1: Run time to compute the similarity between two motion clips for different
motion similarity analysis methods.

4.2 Accuracy Study

4.2.1 Accuracy Criteria

From the proceeding discussion, it is already known that similar frame pairs should
match in terms of skeletal configurations, joint velocities and joint accelerations.
Thus in our experiments, three criteria are designed to evaluate the qualities of the
results between different similarity analysis methods. They are, respectively, the
velocity difference, the acceleration difference and the position difference (D, D,

and D, for short), and defined in the following equations.

m
DU = Z Z wkHv,-yk - Vj’k“Z (41)

i k=1

m
Do =Y willaik — ajl? (4.2)

07 k=1

F m i
; -1
Dp=7 % wsy wilpi;— MioM;g P?c,f||2 (4.3)
o f=1 k=1

where v, a and p represent, respectively, the velocity, acceleration and position. ¢
and j are the indices of the similar frame pair; k is the joint index; m is the number
of joints; wy is the joint weight. f is the frame index within the neighborhood of
the compared frame; F' is the number of frames in the neighborhood; w;y is the
frame weight. M is the transformation matrix of the root joint at frame 4; M]Tol

is the inverse of the transformation matrix of the root joint at frame j. When the
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transition happens from frame ¢ to frame j, the transformation matrix (M; oM ]Tol) is
used to align the two clips. Therefore, D), is able to roughly measure the similarity
between the two compared frames and their neighborhoods. Actually, the physical
interpretation of Dj, is similar to that of the minimal position difference in the point
clouds approach. But they are different in the following two aspects. In our ap-
proach, a 3D transformation matrix is used to align the two point sets, while a 2D
transformation matrix is used in the point clouds approach. Additionally, the 3D
transformation matrix is directly computed from the transformation matrix of the
root joints at the two compared frames, no other joints are involved. In the point
clouds approach, a more complex computation scheme involving all the joints is car-
ried out to compute the 2D transformation matrix, and makes the computation cost
more expensive. For example, on the same PC, it takes about 65 seconds to com-
pute the point clouds distance matrix between two clips (300 frames x 236 frames),
while it takes about 40 seconds to compute D, for the same two clips. Moreover,
since the position difference D, can individually capture the similarity between two
frames and their neighborhoods, it is more important than the other two measures,
and is used as a major evaluation criterion in our evaluation scheme.

To compute the above three measures, the same number of similar frame pairs
are generated between any two clips in the motion datasets for each approach.
The quick sort algorithm in [8] is used to order the computed similarity measure
between any two motion clips. The frame pairs with a higher similarity are kept
as the results. For example, top 1 percent (0.1 ~ 1.5 percent in our experiments)
of all the frame pairs are output as the resulting similar frame pairs. Note that
the curvature and Dy, approach sorts the candidate frame pairs according to the

cross-correlation values in the second step.

4.2.2 Optimal Attribute Weights Computation

The measure D, can provide guidelines to find an optimal attribute weight set
needed in the approaches based on the weighted sum of multiple joint attributes.
At this point, the computed optimal attribute weights are used to control the relative
importance of the different joint attributes, such as joint positions, joint angles, root

velocities and accelerations. They are different from the joint weights discussed in
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Section 2.6.3, which control the importance of different joints. In our experiments,
we adopt the joint weight set as that specified in [13]. That is, The weights of the
important joints are set to one, while the unimportant ones are set to zero. All the

other approaches use the same joint weight set.

The process to compute the optimal attribute weights needed in the approaches
based on the weighted sum of multiple joint attributes is described in detail as

follows.

1. Design an initial attribute weight search space. For example, each weight has

10 possible values evenly distributed in the range (0, 1].

2. For each possible attribute weight set, calculate D,,. Then the attribute weight
set that results with the minimum D, corresponds to the optimal attribute

weight set in the current search space.
3. Refine the attribute weight search space if necessary.

The exhausting search for an optimal attribute weight set is very time consuming
and the optimal attribute weight set depends on the motion patterns in the dataset.
For example, in the approach based on joint angles and velocities, when the dataset
includes only 2 clips (each has 150 frames), and the search space is 10 x 10 x 10,
it takes more than 4 hours to find the optimal attribute weights. When the search
space increases to 20 x 20 x 20, it needs about 34 hours. In the first dataset, which
includes running and walking only, the optimal attribute weight set is (0.1,1.0,0.1).
In the second dataset, which includes dancing and running, the optimal attribute
weight set becomes (1.0,1.0,0.1). If no measures such as D, are defined to help
determine the optimal attribute weights automatically, then the animators have
to estimate the values of these weights by trial-and-error, which is obviously a very
tedious and labor intensive exercise. Furthermore, the quality of the results depends
on the experience and skills of the animator. So compared with these techniques,
our approach has the major advantage that it does not require the animator to set

any attribute weights.
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4.2.3 Results for Accuracy Evaluation

In this section, the results for accuracy evaluation are presented when different

motion similarity analysis techniques are applied to different datasets.

S SN \\/ﬂ T AN —rd J s, ) Y
7 rmunung walking

Figure 4.1: Two motion clips on the same floor plane.

g TN
running

H= {0, 30, 60}

walking

, ST 6=15°

Figure 4.2: Two motion clips on different levels. Top: Running on the floor plane.
Bottom: Walking along a ramp with a slope of 15 degrees. H represents the vertical
distance by which the walking clip is shifted down from the floor plane.

Motions on Different Levels The two clips are running and walking on the
same floor plane shown in Figure 4.1. In the different level cases, the walking is
"modified by rotating the root joint around the z-axis by 15 degrees so that walking
on the ground plane is changed to walking on a slope. Then two more walking clips
(see Figure 4.2) on a ramp are generated by shifting the rotated walking clip down

by 30 and 60 cm. Thus, the effects of the vertical distance between the root joints
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of the two compared frames can be investigated.

walking

running

# # % % L
;;wwm«w?%zwvsw&w«m?% i .

{(a) Same level case (byH=0 (c) H=30 (d) H=060

-

Figure 4.3: Similarity analysis based on point clouds. (a) two clips are on the same
floor plane; (b)(c)(d) on 3 different level cases. Top: The root trails of walking
and running. The dotted boxes mark the areas with a smaller vertical distance of
the root joints. Middle: The distance matrix (darker areas imply a lower distance
measure). Bottom: The resulting similar frame pairs denoted by blue dots. The
rows represent the frames in the running clip, while the columns represent the frames
in the walking clip.

The top images in Figure 4.3 show the trails of the root joints in walking and
in running, where the areas with a smaller vertical distance of the root joints are
marked by the dotted boxes. The middle and bottom images in Figure 4.3 show
the similarity analysis results in the point clouds approach between the same level
case and 3 different level cases. Since the point clouds approach uses a 2D rigid
transformation matrix to compute the minimal distance between two point sets,
the similarity results obtained by this method are quite different between the four
compared cases. When the vertical distance between the root joints of the two
clips increases, the difference measure increases, or the similarity measure decreases.
While in the other three techniques, since all the motion features are coordinate

independent, the same results are achieved between the same level case and the
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Figure 4.4: Similarity analysis based on: (a) Curvature and Dyp; (b) Joint angles
and velocities; (c¢) Joint positions and velocities. Top left: Cross-correlation results.
Top middle and right: Distance matrix. Bottom: The resulting similar frame pairs.

different level cases for each technique (shown in Figure 4.4). Figure 4.5 shows
the performance comparison between the same level case and 3 different level cases.
The results demonstrate that the accuracy performance of the point clouds approach
decreases largely in the different level cases when compared with that in the same
level cases; while the other approaches keep the same performance in both cases.
Here, in the approaches based on the weighted sum of multiple joint attributes, all
the weights are set to one. According to the criteridn Dy, the performance of the
approach based on curvature and D,,, the approach based on joint positions and
velocities, the point clouds approach in the same level case are much better than
the performance of the approach based on joint angles and velocities. It is because
the unit attribute weight set used in the joint angle approach is not suitable for the

test motion clips.

Optimal Attribute Weight Sets Computation In the joint angle approach,
three weights (wp : w, : wy) are used to accommodate for the relative importance
of the difference of root velocities, the difference of joint angles and the difference

of joint velocities. To get a suitable attribute weight set needed in the joint angle
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(c) Acceleration difference (d) Computation time {seconds)

Same level case 1. curvature and Dyp

B H=0 2. point clouds

OH=30 3. joint angles and velocities
[1H=60 4. joint positions and velocities

Figure 4.5: Performance comparison between the same level case and the 3 different
level cases. In the different level case, the performance for the point clouds approach
decreases largely when compared with its performance in the same level case; while
the other approaches perform almost the same in both cases.
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approach, the search process described in Section 4.2.2 is operated in two search
spaces. Both are 10 x 10 x 10, one evenly distributed, and the other non-uniformly
distributed. Two optimal attribute weight sets are obtained for the test motions.
Figure 4.6 shows the difference in the results generated by using the joint angle
approach with different attribute weight sets. In Figure 4.7, the performance for
the approach based on joint angles and velocities is presented with different at-
tribute weight sets. The results demonstrate that the performance with the optimal
attribute weight sets is largely improved when compared with the user specified

weights. In the attached CD, Movie 1 also shows the difference in the results by

using a user specified attribute weight set (1.0,1.0,1.0) and the improved optimal
attribute weight set (0.05,1.0,0.02).

(@ 05,

0,1.0,1.0) () (0.1, 1.0,

Figure 4.6: Similarity analysis based on joint angles and joint velocities with different
attribute weight sets. Left: A user specified attribute weight set. Middle and
right: Two optimal attribute weight sets. Top: The distance matrix. Bottom: The
resulting similar frame pairs denoted by blue dots.

Evaluation between Different Datasets Three different datasets have been
tested using different motion similarity analysis approaches. Set A includes a walk-
ing and running clip (300 x 236 frames). Set B includes a rocknroll and a highwire

walking (260 x 300 frames). Set C has 12 motion clips with a variety of human
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(a) Position difference. (b) Velocity difference. (c) Acceleration difference.

1. A user specified weight set {10:10:10}
2. Optimal attribute weight set One {01:1.0:01}
3. Optimal attribute weight set Two {0.05:1.0:0.02}

Figure 4.7: Performance comparison for the joint angle approach by using differ-
ent attribute weight sets. The performance of the joint angle approach is largely
improved by using the computed optimal attribute weight sets according to Dj.

behaviors, such as sneaking, drunk-walking and dancing. For the three datasets,
all the motions happen on the same level ground and the joint angle approach is
applied with an improved attribute weight set. Figure 4.8 shows the similarity anal-
ysis results for Set B. The performance of different approaches for the 3 datasets is
presented in Figure 4.9. The result demonstrates that the performance of different
approaches varies a little when different datasets are applied. However, according
to the position difference criterion, there is not too much difference in their per-
formance in terms of accuracy or quality. This can be verified by the similarities
of their performance in terms of visual acceptability presented in the next section.
Furthermore, the whole evaluation process shows that the two criteria, the velocity
difference (D,) and the acceleration difference (D,), cannot be independently used
as an evaluation criterion.

The results of our evaluation between different approaches are summarized in

Table 4.2.

4.3 Visual Acceptability

To visually assess the performance of the similarity analysis results, a hierarchical

graph is built based on the results of different motion similarity analysis methods.
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Figure 4.8: Motion similarity analysis results for Dataset B. (a) the cross correlation
results of our approach; (b)(c)(d) the distance matrices; (¢)(f)(g)(h) the resulting
similar frame pairs.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a) Position difference. {b) Velocity difference. (c) Acceleration difference.

Curvature & Dyp

Point clouds

Joint angles & velocities
Joint positions & velocities

Pl A

Figure 4.9: Performance comparison between 3 different datasets. Top row: Dataset
A, a walking and a running (300 x 236 frames). Middle row: Dataset B, a rocknroll
and a highwire walking (260 % 300 frames). Bottom row: Dataset C, 12 different mo-
tion clips. (a) the position difference; (b) the velocity difference; (c) the acceleration
difference.
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Then according to the user’s specifications, new motion sequences are created by
stitching different motion clips together. Since motion transition points are detected
based on motion similarity analysis, the quality of the resulting motion sequence
directly depends on the similarity analysis results. In our experiments, linear in-
terpolation is applied to distribute the discontinuities in the transition region. The
experimental results demonstrate that the smooth and natural transitions can be
achieved at the similar frame pairs generated by using the curvature and D, ap-
proach. Figure 4.10 shows the transitions between walking and running. The left
columns show the skeleton poses at selected similar frame pairs. The middle and
right columns are the transition results without and with linear smoothing. In the
attached CD, Movie 2 to Movie 4 demonstrate that our approach can generate visu-
ally appealing transitions. Movie 5 shows the transition results based on the other

similarity analysis techniques.

Evaluation Curvature Point clouds Joint angles | Joint posi-
and relative and velocities | tions and
positions velocities

Run Time Fast Slow Medium Medium

Optimal Attribute Weight { No No Yes Yes

Determination

Coordinate Invariant Yes No Yes Yes

Velocity Difference Acceptable Good Good Acceptable

Acceleration Difference Good Acceptable Good Good

Position Difference Acceptable Acceptable Acceptable Good

Table 4.2: Comparison between different approaches for motion similarity analysis.
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walking running

walking running

ﬁm

Figure 4.10: Transitions between walking (green) and running (red). Left: Skele-
ton poses at the selected similar frame pairs. Middle: Transitions without linear
interpolation. Right: Transitions with linear interpolation. The screen shots are
down-sampled by a factor of 3.

(d) Joint positions and velocities
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Chapter 5

Conclusions and Future Work

5.1 Contributions

In this thesis, two typical motion similarity approaches are investigated and the
related problems are identified. The approach based on a weighted sum of multiple
joint attributes requires attribute weight determination, while the point clouds ap-
proach is coordinated variant and not efficient. To tackle the problems existed in
the previous approach, a novel method for motion similarity analysis is designed and
developed. Two motion features: the curvature of space curve and the joint relative
positions are presented to estimate the similarity between two motion frames. The
experimental results show that our approach is very efficient and is completely co-
ordinate invariant. And visually acceptable transition results can be generated. We
also introduce a general criterion to evaluate the performance of different methods
for motion similarity analysis. By using this criterion, better attribute weight pa-
rameters can be found to improve the results of the approach based on the weighted
sum of different joint attributes.

For the approach based on joint positions, velocities and accelerations, as the
similarity is represented as the weighted sum of three or more components, the
appropriate attribute weight set is very difficult to determine. Moreover, for the
dataset with different motion patterns, the attribute weight set is likely to change. In
our approach, although two motion features are used, the two-step process instead of
the weighted sum avoids the attribute weight selection. Meanwhile, in the case of the
point clouds approach, the minimum distance between two point sets is computed

by aligning them with a 2D rigid transformation matrix. As a result, this method
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cannot correctly deal with motions on different plane levels. The universal criterion
D, presented in this thesis is different from the minimum distance in the point clouds
approach for the following two reasons. First, Dj, is the distance after two point sets
are aligned by a 3D transformation matrix instead of a 2D transformation matrix.
Second, the 3D transformation matrix is directly computed from the 6 DOF of the
root joints of the two frames. Therefore, D, is more general and easily computed.
And according to Dj, an optimal attribute weight set can be found for approaches
that require attribute weight determination.

In our approach, two novel motion features are proposed to describe the simi-
larity between two motion frames. The joint relative positions capture the skeletal
pose information, while the curvature of space curve formed by the joint move-
ments capture the kinematic information. Compared with the previous approach
as for motion similarity analysis, the new curvature and D,, approach has three
major advantages. First, it has a high efficiency. It is because the two features can
be computed directly from motion capture data. Second, it is coordinate invariant.
The two selected features are coordinate independent. Thus, the proposed approach
can correctly handle a wide range of motions, particularly, the motions on different
levels. Finally, no attribute weight determination is required in our approach. A
two-step process does not require attribute weight selection.

There is one limitation of the curvature and Dy, approach. The accuracy of the
curvature computation may affect the quality of the similarity analysis results. But
it can be improved by using the ENO schemes (Essentially Non-Oscillatory) that
are introduced in [7].

In summary, three major original contributions have been made and described

in this thesis:

1. The problems related with current approaches for motion similarity analysis

are identified.

2. A novel approach using two motion features are proposed to estimate the

similarity between two motion frames. It has the following advantages:

e high efficiency,

e coordinate invariant, and
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¢ no attribute weight determination.

3. A novel criterion is presented to compare the performance of different ap-
proaches and to compute the optimal attribute weight for the approaches

based on the weighted sum of different joint attributes.

5.2 Future Work

In this thesis, there are several areas left open for future work. One possibility is
to improve the performance of the curvature and D,, approach by using a more
accurate method for the curvature computation. In our implementation, the cross-
correlation is performed in the spatial domain. In the future, we plan to investigate
the effects when cross-correlation is performed in the Fourier domain. In theory, the
FF'T can further improve the efficiency.

As well, we would like to apply our work to much larger datasets with various
motion patterns and to test the effects of using larger data sets on the performance of
different approaches. Moreover, we will investigate if there are other motion features
that are more suitable to represent and to identify motion similarities between two

motion frames.
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Appendix A

The Header Part of a BVH File

This appendix illustrates the header part of a standard BVH File.

Hips {
Lefthip (Leftupleg) {
Leftknee (Leftlovieg) {
Leftankle {(LeftFoot} ¢
End Site {}
Yy
RightHip (Rightupleg) {
Rightinee (RightlLowleg) {
Rightankle {RightFeot) {
£nd Site {)
Yy
Chest {
LeftCollar {
LeftShoulder (LeftUparm) {
LeftElbow (LeftiowArm) {
teftUrist {LeftHand) {
End Site ()
Yr
RightCollar {
RightShoulder (Rightlpfrm) {
RightElbow (RightLowArm) {
RightWrist (RightHand) {
End Site {}
Y
Neck {
Head {
Fnd Site {3
YR}
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Appendix B

Joint Orientation
Representations and
Conversions

This appendix contains the definitions of the 3 joint orientation representations and
their conversion algorithms used in this research. Three ways are used to represent
joint rotations, namely, Euler Angles, rotation matrices and quaternijons. In motion
capture data, the orientation of a joint is recorded by using Euler Angles, in which
three degrees of freedom along each axis in a fixed order are used to express the
joint orientation. 3 series of rotations along each axis, R,, Ry, Ry are independently
applied to the joint. As the 3D rotations are not commutative, the rotation order
is important.

An alternative way to represent joint rotations is using a 3 x 3 matrix. In the
right-handed coordinate system, the rotation around the z-axis by the angle 6, is

given by the following matrix.

cos(f,) —sin(6,) O
R,(0,) =] sin(f;) cos(f,) O
0 0 1

Similarly, the rotation around the x-axis and the y-axis are, respectively,

1 0 0
R0y =1 0 cos(f;) —sin(fy)
0 sin(8,) cos(6;)

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



cos(f,) 0 sin(6)
Ry(6y) = 0 1 0
—sin{f,) 0 cos(f)

A general rotation matrix is obtained by a combination of the above three matrices

defined as follows.

R = R,R.R,
mo M1 M2 CzCy — 82828y —S8zCx  CzSy + $28zCy
ms M4 Ms = 82Cy — C2848y  CzCx  Sz8y — Cz82Cy
me My Mg —Cx Sy Sz CxCy

where ¢, denotes cos(6;), and s, denotes sin(f;). ¢z, Sz, ¢y and s, are similarly
defined. From the above equation, Euler Angles can be derived from a rotation

matrix by inverse trigonometric computation described as follows.
8, = arcsin(ms)
m
6, = arctan(——l)

my

me
6, = arctan(——
Y rctan ms)

Note, there are infinite solutions to the above equations which means that many
sets of Buler Angles will result in the same rotation. Usually, the correct solution is
selected according to the previous frame. It is expected that there is no big jump for
a joint orientation between two sequential frames in a natural and smooth motion.

A quaternion has 4 components and typically is denoted as an ordered pair of a
real number and a vector: q = (w,v) = w + xi+ yj + zk. When a unit quaternion
(w? + 2% + y? + 22 = 1) is used to represent a 3D rotation, it specifies a rotation
around a axis vector by 8 angle, where the real part represents the cos(g), the vector

part represents the axis vector times sin($) (Equation B.1).

a= (e (). (3)) 1)
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The product of two quaternion ¢ and q, is given by:

Q192 = (w,v) = (w1, Vi) (w2, v2)

where

W = wWiwy — Vi1Vy

v =wivy +wzvy + Vi X V2

The inverse of a quaternion q is:

-1 _ (’UJ, (-—CC, —Y, dz))
(’U)Z + .'1)2 +y2 + 22)

From the interpretation of quaternion rotation, the quaternion forms of rotations

around each axis are represented as follows.

Therefore, the conversion from Euler Angles to quaternions is very straightforward.
To express the orientation of a set of Euler Angles, the rotations around each axis

are composed by multiplying the above 3 quaternions as follows.

q=(w,(z, ¥, 2) ) = 4,99,
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