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Chapter 1

Introduction

1.1 M o tiv a tio n  and O b jective

In com puter graphics, character anim ation is an im portan t research area and m any 

research works focus on creating realistic and na tu ra l hum an anim ations. Recently, 

the  price of m otion capture  hardw are has dropped significantly, and hence, tech­

niques based on m otion capture d a ta  have become commonly used alternatives to 

the  other two anim ation techniques, namely, keyframing and physical-based simu­

lation. Because of th e  ease of use, realistic and na tu ra l m otion capture d a ta  have 

become widely used in commercial applications; in particular, w ith the development 

of practical m otion capture  and editing techniques [4, 5, 6 , 14, 16, 18, 20, 22],

To generate new m otion patterns by reusing existing motion capture d a ta  is still 

an interesting open problem. Two m ajor approaches exist. One is to  use m otion 

blending by combining two or more m otion examples to  form a new motion clip [16, 

18, 20, 22]. The other approach is m otivated by the video texture technique [2, 11, 

12, 13], by which a new m otion sequence is generated by stitching the original m otion 

clips in a new order. Because it directly reuses the source m otion sequences, it is able 

to  preserve realism  and high-level details of the original motion. Moreover, m otion 

blending focuses on creating an individual m otion clip, while motion reassembling 

focuses on generating a  new m otion sequence. B oth of the approaches m entioned 

above have the same goal to  create new m otions from exiting m otion capture data . 

In this thesis, the focus is on techniques to  stitch  the original clips in a new order,

1
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in particular, in locating the best transition  points in connecting two clips.

To use the raw m otion capture da ta  directly is difficult because of the unstruc­

tured and high complexity natu re  inherent in the data. Thus, m otion analysis tools, 

especially for analyzing hum an body motion, are indispensable and have become a 

very im portan t research topic in the context of motion editing. M otion sim ilarity 

analysis provides the  foundation for m any recent research works. For example, in 

[2, 11, 12, 13], similar frames are detected first to  find candidate transition  points. 

Then a new m otion sequence is synthesized by reordering m otion clips. As dis­

continuities are introduced at transition  points, they must be carefully selected. 

Thus, a sm ooth transition  between clips is generated. W hile in m otion blending 

[4, 16, 18, 20, 22], tim e warping is performed to  align the example m otions in the 

tim e dom ain (synchronization) according to  the m otion similarity.

Some m otion editing techniques require the  user to  determine the sim ilarity m an­

ually [18, 20]. The anim ator specifies sim ilar motion frames according to  h is/her 

perception and experience. Therefore, the  quality of the resulting m otion depends 

significantly on the  an im ator’s skills. Moreover, it is a labor-intensive process. In 

order to  reduce the  burden on anim ators and to  increase the speed of m otion sim­

ilarity analysis, some m ethods [2, 11, 12, 13] have been proposed to  autom atically  

detect m otion similarity.

Two m ain types of m otion sim ilarity m etrics based on different m otion features 

are defined in previous works. The first one is based on joint orientations and veloc­

ities [2, 13], and the  other on the distance between sample points (point clouds) [12], 

B oth  of them  emphasize on the  pose sim ilarity of two frames. In order to  capture 

kinem atic inform ation, such as velocity and acceleration, the first approach directly 

incorporates these features, while the  second approach considers the difference be­

tween the neighborhoods of the  two frames. For the first approach, as the  m otion 

capture d a ta  are directly represented by the  jo int angle of a skeleton, the  sim ilarity 

m etrics based on jo int orientations can be easily com puted directly. The disadvan­

tage of th is technique is th a t it uses a weighted sum of m ultiple joint a ttrib u tes  as 

a measure. T he optim al a ttrib u te  weights are very difficult to  identify and m ay be 

dependent on m otion patterns. As a result, the dynamic information of the  source 

da ta  may not be incorporated well. The second approach is very tim e consuming

2
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and dependent on the coordinate system. The assumption th a t a m otion is not 

changed by a rigid 2D transform ation restricts its application to  the movements on 

the same ground plane.

In order to  tackle the problems m entioned above, the present work introduces two 

novel sim ilarity features to  reuse realistic m otion capture data. Curvature, one of the 

intrinsic properties of space curve, is used to  capture the kinematic inform ation. The 

difference between joint positions in their own parent coordinates is used to  evaluate 

the  sim ilarity of body configurations. B oth of these two features are coordinate 

invariant and can be computed efficiently. M ost importantly, no a ttr ib u te  weight 

is needed in our approach. Additionally, to  evaluation the performance of different 

motion sim ilarity m ethods, this thesis also presents a general criterion th a t helps 

to  determ ine optim al a ttribu te  weights used in other approaches. The experim ental 

results dem onstrate th a t our approach for m otion sim ilarity analysis can generate 

visually acceptable results and th a t the o ther m ethods’ performance can be improved 

by using our new evaluation criterion.

1.2 O u tlin e

This thesis is organized as follows. C hapter 2 concerns the related previous works. 

In particular, motion capture d a ta  representation, m otion synthesis by reusing mo­

tion capture data , and m otion sim ilarity analysis are discussed. The new m otion 

sim ilarity analysis is presented in C hap ter 3. C hapter 4 shows the experim ental re­

sults to  compare the new approach w ith o ther approaches. In C hapter 5, conclusion 

and future work are discussed.

3
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Chapter 2

R elated Work

2.1  M otion  C aptu re

Realistic articulated figure anim ations have played an im portan t part in a vari­

e ty  of applications including advertising, entertainm ent, education and simulation. 

Though there are many anim ation techniques in this research area, to  generate na tu ­

ral and realistic anim ation for a v irtual hum an body is still a  challenging task. There 

are several reasons for this. F irst, we are very familiar w ith hum an movements. It 

is quite easy for a person to  identify any unnatural artifacts. A nother reason is the 

complex structure  of a hum an body. This complexity makes it difficult to  m athe­

m atically define hum an m otions and accurately control an articulated  character in 

a  v irtual environment as well as to  model their interactions. Finally it is the fine 

details inherent in the hum an m otions th a t makes the  anim ation of hum an body so 

challenging. Thus, to  provide a practical solution is still much desired.

M otion capture is a s tandard  character anim ation technique, by which the move­

m ent of a live subject is recorded and then  m apped onto a com puter generated 

graphical model. Both facial m otion and body motion can be captured. In this the­

sis, the focus is on full-body hum an motions. The m ajor benefit of this m ethod is 

th a t  the m otion capture d a ta  contain all the  high-level details of live motion, which 

reveal the  personality or m ood of the recorded live subjects. On the  other hands, 

some disadvantages exist in th is technique. F irst, except for planning the capture 

session, anim ators have little  control over the generated anim ations. Moreover, the

4
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motion capture da ta  are difficult to  edit. Typically m otion capture d a ta  record the 

pose in each frame of the motion, not just im portant instan ts of the movements as 

in the case of keyframing. Thus, editing means a lot of d a ta  need to  be dealt with.

Recently w ith the improvement of m otion capture techniques and the lowering 

cost of the hardware, realistic and natu ra l m otion d a ta  have become very popular. 

For example, an anim ator can easily acquire a highly detailed m otion clip with the 

desired m otion pattern , and then use it to  drive a graphical character to  produce a 

stream  of convincing or visually appealing anim ation. Indeed, in the recent movie, 

“T he Lord of the Rings: The Two Towers,” the character Gollum was anim ated 

using th is movement retargeting technique and won the  M TV  Best Digital Perfor­

m ance Award in 2003 [10]. To make use of such abundant m otion sources, many 

research works have been proposed based on directly reusing m otion capture data. 

Typically they are divided into two categories, interpolation-based synthesis and 

reassembling-based synthesis.

The rem ainder of th is chapter is described as follows. F irst, the  representation 

of m otion capture d a ta  is described. Then two categories of m otion synthesis al­

gorithm s based on exiting m otions are discussed, namely, m otion interpolation and 

m otion reassembling. As transition  techniques are an integral p a rt of m otion re­

assembling, and an application of m otion blending, they are discussed next. Since 

m otion sim ilarity analysis is a critical stage for the  selection of m otion transition 

points, previous approaches for m otion sim ilarity analysis are reviewed and the re­

lated  problems are identified in the  last section of th is chapter.

2.2  M otion  C aptu re D a ta  R ep resen ta tio n

Generally, motion capture d a ta  are represented in the  form of jo int angles plus 6  

degrees of freedom for the  ro tations and translations of the  body. In most cases, the 

BVH file form at is used. The nam e BVH stands for BioVision Hierarchical data. 

A typical BVH file consists of two parts: a header section and a m otion section. 

Appendix A shows the header section of a standard  BVH file. The first part defines 

the  skeleton’s hierarchical struc tu re  and its initial configuration, which is illustrated

5
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in Figure 2.1. The second part records the motion information.

Chest

I
(  Neck LeftCollm ) {.

I
( Head

I

( Hips

I
LeftUpLeg ) RightUpLeg

RightCollar

LeftUpAnn} (RiglitUpArai

I

^ LeftHaiKi) (  RightHand)

rrr: 'rn"
( EndSite )  ( EndSite

Left LowLeg) 

LeftFoot )

EndSite J  (LettLowAnnj (RightLuvvA im) EndSite

{RightLowLe

RigiitFoot

EndSite )

Figure 2.1: The hierarchical structure  defined in the  header of a BVH file.

In the  m otion section, each row corresponds to  the  pose of a frame, each column 

corresponds to  a channel (a degree of freedom). Usually the root joint (hips) has 

6  channels, 3 for each axis of translation, 3 for each axis of rotation. W hile each 

of the other joints has 3 channels to  represent its orientation w ith respect to  its 

own parent. Thus, all th e  channels along with the skeleton structure  can completely 

define the configuration of a character a t a frame. T he global position of a joint can 

be easily derived from th e  BVH file. In the following example, the foot position in 

the  global coordinates is calculated according to  E quation 2.1.

Pi — THipsRHips'I'upLegRupLegTLcrwLegRLmLiLeg'V foot (2 .1)

where 'Vfoot is the  offset vector of the foot relative w ith its parent LowLeg, THvps and 

Rmps  are, respectively, the  translation m atrix  and ro ta tion  m atrix  of the root joint. 

TupLeg, RupLegiTiowLeg, and RiowLeg are similarly defined for the  joint UpLeg and 

LowLeg.

Com pared w ith the  m otion da ta  generated by trad itional m ethods like keyfram- 

ing, m otion capture  d a ta  are difficult to work with. One reason is th a t every frame

6
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Hips

UpLeg

LowLeg

p 0 0 t  O  •  E n d S i t e

Figure 2.2: Calculating joint position in global coordinates.

of a motion is recorded, and each frame has about 57 channels. Thus, there are a  lot 

of da ta  to  be processed. A nother reason is th a t the  d a ta  provide little  clues on the 

im portant properties of a m otion and the effects on the  m otion when the properties 

are changed. As a result, reusing m otion capture d a ta  has become an open problem  

in the context of anim ation.

2.3 In terp o la tio n  S yn th esis

Motion interpolation is one of the typical m otion edition techniques, by which new 

motions are generated by combining two or more m otion examples. Usually, a 

continuous param eterized m otion space is constructed from a small set of m otion 

examples by m ulti-target blending, then  the  in-between m otion can be derived from 

the  param eter space. Generally, m otion synthesis is restricted to  a small num ber of 

param eters because a higher dimensional param eter space requires a larger m otion 

dataset and the  cost of storage and com putation increases significantly. Currently, 

many research works belong to  this approach. In the  rem ainder of this section, some 

typical in terpolation synthesis schemes are investigated.
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2.3.1 M ulti-linear Interpolation

The researchers in [22] present a very simple but efficient m ulti-linear interpolation 

m ethod to  generate a new m otion clip from a given database. First, according to  the 

specification of the  required motion, a subset of m otion clips th a t are m ost similar 

to the desired m otion are selected. Then the  new motion is synthesized by linear 

interpolating the selected data. The process is illustrated by the following example.

Considering th a t the hand of an articu lated  figure is required to reach a particu lar 

space position. In this setting, the m otion clip is param eterized by the  3 coordinates 

of the h an d ’s global position. In this example, the motion param eter space is 3 

dimensions and is defined by the position th a t the hand is required to  reach. To 

facilitate searching for the required subset of data, the  original m otion d a ta  are 

resam pled so th a t the  resampled d a ta  form a regular grid of the param eter space 

(see Figure 2.3). As a result, the  selection of the required d a ta  subset does not 

require a search. Instead, the  m otion d a ta  a t the  grid points closed to  the required 

hand position are directly selected as the interpolated dataset.
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Figure 2.3: Left: In itial hand position d a ta  denoted by “+ .” Right: Re-sam pled 
hand position d a ta  denoted by circles. Note th a t  the 3D hand positions are illus­
tra ted  w ith 2D points.

After the  required motion subset is found, the resulting m otion is generated 

by successive interpolations in each dimension. In Figure 2.4, point t  is the desired

8
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Figure 2.4: Linear interpolation.

hand position, dOOO to  d i l l  are hand positions of the selected d a ta  which are closed 

to point t. First, four interpolations along the  x-axis are performed and iOO, iOl, ilO 

and i l l  are the  interm ediate in terpolation results. iOO is com puted in Equation 

2 .2 , where u is the interpolation factor, which is derived from the desired hand

Then, two interpolations along the y-axis are performed to  the interm ediate 

results generated in the previous step. Similarly, iO and i l  are obtained. Finally one 

interpolation is performed between iO and i l  along z-axis and the resulting m otion 

is achieved.

Besides the hand-reaching example discussed above, the authors in [22] also 

present a walking example on different slopes, where one param eter, the slope is 

used to  construct the  param eter m otion space. As walking clips may have different 

length in one cycle, a simple synchronization mechanism is applied to  the selected 

m otions before interpolation. All the walking clips with the same cycles are uni­

formly (linearly) resampled to  the same length. Thus, all the clips are synchronized 

on a cycle-by-cycle basis.

geometrical position relative to  the in terpolated  m otion data  (Equation 2.3).

iOO =  (1 — u) x dOOO +  u x dlOO, u 6  [0,1] 
t x -  d000x

(2 .2 )

(2.3)
dlOOO* — d000x

9
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This interpolation synthesis requires at least 2P m otion data, where p is the num ­

ber of param eters. In general, for p param eters, 2P — 1 interpolations are performed 

with a window of 2P m otion data . A denser motion dataset can produce more accu­

ra te  resulting motions but it increases the storage and com putation requirements.

2.3.2 Verbs and Adverbs M echanism

In [18], C. Rose et al. describe an interpolation m ethod (called verbs/adverbs mech­

anism) to  generate a wide variety of m otions from some existing m otion examples. 

In  this technique, m otions are characterized by emotional contents (happy or tired) 

or kinem atic aspects such as tu rn ing  left, going uphill or downhill. These param ­

eterized motions are called verbs and the  param eters th a t control them  are called 

adverbs. Radial basis function and low order (linear) polynomials are used to  inter­

polate the verbs in a m ultidim ensional param eter space defined by the adverbs.

In the framework of [18], each joint of an anim ated character contains one or 

m ore ro tational degree of freedom. Thus, each m otion example is defined by a 

num ber of DOF functions. The j th DO F function of the i th m otion example M; is 

denoted by © y(T ), where T  is th e  clock tim e or frame index. Each © , 7 is represented 

as a uniform cubic B-spline curve specified by N u m C P  control points as shown in 

Equation 2.4.
N u m C P

( T ) =  E bm B k(T)  (2.4)
k = i

where Bk{T) is the B-spline, and hi7k is the  control point of th e  B-spline. i is the 

index of motion example, j  is the  index of DOF function, k is the  index of control 

point.

Verbs are constructed from sets of similar m otions w ith d istinct styles. For 

example, w ithin a set of walk cycles, they should have similar poses a t starting  

points, ending points, and have the  same step num ber, etc. Their difference only 

exists in the emotional aspects or kinem atic aspects. Then for each m otion example, 

a set of appropriate adverb values are identified m anually by the user. And a 

corresponding point is added into the  adverb space. So a verb M  is defined by a set

10
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of similar motions in Equation 2.5.

i = 1 . . .  Num M otions,
Mi =  {©ij ( T ) , Pj, K m } j  = 1 . . .  N um D O F,  (2.5)

m  — 0 . . .  N u m K eyT im es

where &ij(T ) is the j th DO F function for the i th m otion d a ta  M;. p i is the location 

of Mi in the adverb space. K  is the set of keytimes which describes the instants 

when im portan t motion s truc tu ra l elements happen, such as heel-strike and toe-off. 

Since the  m otion examples in a verb have similar structu re  elements, as a result, 

they  should have similar keytimes. In other words, the same im portan t event should 

happen in all the m otion examples of a verb. In the framework presented in [18], the 

keytime set K  is m anually detected by the  user and is used to  synchronize different 

motions. The synchronization process is called tim e warping and it is achieved by 

a piecewise linear mapping. The details are described as follows.

t

Kev times for motion A

 Keytimes for motion B

T

Figure 2.5: M apping between clock tim e T  and generic tim e t by keytimes.
N u m K e y T im e s  is 4. At clock tim e Ta and Tb , m otion A and motion B have 
similar movements.

In this step, the keytimes are used to  define a linear m apping from a clock tim e 

T  6  {0 .. .K]sfumber K e y T im e s }  t °  a generic tim e t € {0 . . .  1}. T he first keytime of the 

verb, K \  is m apped to  be 0, while the last keytime, Km umber K eyT im es  to  1. And the 

generic tim e t for a clock tim e T  between 0 and the last keytime KMumKeyTim.es is

11
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defined in Equation 2.6.

t ( T )  =  ~  +  N u m K e y T m , s  -  1 " e [ * „ , , A m+1]
(2 .6 )

The m apping process is illustrated  in Figure 2.5. Once the m otion examples are 

re-param eterized from the  clock tim e T  to the generic tim e t, all the m otions and 

their interpolated results will have similar s truc tu re  elements for a given t. The 

corresponding B-spline control points for each D O F in each motion will specify 

similar movement in each motion.

After verbs are constructed with sets of m otion examples with its associated 

keytimes and adverb settings, a new m otion w ith a set of specified adverb values, 

can be derived by in terpolation in the m ultidimensional space defined by adverbs. 

The dimension of th is space is defined by the num ber of adverbs. One adverb axis 

describes one em otional (happy or sad) or kinem atic (uphill or downhill) charac­

teristic of the m otion. The interpolation is applied individually to  each B-splines 

control point for each D O F and at each keytime. And each interpolation is for­

m ulated as a com bination of linear polynomials and radial basis functions. “The 

polynomial function provides an overall approxim ation to  the space defined by ex­

ample motions. The radial bases locally adjusted the  polynomial to  interpolate the 

examples m otions them selves” [18]. Thus, given a  set of required adverb values p, 

the  interpolated kth control point in the j th D O F function of the resulting m otion 

is defined in E quation  2.7.

NumExamples NumAdverbs

bjkip) ~ 'y 1 rijkR-i{P) ~b y  ] O'jkl-̂ -liP) (2-7)
i= i  i=o

where and R t are, respectively, the weight of the  radial basis function and the 

radial basis function, ajki and Ai are, respectively, the coefficient and the  basis 

function. The m th in terpolated  keytime is similarly defined in Equation 2.8.

NumExamples NumAdverbs

K m { P) =  rimRi{ P) +  X I aimAl(p) (2.8)
i=l 1=0

There are N u m C P  x N u m D O F  control point interpolations (Equation 2.7) and 

N u m K eyT im es  keytime interpolations (Equation 2.8) to  generate a new motion. In

12
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[18], the authors dem onstrate how to evaluate the coefficients and the basis functions 

in 2.7 and 2.8.

Verbs and adverbs mechanism is similar to  the  work of D. J. W iley et al. [22] 

discussed in the  above section. Both techniques make use of interpolation in a 

multidimensional param eter space to  generate a new motion. Verbs and adverbs 

mechanism uses a com bination of radial basis functions and linear polynomials to  

approxim ate an in-between motion. And it requires O (n) m otion examples to  con­

struct the param eter space and 0 ( n 3) to  com pute the  resulting motion. The work 

of D. J. W iley directly applies linear interpolation and requires 0 ( 2 ” ) m otion ex­

amples and 0 (2 ” ) to  com pute the resulting motion, n is the num ber of param eters. 

Thus, verbs and adverbs mechanism is a more general m ethod and scales b e tte r  w ith 

the  dimensionality of the param eter space. The additional difference is the different 

synchronization m ethods they apply before interpolation. The first one is based on 

key events, while the  second one on a cycle-by-cycle basis. Note th a t a cycle also 

can be thought of as a  coarse-level event.

The interpolation synthesis discussed above is performed in the tim e domain. 

In the following subsection, we discuss interpolation performed in the frequency 

domain. M ost of them  are adapted from standard  signal processing m ethods.

2.3.3 Interpolation by M ulti-R esolution Analysis

A. Bruderlin et al. in [4] propose to  generate a new m otion by blending the  cor­

responding frequency bands a t different resolution levels of different m otion data. 

This approach is based on the following intuition: the  low-level frequency bands 

control the  general m otion patterns, while the higher-level frequency bands contain 

m otion details, such as mode, style and personality. Thus, the change of coarse 

level affects the m ain p a tte rn  of the motion, while the change of finer level affects 

the style of m otion. In this technique, m otion d a ta  are decomposed into different 

lowpass and bandpass levels by a m ulti-resolution filter. Then during blending, dif­

ferent in terpolation coefficient is used at different frequency levels independently. 

As a result, th is m ay generate a rich variation of m otion with a wide range of styles. 

After blending, the resulting motion is reconstructed by adding up all the blended

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



bandpass sequences plus the DC (direct current) term.

M otion decomposition is done by successively convolving the motion d a ta  with 

a B-spline kernel filter w ith a w idth of 5, while a t each iteration, the motion d a ta  

is down-sampled by a factor of two. In th is way, the number of frequency bands is 

determ ined by the num ber of frames of a decomposed motion and is com puted in 

Equation 2.9.

let 2n < m  < 2n+1, then fb  = n (2-9)

where fb  is the num ber of frequency bands, m  is the number of frames or motion 

length. Before decomposing, all the  blended m otion data  need to  be synchronized by 

re-param eterizing with a generic tim e (tim e-w arping). Thus, the blended m otions 

have the  same length m  and the same frequency level fb  after decomposing.

In the  framework of [4], the dynam ic tim e warping algorithm  is applied to  au­

tom atically  synchronize the blended motions. This involves two steps. F irst, the 

optim al correspondence frames are autom atically  detected based on different simi­

larity analysis (discussed in the last p a rt of this chapter). A grid is constructed to 

represent th e  frame correspondence. In the  grid, rows and columns, respectively, 

represent the  frames of two blended m otion clips. Each cell records the  distance 

m easure between the two corresponding frames. An optim al path , which minimizes 

the sum of the  distance, is com puted using dynamic programming. The second step  

is to  warp the  second m otion clip w ith the  first clip based on the  optim al path . 

It is done by a non-uniform m apping and includes three operations: substitu tion , 

deletion and insertion. In the optim al pa th  (shown in Figure 2.6), a diagonal line in­

dicates th a t  one frame in clip B corresponds to  one frame in clip A; a horizontal line 

means th a t  m ultiple frames in clip B correspond to  one frame in clip A; a vertical 

line means th a t  one frame in clip B corresponds to  m ultiple frames in clip A. During 

warping, for the  first case, the frame in clip B is kept. In the second case, the mean 

of m ultiple frames in clip B is used to  replace the  corresponding m ultiple frames of 

the m ean in clip B. In the last case, a cubic B-spline is used to  in terpolate the  frame 

and its neighbor to  get the  required inserted m ultiple frames. After warping, clip B 

has the same length as clip A.

The details of the blending algorithm  based on m ulti-resolution filtering are 

described in the  following. Step 1  to  5 are performed sim ultaneously on all the

14
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degrees of freedom for each m otion dataset.

1. Calculate all the lowpass sequences by successively convolving the original 

motion da ta  with a B-spline filter kernel. W hile a t each iteration, the motion 

d a ta  is down-sampled by a factor of 2 .

Gk+1 = w x Gk- 0 <  k < fb

where Go is the original m otion sequence, Gfb is the  D C  term , w is the B- 

spline filter kernel. At each iteration, the m otion sequence is kept at the same 

length. The down-sampling is achieved by expanding the  filter kernel a t each 

level while zeros are inserted between the elements of the kernel. For example, 

the  following shows the  first three kernels.

wi =  [ 1/16 1/4 3 /8  1 /4 1/16 ]

1 0 2  =  [ 1/16 0 1 /4  0 3 /8  0 1 /4  0 1 /1 6 ]

=  [ 1/16 0 0 0 1 /4  0 0 0 3 /8  0 0 0 1 /4  0 0 0 1 /1 6 ]

2. Calculate all the  bandpass sequences by repeatedly subtracting two successive 

lowpass sequences. As all the  lowpass sequences have the same length, the 

lowpass band at a lower level {Gk+1 ) does not require to  be expanded first.

L k =  Gk — Gk+i 0 <  k <  fb

3. A djust the am plitude of each band and m ultiply L k by their modified am ­

plitudes. This step increases the  variations of the  resulting motions. For 

example, increasing the  high frequency band can add a nervous twitch to  the 

movement, whereas increasing the  lower frequency band can generate an a t­

tenuated, constrained action w ith reduced details.

4. In terpolate different bands a t different levels. Each resolution level has an 

independent interpolation factor.

16
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5. Reconstruct the resulting m otion by adding up all the bandpass with the DC 

term .
fb - 1

Go =  Gfb +  Lk.
k=o

Another similar approach is the work described in [1 ], which incorporates wavelet 

analysis w ith m otion blending to  generate a new motion. Similarly, the original mo­

tion da ta  are decomposed into m ulti-resolution levels by applying discrete wavelet 

transform ation and norm al blending is performed to  each resolution level indepen­

dently. Then the inverse discrete wavelet transform  is applied to  the resulting 

blended m otion to  reconstruct the  final result from different resolution levels.

2.3.4 Interpolation by Fourier Expansion

In the work of [20], hum an locomotion with new emotions is synthesized by inter­

polation on the basis of Fourier expansions of the original m otion data. For the m th 

joint, its orientation is represented as a Fourier expansion series shown in Equation 

2 . 10 .

©m(t) =  Amo T  ^  ] A mn sin(nf +  nn) (2.10)
n >  1

Here, for simplicity, one 0 m(£) denotes 3 DOF for each axis, th a t  is, 0™ (£),0™ (i) 

or 0™ (t). As this technique is applied to  periodic m otion only, such as walking 

and running, the period of ©m (t) for each joint in one m otion d a ta  is the same 

value T@. And the Fourier coefficients can be estim ated from the  discrete sample 

values ©m(tp), tp € [—T©/2, T©/2], After re-scaling the  tim e param eter t (called 

tim e re-param etrization), the  period of the Fourier expansion series is normalized to

27T. In th is way, the blended m otion d a ta  are synchronized. Similarly, the Fourier

representation of another m otion d a ta  is defined in E quation 2.11.

n m(t) =  B mo +  'y ] B mn sin (nt +  Vi/mn) (2-H)
n >  1

The re-scaled Fourier representation of the original m otion d a ta  can be used to 

generate new m otions w ith different styles. The interpolation between two sets of 

m otion d a ta  are defined in Equation 2.12.

17
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(s, £) — (1 — s) A m 0  +  sBmO  +  ^   ̂ ((1 — s) -^mn +  s B m n ) Sill (f i t  +  (1 ~~ s )  +  S ^ m n ) (2 .12)
n> 1

where s is the interpolation coefficient, and s €  [0, 1]. If s varies from 0 to  1, then 

the  interpolation result Em continuously varies from 0 m to IIm. In this case, s is 

a param eter defined in the frequency domain. A nother interpolation form based on 

the Fourier representation is defined in Equation 2.13, where s is a param eter in the 

tim e domain. B oth forms can generate similar variations of the original m otions by 

using different interpolation coefficients.

Zm (s,t)  =  (1 -  s)@m (t) +  s l lm(t). (2.13)

In addition, the authors also dem onstrate how to  use the Fourier representation 

to  control some high-level m otion characteristics, which involve step length, speed, 

hip position, etc. For example, in Equation 2.10, replace A mn w ith stepAmn, thus, 

the step length can be adjusted by modifying the spectrum  component in its Fourier 

representation. An alternative way to  generate m otion with new characteristics is 

also illustrated. A ctually the  idea is very simple and based on the interpolation tech­

niques. M otion characteristics (called emotion com ponent in the original paper) are 

extracted  by taking the  difference of the Fourier representations of two m otion data , 

then  the ex tracted  characteristic is applied to  the  th ird  motion. A new m otion w ith 

the  required characteristics is generated. For example, the  m ethod gets “briskness” 

from a normal walk and a brisk walk, Then a brisk run  is generated by adding the 

“briskness” to the Fourier expansion series of a norm al run.

The m ajor lim itation of th is m ethod is th a t it only addresses similar periodic 

hum an m otions, like walking and running. Thus, m otion synchronization is easily 

dealt w ith by uniform  scaling.

2.3.5 Sum m ary of Interpolation Synthesis

Motion in terpolation is a purely geometric technique, and cannot guarantee to  pro­

duce physically possible motions. In general, the  interpolation of two dissimilar 

motion clips m ay generate d istorted and unnatura l results. Because the input d a ta
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implicitly contain the kinem atic and dynamic constraints and if the two clips are 

similar enough, the result is also similar to  the source, and most likely satisfies the 

constraints and looks realistic. This is the  reason why most interpolation synthesis 

techniques are performed over a set of similar m otion examples.

Additionally, the  interpolated d a ta  m ust first be aligned in the tim e domain. 

In other words, interpolated motions need to  be re-param eterized with the generic 

time. Thus, a t a given generic time, all the m otions and their interpolation results 

have similar s truc tu re  elements. The sim ilarity between interpolated m otion d a ta  

is further improved by m otion synchronization. Now there are two approaches to 

address this problem . In some interpolation techniques like the one in [4], non- 

uniform tim e scaling is applied. O thers [18, 20, 22] use a uniform tim e scaling 

approach.

2.4  R eassem b lin g  S yn th esis

Inspired by the  research work of video texture, a num ber of reassembling-based 

m otion synthesis algorithm s are proposed to  create a new m otion sequence by di­

rectly stitching different m otion pieces together [2, 12, 13]. This category of m otion 

synthesis is based on the fact th a t possible transitions can be generated between 

different m otion clips when appropriate transition  points are carefully selected. Af­

ter cutting  and pasting, different source m otion pieces are reordered to  compose a 

new sequence, while a t the  same tim e, the sm ooth and natural transitions between 

them  are generated. Thus, a richer variety of m otion sequence can be created from 

a given m otion capture dataset.

Meanwhile, instead of directly using the original motion data, some researchers 

use a sta tistical model to  simplify hum an m otions for m otion synthesis [3, 15]. As 

the  sta tistical approach uses a generalization of motion, they cannot preserve the 

subtle details of the original motion. Moreover, the statistical approach does not 

involve m otion sim ilarity analysis. In the following subsections, we only focus on 

the reassembling synthesis approaches th a t directly use motion capture d a ta  and 

apply m otion sim ilarity analysis.
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Most m otion reassembling schemes generally include three steps: detecting tran ­

sitions, constructing m otion graphs, and searching the graph for an optim al path  

th a t determ ines the required m otion sequence satisfying the user specifications. The 

m otion transition  points are detected based on different m otion sim ilarity analy­

sis. The quality of the resulting m otion sequence directly depends on the sim ilarity 

analysis results. And typically, sim ilarity analysis requires 0 ( n 2) com putation time, 

where n  is the  num ber of frames in the  dataset. Therefore motion sim ilarity analysis 

is a very im portan t bu t a tim e-consuming step. The second step is to  build graph 

structures based on the detected possible transitions between different clips. Three 

types of graph structures exist in the current research area, namely, one-level graph, 

two-level graph and hierarchical graph. Generally, the graph encodes the  m otion 

da ta  and their possible transitions. A pa th  or a walk in the graph infers a possible 

motion sequence. A random  pa th  can create a continuous m otion sequence th a t  is 

regularly applied to  generate a crowd anim ation or screen saver programs. However, 

in most situations, different user interface techniques are used to  control the  syn­

thesized motion. According to  user specifications, an objective function is defined 

to  evaluate possible paths. Different searching strategies are applied to  efficiently 

find an optim al pa th  in the graph.

So in the  following subsections, th ree typical m otion reassembling schemes are 

introduced. F irst we introduce the  graph structure, then discuss how to  build it, 

and finally how to  use motion graphs to  generate a new m otion sequence. Due 

to  the im portance of m otion sim ilarity analysis, it is discussed at the  end of this 

chapter. T he work of L. Kovar and his colleagues [12] generates a one-level motion 

graph. T hen according to  the pa th  the  user specifies, the combination of increm ental 

search and the  branch and bound search is performed to  synthesize a new motion 

sequence. J. Lee [13] proposes to  construct a  two-level motion graph. Three interface 

techniques are used to  control the  search process, in particular, the user selects from 

a list of available choices, sketches a  p a th  and acts out an action in front of a video 

camera. In the  video-based interface, the  best fit of the performed action is found 

in the graph. O. Arikan and D. A. Forsyth [2] construct a hierarchy of graphs to 

represent the  connectivity of a m otion database and perform random ized search to  

find the m otion th a t meets user specified constraints. In the following, the review
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focuses on the graph structure, the  searching strategies and the way in which the 

user controls the search process.

2 .4 .1  O n e-lev e l M o tio n  G raph

The one-level m otion graph presented in [12] is a directed graph th a t represents how 

the captured clips can be re-assembled in a new order. Each edge corresponds to  a 

m otion clip. Some edges are original clips, while others are generated transitions. 

Each node represents the point a t which the incoming clips can be seamlessly fol­

lowed by the outgoing clips. Then a  pa th  or a walk in the graph composed of a 

sequence of edges suggests a possible new m otion sequence. Figure 2.7 shows the 

structu re  of a simple m otion graph and a possible motion sequence.

Building m otion graphs includes the  following steps. F irst, based on the  results 

of m otion sim ilarity analysis, sim ilar frame pairs w ith local minimal difference are 

selected as transition  points; then  the  transitions between different clips are gener­

ated  by linear blending. Finally, the  problem atic nodes are elim inated to  obtain a 

more connective graph as described in the following. There are two kinds of prob­

lematic nodes to  remove. One is called dead node, which does not belong to  any 

cycle. Once such a node is entered, no more clips can be added to  the synthesized 

motion. The other is called sink node. It belongs to  only part of one or more cycles,

sneak-run

sneakwalk-run

ruivwalk

run—sneak

run—jog

jogw alk

Generated transitions
New motion sequence

Walk w alk-m n run run-jog  jog
Original clips

Time

Figure 2.7: The s tructu re  of a one-level motion graph.
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bu t is only able to  reach a small fraction of the graph. So when a sink node is 

entered, the generated m otion is confined to  a small part of the  graph (see Figure 

2.8). The graph pruning is done as follows. Each frame is associated with a set 

of labels, which describe the  m otion patterns and possible constraints. The labels 

are m anually annotated before the graph is built. For each label set, all the edges 

(motion clips and their transitions) whose frames with the  exact label set, form a 

subgraph. Then the strongly connected components (SCC) are com puted for each 

subgraph, where SCC is a m axim al set of nodes such th a t there is a connected path  

between any two nodes in the  SCC. Then edges th a t do not belong to  the SCC and 

nodes w ith no edges a ttached  are deleted. The pruned graph guarantees th a t an 

arb itrarily  long m otion sequence can be generated by traversing the graph.

* o+ Q

* 0

Figure 2.8: The problem atic nodes in the graph. Node 5 is a dead node. Node 4 is 
a sink node.

The goal of constructing m otion graphs is to  generate a new m otion stream  

th a t  conforms to user specifications. This is achieved by searching for an optim al 

p a th  th a t  minimizes an objective function in the graph. The objective function is 

defined to  evaluate how well a possible path  meets the user requirem ents as shown 

in Equation 2.14.
n

f ( w ) =  /  ([e l> • • • 7 en}) = ’e*)
i=l

where pa th  w is composed of a sequence of edges e i , . . . ,  en ; f (w )  is the cost of path  

w; g(w , e) is a non-negative scalar error function, which describes the error when an
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edge e is added to  an existing path  w.

W hile searching, a halting condition is specified by the  user to  decide when to 

stop the search process. The search cost for a global optim al pa th  is too expensive, 

even w ithin a small dataset ( 20 ~  200 sec in [12] ). Thus, a branch and bound local 

search strategy is used to  increase the search efficiency. The purpose of searching 

is to  find a path  th a t minimizes the  error function / .  As the  error f (w )  of path  w 

is the lower bound on f ( w  + v) for any edge v, so only the current optim al path  

Wgpt is kept and the o ther branches whose error exceeds f w opt can be discarded 

immediately. A lthough this stra tegy  can reduce the  num ber of searches to some 

degree, bu t the searching is still exponential. So an increm ental searching is used to  

tradeoff some optim ality for the searching speed. At each step, the  optim al pa th  of 

n  frames is found by the  branch and bound searching, then  the  first m  frames are 

kept, the  m  +  1th frame is used as the starting  point for another search. In their 

im plem entation, the  value of n  varies from 80 to  120 (2.67 to  4 sec), while the value 

of m  varies from 25 to  30 (about 1 sec).

In [12], the authors also dem onstrate how to adap t the  general searching process 

discussed above to  the problem  for pa th  synthesis. T he projection of the root joint 

on the floor a t each frame forms a piecewise planar curve, which is called a path. 

T he distance between the  synthesized path  and the specified pa th  is defined as the 

edge error function. And it is com puted as in Equation 2.15.

P'(s)  is the  point on the synthesized pa th  whose arc length from the  starting  point 

is s. P(s)  is similarly defined for the  desired path . s(ej) is the arc length from frame 

0 to  frame i for edge e. The halting condition for pa th  synthesis is when the current 

p a th  length equals or exceeds the length of the specified path .

This approach can create realistic and controllable m otion sequence from a small 

dataset (the largest dataset involves thousands of frames and takes over 2 0 0  sec). 

P a th  synthesis is a simple and easy way to  control the  locations and orientations 

of the resulting m otion sequence. Additionally, the m otion p a tte rn  constraint (like 

walking or running) is satisfied by confining the search to  a subgraph defined by an 

annotated  label set. The m ajor problem of the one-level graph approach is the seal-

n

(2.15)
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ability. The edges of one node will quickly increase with the size of motion dataset, 

which will make the search for an optim al pa th  very difficult, if not impossible.

2 .4 .2  T w o -lev e l M o tio n  G raph

Higher level

clustering

Lower level

Figure 2.9: The s tructu re  of a two-level m otion graph. The lower level encodes 
source motion d a ta  and their possible transitions on a frame-by-frame basis. The 
higher level records the  clusters and their connections.

In [13], a two-level graph is constructed as shown in Figure 2.9. The lower layer 

keeps the  details of the  original m otion d a ta  and their possible transitions on a 

frame-by-frame basis. T he higher layer is the generalization of the  lower layer by 

grouping th e  fram es w ith similar poses into clusters. At the  lower layer, the  m otion 

da ta  in the database is represented as a first order M arkov process. The transition  

from one frame to  another frame depends only on the  sim ilarity between these two 

frames. The transition  probability is com puted as in Equation 2.16.

where Z ljj is the sim ilarity m etric between frame i and frame j .  5 controls the 

mapping from the  sim ilarity measure to  the transition  probability. Smaller values

Pij  oc exp(—D j j / 5) (2.16)
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of 5 emphasize very sm ooth transitions, while the larger values of 8  trade some 

transition sm oothness for a wider variation of the resulting motion.

If the  tested  m otion database has n frames, then the number of possible transi­

tions becomes 0 ( n 2). So the lower layer graph needs pruning. The following four 

pruning rules are used to  reduce the num ber of transitions.

•  C ontact constraint. Transitions should happen between two similar frames 

only when they have similar contact states. It is because the contact sta te  

is a very im portan t constraint for the motion. For example, a transition  is 

not allowed from a frame when the foot is leaving the floor to  another frame 

when the foot is touching the floor. For a motion clip, the system detects the 

contact s ta te  by considering the relative velocity and proxim ity between the 

characters and other objects in the same v irtual environment.

•  Sim ilarity constraint. Only the transitions between similar frame pairs are 

kept. T h a t is when the sim ilarity m easure between two frames is below a  user 

specified threshold, the  transition  probability is set to  zero.

•  Local m axim um  constraint. Among the similar transitions, only the best tra n ­

sition w ith th e  m aximum  probability is retained.

•  Connectedness constraint. Dead ends or sink nodes are discarded. This is 

sim ilar to  the  pruning process in the  one-level m otion graph.

Even after pruning, the  lower layer representation is too complicated to  efficiently 

determ ine the  required motion. So it needs to  be further simplified. The higher 

layer is built based on clustering analysis. Each cluster is a group of similar frames 

which have sim ilar poses. Then for each frame, all the possible clusters th a t  may 

be transitioned to  from this frame are found. These clusters are organized as a 

tree structure, called the  cluster tree. In this case, clusters capture the sim ilarities 

between frames, while the connections between different frames are captured by the 

cluster trees. T he process to  build a cluster tree for frame i is described as follows 

(see Figure 2.10):

•  the  cluster to  which frame i belongs becomes the root of the tree
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Figure 2.10: The process for building cluster trees. First row: Original m otion d a ta  
on a frame-by-frame basis. Each node is a frame, and each edge between two nodes 
means th a t one frame can be seamlessly followed by the second frame. Second row: 
Transitions denoted by arrows in the  lower layer are generated. T h ird  row: Similar 
frames are grouped into clusters. Last row: Two cluster trees are formed for the  2 
frames m arked with red circles. (This figure is taken from the original paper.)
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• find the transition  with the m axim um  transition  probability to  another cluster

•  if the num ber of frames required to  reach tha t cluster is w ithin a specified 

threshold, add the cluster as a  child to  the current node

•  repeat step 2 and 3 until no more clusters are found.

Each frame in the lower layer is associated with a cluster tree. T he cluster tree 

encodes the valid transitions for th is frame. The cluster trees for all the  frames 

in the m otion database form the higher level graph, also called the cluster forest. 

Thus, the  two-level graph structures are closely linked by cluster trees.

This two-level graph structu re  not only makes efficient search possible, but also 

provides the presentation in the  user interface. For example, in the  case of choice- 

based interface, a list of options is provided to  the user to  select according to  the 

cluster tree of the current frame (state). Here the concept of a cluster pa th  is 

introduced. A cluster pa th  is a pa th  from the root (current frame) of a cluster tree 

to  one of its leaves. If a cluster tree has k leaves, then  it has k  cluster paths. Each 

cluster pa th  defines a set of possible m otion sequences th a t can follow the current 

frame. For each set of possible m otion sequences available to the current frame, the 

one w ith the highest probability, also called the most probable m otion, is found as 

follows. W ithin one cluster path , all the possible paths th a t s ta rt from the  root node 

are searched and evaluated by com puting the  sum of probabilities along the  path . 

T he path  w ith the maximum  probability is the most probable path . Each cluster 

p a th  has one most probable path . T hen according to  all such paths, a set of possible 

action choices next to  the current fram e is provided to  the user to  choose. Typically, 

the  available action choices a t the current frame are represented as example poses, 

paths, or footprints.

The researchers in [13] also dem onstrate two other interface techniques to  control 

the  graph search. One is pa th  sketches, and the other is video performance. In the 

pa th  sketches interface, the user specifies a desired path  and the graph is searched 

to  find a motion sequence th a t follows the path . Two ways are implem ented to 

find the resulting motion. One is to  select the most appropriate action available 

a t the current tim e based on cluster paths. The distance between the desired path  

and the synthesized motion defined by the m ost probable path  w ithin each cluster
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pa th  is evaluated. The path  w ith the minimum distance is selected. In the second 

m ethod, clustering is not involved and searching is directly performed through the 

lower graph, which is similar to  the path  synthesis in the  one-level m otion graph. 

T he distance between the  desired pa th  and the actual pa th  is com puted and the 

p a th  w ith the minimum distance forms the resulting motion.

In the  case of vision-based interface, a user acts out th e  desired m otion in front 

of a camera, then the best fit of the performed motion in the graph is found. The 

difference between the performed action and the  synthesized m otion is defined as 

the  path  cost to  evaluate each possible path . Visual features based on silhouette are 

ex tracted  from the video and are used to compute the distance between a possible 

action and the performed action. In practice, as the direction of the user with 

respect to  the cam era is unknown, the  original m otions in the  dataset need to be 

represented with different viewpoints. 18 different cam era viewpoints are used in 

[13].

In th is work, the authors m ainly focus on how to  use the  three types of user 

interfaces to  control the synthesized m otion sequence. The vision-based interface 

provides a complete control over the  synthesized motion due to  the high dimensional 

input, bu t it is not a general interface as special devices are needed. The choice- 

based interface is most helpful to  provide the user w ith the  inform ation w hat m otions 

are available to  the current s ta te  in the dataset. And the sketch-based interface 

is a  simpler and more natu ra l way to  control the directions and positions of the 

anim ated character. Though the  two-level graph s tructu re  is used to  increase the 

search efficiency, its scalability w ith large databases is a potential problem.

2 .4 .3  H ierarch ica l M o tio n  G raph

In  the hierarchical m otion graph approach, the m otion database is represented as 

a hierarchical structure, defined as G\  <— G2  <— G3 <— . . .  <— Gn <— G, where G 1 

is the coarsest level graph, G is the  finest level. Random  search is performed at 

a  variety of levels to  generate an optim al motion sequence which meets the user 

specified constraints.

The lowest level G is also a directed graph, which captures the  details of the
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original motion d a ta  and their possible transitions. B ut its s tructu re  is different 

from th a t of [1 2 ]. At this level, a node represents an individual motion clip, and an 

edge between two frames represents a possible transition  between the two frames. 

Here, s* denotes the i th frame in clip s, while tj denotes the j th in clip t. Then an 

edge from s; to  tj means th a t frame Sj can be sm oothly followed by frame tj. A 

cost value is also associated with an edge th a t describes the transition  probability 

between the frame pair. The cost of an edge is com puted based on a sim ilarity 

m easure discussed in Section 2.6. Therefore an edge e from Si to  tj is labeled by the 

following 5 terms:

•  fromClip(e ) =  s

•  toClip(e) =  t

•  fromFrame(e)  — i

• toFrame(e) — j

•  cost(e) =  D ij

where D i j  is the  sim ilarity m easure between the two frames i and j .  In this set­

ting, any sequence of edges ei, e2 , •. •, en , defines a  valid m otion sequence, when the 

following two conditions are satisfied.

toClip{e.i) — f r  omClip(ei+1 )

toFrame(ei)  <  f rom F ram e(e i+ i )

A valid pa th  involving 6  edges and the resulting m otion sequence are illustrated  in 

Figure 2.11.

From sim ilarity analysis, it is known th a t there are m any possible transitions 

between any two motion sequences. Thus, the  finest level graph involving a huge 

am ount of edges is too  complicated to  search for an optim al pa th  w ithin a reasonable 

time. To increase the search efficiency, the finest level graph is summ arized and the 

coarsest level graph G\  is used to  help in the search. The highest level graph G\ is 

built by clustering all the edges of G. The clustering process is described as follows. 

All the edges between two nodes s and t can be represented in a m atrix  Pst, where
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a path

Start

clipl

"F
clip2

c!ip3

clip4
e > ITr  e4

clip5

End

Corresponding motion sequence

tim e--------------------------►

Figure 2.11: A valid p a th  and its corresponding m otion sequence. The path  involves 
6  edges and 4 clips. T he first edge and the last edge are, respectively, used to  m ark 
the starting  and end point of the path. If e4  is replaced with e, the path  becomes 
invalid because fromFrame(e)  appears before toFrame(e 3 ) in time, the  second 
condition is not satisfied.
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the i j th entry is the cost value of the edge connecting the frame pair Sj and tj. If 

no such edge exists, then infinity is assigned (Equation 2.17).

C(si , t j )  if the sim ilarity m easure >  threshold;
(2.17)

oo otherwise.

If two frames are similar, then the frames in their neighborhood m ost likely 

are similar too. Hence, the resulting similar frame pairs after sim ilarity analysis 

between two nodes will form several small groups (shown in Figure 2.12). In the 

m atrix  PsU columns correspond to  the f r o m F r a m e  term , rows correspond to  the 

toFrame  term . In th is approach, the clustering between two nodes are found based 

on the two term s, f r o m F r a m e  and toFrame , instead of based on frame poses th a t 

are used in the two-level graph approach. For simplification, clustering is performed 

over any two nodes separately.

S  M#* jr

Clustering
IV.

4  /

0 0  Q )  §

0  J
jP jj

Figure 2 .1 2 : The clustering process for building top level graph G\.  Every edge 
between two nodes is represented as an entry  in a m atrix. Similar frame pairs in a 
neighborhood form a cluster (marked with a blue circle). The center (marked with 
a red star) of these edges becomes one of the  edges of G\

After clustering, the  nodes in G\ are kept the same as G, while the  edges in 

G\  represent the  clusters of edges in G. Hence, one edge in the top level graph G\ 

represents m any edges in the lowest level graph G. Then each edge in G\ is split 

into two parts to  generate a lower level G 2 by the k-ineans clustering m ethod with 

k =  2. In a sim ilar way, the interm ediate levels are generated until the lowest level 

edge of G is reached. Thus, a t the highest level graph G'i, each edge is the  root of 

a binary tree and represents all the edges in a close neighborhood. The leaf edges 

represent possible transitions of the original motion d a ta  and the interm ediate edges 

represent the  averages of all the leaf edges beneath them  (Figure 2.13).
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fromFrame toFrame
Clip A Clip B

Leaffe d g e y ^ N *

Top level edge

Figure 2.13: An edge at the top level graph is represented by a binary tree.

This hierarchical structure  makes an efficient search possible. Before searching, 

the user specifies two types of constraints th a t  the resulting m otion sequences need 

to  satisfy. A hard  constraint means th a t  it m ust be satisfied exactly. For example, 

the character is required to  have a  specific pose (like a ballet dancing pose) a t a 

particular tim e. This kind of hard  constraints will restrict the search to  w ithin a 

particular part (some nodes) of the graph. A soft constraint means th a t it can not 

be m et exactly. Some soft constraint examples are listed as follows. Soft constraints 

provide an objective function th a t  reflects how well soft constraints are satisfied and 

how close a  valid path  is to  the required one.

•  T he to ta l num ber of frames for th e  resulting m otion should be a particular 

num ber.

•  The m otion should not penetrate  any objects in the environment.

•  T he body should be a t a particu lar position and orientation at a particular 

time.

•  A particu lar joint should be a t a particu lar position at a particu lar time.

•  The m otion should have a specified style (such as happy or energetic) a t a 

specific time.
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During graph searching, a random  search strategy is performed to find an optim al 

pa th  which best satisfies the specified constraints. The search process is as follows.

1. S ta rt w ith some random  seed paths a t the top level G\.

2. Evaluate all the current paths and their possible m utations. The two types of 

m utations are described later.

3. Keep the current optim al path .

4. Add new seed paths.

5. Repeat step 2 to 4, until no b e tte r  pa th  is found or the user is satisfied with 

the  current optim al path .

All possible m otion sequences indicated by the valid paths are scored according 

to  how well they meet the soft constraints. For each soft constraint, the difference 

between the actual value and the  constrain t is defined as the constraint cost. A 

pa th  cost is the  sum  of costs of all the  imposed soft constraints plus the sum of 

costs of all the edges along the p a th  in E quation 2.18. The edge cost term  controls 

how sm ooth the  transitions between m otion pieces are, or the sm oothness of the 

resulting motions. Note th a t the  hard  constraints are always satisfied by restricting 

the  searching to  some particular nodes.

n

s ( e i . . .  en) =  wc x ^ 2  cost(ei) + W f X F - \ - W b X B  + W j X j  (2.18) 
i—l

where wc,wj,Wb and Wj are, respectively, the  weights for the sm oothness of motion, 

the  length of m otion constraint, th e  body constraints involving position and orien­

tation , and the joint constraints. F  is the  difference between the  specified num ber of 

frames and the actual num ber of frames in the  path . B  is the distance between the 

position and orientation of the constraints versus the actual position and orientation 

of the body. J  is similarly defined to  the  joint constraint.

During searching, two types of pa th  m utations are considered.

1. Delete the  portion of the  p a th  between any two edges and replace it w ith one 

or two edges at the top  level. This will introduce a be tte r m otion sequence
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(the path  with a lower cost is kept), and the com putation tim e is 0 ( n 2), where 

n  is the average of edge num ber going out from a node a t the  top level graph.

2. Replace every two edges w ith their children. This m utation will push the 

searching down to a finer level and find the substantial difference among a 

group of edges.

In this framework, the m otion synthesis is modeled as an under-constrained 

problem. For many types of constraints, different m otion sequences can be found to 

m eet the  soft constraints. The under-constrained natu re  m otivates th a t the random  

search strategy and two possible m utations can be applied. So after the random  

search, a possible solution is found, bu t it is not guaranteed th a t the generated 

m otion is the one user wants. Since the  synthesis is an interactive process, at 

anytime, users can check the current resulting motion, and then  adjust or add 

m ore constraints to  get their required m otion sequence. Hence, the  flexibility of 

th e  constraint types a user can specified is one of its advantages. The appropriate 

constraint set complied w ith the  original database plays an im portant role to  the 

success of th is technique. For example, the specified constraint set may involve only 

one constraint: catching a ball a t frame 100. If no source m otion includes this type 

of motion, the  specified constraint will not be satisfied. The o ther advantage is the 

g raph ’s hierarchical struc tu re  th a t  makes the  interactive search ( 0 ( n 2)) possible, 

where n  is the average of edge num ber going out from a node a t the  top level graph.

2.4.4 Summary of R eassem bling Synthesis

Reassembling-based synthesis techniques are able to  create continuously varied mo­

tion  sequences based on a  set of motion captured data . T he rich variety of the 

resulting motion sequence is achieved by identifying possible transitions between 

different m otion clips. Therefore, the  transition  points selection is a critical part 

and directly affects the quality of the  resulting m otion sequence.

Since the synthesized m otions are strictly  bounded to  the original m otion data, 

the  size and quality of the da tase t also become key to  the  success of this approach. 

For example, if the m otion source does not contain any “tu rn ing  left” motions,
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the  reassembling based synthesis will not be able to create m otions th a t involves 

“turning left.”

The main problem  related w ith this approach is the scalability of algorithms. 

Different m otion graph structures m otivate different efficient searching algorithms. 

In the one-level graph, the incremental search and the bound and branch search 

are used. For the  other two graph approaches, an efficient search is achieved by 

clustering. In the two-level graph, a cluster is a group of similar frames, then a 

cluster tree is built to  encode several groups of possible transitions to  each frame. 

In the hierarchical graph, a group of similar transitions in term s of f rom F ram e  

and toFrame  are directly clustered to  become a top-level edge. The la tter two 

frameworks scale b e tte r than  the one-level graph scheme.

2.5 M o tio n  T ransition  M echanism s

M otion transition  is an integral part in the approach to  generate a  motion sequence 

by reordering different m otion segments. I t  is also an im portan t application for mo­

tion interpolation. Based on m otion sim ilarity analysis, different transition  mecha­

nisms can be used to  generate motion w ith different qualities. Three main transition 

schemes exist in the current research field of com puter anim ation, namely, spacetime 

transition, m otion stitching, and m otion blending as described in the  following. But 

first we discuss th e  issues related with candidate transition  point selection.

2.5.1 Candidate Transition Point Selection

In order to  create a  sm ooth transition  between two m otion clips, the  poses, veloc­

ities, and constraints should be m atched at the transition  point. In other words, 

the  two frames together w ith their neighboring frames should be similar enough in 

term s of body configuration, velocities and constraints. In some situations, to  create 

seamless transitions between two different m otion clips is impossible. One practical 

example is the direct transition  from a back flip to  a dance. This is because the 

two motion clips are too different and direct transition  between them  is not allowed.
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So a sim ilarity threshold for candidate transitions should be specified to  m ark the 

lower bound sim ilarity for a possible sm ooth transition. And different practical ap­

plications require different thresholds. For example, the transition between walking 

and running requires a higher threshold, as people are very familiar w ith these two 

movements. A lower sim ilarity threshold m aybe used in the transition  between two 

less familiar m otions, such as two different dancing clips.

2.5.2 Transition by U sing Spacetim e Constraints

In [19], the  authors propose a complex sem i-autom atic algorithm  to generate sm ooth 

and dynamically plausible transitions between two m otion clips. During the  tra n ­

sition period, the  m otion of the root, support limbs and non-support limbs are 

respectively dealt w ith. Here, a support limb is defined as the kinem atic chain from 

the  support point (e.g. a foot on the floor) back up the kinem atic tree to  the  root. 

This involves the  th ree processes described as follows.

The root m otion is com puted by linearly interpolating between the  end of the 

first clip and the  beginning of the second clip. The y-component of root transla tion  

is directly in terpolated  between the y-component a t the  beginning and the  end of 

the  transition. T he x and z coordinates of the root position are linearly in terpolated  

based on the  in tegration of velocities (shown in E quation 2.19).

P ( t )  =  P ( i . )  +  £  ( v .  ( l  -  f F y )  +  da  (2.19)

where v i and V2  are the  root velocities in the  x z  plane a t tim e t\  and t2 ■ p (t) and 

p(ti) are the  root positions in the xz  plane a t tim e t and t\, respectively.

The m otion of the  support limbs is controlled by inverse kinem atic constraints. 

Solving the inverse kinem atic problem is an optim al procedure, which minimizes 

the deviation from the  desired constraints. F irst the  support points th a t serve as 

footprint constraints are detected by the system  or by user’s specifications. The sys­

tem  can autom atically  locate them  by finding the  frames in which the foot rem ains 

within a small bounding box over an extended period of time. Solving the inverse
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kinematic constraints is an optimizing process which minimizes the difference be­

tween the actual positions and the desired positions of the support limbs over the 

constrained frames. For each constraint k, the deviation is defined in E quation 2.20.

r/c(t) = llPfcW -PfcWII2 (2.20)

where p fc is the actual position of the constraint frame and p k(t) is the desired 

position. So the to ta l error R  is the integral over the constrained tim e interval of 

the sum of all the  n  constraints (see Equation 2.21).

ft  2 n
R =  /  y 2 r k(t)dt (2.21)

J t» *=i
The m otions of non-support limbs, which do not support the body, are evaluated 

by the spacetim e constraints optim ization. Over the transition  interval, jo int torques 

are minimized to  sim ulate m etabolic energy m inimization. So the  objective function 

is form ulated in Equation 2.22, where Tj is the  torque of the i th joint, i is the  joint 

index.

e =  min [  ’S^ \rf( t)dt  (2.22)
itx t

As this technique uses a combination of kinem atics and dynamics, the results it 

generated can preserve kinem atic constraints and basic dynamic properties. How­

ever, the disadvantage of this m ethod is the  high com putational cost and its lim ited 

short transition  period (0.3s ~  0.6s). Typically, when the speed of two m otion 

clips are quite different, the short transition  period cannot satisfy the n a tu ra l and 

realistic requirem ents. Additionally, the  source m otion segments are also assumed 

to  be processed in advance. For example, the proper transition points have to  be 

m anually selected by the user.

2.5.3 Transition by Stitching

M otion stitching is a fast and easy way to  generate a transition between two m otion 

clips. This approach directly connects two clips at one frame while the discontinuity 

at the joined point is d istributed in a small window around the joined point. W hen
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the transition  point is selected carefully, the discontinuity a t the joined point is small, 

and after smoothing, seamless transition  can be generated. For the cases when the 

difference between the two motion d a ta  is not small enough, the resulting motion 

typically have noticeable artifacts. In practice, a variety of sm oothing m ethods are 

used to  deal with the discontinuities a t the connected point. One exam ple is given 

as follows.

Figure 2.14: T ransition by stitching: a  quadratic  smoothing function controls the 
am ount of displacement of two connected clips in a smoothing window. Left top: 
The m agnitude of discontinuity between two clips. Left bottom : T he smoothing 
function. Right: The resulting transition  after smoothing. (This figure is adopted 
from the  original paper.)

In [2], a  quadratic sm oothing function is defined in Equation 2.23 and illustrated 

in Figure 2.14. The product between the  m agnitude of the discontinuity and the 

sm oothing function determines the  am ount of displacement for every frame in the 

sm oothing window. At the joined point, the  end frame of the first clip has half the 

discontinuity, while the starting  fram e of the second clip has the left half. Thus, 

after sm oothing, the discontinuity a t the  joined point goes away.

y( f )

0
1 x (T i |± 5 )2

/ < d - s
d - s < f <
d < / < d +
f > d + s
s is half the

„ 0
where d is the  frame num ber a t the  joined point, s is half the size of the  sm oothing 

window. /  is the  frame index.
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2 .5 .4  T ransition by In terpolation

A clip

Figure 2.15: Transition by linear interpolation. ts and te are the  s ta r t transition 
point and end transition  point, respectively.

M otion interpolation is one of the m ost im portant com puter anim ation tech­

niques, which “create a new m otion by combining two or m ultiple different motion 

clips according to  time-varying weights” [11]. In the case of m otion transition , two 

motion clips are combined while the  weight of the first clip changes from one to  

zero while the other varies inversely. In Figure 2.15, transition  from clip A to  clip B 

is achieved by linear interpolation. In some research works [4, 18], the blending is 

performed in the frequency dom ain, where the source motion d a ta  are decomposed 

into m ulti-resolution levels, then  interpolation is performed in each level, the final 

m otion is reconstructed by composing the  interpolation at m ultiple levels. Gener­

ally, linear interpolation is performed to  the  root positions (Equation 2.24), while 

spherical linear interpolation is perform ed to  the joint orientations (Equation 2.25).

where and are, respectively, the root positions of clip A  and B.  p c  is the

Pc =  u X Pi  + ( l - « ) x p B (2.24)

Qc =  CU (2.25)

W  = cos- 1 (q^  •  q # )

root position of the  interpolated motion, u is the interpolation coefficient, is the 

quaternion th a t represents the orientation of the i th joint of clip A.  i is the joint
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index, and are sim ilarly defined to  clip B  and the interpolated result. W  is 

the  angle between the joint orientations of two source clips.

M otion transition based on the idea of m otion interpolation has been applied to 

online or interactive generation of transition  between two example motions, while the 

spacetim e approach has been applied to  off-line processing because of its expensive 

com putational cost. Additionally, transitions by linear interpolation can be regarded 

as a special case of m otion stitching, where discontinuities are linearly d istributed 

over the transition  region.

2.6  M otion  S im ilarity  A nalysis

M otion sim ilarity analysis is a critical stage in m any m otion editing techniques. 

In  this section, two typical types of distance functions in recent research work are 

reviewed, and then the problem s related to them  are identified.

2.6.1 Similarity Based on Joint A ttributes

Because m otion capture d a ta  are usually directly represented by the joint angles, 

m any research works prefer using sim ilarity distance functions th a t are based on a 

weighted sum of m ultiple joint a ttribu tes, such as joint angles, joint velocities, root 

velocities and root accelerations. Two typical examples are given below.

J. Lee et al. in [13] present a  sim ilarity m etric based on joint angles and joint 

velocities. The sim ilarity between two frames is com puted as follows.

D i j  — Wpdp +  wada +  wvdv (2.26)

dP = l|Pi,o -  Pj.oll2
m

da = ^ w fc| |% ( q ^ q i)fc) ||2 

m
dv =  Wk\\vi,k -  V y f c l l 2 

k= 1
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where p, 0 and pj  0 are the root joint (pelvis) translations a t frame i and frame 

j ,  respectively, q, k is the quaternion th a t represents the orientation of the kth 

joint a t frame i. log (q j lq i k ) is the angle by which the kth joint ro ta tes from the 

orientation at frame i to the orientation at frame j .  Vj;fc is the velocity of the kth 

jo int at frame i. q jfc and are, respectively, the jo int orientation and velocity at 

frame j .  k is the  joint index, m  is the num ber of joints, and wk the joint weight to 

control the im portance of the  kth  joint. wp, wa and wv are the a ttr ib u te  weights to 

accom modate for the relative im portance of the different joint a ttribu tes.

The sim ilarity function between frame i and j  consists of three term s. The first 

one is the difference between root velocities. In the  original paper [13], it is the 

difference between the  global root translation  w ith respect to the previous frame; in 

which case, it is the same as the difference in the root velocities. If we use the root 

positions instead of velocities, this m ethod will become coordinates dependent. Then 

only the frames th a t are located nearby in the 3 dimensional space can be selected 

as the similar frame pairs. Hence, the sim ilarity analysis results largely depend on 

the  root positions. T he other two term s are the difference of joint angles and the 

difference of joint velocities. The joint angle term  captures the pose information. 

W hile the o ther two term s incorporate the kinem atic inform ation of the  joints. 

From Equation 2.26, we can see th a t there are 3 weight param eters each for the 3 

a ttribu tes. In the  original work, no inform ation is given on how to determ ine the 

values of these param eters. In this thesis, different a ttr ib u te  weights have been tried 

and it is found th a t the  results can be quite different depending on the a ttribu te  

weights (see Figure 2.16).

0 . Arikan and D. A. Forsyth [2] define a similar distance function in Equation 

2.27, except th a t it incorporates joint accelerations as well. This m easure is based 

on joint positions and velocities in the root joint (pelvis) coordinates. There are 

four com ponents in the  equation, each of which represents a contribution to  the 

sim ilarity measure. XX= l wkdpk and Y^k=\ wkdvk are, respectively, the difference in 

joint positions and jo int velocities with respect to  the root coordinates; dvo and dao 

are the difference of root velocities and accelerations. Each of the last two term s 

includes transla tion  and orientation, k is the joint index, m  the  num ber of joints. 

wk is the  joint weight to  control the im portance of the  kth joint; wp, wVl wvo and
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Figure 2.16: Sim ilarity analysis based on jo int angles w ith different a ttr ib u te  weight 
sets between left and right (columns correspond to  frames from the  first clip, rows 
correspond to  frames from the second clip). Top: The distance m atrix. Bottom : 
The resulting sim ilar frame pairs are denoted by blue dots.
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wao are the a ttr ib u te  weights to  control the relative im portance of the  different 

joint a ttribu tes. T he difference of joint positions in the root frames defines the  pose 

similarity. The other components incorporate kinem atic information like velocities 

and accelerations.

m m
Dij = wp ^ 2  wkdpk + wv wkdvk +  wVodv0 + waoda0  (2.27)

k~l k= 1

The m ajor drawback of this m etric is on how to determine the optim al a ttr ib u te  

weights. In the original work [2], the authors provide a clever way to  handle the a t­

tribu te  weights. The m aximum  difference between sequential frames in the  database 

is used to  normalize each term . The norm alization process could be tte r balance the 

effects of the four features on sim ilarity analysis. B ut the a ttrib u te  weights after 

norm alization m ight be dependent on different m otion databases. In o ther words, 

the  a ttr ib u te  weights are likely to  change when the database includes m otion stream s 

w ith different special patterns. Figure 2.17 shows the  different sim ilarity analysis 

results generated for the same two clips in two different datasets.

2.6.2 Sim ilarity Based on Point Clouds

In [12], two point sets driven by a skeleton are used to  estim ate the sim ilarity between 

two frames. In  fact, the  point set of a frame can be formed by the  joint positions at 

the  frame and its neighboring frames, which form a window of the  current frame. 

Each fram e in the  window has a different weight, called frame weight, which controls 

the  relative im portance of the frame with respect to  the other frames in the  window. 

Typically, the  fram e weight is tapered  off towards the  end of the window.

The sim ilarity m etric is defined as the  minimum difference between the  two point 

sets. In order to  calculate the minimum  difference in joint positions, an optim al 2D 

transform ation m atrix  m ust be com puted first. After transform ation, the  second 

point set can be aligned w ith the  first point set. The sim ilarity m easure is defined 

in Equation 2.28.

F  m

Dij = min Y . wf Y l  wk\\Pkj ~  T <7*o,*oPi/ll2 (2‘28)
e'x°'z° f=i k=i
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Figure 2.17: Similarity analysis based on jo in t velocities and accelerations in differ­
ent datasets. Left: The dataset has only 2 clips. Right: The datase t has 25 clips. 
Top: T he distance m atrix. Bottom : T he resulting similar frame pairs are denoted 
by blue dots.
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where p \  ^ is the kth joint position in the f t h  frame of the point set a t frame i.

pJk j  is similarly defined to  the point set at frame j .  k is the joint index; m  is the

num ber of joints; Wk is the joint weight. Wf is the frame weight; /  denotes the 

frame index within the window and F  is the num ber of frames in the window. T  

is the transform ation m atrix  for ro ta ting  by an angle 9 around the vertical axis, 

translating  on the horizontal plane by (xq, zo). In the original paper [12], a solution 

is given to  find the transform ation m atrix  T  as in the following equations.

9 =  arctan  ( E iW i  ^  ~  ^  ~  ~  ^  )  (2.29)
\ E i  w i ( x i x i +  z i z i )  ~  ( XX> + z z  ) J

xo =  x  — x\ cos 9 — z\ sin 9 (2.30)

zq — Zi + x\  sin 9 — z\ cos 9 (2-31)

where x  — E i  wix i and the  other barred term s are similarly defined.

In th is approach, as joint positions are directly used, the  sim ilarity between body 

configurations of the  frames can be captured. Also the consideration of a fram e’s 

neighborhood (8 frames in length) incorporates the kinem atic differences between 

the  two sequences.

The m ajor disadvantage of th is m etric is th a t it uses a 2D transform ation m atrix  

as the optim al transform ation m atrix. The m ethod assumes th a t all the  motions 

happen at the same level as the ground. The optim al transform ation m atrix  in [12]

does not consider translation  along the  y-axis, and rotations around the x-axis or the

z-axis. For example, when in one m otion clip a character is running on a flat floor; 

and in the second clip, the  character is walking on a ramp, the  sim ilarity result is 

shown in Figure 2.18. Obviously, when the vertical distance between the  root joints 

of the two clips increases, their distance also increases. As a result, only the frames 

w ith root joints a t the  same level are selected as similar frame pairs. To solve this 

problem, one way is to  com pute the  3D transform ation m atrix  by which the two 

point sets can be aligned. However, com puting the 3D transform ation m atrix  can 

be very tim e consuming.
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Figure 2.18: Top row: Two m otion clips on the different level. Middle row and 
bo ttom  row: Similarity analysis based on point clouds. Left: Two clips on the same 
level. Right: Two clips on the  different level. Middle: The distance m atrix. Bottom: 
The resulting similar frames.
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2.6 .3  Joint W eight

In the motion sim ilarity metrics discussed above, different joint weights are used 

to  control the im portance of different joints. In real life, different joints surely 

have different visual im portance to  the  perception or understanding of motion. For 

example, the hip joint, knee joint, shoulder joint, elbow, pelvis and spine are more 

im portant th an  the others. In [13], the im portan t joint weights are set to  one, 

while the un im portan t ones are set to  zero. J. W ang et al. [21] propose a set 

of optim al joint weights (shown in Table 2.1) for the sim ilarity m etrics proposed 

in [13]. They also compare their optim al joint weight set with the one in [13] by 

running a user study  and found th a t  the results using the  optim al joint weight set 

are more robust and superior th an  the  results using the  original joint weight set 

in [13]. However, they  indicate th a t their experim ental results may be affected by 

the  motion database and the different transition  techniques applied. As all m otion 

sim ilarity analysis techniques have to  specify a  jo int weight set used to  control the 

im portance of different joints, in the novel approach presented in the  next chapter, 

we adopt the jo int weight set as specified in [13].

Jo in t name O ptim al joint weight
Right and Left Hip 1.0000
Right and Left Knee 0.0901
Right and Left Shoulder 0.7884
Right and Left Elbow 0.0247

Table 2.1: The optim al jo int weight set in [21], Only the  joints w ith non-zero weights 
are shown.
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Chapter 3

A N ovel Approach for M otion  
Sim ilarity Analysis

M otion sim ilarity analysis is an integral step in the  reassembling-based synthesis 

approach, and has direct effects on the qualities of the  resultant m otion sequence. 

Moreover, in the  previous sim ilarity analysis m ethods, there are problems th a t  are 

not addressed properly. In this chapter, we present a  novel m otion sim ilarity analysis 

to  help reusing m otion capture data. B ut first we discuss how the two new features 

are selected in our approach.

3.1 F eature S election

In this research, we are concerned w ith finding visually similar frames in two m otion 

stream s autom atically. This means th a t the  skeletal poses, joint velocities and 

accelerations of these two frames and of their neighboring frames should be sim ilar 

enough. Thus the  sm ooth and natural transitions between these two frames are able 

to  be generated. In  order to  efficiently and accurately identify corresponding similar 

frames in two m otion clips, suitable features are required to  satisfy the following 

criteria.

•  C oordinate invariant. This is im portant because the motion should not change 

after 3D rigid transform ations. It is also called translation and ro tation  in­

variants. Here, we only consider the m otion d a ta  with the same skeletal size.
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•  Efficient com putation. Since sim ilarity analysis is performed on a frame by 

frame basis, the com putation tim e is a t least O (n 2), where n is the frame 

num ber in the  motion database. For th is reason, the feature com putation cost 

is expected to  be lower. Thus, the sim ilarity com putation can scale well with 

large m otion databases.

•  The sim ilarity of skeletal pose and kinem atic information should be incorpo­

rated.

•  The m ethod should not require determ ining the a ttribu te  weight param eters.

running

Figure 3.1: Two space curves formed by the movement of the LeftLowArm jo in t in 
two walking sequences.

Our goal is to  find new motion features satisfying the above criteria. The move­

m ent of a  jo int forms a space curve, and a m otion stream  can be represented as a 

set of space curves formed by the trajectories of all the joints. This way, two m otion 

sequences forms two sets of space curves. In Figure 3.1, two space curves are formed 

by the movements of the joint leftLowArm in two m otion clips. From the viewpoint 

of space curve, the  corresponding sim ilar frames can be seen as two corresponding 

point sets in the two sets of space curves. From the theory of space curve, it is 

well known th a t curvature and torsion are the  most im portant intrinsic properties 

of space curves. In the following section, we explore if these two properties can 

be used as the  new features to  detect fram e similarities. F irst, the  definitions of 

curvature and torsion are given by introducing Frenet formulae.
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Typically, the param etric form of a space curve is represented as follows in 

Equation 3.1.

C(u) = [x (u ) ,y (u ) , z (u )] (3.1)

where x(u),y(u)  and z(u) are the  three components of curve C(u), m is a  function 

of arc length s of the curve.

Rectifyin?
plane

Tangent
Line

Osculating 
> plane Principle

norm al

Figure 3.2: The Frenet frame of space curve

Every point P  of a space curve is associated with an orthogonal trip le of unit 

vectors: the  tangent vector t, the  principal norm al vector n and the  binorm al vector 

b (Figure 3.2). They are defined as follows. The osculating plane a t P  is defined to  

be the plane w ith the highest order of contact with the curve a t P.  The principal 

normal vector n is the vector perpendicular to  the curve at P  and lies on the 

osculating plane. The binorm al vector b is formed by the cross product of t and 

n. Thus the  frame formed by these three unit vectors is called the Frenet Frame at 

point P.  The plane where n and b lie on is called the normal plane, while the  plane 

containing b and t is called the rectifying plane. The derivatives of t, n and b with 

respect to  the  arc length param eter s give the  following formulae.

dt
—  =  nn  
as
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These formulae are called the Frenet formulae of space curve. The coefficients « 

and r  are called the curvature and torsion of the curve, respectively. By definition, 

curvature represents the  ra te  of change of the tangent vector, while torsion represents 

th e  rate  of change of the osculating plane (or binorm al vector b) w ith respect to  the 

arc length. Their geometric in terpreta tion  suggests th a t curvature and torsion reflect 

the  tendency of change of space curve at a point. For th a t reason, these two intrinsic

properties of space curve can be used to  represent the  movement inform ation at

th a t  point (frame). However, the  following examples suggest th a t more features are 

required for motion sim ilarity analysis.

- _---------
torsion A _ ........  . cu rvatu re  B .

M ; \  i * * (  t o r s i o n  B  ... ,  i t
curvature A ! j > .......................    ' \

 .~     1 i  if

"I j 5 ,  Ij

I \i
i. . .  . . 5 T  '  m  mi »  *

Figure 3.3: Left: Two spiral curves. Middle: C urvature and torsion for Curve A. 
Right: C urvature and torsion for Curve B.

Given two spirals defined as follows.

A  : [cos(t/v/2 ) ,s in (f /v /2),i]

B  : [cos(2f/\/2), s in (2 t/v /2), t]

On each spiral, the curvature and torsion at each point are constant except a t the 

boundaries (shown in Figure 3.3). Note: As B-splines are used to approxim ate the 

spirals, the boundary values of the curvatures and torsions are not reliable. We can 

say th a t any two frames of the two spirals m atch in term s of curvatures or torsions. 

In fact, the blue dot on Curve A  is expected to  m atch with the yellow dots on Curve 

B.  It is due to  the fact th a t these two features only capture m otion information. 

Therefore, another feature is required to  capture the joint position difference. In
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th is research, the joint relative position with respect to  its parent is selected to 

represent the joint position information. Moreover, the  torsion com putation involves 

th ird  order derivatives, which need high-order spline approxim ation to  compute it. 

Thus, we only use the curvature to  capture the movement information th a t can be 

com puted using cubic B-splines.

3.2  S im ilarity  A n a lysis

Two novel features are used in our sim ilarity analysis m ethod. The first is the joint 

relative position in its p a ren t’s coordinate system. The second is the curvature of the 

global curve formed by the  movement of each joint. Both of them  are coordinate 

independent and can be easily com puted from the  m otion capture data. In the 

approach developed in th is thesis, there are two stages as shown in Figure 3.4, 

which are described in detail in the  following sections.

Clipl
Clip?

Similar 
frame pairs

Drp Computation Curvature 
cross-correlation

Figure 3.4: M otion sim ilarity analysis process.

3.2.1 D rp C om putation

The joint (except for the  root joint) relative position and its difference in two motion 

frames are com puted according to  Equation 3.2 and 3.3.

rp = RzRxRyv

D rv,.j = J 2 wk\\rPi,k -rpj,jfe|
k=l

(3.2)

(3.3)
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v  is the vector th a t represents the offset of a joint, R Z: R x and R y are the ro tation 

m atrices of its parent; i and j  are the frame indices; k is the joint index; m  is 

the  num ber of joints; is the joint weight to control the im portance of the  kth  

joint. Note th a t in th is feature, the root joint (pelvis) is excluded. Since the  root 

jo in t’s parent is the global world, its relative position is the same as the ro o t’s global 

position. If the root joint were included in the difference sum, then  a coordinate 

dependent factor would be introduced. The joint relative position reduces the  effects 

of its paren t’s movements on the joint. The difference of this feature represents the 

position difference after the origins of their paren ts’ coordinates have been aligned 

and hence, can capture the pose sim ilarity more accurately. After this step, only 

the  candidate frames th a t are similar enough will go to  the second stage. Figure 

3.5 shows the Drp m atrix  and candidate similar frame pairs between walking and 

running.

300 et* £

fiffe ■ fffite C|L> -Hi T l i f t ®  if Iffc <iib

t  t  i
i  > m- 1

■ife- liifr’" ilit̂

3 0 0  ------  JJU
i .«uv"*

jf'-iA ’ A

£k Jn Jib iitam nil mm m
#  * 1  i t  I 1  » 

,i i i  g  a  a
^  *  **1 jr" *

j j  J j  M  . n  K'NV l.T U i‘ »<i. ! u  .*;i .7 0

Figure 3.5: Drp com putation between walking and running. Left: Drp m atrix. 
Right: candidate sim ilar frame pairs.

3 .2 .2  C u rv a tu re  C ross C o rrela tio n

In the second stage, the  global motion curve of each joint is generated and its 

curvatures are calculated. Then cross-correlation is used to  find the corresponding 

similar frames based on the curvature information.

The space curve of a joint is calculated as given in Equation 3.4. The offset
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vector of jo int v  is m ultiplied by the transform ation m atrix  of its parent, then 

the transform ation m atrix  of its grandparent and so on, until the transform ation 

m atrix of the root is reached. Each transform ation m atrix  involves translations and 

rotations along each axis. This operation is performed in the same m anner as th a t 

in determ ining the jo int positions in the global coordinate frame.

r(f) —  M ro o t  . . . M g r a n d p a r e n t M p a r e n t V (3.4)

M  =  T R zR xR y

W hen a space curve is represented in param etric form, its curvature is calculated 

according to  Equation  3.5.

r x r
k = (3.5)

In coordinate form

k —
V P  II2 + lisp + licp

where

A  = V z
y z

((x)2 +  (y)2 +  ( i ) 2) 2 

C =B z x  
Z X

x y 
x y

r and r are, respectively, the  first and second order derivatives of the space curve, 

respectively, x , y, i ,  x, y and z are similarly defined. Since the m otion capture  d a ta  

is represented in discrete form, the space curve formed by the jo in t’s tra jec to ry  is 

represented as a  set of discrete 3D points Pq, P i  ■.. Pn- In order to  get the curvature 

of the m otion curve of a joint, cubic B-splines are used to  approxim ate the intervals 

between 2  sequential points.

The curve between two control points Pi and P t + 1 is only affected by its 4 nearest 

points: P i-i, Pi, Pi+i and P ; + 2  (shown in Figure 3.6). Note the curve does not pass 

through the  control points. Given n +  1 points, there will be n — 2 cubic spline 

segments. T he spline curve between P\ and Pi+\ is defined in [9] by Equation 3.6 

or 3.7, where <  t < U+\.

~(t) = ^  ( ( t -  ti)3 (t -  ti)2 t - t i  1  )

- 1 3 - 3 1  ^ ( Pi-1 \
3 - 6 3 0 Pi

- 3 0 3 0 Pi+1
1 4 1 0  ) \ Pi+ 2 )

(3.6)
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Figure 3.6: B-spline approxim ation between two control points Pi and Pj+i-

r (t) — A (t — U) 3  +  B (t — ti ) 2  +  C{t — ti) P D  (3-7)

where

A = g (—P i-i +  3 Pi — 3Pj+ i +  Pi+2 )

B  =  g(3P j_i -  6 Pi +  3.Pj+i)

C  =  g (—3P ,_ i +  3Pj+i)

D  =  g (P i_ i +  4Pj +  Pj+i)

Since cubic B-spline has C 1 and C 2  continuity, the first and second order deriva­

tives a t any point of the  space curve can be evaluated using Equation 3.8 and 3.9

respectively, where t — ti.

r ( t i ) =  i ( - 3 P i_ i + 3 P i+1) (3.8)

f  (U) = ^ (3 P i- i  -  6 Pi + 3P i+i) (3.9)

Before the  B-spline approxim ation, the  motion curves of joints are sm oothed by 

a  Gaussian filter to  make the curvature values more stable. F irst, a suitable kernel 

is com puted according to  the Gaussian distribution function defined in E quation

3.10. a  is the  s tandard  deviation of the  d istribution th a t determines the  degree of

smoothness. In our experiment, the  kernel size is 9 and a is 2. Then the sm oothing 

is achieved by a 1-D convolution operator. In Figure 3.7, the left image shows the 

convolution kernel used in our im plem entation, and the right image dem onstrates the 

difference between the results of curvature w ith and without Gaussian sm oothing.
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Figure 3.7: Left: The kernel used in Gaussian smoothing, (a — 2 , size — 9) Right: 
The curvature of the m otion curve for the  jo int leftLowArm in a walking clip, where 
the top signal is the curvature (shifted up by 3) calculated w ith a G aussian filter, 
and the bo ttom  signal is the curvature calculated without a Gaussian filter.

g ( i )  =  t (310)

C urvature is an unsigned value th a t  measures how rapidly the curve pulls away 

from its tangent. Therefore, it is used to  represent the kinem atic inform ation of 

joint movements. The curvatures of each joint a t frame t form a feature vector for 

one m otion stream . The dimension of the  vector is determ ined by the  num ber of 

joints.

1.4
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0
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Figure 3.8: Cross correlation operated  on the feature vectors of two m otion clips. 
One dimensional feature formed by the  trajectories of the left shoulder between a 
running and a walking sequence.
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To identify similar movement pattern , cross-correlation is used, which is a stan ­

dard  m ethod of estim ating how two signals are correlated. It is a widely used 

technique in com puter vision to  identify similar 2D patterns. Here, the feature vec­

to r defined above in the neighborhood of a frame forms a pa tte rn  mask. The mask 

slides over the second m otion clip. If a similar pa tte rn  can be found in the second 

clip, then the corresponding frame is similar to  the frame in the middle of the  mask 

in term s of curvature (see Figure 3.8). The cross correlation between two frames % 

and j  is defined as in Equation 3.11.

m  K N / 2

corritj  = Y^Wk Y2 iKW ,k -  m eanitk)(Kj+i,k -  m eanjtk) (3.11)
fc = 1 i= - A T /2

where N  is the size of the  neighborhood, wp. is the joint weight to  control the 

im portance of the kth  joint. Frame i and its eight neighbors form a mask. We 

have found empirically th a t  9 frames is suitable for the  size of the mask, since 

m ost transitions are in a short interval, ranging from 10 to  30 frames. is the

feature’s ktfl dimension value of the  Ith neighbor of frame i\ mearipp- is the feature’s 

kth dimension mean value of frame i. Kj+i^k and rnexirijj. are similarly defined for 

frame j .  According to  the  cross correlation result, the corresponding frame pairs 

w ith larger correlation values are considered as similar frame pairs. The left image 

of Figure 3.9 shows the cross correlation result between a walking and a running 

sequence, where the  w hiter areas have larger cross correlation values. Note th a t only 

the  cross correlation results for the candidate frame pairs are com puted, while the 

others are assigned the  m inimum  of the com puted cross correlation values to  have 

the  gray scale drawing. The right image in Figure 3.9 shows similar frame pairs as 

the  ou tpu t of our system.
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Figure 3.9: Left: Cross correlation results. Right: Similar frame pairs
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Chapter 4

Experim ental R esults

In this chapter, we present the experim ental results on m otion sim ilarity analysis 

using the novel approach described in the previous chapter. The other 3 previous 

approaches for m otion sim ilarity analysis are also implemented. Then experim ents 

designed to  compare the  performance of different m ethods are carried out. We focus 

on three m ajor performance aspects: efficiency, accuracy and visual acceptability. In 

th is research, three different ways are used to  represent joint orientations, ie. Euler 

Angles, ro ta tion  m atrices and quaternions. A ppendix B contains their definitions 

and the conversion algorithm s between them . All approaches are implem ented on an 

average PC  (1.16 GHz P4 with 2 GB of memory running W indows X P Professional) 

using C + + , O penG L and Maya 5.0. The m otion datase t includes a wide variety 

of hum an motions, such as walking, running, dancing w ith different styles, and on 

different levels.

4.1  R u n  T im e C om parison

Table 4.1 shows the run tim e comparison between different approaches, where the 

sim ilarity com putation tim e between walking (300 frames) and running (236 frames) 

is shown. Given a m otion dataset involving n  clips, the  to ta l tim e needed for m otion 

sim ilarity analysis is R un Tim e (in Table 4.1) x n(n+ 1'>; when the  num ber of frames 

for each m otion clip is in the same range, th a t is, from 230 to  300 frames. The run 

tim e of the different m otion sim ilarity analysis m ethods ordered from fast to  slow 

is: curvature and D rp, jo int positions and velocities, jo in t angles and velocities, and
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point clouds. T he results dem onstrate th a t our approach is very efficient and can 

significantly improve the  run-tim e performance for m otion similarity analysis.

Approaches Run Time (seconds)
curvature and Drp 1.842
joint positions and velocities 7.585
joint angles and velocities 9.844
point clouds 65.422

Table 4.1: R un tim e to  com pute the sim ilarity between two motion clips for different 
motion sim ilarity analysis methods.

4.2 A ccu ra cy  S tu d y

4.2.1 A ccuracy Criteria

From the proceeding discussion, it is already known th a t similar frame pairs should 

m atch in term s of skeletal configurations, jo int velocities and joint accelerations. 

Thus in our experim ents, three criteria are designed to  evaluate the qualities of the 

results between different sim ilarity analysis m ethods. They are, respectively, the  

velocity difference, the  acceleration difference and the  position difference (D v D a 

and Dp for short), and defined in the following equations.

m

Dv = Y212 wk\\vi,k -  vi,fcii2 (4-i)
i, j  k= 1 

m
Da =  )  ' )  ' (4-2)

i, j  k= 1 

F m

Op =  E E w/ E  wk M j  -  (4.3)
i, j  /= 1  k=  1

where v, a  and p  represent, respectively, the velocity, acceleration and position, i 

and j  are the  indices of the similar frame pair; k is the  joint index; m  is the  num ber 

of joints; Wk is the  jo int weight. /  is the frame index within the neighborhood of 

the compared frame; F  is the num ber of frames in the  neighborhood; w j  is the 

frame weight. M^o is the transform ation m atrix  of the root joint a t fram e i\ MJ'q 

is the inverse of the transform ation m atrix  of the  root joint a t frame j .  W hen the
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transition  happens from frame i to  frame j ,  the transform ation m atrix  (M ^oM ^1) is 

used to  align the two clips. Therefore, Dp is able to  roughly m easure the sim ilarity 

between the  two compared frames and their neighborhoods. Actually, the physical 

in terpreta tion  of Dp is similar to  th a t of the  m inimal position difference in the  point 

clouds approach. B ut they are different in the following two aspects. In our ap­

proach, a 3D transform ation m atrix  is used to align the two point sets, while a 2D 

transform ation m atrix  is used in the point clouds approach. Additionally, the 3D 

transform ation m atrix  is directly com puted from the transform ation m atrix  of the 

root joints a t the two compared frames, no other joints are involved. In the  point 

clouds approach, a more complex com putation scheme involving all the  joints is car­

ried out to  com pute the 2D transform ation m atrix, and makes the com putation cost 

more expensive. For example, on the  same PC , it takes about 65 seconds to  com­

pute  the  point clouds distance m atrix  between two clips (300fra m es  x 236fra m es), 

while it takes about 40 seconds to  com pute Dp for the same two clips. Moreover, 

since the  position difference Dp can individually capture the sim ilarity between two 

frames and their neighborhoods, it is more im portan t than  the other two measures, 

and is used as a m ajor evaluation criterion in our evaluation scheme.

To com pute the above three measures, the same num ber of similar frame pairs 

are generated between any two clips in the m otion datasets for each approach. 

T he quick sort algorithm  in [8 ] is used to  order the computed sim ilarity m easure 

between any two m otion clips. The fram e pairs with a higher sim ilarity are kept 

as the results. For example, top  1 percent (0.1 ~  1.5 percent in our experim ents) 

of all the fram e pairs are ou tpu t as the  resulting similar frame pairs. Note th a t 

the  curvature and D rp approach sorts the candidate frame pairs according to  the 

cross-correlation values in the second step.

4.2.2 O ptim al A ttribute W eights C om putation

The m easure Dp can provide guidelines to  find an optim al a ttr ib u te  weight set 

needed in the  approaches based on the  weighted sum of m ultiple jo in t a ttribu tes. 

At this point, the com puted optim al a ttr ib u te  weights are used to  control the relative 

im portance of the  different joint a ttribu tes, such as joint positions, joint angles, root 

velocities and accelerations. They are different from the joint weights discussed in
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Section 2.6.3, which control the im portance of different joints. In our experiments, 

we adopt the joint weight set as th a t specified in [13]. T hat is, The weights of the 

im portan t joints are set to  one, while the  unim portant ones are set to  zero. All the 

other approaches use the same jo int weight set.

The process to  compute the  optim al a ttr ib u te  weights needed in the  approaches 

based on the weighted sum of m ultiple joint a ttribu tes is described in detail as 

follows.

1. Design an initial a ttrib u te  weight search space. For example, each weight has 

1 0  possible values evenly d istribu ted  in the range (0 , 1 ].

2. For each possible a ttrib u te  weight set, calculate Dp. Then the a ttr ib u te  weight 

set th a t results with the m inim um  Dp corresponds to  the  optim al a ttribu te  

weight set in the current search space.

3. Refine the  a ttrib u te  weight search space if necessary.

The exhausting search for an optim al a ttr ib u te  weight set is very tim e consuming 

and the optim al a ttrib u te  weight set depends on the m otion pa tte rns in the  dataset. 

For example, in the  approach based on jo in t angles and velocities, when the  dataset 

includes only 2 clips (each has 150 frames), and the search space is 10 x 10 x 10, 

it takes more th an  4 hours to  find the  optim al a ttrib u te  weights. W hen the search 

space increases to  2 0  x 20 x 20, it needs about 34 hours. In the first dataset, which 

includes running and walking only, the  optim al a ttrib u te  weight set is (0 .1 , 1 .0 , 0 .1 ). 

In  the  second dataset, which includes dancing and running, the optim al a ttribu te  

weight set becomes (1.0,1.0,0.1). If no measures such as Dp are defined to  help 

determ ine the optim al a ttr ib u te  weights autom atically, then the  anim ators have 

to  estim ate the values of these weights by trial-and-error, which is obviously a very 

tedious and labor intensive exercise. Furtherm ore, the quality of the results depends 

on the  experience and skills of the  anim ator. So compared with these techniques, 

our approach has the m ajor advantage th a t  it does not require the anim ator to  set 

any a ttr ib u te  weights.
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4.2 .3  R esu lts for A ccuracy E valuation

In this section, the results for accuracy evaluation are presented when different 

m otion sim ilarity analysis techniques are applied to different datasets.

walkingrunning

Figure 4.1: Two m otion clips on the same floor plane.

H= {0, 30. 60}

Figure 4.2: Two m otion clips on different levels. Top: Running on the floor plane. 
Bottom : Walking along a ram p w ith a slope of 15 degrees. H  represents the vertical 
distance by which the  walking clip is shifted down from the floor plane.

M o tio n s  on  D iffe r e n t L e v e ls  The two clips are running and walking on the 

same floor plane shown in Figure 4.1. In the different level cases, the walking is 

modified by ro tating  the  root joint around the z-axis by 15 degrees so th a t walking 

on the ground plane is changed to  walking on a slope. Then two more walking clips 

(see Figure 4.2) on a ram p are generated by shifting the  ro tated  walking clip down 

by 30 and 60 cm. Thus, the effects of the vertical distance between the root joints
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of the two compared frames can be investigated.

rannma;

(a) Same level case

Figure 4.3: Similarity analysis based on point clouds, (a) two clips are on the same 
floor plane; (b)(c)(d) on 3 different level cases. Top: The root trails of walking 
and running. The do tted  boxes m ark the areas w ith a  smaller vertical distance of 
the  root joints. Middle: T he distance m atrix  (darker areas imply a lower distance 
measure). Bottom: The resulting similar frame pairs denoted by blue dots. The 
rows represent the frames in the  running clip, while the  columns represent the frames 
in the walking clip.

The top images in Figure 4.3 show the trails of the  root joints in walking and 

in running, where the areas w ith a smaller vertical distance of the root joints are 

m arked by the do tted  boxes. The middle and bo ttom  images in Figure 4.3 show 

the  sim ilarity analysis results in the  point clouds approach between the same level 

case and 3 different level cases. Since the point clouds approach uses a 2D rigid 

transform ation m atrix  to  com pute the m inimal distance between two point sets, 

th e  sim ilarity results obtained by this m ethod are quite different between the four 

compared cases. W hen the  vertical distance between the root joints of the two 

clips increases, the  difference m easure increases, or the  sim ilarity m easure decreases. 

W hile in the other three techniques, since all the m otion features are coordinate 

independent, the same results are achieved between the  same level case and the
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Figure 4.4: Sim ilarity analysis based on: (a) C urvature and D rp; (b) Joint angles 
and velocities; (c) Joint positions and velocities. Top left: Cross-correlation results. 
Top middle and right: D istance m atrix. Bottom : The resulting similar fram e pairs.

different level cases for each technique (shown in Figure 4.4). Figure 4.5 shows 

the  performance comparison between the same level case and 3 different level cases. 

The results dem onstrate th a t the accuracy perform ance of the point clouds approach 

decreases largely in the  different level cases when compared w ith th a t in the  same 

level cases; while the  other approaches keep th e  same performance in both  cases. 

Here, in the  approaches based on the weighted sum  of multiple joint a ttribu tes, all 

the  weights are set to  one. According to  the criterion Dp, the performance of the 

approach based on curvature and D rp, the approach based on joint positions and 

velocities, the  point clouds approach in the same level case are much be tte r than  

the  performance of the  approach based on jo int angles and velocities. It is because 

the  unit a ttr ib u te  weight set used in the jo int angle approach is not suitable for the 

test m otion clips.

O p tim a l  A t t r i b u t e  W e ig h t S e ts  C o m p u ta t io n  In the joint angle approach, 

three weights (wp : wa : iuv) are used to accom m odate for the  relative im portance 

of the difference of root velocities, the difference of joint angles and the  difference 

of joint velocities. To get a suitable a ttr ib u te  weight set needed in the jo int angle
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(b) Velocity difference(a) Position difference

(c) Acceleration difference

H  Same level case
U  H = 0

□  H = 30
□  H = 60

1.
2 .

3.

4.

(d) Computation time (seconds)

curvature andDjp 
point clouds
joint angles and velocities 
joint positions and velocities

Figure 4.5: Perform ance comparison between the  same level case and the  3 different 
level cases. In the  different level case, the performance for the point clouds approach 
decreases largely when compared with its perform ance in the same level case; while 
the other approaches perform  almost the same in bo th  cases.
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approach, the search process described in Section 4.2.2 is operated in two search 

spaces. Both are 10 x 10 x 10, one evenly distributed, and the other non-uniformly 

d istributed. Two optim al a ttrib u te  weight sets are obtained for the  test motions. 

Figure 4.6 shows the  difference in the results generated by using the jo int angle 

approach with different a ttr ib u te  weight sets. In Figure 4.7, the perform ance for 

the  approach based on jo int angles and velocities is presented w ith different a t­

tribu te  weight sets. The results dem onstrate th a t the performance with the optim al 

a ttr ib u te  weight sets is largely improved when compared with the user specified 

weights. In the attached CD, Movie 1 also shows the difference in the  results by 

using a user specified a ttrib u te  weight set (1 .0 , 1 .0 , 1 .0 ) and the improved optim al 

a ttr ib u te  weight set (0.05,1.0,0.02).

(a) (1 .0 , 1 .0 ,1 .0  ) (b) (0 .1 ,1 .0 , 0.1) (c) (0 .0 5 ,1 .0 , 0 .02)

Figure 4.6: Sim ilarity analysis based on jo int angles and joint velocities w ith different 
a ttr ib u te  weight sets. Left: A user specified a ttrib u te  weight set. M iddle and 
right: Two optim al a ttr ib u te  weight sets. Top: The distance m atrix. Bottom : The 
resulting similar frame pairs denoted by blue dots.

E valuation  betw een  D ifferent D atasets  Three different datasets have been 

tested  using different motion sim ilarity analysis approaches. Set A includes a walk­

ing and running clip (300 x 236 frames). Set B includes a rocknroll and a highwire 

walking (260 x 300 frames). Set C has 1 2  m otion clips with a variety of hum an
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(a) Position difference. (b) Velocity difference. (c) Acceleration difference.

1. A user specified weight set { 1.0: 1.0:1.0 }
2. Optimal attribute weight set One { 0.1: 1.0: 0.1 }
3. Optimal attribute weight set Two { 0.05: 1.0: 0.02}

Figure 4.7: Performance comparison for the joint angle approach by using differ­
ent a ttr ib u te  weight sets. The perform ance of the joint angle approach is largely 
improved by using the com puted optim al a ttrib u te  weight sets according to  Dp.

behaviors, such as sneaking, drunk-walking and dancing. For the  three datasets, 

all the  m otions happen on the  sam e level ground and the jo int angle approach is 

applied w ith an improved a ttr ib u te  weight set. Figure 4.8 shows the  sim ilarity anal­

ysis results for Set B. The perform ance of different approaches for the  3 datasets is 

presented in Figure 4.9. The result dem onstrates th a t the perform ance of different

approaches varies a little when different datasets are applied. However, according

to the position difference criterion, there  is not too much difference in their per­

formance in term s of accuracy or quality. This can be verified by the  similarities 

of their performance in term s of visual acceptability presented in the  next section. 

Furtherm ore, the whole evaluation process shows th a t the two criteria, the  velocity 

difference (Dv) and the acceleration difference (D a), cannot be independently used 

as an evaluation criterion.

The results of our evaluation between different approaches are summ arized in 

Table 4.2.

4 .3  V isu a l A ccep ta b ility

To visually assess the performance of the  sim ilarity analysis results, a hierarchical 

graph is built based on the  results of different m otion sim ilarity analysis m ethods.
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Figure 4.8: M otion sim ilarity analysis results for D ataset B. (a) the cross correlation 
results of our approach; (b)(c)(d) the distance matrices; (e)(f)(g)(h) the resulting 
similar frame pairs.
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1. Curvature & Drp
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Figure 4.9: Performance comparison between 3 different datasets. Top row: D ataset 
A, a walking and a running (300 x 236 frames). M iddle row: D ataset B , a rocknroll 
a n d  a  h ig h w ire  w a lk in g  (260 x  300 f ra m e s ) . B o t to m  ro w : D a ta s e t  C, 12 d if fe re n t m o ­
tion clips, (a) the position difference; (b) the velocity difference; (c) the acceleration 
difference.
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Then according to  the user’s specifications, new m otion sequences are created by 

stitching different m otion clips together. Since m otion transition points are detected 

based on m otion sim ilarity analysis, the quality of the resulting motion sequence 

directly depends on the sim ilarity analysis results. In our experiments, linear in­

terpolation is applied to  distribute the discontinuities in the transition  region. The 

experim ental results dem onstrate th a t the sm ooth and natural transitions can be 

achieved at the  similar frame pairs generated by using the  curvature and Drp ap­

proach. Figure 4.10 shows the transitions between walking and running. The left 

columns show the  skeleton poses a t selected similar frame pairs. The middle and 

right columns are the transition  results w ithout and w ith linear smoothing. In the 

attached CD, Movie 2 to  Movie 4 dem onstrate th a t our approach can generate visu­

ally appealing transitions. Movie 5 shows the  transition  results based on the  other 

sim ilarity analysis techniques.

Evaluation Curvature 
and relative 
positions

Point clouds Joint angles 
and velocities

Joint posi­
tions and 
velocities

Run Time
Optimal Attribute Weight 
Determination 
Coordinate Invariant 
Velocity Difference 
Acceleration Difference 
Position Difference

Fast
No

Yes
Acceptable
Good
Acceptable

Slow
No

No
Good
Acceptable
Acceptable

Medium
Yes

Yes
Good
Good
Acceptable

Medium
Yes

Yes
Acceptable
Good
Good

Table 4.2: Com parison between different approaches for m otion sim ilarity analysis.
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walking running

(a) Curvature & Dj-p

walking running

O

(b) Point clouds

runningwalking

(c) Joint angles and velocities

walking running

(d) Joint positions and velocities

Figure 4.10: Transitions between walking (green) and running (red). Left: Skele­
ton poses a t the  selected similar frame pairs. Middle: Transitions w ithout linear 
interpolation. Right: Transitions w ith linear interpolation. The screen shots are 
down-sampled by a factor of 3.
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Chapter 5

Conclusions and Future Work

5.1 C on trib u tion s

In th is thesis, two typical m otion sim ilarity approaches are investigated and the 

related problems are identified. The approach based on a weighted sum  of m ultiple 

jo in t a ttribu tes  requires a ttr ib u te  weight determ ination, while the  point clouds ap­

proach is coordinated variant and not efficient. To tackle the problem s existed in 

the  previous approach, a  novel m ethod for m otion sim ilarity analysis is designed and 

developed. Two m otion features: the  curvature of space curve and the jo int relative 

positions are presented to  estim ate the  sim ilarity between two m otion frames. The 

experim ental results show th a t our approach is very efficient and is completely co­

ordinate invariant. And visually acceptable transition  results can be generated. We 

also introduce a general criterion to  evaluate the performance of different m ethods 

for m otion sim ilarity analysis. By using this criterion, better a ttr ib u te  weight pa­

ram eters can be found to  improve the  results of the approach based on the  weighted 

sum  of different joint a ttribu tes.

For the  approach based on jo int positions, velocities and accelerations, as the 

sim ilarity is represented as the  weighted sum of three or more components, the 

appropriate  a ttrib u te  weight set is very difficult to determine. Moreover, for the 

dataset w ith different m otion patterns, the a ttribu te  weight set is likely to  change. In 

our approach, although two m otion features are used, the two-step process instead of 

the  weighted sum avoids the a ttr ib u te  weight selection. Meanwhile, in the  case of the 

point clouds approach, the m inim um  distance between two point sets is com puted 

by aligning them  with a 2D rigid transform ation m atrix. As a result, th is m ethod
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cannot correctly deal with m otions on different plane levels. The universal criterion 

Dp presented in this thesis is different from the minimum distance in the point clouds 

approach for the following two reasons. F irst, Dp is the distance after two point sets 

are aligned by a 3D transform ation m atrix  instead of a 2D transform ation m atrix. 

Second, the  3D transform ation m atrix  is directly com puted from the 6  D O F of the 

root joints of the two frames. Therefore, Dv is more general and easily computed. 

And according to  Dp, an optim al a ttr ib u te  weight set can be found for approaches 

th a t require a ttrib u te  weight determ ination.

In our approach, two novel m otion features are proposed to  describe the simi­

larity  between two m otion frames. The joint relative positions capture the skeletal 

pose information, while the curvature of space curve formed by the joint move­

m ents capture the  kinem atic inform ation. Com pared w ith the previous approach 

as for m otion sim ilarity analysis, the  new curvature and Drp approach has three 

m ajor advantages. F irst, it has a high efficiency. It is because the  two features can 

be com puted directly from m otion capture  data. Second, it is coordinate invariant. 

The two selected features are coordinate independent. Thus, the proposed approach 

can correctly handle a wide range of motions, particularly, the m otions on different 

levels. Finally, no a ttrib u te  weight determ ination is required in our approach. A 

two-step process does not require a ttr ib u te  weight selection.

There is one lim itation of the  curvature and Drp approach. The accuracy of the 

curvature com putation m ay affect the  quality of the sim ilarity analysis results. But 

it can be improved by using the  ENO schemes (Essentially Non-Oscillatory) th a t 

are introduced in [7].

In summary, three m ajor original contributions have been m ade and described 

in this thesis:

1. The problems related w ith current approaches for m otion sim ilarity analysis 

are identified.

2. A novel approach using two m otion features are proposed to  estim ate the 

sim ilarity between two m otion frames. It has the following advantages:

•  high efficiency,

•  coordinate invariant, and
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•  no a ttr ib u te  weight determ ination.

3. A novel criterion is presented to  compare the performance of different ap­

proaches and to  com pute the optim al a ttr ib u te  weight for the approaches 

based on the weighted sum of different joint attribu tes.

5.2 Future W ork

In this thesis, there are several areas left open for future work. One possibility is 

to  improve the perform ance of the curvature and Drp approach by using a more 

accurate m ethod for the  curvature com putation. In our im plem entation, the cross­

correlation is performed in the  spatial domain. In the  future, we plan to investigate 

the  effects when cross-correlation is performed in the Fourier domain. In theory, the 

F F T  can further improve the  efficiency.

As well, we would like to  apply our work to  much larger datasets w ith various 

motion patterns and to  test the  effects of using larger d a ta  sets on the performance of 

different approaches. Moreover, we will investigate if there are other m otion features 

th a t are more suitable to  represent and to  identify m otion similarities between two 

motion frames.
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A ppendix A

The Header Part of a BVH  File

This appendix illustrates the header part of a standard  BVH File. 

Hips {
LeftHip (LeftUpLeg) {

teftKnee (LeftlowLeg) {
Leftflnkle (LeftFoot) {

End S ite  <>
} 1  >

RightHlp (RightUpLeg) {
RightKnee (RightLowLeg) {

RightAnkle (RightFoot) <
End S ite  <>
} } }

Chest <
LeftCollar <

leftShoulder (LeftUpArn) {
LeftEltoow (LeftLetnfirm) {

LeftWrist {LeftHand) {
End S ite  {}
}  }  Y }

RightCollar {
RightShoulder (RightllpArn) <

MghtElbow (RightLoefim) {
RightHrist (RightHand) < 

End S ite  {>
} > > }

Neck {
Head {

End S ite  { }
> > > >
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A ppendix B

Joint Orientation  
R epresentations and 
Conversions

This appendix contains the definitions of the 3 joint orientation representations and 

their conversion algorithm s used in this research. Three ways are used to  represent 

jo in t rotations, namely, Euler Angles, ro tation m atrices and quaternions. In motion

three degrees of freedom along each axis in a fixed order are used to  express the 

jo int orientation. 3 series of ro tations along each axis, R Z,R X, R y are independently 

applied to  the joint. As the 3D rotations are not commutative, the ro tation  order 

is im portant.

An alternative way to  represent joint rotations is using a 3 x 3 m atrix. In the 

right-handed coordinate system, the  ro tation  around the z-axis by the  angle 9Z is 

given by the following m atrix.

capture data, the orientation of a joint is recorded by using Euler Angles, in which

Similarly, the ro tation  around the  x-axis and the y-axis are, respectively,

(  1 °  ° \
Rx(9x) = 0  cos(9x) - s i n  (9X)

\  0  sin(#x) cos(0x)
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/  cos(#x) 0  s in (^ )  \
R y{9y) =  0 1 0

y -  sin(0 *) 0  ' cos(9x)

A general ro tation m atrix  is obtained by a combination of the above three matrices 

defined as follows.

mo m i m 2  

m 3  7724 7775

m6 m^ ms

R  =  R zRxRy

$z$x$'z ° x ° y - S z Crr
SZSz°y z°x^y

\ CXSy Cx Cy

where cz denotes cos(0 z), and sz denotes s in (^ ) . cx , sx , cy and sy are similarly 

defined. From the above equation, Euler Angles can be derived from a ro tation 

m atrix  by inverse trigonom etric com putation described as follows.

9X =  arcsin(my)

9Z =  a rc tan f—— )
7724
m e .

9y = arctan(-
m 8

Note, there are infinite solutions to  the  above equations which means th a t many 

sets of Euler Angles will result in the  same rotation. Usually, the correct solution is 

selected according to  the  previous frame. It is expected th a t there is no big jum p for 

a joint orientation between two sequential frames in a natural and sm ooth motion.

A quaternion has 4 com ponents and typically is denoted as an ordered pair of a 

real num ber and a vector: q  =  (w, v) =  w +  xi + y) +  zk . W hen a unit quaternion 

(w2 + x 2 + y2 + z 2 = 1) is used to  represent a 3D rotation, it specifies a rotation 

around a axis vector by 9 angle, where the real part represents the c o s ( |) , the vector 

p a rt represents the axis vector tim es s in ( |)  (Equation B .l).

q cos | 2  ) >sm I 2  v (B.l)
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The product of two quaternion q 1 and q2 is given by:

q j q 2 =  (w,v)  =  {w1, v i ) (w2, v 2)

where

W — W \ W 2  — V i V 2 

V =  W\V2 +  W2 V1 +  Vi x v 2

The inverse of a  quaternion q is:

- 1  (w, (—as, - y ,  - z )  )
^  (w 2  +  x2  +  y2 +  z2)

From the in terpretation of quaternion rotation, the quaternion forms of rotations

around each axis are represented as follows.

qz =  (o )s  , sin (0 , 0 , 1 ) 

qx = (cos , sin ( ^ j  ( 1 , 0 , 0 )

%  = ( cos ( ^ f )  >sin ( ^ )  (°» °)

Therefore, the conversion from Euler Angles to  quaternions is very straightforw ard. 

To express the  orientation of a  set of Euler Angles, th e  ro tations around each axis 

composed by m ultiplying the  above 3 quaternions as follows.are

q — {w, (x , y, z) ) — q̂ q̂ q̂

» =  COS ( " ; j  cos ( | )  cos ( | )  -  sin ( ! )  sin (  « )  sin ( ‘

x =  sin ( | )  cos ( | )  cos ( | )  -  cos ( | )  sin ( | )  s,n ( |

y - “s (I)sin (I)cos (I)+ si“ © cos © si" ̂
z - sin ( ! )  sin ( ! )  cos ( | )  +  cos ( | )  cos ( | )  sin ( |
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