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ABSTRACT

Simulation of oil and gas flow in horizontal wells is much more complex than that for
vertical wells. Traditional reservoir simulation usually treats horizontal wells as the
simplified source/sink term, which could lead to erroneous performance predictions.
Therefore, horizontal wellbore hydraulics and radial influx through perforations should be

modeled as part of the reservoir simulation.

This research developed a 3-D, multiphase, fully implicit reservoir/wellbore coupled
model with hybrid grid technique. Using this coupled model, the flow behavior in both
reservoir and horizontal wellbore can be simulated simultaneously to reflect the flow

characteristics and interactions between the reservoir and the horizontal wellbore.

The coupled model is used to study the transient flow behavior in the horizontal
wellbore. Simulation results reveal finite conductivity and non-uniform influx distribution
features in horizontal wellbore. Sensitivity analyses of reservoir permeability, initial gas
saturation and perforation distribution are conducted using the developed reservoir and

wellbore coupled model.
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NOMENCLATURE

NOTATION

Symbol  Designates
Ay Ay, A:  Section area, m?
Formation volume factor, m*/std.m>
Rock compressibility, 1/Pa
Inner diameter of the wellbore, m

Residual function vector

Moody’s friction factor
Oil hold-up in wellbore

Jacobian matrix

N W TS oA 0w

Absolute permeability, millidarcy (md)

bl

o

Gas relative permeability

&

=
=)

QOil relative permeability

nx, ny, nz  Number of gridblocks in x, y and z direction

Pref Reference pressure at a reference depth (Z,.y), Pa
chg Capillary pressure between oil and gas, Pa

9 e > Dose Oil and gas influx from reservoir, m3/day at standard condition
Vs Radius of the grid block center, m

Radius of the grid block interfaces, m
R Solution gas/oil ratio, std m*/std m’

S,.8..5,  Water, gas and oil saturation, %

t Time, seconds
T Transmissibility, m*/( Pa » s)
U,,Us sU,  Volumetric velocities through perforations, m*/s
V Control volume of the element, m>
v Velocity of the fluid flow in wellbore, m/s
} Vector of unknowns

Ax,Ay,Az  Grid block length in x, y and z direction, m
Xe, Ver Ze Reservoir limit in x, y and z direction, m

z, Depth of the reservoir base, m

Zref Reference depth, m
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NOTATION (Continued...)

Symbol  Designates

Azz Length of the wellbore segment, m
Ze Formation thickness, m
€ Tolerance for computation convergence
Y7 Viscosity, Pa s
Pose> Pgse Oil and gas densities at standard condition, kg/m3
¢ Porosity, %
y Specific gravity
SUBSCRIPTS
Symbol Designates
0,8 W Oil, gas and water
m Fluid mixture
X,z Cartesian directions
r, 0, zz Radial directions
Sc. Standard conditions
Sp. Specified
SUPERSCRIPTS
Symbeol Designates
n Current time step
n+l Next time step
v Current iteration
v+1 Next iteration
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CHAPTER 1: INTRODUCTION

Horizontal wells are widely used in many new oil and gas fields as well as in further
development of mature fields. With horizontal drilling o0il companies can achieve better
economic production and increase recovery from old producing fields. Additionally,
horizontal wells have been used to speed up recovery and improve the rate of return, which
is very important to the project’s economic feasibility. Not surprisingly horizontal drilling
is becoming more and more popular in the world. Horizontal wells can extend to
thousands of feet, making a lengthy exposure of the reservoir accordingly. (See Table 1.1

for the top 10 extended-reach drilling wells in the world)

Table 1.1 - Top 10 extended reach drilling wells in the world*

1 10,728 11,278 1,637 | BP M-16Z Wytch Farm || UK Land
2 10,585 11,184 1,657 | TotalFinaEIf || CN-1 Ara Argentina
3 10,114 10,658 1,605 | BP M-11Y Wytch Farm || UK Land
4 10,089 11,134 2,600 || ExxonMobil || Z2 (EM) | Chayvo Sakhalin
5 10,082 10,917 2,600 | ExxonMobil || Z7 (EM) || Chayvo Sakhalin
6 9,771 10,994 2,600 | ExxonMobil | Z1 (EM) | Chayvo Sakhalin
7 9,736 10,675 2,600 | ExxonMobil | Z3 (EM) | Chayvo Sakhalin
8 9,533 10,522 2,538 || ExxonMobil | ZG2 (EM) | Chayvo Sakhalin
9 9,509 10,536 2,537 | ExxonMobil | ZG1 (EM) || Chayvo Sakhalin
10 9,243 10,183 2,612 - | ExxonMobil | Z4 (EM) " || Chayvo Sakhalin

*Data from Schiumberger, Status: Sept. 2006

The success of horizontal wells can be attributed to their advantage over vertical wells,

which includes increased well productivity, reduction of water coning and improved
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overall cost-effectiveness of reservoir development (Babu and Odeh, 1989). Horizontal
wells can increase the productivity by enhancing reservoir contact area particularly for
reservoirs with low permeability, high anisotropy, thin layers and naturally fractured.
Because of the smaller drawdown, horizontal wells are also advantageous for reservoirs

with potential water or gas coning problems.

Because of the aforementioned facts, oil industry and research institutes put a
considerable effort on related research, including developing simulation tools to study the
flow behavior and the production performance in the horizontal wellbore, as well as its
influence on the reservoir (Pedrosa and Aziz, 1985; Ertekin et al., 2001). However, these
models either assumed simplified source/sink term for wellbore or treated the wellbore
flow as a regular pipe flow assuming no mass transfer through the perforation, which
usually led to erroneous predictions of performance behavior. The horizontal wellbore
hydraulics and radial influx through perforations should be modeled as part of the reservoir
simulation. Only the use of a coupled model (reservoir fluid flow and horizontal wellbore
hydraulics) can describe the flow interaction between the reservoir and wellbore and hence

reveal the actual flow behavior in the reservoir and wellbore.

Proper and accurate simulation of the performance of horizontal wells is much more
complex than that for vertical wells (Dikken, 1990; Ozkan et al., 1992 and 1993; Novy,
1995). Depending on the completion method used in a horizontal well, the radial influx
could change the flow behavior along the wellbore and complicate the modeling of the
problem (Vicente et al., 2001a and 2001b). For gas-liquid wellbore flow, the mass transfer
between reservoir and wellbore alters gas and liquid flow rates along the wellbore. Fluid
flow in the horizontal wellbore is different from the flow in a pipe because of the mass
transfer between the wellbore and reservoir (Ouyang and Aziz, 1998). The influx amount
of fluid transfer between the reservoir and the wellbore will introduce different flow
patterns in the horizontal wellbore. In return, the pressure drop and liquid fraction along the
wellbore affect the reservoir pressure distribution and consequently the mass transfer
between the reservoir and wellbore. Neglecting the interaction between the reservoir and

wellbore can lead to incorrect predictions of performance behavior, especially for

2
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high-permeability and high production field cases (Seines et al., 1990; Gui and Cunha,
2006). Potential problems include, among others, overestimation of well productivity and
breakthrough times. Unless the wellbore pressure drop is very small and can be neglected,
the reservoir model and the wellbore model must be solved simultaneously to precisely

predict production behavior of horizontal wells (Gui et al., 2007).

To understand the flow behavior in horizontal wellbore and accurately predict its
performance and interaction with the reservoir, this study developed a fully implicit,
three-dimensional reservoir simulator coupled with multiphase flow in the horizontal
wellbore. The built-in wellbore model is used to analyze the flow pattern, flow dynamics
and the influence from reservoir. To take advantage of the radial nature of flow around
wellbore, the developed coupled model considers a hybrid grid system (local grid
refinement) with Cartesian grids for the reservoir region and cylindrical grids for the
wellbore region (Pedrosa and Aziz, 1985). The coupled system needs to be solved
simultaneously to ensure the interaction effect between horizontal wellbore and reservoir,

and to meet certain computational stability requirements as well.

This coupled model has been validated or compared with different commercial models
and research results. Based on an effective and rigorous coupled model, different
numerical applications were conducted to study the influence of horizontal wellbore
hydraulics and its interaction with the reservoir. These investigation and applications
include finite conductivity analysis using the coupled model, transient pressure analysis

and sensitivity analysis of perforation distribution, etc.

In this thesis, Chapter 2 reviews recent articles on reservoir simulation development
that considered wellbore hydraulics. Chapter 3 presents the methodology for development
of the coupled model. The flow model in reservoir domain is also developed in this chapter.
In Chapter 4, a multiphase flow wellbore model is developed to determine pressure drop,
liquid holdup and flow pattern along the wellbore. Chapter 5 describes the coupling
process of integrating the reservoir model and wellbore model. Typical cases are studied to

validate or compare the developed coupled model.
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In Chapter 6, several applications have been studied using the reservoir/wellbore
coupled model. The coupled model is first used to study the effect of finite conductivity
and non-uniform influx distribution. Comparisons including influx distribution, flow rate
distribution, drawdown and pressure distribution along the wellbore are made between the
proposed coupled model and a non-coupled traditional model. Chapter 6 also presents the
application of coupled model in transient pressure analysis. Sensitivity analysis have been
conducted to study the effect of reservoir permeability and initial gas saturation on the
transient flow behavior. The effect of perforation distribution on wellbore flow behavior is

studied using the proposed coupled model at the end of Chapter 6.

Chapter 7 concludes this research work and further discusses possible extension work.
To make this thesis report more readable, several appendices are incorporated at the end,

including the detailed derivation of the reservoir and wellbore models.
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CHAPTER 2: LITERATURE REVIEW

As mentioned in the introduction, researchers have been working on reservoir simulation
and wellbore hydraulics simulation for many years. Recently, the interaction between
reservoir fluid flow and wellbore fluid flow gradually attracted researchers’ attention, due
to the currently extensive application of horizontal wells. This chapter summarizes recent
studies on reservoir/wellbore interaction and coupled flow models, which are reviewed and

organized in chronological order.

Well test analysis is a typical application that involves both reservoir flow modeling
and wellbore flow modeling. Winterfeld (1986) studied the pressure buildup process in a
multiphase wellbore/reservoir system (vertical well). Wellbore flow is described by mass
and momentum conservation, while reservoir inflow is explained by mass balance and
Darcy's law. A fully implicit finite-difference scheme is used to discretize the wellbore
flow and reservoir inflow equations. A single-phase example illustrates wellbore storage
and wellbore fluid inertia and two-phase examples illustrate phase redistribution shortly
after the shut-in. Almehaide et al. (1989) proposed a black-oil simulator for vertical
injectors to study the interaction between wellbore multiphase flow and the effect of
gravity segregation in the wellbore. The authors also used this coupled model to investigate
the impact of wellbore phase segregation on pressure buildup response and the influence of

multiphase flow during well testing processes.

Stone et al. (1989) developed a fully implicit, three-dimensional, thermal numerical
model to simulate the fluid flow in the reservoir and the wellbore. The authors introduced a
simple multiphase flow model for the wellbore with different flow regimes. This model
had stability problems if the flow rate in the wellbore was very high. In addition, the flow
regime also had stability problem during transition periods from stratified flow to bubble,
slug or annular flow. In such cases, the well dynamics either took place on a much smaller
time scale, or some time steps may have to be cut. Dikken (1990) developed a model to
couple the well flow and reservoir flow, both of which were single phase turbulent flow

and assumed steady state flow. The author pointed out that it was an approximate method

5
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because it treated reservoir flow in non-communicating sheets perpendicular to the
horizontal section. The author used a parameter o to treat the effect of perpendicular inflow
from reservoir to wellbore, instead of using the conventional pipe equations. The author
defined inflow from the reservoir using the productivity index (PI) and assumed that PI
was constant along the well. Dikken pointed out that turbulent horizontal wellbore flow
may result in reduction in drawdown at positions far away from the wellbore toe.
Additionally, the reduced drawdown may result in a decrease of the total production as a
function of well length. The total production may become virtually constant for lengths

exceeding a certain value.

Pressure loss in wellbore is one of the key points in the reservoir/wellbore coupling.
Among various pressure losses in wellbore, the friction loss is the most apparent and has
been widely studied. Seines et al. (1990) outlined a method for implementing friction loss
in the horizontal well for simulation studies. The authors pointed out that friction pressure
loss can be important for highly productive reservoirs with limited pressure drawdown
availability. The study showed that proper length of the horizontal wellbore should be
determined by considering the total well life and expected flow rates. A non-slip
homogeneous model is employed to determine the frictional pressure drop when more than
one free phase is present in the wellbore. As mentioned in the introduction chapter, flow in
the horizontal wellbore is different from the flow in a pipe because of the mass transfer
through the perforation. Therefore, pressure drop calculation should take the perforation
influx into consideration. Islam and Chakma (1990) studied both experimental and
numerical modeling of horizontal wells and the effects of perforations. The authors
concluded that the perforations can increase the pressure drop in the wellbore. In this study,
hybrid technique was adopted and the well model was coupled with a three-phase

simulator.

One of the difficulties of reservoir/wellbore coupled model development involves the
simultaneous solution of two different systems: the reservoir partial differential equation
and the wellbore partial differential equation (PDE). Flow in the reservoir is described as a

parabolic type PDE, while that in the horizontal wellbore is a hyperbolic type PDE.

6
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Simultaneous solution of both parabolic PDE and hyperbolic PDE in the same matrix
equation brings out computational and stability problems. To fix this problem, Collins et al.
(1991) came up with a special “dual-porosity” method to couple the wellbore flow and
reservoir flow with hybrid grids. The wellbore was represented by a row of cylindrical
wellbore grid blocks where well “permeability" and “relative permeability" were adjusted
to yield the pressure drop and phase slippage predicted by multiphase flow correlations.
With this approach, wellbore equations were transformed into a form similar to reservoir
flow equations, with the same primary variables. However, the shortcoming of this
methodology is that many parameters have to be oversimplified to adjust wellbore
equations to reservoir flow equation forms. Some of these parameters have strong
non-linearity characteristics, closely related to the pressure and saturation change during
the calculation. Therefore the results may not reflect the interaction effect because of the

oversimplification.

Obviously, there are many parameters that can have important influence on wellbore
pressure drop, from wellbore configuration to production scheme. Folefac et al. (1991)
pointed out that well length, well diameter and perforated interval have significant effect
on the pressure drop in the wellbore. Meanwhile, two-phase flow conditions in the
wellbore can increase the pressure drop compared to single-phase flow. The proposed
wellbore model is based on a one-dimensional mixture momentum balance and a drift flux
expression for the slip velocity between the phases. Ihara and Shimizu(1993) studied flow
dynamics for horizontal wellbore by considering acceleration pressure drop. An
experiment was conducted to generate relevant data of flow in the horizontal wellbore and
interactions with the reservoir as well. The authors discussed several factors in the
sensitivity analysis for field application, including reservoir permeability, length of
horizontal well section, drainage area and producing gas/oil ratio. Novy (1995) proposed a
criterion to identify when friction becomes important and should be considered in a
particular wellbore/reservoir system. The equations are solved numerically for both
single-phase oil and single-phase gas flow, with the assumption of steady state flow and
constant well production index in the system. Novy pointed out that Dikken's results

overstate the effects of friction in tubes with rough walls. Novy suggested a criterion to

7
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analyze the wellbore friction, which is the ratio of wellbore pressure drop to draw-down at

the producing end.

Traditional reservoir simulation models usually assume constant pressure along the
horizontal wellbore and treat the horizontal well as an infinite conductivity medium
(Ertekin, 2001). However, it is well known in the industry that a horizontal well can have a
finite conductivity effect, especially when the flow rate is high. A general, semi-analytical
model that couples wellbore and reservoir hydraulics was presented by Ozkan et al. (1992).
Dimensionless groups were defined for general applicability. The influx and pressure
distributions along the length of the well were studied. The authors concluded that when
the pressure drop in the wellbore becomes significant compared to the drawdown, a larger
portion of the fluid will enter the wellbore near the heel of the well. Penmatcha et al. (1997)
also developed a semi-analytical well-model for both single phase oil and two-phase oil
and gas. The model is flexible to incorporate any friction factor correlation in the wellbore
part. The ratio of wellbore pressure drop to reservoir drawdown is an indication of the
frictional effects on well productivity. The authors further pointed out that the
breakthrough occurs first at the heel of the well due to the pressure drop in the well. This
research studied the optimum well length for a horizontal well using a proposed model.
Penmatcha and Aziz (1998) later developed a comprehensive, 3-D reservoir/wellbore
coupling model to compare the infinite conductivity and finite-conductivity wellbore flow
behavior. The semi-analytical finite-conductivity well model considers both frictional and
acceleration pressure drops in the wellbore. Liu and Jiang (1998) also studied finite
conductivity effect on well productivity and used a coupled model for the optimization of

horizontal wellbore length.

Wellbore pressure drop consists of wall friction pressure loss, acceleration pressure
loss and pressure drop caused by gravity. For a horizontal well, gravity-caused wellbore
pressure drop has little effect on inflow distribution. Ouyang and Huang (1998) developed
a wellbore/reservoir flow coupling model and conducted a series of sensitivity studies on
the wellbore pressure drop. The authors observed that wellbore pressure drop caused by

wall friction and acceleration affects inflow distribution. The infinite conductivity

8
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assumption can still be applied for an inclined well provided that both frictional and
acceleration pressure drops are negligible in the well. The coupled model can be applied to
determine well index, wellbore pressure profile and wellbore inflow/outflow distribution

during the well’s production or injection life.

Vicente (2000) developed a reservoir and horizontal wellbore coupled model. The
wellbore model assumes homogenous flow. The coupled model has been applied to
horizontal well design, finite conductivity analysis and transient pressure analysis. A
reservoir/wellbore coupled model is also a useful tool to balance the inflow/injection
profile, perforation and completion design and production optimization (Vicente et al.,
2001a and 2001b). Baba and Tiab (2001) analyzed the effect of finite conductivity
horizontal well on transient-pressure behavior using a semi-analytical model. The author
pointed that a completion scheme should be optimized on the basis of stabilized flux
distributions and additional pressure drop along the horizontal wellbore. Ouyang and
Huang (2005) evaluated the well completion impacts on the performance of horizontal and
multilateral wells. The study can be applied to design completion under various flow and

reservoir scenarios.
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CHAPTER 3: DEVELOPMENT OF THE RESERVOIR FLOW MODEL

As summarized in the literature review, researchers have realized the influence of wellbore
pressure loss on reservoir flow and the effect of finite conductivity of the horizontal
wellbore. Some of them developed semi-analytical well-models focusing on the wellbore
flow characteristics. Recently, development of the reservoir and wellbore coupled model
became a source of interest to researchers. Basically, there are two major types of
methodologies to develop a coupled model in both reservoir and wellbore domains:
semi-analytical simulation and numerical simulation. The advantage of semi-analytical
methods is the better understanding of the interaction between wellbore and reservoir flow.
But a semi-analytical method is based on some simplified assumptions such as a
homogeneous reservoir and single phase flow. Although a numerical simulation method is
more complex to implement, this method can better represent actual heterogeneous
reservoirs and wellbore conditions. Numerical simulation methods are also more robust for
the coupling process with multiphase flow. This research proposes the use of numerical

simulation methods to conduct the coupling simulation of the reservoir/wellbore system.

The coupled model comprises two main domains: the reservoir and the wellbore. The
basic principle behind this coupled model is the pressure continuity and mass balance at the
sandface. The fluid flow in the reservoir is described as a parabolic type partial differential
equation, while the fluid flow in the horizontal wellbore is a hyperbolic type partial
differential equation. Both systems are integrated into one equation matrix for the
simultaneous solution. Therefore, variables like reservoir pressure, saturation, and
wellbore pressure, velocity and holdup can be obtained at the same time. All those
variables interplay with each other in the coupled system and reflect the interaction

between reservoir and wellbore.

Chapter 3 and Chapter 4 focus on the development of the reservoir flow model and
wellbore flow model, respectively. The following several sections in this chapter present
the development process of a 3-D, fully implicit black-oil reservoir simulation model. To

10
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make the report more readable, detailed derivations in the development process are

incorporated at the end of this thesis as an appendix.

3.1 Hybrid Local Grid Refinement

To better simulate the flow near the horizontal wellbore and save computational cost, the
reservoir domain can be further divided into near-wellbore region and reservoir region far
away from the wellbore. The near-wellbore flow in the porous medium has typical radial
streamlines. Therefore, the use of cylindrical coordinates is advantageous in the
near-wellbore region. Based on this, a hybrid grid system is developed to locally refine the
grid system and follow the actual flow geometry. The hybrid system is composed of two
main elementary meshes: a cylindrical mesh in the wellbore vicinity and Cartesian mesh in
the reservoir far away from the wellbore (Pedrosa and Aziz, 1985), as shown in the figure

3.1 and figure 3.2.

Figure 3.1 - Cylindrical coordinates

Figure 3.2 - Cartesian coordinates

11
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The hybrid system includes both Cartesian and Cylindrical coordinates, as shown in
figure 3.3. For the reservoir regions far away from the wellbore, the flow streamlines can
be taken as linear, a rectangular grid system is good enough to simulate the fluid flow. For
the wellbore vicinity, the cylindrical grid can locally follow the actual flow radial
streamlines and generates results of more accuracy around the drainage areas. From the
coupling point of view, a hybrid grid system provides a better platform for the purpose of
precisely simulating the interaction between flow ‘in the horizontal wellbore and the

reservoir,

24 25 26

2 22 23 26

18 / 1 20 B

20

10 1"

Figure 3.3 - The hybrid system and grid ordering of the Cartesian system

Figure 3.4 - Grid ordering of the cylindrical system
12
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To make the grid as structured as possible, an apparent radial mesh and an apparent
Cartesian mesh are applied to the mixed area (irregular shape) between wellbore region
and reservoir regions, see figure 3.5. The apparent transmissibility is calculated according
to the particular grid system. To get the apparent transmissibility for the cylindrical system,
it is necessary to assume an apparent radial block with the same volume as the original
irregular block and then calculate the external radius of the apparent radial block. Similarly
for the Cartesian system, an apparent Cartesian block with same volume of the irregular
zone can be assumed to calculate the Cartesian transmissibility. Different weight factors
are also calculated to update the properties in the irregular regions for both apparent radial

grids and apparent Cartesian grids.

apparent radial
grid

/ >

apparent Cartesian
grid

Figure 3.5 - Treatment of the mixed irregular area using apparent mesh

The Cartesian and cylindrical hybrid structure gives the calculation equation system a
unique structure too. In this study, the Newton-Raphson method is used to solve the partial
differential equations of reservoir flow model, s.ee sections 3.2 and 3.9. The
Newton-Raphson method involves calculating the Jacobian matrix and the right hand side
vector. The Jacobian matrix is built up by calculating all the derivatives of the residual
function with respect to each unknown for each iteration. Because of the Cartesian and
cylindrical hybrid system, the Jacobian matrix also has a unique structure as shown in
figure 3.6. It is divided into four zones: Cartesian system, cylindrical system, and two

side-wings hybrid grid zones.

13
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Figure 3.6 - Ordering scheme and matrix structure for a sample case

The mathematical models for oil and gas flow in reservoir, as for both Cartesian and
cylindrical regions, will be developed in the following sections. Since the development of
reservoir model under Cartesian and cylindrical coordinates are similar in many respects,
sections 3.2 to 3.9 only illustrate the development of the reservoir model in Cartesian
coordinates. Details of the model development in cylindrical coordinates can be referred to

in Appendix 1.

3.2 Partial Differential Equations for the Reservoir Flow Model
Reservoir flow equations can be derived based on a control volume of the element, which
iIs V=Ax-Ay-Az in Cartesian coordinates and V =Ar-(rAf)-Az in cylindrical

coordinates. The area perpendicular to flow is: A, =Ay-Az; A, =Ax-Az; 4, =Ay-Ax

14
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in Cartesian coordinates, and 4, = (rAf)- Az s Ag = Ar-Az; A, = (rA6)- Ar in cylindrical

coordinates.

Considering the flow continuity through the control volume, the continuity equation

can be expressed as the following (without external source/sink for oil and gas phases):

(Mass in) — (Mass out) = (Mass Accumulation)

Therefore, the continuity equation in both Cartesian and cylindrical coordinates can be

expressed in the following way:

_ O(pvy4y) Ax — a(pUyAy) Ay - o(pv,4,) Az =V o(gp)
Ox oy oz ot

_ a(pUrAr) Ay — a(PUBAH) Ag _ a(vaAZ) Az=V a(¢p)
or 00 0z ot

(3.1)

For the Cartesian coordinates (same throughout this chapter if not specified, derivation
and development in cylindrical coordinates for near-wellbore region can be found in

Appendix 1), v,,v, and v, are volumetric velocities in x, y and z direction separately and

can be obtained with Darcy’s Law, (for phase /):

R . (3.14)
Y Ox ox
k k
o, =2 P, Oy (3.1.b)
W oy oy
v, =~k OF 0K, (3.10)
Y 0z Oz

Substitute Equations (3.1.a) ~ (3.1.c) to (3.1):

15
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kk, oP k, opP

o|-— "(——7 ) 4,] 5[— (——7 )
T w T o "5 .
& 24 (3.2)
[ kzkrl (__ __)
T a T s
oz ot
Using B, =&, op) (_) , the above equation becomes:
Py at
k. k
oA oy Ty a2 <—— —)]
By ox " on A+ Oy 0y
k, kax oP  oh S ay ©-3)
o el (= ~ 5)] o ’)
+ L Az=V
Oz 6t

To summarize, the reservoir flow equations in the Cartesian coordinates are:

For the gas phase:

0 Aykyk,, OP oh. ARk k,, 0P, oh
el s 4 _.S__},g_)+ X710 (20 _y 22
& Bou, o Ox B,u, Ox ox

2 ey Xy, Oy AR B,y Oy,
"W g o fw) B, o

)]Ax

3.4
aAkkr 0Py oh, ARkk, 2P,  Oh G4
3 [— Vg )+ (FF =70 )z
4 Mg Oz 0z B,u, 0z 0z

S

=V—-(¢—-g—+¢R =0

o " By, B,

For the oil phase:

o Ack.k,, P,  oh oh

B Cor T ay[ ;y"’<—— 05 Y

oo (3.5)

aAkk oP, oh o, .85

TR (S v D=V —(¢-2)

s Bu, & ‘& a B,
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Considering the oil and gas production as external source/sink term in the equations,

we have:
For the gas phase:
Ak k,, OP
_@_[xxrg __g__ygah +ARkkr0( yoa_h)]Ax
& Bgu, =~ Ox ox B,u, ox ox
Aykyk,e OP, A, Rk k
[M ey Ly Po_, Ohyy,
6y @v oy Bou, Oy % 56
A4, k k OP, )
I (G Ty eetee ey, T
82 g Mg Oz Oz B,u, Oz Oz
o Sg S
=V—(—=>+dR,—2)+R.q,V +q +,V
5I(¢Bg ¢ SB()) s90 dfs
For the oil phase:
0  Ak.k,, OP, oh kykyo P, oh
— [ (- o)A [M( ~Yo 7)1
& Byy, O ox ay Boy, Oy oy 3.7)
D ptkkie oy Oyp_y 2550y gy
0z Byu, 0z Oz ot B,
For water:
5(3—) = (3.8)
In above equations:
9o Produced oil rate per unit of rock volume;
dfz: Produced free gas rate per unit of rock volume;
Z: Depth with respect to a reference plane;
Y= gﬁ Pf: Gravity of gas, oil or water, which is related to the pressure
[
krg =kpg(Sg): Gas relative permeability (a function of gas saturation)

kro = kpo(Sy,>Sg) : Oil relative permeability (a function of water and gas saturation)

To solve the above equations, the following additional relationships should be

considered:

17
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S0+Sg+Sw =1 and Sw=Swi

So oil saturation S, =1~-S, -5, (3.9

cha (Sliquid =1_Sg):Pg"Po, Pg =F, +cho(Sg) (3.10)

Where, §,,S,,S, are water, gas and oil saturation, and P, is the capillary pressure

between oil and gas.

The physical system in analysis here presents the following initial and boundary
conditions:

- For Pressure: the reservoir is initially in equilibrium, thus:
P(x,y,20)= P, 3.11)
- For Saturation: the reservoir is initially under-saturated and with water
saturation S,,; , thus:
Sy(x,¥,2,0)=8,,;
Sy(x,,2,0)=1-8,,; (.12)
Sg(x, y,2,0)=0

3.3  Pre-Processing of the Reservoir Flow Model

To build residual function and Jacobian matrix, several important pre-processing steps
should be taken before the discretization of the partial differential equations. The following
sections (3.3.1 to 3.3.5) discuss on the calculation of geometric factors at the interface,
determination of initial pressure distribution, calculation of porous volume of grid blocks,
calculation of different properties at the interfaces and determination of the transmissibility

terms.

3.3.1 Geometric Factors at the Interface

18
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To simplify the derivation of transmissibility and residual function in the next step,
geometric factors (GF) are calculated at the interfaces of each cell. The first step of
geometric factor calculation is to determine the grid block position. Here, block centered
scheme is adopted in the discretization of the flow equations. In all three directions x, y, z,
the grids are equally distributed and the increments are constants, which can be calculated
by:

X

Acx=Te Ay=2€ pp=Ze (3.13)

Ao
nx ny nz
Where,

nx is the number of gridblocks in the direction x;

ny 1s the number of gridblocks in the direction y;

nz is the number of gridblocks in the direction z;

X, 18 reservoir limit in x direction;
Ve is reservoir limit in y direction;

Z, is reservoir limit in z direction;

The position of the grid nodes in each cell occurs in the geometric point in which the

average pressure p of the cell is applied (here is also the geometric center).

The grid point position of each cell can be calculated as below:

e Tty (3.14)
ijk i-1/2,j,k 2
_ Ay

Yisw =¥ i +7 (3.15)
Az

zi,/k = ijk-1/2 +7 (316)

Where i=1,2,...nx; j=1,2,... ny and £=1,2,...nz.

19
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Taking z direction as an example, assuming the depth of the medium point of cell (i,j,k)

in layer £=1 is ZW :

Az
Zi,j,l = Zbase + 7 (317)
Where, Az = Z.
nz

For layers k = 2 to nz the following expression is valid:

Z, =2, +(k=1Az

i.jk
Where,i=1tonx, j=1tonyand k=2 to nz,
nz: Number of grid points in direction z;
Zyase:Depth of the reservoir base;

Z,. Formation thickness.
The computation of the geometric factor is simply a harmonic mean of the absolute
permeabilities close to the interface, weighted with respect to the distances between the

grid-points and the interface.

For direction x:

_ ij . AZk
X1 _ —
ik X =X . X —-x_ (3.18)
Kx
i-1,7,k ijk
And
xi+ 12,7k - - -
H xm/z xi + xiﬂ xi+1/2 (3-19)
Kx
ijk i+, j .k

Same here for direction y and direction z

Ax; - Az Ax; - Az
GFyi,j—l/Z,k = — l . _ GFyi,j+1/2,k - —_ : . -
yj—l/z yj—l +yj y1~1/2 yj+1/2 yj +yj+1 yj+1/2
Kyi,j»l,k Kyi,j,k Kyi,j,k Kyi,j+l,k
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_ Ax; - Ay _ Ax; Ay
Zi,j,k—l/z - z -z z -z Zi,j,k+1/2 - z -z z -z
k-1/2 k-1 -+ k k-1/2 k+1/2 k + k+1 k+1/2
Kz Kz
i, j.k=1 i,j.k ij.k i,j.k+1
Where,

wai o Qrid block interfaces in x direction;
Y. i+ Crid block interfaces in y direction,

sz - Orid block interfaces in z direction;
X . Grid points center in x direction;
Yo Grid points center in y direction;
Z, . Grid points center in z direction;
Ax Length of each grid block in x direction;
Az: Cell thickness;
Ay Length of each grid block in y direction;
Kx .. Absolute permeability in direction x of blocks (i,j,k)

3.3.2 Initial Pressure Distribution

The initial pressure distribution is related to the depth of the grid points (Z;, j, ). After
calculating the depth of the grid points (see section 3.3: direction z), the initial pressure of
each block can be determined through an iterative process based on the following

equations:

P,-)j,k = Lref +;(Zref -Z ) (3.20)

ik
Where,
P :Initial pressure of block (i,/,k);
P, Reference pressure at a reference depth (z,,, );
z,, . Reference depth;
Z, . - The depth of the medium point of cell (i,k);
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;7 . Specific gravity;

P + Pref

7=fP AndP=—2_"T >p 3PP,

2P =Foop = By jk = Fref +V(Zref =Zi,j k)

Where, 5 j k is needed to calculate p andy, but ¥ is needed to calculate p and
J 4 /4

P; j k. So an iteration method (Newton-Raphson method) should be used to solve the

problem:

Define a residual function Fg and its derivative with respect to p :

Fr=2P=Frop =B j o =2P = Bop ~ [Py +7(Zper = 2 j )]

- _ (3.21)
= 2(P"Pref) - V(Zref _Zi,j,k) =0
Derivative of F with respectto P :
OFp _ dy
T =2y ~ 200 (3.22)
Resulting Newton-Raphson system:
OFR AP - ~Fg (3.23)

oP

So based on (3.21), (3.22) and (3.23) and considering a tolerance € for convergence, the

F;, j k can be determined for each grid through the following iterative technique:

1. Given Brefs Zpefs Zijk , calculate }_/(Pref) by interpolating at oil PVT table;

2. Calculate 7} j x with the expression: Pl,)j,k = Lyper + ;(Zref —-Z Lk );

— _ P +P
3. Determine p using P = M)

4. Given P, obtain y(P) by interpolating at oil PVT table;

5. Knowing ;(ﬁ) and p, calculate the residual function value:
22
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Fg =2P = Pror) =1 (Zyer = 21, )

6. Calculate the derivative of y with respect to P, (Z—_;) from o0il PVT table and p ;

7. Calculate the derivative of F, :

OFR dy
ap T TR gp
—_— . —_— FR
8. Calculate P with AP=——%
OF,
( a;)
9. IfAP>¢ p= P rions + AP iosinea » then go 10 4.

fAP<e,P,jk =2P—Fyr, Py =P, andZ,, = Z, ,, then go to next loop.

3.3.3 Pore Volume of Grid Blocks

The porous volume of a cell (i,/, k) can be calculated with:
Vp ,, = MxByAZGiicial k (3.24)

Where,
Az : Cell thickness;
Ay Length of each grid block in y direction;

Ax : Length of each grid block in x direction;
Ginicial k is the porosity of each cell at initial condition (the porosity is defined for

cach layer k)
1
Binicial k = P 1= CrPisiar Lk ) (3.25)

Where, ¢k1 is the porosity at atmospheric pressure and Pinitial ik is the initial pressure

in each cell, C, is the rock compressibility;

The pore volume of each cell is computed prior to the simulation process with the

expressions above and it is corrected at each stage of the iterative process by:
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Vp,, =Ve J1=Cp,(P" —P"*)] (3.26)

oi,j.k oi.j.k

Where,

P :jk is the oil pressure at cell (i,j,k) at the time-step n;

P V+ is the oil pressure at cell (i, k) with iteration v +1.

i, j.k

3.3.4 Properties at the Interfaces

There are three steps to determine the properties at the interface. First, the weighting
factors should be calculated for each Cartesian direction, (w, w,, w;). Then properties
values at the interfaces can be determined by either Property weighting method or Pressure
weighting method. The derivatives of the properties at the interface should also be

calculated for later transmissibility computation and equation matrix terms.

For the x direction;

X
i-1/2,j.k i-1,jk

wy = (3.27)

i)k i-1,jk
So w, =0.5. As for Cartesian grid, the weight factor in y and z direction can be derived

in the same way as in x direction.

The computation of the properties at the interface can be approached in either Property

weighting method or Pressure weighting method.

- Property Weighting
= fo,.,j,k +(1- Wx)f,._l,j’k and = fo

i+1/2, 7.k i+, )k

+(1=wy)f,

x direction: f, ik

i-1/2,7.k
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y direction: fz, 2k Wyfi,j,k +({1- Wy)fi,j—l,k and fz JHILE —wyfi,j+1,k +(1—wy)fi,j,k
k=112 _szf,j +(1- WZ)f

Where, frepresents a given oil property.

z direction: f, and J, =wof, ., TA=w)f ik

k-1 i,7k+1/2

(3.28)
- Pressure Weighting

Calculate the “average pressure” at the interface (o, , i 5, ey and Bo

through a weighted average based on:

P
i1,k ik

.1, N
and Po,.,j)k (for 1—5,j,k ), F,, . and Pom,j’k (for l+—2—,],k )

and o, k(fOI‘l]+ k)

i, J.k i, j+1,

.. 1
Po,.’j;,,,( and Po,.’j’,r (for z,]——z—,k ), 5

Fo, pa and By | (forlj,k——) F,

and Py, . (for i,j,k +% )

i.j.k

The interface average pressure will be:

x direction:

Po i~1/2,7.k - wx ij.k + (1 wx )P i-1,j,k ? PO i+1/2,7 .k - wxPO i+l,j .k + (1 B wx)Poi,j,k
y direction:

P, =w,P, +(1-w,)P, P =w,P,  +(1-w,)PF,

P12k ik YTO, ik e O, jrli2k YOO, ik Ok

z direction:

P =w_P +(-w_ )P P =w_P +(1-w,)P
0, ik-1/2 200, ik ( Z) O, ik-1 2 O, jkris2 270, ikn ( Z) O,k
(3.29)
Based on Poiil/z,j,k sPOi,jﬂ/z,k and Poi,j,kil/z > the propertleSfﬂ/z,k ’ff,;iuz,k and fljki1/2

can be obtained through interpolation using PVT tables, thus:

x direction: f is a function of P,
4 e

i+1/2,j.k
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y direction: f is a function of P,
iJE 2k

i jEl/2.k

z direction: f  isa function of P,
e

ijktl/2

Note that all the computations described here consider the pressure in the oil phase.

This is correct to the computation of the variables: y,,u,.b,, R, , which are functions of the
pressure in the oil phase. However, for x,,b, and y,, it is necessary to consider the

pressure in the gas phase:

P , P, P

i+1/2,j.k gi,jil/z,k gi,j,lcil/Z
Where, Py = F, + Fgg
Because of the non-linear characteristics of the above properties with respect to the
reservoir pressure at the interface, it is necessary to obtain the derivatives of each property
(Hg> bg s byy Rgy 7 g» 7o) withrespect to the reservoir pressure. This will be later used

to calculate the transmissibility and other matrix terms.

The derivatives of each property to reservoir pressure can be expressed as the

following:

dfirl/z,j,k dfiil/Z,j,k dfitl/z,j,k .
2 2 2

Oi1,jk dPOi,j,k P0i+1,j,k
dfi,jillz,k dfi,jrl/Z,k dfi,jil/Z,k .
2 b )

O j-1k dPoi,j,k 0 j+1k

dfi,j,ktl/Z dfi,j,kil/z dfi,j,kil/Z

3 M
Poi,j,k—l dPOi,j,k O; j e+l

Where f stands for 4o> Ug, bg, by, Ry, Vg, 7o

Thus for x direction:

f =wyf, , tA=w)f . and =wyf

i-1/2,4.k i-1,jk i+1/2, )k i+1,],

L FA=wo)f o (3.30)
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dfi—l/Z,j,k _ d[wxfi,j,k + (1 B wx)fi—l,j,k] —(1-w,) i1,k
= x
dPOi—l,j,k dPo 1,4 Oi ik
dfi—1/2,j,k _ d[wxfi,j,k + (1 N wx)fi—l,j,k] —w dfi,j,k
dPOi,j,k dPOi,j,k x dPOi,j,k
dﬂ—l/%j,k — O
P0i+1,j,1c
dfi+1/2,j,k ~0
Oi 1)k
dfi+1/2,j,k _ d[wxfi+l,j,k +(1- wx)fi,j,k] =(1-w,) irjk
dr,, dPo; ; k * dr,,
dfi+1/2,j,k _ d[wxfi+1,j,k + (1 ~Wx )fi,j,k] _ dfi+l,j,k
L APoj1, )k " o
For y direction:
fi,]—l/z,k = wyfi,j,k * (l N wy)fi,j—l,k and f;j+1/2k yff,j 1k +(1 w
dfi,j—l/2,k - d[wyfi,j,k + (1 _wy)fi,j—l,k] — (1 —w ) dfi,j~!,k
dp, dPo /.
i j-1,k i,j-1k i, j-1k
dfi,j-l/z,k _ d[wyfi,j,k +(1- wy)fi,j—l,k] —w dfi,j,k
dPOi,j,k dPoi,j,k Y dPOi,j,k
dfi,j—l/z,k _
0; j+1k
dfi,jﬂ/l,k =0
0; i1k
dfi,j+1/2,k _ d[wyfi,j+1,k +( —wy)fi,j,k] _ (1 —w ) ijk
dpP, dPo Y dP,
Ol,j,k i,j,k Ol,j,k

Reproduced with permission of the copyright

owner. Further reproduction prohibited without permission.

(3.31)

27



daf

L2k

dp, dPo Y dp,

i,j+1Lk i,j+lk

dwyf  +A-w)f 1 df

ik~ _ w i,jtLk

i, j+1k
(3.32)

For z direction:

fi,j,k—1/2 = wai,j,k +(1 “wz)fi,j,k~l and fi,j,k+l/2 = wai,j,k+1 + (1 N wz)fi,j,k
&y jh-12 4wt +A=w)f T (1w )df,-, k-1
z
dPo,.’j),H dPoi,j,k—l 0; ik
dfi,j,k—l/Z _ d[wzfi,j’k + (l - W;z)fl.)j’k_1 ] o dfi,j,k
z
dPOi,j,k dPOi,j,k dPOi,j,k
i jk-1/2 _ 0
dPOi,j,k+1
i jk+1/2 _ 0
O; k-1
dﬁ,],k+1/2 — d[wzfi,j,k+1 + (l - Wz)fi,j,k ] — (1 —w ) d-f‘lajak
z
dPOi,j,k dPol-’ ok dPOi,j,k
dfi,j,k+1/2 _ d[Wfo,j,k+1 +(1- Wz)f,_’j’k] = W dfisj,kﬂ
zZ
Poi,j,k+1 dP0i7j>k+1 dPOi,j,k+1
(3.33)
For the boundaries:
i=1,j=1tony,k=1tonz: fl/z,j,k = f(Pom)j,k ); Pol/z,j,k = Pou’k
j=li=1tonx, k=1 to nz fi,l/z,k = f(Poim’k ); POi,l/Z,k = Pom)k
=1,i= =1tony: £, =SB, s - Az
k=1,i=1tonx,j=1tony: J,,,, 0,3 P, / =P, +7,-j1 3—
i=nx,j=1tony, k=1tonz: fmm’j’k = f(&, w12, ); F, et/ 2,k =F, -
i=1ltonx,j=ny,k=1tonz f,)nyﬂ,z)k = f(F, 2k ) ; Poi,ny+1/2,k =F, vk

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



. . . = f(P .
i=1tonx,j=1tony k=nz f,.,j’,,m,2 f( 0, iman’s
Az
Po = Po -y

ijnzeli2 ijnz i.jnz )

3.3.5 Transmissibility Terms (Upstream Weighting)

In the treatment of the transmissibility and its derivatives, an upstream weighting

scheme is adopted.

The concept of fluid potential is given by
P
= Jd—P+g(z——z°) (3.34)
» P
Where, the coordinate system with z direction upward;

0
z : Reference depth;

0 0
P . Reference pressure at a reference depth z

The potential difference is A® 5 :

B o4p b ap
O -Dy= | —+g(z -2 | —+g(z,-2")
P P P° P

3.35
P gp (3.35)
ADqy = I7+g(zl—zz)

P 2
Assuming that P and density are continuous function inside the domain (P;, P),
potential can be calculated as:

Aq)l,z :(})1%})2)""7(21 -z,)

AD 5 = (P — Py)+ pg(z) — 23) (3.36)

Where, pg=7y,and ;_/ is the specific gravity between points 1 and 2.
29
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Thus, the verification of the flow direction of the gas and oil phases in directions x, y

and z between two cells will be made in the following way:
For direction x:

For the gas phase:
v v v v v
POTg’)d = (R) Lk = Po i_l’j’k) - }/gi—l/z,j,k (hxi-l,j,k - hxi,j,k) + Pc Ljk — 'Pc -k
v v v v v
POT, =(F, ik —F, ijk)—7, . (hx,.,j,k - hxm’j’k Y+ P k=P ik

If POT,, >0 then &, =1

If POT,, <0 then S, =0

(3.37)
For the oil phase:
POT, = (L, 1k =P, .06) = Vorarn i Py yx = Pes 1)
POT,., = (P, w15k =P, 1sb) =V orirso g Py s = Py 1)
If POT,, >0 thend, =1
If POT, <0 theno,, =0
(3.38)

For direction y:

For the gas phase:

v v 14 v v
POL, = x -1, i’-’"l"‘)—7gi,j—1/2,k(hyi,j—1,k _h)’i,j,k)+})c wik = F ik

o

POT, =(P s P

v 14 14 v
o i,j,k) - ;/gi,j+1/2,k (hyi,j,k - hyi,j+l,k) +P ik =P ik

[4 c

If POT,, >0 then &, =1

If POT,, <0 then &, =0

(3.39)
For the oil phase:
POTOyl = (‘l)ovi’/"k - })oviaj_lvk) - 70:'/71—1/2’]( (h)’i,j—l,k - hyi,j,k)
POToyZ = (Povl,j+1,k - Povi,j,k) - }/0;/,]+1/2,k (hyi,j,k - hyi,j+l,k)
If POT, 20 then 6,, =1
If POT,, <0 then 6,, =0 (3.40)
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For direction z:

For the gas phase:

POT, =(P"1jx—P

v v v v
g o bik-1) =Y £i,k-1/2 (2, pmt = Zigi )+ B i = B g

POT,, = (P ijo —P

v v v v
o 1K) Ve, s = Zigpe) TR ket =B gk

If POT,, 20 then 6, =1

If POT,, <0 then 6, =0

(341
For the oil phase:

v v \4
POTozl - (})o ik _Po ’Ivﬁk_l)_yoi,_/,k—l/Z(zi,_i,k—l _Zi,./,k)
v
POTozz = (Po i,7,k+1 —P

14 \4
o bk ) 7oi,,',k+1/2(zi,j,k - Zi,j,k+1)

If POT,, >0 then 5, =1

If POT,, <0 then 6, =0

(3.42)
The following is a general form of transmissibility expression used and its derivatives

with respect to oil pressure and saturation in x direction.

GF.
o it g g Y
Xy sk [0 Pl ik +(1-3p) i, ‘k]
” ’ulf—l/zjk ” s
GF
. i+1/2,7,k li+1/2,j,k S k 1 5 k
Xivinju [ Pl . +(1- Ix) ¥l ,k]
. ’uli+1/z,j,k s .

(3.43)

General Form transmissibility and its derivatives with respect to oil saturation:

Txli‘l/z,j,k =(1-5; )GFx U2k bli-l/z,j,k dkrl,-ﬁl_j’k
- X
aSOi—l.j.k R dSOi-l.j.k
F
xli—l/z,j,k _51 G i-1/2,j.k li—1/2,j»1f dkrli,j,k
= Olx
aSOi,j,k 'uli—uz,j,k dSoi,j,k
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Txli-uz,j,k ~0

as,

i+1,7.k

Txli+1/2,j,lr -0

oS
Oi 1k
GF, b
aTxliH/Z,j,k _(1 5 ) X2k li+1/2>j,k dkrli,j,k
Y S
aSoi,j,k ’uli+1/2,j,k dSOi,j,k
GF b
xli+l/2,j,k -5 X iz li+1/2,/’,k dkrliﬂ,j,k
~— Yk
S
Ois ik 'uli+1/2,j,k Oi1, ik

(3.44)

General Form transmissibility and its derivatives with respect to oil pressure:

aTXliH/Z,j,k -0

POH, i
aTxli+l/2,j,k (W 1) T ( l dﬂli,j,k 1 dbli,j,k )
=Wy — b xzm/z, ik h
aPOi,j,k M +1/2,)k dPOi,j,k bli+1/2,j,k d O ik
xli+l/2,j,k 1 d’ulm,j,k 1 dbli+1,j,k
= _Wx ) Txl . ( - )
P i+1/2,j.k ’u P bl
Oi, )k li+1/2,j,k O,k i+1/2,j.k Oin,jk
aTxli—l/z,j,k _ 1 d'uli‘l,j,k 1 dbli-l.l',k
5 =W =D Ty ( T - )
01,k li—1/2,j,k Otk li—l/z,j,k Oitjk
8Txl,-_1/2,,-,k =—w. T / ( 1 dﬂli,j,k _ 1 dbli,j,k )
- X Xk
aPOi,j,k ’ 'uli—l/z,j,k dPOi,j,k ZH/z,j,k O, ik
aTxli—UZ,j,k -0
P0i+l,j,k

(3.45)

Note that for closed boundaries, the transmissibility and derivatives will be zero.

Similar derivatives can be obtained in the y and z directions, please see Appendix 2 for the
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computation of the transmissibility and its derivatives with respect to oil pressure and

saturation.

3.4 Finite Difference Equations

To obtain the numerical solutions, the partial differential equations for reservoir flow have
to be discretized to be finite difference equations. In this study, block centered scheme are
adopted for the spatial discretization. Since the coupling model has strong non-linear
characteristics, to ensure the stability and accuracy of the model, a fully implicit method is

used in the time discretization for the reservoir partial differential equations.

For the gas phase:
Kl [Axkxkrg 0P, e 6hx)+ A Rk, kg (apo . oh, A
Ox Boug Ox Ox B,u, ox ox
o A.kk,, OP oh A Rk k., 6P oh
+__[ Yyrg g__;/g Yy + Yoy I‘O( 0_70 y)]Ay
Bgug %) Bopy Oy Yy
Ak k,, OP,
+_6_a_[ zZ7Zrg g ~7g ahZ)JrAstkzkro (apo —7, ahZ)]AZ
z" Bglg Oz Oz B,u, Oz Oz
o, S S
=V5;(¢E—‘Z—+¢RS B—Z)+qu0V+quV
For the oil phase:
0  Ackk,, OP oh o Aykyk., OP, oh
S (G =V At — [ (e — D)y
oty OX ox &y Boy, oy oy
v Lo oy Py, p 0 g5y
z Byu, Oz oz ot B,

The detailed discretization procedure, including derivation of the flow terms and
accumulation terms in the oil and gas flow equations, is attached in the Appendix 2. The

final finite difference equations for gas and oil are as the followings:

For the gas phase:
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n-+l n+l n+l
%0112,k ' [(P:+1 L P‘" j )~70i+1/2jk (hxi+1 _hx,')j,k]
n+l n+l
_]-;Oi—llz,'k.Rs[(P Pl] k) 7/01 l/Z/k( xl— X I)Jk]
n+l n+l n+l
+]j\’0,’/+1,2k R [(P 4Lk Poi.-k)_}/ozm/z,k( Y j+l _—h)’j)lf,k]

~T RIB" -P" =7

Yo

(h, =, )]

Ll
-2k 0] 1,12k J

+T, CRIE Py (z,-2,),]

Z0; k4172 0;,j je+l

1 1
—T'z”u/.kﬁ/z ' V[(P"m - Un+k1) }/0, kllz( k Zk~1)tj]
n+l n+l
+];g,.+1,2,j’k .[(Pom,,k P ) yg.+1/z,k( xitl )JJC]
n+l n+1
2.k .[(Poi.j,k 0| l/k) }/g, 1/z,k( xi xl—l)J k]

n+l n+1 n+l
+Tyg .[(I)o.. - ) yg, ( yj+1 yj)lk]

_xg

ek S 12k
“De, [(Pvnjlk - 0n+11k) Ve ,1 vas By, =Hy, i
+ng,-,,,k+1,2 [(Ponjlm nH ) 7/g,,k+1,2( 1~ 2k ),j]
R G T’fi) RCEE W

+ ];n+1 . (P‘rvrl . Pn+i ) _ T’:l (Pn+1 _ Pn+1 )

& gk Gtk G 8 an Cijk Cimj K

+ Tn+1 . (Pn+ n+1 ) Tr;l . (Pn+1 _ Pn+1 )

Y& ik 1,+1k ljk 12 Ci.jk G j-1k

n+l n+l n+l n+l
—P-Ta (PP )

72 G ok (R

+ Tn+1 . ( Pn+1

Vn
= ‘—Z‘;L {(l + CrAt})o ) . [bg"+1 (1 + Sw" (Cr + Cw )AtPo — Sw” - Son+1 ) " (RsSobo )n+1 ]

_ bgn (1 _ Swn _ Son ) _ (RSSobo )n }j’j’k + Rn+l Qnﬂ, + Qn+1

soi,j%0i,[k fgi.jk
For the oil phase:
n+l n+l n+l
*0 112, [(P"H./k B P” ik )" 70i+x/21k( wisl )1 k]
+1 +1
—Txoi—l/z,'ﬁ[(})"}:k P’,"] k) y”;l/z Jc( xl— Xi— 1)]1(]
n+l n+1 n+l
+ T,VU,,M,“ [(P:/+|k - ) }/0, 2k ( Vil th )i,k]

n+l n+l n+l
-T, [P P M)—y,,_ LGy =k ]

S PN (CANE D B AN GRS I
PN (A A L AN CAE LAV
”
EA+CAR) (B,S) ~(5,6,)"),x+ 057,
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3.5 Residual Function and Jacobian Matrix

After the discretization of the partial differential equations, the Newton-Raphson method is
used to solve the system. The Newton-Raphson method involves calculating the Jacobian
matrix and the right hand side vector. The Jacobian matrix is built by calculating all the
derivatives of the residual function with respect to each unknown for each iteration. The
right hand side vector is also updated with the residual function, which is expressed in
terms of transmissibility, potential and source/sink term. The resulted system of equations

obtained from the residual functions and associated derivatives can be expressed as:

(v+l) W)
) > n+l > n+l
1

J-6X =-F (3.48)

The Jacobian matrix structure is shown in figure 3.6, and contains four zones:
Reservoir-Reservoir region, Reservoir-Wellbore region, Wellbore-Reservoir region, and
Wellbore-Wellbore region. The Reservoir-Reservoir region is sub-divided as Cartesian

system, cylindrical system, and hybrid system at side-wings zone.

The associated unknowns in the finite difference equations include reservoir pressure
and saturation for each block, and wellbore pressure, liquid holdup and velocity for each
segment. Because all the variables for both reservoir and wellbore domains should be
solved simultaneously, the time-step control and convergence check are critical. The initial
time-step is tested to ensure the convergence. To capture the early transient flow behaviour
and to ensure the stability of the non-linear model system, the time-step is usually set to be

small at the beginning and becomes automatic adaptive with increasing time.

The previous finite difference equations describe the flow of gas and oil in the reservoir,

with associated unknowns:

Pn+1 Pn+1 Pn+1 Pn+1 Pn+1 Pn+1

o >

Pn+1
>
o itk Oigk Qg Qijax Oijan Qi

i)k

n+l
So. L
ij.k

+1 +1 +1 +1 +1 +1
S}’l ’SI’I ,SI’Z ’Si’l ,Sl’l ,Sl’l

Oistjk Qe Oigng Oij-ix Cijan Oija-
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These equations comprise a non-linear system of algebraic equations which will be
solved with the Newton-Raphson Method. Therefore, the next step is to determine the
residual function F, and F|, that are associated with the gas and oil finite difference
equations. The construction of the Jacobian matrix is made by calculating the derivatives

Pl’l+1 P Pn+l P}'H'] Pn+1 Pn+1 Pn+1

5
Oi ik OH—ljk Oisjn’ Oijmg’ Oijok Oijust Cijpei

of F; and F, with respect to

dSn+1 SI’H-I S}'H-l Sl’H-l Si’l+1 Sn+1 S}’H'I

0; o

Ij k 1+1jk i-1,j,k i,j+Lk 9; LJ-Lk 9, Skl Oi,j,k—l :

The residual function F, and F), can be determined in the following formula.

For the gas phase:
Fo=T, . RIE: =Py =vi, (e —h) ]
T RAPT =P Y=yt =k ) 4]
+1, . RIUE A A0 B AN G Fp IS
—Ty,,l_.j_mlk 'Rs[(P,,',':1 PM -7, ,m( T yj Dl
+T, R[N P:f‘ V=70 e =2, ] 09
=T, . RIES =P )=y (2 ~2,),,] '
+Txg,+],2'j,k [(P::l,k TTIk) }/;:/z Sk P = 1) ]
I (B S S A GOV BN Y
+Ty e .[(P”:l,jil,k - t’jlk) 7g,+,+uz;‘(hy,+1 /)i”f]
ST, B gy <Ry )]
-i_Tzs.z,.,l.M,2 '[(Pazj,l,m p ) 7g,],”1,2( bt 21, ]
_ng;,,-,k_,,z [(P"r,'jlk TR0 e 1) }/;,Jrjl‘,,_l,z (Zk _Zk—l)i,j]
R R AR
- a:’i)—f;;“,_m @ -p)
I L SR T B
—%{(l+CrA,P0)~[bg”+l(1+Sw" (C,+C AP —S," S "™ +(RS,b,)"™"]
—b,"(1=5," =8, ) = (RS,5,)"},, ~ B2 O -0
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For the oil phase:

F,=T, A&, =P =70, G =R ]
LT (GRS D R AN GOy S I
T, B =P = By =y ]
=T, W& =P =7y =Ry )]
+T-o,/w2[(Po’,~jlk+« nH) 7’0,,“,/2( e 2]
S (/D FVID R AN CAEE A I

———————V;' 1+C A
— ikl +
At [d+CA,

F)- (b,

So)n+1 - (Sobo)n]i,j,k - Q(:Jr/lk

(3.50)

Above residual functions F, and F, can be expressed with transmissibility and

potential. Transmissibility terms have been developed in section 3.7. The potential can be

defined by the following expressions:

PO];xl—(P:i.k w“k)
POT,, =(P’ )
POT,, = (Pov, Pt R )
POT,, (P:I PP AR )
POTy, _(Povi ik oi,j,k-l)
POT =P, P O~
POT =P, P )~
POT, =P  —P D~
POT,, = (Povi,/_,k - Pm Sk )—
POT,, = (Povi i T Pm " )—
POL, =P, —P )~
POL, =P ~P )~

7g, 1/2,k(hxr—1/k xr/k) ® Gk
- 7/81'+1/2,j,k (hxi,/,k xi+l, f, Dt (7 citl, jk
“Vei -k (hyi,j—l,k yuk) 7 Gjk
TV g ok (hJ/i,j,k - th,j+1,k) +(P! ci, j+Lk
h }/g:,j,k—I/Z @y = 2p0) P ajk
}/gi,j,k+1/2(zivjvk Zi k) +(F ci, j,k+1
70,_1/21 k(hxx Lk xi,j,k)

}/01+1/2]k(hxx]k hxi+l,j,k)

Vorjarne By, e =Py i)
7/011+l/2k( yz;k yi,j+1,k)
7/011k1/2(zljk1 I,j,k)
701]k+1/2(zljk Zz,j,k+1)

ci-, j,k
v
cljk)

)

a ,J-Lk

-P’ )

cijk

P )

ci, f.k-1

=P )

ek
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Where, -

z, 0-2,,0=(,, =2 . )=—Az=-—%
67 ,k=1 1,/,k i,j.k i f,k+l nz

Then the gas and oil residual functions can be formulated as:

For the gas phase:
F, =
X0 12,5k ) Sirl/2,k 'POTox2 - X0, 412k : Sv/2, 'POTZ)xl
+T3}oi.f+l/l,k .RS'WJ'H/ZJf .POTOﬂ _Tyol.:j_uz.k .Rsi,/—l/z,k 'POToyl
20, jhnry Sk .POTozZ _Tzoi‘j_k_”2 : Rsl,_j_k_”z .POTozl
+Txg,.+”2’jyk -POT,, _J;g’imj’k -POT,, (3.52)
+Tygi,/+1/2,k . POTgy2 —Tygl_'j_l/u ' POTgyl
+];gi.j,k+1/2 POT, _zz'gl.ﬂ_”2 -POT,

V}’l
- Zl/‘k {(1 + CrAtPo) : [bgn+1 (1 + Swn (Cr + Cw )At[)o - Swn - Son+1) + (RSSObO )nﬂ]

so i,j

n n n n n+l n+l n+l
_bg (I_SW _So )_(RsSObo) }i,j,k—R ; Qo-:,j,k—Qfg.Fi,j,k

For the oil phase:
If; =
X000 ik 'POT('»CZ _T;co._“2 . 'PO]:)xl
* ];Oi,j+1/2,k . POZ)ﬂ B ];Oi,j—lllk . POZM (353)
+]1-ro.. 'POT(LZZ_I:'O.. .POT;ZI
U jk2 ““ijk-1/2
- Z;;'k[(l +C,AP)- (5,8, =(S,5,)"], ;4 — Q.

(v+1)

The residual functions, F g’fflk and F;'f*_lk can be approximated in an iterative way, F el
i.j. i j. i f

(v+l) . . . . .
and F,* with a truncated Taylor Series expansion centered at current iteration:
(R

(v+l)

vl v aF ; o) v
FE,+1) =F£r+)l +Z(__a’-;c;>k)”+1§x"+l ::0 (354)
Vx

ijk ik ij.k
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Where,
F=Fzand F,
i=ltonx,j=1tony,k=1tonz

n+l pn+l n+1 n+1 n+1 n+l n+l
x=P P ,P ,P ,P ,P ,P
Oijk” Oirjk Oimgr Cigugk OCijovk Cijanr” Oijra

Sn+1 Sn+1 Sn+1 Sn+l Sn+1 Sn+l Sn+1
Oi > b b > b -1

gk Cingre Qi Oijag Oijak Gijan Oijia
{(v+1) (v+l) {v)
dxnﬂ _ n+l _ n+l
ik = Xk T Mgk

At n+1 step, for the gas phase:

oF ; oF, oF
( 1) _ gi, N (v+1) gf,j, (v+1) ng (v+1)
(F‘gi /'k) = (ngjk )(V) + (_aP—,k_)(V) éR"' jk + (—a})—k)(‘,) &32;41 jok + (a_k)(‘,) é])oi—l Jik +
3 o 2 2> P e
o/,j.k 0i+l,j,k oi—l.j,k
oF ) oF OF OF
8k \W) op ™ &k \v) ep 8k \(v) ep ™ ik \v) op "
e T e M VI G M AINE G ML I
oP, oP, oP, oP,
i, j+Lk i.j-Lk i,j e+ ikt
aF (w4 aF (v aF (v+l) aF v+
81,k \(V) 8ijk \N(V) &k (V) 8irk N(V) v
+ ("SS2S ()Y SS
8So 0i,j.k aSo 0itl,j.k aSo 0i-1,j,k 35’0 i, j+L.k
ifk i+l k i1k i j+Lk
oF oF. oF oF
2, (v+l) - (v+l) g v (v+1) - v
+ (—_k)(‘/) $0ij—l,k + (——k_)(‘/) $0i 7+ + (———k—)( )éSOi = + (——Lk_)( )éPWf =0
as, sk Nas SRS TN o,
1Lk ik i.jde-1
(3.55)
Thus,
aF (v+l) aF (v+l) aF {v+1)
&k \(V &i.j, v 8i.j. %
(—k)( )époi,j,k +(‘——“1k“)( )épom,/,k +(—~IL)( )6R’i—1,j,k +
oP, op, op,
ik i,k i1,/ .k
oF (v oF ) oF oF
g’.’ ik ( V] g’., y ( {v+1) gi, i {(v+]) gi, : (v+1)
(=) V)éRn, J+LE +(_Jk) V)éRn', J-Lk +(——Jk—)(V)é])oi,j,k+l +(_"—lh‘)(V)éR»i,j,k—1
oP, o, oP, oP,
i.j Lk i,j-Lk i.j k41 ikl
OF, (w41 OF (v+1) OF, (v+)
&i.pk (V) &ijk (V) &k (V)
+(—) $0i, Tk ) éSoiﬂ, ik () 55’01’—1,],/6 +
as, as, as,
ik i+, gk i1,k
oF, OF oF, oF
I {v+l) gi.j, v (v+1) & (v+l) £, (v+l)
(OS = )(V) $0i,./+l,k +(6S : )( )&’Oi,j—l,k +(6S 5 )(V) $0i,j,k+1 +(a = )(V) $0i,j,k—l
O ik O j1k O k4 O k-1
OF
&ijk N(V) _ )
AR, =~(F, )
wf
(3.56)
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Analogous, for the oil phase:

6F ) 6F (v41)
(v+1) v) 0;,j k (v) ik (v) O,/ k (v)
( ) _(F:/k) +( P ) UIJk (aP ) 01+1jk (BP ) 01—1/k

oi,j,k l+1,/Ji l‘l»],l‘

(v+1) (v+1) {v+l)

aFr gk (V) aF’j k (V) aFt Ik (V) aFljk (V)
(6P ) ozj+1k+(aP ) 011—1k+(a ) 01]k+1+( ) 01/k-1

+1k ik k4 6P f -1
aF (v+) aF (v+1) aF (v+) aF (v+)
i.j .k (v) iik (V) ik NV O (v
+(6S ) 0!}k+(6S ) $01+ljk (6S ) éSo:—le (GS : ) ) 011+1k
Ok O stk Oil ik O; jeik
oF, tval) oF, vty OF, oF,
%)k (V) Oi ik (V) 9,k (V) 9,k (V)
+(aSOA ._”) 01]1k+(aSo Hl) ka+1+(aSo”‘H) 01]k1+(ava ) f—O
(3.57)
Thus,
GF (1) aF v+l aF (vl
O k (V) O ik (V) O j e (V)
(a}.‘;“k) 011k+(aP N k) oz+1/k+(aP‘l k) 01—1]k+
aF (v41) aF (v4) aF (v41) OF, (w41
Ok (v) ik (V) i jk (v) Gk N(V)
+(8Po 1k) 0’””‘+(8P ‘lk) "’/‘”‘+(—3P “) g,jk+l+(—"‘81)o““) OF, i
aF (v+) aF (v+ly aF (v+l)
9i.jk \(v) %.ik \(V) Gijk N(V)
A
aF (v+) aF v+l) F (v+l) F (v+1)
ik (V) ik (V) ij ok (V) ik (V)
+(6S0 ny ) ouﬂk (8S j~Lk ) $o’l_lk (aSO i ) ”’J = +(8S j ke ) Guk )
+(6E7f,j,k )(v) éow - -—(F ; )(v)
oP,
(3.58)

To solve this problem with the support of the Newton-Raphson method, the following

iterative process should be used:

(v+1) (v)
) —> s+l —> n+l

Where,
(V) . . .
J " is the Jacobian Matrix;
)

—> n+l

F s the Residual function vector: F, g1k F, e
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(v+1)
—» n+l

X is the vector of unknowns for future iteration (variables P, 8

(v+1) v) (v+l)
—> n+l > n+l —> n+l

tonx,j=1tony,k=1tonz); X =X +6X

)
—> n+l

X is the vector of unknowns for current iteration (variables P . S, ,i=1
1.7

tonx,j=1tony, k=1 to nz),

(v+h)
—> n+l

X s the vector with variations from current to future iteration (variables

P .S

%i gk

»k,i=1tonx,j=1tony,k=1tonz);

%

The iterative process is repeated until,

(v+1) . .
saturation ftolerance if X =S,

_)
o0X < tolerance . (3.59)
Vx pressure tolerance if X =P,

The associated unknowns in the finite difference equations of reservoir flow model are:

Pn+1 Pn+1

! 0 Pn+1 ,Pn+l ’Pn+1 ,Pn+1 Pn+l

B >

i jk ik Gicgre s Qigagk Oijar Oijea Gijia

S}’l+1 Sl’H'l Sn+1 Sn+1 Sl’l+1 Sn+1 Sn+1
o ’ ’ s s s

ik Ok Oiijk Cigsik’ Qijak Oijast Oijka
As mentioned before, it is necessary to obtain all the derivatives of Fgand F, with

respect to P, and S, for each grid location, including the derivatives of potentials and
accumulation terms with respect to P, and S,. All the details about derivation can be found

in Appendix 2.

In the above sections, the partial differential equations and residual functions include
the source / sink terms for both oil and gas phases, as a traditional reservoir simulator does.
To compare traditional uncoupled flow model to the proposed coupled model, this section

briefly introduces the development of the source/sink terms in the traditional reservoir flow
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model. For the source/sink terms, the oil flow rate can be obtained by applying the Taylor

series expansion during each iteration.

() (v)

n+l n+l n+
Vﬂ +1 o ZI} :4-1 aqa :ill Z*—l aqo +1
qok = qok GS; (Sak - Sok )+§j— (f)ok - R)k ) + apwj (P wfref - wfref )
(3.60)
The wellbore flow pressure at reference elevation can be calculated as:
) v)
aq e m V+I v aq ya " V+1 v
+1 2 S S nl Y o P P n+l
" Z[(qo qok aSo ( ok ) 6P0 ( ok )]
Pyl =Py - ) (3.61)
Z[ aqok ]
v OP,
Therefore, wellbore pressure can be calculated as:
owk = owref +yAH, (3.62)

Where in (3.60) and (3.61),

)
O o | ! 0ok
ok =WI - P, —
as, 3s, ( ok wfk)
“
G ok |” 0ok
— =WI - P, - P +WI -2
ar, aPok( ok~ Py ) ok

(v)

n+l P, oy
Oqok_ =-WI - A, - Wk _ ~WI - Ay -1+ Y b (Hy = Hyof )1 = =WI - Ao,
OPuy OPures Wief

By, - Ho

Ky is the geometric average of the absolute permeability in horizontal direction:
Ky =(K:Ky)*

Wi - 27Az
Well index W1 can be expressed as In Teq + S and S=0

Ty
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Teq is calculated with Peaceman’s model for non-square well block
Teq ® 0.208Ax or in more general form:

[k, /)" (M) + (k, h,) 2 (4]

roy =028
“ (ki R4 4 ey TN

The gas flow can be determined by using the mobility ratio method based on oil flow

rate or by applying the Taylor series expansion as well.

A ko1 b
Eijk rgro”g
= +R, ) ~[(-r8To8y LR 7
Qg =( o, | 5,0 Qo > Qg =[( km,ugbo)"””‘ 5,01 %o
Or
(v)1 (V)1 (‘21
vil v+ ank n+ v:l v+ aqgk n+ v:l v+ aqgk n v:l V+
Gek =gk tog | ok TSt (R —Pok‘)+m (Pfrer = Paier)
(3.62)
Where,
5] o o( R )E’:)1 o 0 oA
q ok 9o 1S+ 4 q ok Rs Tk
= ==[Rs-—*+q, —]|+[WI- P,-P )+WI-J
GPU‘ oP, ‘ [ oP, 9ok GPO] [ oP, (P, wfk) fgk]
(v) )
Oqgr |"*! _ 0(qox ‘Rs +q g )|+ _ py. ok +Wl.algk Py —P. )
os, as, | as, oS, = ok Tk
(v) 4
Oage | _ 0ok - Rs +4 0" _ re. Yok _yr .5
OP, s Py | OP,,f gk

However, a reservoir flow model using simplified source/sink term cannot fully reflect
the interaction between wellbore flow and reservoir flow. Therefore the reservoir/wellbore
coupled model will not use source sink terms to express production or injection rate.
Instead, a two phase wellbore flow model is developed separately to reflect the interaction
between reservoir and wellbore. Chapter 4 presents the development of two phase wellbore

flow model.
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CHAPTER 4: DEVELOPMENT OF THE WELLBORE FLOW MODEL

Since the simplified source/sink term cannot fully reflect the interaction between wellbore
flow and reservoir flow, the coupled model needs to integrate a two phase wellbore flow
model to the reservoir model in order to determine pressure drop, liquid holdup and flow
pattern along the wellbore. This chapter will present the development of this two phase

wellbore flow model.

The horizontal wellbore geometry is different than a regular pipeline because of the
influx from the reservoir through the perforations. To study the interaction caused by the
influx and pressure drop in the wellbore, the horizontal wellbore is divided into segments
(multi-segmented well). Then the wellbore flow equations can be derived accordingly
based on the control volume in each wellbore segment. The two phase wellbore model is
based on a homogeneous flow pattern (dispersed bubble flow) and consists of mass
conservation equations and the momentum equation. The radial volumetric influx from
reservoir to the wellbore is calculated with mass conservation equations to capture the
interaction between the wellbore and the reservoir. The influx along the wellbore makes
the flow behavior and wellbore model more complex (Ouyang and Aziz, 1998). For
gas-liquid wellbore flow, the influx can alter gas and liquid flow rates along the wellbore.
As a result, gas and liquid superficial velocities and slip velocity will change along the
wellbore. Additionally, the influx amount of fluid transfer between the reservoir and the
wellbore will introduce different flow patterns in the horizontal wellbore. The momentum
equation in the multi-segmented wellbore model deals with different types of pressure
losses, such as segment pressure difference, wellbore wall friction and acceleration
components. The variables in the wellbore equations include fluid velocity, wellbore
pressure and reservoir pressure of wellbore block. For a multi-phase case, variables also

include saturation distribution in reservoir and liquid holdup in the wellbore.

When the pressure drop in the wellbore and the influx from the reservoir are considered

simultaneously with conventional reservoir simulation, the results can be reasonably
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accurate, especially when high flow rate and consequently high wellbore pressure drops
are present. In addition, flowing properties are updated with real-time local flowing
conditions. Therefore, the reservoir/wellbore coupled model can reveal the fluid flow in
the reservoir near the wellbore and also the actual characteristics in the horizontal

wellbore. The following sections elaborate on the development of a wellbore flow model.
4.1  Partial Differential Equations

The horizontal wellbore can be seen as a regular pipeline, but with influx from the reservoir
through the perforations. To develop the wellbore flow model, the horizontal wellbore is
divided into segments (multi-segmented well), as shown in figure 4.1. The block centered

scheme is adopted to discretize the wellbore equations in the horizontal direction.

bbb g bbb

-
1
' ol dzze 0 !
I L ! i ! '
B e aaite

i ' i t

t
] .
N i
'

¥
¢

R R S I

Figure 4.1 - Horizontal wellbore segments

i

In the horizontal direction zz we have a grid naturally regular and the increments dzz

(constants) can be calculated by: dzz = L
nzz

Where,
nzz 1s the number of segments in the horizontal wellbore;
L is the total length of the horizontal wellbore;

dzz is the length of each segment of the Wellbore;

Therefore, the grid block interfaces positions (; J_rl) can be expressed as:
2

dzz
X, =Xt 7 (41)
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In the wellbore system, the horizontal wellbore flow equations can be derived based on
a control volume in each wellbore section, which isV = dzz - (7 ) . The position of the grid
nodes in each cell occurs in the geometric point where the average pressure p of the cell is
applied. Taking into consideration the one-dimension flow continuity and momentum
balance through the control volume, we have the continuity equation and oil and gas

mixture momentum equation as the following (dzz is expressed as Ax in the formula):

Oil Continuity Equation:

o H
=V, 4.1
0 a2 @

Extended with partial derivatives
ALy Oy O Par+q.. v 2w 42)

ox Ox ot
Gas Continuity Equations:

o H H
+Rgq, =V, —(*+R —* )
] g sqosc b a[(Bg ) Bo ) (4 3)

Extended with partial derivatives:

ob oH
AJHy v A+byv—>Ax+b,H, @Ax]+

& ox Ox & ox
0b oH OR
ATRH v Ax+ R pv o av+ RbH, Y Av+b, 1 v R Ax]+ (4.4)
Ox Ox Ox Ox
o(b,H,) O(Rb,H,)

+R — g8 + sY0" "o
q gsc— free K qoxc b [ 6[ a / ]
Mixture Momentum Equation

oP v ov
G+ PG =1+ PG+ R - ARy “5)
Where,
A, is the section aream?;
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H is the oil hold-up, and H, =1-H ;

B,, B, are the formation volume factors for oil and gas;

v is the velocity of the mixture flow in wellbore, assuming homogenous flow;
R, is the gas/oil solution ratio;

Ax is the length of the wellbore section =dzz;

9 s 9. are oil and gas influx from reservoir per unit of wellbore section;

V, is the control volume V = Azz - (m?);

P is the pressure in wellbore;

Poses Pgsc are o1l and gas densities at standard condition;

P is the mixture density in the wellbore;

Jf is the Moody’s friction factor;

d is the inner diameter of the wellbore.

To solve the above equations, we must also consider the following additional
relationships:

- The influx from reservoir:

0. =~§r—[k,A,£§:(%°——n %) ar (4.6)
0. = 2k iy Wyupa M@y Lypnr
- The density of mixture in the wellbore:
p, = P , where [ represent oil or gas
,
o= af (Lot Puky H, %i (4.8)
, <
= aiﬁf,fi (P + PR %} +H,p, aiiji 4.9)
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- The viscosity of mixture in the wellbore:
u=Hu +Hpu, (4.10)
Determination of other properties and derivatives at the wellbore block interface can be
approached using either Property weighting method or Pressure weighting method, similar
to the interface properties calculation in Chapter 3, please refer to section 3.3.4 for more

details.
4.2  Finite Difference Equations

To discretize the wellbore partial differential equations (4.1 to 4.5), a block centered
scheme is used for the spatial discretization and a fully implicit method for the time

discretization (backward discretization).

For the oil continuity equation:

H H
i(Ax —2VAX +qp5e =V ﬁ(_g_) , using b, (=1/B,) instead of B,, there is:
Ox B ot B

o o

0 0
A —(bHV)A+q, =V, —(bH
xax(o av) q bat(o o)

osc

ATH L s+ by e pvwn i, P axyvg, =v, 2o H)
ox ox ox ot

oH, +b H, é)—]Ax +q
ox

ob
®+byv

A[H,v
ox ox

osc

0
v, 2 (bH
bat_( [4 o)

So after finite difference treatment:

n+l _ n+l n+l — n+l n+l _ n+l
s =) gy s =L gy O~ Oy

AHv

bH)"'—(bH)
AR A
t
Ax {Hov : [(bo):’:II/Z - (bo ):Ijll/Z] + bov ’ [(Ho );:—:1/2 - (Ho )lr"jll/Z] + boHo : [(v):’:]]/Z - (V)fjll/Z ]} + qosc
(lbffo)TJ'-(lufYo)f]
At

=Vl
4.11)
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For the wellbore equation, the subscript i can be changed to k for the direction along

wellbore in the wellbore coordinates system. So the above finite difference equation

becomes:

AxHov ‘ [(bo)::i/Z - (bo)Zj/Z] + Axbov ' [(HO)Z:/Z - (Ho);:i/Z ] + AxboHo ' [(v)”+1 - (v)VH'l

k+1/2 k—1/2]
& ArKrKro n+ n+ n+ ArKrKroyo e
+ ;{[ ,UUBON ]l/Zl,j,k (pol,;‘,k _po—:vb—k)—[ "‘“““““‘“ﬂoBoAr ]1,21’.,.,,( (Gl,j,k -G, )}
H n+l H n
— Vb[(bo o)k (bo o)k]
At
(4.12)

For the gas continuity equation:

o H H 0o H H
A —(—=Ev+R —v)Ax + +Rq =V, —(—%+R —=

x ax(Bg K Bo ) qgsc—free sqosc b at(Bg 5 Ba)

o H 0 H o H 0 H
A —(Ev)+ A —(R, =2V)Ax+q.__,. +Rq,. =V, —(—%)+V,—(R, ==
xax(Bg V) xax( K BU v) qgsc—free sqasc ba[(Bg) bat( K B )

o

Reorganizing the above equation, we have:

ob oH
A[Hv—A+byv—=Ax+b H @Ax]
£ oo £ ox £ % ox
A[RHyv %o ax+ Rbv H, pv+ Rb H, P px+ bH v oR, Ax]
ox ox Ox ox
+ qgsc—free + quosc
ob H
=V1;[ ( g g) +6(Rsbng)]
ot ot

So, after a finite difference treatment:

[AVH, 6,0 =B 1+ LA H B, T 005k =001+ A0, 17 (G, ok = (HL)! )

x""g7g i-1/2 i+1/2 i-1/2

+RX, +[AVHD IR )~ (R D]

Ng ArKrKrg el n+l ArKrKrg}/g n+l G G Rn+1 n+l
+ jgl{[ ,ngBgA}" ]i+1/2,j,k (pgi+l,j,k - pg—wb—i) - [m]in/z,j,k itk T whbi )]} +. i Dosei

n+l

= [_Zt__b_]:wl{[(bgHg):?ﬂ _(bgHg )ln]-{- [(RsboHo ):r+1 _(RsboHo )I"]}

(4.13)
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Similar to the oil equation, the gas continuity finite difference equation in the wellbore

coordinates system becomes:

[AVH T 1® )0, (B 1+ TAH D LT IOV, =05 1+ 14vh, I I(H ), —(H )]

k+1/2

+ R:,:Xo + [AxVHobo ]ZH [(R.s:::/z) - (Rsl’::/z )]

Ng ArKrKrg n+1 n+l n+l rKr Krgyg n+l n+l _n+l
+ Z{[ 1, B Ar 1/2,], k(pgl,j,k o ) - [m]l/z ik (Gl,j,k _wa—k )] } +R sie Dosor

—[ ]"“{[(b H)" (b H, ) 1+[(Rb,H,);" —(Rb,H, )1}

(4.14)
Where,
X,=A.Hy-[(, );ﬁ/z —(ba)zii/Z]+Axbov-[(Ho)Z:}/2 —(4, )Z+i/2]+AxboHo [(V)Z:{/z "(V)Zj/z
A K Kro n+ n+ n+ A K Kro}/o n+
qosc z{[ ]1/21,j k(po! i k o l}b k) [__—B—_A-—_]I/zl,j’k (Gl,j,k - wa—k )]}

For the mixture momentum equation:

op (A pr!VI 6v
(ax)+pV(0x) V [poscqasc +pgsc (qgsc—free .v osc )] ( )

b

After finite difference treatment, there is:

(P)Z::/z "(P):f:/z (V)ZI:/z "'(v):i/z _v _ ffv |v]
) )

+ +p,, + R,
Ax pv( Ax va [posc Qm‘c pg.sc (qgsc——free .sqosc )]
(V)"+1 -
At

n+l

[A ]nH[PkT;l& Pkn252]+[Axpv]n+l(vZ:}/2 vk 1/2) Vi [poscqosc +pgsc (qgsc—free +quosc )]
Vi\ns v, n+ n+ n
- S (e - )

(4.15)

4.3 Residual Function and Jacobian Matrix

The above finite difference equations (4.12 to 4.15) have the following unknowns in both
the wellbore and reservoir system:
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n+l n+l n+l n+l n+l n+l n+1 n+l | n+l n+l n+l
VAR STV AVIRTY ¢ SYSRTY ¢ (YA & SORTR TS VS UAPIRTY AT SN

Similar to the methodology of reservoir flow model, the above wellbore finite
difference equations also comprise a non-linear system of algebraic equations which can
be solved by using the Newton-Raphson Method. Thus, we need to determine the residual

function associated with the wellbore finite difference equations, F\,g, Fy, and F,,

Residual Function for the oil continuity equation:

Fwo = A Hy-[(0,)5, —(0,)0: 1+ ALy [(H,)i0 —(H) 5, 1+ ABH, - [(v)i, 05,1+

k+1/2 k-1/2
29{[A7 o qrtl n+l n+l [A7K Kra}/o ]n+l )]}
A 1/2,j.k ol,j.k po—wbk ‘LIBAr 1/2,jk ljk wb—k

(b H )"+1 ~(6,4,);

hl Ar

]
(4.16)

Residual Function for the gas continuity equation:

F e =[AVE 1B~ B JHLAH D T O, ~ )t 1+ LAVD T (CHL ), ~(HL ),
+R X, +[AVHD,T" [(R;:i,z)—(&:*i,z)]
Ng AK

U o e Pl — ) =% AR, g]ffi,k e " O DR

uB A u B A ook

[ C UG H) -0, H )1+ [(Rb,H,)" —(Rb,H,)1}

s o o

(4.17)
Residual Function for the mixture momentum equation:
F'H'l - [A ]nJrl [R:-;I/Z - Plcml‘1/2] + [A pv]mLl (vI:'J:]/Z l,c’+11/2) vn+1 [poscqosc pgsc (qgvc—free + R qosc )]'H'l

V/?;l"' n+l [pVb ]n+1 [(v)n+1 (V):]

(4.18)

The residual functions F',F™*' F "+: can be approximated in an iterative way,

wgy > wo, 27 wm

(v+1) (v+1) (v+l1)

F ! . F . . F "l Wlth a truncated Iaylor Series expansion CCIltCI'Cd at current iteration:
ng Wok ka
(v+1) ) (y+1)

Fn+1 —F n+l+2( )n+1 =0

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Where,
F=Fu,Fyand F,,, k=1 to nzz
Pn+1 Pn+1 Pn+1 H}'H—l Hn+1 Hn+1 n+l n+l n+1 Pn
X =Ly pts Dyp s Db ga1> Mo 1541 ok 541 fi1s Vi k15 Vi k> Vi k41

(v+1) (v+1) )
ox nv+l =x nv+1 —x nl;l
i i i

i

At nt+1 step, we have:

For the gas phase:

)(V+1) )(V) +

( wgk ( wgk

oF, oF OF,
BV ORGY +(SE) VORI + () aP ) +

anb,k anb,k—l anb e+l
oF OF oF
wgk \( ( +1) wgk \(v) (v+1) wek \( (v+1)
(aH —EVoH (——OH ) OH, +(——6H YW OH Y +
ok o0k-1 0.k+1
oF, oF aF
gk +1 wgk +1) wgk (v+l
+(—— )(V)a"(v D (= )(V)avfnvk L (—— )(V)avmvk+)1
mk k-1 m k+1
OF, oF
gk \(v) (v+1) wek w) (v+1)
+ (6}’—) OF, i + G 08, 1w
o,(1,7,k) o,(1,/,k)
=0
Thus,

Tty 0By (T 0B ) + ()R, +

a wh Je wh k-1 wh k+1

0,k-1 0,k+1
ok 0k-1 0.k+1

(angk )(V)aH(vH) +( ngk )(V)aH(vH) +( ngk )(v)aH(V+1)+
oH

OF OF OF,
+( wgk )(V)av(vﬂ) ( wgk )(V) av,(n";l)l ( wgk )(V)av(‘“rl)

m,k+1
mk k-1 mk+1

oF, oF

gk \(v) Ap(v+1) wgk  \(v) AQ(v+])

+(——'”6P ) aR;(l;k) ( ) aSo,(l,J,k)
0,(1,7,k) o,(1,7,k)

= ( wgk)(V)
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0,(1,4,k)?

Sn+l

(4.19)

(4.20)

0,(1,j,k)
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Analogous, for the oil phase:

)(V+1) )(V) +

( wok ( wok

( wok )(V)a (V"'l) ( ok )(V)a (V+1) ( wok )(V) anEZ;{Z

wh .,k wh, k-1
wak anbkl anb e+

+( wok )(V)5H§Vk+l)+( ok )(V)aHSVk-Hl)-I_( wok )(V)a (SV,:])_}_

a 0.k 0.k-1 0,k+1

( wok )(V)av(vzl) +( wok )(V)av(";l) ( wok )(V)a (v+1)
m m 1

> k+1
amG avmk 1 avm o+l "
oF,
) (v+1) wok v) (v+1)
+(5P ) al)o(ljk)+(aS *—) aSo(ljk)
0,(1,j.k) 0.(1,/.k)
=0
) (V+1) wok W) (V“) wok ) (V+1)
( Pt )" OF, ( ) OF,, xh + ( ) OPy ki
anb . wh .k anb o wh,k~1 6wa » wh k+1
oF oF
( ak )(V)@H(V+l) ( wok )(V) 6H§Vk+ll) ( wok )(V) aH(SVI::I) +
oH,, oH,,. oH,,..
oF oF
k \(V) (V+1) k \(V) A, (v+]) k (V) AL (v+])
( Fuy ) 6\7 + (- P ) a"m o T () aVm,k+1
avm,k avm k-1 avm,k+1
oF, wok (V)a (v+1) wok (V)aS(vH)
+(6P ) o(ljk)+(aS ) o.(1,7.)
0,(1,/,k) 0,(1,/,k)
— )
- _( wok)

For the momentum equation:

(v+1) _ v)
( wmk) ( wmk) +
oF
( Pt \) ) 1 (P ) 5p+) ( Ok ) ppeD
bk b, k-1 b, k+1
anb k * anb k-1 " anb e+l " N
( mk )(V)aH(V+1) ( mk )(V)aH(V+1) ( wmk )(V)aH(V+1) +
k-1 k+1
aHo k aHo,k—l ‘ aHu k+1 el
+ ( wmk )(V)a <V+1) + ( wmk )(V) av'(n"zl)l + ( mk )(V) avr(nV;i)l
mk mk—1 vm k+1
+ ( amek )(V)GP(V+1) + ( mek )(V) aS(vH)
P 1,/.k) as 0,(1,/,k)
a,(1,,k) 0,(1,j,k)
=0
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Thus,

ame v v+ aF‘wm |4 v+ wm v v+
( anbff BB+ (R (ARG, ¢
+ ( mk )(V) aH(V+1) ( amek )(V) 6H<V+1) ( wmk )(V) aH(V+1) +
aHu’k o k aHo'k_l o k 1 aHo » o k+l
( 8v mk )(v) av(v+1) (av ik )(v) av’(nv;l)1 (avwmk )(v) aV,(,,V;:)l (424)
OF e o) Apv+1) k_\O) AU+
+ - oP, + = oS,
(a})o(ljk)) o(ljk) (aSO(ljk)) o,(1,7,k)
- ( wmk )(V)

The system of equations obtained from the oil/gas continuity and mixture momentary

residual functions can be expressed_as follows:

(v+1) (v)
) —> n+l —> n+l

Jm.§6X =-F

Where,

(vtl) ) (v+1)
—> n+l —> n+l —> n+l

X =X +0X

)
J " ig the Jacobian Matrix

~

)
;"“ is the Residual function vector Fi.e , Fy, and Fyyp;

(v+1)
)—’( "1 is the vector of unknowns for future iteration;

)
} "1 is the vector of unknowns for current iteration;

(v+1)

s )‘(’”"‘ is the vector from current to future iteration;

Newton-Raphson method is used to solve this problem. To determine the unknowns at

step n+1, it is necessary to know the previous £,,, 1, ,V,, (k =1 to nzz). Accordingly an

. . . . . 0 0
iterative analysis should be conducted with an initial guess: Pva)k JH i ;Z, V, (k=1 to nzz).
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® )

— n+l —> n (0)
WithX =X , it is possible to calculate the Jacobian matrix J as well as the
©)
_)
vector F'
0) 0 ©)
(0) - . - - .
Once J and F are available, 6 X and consequently X can be obtained

through the following expression:

3} ) )
._)

- -
X =X +06X
M @)
—> -
This process can go on from X  to the determination of X  and so on until the

following criterion is met.

(v+1)
>

o0X < tolerance (for P,,H,,v)

Similar to the reservoir flow model, to construct the Jacobian matrix, it is necessary to
obtain all the derivatives of F,, , Fy, and F,, with respect to wellbore variables,

. : n+1 n+l n+l n+l n+l n+l n+l n+l n+l n+l n+l
including wa,k—l > wa,k> wa,k+1 > Ho,k—l > Ho,k > Ho,k+1’ Vin k=12 V> Vim k412 Po,(x,_f,k): So,(l,j,k) . The

F

wo ?

derivatives of F

wg?

F, regarding to reservoir variables PO’(L j,k),So,(l, .k are also

necessary because they are relevant to the influx in the residual function, which reveals the
connection between reservoir and wellbore on the sandface. All the details about the

derivation can be found in Appendix 3.
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CHAPTER 5: COUPLED MODEL DEVELOPMENT AND VALIDATION

Chapter 3 and Chapter 4 present the development of the reservoir flow model and the
wellbore flow model, respectively. To couple both reservoir and horizontal wellbore flow,
the above two flow models should be integrated into one solution system. This chapter
presents the coupling process of reservoir/wellbore model. The developed coupled model

is compared and validated with other research studies or commercial simulators.

5.1 Coupling Process of Reservoir/Wellbore Model

Flow in the reservoir is described as a parabolic partial differential equation, while flow in
the horizontal wellbore is represented by a hyperbolic partial differential equation, but the
coupled model has to solve their partial differential equations simultaneously. After the
discretization of the reservoir and wellbore partial differential equations, a
Newton-Raphson method is used to solve the system. The Newton-Raphson method
involves calculating the Jacobian matrix and the right hand side vector. The Jacobian
matrix is built up by calculating all the derivatives of residual function with respect to each
unknown during each iteration. The right hand side vector is updated with the residual
function. Only in this way, the coupled model can cover all three regions of study interest,
namely, the reservoir part I (far away from the wellbore), the reservoir part II (wellbore

vicinity) and the wellbore region.

The associated unknowns in the finite difference equations include reservoir pressure
and saturation for each block, and wellbore pressure, liquid holdup and velocity for each
segment. Because all the variables for both reservoir and wellbore domains should be
solved simultancously, the time-step control and convergence check are critical to ensure
the convergence. Since the wellbore equation is more sensitive, the time-step is usually set

to be very small at the beginning and become automatic adaptive later.

Figure 5.1 shows the Jacobian matrix structure of a sample case. The matrix has four

zones: reservoir to reservoir region, reservoir to wellbore region, wellbore to reservoir
56
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region, and wellbore to wellbore region. The reservoir-reservoir region is sub-divided as

Cartesian system, cylindrical system, and hybrid zones.
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Figure 5.1 - Jacobian matrix structure for a sample case

The coupled model is implemented using a FORTRAN90 code. A selection of
subroutines and files used in the source code are listed and explained in Table 5.1. Figure

5.2 shows the flowchart of the source code.
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Table 5.1 - Selected subroutines and files used in the source code

Name Function

MAIN Main program to control the model development process

MODFILE File to define variable modules

READRE Subroutine to read reservoir and simulation input data

VLOCAT Subroutine to allocate variables dimensions

READTB Subroutine to read PVT and rock tables

INIPAR Subroutine to initialize parameters

GRID Subroutine to define grid

FATG Subroutine to the computation of geometric factors

GRDDEP Subroutine to compute grid points depth

DISTIP Subroutine to compute initial pressure distribution

ATUP1 Subroutine to update the pressure dependent properties at n time-step
Subroutine to update saturation and pressure dependent properties at

ATUP2F each iteration

VPVTF Subroutine for the interpolation of PVT properties in tables

TRANSO Subroutine to compute transmissibility |
Subroutine to compute gas/oil residual function and derivatives in the

FRGO Jacobian matrix

INTERP Interpolation subroutine

BCGRAD Solver subroutine using bi-conjugate gradient method

ENGINE* MATLAB matrix solver engine

PRPLOT Subroutine to print simulation results

Input.txt Reservoir and simulation input data

Result(n).txt | Simulation output file. “»” depends on different simulation output.

*. Note: ENGINE part is located in the MAIN program file, which includes certain
MATLAB variables’ preparation, open, transfer and calculation process for Fortran

code (Mix-languages programming).

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




— START
MODFILE

READRE
l

YLOCAT
|

INIPAR
|

| |
| |
[ l
[ oo ]
| |
| |
| I
| |

Computation of the original oil and gas volumes l

I

| WELLINI
]

| WBMOD

|

|

TIME-STER LOOP
I'TERATION LQOP

NO

NO

Time-step Auto Adjusting

[

I o i REPORT

Figure 5.2 - Flow chart of the source code
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5.2 Comparison and Validation of the Simulator Developed

Results using the coupled model are compared and validated with either commercial
reservoir simulators or other research studies during various development stages, including

hybrid local grid refinement, uncoupled model, and coupled model.
5.2.1 Validation of the Hybrid Local Grid Refinement (Uncoupled Model)
The reservoir simulator developed in this research uses hybrid local grid refinement

technique (both Cartesian and cylindrical coordinates in the same system). Figure 5.3

shows the structure of hybrid grids and the horizontal well location.

Figure 5.3 - Structure of hybrid grids and the horizontal well location

A sample case has been run to compare the pressure behavior between the developed
model and a commercial reservoir simulator, both using the hybrid local refinement
technique. The production scheme for this case starts as a constant flow rate, until pressure

drops to a certain level, then changes to a constant pressure scheme. As illustrated in figure
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5.4, a good agreement is reached on the pressure behavior calculated from the model

developed with the commercial reservoir simulator.

310641

IN0E+

290E+d1
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. .
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% 250640
&

270EH1

260EH1
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o h o] n e = .} «{n I an T amn L= ] i 11 1=m =D 140

Time, day

Figure 5.4 - Comparison of the pressure drop between the developed model and a

commercial reservoir simulator

5.2.2 Uncoupled Model Validation

The model developed in this research has an option to turn off the coupling feature.
This section shows the validation of this uncoupled model (infinite conductivity at the

wellbore).

This case studies a single phase slightly compressible fluid flow (oil). Homogenous
reservoir properties are assumed with permeability of 0.25 md and porosity of 0.15. Initial
reservoir pressure 2500 psi is imposed at the middle layer of the reservoir. Production
scheme is specified bottom-hole pressure. Detailed reservoir parameter and properties for

this case study can be found in the work of Gokta and Ertekin (1999).
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Figure 5.5 - Oil flow rate comparisons among the proposed simulator, other research and a

commercial simulator

From figure 5.5, it is obvious that the difference among several simulators happens
mainly on the early-time period (before 0.1 day). This is partially because of different
time-step control methods used during simulation. Also, early-time difference comes from
different grid refinement degrees (numbers in the legend represents the different grid
refinement levels in different directions). The simulation result using coarse grid (curve
5-5-5) has a lower oil production in the early stage. With more refined grids (curve
20-19-5, with horizontal wellbore sitting on the same position), the simulation results can
have a better agreement with the commercial simulator’s result and results from Vicente’s

et al. model (2001a and 2001Db).

Alternatively, hybrid grids can be used to refine the near-wellbore region and capture
the early transient flow characteristics, as shown in figure 5.6. Because of the hybrid
refinement, even a relatively coarse grid (5-5-5) case can have a good agreement with other

curves. Steady-state assumption will not be valid for the transient behavior, even with a

refined Cartesian grid.
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Figure 5.6 - Oil flow rate comparisons (using hybrid grid)

5.2.3 Coupled Model Validation (Single Phase)

The developed coupled model was first used to simulate a single phase fluid flow case
(slightly compressible). Finite conductivity effect and non-uniform influx distribution in
the horizontal wellbore is analyzed in this simulation. Results from the proposed model are

compared with those of a recent research.
In this validation case, the reservoir has sealed off at the reservoir top and bottom
boundary, allowing water support coming from the reservoir outside boundaries.

Production scheme is constant oil flow rate at the heel. Some reservoir and fluid properties

are listed in table 5.2.
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Table 5.2 - Reservoir and fluid properties for validation of the coupled model

Properties Value Unit
Initial pressure 2300 psi
Reservoir size 4613 x 5249 ft
Formation thickness 72 ft
Horizontal permeability 8500 md
Vertical permeability 1500 md
Oil viscosity 1.43 cp
Oil density 55 Ib/ft
Formation volume factor 1.16 bbl/stb
Total compressibility 6.9 x 10° 1/psi
Porosity 0.25 -
Vertical location of the well (from bottom) | 11.5 ft
Wellbore radius 0.25 ft
Horizontal well length 2625 ft
Relative well surface roughness 10 -

Figure 5.7 shows the oil influx distribution along the wellbore. Because of the water
support around the reservoir boundary, the influx has a basic U shape influx distribution.
The curve is asymmetric because of the finite conductivity of multi-segmented wellbore.
The influx is lower at the toe side, but the pressure drop along the wellbore makes the
influx gradually goes up toward the heel. As shown in figure 5.7, the two curves, one from
the current model and the other from recent research (Vicente et al., 2000), have a good

match in the influx distribution.
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Figure 5.7 - Influx distribution along the wellbore

5.2.4 Two Phase Coupled Model Validation and Transient Flow Analysis

The following validation case investigates the transient two phase flow behavior in the
reservoir and horizontal wellbore. The proposed model is used to simulate a field scenario.
The oil field is located in a highly permeable North Sea reservoir. The horizontal
permeability is 1 Darcy and the anisotropy ratio equals 0.1. The initial average reservoir
pressure is 17.24 MPa and initial gas saturation 0.1. It is assumed that the horizontal well
extends through the reservoir without sloping from the heel to the toe. The fluid influx to
the wellbore is assumed to be continuous from the toe to the heel. The reservoir has
impermeable top, bottom and edge boundaries. Production scheme is considered as a

constant flow rate at the heel. Reservoir and fluid properties are listed in table 5.3.
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Table 5.3 - Reservoir and fluid properties for two phase coupled model validation and

transient flow analysis

Properties Value Unit
Initial pressure 17.24 MPa
Reservoir size 91.44, 304.8 m
Formation thickness 80 m
Horizontal permeability 1000 md
Vertical permeability 100 md
Horizontal well length 304.8 m
Initial gas saturation 0.1 fraction
Maximum oil flow rate 158.99 m°/day

By using a hybrid local grid refinement technique and a small time-step (auto-adaptive
time step adjustment) in the early stage of the production, the simulation results can reveal
the early-time transient flow characteristics in the reservoir and horizontal wellbore. Figure
5.8 draws comparisons of the transient pressure drop on a log-log coordinate between
proposed model and a commercial reservoir simulator (with Multi-Segment Well
technique). Basically the two curves have three stages: unloading at the very beginning,
initial radial influx of oil and gas, and the starting of reservoir depletion. Overall the two

curves have an agreement during all the three stages discussed above.

At the beginning of the unloading period, oil expansion dominates in the wellbore and
the pressure drop is characterized by a unit slope line. Corresponding to the pressure
behavior, figure 5.9 and 5.10 show that radial influx coming from well vicinities keeps
increasing and maintains itself at a certain level. The specified oil flow rate is offset by the
expansion of the fluid in the wellbore during this period. However, uncoupled model can
not capture this early transient behavior and the oil flow rate equals to the specified rate

from the beginning of the simulation, as shown in figure 5.9.
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As the storage effect fades away, the initial radial influx of oil and gas from the vicinity
of wellbore becomes more and more dominant, which directly influence the pressure drop
behavior. With the increasing influx support coming from the wellbore vicinities, the
pressure drop at the heel decreases to a certain level until the pressure transient propagates
from the wellbore vicinities and reaches the reservoir domain. As pressure spreads through
the reservoir domain, the pressure drop rate starts increasing and shows the effect of

reservoir depletion.
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—&— ECLIPSE-MSW
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Time, Hour
Figure 5.8 - Validation of transient pressure drop behavior
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Figure 5.9 - Comparison of the oil flow rate between the developed coupled model and the

uncoupled model
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Gas Preduction
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Figure 5.10 - Gas cumulative production from all wellbore segments

Figure 5.11 shows gas void fraction and liquid holdup changes in the wellbore. During
the storage period, liquid holdup is very close to the initial oil saturation. Dissolved gas
comes out from the oil due to pressure drop, but the amount is relatively small with a
minuscule pressure drop. With the increasing radial influx of oil and gas from the vicinity
of wellbore, more free gas enters the wellbore and liquid holdup starts dropping quickly.
The gas phase keeps increasing and the oil phase decreasing. As mentioned before, after
the unloading and initial radial influx period, reservoir depletion effect begins.
Volumetrically a large amount of free gas enters into wellbore and occupies a major
portion of the wellbore volume. Reflected in the holdup figure 5.11, gas void fraction and

liquid holdup intersect at 0.5 point and gas void fraction quickly increases to a higher level.
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Figure 5.11 - Gas void fraction and liquid holdup
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CHAPTER 6: APPLICATIONS OF THE DEVELOPED COUPLED MODEL

In this chapter, several applications are conducted using the developed reservoir/wellbore
coupled model. First, the coupled model is used to study the effect of finite conductivity
and non-uniform influx distribution in the horizontal wellbore. Comparisons are made
between the coupled model and a non-coupled traditional model, including influx
distribution, flow rate distribution, drawdown and pressure distribution along the wellbore.
The second part of this chapter discusses about the application of the coupled model on
transient flow. Sensitivity analyses are conducted to study the effect of reservoir
permeability and initial gas saturation on the transient flow behavior. The effect of

perforation distribution on wellbore flow behavior is investigated to in the third part.

6.1 Finite Conductivity and Non-Uniform Influx Distribution (Single Phase)

Since the coupled model integrates the reservoir model with a wellbore model, it follows
naturally that the wellbore behavior will present a finite conductivity and non-uniform
influx distribution instead of an infinite conductivity and uniform influx distribution. The
following case studies the finite conductivity and non-uniform influx distribution effect in
the horizontal wellbore. The oil field is located in a highly permeable North Sea reservoir.
Table 6.1 lists the related reservoir data and other properties data. Some of the data are
simplified with constant values. It is assumed that the horizontal well has no sloping from
the heel to the toe. The horizontal well extends 800 meters in length and fluid influx to the
wellbore is assumed to be continuous from the toe to the heel. The reservoir has an
impermeable top and bottom boundaries and the edge boundaries have constant water

support. Production scheme considers a constant flow rate at the heel.
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Table 6.1 - Reservoir and fluid properties for finite conductivity and non-uniform influx

distribution studies

Properties Value Unit
Initial pressure 15858.0 kPa
Reservoir size 1400.0 x 1600.0 m
Formation thickness 22.0 m
Horizontal permeability 8500 md
Vertical permeability 1500 md
Oil viscosity 1.43 cp

Oil density 881 kg/m’
Formation volume factor 1.16 m’/sc m®
Total compressibility 0.001 1/MPa
Porosity 0.25 -
Vertical location of the well 3.5 from bottom m
Wellbore radius 0.0762 m
Horizontal well length 800.0 m
Relative well surface roughness | 0.0001 -

Comparisons about influx distribution, flow rate distribution, drawdown and pressure
distribution along the wellbore, etc. are made between the proposed coupled model and a

non-coupled traditional model.

Figure 6.1 shows the influx distribution along the wellbore. Because of the water
support coming around the reservoir boundary, both models show a basic U shape influx
distribution. The curve is symmetrical in the case of a traditional model because the
wellbore model is considered as an infinite conductivity and the drawdown along the
wellbore is only related to the reservoir pressure (at the wellbore block). For the coupled
model, however, the curve is asymmetric due to the finite conductivity of the

multi-segmented wellbore. At the toe side, the influx is lower than for the traditional
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model. Toward the heel, influx per unit length gradually increases and eventually becomes
higher than the uncoupled model. This is because the wellbore pressure is changing along
the wellbore and more influx will come from the heel since the drawdown is higher in that
region. Attention is required especially if the flow rate is high and the reservoir has
potential water or gas coning problem. It should also be noted that the prediction on coning

may be underestimated by just using a traditional model.
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Figure 6.1 - Influx distribution along the wellbore

The analysis above can be further supported by drawing the wellbore pressure drop
along with the well length, as shown in figure 6.2. The coupled wellbore model considers
both frictional and accelerational pressure drops. With the increase of fluid velocity in the
wellbore (see figure 6.3), the pressure drops goes up with the well length. However, the
uncoupled model uses the infinite conductivity assumption and ignores both frictional and
accelerational pressure drops. This could result in poor or erroneous predictions of well
productivity, because the wellbore pressure distribution caused by wall friction and

acceleration can affect the influx distribution and vice versa.
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Figure 6.2 - Pressure drop from initial pressure along the wellbore
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Figure 6.3 - Fluid velocity distribution along the wellbore

Figures 6.4 and 6.5 show the reservoir pressure distribution at the radial part of the
hybrid grid, which represents wellbore vicinity. Compare figures 6.4 and 6.5 for both
coupled and non-coupled models. It is obvious that the reservoir pressure is also affected
by the non-uniform distributed influx. Figure 6.6 shows the drawdown difference between
the coupled model and non-coupled model. It is necessary to clarify that although figure
6.6 (drawdown curve) and figure 6.1 (influx curve) has the same trend, the position of the
crossing point is different. This is because the production scheme is constant flow rate and

the total flow rate is distributed according to the mobility-potential method. In other words,
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the influx is determined by the ratio of local mobility-potential and the total flow rate of all

wellbore segments, not the absolute local value of drawdown.
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Figure 6.4 - Reservoir pressure (well vicinity) and wellbore pressure along the well
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Figure 6.5 - Reservoir pressure (well vicinity) and wellbore pressure along the well
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Figure 6.6 - Drawdown distribution along the wellbore

According to figure 6.7, the flow rate calculated from the traditional model is more
linearly distributed than that of coupled model. From another point of view, the derivative

curve of figure 6.7 actually reflects the influx performance (see figure 6.1).
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Figure 6.7 - Cumulative flow rate distribution along the wellbore

As mentioned before, the coupled model should be applied especially when the
production rate is high. Figures 6.8 to 6.10 compare the influx and wellbore pressure under
different flow rates. As flow rate goes down, the influx curve tends to be more symmetric
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and the wellbore pressure tends to be constant along the wellbore length. As a result, the

flow rate distribution is more linear when the total production rate is relatively low. In

other words, the wellbore conductivity tends to be infinite for the coupled model.
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Figure 6.8 - Influx comparison for different flow rates
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Figure 6.9 - Pressure drop comparison for different flow rates
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Figure 6.10 - Flow rate distribution comparison for different flow rates at the well heel

6.2 Finite Conductivity and Non-Uniform Influx Distribution (Two Phase)

Finite conductivity and non-uniform influx distribution is also studied on the same oil and
gas two phase flow case, presented in Chapter 5, section 5.2.4. Figures 6.11 to 6.14
compare the pressure drop, flow rate and holdup behavior at different locations in the

wellbore.
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Figure 6.11 - Pressure drop at different well blocks
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Figure 6.12 - Cumulative oil flow rate at different locations
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Figure 6.13 - Cumulative gas flow rate at different locations
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Figure 6.14 - Holdup at different locations

As shown in figure 6.11, three different pressure drop curves are compared to each other
for pressure drop at the heel, the middle, and the toe. During the storage period, the
difference is obvious because the fluid expansion effect propagates from the heel to the toe.
The pressure drop at the well heel is higher than that on the toe. Even after the storage
period, pressure drop at heel still remains the highest along the wellbore. This also reflects
the necessary pressure difference from the toe to the heel to meet the flow condition, even
though pressure drops at different locations tend to converge shortly after reservoir

depletion begins.

As shown in figure 6.12 and 6.13, the cumulative oil and gas flow rate at different
locations have the same trend. Because the influx is collected along the wellbore, the

difference mainly reflects the accumulation of fluid through perforations. However, it

should be noted that pressure distribution along the wellbore can influence the influx in
return, so the influx is not necessarily uniformly distributed along the wellbore. Therefore
the cumulative oil and gas flow rate is not proportional to the well segments length.

Regarding to the gas void fraction and liquid holdup, the difference on various locations is
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not obvious because that oil and gas flow rate at the wellbore condition varies at almost the

same scale.

Figure 6.15 shows the oil influx distribution along the wellbore. The wellbore unloading
wave propagates along the wellbore at early times. The oil influx distribution evolves into a

smooth profile after one minute.
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Figure 6.15 - Oil influx distribution at early time

6.3 Sensitivity Analysis on Permeability and Initial Gas Saturation

The transient flow behavior in the wellbore and its interaction with the reservoir are closely
related to the reservoir properties and initial fluid phase existence. Thus a sensitivity
analysis is conducted in this section to study the effect of reservoir permeability and initial

gas saturation on the flow behavior.

Effect of Reservoir Permeability

Figures 6.16 to 6.18 compare the pressure drop and oil/gas flow rate for different
reservoir permeabilities (k). The anisotropy ratio equals 0.1. Two different cases are

compared to each other, the first one having &, equal to 100 md and the second one with the
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ky equal to 10 md. The remaining data in both cases are the same as those presented in

Chapter 5, section 5.2.4.

As shown in figure 6.16, during the storage period, reservoir permeability has no impact
on the pressure drop behavior. This is expected to happen since during the wellbore storage
period the whole process is mainly controlled by the wellbore geometry and fluid
characteristics. Fluid expansion inside wellbore dominates during this period. With the
fading of the fluid expansion effect, the importance of reservoir influx increases and the
radial flow regime in reservoir starts to dominate the process. Higher reservoir

permeability results in a lower pressure drop for the specified production rate.

Regarding to the oil and gas flow rate, the difference between the two cases is
distinctive only during the storage period and initial radial influx period. Since the pressure
drop is the same for both cases for the early storage period, the oil and gas flow rate for
tighter reservoir is lower than that of the reservoir with a higher permeability, as shown in
figure 6.17 and figure 6.18. Because the oil flow rate has been specified, the oil and gas
flow rate for both cases tend to be the same after the storage period and initial radial influx
period. For tighter reservoir (10 md case), this period will last longer than that for the 100

md reservoir.
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Figure 6.16 - Effect of reservoir permeability on pressure drop
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Figure 6.18 - Effect of reservoir permeability on gas flow rate
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Effect of Initial Gas Saturation

Figures 6.19 to 6.21 analyze the pressure drop and oil/gas flow rate for different initial
gas saturations. The horizontal reservoir permeability equals 100 md with the anisotropy

ratio being 0.1 for both cases/scenarios.

As shown in figure 6.19, the pressure drop in the early storage period is almost the same
for different initial gas saturations. However, during the radial influx period, the pressure
drop is higher when the initial gas saturation is smaller. This can be explained from two
aspects. First, as in figure 6.20 and 6.21, to maintain a specified oil flow rate, the reservoir
with a lower initial gas saturation takes less time to reach the specified flow rate, implying
a higher pressure drop during that period. Secondly, during this period the pressure drop
mainly comes from viscous friction loss instead of reservoir depletion. When the initial gas
saturation is lower, the fluid mixture in the wellbore is more viscous and the friction

pressure loss is higher than that with a higher initial gas saturation.

When the reservoir depletion effect starts one hour later, the trend reverses with a higher
pressure drop for the case/scenario of higher initial gas saturation. During this period, all
cases reach to a specified oil flow rate and the depletion pressure drop dominates the total
pressure drop instead of the friction. Higher initial gas saturation means lower initial oil
saturation. And a reservoir with higher initial gas saturation depletes faster than that with
lower initial gas saturation. This is why the case with higher initial gas saturation
eventually gets higher pressure drop one hour after (figure 6.19). From these figures, it
should be noted that different initial gas saturation results significantly different pressure
drop. For example, lower Sgi (0.001) stands for slightly compressible or even single phase
reservoir. Therefore, misuse of single phase flow model to predict two phase flow model
would under-estimate the pressure drop, which could result in overoptimistic coning

prediction.
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Figure 6.21 - Effect of initial gas saturation on gas production

6.4 Perforation Distribution along Horizontal Wellbore

Perforated completion is one of the most important methods for horizontal well
completion. In this case, horizontal well deliverability cannot be calculated based on the
whole horizontal wellbore length. Perforation distribution should be taken into
consideration in the calculation. Perforation distribution profile along horizontal wellbore

can have significant influence on the behavior of transient flow.

In this research, perforation can be controlled with the geometric factor in each
horizontal well segment. The following experiments are conducted to study the influence
of perforation distribution on the transient flow behavior of horizontal well. It is an oil and
gas two phase flow on the assumption of homogenous flow pattern in the horizontal
wellbore. The model is run under various scenarios so as to compare the perforation effects
to each other, i.e. closing wellbore segments around the heel side, closing wellbore
segments around the middle part, closing wellbore segments around the toe side and open
hole. The remaining data in the above cases are the same as those presented in section

5.2.4. Comparisons are made for oil and gas flow rate at the heel, middle, and toe
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respectively, as well as near-wellbore reservoir pressure at the heel. In figures 6.22 to 6.30,
legend ‘123’ represents no perforations around the heel part, legend ‘456’ represents no

perforations around the middle part and legend ‘8910° represents no perforations around

the toe part.
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Figure 6.23 - Gas flow rate in the middle
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Figure 6.24 - Gas flow rate at the toe

Figures 6.22 to 6.24 show the gas flow rates at the heel, in the middle, and at the toe,

respectively. The difference is obvious at the heel in the early stage. During this period,

perforation distribution is significantly related to the initial radial influx, indicating a direct

influence on the flow rate curves. Transient flow behavior in the wellbore propagates from

the heel to the toe. And closing or reducing perforation density around the heel has

significant effect on the transient flow behavior. There is not much difference in the toe

part during the transient period. Oil flow rates have the same trend as that of gas flow rates

in the heel, middle and toe part, as shown in figures 6.25 to 6.27.
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Figure 6.25 - Oil flow rate at the heel
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Figure 6.27 - Oil flow rate at the toe

Correspondingly, figure 6.28 presents the near-wellbore reservoir pressure change in
the early stage. At the very beginning (wellbore storage period), when the reservoir
pressure is still not that sensitive to the changes of influx, few distinctions are shown for
different scenarios. When the wellbore storage period ends, perforation distribution then
determines influx distribution from reservoir to wellbore. Hence reservoir pressure starts to

show difference under various scenarios.
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Figure 6.28 - Near-wellbore reservoir transient pressure at the heel
Besides the perforation distribution, permeability heterogeneity also influences the

transient flow behaviour of horizontal well. Figures 6.29 to 6.30 analyze the perforation
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profile and different permeability heterogeneity influence on the transient flow behaviour.

It is not hard to understand that reservoir pressure and fluid influx are strongly related to

the permeability after the wellbore storage period. Therefore, lower permeability case has

lower initial radial influx. And the influx profile, especially during the initial radial influx

period, also depends on the perforation distribution.
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Figure 6.29 - Oil flow rate with different permeability (partially perforated wellbore)
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90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS

This chapter summarizes the development and applications of reservoir and horizontal
wellbore coupled model. Additionally, several recommendations are presented for future

study in this area.
7.1 Conclusions

1. Flow behavior in both reservoir and horizontal wellbore domains can be simulated
simultaneously by using the developed two phase coupled model. Since all the
variables are simulated simultaneously, the results reflect the flow characteristics and

interactions between reservoir and wellbore.

2. A 3-D fully implicit two-phase reservoir simulator is developed in this thesis. Hybrid
local grid refinement technique is implemented in the simulator development. The
hybrid grid system can accurately represent the radial flow around wellbore, therefore

better serving the purpose of coupling the horizontal wellbore and the reservoir.

3. The multi-segmented horizontal wellbore model is built in the coupled model and can
reveal the finite conductivity features in the horizontal wellbore. The influx and the
effect accordingly are non-uniformly distributed in both the horizontal well and the

reservoir.

4. A few applications using the developed coupled model analyze on the finite
conductivity of horizontal well. Comparisons of influx distribution, flow rate
distribution, drawdown and pressure distribution along the wellbore are made between
the proposed coupled model and a non-coupled traditional model. Pressure and flow
behavior at different locations in the wellbore are also studied upon to better

understand the characteristics of the finite conductivity in horizontal well.

5. The coupled model predicts more influx coming from the heel. More attention is
required if the flow rate is high and the reservoir has potential water or gas coning
problem. It should be noted that the predictions on coning may be underestimated by

just using a traditional model.
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6. The frictional and accelerational pressure drop in the wellbore can not be ignored for
high production rate wells. The wellbore pressure distribution caused by wall friction
and acceleration can affect the distribution of the influx. The distribution of the

reservoir pressure is also affected by the not-uniformly-distributed influx.

7. The coupled model should be used especially when the production rate is high. With a
lower flow rate, the influx and wellbore pressure behavior tends to be similar to that of
the non-coupled model. The wellbore conductivity tends to be infinite as that of the

uncoupled model.

8. The coupled model is also used to study the two-phase flow behavior. Simulation
results reflect the characteristics of the early-time transient flow in reservoir and
horizontal wellbore. Pressure drop, oil/gas flow rate, and holdup behavior are studied

the two-phase flow using the developed model.

9. This thesis analyzes the effect of reservoir permeability and initial gas saturation on
the flow behavior. The results show that misuse of single phase flow model to predict
two phase flow model could under-estimate the pressure drop, causing overoptimistic

coning prediction.

10. Numerical experiments also show that perforation distribution profile along horizontal
wellbore and permeability heterogeneity in reservoir have significant influence on the

transient flow behavior.
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7.2 Recommendations

1. Homogeneous flow pattern is assumed in this multi-segmented horizontal wellbore
model. It is recommended to develop more flexible flow patterns in the wellbore

model, ¢.g. stratified flow.

2. MATLAB™ solver is integrated into the FORTRAN™ source code to solve the
Jacobian matrix equation. More efficient solvers, especially aiming at solving
irregular sparse matrix from nonlinear hyperbolic / parabolic PDEs, should be

developed /applied to enhance the capability of the developed simulator.

3. Well length optimization and perforation distribution optimization should be
comprehensively studied with the coupled model. To achieve this, it is recommended

to integrate the vertical part of the well into the coupling system.
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APPENDIX 1: RESERVOIR MODEL (PDE) IN CYLINDRICAL COORDINATES

This appendix presents the development of the partial differential equation for the reservoir
model in cylindrical coordinates. Additionally, some of the grid and parameters treatment

for reservoir model in the cylindrical coordinates are also introduced in this appendix.

Al.1 Partial Differential Equations

In the radial system, the reservoir flow equations can be derived based on a control

volume of a radial element, which isV = Ar - (rA@) - Az | see figure Al.1.

Control Volume i,

front . A

Figure A1.1 - Control volume in the cylindrical coordinates
The area perpendicular to flow is:
A, =(rA0)-Az Ag=Ar-Az A, =(rA0)-Ar

Considering the flow continuity through the control volume, the mass conservation
equation should be expressed based on the following (without external source/sink for oil

and gas phases): (Mass in) — (Mass out) = (Mass Accumulation)
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_9pv,4y) . O(pLgdp) \ o 0(pU-A7) V0(¢p) (AL1D)
or 08 oz '

Where, Ur,U9 and U are volumetric velocities in » — @ — z direction, respectively,

obtained with Darcy’s Law.

A sl o M
Ly 0 (ar rar) (Al.l.a)
kok,; 1 0P
Dp=——-——tlr—— Y —
0 4 o0 7@9) . (Al.1.b)
_ kky 0P
Uz T (~—~62 7*62) (Al.l.c)

Substituting Eq. (1.1.a) ~ (1.1.c) to (1.1), there is:

kK, oh koky 1 0P
o=@ -y a1 AL T g 4p)
A Aot 700 A6
ar % (Al1.2)
-5 Sy
A P14
a * oy a8
Gz ot
. psc (*)
Using B, =—=, §( op)__ B . the above equation becomes:
e o
kk, oP  oh kok, oh
o . P ey
1Y or or Ar+l Bl 04 AB
or r 69
Kby - S, (Al1.3)
a[A ( _ 7] o)
+ re=V—BL
82 ot

Adding the source sink terms, the reservoir flow equations in the cylindrical

coordinates are expressed in the following formula:
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For the gas phase:

2 [Arkrkrg Py y g@) o A Rokrkero (6P0 _ gh_)] o
or" Bgug ~Or or B,u, or or
l__a_[AHkBkrg aﬁ—}/ %)_’_AgRskgkm (5P0 _y %)]AH
rd0" Bou, 00 %00 Byu, 00 '°00 AL4)
A Q[Azkzk,g g’ig__y oh +AZRSkam (6P0 _y %)]Az
& Bou, 0z & oz B,u, oz o
o, ¢ S
=V —(¢—=+¢R; %)+ Ryq,V +q 1,V
al‘(¢Bg R Bo) s9o¥ T9fg
For the oil phase:
O bty o Oy 10 (Aokoleo O ) Oy
or Byu, or or ro0 - B,u, 00 00 (ALS)
o Ak.k,, OP,  oh o .S, '
y—[FEEre (2o _y SOAz =V —(¢22)+q,V
pul B, (73] at({lfBo) 9o
For water:
—a—(S—W)=O (A1.6)
ot B,

Similar nomenclature and boundary conditions for above equations can be referred to
Chapter 3. As described previously, the flow equations proposed here are linear equations
related to 3-D flow in a » — @ — z cylindrical coordinates. The conversion from the linear
flow geometry to a radial one is obtained through geometric factors presented in Chapter 3.
In this way it is possible to refine the grid using hybrid technique around the wellbore,
resulting in more accurate prediction. To achieve this, it is also necessary to compute the

position of the grid point in a compatible way as presented in Chapter 3.

Al.2 Grid Definition and Ordering
Block centered method is adopted to discretize the flow equations. Two ordering schemes

are shown here:
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Order: Reservolr 1st:7.¢.r

then well block
Top Layer
Bottom Laye!' i
Top Layer Bottom Layer
Sile View Top View
Figure A1.2 - Cylindrical grid ordering scheme 1
Order: Reservoir 1st:0-r-2z,
then well block
i
Top Layer i
Bottom Layer
E
Top Layer Bottom Layer
Side View Top View

Figure A1.3 - Cylindrical grid ordering scheme 2

To reduce zero items in Jacobian matrix and keep it structured, it is reasonable to order
the grid starting from smaller dimension (dimension z). Therefore, scheme 1 in figure A1.2

is adopted in this study.

Al1.3 Computation of the Grid Points Position in Each Cell

The position of the grid node in each cell is the geometric point where the average pressure
P of the cell is applied. The grid point position can be calculated in the following way for

each direction:
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a) Direction r

Grid point location in r direction can be obtained from the following expressions

(Pedrosa, 1985).

2 ¥
a i+1/2,j.k
= - o =—==
ok =T exp(oc2 - lna-1/2) Where, o (A1.7)
Note that
7 = Twexpli=DAp], P = TwexpliAp] (A1.8)
i=1,2,..nr;, j=1,2,..n60;and k=12, .. .nz
r =r =y =..=r  Li=l~pr,j=1~n6
i+1/2,j,1 itlf2,7,2 it1/2,4,3 itY/2,jnz
Thus,
__rwexplibp] _ explibplexp(lp) _ o on sy is CONSTANT (AL9)
ry €Xp[(i —1Ap] expliAp]
062
So, (—2———— Ina —1/2) is constant for a given 7, and #, and nr.
a” -1
And,
aZ
v =T exp(—; llna—1/2)=r, o, Const=Const- r, exp[(—1Ap]
WJak i-Y2,5.k o — i-Y2,7.k

(A1.10)

b) Direction

Grid point in the @ direction is simply located in the center of each cell in the &

direction:

o -0 +49 (AL11)

ijk ij-112k 2

Where i =1,2,...nr;j=1,2,...n0 ;and k=12,...nz;
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¢) Direction z

Similar like the @ direction, grid point is also located in the centre of each cell in the

vertical direction, i.e., with respect to the direction z

: =z +X (A1.12)

ik Lk )

Where i =1, 2,...nr; j=1,2,...n0 ; and k=1,2,...nzz ;

Al1l.4 Determination of Geometric Factors at the Interface

The geometric factors (GF) are calculated at the interfaces of each cell through the

following expressions in the cylindrical system.

a) Direction

AG; - Azy
Vicvzjk 1 ln(ri_l/z’j,k 't 1 In( rl_,j’k )
Kr ro Kr o
i~1,7.k i-1,j .k ij.k i-1/2,j.k
Ttk 1 ro 1 ro
ln( i+112,j,k )+ ln( i+1,/,k )
Kr » ro e
ij.k i,j.k i+, j.k i+1/2,j.k
(A1.13)
Where,
i Radius of the grid block interfaces;
T Radius of the grid points;
Az . Cell thickness;
AG Regular angle of the grid block in 6 direction;
Kr e Kr e Kr e Absolute permeability in direction 7.
b) Direction 6
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) Az

GF _ 1n(ri+l/2,j,k ri-lll,j,k k
91,j+1/2,k (6) — (9) Lk (0) - (6) .
- 4

ij+1/2.k i,j+1k i+ 2,k

Ko Kg

ijk i, j+lk

(Al.14)
Where

¥ s, - Radius of the grid block interfaces;

) —(H)iﬂc =A79 : Regular angle of the grid block in & direction (equally distributed);

ijH/2k
® -6 =—: Regular angle of the grid block in @ direction (equally distributed);

ijHk i 2k 2

Kew_,k aKG,.,Mk : Absolute permeabilities in 6 direction.

¢) Direction z

AG;
J 2 2
2 (r sk 0 vk )
Zi j k112 - z -z z -z
i,j.k+1/2 i.j.k i, j.k+1 i, j.k+1/2
+
Kz
ik i jk+1
(A1.15)
Where
r :Radius of the grid block interfaces;
i*1/2,5.k
o, TE = > : Regular grid in z direction (equally distributed);
1,7, + 57
=22 . Regular grid in z directi lly distributed);
T A 5 egular grid in z direction (equally distributed);
AG; (rzi+1 - —rzl__1 o,0)" Area 4; ; p inradial direction of the grid cell;
Kz e Kz e Absolute permeability in direction z.
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Al.5 Determination of Weight Factors and Interfaces Properties

In r direction, the pressure profile is assumed to be linear in a logarithmic scale with

respect to distance, as shown schematically as the following.

Pi.jk
i-l,j,k i,j,k
D | ' Ap=m(T&)m
P -0,k T

Figure Al.4 - Logarithmic scale linear distribution profile

Weight factor w, is defined as

W, = pi—l/Z,j,k _'Di—l.j,k (A1.16)
P~ P

i-1,j.k

¥
Where, p = In(—) , thus
r

w

1i-1/2, ).k ’”i—l,j,k) ln(ri_l/z’j’k)

In( . ) —In( . otk
e (AL17)

ln( l’]’k)—ln( l—l,j,k) ln( i),k )

Ty Tw Yi-1,j.k

And because:

T iagr =W expl(i —1)Ap]
a2
= exp(— Ina-1/2)=r_ -C=C-r,exp[(i-2)Ap]
a

i-1,j .k i-3/2,7.k i-3/2, ],
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2

a .
L S exp( 3 Ina-1/2)= T ik C=C-r,exp[(i -1)Ap]
So:
In{ Crw expl(i = DAp] g Pl =DAoL (SXP AP,
w. = -1, expl(i—2)Ap] _ C-exp[(i-2)Ap] _ C _ Ap-InC
r In C-r,exp[(i- l)Ap]} In exp[(i—l)Ap]} In(exp Ap) Ap
C -y exp[(i-2)Ap] exp[(i —2)Ap]
(A1.18)
Ap-InC . oy
Thus, Wy = —-—Ap— is constant with given?, 7. and nr

In @ direction, wy is simply 0.5 since the grid point is located in the center in the 0

direction, shown in the following figure A1.5.

Ab i=2

=1

=12

j=n@-1:2

Figure A1.5 - Weight factor in angle direction

Oij-1/2,k — b j-1k A8
9= s/ » »J L ,Where 9 ok _9 =— and eijk —Hijk—l =A0
Oi,jk = 01, j-1,k PRk kD s
So:wg =0.5

Similar for z direction, the weight factor w, is defined as:

Zi,j.k=1/2 ~ %i,j,k-1
Zi,jk ~ %, j,k-1

WZ=
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Az
-z =—;2Z —Z = So:w_, =05
i jk-1/2 ij k-1 2 iJjk i,jk-1
J+ I Az/2
I Az /2
J
j'—j L]

Figure A1.6 - Weight factor in z direction

The process of determining interface properties is similar like that in Cartesian

coordinates.
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APPENDIX 2: DERIVATION OF TRANSMISSIBILITY TERM, FINITE
DIFFERENCE EQUATION AND RESIDUAL FUNCTION

This appendix presents the detailed derivation of the transmissibility terms and the finite
difference equations based on partial differential equations for the reservoir model. It also

includes the detail derivation of the residual function that is used for Jacobian matrix.

A2.1 Transmissibility Terms (Upstream Weighting)

The following part gives detailed computation process of the transmissibility terms.
Derivatives of the transmissibility with respect to saturation and pressure are also

presented in this section.

A2.1.1 Transmissibility Terms and Derivatives with Respect to Saturation

Transmissibility terms are defined as:

Xk Qiel/2,j.k X 512,54 T
X0 ; S 7Where> X; X, ; =Ay .AZ-‘
i£1/2.).k it1/2, .k i£1/2,j.k i.jk ijk
i£1/2,/.k it1/2,j.k
Ayi,j:t]/z,k Ok A INE R ' ky
T, = , wWhere, = . - =A’Cijk'AZ..
YO, Ay Ay Vi js12.k Vi jtizk 25 ik
i jEl/2.k ijEl2.k
Zi ket Qi ki 2 jkt1/2 z
= where = =Av: . 1 AX
20, jax)2 ? ’ % jaz1/2 Z; 12k y’aJ,k i,j.k
ij kL2 i kE1/2
Tisz gk & ayn ik X ix1/2,5,k T
T = L~ , where = =A Az
8 ’ > Xie1/2. )k Xir1/2,k yi,j,k ik
ixl/2,7.k it/ 2,5k
Ayi,jil/Z.k ﬂgi,jil/l,k where Ayi.jillzk . ky =GF and A =Ax: i1 -Az
VB, ik A ’ A Vi ik Vi je12,k Lj.k ik
5 X y y
TSN INESVEY
SENRE gi,chil/Z where 2 k12 I _ GF A "A Ax
28, ka2 ? ’ - Zi jkx1/2 Z; 512k - yl,]ak LJj.k
ijkt1/2 ijkt1/2
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ey

Hf

And ﬂf= bf

a) Direction x

Adopting the one point upstream scheme for the flow from i+1 to i for any j, , there is:

GF,
_ xi~1/2,j,k li—1/2,j.k k
xli—l/Z,j,k U rli,j,k
i1 jx
GF ,
_ i+1/2,j,k Ci+1/2,4k
X1 u Flivji
li+1/2,j,k
Thus,
T,
xli—1/2,j,k -0
oS
O 1,k
GF, b dk
XIi—I/2,j,Ir _ X i1k lf-1/211'," rli,j,k
d
aSOi,j,k 'uli-x/z,j,k Soi,j,k
aTxli—l/2,j,k -0
oS,
0i+1,j,k
xzi+1/2,j,k =0
O 1k
xli+1/2,j,k -0
6S0i,j,k
GF. b k
xli+1/2,j,k _ i+1/2,j.k li+1/2,j,k d rlH—l,j,k
01,k 'ulf+1/2,j,k dS0i+1,j,k
Flow from i to i+1 for any j, £,
GF.
_ xi—l/Z,j,k li—1/2,j.k
X1 iy
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’uli—l/z,j,k

(A2.2)

(A2.3)
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GF.

X i+1/2,j.k li+1/2,j,k

TxliH/Z,j,k - 1 krl")f”‘
4112, ).k
(A2.4)
Thus,
F b
xli1i2 ik _ G X2k BT dkrli—l,j,k
Oi1jk 'uli—l/z,j,/c Oi1,jk
Txli—l/z,j,k ~0
asoi,j,k
Txli—I/Z,j,k =0
S0i+1,j,k
Txli+1/2,j,k -0
aSoi—l,j,k
F b
i G X2 itk dkrli,j,k
aSOi,j,k ’uliwz,j,k dSOi,j,k
Txli+1/2,j,k =0
Soi+1,j,k
(A2.5)

The above two situations can be generalized with a control parameter (9 , /=0, g), the

general form of transmissibility and its derivatives with respect to saturation can be
expressed in the following forms for x direction:

<«

__)
Op =1, O =0

GFx 112,k bli—l/Z,j,k
Tle-l/z o [6lxkrl,. LT (1- 5lx)krl,._1 . ]
i Hy s wE
i~1/2,j,k
F
T . G xi+1/2,j,k blf+1/2,j,k Sik 1=k
X — [ XM, +( - lx) 7, .k]
5 #l e e
i+112,).k
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GF’

T
xli—l/z,j,k i-1/2, )k li~1/2,j,k rli—l,j,k
__aS = (1 - alx) 4S
Oi 1,k Ii—1/2,j,k 01,k
GF.
TXli—l/Z,j,k -5 Xk li—1/2,j,k dkrli,j,k
— Ok
aSOi,j,k ylivl/z,j,k dSOi,j,k

aTXli—l/Z,j,k -0

S0i+1,j,k

T,
xli+1/2,j,k =0

aSoi—l,j,k
aTxliH/Z,j,k _ (1_51 )GFx i+1/2, 7.k bli+1/2,j,k dkrli’j’k
= x
aSO,-,j,k H li+1/2,j,k dSOi,j,k
Xlisa i =5 Gin+1/2,j,kbli+1/2,j,k dkrlm’j)k
~ Ok
O,k ﬂli+1/2,j,k S0i+1,j,k
(A2.6)
Note that:

Trli—I/Z,j,k =0

When i=1 and j=1 to ny, k=1 to nz, Trl,_l,z,j,k =0 and 2
o

i-1,7.k

0 and rli+1/2,j,k -0

When i=nx and j=1 to ny, k=1 to nz, Trli+1/2,j,k = PoAY
o

ij.k
b) Direction y

Similar to x direction, the transmissibility for flow from j+1I toj (8, =1) for any i,k :

oF Lok
= itk U
Tyli,jﬂ/z,k - P krl,-)j,k
Ry
GF. ;o
- ijeg BIFI2E
Y li,j+1/2,k - "li,m,k
'uli, 2
(A2.7)
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Thus,

aTyli,/’—llz,k

d =0
Soi,j~1,k
GF b
Y 12 - yi,j—l/z,k Ly dkrli,j,k
aSOi,j,k 'uli,j—llz,k dSOi,j,k
oT
yli,j—I/Z,k -0
Oy ji1k
oT
yli,j+l/2,k -0
aSOi,j—l,k
oT
a}‘;’li,j+1/2,k =O
O ik
GF. b
yli,j+1/2,k _ yr‘,j+l/2,k li’j+1/2’k dkrli,j+1,k
Soi,j+1,k ’uli,j+1/z,k dSOi,j+1,k
(A2.8)
Flow from j to j+1: (6, = 0) for any ik, there is
GF. I
_ ij-lzg  BITU2E
iine = ik
/uli,j~1/2,lr
GF I
T, _ U A ,
yi i+ - ri j
sk 'uli,j+1/2,k s
(A2.9)
Thus,
GF
Yok _ ij-112,k Lyar dkrli,j—l,k
O j-1k 'uli,j—l/z,k dSOi,j~1,k
oT
yli,j—1/2,k -0
agyﬂ
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aTyli,j—llz,k =0

S
0; itk
T
Y4 jsai =0
aSoi,j—l,k
GF bl k
yli,j+1/2,k _ yi,j+1/2,k 17112,k d "lf,j,k
aSoi,j,k 'uli,jﬂ/z,k dSOi,j,k

aTyli,jH/Z,k 0

S
O j+1,k

General Form:
O =0 (j—>j+1), p=1({+1>))

GF
ij-1/2k

T = yi’j'l/z’kbl [6,,k +(1-6p)k ]
yli,j~l/2,k - I ly rli,j,k ly rli,j—l,k

i,j-112.k

GF li,j+1/2,k

y
_ i,j+1/2,k
Tyli,j+1/2,k - U [5ka

+ (1 - 5ly )krli,j’k ]

rli,j+1,k
i+l 2k

GF b
aTyll.)j_”u =(1_5I ) yu_l/z’k L2k dkrl,»,j_l,k
'y
O j-1k Ii,j—1/2,k dSoi,j~l,k
GF b
aTyli,j—I/Z,k _51 i 112k l”j"l/z’k dkrli,j,lc
Ty

aSO,-,,-,k #li,j—1/2,k dSOi,j,k
aTyli,j—l/z,k -0

aSoi,j+1,k

aTyli,j+1/2,k -0

O i1k
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GF

b
aTyli,j+1/2,k =(1-6),) Y ek iraraa dkrli,j.k
- y
aSOi,j,k li,j+1/2,k dSOi,j,k
GF b
0 yli,j+1/2k _ 5[ i j+172,k l"j+1/2'k dkrli,j+l,k
Ty
SO,',/H,/: ’ulf,jn/z,k 0, ik
(A2.12)
Note that,
. . T aTyli,j—I/Z,k -0
When (j=1 and i=1 to nx; k=1 to nz), i, ,,, =0 and _6S0 =
i-1,).k
. , T aTyli,j+1/z,k 0
When (j=ny and i=1 to nx; k=1 to nz), {yi, ,,,, =0 and .
Ok
¢) Direction z
Similar for z direction, flow from k+1 to k: (8, =1) for any i, j, there is
_ GFZ ijk-1/2 lf,j,k-l/2 k
TZlijk»l/z - rlijk
e /’ll ) EY
i j.k-1/2
_ GFZ i) k12 li,j,k+1/2
2 ipan e
e ’uli,j,k+1/2 ’
(A2.13)
Thus,
aTZli,j,k—l/Z -0
aSOi,j,k—l
Zli,j,k—x/z _ GFZ i k=172 li,/,k4/2 dkrli,j,k
aSOi,j,k ’uli,j,k—l/z dSOi,j,k
TZ[i,j,k—l/Z =0
aSOi,j,lH—l
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o7,

k2 0

as,

i.j.k-1

2l s -0

aghﬂ
iy _ % f,j,k+1/zbli,j,k+1/z dkrli,j,k+1
6S0i,j,lr+l H li,j,k+1/2 0; j k4l
(A2.14)
Flow from k to k+1: (6, =0) for any i/, there is
T _ GFZ i,jk-1/2 li,j,k‘l/z
2 e U i e
(A k172
GF, b
T — i j k12 ChLjk2 k
Zli,j,k+1/2 7 rlf,j,’f
L a1z
(A2.15)
Thus,
Zli,j,k~1/2 _ GF i,jk-1/2 lf.j,k-l/Z dkrli,j,kfl
aSOi,j,k—l ‘uli,j,k—l/z dSOi,j,ka
aTZli,j,k—l/Z —0
&%uﬁ
aTZli,j,k~l/2 ~0
aSOi,j,lHl
aTZli,j,k+1/2 -0
OSOi,j,k—l
Zli,j,k+1/2 _ GFZf,j,kﬂ/zbli,j,kH/Z dkrli,j,k
aSoi,j,k 'uli,j,k+1/2 dSOi,j,k
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T.
Zli,j,k+1/2 -0

S
O; ks

General Form:

T & =0, & =11
GFZ i, k-1/2 li,/‘,k-lfl 5 k 1 5 k
Tat, s = (61 kpt, (A =01 dhy, ]
- ‘ulijm/z - -

T _ Gin,j,kH/Z Ljkar S k 1-6 )k
Zlijk+1/2 - [ I rlijkﬂ +( B lz) rl"jk]
” 'ulijk+1/2 . ”
aTZl,-,j,k,,/z - (1 _ 6] ) GFZ i, j.k-1/2 bli:j,k"l/z krl".]',k'l
aSO;,j,k_l ’ li,j,k—l/2 0; j k-1

aTZli,j,kvl/Z =65 GF; 5.jk=1/2 bli,j,k—l/2 dkrl,,,-,k
aSOi,,-,k ? ’uli,j,k-uz dSOi,j,k
aTZli,j,k—l/z =0
a‘goi,j,kﬂ
aTZli,j,k+1/2 -0
aSoi,j,k—l
____aTZl"J"”” 2=( -0y )GFZ i k172 blf,j,k+1/2 dky Ly
6So,,’j)k : :"‘li,/,,m/2 dSO,.,j’k
TZli,j,k+1/2 =5l GFZi,j,k+1/zbli,j,k+1/z dk}’l,"j’k-f-l
aSOi,j,k+1 ; ’uli,j,/m/z dSOf,j,k+1
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(A2.17)

(A2.18)
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Note that:

zl; 5 -0

oS,

0, k-1

When (k=1 and i=1 to nx, j=1 to ny) Tz, ,, ,,, =0 and

2l j ki =0

oS,

Ok

When (k=nz and i=1 to nx, j=1 to ny) T zl, ) 4, =0 and

A2.1.2 Transmissibility Derivatives with Respect to Pressure

The following part is for the transmissibility derivatives with respect to all unknown
pressure. The derivatives of the properties were presented in section 3.3.4 - Properties at

the Interface, in Chapter 3)

a) Direction x:

aTxlm 12,0k _ 0

8Poi-l,j,k
aTxliH/Z,j,k 1 d'uli,j,k 1 dbli,j,k
aP— = (Wx -D- Txli+l/2,j,k ( P - b )
Oijk H i+1/2, 7.k O jk li+1/2,j,k Oy jk
Txl,'ﬂ/z,j,k = —y 'Tl ( 1 dlul,ur],j,k _ 1 li+1,j,k )
- X Xk
Poi+1,j,k ’ ’uli+1/2,j,k dP0f+1,j,k Liviia,j 01 )k
aTxli—I/Z,j,k _ 1 d’uli—l,j,k 1 dbli—l,j,k
— = -1 Txli—llz,j,k ( dP - )
01k ’ulm/z,j,k 0i1,jk Livimje 0
OTx, 0 . T ( 1 9, 1 dby, )
TR X
aPOi,j,k M i=1/2, )k dPOi,j,k li—1/2,j,k dPOi,j,k

8T’Cli—l/z,j,/c -0

P,
Oinjk

(A2.19)
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b) Direction y:

aTyli,jH/Z,k =0

O; i1k
aTyli,j+1/z,k 1 d’uli,j,k 1 dbli,j,k
=(Wy_1)'Tyl.. /k( - )
oP, MRk Sy db, n D, |
ijk i j+12,k i,j.k i,j+1/2,k i,j.k
aTyli,/‘H/Z,k -—w..T ( 1 d'ulf,jﬂ,k _ 1 dbli,j+1,k )
P - YV ama P
0, i1k ’uli,j+1/2,k O, i1k li,j+1/2,k 0, jik
w1 db

0T 1 o
Yii j-z, iJ-1,
J12k (wy _1) . Tyli,j—l/z,k( J-1k )

O; j-1k 'uli,j—uz,k 0; i1k li,j—l/z,k O i1k
aTyli,j—l/Z,k 1 d’uli,/‘,k 1 dbl",j,k
_=_Wy'Tyl.._ ( - )

aP i j-1/2k ul /

Ok ij-1I2,k O ik i j-l/2,k O ik
aTyli,j~1/2,k -0

O j+1k

(A2.20)
¢) Direction z:
aTZIi,j,kH/Z —0
apoi,j,k—l
aTer,j,k+1/Z 1 d'uli,j,k 1 li,/',k
T— =(wz — D TZli,j,k-H/Z ( P B b )

O ik ’ulf,j,k+1/2 Ok li,j,k+1/2 O ik

aTZli,j,k+1/2 _ T 1 d‘uli,j,k+1 1 dbli,j,kﬂ
P =Wz Zli,j,k+1/2( - b P )
O; i+l 'uli,j,k+1/2 0 jk+l li,j,k+1/2 O j i+l
aTyZli,j,k*l/Z _ (W _ 1) . T / ( 1 dluli,j,k—l _ 1 dbli,j,k—l )
—\z 2L k172
aPOi,j,k_1 ’ ijk-1/2 dPOi,j,k—l li,j,k—l/z dPOi,j,k—l
aTZli,j,k—1/2 =—w, Ty ( 1 dp Lk _ 1 dbli,j,k )
- Z T k12
6P0i,j,k ! 'uli,j,k—l/z dPOi,j,k bli,j,k—l/Z Ok
0T,
i,j.k-1/2 - O (A2.21)
P,
i,j,k+1
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A2.2 Derivation of the Finite Difference Equations for Reservoir Model

A2.2.1 Discretization of the Reservoir Flow Equations

Block centered scheme for the spatial discretization and fully implicit method for the

time discretization are used for the partial differential equations of the reservoir flow

model.

For the gas phase:

0 Axkykrg OFg ~, 6hx) ARk, km(a ~ 6hx)]Ax
o Bou, ox % ox Bu, ox '° &
L0 [Aykyk,g 0P, _ ohy, AyRSkykm(apo_y ahy)]Ay
ay &y Foy By 1y Gy “ o (A222)
L0 [Azkzkrg 0Py ahz) ARk k,, 0 ( ahz iz
0z Bop, Oz & oz B,u, ° &
o S S
=V (¢-2+R, -2V +Rq,V +q 5V
o B, B, 10K
For the oil phase:
0 [A Lk, k,o( ahx)] [ Ayky ro(aP 8hy)]Ay
o By, ax ax ay B, u, oy oy (A2.23)
O Aetee oy Py ay L 970y,
& B,u, oz oz o B,

Substituting 4, = Ay-Az, 4, =Ax-Az and 4, = Ay-Ax into the above equations, we

have:

For the gas phase:
K [AyAZ'kxkrg oF, ~, ohy . . AyAz-Rkyk,, OP,  0Ohy iAx
& Bgu, x % ox By, o
o AxAz-kk,, OP, oh,  AxAz-R.k k., oP oh
> Buyrg ayg—7g6yy)+ B;y”’ ayo—yoayy)]Ay

878 oo
(A2.24)

0 AvAx-k k., OPg oh, . AyAx-Rk;k,, OP oh,

+— Vg o)+ o)Az
O Bgpug Oz Oz B,u, 0z

o Sg S
Z(P=Z + R, 22) + Ryq,V +q 4V
o' B, " °B, 0Tk

=V
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For the oil phase:

0 Ayhe-kkyy OB, _ x)]AH 8 [AxAz kykr o, 6hy oy
ax BO/HO ax 6}/ Boﬂo 5)/ ay

o AyAx-k,k,, OP, h., Sy

. - Az=V—— —=)+q.V
5 B, O 70 papl PG Bo) 90

(A2.25)

Discretization for the gas phase:

AyAz -k k AyAz -k k

b xrg AP — A T x T8 AP — Ah
Ax[( Ax- B )+1/z,k( g }/gm/z x)/’,k ( Ax B )1/2,j,k( g }/gi—lll x)j,k
AyAz -k k R AyAz -k k,, R,
+(————-_-——y X 7o S) a k(A})O _y0i+l/2Ahx) ik _(y—#._) i-1/2, 7.k (APO —}/Oi—l/2Ahx) f ke ]Ax
Ax-B,u, " Ax-B,u, ' '
AxAz -k K, AxAz -k k,
—[( g) ( _7g Ahy)k ( g), 1/2k( _7g Ahy)"k
Ay A B ijHI2k 41/2 ! Ay B ,U o s ,
AxAz -k k R AxAz -k k,, - R,
+ —“*w), -+1/2k(AP _7/0 Ah ),'k _( > ) ‘_1/2,1((A})0—}/0 i Ahy)i.k]Ay
Ay-Bu, v Ay-B,u,
AyAx-kk,, AyAx-k k
L pabds Az) —(=— 278 AP — Az
AZ[( Az B ,Ll )f"*”z( }/ng/Z )"~f ( Az-B /l )/J‘ ”2( g }/gk-uz )"-f
AyAx -k kR AyAx-kk, R,
F(EEEEe Dy (AP -y, A7) —(FERly (AP -y, Az) WAz
Az-B p, Lk w2 i Az-B s k=112 "
1 S S
=V—A(@—=L+0R -~ +(RqgV+q.V
At z(¢ Bg ¢ § BO ),-,],k ( SqU qu )i,j,k
(A2.26)
For the oil phase:
AyAz -k k ANAzZ -k k
LRk ap -y an) —(AEEKey ap_y AR) Jax
Ac™ Ax-Bu, " A B, i
AxAz -k k AXAz -k K,
—[( > ’0) ””(AP Vo, Ah ).k (_____)’) '-z/zk(APO_yo-_ Ahy)ik]Ay
Ay Ay-Bu, e Ay B, S
AvAx -k k AyAx -k k,
1 Ko AP — Az 2 e AP — Az) Az
[( Bﬂ )j.k+l/2( 4 }/ok+l/2 )i,j ( Az- Bo/uo )ivk—I/Z( ° }/ok—lll )"»f]
= V‘— t(¢ ik +(qu),.J’k
(A2.27)
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Thus for the gas phase:

(2 k"k’g> @by, an) KKy p . an)
AX' B i+1/2,.k g },gi+1/2 X7 ik A)C‘Bgﬂg i-1/2,5 .k g ygm/z X7 ik
AyAz - kka ‘R, AyAz -k k,, - R,
+( y ) i+1/2,) % (APO _70i+1/2 Ahx) ik _( ) -1/2,/,k (APO _}/Oi—l/Z Ahx) ',k]
Ax- B, u, g Ax-B,u, ’
AxAz -k K, AXAz -k K,
+[( AyB 7 ),J+1/2,k (APg _yng/zAhy)i,k —( A .B ,U )i,j—l/2,k (APg _7gj_”2Ahy)i,k
grg
AxAz -k k,, R, 5 e s (AxAz k kR, D e w) ]
AyB ,Uo NN }/" j+li2 ik Ay Bg/uo ij-12,k 7/0 12 ik
(O KR pey ~ K Az)
+[(————————= - -+ @ -
AZ . B ,Ll i k172 g yg ra1/2 ij AZ . Bg:u ijk-1/2 g }/g E-l2 ij
AyAx-k k., - R, MAx -k k,, - R,
+ z7ro AP — Az _ z7vro AP — Az
( Az - Boﬂo ) j.sz( o yow/z ),-,, ( Az - Bo u, ),j.k—uz( 9 70k—1/2 ),-_,-]
—VL-A(¢i+ 2 +(RqV+q,V)
At t Bg B Lk .vqo qu i)k
(A2.28)
For the oil phase:
AyAz -k _k AyAz -k k
X ro AP _ Ah — X "ro AP _ Ah
[( A)C B ,Uo )i+1/z,,-,k( o 7/0‘41/2 X)j,k ( Ax B ,U )i—l/Z,j,k( 4 }/0.-1/2 X),-,k]
ANz -k, AxAz -k k,,
+[( AyB U ) i j+/2,k (AP L +1/2Ah ):k ( AyB 7 )1/—1/2,1( (APO _}/oj_l/2Ahy)i,k]
AyAx -k k AyAx -k k
+[(—=——z 12 — Az —_(—__Zz T AP — Az
[( Az - B ) jk+1/2( 7% 172 )i,j ( AZ'BO,UO )i,j.k—lll( 0 70k—1/2 )i,j]
1
=V—A($=2) +(qV
Y (¢ ) a."),,,
(A2.29)
1 xn+1 PO
— Ai(x) =
A ¢(x) A
gk "Xk fori+1/2,j,k
(Ax) j x = . .
X o TX fori—-1/2,j,k
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y~-1k -y, fori’j+1/2’k
i, j+l, Js
b ik Y ik Jor i, j—1/2,k
__ fori, j,k+1/2
i,j.k+1 i.jk
Az); ; =
(Az); 7z forijk—1/2
ij.k ijk-1
P, - P, fori+1/2,j,k
i1,k ik
AP . = )
( 0)j,k P, -P fori—=1/2,j,k’
ijk i-1,j.k
P —P ori+1/2,j,k
gi+1,j,k gu’,k f g
AP . =
( g)],k P -P fori-1/2,jk
g ik g -1,k
p -P, fori,j+1/2,k
i, j+1k i.j.k
AP R = ’
(AF,)ik <P _p fori,j—1/2,k’
oz,j,k ij-Lk
P ~-P ori,j+1/2,k
gi,j+1,k gi,j,k f g
AP . = <
( g)l,k Pg _Pg for iLj—1/2,k
ijk i,J-1k
L
P, -P, fori, jk+1/2
i,j,k+1 ijk
(AF);, j P, -P fori, jk—1/2°
ijk i,j.k-1
P -P or i, j,k+1/2
gi,j,k+l gi.j,k f g
AP,); =
( g)l,j P .y fori,jk—-1/2
gi,j,k gi,j,k—l
Ty = Ax"ﬂ/2>f”‘ lo"i”z’j’k , where Axitl/z’j'k
i*1/2,], 2k /2,4
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'kx

Xisiyajh ® Fitli2,jk

(A2.30)

‘Az

iJ.k
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A 4 4 ky

T — yi,jil/Z,k © sk where yi.jillz,lc =GF = Ax; ik Az
yoi,jil/2,k Ay ’ Ay Vijrzg? Vijsizk > ik
i jtl2.k ijtl/2.k
Az /10 Az 'kz
— i k12 k2 i jkt1/2 — A = o Axs
Tzoi,j,kiI/Z » where GFZi,j,kﬂ/z > TUZ 12k Ay’a]:k i,j.k
i jkx1/2 i k172
Ay A A -k
) g X X
_ 2,0k 72,k i1/2,jk _ A = A Az
L gi+1/2 ik a ’ where - GF‘;Ciﬂ/Z,j,k > i,k y'lllk ijk
S i+1/2, .k i+1/2,j,k
A A A -ky
T — i j1/2.k i, j+1/2,k where i jt1/2,k =GF — Axi k Az
Y& ? Yijaizk’ Vi jsirzp »J> i)k
bR Ayi,ji1/2,k Ayi,j:tl/2,k
4 A 4 -k
i g v z
_ LIKEV2 2 sty i,j k]2 _ - .. ..
TZgi j k+1/2 B ’ Where - G}:"Zi,j,kirI/Z ? Azi,jtl/?-,k Ayl’j’kAxl’J’k
S i,jke£1/2 i, jAE1/2
(A2.31)
Vi,j,k = (Ax - AB- AZ)i,j,k Qo ik = Vi,j,k 9o ik Qfg,.,j’k = Vi,j,k 9tz Lk
(A2.32)
The oil and gas reservoir flow equations can be written in the following forms:
For the gas phase:
[T;fgm/zijk (APg _}/gm/z Ahx),:k —]—;gi—llld\k (Af;’ _7&'—1/2 Ahx)j,k
+T,  -R(AP-y, Ah) T,  -R(AP,~7, Ah) ]
+[T AP, — -T AP, — Ah
[ Y8 jsink ( € }/gm/z y)"v" yg:,j-l/l,k( g Ve JRY) y)"vk
+ TYOI.J.HWC ) RS (AB’ - y",u/zAh)’)i,k —T)’Gi‘j_m_k ’ RS(AR’ - yoj-l/ZAhy)i‘k ]
+ [:rzgf,j,kn/z (APg h ygk+1/2 AZ)'V!' B TZgi,/,k—uz (Apg h }/g k-1/2 AZ)"J
+ Tzoz,j,/m/z ) R“(AR’ B }/DkﬂleZ)i,/‘ - 7;",,/,1(—1/2 ’ RS(AI:)O B 7/ok‘l/2 Az)i,j ]
v LA D) +(ReV+q.1)
- v 1 T § l,‘,' 5 o fg i,.,
A B, TR -
(A2.33)
Where, Pg "k = Poi,j,k + choi,j,k
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For the oil phase:

[ 0 14112,5 % (AP }/0+1/2Ah ) Sk - 0,172, k(AP 7/0 l/zAhx)M]

+[Ton/+1/2k (AP 7/01+l/2Ah )i,k - Toij—llzk (AR) - 7/"/~1/2 Ah}’)i,k ]

+T,, .., A=Y, A =T,  (AR,-y, A7) ] (A2.34)
1 S,

= V— B A 9 + V
A B, )w T@H),,

A2.2.2 Development of the Flow Terms of the Oil and Gas Flow Equations

Developing the left hand side of above equations (where Pg ik =P 0,4 T Fego, i ), there is:

For the gas phase:

LHS =T, RIPN =PI )=yl (=l ]
'Rs[(Po’.'JT1 P’ffl R 7/5,11,2,].,‘ (hy; = hy; 1)1 ]

+ Ty RIP =P ) =vot Ly =Ry )]

T .Rs[(Po’i’;l pnjllk) oy =k, )]

+T, kel RI(P) 01 kst n+1 ) 7’(?,?“1,2 (Z41 — 24 )i,j]

T 0, Rs[(Por,l-: - Po’.‘ ket ) - 7/:,.:1’,(‘1,2 (Zk ~Zp )i,j]

+T, 2 .[(Po::—,ljk t’j}c )= 7/;:11/2,,,,( (i = Pi) i ]

"L '[(P'ffl o ,,> AR CNEY 1),k]

L ST (0 T b S SN AR N W

-T, -[(P,,'}j; - P M) y;j{m (hy, =y, Dii]

+ ng:,,,wz [(Po”jl1 n+1 ) 7’;:41,“1/2 (Z40y — Zk),.,j]

~Ty LB - P;:j;_, )= e (e = 2]

AT e P =PI =T P =PRI

+T" s (P =PI =T o P —P™ ) (A2.35)

HT R R -T (B =R

= RHS = ACC , +SST
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For the oil phase:

LHS =
“/“k[( n:l . Pn+1 ) - 7/:+11/2 k( " /’l ),k]
i [P =P Y=y Oy =Ry ) 5]
LRI (CARES SO0 B CORN L MO Y
—TY",,,-_uzAk [(Po?jlk - P"j‘lk) ;,:tlwk(hyl .VJ'—l)i.k]
+Tzoi.j4k+l/,2[(Po’,1jv1k . or,h:lk) 7/:;11‘“/2( k1 _Zk)i,j]
- T"’ 1 k=102 [(P”rrljlk - njlk 1) 7::,1;( x/z( kT ZkAl)i,j]

= RHS = ACC , + SST

(A2.36)

A2.2.3 Development of the Accumulation Terms of the Oil and Gas Flow Equations

a) For the gas phase:

Flow Terms = V,- i
Jh R

Where—l— =b;, so:
B

Flow Terms =V —
Lk At

Considering (1 -5y, —=8,) = Sg, thus:

1 Sg S
— A % L HR. =2
a0 )

At(wgbg + ¢RsSobo) ik

+ Source / Sink Terms

+ Source/ Sink Terms

1 .
Flow Terms =Vi,j,k v Ag(1- Sy, = Sp)bg + ¢RsSobo]i’j’k + Source / Sink Terms ,
(A2.37)
Developing the accumulation part in above equation:
1
Vo g M= S, = So)bg +9RS300), =
VTR S,b,)™ = (@R S,bp)" + (g™ ()" — A (g5,,bg) ~ (d5,5)"™" + o) i i
N
(A2.38)
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Where, the term A,(¢9wbg) in above equation can be developed as:

o(¢4S,,b
A/(S,bg) = % = (S,)" A(de) + (g0 )" AS,,
(A2.39)
Developing the water equation%ééw—) =0as:
0 n O(¢by) X (S,
At(ﬁwbw)— (ww w) S (¢b (¢bw +1 (at )___
(A2.40)
Thus
a(Sw) S " a(¢bw) — _Swn ! !
A4Sy, = o (¢bw)n+1 Py (¢bw)n+1 (9'byy + 90"y, )AL,
1dg 1 db, _ P,
Sy (¢dP b P, AP, =-S,, (C +C,)A,
(A2.41)
Where, ¢'=£?— b = b, AP =9—11i, or AP =P" _P"
dP, dP, dt
Thus,
A(#S,bg) = (S,,)" A(gbg) + (ghg)" ™ A,S,,
= (SW)"1(#hg)" " = (#)" 1= ()18, (C, + C AR,
(A2.42)

Substituting At(¢gwbg) into above main gas equation, there is,
V. i
Flow Terms ==L [(gR,S,8,)" ™" ~(#R,S,5,)" +(¢hg)"*" = ()"

—(Sy) (g )™ (g )" 1+ (dhg )™ 81, ™ (Cp + C AP ~(dS,bg )™ +(#S0bg )" ; . +SST
(A2.43)

Using V;_ =Vijk & andg,"*! = ¢, (1+ CrA,P,), (¢ is the porosity is defined
1,7,

for each layer k), flow terms becomes:
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n

v
o n+l n n n+l n+l
—LLLA+CrAP)-[b," (1+8,"(C, +C AP, -8, =S, )+(RS,b

At {(+rlo)[g (+w(r+ w)to w o ) (.yoo) ] (A244)

-b,"(1-8,"~S,")-(R.S,5,)"}

s~ 00 i,j.k

+SS8T

b) For the Oil Equation:
Flow Terms = Vﬁ- A,(qﬁsobo)”k + Source / Sink Terms

Developing the accumulation part in the above equation:

Vi, jkDel#Sobo i, j ke
At

Vi jok n+ "
= DL (5,1 = (850800
(A2.45)

Because V; = Vijk 8" andg, ™! = $."(1+CrA,P,), above equation becomes:
[

|14 |84
i, J .k 1 Dk 1
o L(#86)" " = (#086) " 1 j b = 33U+ CrAFo) - (boS5)™ = (Sobo)" 1, j 4
(A2.46)
¢) For the Water Equation
The water saturation can be calculated as:
e (R ehYY)
Ot
Where AP, =P, " -P " (A2.47)
1
Sw,.)j,k - Sw,.,j,k "= _Swn (Cy +Cy)AE,
(v+1)
Swi,,-,k mlo= SW,-,,-,,, "1-(C, +C,)AR,] (A2.48)
A2.2.4 Main equations

Combining the flow terms and accumulation terms, the main equations for oil and gas

can be obtained from the following expressions:

For the gas phase:
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X0 ik

Xo

n+l
RS [( P01+1‘/ k

‘R, [(1’o"+_1

n+1
Oi/k)

_ Poil‘l_-i-l‘ )_7/"+l

n+l
7/014»1/2._[.11 ( xi+]

- hxi)j,k]
hxi_l)j,k]

0.~71/2,,-,k( xi

172,k
ST, RIS By (b )]
T, 'Rs[(Pajjl P:qjllk) Vorras By, =By 01i]
+ Tzo‘.,j.‘“_”z ‘R, [(Pojji+l p ) 7:‘1:1’“,,2 (Zp — Zk)i,j]
~T, o RAET, - P;f,,_,)- Vo (Ze= 20,1
+ Txnglj,k '[(Po:l:,ljk "+1 ) 7’;32\,}( (M — hxf)j,k]
—Tng—uz.,-,k [(Pg’jjlk o, I/k) yg, Y k( xi x, 1)/k]
+ Y8, ian .[(Po':,-:;llk B ) }/;:+;+1/2k( v hy,-)i,k]
T, K Byt =k )]
+ TZgi,j,k+ll2 '[(Pojj,l,m 208 )~ Ve IH,,Z( kst = 2]
-T, aar [(Po:l:rl,( - Poj:,k_l ) - 7;’;1‘,{_”2 (2, = 24,1
e o R R B
+ Tynﬂwm,k ) (P:,j;]k pr ) Tyn+1i~j_”2‘k ) (P:i _ Pc:j_l,,k)
R N

Vn
/Y 1+CrA P )[b n+1(1+Swr1(Cr +Cw)AtP -8
‘—“At tto 4 ? *

~5,"(1-8,"

-8")-

(RS,

1 1
o) }1 Ik + Rn+1,-y,Q0n+ ik + Qn+ ik

For the oil phase:

U COAEr AD B SO C Iy SO I
Ty LB =B =70 Py = ) 1]
SR (Gt S0 R S GO S Y
T .. (P =P ) =vo (hy —hy )]

+7T

20y jk+1/2

20 jk-1/2

Vn
= %{(1 +CrA,P)-(b,S,)"" —(S,b
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(P,

0:,/,k+1

(2

i,k

n+1 )

_. pnrt ) -
})oi‘j,k—l

n+l
}/01 k112 (Zk"'l

7/ n.+.1 ( Zk

ol./,k—l/l

—Zk)i,j]

"Zk—l)i,j]

1
0 )” ]i,j,k + Q:tk

S,"+(R,S,5,)"']

(A2.49)

(A2.50)
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A2.3 Residual Function for Jacobian Matrix

The associated unknowns in above finite difference equations include:

Pn+1 P Pn+1 Pn+1 Pn+1 PI’H‘I Pn+1

s and
o o

3 M b
O 1k i1, 7.k ik ik Cnjp Cigen Okl

Sn+1 Sn+1 Sn+1 Sn+1 Sn+1 Sn+1 Sn+1

2 2 M
0k Oujx OCiagx Qijug  Oijx Gijest Oijan

These equations comprise a non-linear system of algebraic equations which will be

solved by using the Newton-Raphson Method. Therefore, there is a need to determine the

residual function associated with the gas and oil equations, F and F),

A2.3.1 Determine Oil and Gas Residual Function

For all the unknowns in the reservoir domain, there is

(v+l) (v+1) (v)
&x ntl = x n+l — b n+l
i)k i,jk ij.k

Thus at n+1, for the gas phase:

(v+l) (v+1)

OF,
glj
( k)(V) 01 1Jk+

oP, 01 L)k 01+1 . J.k P,

i.jk l+1 Lk i-1,j.k

OF,
+( gl/k )(V) +( gljk )(V)

(v+1)

( angjk )(V o;]il k +( aFgl NE )(V) aFgr Ik )(V)&) v+ athjk )(V)&
OF,

ou 1k+( 0i,j,k+1+(

0i, j,k=1
1,7+ 0 ij-Lk fjk+1 i, f.k=1
OF,
gi,j,k (V) g’ ik (V) (v+l) gl ik (V) (v+1)
+(—as ) 590ka ( ) 0l+1]k+( W 8ot k™t
oi,_/‘,k i+l jk 01 1,7,k
(—2ith angjk )(v) b (usk aFg,,k )(v) ( angjk )(v) +( 8Fg1,j,lc )(V)(S (v+1)
as 01 ]+1 k as, 01 = lk 01 3 Js k+l 0§, j, k-1
oi.j+l,k 1 -1k i‘_1,lc+l 01 Fk=1

OF,
+( aguk )(V)OT) :‘Fg, k(v)
ow -

(A2.51)
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For the oil phase:

oF, . F”k 8F’/k (vl
(8P = )(V) 01] k ( )(V) l+1j k ( )(V)
0

ijk H-l Lok 01 ~1,7.k

Oz -1,7.k +

(v+1)

Fo, \0) Fous v gp Fo ) gp %Foss 0 gp
) éPOz]+1k+( ) 01] 1k+( ) Oljk+1 +( ) Ot,jk 1

aPoz‘]«\-l,k 0: J-lk 1/,k+l aP ljk—l
aF 8F 8F (v+1)

l k v l k Vv I k 1%
G B+, 88,

Ok ,+|,j./c 01 Lik

(v+)

aFljk (V aFljk (V) aFuk (V) Flj.k (V)
+(6S ) 01 ]+1k ( ) $01] 1k+( ) Oljk+1+( ) &'0

1,]+1,k 01 J-Lk 01]k+1 01 A

(v+1)

i, j.k=1

sy R, ©

(A2.52)

For the gas phase:
F,= T -R - POT POT

X0 10 Sit1/2 ox2 X0, 1y Si1/2 ox1

+1,, a2 'Rsm/z POT,, =T, i st-uz - POT,,

+T ‘R - POT, - POT,

20 4172 Syi1/2 0z2 20 4 _1/n Sk-1/2 ozl

+7, -POT,, -T, - POT

*8 i+1/2 &2 Xgn 1/2 &l

+T, -POT,,-T, -POT

Y& an j-12 &1

+T - POT T - POT

%8 pan &2 % an &l

n

T+ CrAR) 18, (145,7(C, + COAL, =8," = 5,71+ (R,S5,b,)"]

- bgn (1 - SW" - Sun) - (RsSobo )" }i,j,k - Rsrz)HiJ QnH Qn+1

ij.k

(A2.53)
For the oil phase:

F =T, -POT, T, - POT,

X0 10 ox2 X0, 1,3 oxl

+ Tyo jHlz ' POTOyZ B Tyo j-l2 ’ POToyl

+ TZ" k+1/2 ’ POTUZZ N TZ" k-1/2 ) POT;’A (A254)

n

=+ CrAR,) - (B,S,)™ = (8,8,)" Ty = O,
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A2.3.2 Derivatives of Gas Residual Function with Respect to P, and S,

n+l n+1 n+l n+l n+l n+l n+l
A Y and

The derivatives of Fg with respect to 7 . P, Y AR A
(NN (R

itk > Otk Ojak?

Sn+1 n+l n+l Sn+1 Sn+1 n+l Sn+1
> 2o >
Oijk i+l,j .k lljk lj+lk ljlk l/k+l 0; j k-1

(all items are in current iteration) are

calculated as the following:

a) Derivatives of F, with respect to P,

OF,
Derivatives of F, withrespecttoF, (Bt y0)

H aPO ik
_por y(Homas g p Rasey, 7 d(POT,»)
» ox aPoi’j’k Sie1/2,).k X0u112,jk aPOi’j’k X025k " Sivliz, gk aPoi,j,k
_POT ( T'xol 1/2,7.k +T dRsl ~1/2.j.k )_ d(POToxl)
ox1 Si1/2,k X0 112,51k 5P X0 112,50 Si-112,5k oP
oi,;‘,k ik 0k
+ POT s 8Txgi+“27]_yk T d(POTgxz) _POT 1 aTxgi_m’j’k _ d(POTgxl)
gx aPa . X8 172,k aPO . gx aPo. . XEi 12,4k 51’0. v
ijk i,jk ijk 1,7,k
dR d(POT,,»)
y 1]+1/2k Si 12k oy2
POTO 2( Rsi,j+l/2,k +Ty01,1‘+1/2,k oP )+Ty0i,j+l/2,k Sy jelink oP
1,/,/: O ik 0; ik
—POTO 1( y 1 j-1/2k Rs. | T . dRsi,j~1/2,k )_ - : d(POToyl)
i =112k YOi 12k oP YOi j2k” Sij-12k aP
01 Ik oi,j’,k Oi,f,k
+ POT aTygi,/‘+1/2,k +T d(POTgyZ) _POT aTygi,j—l/2,k _ d(POTgyl)
g2 5P0 . Y& j+112.4 apo_ . ol aPo. . Y& j-112k aP
1jk i)k i.j.k %ijk
T, dR; POT.
POTO-z( Z0; jk+1/2 R, +Tzo. | Si jk+1/2 )+T,0 - d( 0 :2)
PoA ) i,fk+1/2 ijk+l/2 aPO <M, j k172 i) k2 aPo
ijk 11k ik
- POT, -1(————“0’” 2Ry 4T, Dos )Tz, L, WO or1)
0. oP S; k172 20,02 pp 20 k2" Sejk-2 Hp
Oy ik 0, ik 0k
ol.g d(POT,. Ty d(POT,.
+P0ngz i jkr1/2 +ng | ( 42) _POT » i j k112 ~T., ( g~1)
apo. » ijk+1/2 apo. ' & apo‘ ‘ 8i,jk-1/2 8P0‘ .
ijk i.jk ij.k ijk
_PACCy  O(RQDo)ijk O Q)i jk here.— O(RsQo)ijk O Qplijk _ 9 Qg)ijk
aPol-, ik aP"i, ik 6P01, ik aPoi,f,k aPoi,/.k 6Poi,f,k
(A2.55)
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ivati ' T W)
Derivatives of Fy withrespecttoF,  :(—=2%)

i+1,j,k aP
z+1,‘/,k
oF, Txo drg d(POT,,»)
g _ i+1/2,j k i+1/2,j.k ox2
= P0T0x2( RSH.]/ZJ,k + Txoh—l/l,j,k P ) + Tx01+1/2,j,k Sie1/2,4k
Oistjk Otk Oisl ik 01,5k
0T, d(POT, )
+ })07-.gx2 xg1+1/2,j,k + Txgi*—l/zyj . aP gxz
0., . ’ 0., .
i+1,jk i+),jk
(A2.56)
oF,
Derivatives of F, withrespecttoF, @ (—2u:y()
i-Lik QP
i1k
oF, T, dRy, d(POT,.1)
g i-1/2, )k i-1/2,jk ox]
=—=POIy (—“‘——Rs._ o — ) Ty, S, “ap
aPOi—l’j’k 0:-1,;,1: 12,k -1/2,7,k ap o 12,k Siel2.)k aPOi_LM
por s dPOTg)
&1 oP, X8i-1/2,jk oP,
oi—l.j.k 01—1,,/,1{
(A2.57)
OF,
Derivatives of F, with respect to P, : (M_)(V)
g o i,j+lk 51’0
Lj+Lk
dR d(POT, »)
g yor 172,k S j+1124 0y2
- POT 2( - Rsi,j+l/2,k + Tyoi,j+l/2,k p) )+ Tyoi,j+1/2,k Rsi,j+l/2,k oP
oi,j+l,k 01 Lj+lk 0i,j+1,k 01,j+l,k
POT aTygi,jH/Z,k d(POTgyZ )
+EC g2 Y8 ik
0i,j+1,k N ) a},Oi,ﬁ—l,k
(A2.58)
OF,
Derivatives of F,, with respect to P, D (=—=2uk ()
g o i,j-1,k aP
o i, j-lk
6F:g _POT. 1( yul/zk R +T dRS,l/zk)_T d(POToyl)
6P0 ‘ oy 0 S i-1/2k YO; ;_ 12k ap YO; ;12" Siicti2k gpo. -
i, j-1k i, j~Lk 1/ Lk i,j-1.k
—POT aTygl,j—l/Z,k T d(POTgyl)
471 Y8i 12k oP
Ot,j—l,k Oi:j—l,k
(A2.59)
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: : : P . ang ik (V)
Derivatives of F, withrespectto P, 1 (=t

i,jk+1 oP
i jk+]
aFg - POT. aTZOi,,,k+1/z dRs:,j,kH/Z d(POTozz)
OP. - 022( OP i jde1/2 + 20; j ge112 OP ) 20; ka2 S a2 OP
0j j ksl 0; jk+ 0, jk+1 0; i+l
28 jk+1/2 d(POTgZZ)
+ POT, ) —2 i 220
gZ Zg/,/,k+1/2 aP
0} jk+l 0; k1
(A2.60)
. ) orF
Derivatives of F, withrespecttoF, (— Lt y¥)
ijk-1
aPO ij k-1
aFg ——POT aTZOi,j,k—l/Z R T Rsi,j,k~1/2 d(POT,1)
P ==POTp;( i jk-1/2 20 k12 {p )= 20 k12 Sijhi2 pp
0; jk-1 0; jk-1 i jk-1 O; jk-1
TZgi,j k-1/2 d(POTg21)
-POT,,, - - _ —_—
&z Z8i.1k-1/2 oP
0; jk-1 0; jk-1
(A2.61)
b) Derivatives of F < with respect to S,
.. ) OF,
Derivatives of Fy withrespecttoS, (—2esy()
e aSO [NES
oF aTxo el aTxo,._ ;
25 £z pPor ox2( 25 L RS;+1/2,,,k )_ pPOT oxl( PYS L Rs,_l,zvi.k )
Oi,j,k ol’,j,k Oi,j‘k
. poT 6Txgm/z’j’k ) d(POT g3) _ror {iTxg’_””Jr 1, d(POT gxl)
X ; ; i
& 0., & 11127k aSG,-,,-,k & aSOi,,-,k & i-1/2,jk aSOi,j,k
or
YO ivtizk YO j-1i2,k
POTO}’Z( aSo‘j.k S;jlizk )= POTO)’I( 8S0<,k Rsi.}'—llz,k )
1 i,/
0T g d(POT 0Ty d(POT ,,1)
+ POTSW2 ayél’””“ + Y8 ij+1i2k (aS g))2) - POT gyl ;;:,,—1/2.k Y8 i j-vizk (6S =2
ik O ik O ik Qi gk
a zoijk+l/2 aTzol‘,/')k—lll
POToz2( aSoU,k s,-,].’“”z)_POTozl( aSoijk si,j,k—l/z)
g, d(POT , T4 d(POT .
+POT gy —stdbtlt 4P g2) _ poy gl Bl T 1)
Oijk e 6S"u,k O sk e asof,j,k
L 94CC ¢ HRQo)i ik Qg )ik where NRsQo)i e Q)i sk _ 0(Qg )i jk
8Sol_‘j“r as(,,_jyk asoi‘i’k asoi)j,k BSO'_)M as,,l_,l_k
(A2.62)
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. . . aFg . (V)
Derivatives of F, with respect to S, (=t

i+1,j .k 530
i+l 7.k
oF, Ty Oyy d(POT,)
g - DOk Bk it 224
= POLpy (R, | )+ POTgr) g a5
Ois1,jk Oi,jk Ois1,jik Oist, ik
(A2.63)
OF,
Derivatives of F, with respecttoS, D (=8uk )
i-1,j,k 550 .
i-L,j,
oF, o, ,,, g, ... d(POT,)
g _ =112, 8112,k gxl
_—POTOXI( : RsiAl/Z,j_k )_POTgﬂ == X&i-1/2,jk oS
Oijk O jk Oi1,jk Otk
(A2.64)
Derivatives of F,, withrespecttoS, (h)(‘/)
g i,j+1k oS
i, j+Lk
OF, oTy, Ty, d(POT,.»)
g _ YO ik Y&i j1/2k 22
- POTO)’z( as - S 4102,k )+POTgV2 - Y8 jriran
0; j+1k O j+Lk 9; j+ik 9 j+Lk
(A2.65)
OF,
Derivatives of F, withrespecttoS, 1 (24
ij-1k 550
ij-1k
OF, oT. Ty d(POT,)
g _ YO, 112k _ Y& i1k _ w1
- _POToyl( as Rsi,j—l/Z,k) POTgJ’l Y8ij2k  5S
O j-tk 0; j-1k 0; j1k 0 j 1k
(A2.66)
OF,
Derivatives of Fy withrespecttoS, @ (—2uxy)
i,j.k+1 6S
ijk+1
oF, oT,, oT,, d(POT,
g =P0T022( a;ol,j,k-ﬂ/l Rsi‘j'k+”2)+P0ngz 6;gl,],k+1/2 +ngi1j'k+”2 ( gZZ)
0. . o, . 0, . 0, .
i,jk+1 i,f.k+1 i, jk+l i jhk+1
(A2.67)
OF,
Derivatives of Fy with respect to S, D (=2t )
Pl a8,
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T,
Z0; jk-112

O POT. (a
5S0 = ozl

ijk-1 i,jk-1

A2.3.3 Derivatives of Oil Residual Function with Respect to P, and S,

The derivatives of F, with respect to PO'HI,P”Jrl

S jk-1/2
as,

oS,

i j k-1

or,,
)—POngl Zgl,J,k—l/Z _

,Pn+1 ’P0n+1 ,Pn+1 ,Pn+1

d(POngl)

(A2.68)

n+l

2
O; jue+1” Oi i

ik ik Oicl gk
and §7+1 g+l gntl gnal gn+l o gn+l gn+l () jtems are in current iteration)
056 Oumjn’ Oiigr Oijng’ Oijax Oijin i j k-1

are calculated as the following:

a) Derivatives of F,, with respect to P,

Derivatives of F, with respect to F,
ij.k

6FO aTxoi+l/2 73
= POT, — )+ T
01 14 0’“2( aPo,, N ) X0i112,5.k P
Mxo, ), , d(POT 1)
—POT o1 ( ) — X0, s =l
aPoi,j,k i-112,j,k aPol_,j’k
oT d(POT,,»)
YO, jurr2k oy2
POT o (——)+Tyo  —Fm
y aPOi,ch YO, 112k apou’k
ror (8Ty0’)j"”2)k . d(POT )
oyl aPo,.‘M YOi 112k aPOf,j,k
0T, d(POT,,»)
POT k112 +T 0z2
0z2( aPO,,j,k ) 20, k112 aPO,-,,,k
0T,,
i jk=1/2
- POTOZ] (aTj_—_) T 20, 5k aP
01k Oijk

Derivatives of F}, with respect to P,

i1,/

oF,

Oi+l,j,k
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= POT, (———aT"O‘“”J”‘ )+T.
ox2 oP

: (____aFO"»M )
oP,

9, Ik

d(POT,,;) BACC,

d(POTon)

_0(Qo)ijik

oF,
: ik y(V)
( oF )

i+l j.k

0i+1,j,k

d(POTon)

X0;1/2.jk oP
0

(A2.69)

(A2.70)
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" ) oF,
Derivatives of F, with respect to P, D (k)

i1,k
Y aPO i-Ljk
aFO ="POT0x1(6 l 1/2,7.k )_ o d(POToxl)
2.5k BP.
O 1jk 0: L)k Oi1jk
o . oF,,
Derivatives of F, with respect to £, D (it )
i j+1k aPO
i j+Lk
d(POT, )
yo, JH2k oy2
"POTO 2( )+Tyo.. PV
PO:,_;H,k 0: JHLk S 8P0i,_/+1,k
. . oF,
Derivatives of F, with respect to P, (™)
i,j-1k aPO
ij-lk
d(POT,
aP POTO 1( yo,, 1/2,k )— V0,43 oyl)
01,/ -1,k 01/ Lk ol,j—l,k

. . . aF‘O ;
Derivatives of F, with respect to P, : (aP_'-M'__)(V)
i.jk+1
o

i, jh+1

oF, Tz, . d(POT,,»)

— POTOzZ( P Jk+1/2 )+T20i’j’k+l/2 aP oz
1]k+1 1,j,k+l 0i,j,k+l
. . oF,
Derivatives of F, with respect to B, D (st )
i,j k=1 aP
Oi.j,k-l

aF‘O =-POT. (aTZOi,JJH/Z )___ d(POTozl)
= ozl oP Z0; jg1p2 oP

0; k1 0 j k-1 0; k-1
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(A2.71)

(A2.72)

(A2.73)

(A2.74)

(A2.75)
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b) Derivatives of F,, with respect to S,

Fy
Derivatives of F,, with respect to Sy " (ﬁ)(v)
i,j.k o Lk
Ty, oT.
aFO _ POTon( 04172,k ) POToxl( X0, 172,k )
oS, oS, oS,
ol,j.k ij.k ijk
oT,, 0T,y (A2.76)
+POToy2( ;Sohfﬂ/z,k )_POToyl( ay;hjﬂlz.k )
O )k Oijk
T, 0 i
+P0T0-2( 0 j k112 ) POTO“I( 20 j k172 )_ aACCO - (QO)I,_],/C
aSOLj,k 6S0i.j.k aSOi.j.k aSOi,j.k
OF,
Derivatives of F, with respect to S, D (2t ()
i+1,j,k aS
i+l,7.k
oT.
oF, _ POT, 5( X011112, 1k ) (A2.77)
0. aSy,
i+l,j.k i+1, j.k
OF,
Derivatives of F, with respect to S, D (et )
0 ik as,
oF,
o =~POT (—(—33‘;"#) (A2.78)
Ot jik Oic1,jik
OF,
Derivatives of F, with respecttoS, 1 (—2ut ()
i,j+Lk
S aSo ek
i, /+1,
%% __por,, (et Ty, (A2.79)
0i,j+l,k 01 LJjtLk
oF,
Derivatives of F, withrespecttoS,  : (2t )M
i,j-1k 350 .
il
O _ ~POTp (2 Ty 0” 12k (A2.80)
Oy -1k 01] Lk
OF,
Derivatives of F, with respect to S, D (2t ()
i, ) k41 aSo .
% _por,, (ﬂﬂﬂ) (A2.81)
0; So. .
i,j.k+] i,j.k+1
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o . OF,
Derivatives of F, with respect to S, D (it (V)

i,7k-1 350 "
oT,
Fo_ _ _pOT,, (i (A2.82)
o, A
f,jk=1 i,jk=1

A2.3.4 Derivatives of Potentials to P, and S,

a) Derivatives of terms POT g1, POT gy, POT 1, POT gy, POTg,, POTy; are:

d(POT,,) dyg dyg
L AR DR L 1Y _ =—1—(1= _ Sihik —
1 dP (hx i1,j,k hx ik ) 1 (1 Wx) dP (hx i)k hxi,j,k )
Oi 1,k Oi1jk Oi1,jk
d(POTg)
dPOi—l,j,k
d(POT, Vg . dyg,
( g:xl) =1— g:—l/2,],k (hx "‘hx ):1——Wx gl,],/( N _hxl . )
dPO dPo . i1,k ijk dPO ) i-1,j.k ijk
i,j.k i,k ij.k
d(POTgy3) dy, dy,,
—_1_ 14172,/ ) h _ h — _1 _ 1 —-w iJk h _ h
dPOijk dPo . ( Xk xi+ln/',k) ( x) dPOi,jk ( X ik xi+l<j<k)
d(POTg)
Oi41,)k
d(POT,,») dy, dyg
( - =1- St (hx - hx )=1-wy B (hx - hx
. - i.j.k i+, ).k da . ijk i+l ),k
i+1,j.k i+l,j k i+l,jk

(A2.83)

dPOTy) g, i
R e B (y,  —hy Y=l=(lmwy) =y, —hy )

})Oi,j—l,k Oi,j-l,k ij-1k 7. Oi,jAI,k i j-lk ijk
d(POT
( gy2) =0
O; i1k
d(POTg/'l) _ dygi,j‘l/Z,k h h _1 d}/gi,j,k h h
=1- (hy ——hy J=l-w, (hy =hy )
dPo dPO ) i, j-1k ij.k dPO ) i,j-1,k ij.k
i,j.k i,j.k ij.k

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



d(POT ) dy,,
gyz = —1 _ gl,j+l/2.k h . h _ _1 1 w gl ik —
dPO- ik dPO,'jk ( Yk Yk ) ( ) ,,k ( ik y"-1‘+1~")
d(POTgyl) B
O j+1k
d(POT, ) Ve Ve,
o2) i jr/2k — Bijn —
=1- / (hyf,j.k B hyi.j+l,k e P k ( Vi hyid’*”‘
Oi j+Lk O ik Lk
(A2.84)
d(POTg) _ AV g in Az = —1 (1=, ) 2 Bsier e h Az
0, ; dPO i dP
i jk-1 i,j.k~1 I’]’k_l
d(POngz) _
O jk-1
d(POngl) dygljk 1/2 AZ — 1 + WZ dygi’j’k AZ
dPoi,j,k dr, 0 ik dPOi, ik
—d—(f_OT_gZ_Z_?— __ +d}/gi’j)k+1/2 AZ=_1+(1—WZ)dygi,j:k
dPOi,j,k dPoi’j)k Poi,j,k
dPOi,j,kH
d(POTgs) Mg ", Ve o,
O;, e+l Pof,j,k*l Ot
(A2.85)
b) Derivatives of terms POT,,,, POT,,,, POT,,, POT, ,, POT,,,, POT,,, are:
dPOT,) . Yo, o Orrih -
T——— =-1- (hxi-l,j,k _hxi, ) I- (1 Wx) dP. ( Yicijk hx"J»")
0i1 Oi-1, Oict sk
d(POToxz) ~0
Oi 1)k
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d(POToxl) d)/O 112,).k Yo, ;4
= “h, Y=lew,—2tE (o _h
dPo =1- dPo (h i=1,j Xk ) Wx dP ( X i Xk )
i,jk i,jk Lk
d(POTOxz) ___1 d}/oHl/ij (h "—h ) __1 (1 w ) ljk ( _
- X i+ - X xij,k X i+, f,
dPOi, ik dP ik " 0,', ik ’ o
d(POT, oxl) =0
dP0i+1,j,k
dy dy
d(POTox2) 1 01+1/2/k (h _ h =1-w 01+1 Sk ( . _ hx
dP Jk X i+, ).k * ij.k i+, jk
0i+l,j,k OH—I Ik OH—l,j,k
(A2.86)
d(POTy) Yo .. o, .,
— Ol ek g, Y=-l-(-w) =5, —h, )
0,1z 0,14 Y i1k Y i,k Y dPOi,j—l,k Y ij-1k ik
d(POT,y) _
O; j-1k
d(POT, dy,
( Oyl) —1 01,]—1/2,/( (h _hy ) 1 y ljk (hy —‘hy )
dPO' " d%. .k ik i dP i1k ik
i.Js i
d(POT, 7 dy,
( 0y2 ) — Ol,j+1/2,k (hy —hy ) =_1 _(1 -—Wy) Or,j,k ( ) _hy )
dPo_ . dPOA . ik il d}é. . ik i j+Lk
i,j.k 7.0k ijk
d(POT,,) _
O; jsLk
d(p OToyZ) d7 O ja1/2k Orjlk
=y —hy J=lwy ==y, —hy )
Oi j+Lk Oi j+Lk hok s Ot j+Lk . hE
(A2.87)
d(POTozl) — 1+ d}/Oi,j,k—l/Z Az=-1+(1-w,) dyoi,j,k—l Az
0 jk-1 O; k-1 O j k-1
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d(POT,:5) _

dPOi, k-1
d(POTozl) —1+ d}/oi,j,k—l/z Az =1+ w, d}/oi,j,k Az
dPOi,j,k dPOi,j,k dPO,-,j,k
dvo, dyo,
d(POTOZZ) — _1 + Oz,j,k+1/2 AZ — _1 + (1 _WZ) Ol,j,k AZ
dr, ar, ar,
i jk i,k i,jk
d(pP OTozl) =0
0 jk+t
d(POTozz) —1+ d}/oi,j,k+]/2 Az =1+ W, dyoi,j,kﬂ Az
dPOi,j,k+1 d O; j e+l O; jk+
(A2.88)
Note:
dPOTgy dPOTgy dPOTgy dPOTgy dPOTgn dPOTgn
Oi1,jk Soi,j,k Oii1,jk Oi1,jk dSOi,j,k S0i+1,j,k
dPOTg,; dPOTg dPOTg; dPOTyy dPOTyy dPOTgn o dP,
9 i1k Soi, ik Soi, Lk Soi, -1k dSOi, ik Soi, Lk dSO
dPOTg dPOTg _dPOTg dPOTg, dPOTgy dPOTg: _
dSoi,j,k—\ dSOi,j,k 0; ik 0 j k1 dSOi,j,k dSOi,j,k+\
(A2.89)
dPOTy _ dPOT,, _ dPOTy _dPOT,, dPOTy, _dPOT.y o
Oi-1,jk O; jk Som, ik Oi1jk dSOi, ik Oi41,jk
dPOT,y; dPOT,, dPOT,, dPOT,, dPOT,, dPOT,) _
Oi.j-1k dSOi,j,k O j+lk 0. j-1,k dSOi,j,k Soi,j+l,k
dPOTozl _ dPOTozl _ dPOTozl _ dPOTozZ _ dPOTozZ _ dPOTozz —0
dSOi,j,k‘l dSOi,j,k SOi,j,]H—l dSOi,j,k—l dSOi,j,k Soi,j,k-H
(A2.90)
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A2.3.5 Derivatives of Accumulation Term with P, and S,

04CC,
Derivative of the gas accumulation term with respect to 7, ik’ gp
o %i j,

ACC, Vo ik
e =L LR (Cr [y ;i 1+ Sy 11 Cr +C i )P 0k ok =P 0k k) =Sy " ~Soi I+ RsSobo)] 1 1+

OFpijk Nt
v dbglljakv n Voo Voo n v
+(1+CHP oi,jk = P o0i j )| U+Sy ik (G AC Wik XP 0ijik =P 01 j. k) =Syijh —Soijke I+
oi,j.k
Bijk’ v Aok
+Syi ik Bgijk Cr+Crwifd) +(Sobo)ijk — = +(SoRe)i jik —13
e R Ry
(A2.91)
04CC,
o . : g )
Derivative of the accumulation term with respect to Sy; S
ijk
4ACC V..
% = 438 {[1+C7(Pv0i,j,k _PnOi’j’k)](RSl',j,kvbOi,j’kV _bgl;],kv)}
otk
(A2.92)
. . 0ACC,
Derivative of the oil accumulation term with respect to 7, ik P g
Uy
n v
ACG _pijk v v . v Bk
=22 G (S, jukboi j ) HIHC (P 0ijk =P 00 j.k)) So j }
Fjp N By jk
(A2.93)
. . 0ACC,
Derivative of the accumulation term with respect to S, ik v 2
Oi
24CC, 1460 i
= = BL2 114 Co(PY o1 j b =P o j ) Woi j
oL, j,k
(A2.94)
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Note:

dACC ; _dACC , dACC ; dACC , dACC, dACC,

0,1k 01t s 0, i1k PO,;,»,M 0, ;i1 dPo,‘Aj.,m
dACC ; dACC, dACC, dACC o dACC, dACC,

Oy sk Oii1,jk O j-1k 0; je1k 0, k-t dSOi./’,k+l
dACC , _ dACC, _ddCC, _dACC, _ dACC, _ dacC, _,
dPO,.,lyjyk L O i1k 0; jak 0; k-1 0; jk+t
dACC , _ dACC, _ dACC, _ dACC, _ dACC, _ dACC, _,
ds,, . o dSo, . dSe . dS, . dS, .

(A2.95)
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APPENDIX 3: DERIVATIVES OF WELLBORE RESIDUAL FUNCTION

Chapter 4 presents the partial differential equation and finite difference equations for
wellbore domain, but with only some general equations. This appendix summarizes the
detailed derivation of wellbore residual functions, and corresponding derivatives with

respect to wellbore and reservoir unknowns.

A3.1 Derivatives of Mass Conservation Residual Function (Oil) with Respect to

Wellbore Unknowns

The formula of the oil mass conservation residual function is

F™o = AHY-[(0,);0, — (0,5 1+ A8,y [(H,)is . —(H )1+ AbH, [0, — ()5

i+ e 7+ AKKro o+l
Z{[A'B’A:]l/zl/k(paik a—wlvb—k —[ ,UBA:‘/ 1/2,‘,;,(G1J’k —wa‘k)]}
LA A
v At

The derivatives of the oil mass conservation residual function with respect to wellbore
Pn+1 Pn+1 Pn+1 Hn+1 Hn+1 Hn+l n+l n+l _ n+l
unknowns, £, 4 15 Lop g s ks1o 8 o k1547 5k 521 g k115 Vi k15 Vin ks Vi kst » 18 listed in the

following section to construct the wellbore part in the Jacobian matrix.

a) Derivatives of F_ with respect to P,,

oF
Derivatives of F, with respect to P, .. (an”" )
wh k
aF ( )rH-l —(V )n+1 ab (H ),,+1 —(H )n+1 ab
wog \(v) _ A H n+l k+l k-1 ok +iAv n+1 o/ k+1 0/ k-1 ok
(——5wa YW =44, > ](3wa )+HAY I 5 ](5wa )
k k k
A K K n+l 01/2/k +1 n+l
r-ro n — _G G
+ Z{ ( IUOBOAV )1/2/k} 2{ Pb)k (pol,/,k Do vos 1.7,k + belc)}
s ., 0b
n+ H n+
-5, . (H,), (———aPWb )
k
(A3.1)
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Where,

T 1 du,, 1
-—(W -D- T]/z k( -
oP Sy, oP,,,

wh.k h12,jk

1 du,, 1 db
‘(—‘) T, € ==

db, .
oP,, )

Nhr2,jk wh,

wh.k )

h12,jk wa,k bl/z,j,k anb,k

Poagw “Toyu 170 1,
Wr = = = —
r —-r r -0 r

1.k 0,j.k 1,j.k 1

(A3.2)

aFwok )(V)

oP

wh g4

Derivatives of F,,, with respect to P,...(

(P 01— (5) Ay B, (et
oP oP

wh ] Wb f+])

(A3.3)

aqulc ) (v)

oP.

wh g

Derivatives of F,, with respect to £, ,,: (

(—?—%—)“’ —(0.5)[4v H, ]‘”( P - )
oP

wh 41 wh ey

(A3.4)

b) Derivatives of F, with respect to H,

The following subscript i represents the wellbore direction:

OF,, s 3o

Derivatives of F,, with respect to H . (— oH

Gy = 16 = B T+ LABTIG o= =LA B,
BH x i o/i+1/2 0/i-1/2 x "o di i+1/2 i-1/2 At i o/i

o

_ ) (ba):ﬂ —(bo)z")vl ( )1+1 (V )iv—l _ ﬂ v v
=[4,v ], [————2 1+[4,5,]1 5 ] [At]i(bo)i

(A3.5)
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F:vo,- )(v)
oH

0 i+l

Derivatives of F,, with respectto H, ,,: (

aF’woi v) v
(5}—1—) =0.5[4,v b ], (A3.6)

0 i+l

oF,
Derivatives of F,, with respect to 7, ;: (M_')( )
o i-1

oF,, .., )
(—a—f—) =—0.5[4,v b,]; (A3.7)

o i-1

¢) Derivatives of F, with respect to v

oF,
Derivatives of F, with respecttoV, : (a—’)(v)
v

I

(b)) =(®,)., (H,)., —(H,)
2

2

OF,, . i
()" =[4,H,1'[ =1 (A3.8)

ov,

1

1+14.5,1T

oF,,
Derivatives of F,, with respecttoV,;: (av—’)(v)

i+l

OF,, . )
(V) = O'S[AxHobo]i (A39)

i+l

oF,
wo; )(V)
ov,

i-1

Derivatives of F,, with respect toV,_,: (

oF,, ., )
(6v—) =-0.5[{4 H.b,] (A3.10)

i-1

A3.2 Derivatives of Mass Conservation Residual Function (Gas) with respect to
‘Wellbore Unknowns

The mass conservation residual function for the gas is shown in formula (4.17) in Chapter 4
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Fe =[AVEL L0, )ins — (0 )i, 1HAHD L [0, — )i 1+ 4D, 1 [(H, )i —(H,)
+RIX +[AVHL TR~ (R )]

k+1/2
Nog A’_ K A K
+ z 7+1 #+1 7-+1 1
AL W BA

n+] i+l

l/ij( 1/k wb—k)]}+ kqosck

]l/ij(pgljk pg—wb—k) [ BArg]

_[ YO H, )"~ (b, H, ) 1+ (R b,H, ) ~(Rb,H, )1}

The derivatives of the above residual function with respect to wellbore
n+l n+l n+l n+l n+l n+l n+1 n+l _ n+l
unknowns, P, wh k- I’wa,k’wa,kH’Ho,k I’Ho o Ji12YVm k19 Ym ko Vm 1, ar€ calculated

in the following section to construct the wellbore part in the Jacobian matrix.

a) Derivatives of F,, with respectto P,

Derivatives of F,, with respect to B, ;: (=5 §§wg, )
wh

(s—zf—:)“E[Ax(LO—Hu)]:[(V a0 Dy aiijimAxv prfeda - )iy 2 7o)
X, R AAH I P Ry s y pE T ER Bhy
L4 Ho]:[(R:f*l);(R:"‘)]< - )
H Dl % ;’::" (P = Pites =G a + 6]
R T B T (Pl =Pl = G + G I PM’)
001, a5 ) R G+ HLb )

(A3.11)
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I
Derivatives of F,, with respecttoP,, ., (a—g"')(v)

wh

oF ’ ob, R,
(—2 )" =0.5[4v (1.0-H,)] (apgl )OSR, [Ay T () +05 4 Hp, L ()

aI)Wb i+l wh il wh i aPWb i+l
(A3.12)
Fng )
Derivatives of F with respect to va i-1- (EP—)
wh j_y
oF, - 0b,, OR
(E—I;L)V =-[0.54,v (1.0-H,)I! ( ) [0.5R), Av H,] (=) -[0.54,v H,b,]' ()
(A3.13)
b) Derivatives of F with respect to H,
. Fng (v)
Derivatives of F,, with respecttof,,: (= oH. )
or, (b, )i —(B,), v )a—(v).
wgi (V) __ A g/i+l g/i-1 + __A b r.1+] i+l i-1
(_6H0,.) =[-4v ] [———2 1+1-4.5,1; [—————2 ]

i ' L " R,
ey By Oy g (e )y

Vo vre ;
— N 1=b, + R,b,)1]

(A3.14)
. . . 0 wgi \(v)
Derivatives of F,, with respect to H .. ( oH )
0 i+l
aFng (v) v n+l v
(5{——) =05[-4,v b, ]} +0.5R'"[4,v b, ], (A3.15)
0 i+l
. . . aFng W)
Derivatives of ng with respect to H 0i-d- - ( oH )
aFWS (v) v n+l v
(a[{—l) = OS[AXV bg ]i + OSRJ! [—Axv ba ]i (A3.16)
o i-1
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¢) Derivatives of F, with respect to v

oF.
Derivatives of F,, with respecttoV, : (_avgz )

14

(Hg):+1 - (Hg ),‘:1

—1+[4,5, 11

aFng v v (bg):H _(bg)
G AR I
o (0 H e~ Oy g gy 2y g gy R0 R0y
(A3.17)
Derivatives of F,, with respecttoV,,;: (—=)®
i+l
OF,
(F_g—)m =0.5[4,H,b,]] +0.5R [4,H,)b,] (A3.18)
i+l
. . . aFng )
Derivatives of F,, with respecttoV,_,: (5‘-)——)
OF,, ; ,
(—6\1 €)W =—-0.5[4,H,b,] —0.5R [4,H,b,], (A3.19)

i-1

A3.3 Derivatives of Momentum Residual Function (Mixture) with Respect to

Wellbore Unknowns

The mixture momentum residual function is the formula (4.18) in Chapter 4

F:Z:l = [Ax ]:H [Pkrzl/Z - Ecn—+ll/2] + [14xpv]:Jrl (vlrc’:llm - I:lj11/2) - v]':“ [poscqnsc + pgsc (qgsc—free + quosc )]Z+1

_ I/bm“)l n+l pI/b n+l ntl vn
Sy i vl A (AR O

(4.18)

The derivatives of the mixture momentum residual function with respect to wellbore
n+l n+l n+l n+l n+l n+l n+l n+l _ p+l
unknowns, Ly 15 Py k> Py st> H o ko H g s H 15 Vin k15 V> Vet » ate calculated

in the following section to construct the wellbore part in the Jacobian matrix.
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a) Derivatives of F_ with respect to £,

FW’”I )(V)

Derivatives of F,, with respect to P,.. (=" oP,

OF, v.,-v.,), 0op AK K
wmi N(v) — A n+l i+1 i-1 re*r**ro
(8P ) =4V > (ap )=V AP __[ (,uBA Niagalt

wh wh

v AKK, v, AKK, OR,
+pgccjzjl[_( g)l/2]k] pg.sc sz[ (_———)1/21k] pgscqosc( )}

1, B Ar 1B Ar oP,,
VflVlv op dp
2d )(an )— ( )( )(ap )

wh

i

i

(A3.20)

oF,
whtj )(V)
oP,

i+l

Derivatives of F,, with respect to wa as (

(amei Y =0.54 A3.21
oP, ST (A3.21)

i+1

oF,
wm; )(y)
oP

wh i1

Derivatives of F,, with respectto ), (

(aFw'"’ ) =-0.54 A3.22
ava - ' : ( . )

i-1

b) Derivatives of // with respect to H,

oF, Wit \(v) OF, wmi \(v) aFW'"i o)
(OH‘) =(6H ) :(6H )" =0 (A3.23)

o o i+l o i-1

¢) Derivatives of I with respect to v

oF
Derivatives of F,, with respecttoV, : (—— —)®

i

Vm‘v) (pV,,)

oF,,, v, =v.)
wmj N (v) — A v i+l i-1
()" =l4.pll ——— J

ov, 2

i

- [puscqosc + pgsc (qgsc—free + RsQosc )]:’ (

(A3.24)
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Derivatives of F,, with respecttoV,,: (—éﬁ__L)(V)

i+l

(5—L)M =0.5[4, pv]; (A3.25)
Derivatives of F,, with respecttoV,: (va)(v)
i-1
oF
(_6v L) =[-0.54,pv]; (A3.26)

i-1

A3.4 Derivatives of Wellbore Residual Function with respect to Reservoir Unknowns

The derivatives of F,,, F,,, F,,, with respect to reservoir unknowns P, .,,S ,,, are
g 0,17,k 0,1,/.k

also derived because of the connection between the reservoir and the wellbore at the

sandface. The derivatives are actually related to the influx terms in the residual function.

a) Mass Conservation Residual Function (Oil)
Specified oil flow rate only means the total production flow rate is constant, but for

each wellbore section, the oil flow rate is not constant. Therefore,

—6Q“ s —-———aQ" #0
aI)Ul,j,l aS”l,j,l

(A3.27)
Same for the bottom-hole pressure (BHP), constant BHP production scheme only
refers to constant heel point pressure of the horizontal wellbore. Along the wellbore,

pressure should be calculated together with flow rate by the coupled model.

5 80, oT.
O 000y g T2umpor, Ty, | OO
oL, 7.k a o1, j.k a-Pol,j,k o1, j.k Pol,j,k
(A3.28)
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o0, 1 du,, 1 db,, /o
=— - +T 1- 2 (Z,~
o1,k POT wr T;llz k(luollz,j,k 01, jk 01/2,j.k Ul,j,k) 0”2/"[ w dPDljk ( ljk)]
(A3.29)
Where, POT Pol . _ow '701,2,“ (Zc _Zl,j,k)
1/2jk_o,k rw-_o f‘w
Wr o = = —
rljk _ro,j,k rljk_o rl
oF Ng O ”
e
as, ., oS,
aQ"j = POT °1/2,jk
ol
oS, . G‘SOW‘
b) Mass Conservation Residual Function (Gas)
A
Qg — (/lgl,/,k 4 Rsu’k ) .Qo
k14,0 ,
o, = [(m)w +R, , 1-0, (j=1tond)
6Fg Ng aQ i
=3 [ Thus:
aP"l,j,k s aP()],j,k
00, _o fhatibs L b 1 du 1 du 1 b, AR
aPOL j k kroll'lgba b dPol ik lLlo dPolyj,k /’l dPol ik bo dPol’j,k dPalyj’k bk
k_ub
+( rgﬂo 4 +R )1jk aQa
k.ub, or, .
(A3.30)
oF o0,
Wg = Z .
aSOW _1[ 2, ”] Thus:
k b
an Q a g ( kg dkro )ljk +(_"g_ib_g+Rs)l,j,k aLino
GSOW( k, ub, dS ik k, dSow k., 1, b, ok
(A3.31)
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¢) For the Mixture Momentum Equation

oF 00, o0,

—_ = _y z Y + ] z
R R I
oLk o1,k o1, j.k
(A3.32)
oF 00, o0,
=V [P, I+ P, T
aSoL jik aSoL jk i aS”l,j,k
(A3.33)
Wh aQ Og aQ ga aQ oa ana
cre, . s s
Pou,k 2 01,7k aS"l,j,k aSOl,j,k
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APPENDIX 4: SOURCE CODE

The FORTRAN™ and MATLAB™ source code, as well as the input and output files

for a case study, can be found in the attached CD.
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