
A Complete Descritpion of the UnPython and Jit4GPU Framework

Rahul Garg∗, José Nelson Amaral†
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Abstract

A new compilation framework enables the execution of numerical-intensive applications in an execu-
tion environment that is formed by multi-core Central Processing Units (CPUs) and Graphics Process-
ing Units (GPUs). A critical innovation is the use of a variation of Linear Memory Access Descriptors
(LMADs) to analyze loop nests and determine automatically which memory locations must be trans-
ferred between the CPU address space and the GPU address space. In this programming model, the
application is written in a combination of Python and NumPy, a rich numerical extension for Python.
Inobstrusive light annotation is introduced to identify the type of function parameters and return values,
and to indicate which loop nests should be parallelized and executed in the GPU. The new compilation
system is a combination of an ahead-of-time compiler, unPython, to transform Python/NumPy code
into a restricted C programming language notation, and a just-in-time compiler, jit4GPU, that converts
this restricted C notation into the AMD CAL interface. The experimental evaluation using a collection
of well-known benchmarks indicates that there is very significant performance advantages to execute
important loops of numerical applications in GPUs.

1 Introduction

The execution of a program in an environment that includes a CPU and a GPU requires: (i) identification
of important loops that are profitable to execute in the GPU; (ii) determination of the data that needs to
be transferred for the execution of each loop in the GPU; (iii) mapping of the relevant portions of the CPU
memory address space to the GPU address space and vice versa for the data that needs to be transferred
back; and (iv) careful transformation of the loop code to be executed in the GPU to adapt it to the constraints
in the GPU design. The compilation work flow introduced in this paper assumes that the program has been
annotated to indicate which loops are parallel and, among the parallel loops, which ones may be profitable
for execution in the GPU.

The program is written in Python with the numerical computation executed by NumPy. Python is a
dynamically typed, object-oriented language, which was designed to be interpreted. NumPy is an extension
module that defines a fast multi-dimensional array class to enable Python to operate with arrays. The
compilation requires that functions to be compiled be annotated with the type of their arguments. These
annotations are non-intrusive, thus allowing the same program to be executed by the python interpreter —
a very important feature for development and debugging.

Dynamically typed scripting languages, such as Python, Matlab and Ruby, have large communities of
users. They are attractive for programmers with limited programming-language experience because it is
easy to quickly write practically useful programs in such languages. Often the development of a project
starts in such a language because of the low entrance barrier and ease of programming. However, when the
project grows, the performance of an interpreted environment becomes an issue. Thus, compilation of such
languages should be of great interest.
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†J. N. Amaral is with the Department of Computing Science, University of Alberta, Edmonton, AB, Canada.
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Figure 1: Comparison between state of the art for generation of numerical-intensive applications for execu-
tion in CPU/GPU and the proposed programming model.

This paper presents a new programming model and compiler framework that aims at increasing the
productivity of developers that choose to use Python/NumPy and are concerned with extracting good
performance from machines that feature both GPUs and CPUs. This new compilation framework combines
a static ahead-of-time compilation with a just-in-time compiler. This compilation framework automatically
identifies the data that is necessary to transfer to the GPU for the execution of a loop. At the moment the
compiler can handle an important, commonly used, subset of loops with affine array index expressions.

Current versions of GPUs have several design limitations that have to be taken into consideration when
generating code in order to deliver good performance. For instance, in the AMD Radeon 4800 and 5800
series of GPUs, the ratio of executed ALU instruction to memory reference is limited to 20:1. Moreover the
storage resources in GPUs were designed with a small class of graphics applications in mind. The compiler
has to determine how to use these storage resources efficiently. Thus, this paper also describes how some
known loop transformations can be used to adapt the code to these devices.

The definition of array accesses in NumPy is much richer and more versatile than traditional definitions
of such arrays in languages such as C and Fortran. For instance, while arrays are contiguous in C, it is
possible to create strided views of arrays in NumPy through slicing operators with strides that may not be
known until execution of the code. The array-access analysis that determine the regions to be transferred
has to take into account these definitions.

The main contributions of this paper include:

• A complete compilation system including an ahead-of-time compiler, a just-in-time compiler, and
a run-time system that leverages the computational power of GPUs for numerical computations in
applications developed in Python.

• An algorithm to determine a reasonable set of memory locations that must be transferred to/from the
GPU to enable the execution of each loop.

• A mapping of segments of the CPU address space to the GPU address space based on the memory
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regions that are transferred.

• An adaptation of loop tiling to split the loop into smaller tiles if the data required for the loop execution
does not fit in the limited GPU memory.

• A description of how some known loop transformations and memory-load optimizations can be used
to adapt the code to the constraints of a GPU architecture.

• A performance evaluation of the system in AMD GPUs that demonstrates that the generated code
running on GPUs outperforms OpenMP generated code by up to 50 times, and either outperforms or
is competitive with CPU code from the Basic Linear Algebra Subprograms (BLAS) library, which are
highly optimized.

The motivation for the choice of Python/NumPy is given in Section 2. Section 3 presents the new compi-
lation work flow. Section 4 describes the loop transformations used to address the imbalance between ALU
and address computation capacity in GPUs. Section 5 describes the new strategy for automatic data trans-
fer between CPU and GPU. Highlights of the experimental results and the experimental methodology are
presented in Section 6, experimental results appear in Section 7, and related work is discussed in Section 8.

2 A Practical Marriage of two Important Trends

The past decade has seen two very important developments: the proliferation and widespread use of many
scripting languages, and the appearance of GPUs that are many times more powerful than their associated
CPUs.

A very interesting community, initially focused on domains such as astronomy, computational chemistry
and computational finance, has developed around the Python language and has developed a very powerful
infrastructure for a hybrid development model: scripting language + numerical libraries. NumPy forms the
core of the numerical libraries and provides convenient array abstractions not originally present in Python.
A number of open-source numerical libraries from various domains ranging from optimization to differential-
equation solvers have been collected into a free collection called SciPy.

Some claim that SciPy is a functional replacement to Matlab, and a better one because it is open source
and its development is community driven. Even though Matlab has a rich set of ToolSets that makes it
attractive to specialized use of numerical computing, and thus is popular with engineers, SciPy is a strong
competitor for general numerical computing. An important distinction between Matlab and SciPy is that
Matlab started as a numerical library and is slowly becoming more general. On the other hand, SciPy has
its origins in Python — a general purpose, object-oriented, untyped scripting language — and later added
support for numerical computation.

Several efforts have been made to compile Python in order to improve the performance of applications.
PyPy [6, 25] is a Python interpreter, written in Python, that includes a compiler from a statically typable
subset of Python called RPython [2] to various backends such as C. Cython and Pyrex are compilers that
compile a type-annotated Python-like language to C [4].

Compilation of programs to run in GPUs have seen lots of interest from the compiler community. Lee et
al. [19], Wang et al. [33] and Saha et al. [28] have all presented compilation of OpenMP-based shared-memory
programs to GPUs though previous work has mostly focused on C or languages closely related to C. Many
open-source wrapper libraries, such as PyCUDA and PyOpenCL provide convenient access from dynamic
languages to APIs, such as OpenCL and CUDA. However, these libraries still require the programmer to
write the GPU code using the C dialects exposed by the respective APIs.

This paper presents the first effort to develop a compilation path for numerical computations developed
in Python to execution in a GPU. We expose a shared-memory programming model to the programmer.
Contrary to most other efforts, this paper tackles the issue of automatic data transfer between CPU and
GPU. We are the first to present a loop analysis to determine the set of memory locations to be transferred
to the GPU. This loop analysis also tiles the computation when the data does not fit on the GPU resources
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Figure 2: Compilation framework to support the new programming model.

whereas prior approaches could not handle such case. This paper presents a set of loop optimizations
implemented for AMD’s GPUs.

3 Programming and Compilation Model

The typical development of applications containing performance-critical, numerical-intensive, sections of
code in Python consists of writing a prototype in Python, profiling the code to identify performance-critical
sections, and then re-writing these sections in a compiled language such as C or C++. The programmer also
writes glue code in C/C++ using the Python-C API. The glue code exposes the C/C++ functions and data
to the Python interpreter as Python functions and objects, and facilitates transferring data back and forth
between C/C++ and Python. The block diagram in Figure 1(a) illustrates this state-of-the-art development
process and emphasizes code written by a developer. Rewriting the code in C/C++ is a tedious and error-
prone process that reduces developer’s productivity and results in a code base that is less maintainable. If
a GPU version of the code is also required, then the amount of code to be written by the programmer, and
the complexity of the code base, is further increased.

This paper presents the alternative for the development of such applications in Python shown in Fig-
ure 1(b). It introduces a new compiler system for automatic generation of C++ code for the performance-
critical Python sections. Instead of rewriting code in C++, the programmer annotates the Python code with
type declarations and parallel loop annotations.

3.1 New compilation work flow

Figure 2 shows the compiler framework that supports this new programming model. UnPython automatically
generates the C++ code as well as required glue code for the annotated code. The programmer then invokes a
standard C++ compiler to compile the code into a DLL. This DLL is a drop-in replacement for the original
Python module. To generate code for multi-core CPUs, the programmer only needs to add parallel-loop
annotations before compilation. To take advantage of GPU acceleration, the programmer simply annotates
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functions to be executed in the GPU as GPU accelerated and the compiler handles everything else.
UnPython can only deal with a subset of Python and requires type annotations. However only the small

portion of the Python code that will be compiled to C++ needs to conform to these restrictions. The rest
of the application remains as is.

Furthermore, we designed the annotations to be compliant with the Python grammar and to be trans-
parent to the Python interpreter. Thus if the programmer does not wish to compile the module to C++
during development to avoid the build and link steps, the annotated Python will run on the interpreter.

3.2 Python and NumPy

Python has syntactic support for high-level data structures such as growable vectors (called lists in Python),
hash tables (called dictionaries) and tuples. Python also supports operator overloading, decorators, first-
class functions and meta-classes. Python combines the development flexibility of a dynamically-typed,
interpreted, object-oriented, scripting language with an API for efficient C implementation of performance-
critical portions — functions and classes — of an application. This Python-C API provides many utility
functions for passing data back and forth between C and Python. NumPy exposes C arrays as high-level
arrays in Python. To write a Python extension module in C, a programmer simply writes a specially named
module initialization function that contains calls to the Python-C API to inform the interpreter about the
exposed functions and classes. The C code is then compiled into a dynamically loaded library (DLL) that
can be loaded by the Python interpreter to enable the transfer of control to and from the C functions.

1 def f (n ) :
2 sum = 0
3 for i in range (n ) :
4 sum += i
5 #This i s a comment
6 return i

Figure 3: Simple example of a python function.

Python functions are defined using the keyword def and support default and keyword arguments. If a
function does not contain a return statement, then the function implicitly returns a built-in value called
None. Figure 3 shows a simple example of a Python program containing a function definition. Python has a
built-in range function. The invocation range(n) returns a list of values from 0 to n-1. The function range
requires 3 arguments: the starting value, the stop value and the step. The starting value defaults to zero
and the step defaults to 1. Python’s for loop is more general than the for loop found in languages such as
C and is based on the concept of iterators. Python’s for loops are written using the notation for x in y
where the object resulting from the evaluation of expression y must be iteratable. In the code of Figure 3
the expression range(n) returns a list and the resulting list is then iterated over. Any object that supports
the iterator protocol can be iterated over. Built-in types, such as lists, dictionaries and tuples, can all be
iterated over elegantly using for loops.

Python also supports generators to enable a lazier iteration style. For example, the function xrange can
be used instead of range. Function xrange does not return a list but rather it returns a generator. The
elements produced by this generator can be iterated, one at a time, without holding the entire list in memory.
This form of iteration is advantageous because it reduces memory consumption. In numerical applications,
range and xrange are often used to emulate a C-style for loops.

Python has no native-language support for arrays. NumPy is an extension module that defines a fast
multi-dimensional array class. NumPy is implemented in C and uses Python’s support for operator over-
loading to provide flexible indexing. Indexing in NumPy arrays is zero based and subscripting is bound
checked. The key feature of NumPy is the support for multiple views into the same underlying data. Unlike
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C or Fortran arrays, NumPy arrays are not restricted to contiguous memory locations. NumPy maintain a
pointer to the starting memory address of an array and also a set of strides, one for each dimension, of the
array. A stride in dimension d defines the number of bytes in memory that must be jumped when the index
in dimension d is incremented by 1. If arr is a NumPy array with n dimensions, and (i0, i1, in−1) is an index
into the array, then the actual memory address M referenced is computed as follows:

M = arr.data +
n−1∑
j=0

a.strides[j] ∗ ij (1)

The programmer specifies the strides of an array. A stride is an arbitrary integer including zero. The
generalized strides enable a NumPy array to emulate C-style row-major array indexing, Fortran-style column-
major indexing and many types of non-contiguous data layouts.

NumPy separates data allocation from the view into the data. The actual memory locations referred
by a NumPy array may have been allocated by a standard NumPy allocation function or by some third-
party library written in Python, C or Fortran. NumPy provides many ways to create such views, the most
common of which is the slicing operator. Slicing for arrays is defined as follows. Let ar be an one-dimensional
array. Let br = ar[start : stop : step] be a slice of the array ar. Then element br[i] is the same element
as ar[i ∗ step + start]. The length of the array br is given by b(stop − start)/stepc. Slices are views into
the original array and no data copying occurs when creating a slice. Multi-dimensional arrays can be sliced
independently in each direction.

Figure 4 shows some examples of array creation and slicing. Line 1 imports the NumPy library. Line
2 allocates an array arr of doubles of size 100×300 initialized to zero. The strides of this array emulate a
row-major storage order. Line 3 creates a slice of arr. The notation 5:97:3 states that the slice starts at 5,
stops at 97 (excluding 97 itself), and has a step size of 3. Line 4 writes the constant 1.0 in the row 5, column
3 of arr. Line 5 prints 1.0 because the element [0,0] of the slice v1 corresponds to the element [5,3] of
the array arr. Line 7 prints 2.0, the constant assigned to the array via slice v1 in line 6. Each NumPy
array has a field called strides that is a tuple storing the strides, in bytes, of the array in each dimension.
Lines 8 and 9 print (2400,8) and (7200,16), respectively, assuming that each element is 8 bytes. Line 10
creates a new view, v2, of arr where the axes are swapped. Thus, line 11 prints (8,2400). In line 12, a new
one-dimensional view v3 of arr is created. Line 12 prints 1.0 because element 300*5+3 of v3 is the same
as element [5,3] of arr. Line 13 creates a view v4 of v3 using the slice [3:100*300:5] which starts at the
element 3 and has stride of 5 elements or 40 bytes. Line 14 prints 1.0 because element 300 of v4 is the same
as element 5*300+3 of v3 or, equivalently, element [5,3] of arr.

The stride variables can be changed directly without going through slicing or method calls such as reshape.
The strides of a NumPy array can also be changed through the NumPy C API.

3.3 Extensions Introduced

In the new programming model presented in this paper the programmer creates a special decorator to
annotate each function to be compiled. This decorator declares the types of the function’s parameters and
of its return value. Decorators are annotations added just before a function definition and are a standard
Python syntax feature. Optionally, the types of local variables may also be declared in a similar fashion.
If no such declarations are provided, the compiler infers the types of a local variable based on the type of
the first value assigned to the variable in the function. In this framework, a variable cannot change its type
within a function.

Figure 5 shows an example of type-declaration syntax. The first type is for the parameter n and the
second type is for the return type. The types of sum and i are automatically inferred by the compiler to be
int64 (the default integer type). Type declarations for the local variables could be used to force them to be
int32.

The programming model introduces parallel loop annotations. Originally only the range and xrange
iterators are allowed in loops. We defined a special iterator, prange, that is used to specify that a loop
is parallel. To the Python interpreter, prange is identical to xrange. However, unPython treats prange
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1 import numpy
2 ar r = numpy . z e ro s ( ( 100 , 300 ) )
3 v1 = arr [ 5 : 9 7 : 3 , 3 : 3 0 0 : 2 ]
4 a r r [ 5 , 3 ] = 1 .0
5 print v1 [ 0 , 0 ]
6 v1 [ 1 , 2 ] = 2 .0
7 print ar r [ 8 , 7 ]
8 print ar r . s t r i d e s
9 print v1 . s t r i d e s

10 v2 = arr . swapaxes (0 , 1 )
11 print v2 . s t r i d e s
12 v3 = arr . reshape (100∗300)
13 print v3 [300∗5+3]
14 v4 = v3 [ 3 : 1 0 0 ∗ 3 0 0 : 5 ]
15 print v4 [ 3 0 0 ]

Figure 4: Examples of array slicing in Python.

1 @unpython . type ( ’ in t64 ’ , ’ i n t64 ’ )
2 def f (n ) :
3 sum = 0
4 for i in range (n ) :
5 sum += i
6 return sum

Figure 5: Example of decorator used as a type declarator.
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as a special parallel-loop annotation with the fork-join semantics of OpenMP parallel loops. Furthermore,
all variables declared outside the loop are assumed to be shared by all threads. The only synchronization
supported is the implicit join point at the end of a parallel loop nest. Parallel loops can be nested but, in
this model, a join point only exists at the end of the outermost parallel loop. UnPython generates OpenMP
code for parallel loops that will be executed in multi-core CPUs.

When a decorator is used to specify that a function should be executed in the GPU, the compiler
is responsible for generating GPU code as well as for managing data transfers between CPU and GPU
automatically. The decorator is ignored in the absence of a GPU or when the compiler fails to generate
a GPU version of the code. Therefore the source code generated to benefit from the GPU is portable to
multi-core platforms that do not have a GPU.

To efficiently compile Python, unPython only accepts a subset of Python that is critical for the per-
formance of numerical applications. Currently, unPython does not support features such as run-time code
execution, higher-order functions, generators, meta-classes and special methods such as setitem. UnPython
supports 16-, 32- and 64-bit integers and 32- and 64-bit floating point numbers, but it does not support
arbitrary-precision arithmetic. Ensuring no overflows is the responsibility of the programmer. These re-
strictions only apply to the compiled code. All features are available for the non-compiled portion of the
application code that is executed by the Python interpreter.

1 @unpython . gpu
2 @unpython . type ( ’ ndarray [ double , 2 ] ’ ,
3 ’ ndarray [ double , 2 ] ’ ,
4 ’ ndarray [ double , 2 ] ’ ,
5 None )
6 def matrix mult ( a , b , c ) :
7 m = shape ( a ) [ 0 ]
8 n = shape (b ) [ 1 ]
9 p = shape ( a ) [ 1 ]

10 for i in prange (m) :
11 for j in prange (n ) :
12 sum = 0.0
13 for k in xrange (p ) :
14 sum += a [ i , k ]∗b [ k , j ]
15 c [ i , j ] = sum

Figure 6: Type annotations for a matrix multiplication program.

3.4 Programming Model and Compilation Framework

The compilation framework is divided into three distinct pieces: unPython, an ahead-of-time compiler;
jit4GPU (read “Jit-for-GPU”), a JIT compiler exclusively for the generation of GPU code; and GPUrts, a
run-time support system to manage GPU resources.

UnPython takes as input an annotated Python source file written in a subset of Python and generates
a C++ and OpenMP code extension module. C++ and OpenMP were chosen as backends for the CPU
code because they are portable and they allow this new system to benefit from wisdom accumulated in C++
compilers to generate code for specific CPU platforms. The development of unPython focused on compiling
performance-critical portions of scientific applications.

The code-generation process for GPUs is more involved. The compiler and run-time system are respon-
sible for automatically managing all GPU code generation as well as data transfers. Therefore, the code
generator needs information about strides of NumPy arrays and dependence information. This information
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cannot be obtained by unPython and hence a purely ahead-of-time approach is infeasible for generating
GPU code from Python.

UnPython cannot perform any global analysis because unPython only sees type-annotated portions of
the application program. Further, information about strides (and thus the memory layout of the NumPy
arrays) is not available to unPython because of the dynamic nature of the language.

The solution was to write a just-in-time compiler, jit4GPU, that is linked with the application. Jit4GPU
can discover array layouts before compiling code and thus can avoid the limitations faced by unPython. For
GPUs, unPython both passes an intermediate program representation to jit4GPU and generates a fall-back
CPU execution path. At run time jit4GPU analyzes the program to determine if GPU code can, and should,
be generated. If either execution in the GPU would not be profitable or the jit4GPU fails to generate GPU
code, then execution proceeds with the CPU code generated by unPython. Jit4GPU only operates on arrays
of numeric types, numeric scalar types, and loops.

For GPGPU programming, jit4GPU produces AMD CAL IL code and utilizes the CAL API to compile
and execute the code. The AMD CAL IL compiler is a JIT compiler that compiles proprietary AMD IL code
to GPU ISA. The CAL IL compiler and the CAL run-time system are distributed as part of the AMD GPU
driver. There are several reasons for choosing CAL API over the vendor-agnostic OpenCL. First, at the
time that development started, no cross-platform open APIs for GPGPU were available. AMD’s OpenCL
implementation for GPUs has only been released recently. Secondly, the GPU code is generated in the JIT
compiler and need a fast back-end compiler. AMD’s OpenCL compiler is still much slower than the CAL IL
compiler and often takes an order of magnitude more time to compile equivalent programs. Finally, AMD
has not yet provided support for accessing texture resources in OpenCL, instead allocating all memory only
in the slower global buffer. Reads from global buffer are not cached in texture cache and thus are typically
slower than texture fetches. Thus, AMD’s OpenCL is slower than the CAL API implementation.

4 Generating Code for Execution in a GPU

Jit4GPU converts C code, which was generated by unPython from source NumPy code, into a low-level
compute-oriented Application Program Interface (API) called Compute Abstraction Layer (CAL). The CAL
API enables programming through a pseudo-assembly called the AMD Intermediate Language (IL). Programs
written in this IL are compiled to GPU binary code at run time. The AMD IL is similar to the assembly
language of Shader Model 4.0 (introduced in DirectX 10) [16], but it has additional features such as double-
precision instructions and a global buffer for scatter.

4.1 Highlights of the GPU Architecture

The AMD Radeon 5850 graphics card consists of an array of 18 SIMD units, 18 texture units, a dynamic
thread dispatcher, 4 memory controllers and a DMA unit. Radeon 5850 is based upon the AMD Cypress
chip. Cypress has 20 SIMD units but 2 of those have been kept disabled in the 5850 to distinguish it from
the higher-priced Radeon 5870. Each SIMD unit in Radeon 5850 contains 16 thread processors and each
thread processor in turn contains 5 stream processors for a total of 1440 stream processors. Each of the
stream processors can execute at most one scalar multiply-and-ADD (MAD) operation in one cycle resulting
in a peak performance of 2880 single-precision floating-point operations (FPO) per cycle. Alternatively, the
card can perform 576 double-precision FPOs per cycle. Each SIMD array is aligned with a texture unit for
memory loads. Each texture unit can execute four physical address computations per cycle for a total of
only 72 address computations per cycle for the entire chip. This reveals a considerable asymmetry between
ALU and address-computation capability that is characteristic of most modern GPUs. Each SIMD unit has
an associated 8kB L1 texture cache and 32kB Local Data Share (LDS), also called local memory in OpenCL
terminology. The texture cache is a read-only cache and can be thought of as a load buffer instead of a
true cache. Each SIMD unit has a 256kB register file. This large register file suggests that data should be
brought in to registers whenever possible. Each of the four memory controllers have 128kB L2 cache giving
a total of 512kB L2 cache for the chip.
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The AMD Radeon 5850 GPU runs at a clock rate of 725 MHz. Its peak performance is 2000 single-
precision Gflop/second (Gflops) or 400 double-precision Gflops. The Radeon 5850 utilizes Graphics Double
Data Rate version 5 (GDDR5) memory and has a peak memory bandwidth of 128Gbps.

4.2 AMD Compute Abstraction Layer

From an AMD IL code the CAL compiler generates a module. The IL or ISA function to be executed on the
GPU is called a kernel. To execute a kernel, the programmer passes a handle to the kernel and the size of
the thread-block to a specific function in the CAL API. The beginning of execution of a kernel on the GPU
is termed as launching a kernel.

AMD IL provides two types of kernels: pixel shaders and compute shaders. Jit4GPU only uses compute
shaders. AMD IL compute shaders provide a Single-Program Multiple-Data (SPMD) programming model.
Threads are organized into thread groups and thread groups are further arranged into a grid. Each thread
knows its absolute thread id as well as its id within the group. The hardware groups threads into batches of
64 threads called wavefronts. A wavefront executes on a Single-Instruction Multiple-Data (SIMD) unit. Each
SIMD can execute many wavefronts in parallel depending upon availability of resources such as registers. A
thread dispatcher dynamically sends Wavefronts to various SIMD units.

In the CAL API, memory is allocated as a 1D or 2D resource with a maximum size of 16384x16384
elements where an element can be of up to 16 bytes. Henceforth we refer to data types as follows: float is a
32-bit floating-point value, double is a 64-bit floating-point value, float2 is a 64-bit segment containing two
floats, float4 is a 128-bit segment containing four floats, and double2 is a 128-bit segment containing two
doubles.

The declaration of a resource specifies the element size for all indexing operations into the resource.
Resources can be created on the GPU itself, in a special reserved section of the system RAM that is
accessible by the GPU, or from pre-allocated system memory (provided that certain alignment constraints
are met). Declarations must specify the location of the resource.

Each resource to be used in the kernel has to be bound, before a kernel is launched, either to a predefined
read-only input array (i0 to i7) or to a read-write unordered access view (UAV) resource. Other types of
resources are available but are not discussed here.

The GPU can access the buffers allocated in system RAM using DMA accesses within a kernel, or through
the CAL API for copying data between system RAM and the GPU. The data copy between resources in
system RAM and resources on GPU can be done in parallel with the kernels because the DMA unit is
independent of ALUs. Further, most calls of the CAL API (including kernel launch and initiation of DMA
transfers) are asynchronous and thus provide the ability to setup pipelines.1

4.3 Basic Code Generation for GPUs

The GPU and the CPU are in separate address spaces. Kernel functions executing on the GPU can access
resources located in either the on-board GPU RAM or the PCIe buffer space in system RAM. The compiler
and run-time system are responsible for ensuring that the data required for computation by a GPU is
first copied from system RAM to a GPU-addressable location. While the GPU can read from the PCIe
buffers in system memory, reading data within a kernel from PCIe buffer is inefficient because it may require
transferring the same data multiple times in small chunks over the PCIe bus. Therefore, data is copied to the
GPU on-board RAM before starting computation on the GPU. In general, the amount of on-board memory
on a GPU (typically 1GB in current mainstream consumer GPUs) is smaller than the memory requirements
of a kernel. Thus loop tiling is often necessary. Finally, memory addresses need to be converted to the GPU
address space.

Jit4GPU handles all GPU code generation, including analysis for data transfers. Jit4GPU can only
generate GPU code for a class of memory access patterns. Loop nests that contain accesses that do not fit
this class are executed in the CPU.

1Jit4GPU does not yet take advantage of this parallelism.
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4.4 Loop optimizations

While each SIMD unit can complete 80 ALU operations per cycle, the texture unit (TEX) can only perform
4 address computations per cycle. To mitigate this imbalance, jit4GPU performs three transformations:
loop unroll-and-jam, coalescing loads into vector types such as float2 or float4, and partial redundant load
elimination. Jit4GPU performs loop unroll-and-jam to expose more opportunities for coalescing and redun-
dant load elimination. Unrolling loops also gives the AMD’s CAL IL compiler a larger scope for instruction
scheduling. Unroll-and-jam is the same as tiling a loop if more outer loops are unrolled. Tiling can poten-
tially improve the data locality and can improve the texture cache and register usage but the compiler does
not take locality into account explicitly while performing the transformation.

Unroll-and-jam is performed in phases. The compiler starts by considering the unroll of the innermost
loop and moves outwards in each phase. A loop is considered a candidate for unrolling if it is either the
innermost loop, or if it is a parallel loop with constant bounds and all its children also have constant bounds.
The loop bound is also required to be a multiple of either 4 or 2. If a loop satisfies these conditions, then
the compiler will consider the register usage. If the estimated register usage after unrolling the loop nest
under consideration will be above a set threshold (32 4-wide registers in the current implementation), then
jit4GPU does not attempt unrolling of the current loop nest. The number of registers used is restricted by
the compiler because the number of GPU threads that can run concurrently is limited by the availability
of registers to be distributed amongst the threads. Running many GPU threads is necessary to keep the
execution units of the GPU busy and to hide latency of operations such as memory loads.

After the loops are unrolled, the compiler marks groups of array accesses in the loop body that can be
coalesced into a vector type. If all address expressions from the same GPU resource can be written as a sum
of a multiple of 4 or 2 and a constant offset, then the GPU resource can be converted into a multi-component
resource (such as a resource of float4 components). After unroll-and-jam and coalescing into vector types is
complete, the compiler performs partial redundant load elimination in the loop body. The loads occurring
in the loop body that are determined to refer to the same element of the resource are collapsed to a single
load.

4.5 Back-end optimizations

Back-end optimizations are done by the AMD CAL compiler. The AMD CAL compiler generates GPU
ISA code from the given CAL IL. While the CAL IL is itself register based, the registers in the IL do
not correspond to physical registers. The CAL IL compiler does physical register allocation, instruction
scheduling, including VLIW packing, dead-code elimination and many other optimizations. While the exact
details of all the optimizations performed by the compiler are not public, in our experience the AMD compiler
usually does a good job for most back-end optimizations.

5 Automatic Data Transfers and Address Mapping

The proposed shared-memory programming model delivers the abstraction of a single address space shared
by the CPU and the GPU. However, the GPU operates in a separate address space from the CPU. Thus,
all data needed for computations performed in the GPU must be present in the GPU address space before
the computation can be started. The new compilation framework presented here attempts to automatically
identify the data to be transferred between the physical CPU and GPU address spaces. The mapping from
the single address space in the programming model to the two address spaces in the architecture can be
decomposed into two related problems:

• Data transfer problem: the compiler must identify the set of memory locations to be copied. This
set is a superset of the memory locations actually accessed.

• Address mapping problem: for each array access in a computation performed in the GPU, the
compiler must replace the address computation done for the array access in the system memory space
with an address computation expression in the GPU address space.
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5.1 Overview of the approach

In the numerical programs targeted by this compilation framework most memory accesses inside a loop are
through array references. The set of memory locations accessed through such a reference usually can be
described fully through the memory address expression for one iteration as a function of the loop counters
and the iteration domain. Jit4GPU only transforms loops in which array indexes are an affine function of
the loop counters.

If these conditions are met, then for each array access the compiler computes a new affine function of the
loop counters representing the assigned memory address on the GPU. The compiler also computes the size
of the set of memory references accessed by the array access on the CPU. The new function is chosen such
that there is a one-to-one correspondence of CPU memory addresses represented by the original expression
and the computed GPU memory addresses. If a loop nest contains array accesses for which a new set of
affine coefficients cannot be computed, then GPU code is not generated for that nest.

5.2 Representation of array references

This section describes the representation used by jit4GPU for array references occurring inside a loop. This
representation is used by algorithms described in the next section to generate GPU code and to automatically
transfer data between CPU and GPU.

To set up an automatic data transfer for a kernel, the compiler needs the loop bounds and the layout of
the NumPy arrays referenced. The mapping of array index to memory locations in a NumPy array is more
complex than in standard programming languages such as C. In such an environment it is more interesting
to represent the memory access pattern directly instead of separately representing the subscript expression
and strides of arrays. The array-access analysis in jit4GPU is based on the concept of Linear Memory Access
Descriptors (LMADs) introduced by Paek et al. [24]. Jit4GPU uses a restricted form of LMADs that we
call Constant-Stride LMADs or CSLMADs. In the following discussion, some definitions are adapted to the
context of NumPy arrays and CSLMADs.

Consider an array access occurring inside a loop nest of depth d. Let M be the set of memory locations
accessed by the given array access. Let the vector of loop counters be ~i = (i1, i2, ..., id) and let D be the
iteration domain. Assume that D has been normalized so that the lower bound for all loops is zero and the
loop stride is one. The upper bound of a loop is assumed to be an affine function of the loop counters of
outer loops. The set M is defined to be a CSLMAD if and only if the memory address represented by the
array access is an affine function f(~i) of ~i. The set M is completely specified by the function f and the
iteration domain D. If the loop-nest is of depth d, then ~i = (i1, i2, ..., id). Given that f is affine, it can be
expressed as:

f(~i ) = b +
d∑

k=1

sk × ik (2)

M = {f(~i )|~i ∈ D} (3)

The constants sk are the strides of the CSLMAD and the integer constant b is the base of the CSLMAD.
The strides and the base depend upon the memory access pattern represented by the array access. The
dimension of a CSLMAD is the number of loop variables occurring in the memory address expression
represented by the CSLMAD. Let the loop variable ik have the domain [0, uk). The span for dimension k is
σk = sk × uk. The span represents the memory interval traversed by the CSLMAD when the loop counter
ik traverses the domain [0, uk) while keeping the other loop variables constant.

As an example of a CSLMAD, consider an array in the C programming language declared as char
A[P ][80] where P is a compile-time constant, and an array reference A[i + j + 1][2 × i + 2] that occurs
inside a loop nest with loop indices i and j. Let the iteration domain D be given by 0 ≤ i < 100 and
0 ≤ j < i + 5. Following standard C semantics, the memory address represented by the array access is given
by f(i, j) = &A[0][0]+80× (i+ j +1)+(2× i+2) = &A[0][0]+82× i+80× j +82. In this case, the memory
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address is an affine function f of loop counters i and j. The set M of memory addresses accessed by the
array access is then given by M = {f(i, j)|(i, j) ∈ D}. The strides are s1 = 82 and s2 = 80, respectively,
and the base of the CSLMAD is &A[0][0] + 82.

A CSLMAD represents many array accesses that are commonly used in numerical programming. However
it has limitations. For instance, a CSLMAD cannot represent an array access such as B[i× i].

To completely represent a CSLMAD, a compiler has to store the strides, the base and the iteration
domain D. The iteration domain D needs to be represented in the compiler only once for each loop nest.
For each loop nest, jit4GPU maintains two tables. One table stores the array accesses in the form of strides
and base of the corresponding CSLMAD and the second table stores the loop upper bounds. CSLMADs
are represented as affine functions that map a vector of integers (vector of loop counters) to a single integer
(a memory address). Thus, a CSLMAD can is completely specified by its strides and the base. Lower-case
letters, such as f , are used for CSLMADs. The domain is specified separately and is represented by upper-
case letters, such as D. The define a function mem(f,D) returns the set of memory locations accessed by
the CSLMAD f when iterating over the domain D. Thus mem gives the range of f for the domain D.

5.3 Array access analysis

Given a table of array accesses Ti and a table of loop upper bounds Tu, jit4GPU computes an heuristic
solution to two problems:

1. Let C be the set of memory locations accessed by CSLMADs in the loop nest. Find the set G of
memory locations to be transferred to the GPU such that C ⊆ G. Compute |G|.

2. Generate a new table T ′
i for array accesses representing the memory addresses on the GPU.

Consider the problem where a loop nest contains two array references A and B. Each reference will
be represented by a CSLMAD. For each CSLMAD A, let θA be the interval of memory locations that can
potentially be accessed by A. If θA and θB are disjoint, then the problem of data transfer can be decomposed
into two separate problems. In general, a set of N array accesses can be split into smaller groups of array
accesses such that the interval of memory locations accessed by one group does not overlap with another
group. In jit4GPU this splitting consists on splitting the original tables Ti and Tu into smaller tables.

Jit4GPU creates a memory reference overlap graph with CSLMADs as vertices. An edge is placed between
two nodes if and only if the memory intervals of two CSLMADs overlap. Each connected component in this
graph corresponds to a group of possibly overlapping CSLMADs. Each group of CSLMADs is analyzed
independently and assigned to a unique GPU memory resource.

For each group of CSLMADs, the objective is to find the set of memory locations potentially accessed by
the group. A conservative estimate of this set is to find an interval of memory locations such that it contains
the intervals of memory locations accessed by each CSLMAD in the group as a subset. Such an interval
can be found simply by taking the minimum of the lower bounds and the maximum of the upper bounds
of all intervals in the group. However, such an interval is a very conservative estimate of the set of memory
locations accessed and this general case is not implemented.

In many cases, it is possible to find a more precise estimate of the set of memory locations accessed.
Jit4GPU implements the following cases.

5.3.1 One-dimensional CSLMAD

The group consists of a single one-dimensional CSLMAD. The CSLMAD must be of the form s× i+ b where
s and b are constant non-negative integers and i is a loop counter that can take any integer value in the
interval [0, u). Thus, the domain D of the CSLMAD is i ∈ [0, u). For a one-dimensional CSLMAD, each
possible value of i maps to a unique location in memory. So, the set of memory locations accessed is simply
the set containing the u memory locations b, s + b, 2s + b, ..., (u− 1)s + b. This set can be trivially mapped
to a contiguous vector of u unique memory locations on the GPU and it is trivial to compute the number
of memory locations accessed and the mapped address. For example, consider the case f(i) = 3× i + 2 over
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Figure 7: Mapping from CPU address space to a GPU array for a one-dimensional CSLMAD.

Figure 8: Two CSLMADs A and B with interleaved memory accesses.

the domain [0, 5) given in Figure 7, the set of memory locations 2, 5, 8, 11, 14 in the CPU address space is
mapped to the locations 0, 1, 2, 3, 4 on a GPU memory resource or array.

5.3.2 Multiple one-dimensional CSLMADs with equal strides

Consider the case where a group consists of multiple one-dimensional CSLMADs such that all CSLMADs are
defined over the same loop variable i and domain D and have the same stride s. Therefore these CSLMADs
differ only in their bases. Then, the sets of memory locations potentially accessed by each of the CSLMADs
individually can be computed very easily as described earlier. However, the memory locations accessed by
the CSLMADs in a group may overlap and therefore cannot be counted separately.

The actual set of memory locations referenced by two CSLMADs A and B may be disjoint even when
the intervals θA and θB overlap. For example, consider the case where CSLMAD A is 2 × i and CSLMAD
B is 2× i + 1 over the interval [0, 5). In this case θA = [0, 8] and θB = [1, 9] and they overlap. However, as
shown in Figure 8, the actual sets accessed are disjoint.

In general, given two CSLMADs A and B with the same stride s and bases bA and bB such that bB−bA is
not a multiple of s, the set of memory locations accessed by A and B is disjoint. Such a group of CSLMADs
could be split into smaller groups of disjoint CSLMADs. However, transferring a set of interleaved CSLMADs
separately is less efficient than transferring the entire interval as a single contiguous copy. For instance, in
the example shown in Figure 8 it is more efficient to do a bulk transfer of the interval [0, 9] to a single GPU
resource.

For the general case, let there be n CSLMADs and the jth CSLMAD be given by fj(i) = s × i + bj .
Without loss of generality, let b1 ≤ b2 ≤ b3 ≤ . . . ≤ bn. Let u be the upper bound of i such that 0 ≤ i < u.

Figure 9: Intervals in which memory accesses from two CSLMADs f1 and fj may occur.
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(c) Compacted CSLMADs

Figure 10: Example that illustrates the analysis and mapping for multiple interleaved one-dimensional
CSLMADs.

Rewriting the expression for the CSLMADs simplifies the analysis. For all bases bj , 2 ≤ j ≤ n, the
distance bj − b1 can be computed as two components: a multiple of s and a remainder. Let vj and rj be
non-negative integers defined as follows:

vj =
⌊

bj − b1

s

⌋
(4)

rj = (bj − b1) mod s

(5)

Therefore, replacing equation 4 into equation 5:

rj = bj − b1 − s× vj

bj − b1 = s× vj + rj (6)

For j = 1, v1 = 0 and r1 = 0. Therefore the jth CSLMAD can be expressed as:

fj(i) = s× i + s× vj + rj + b1

= s× (i + vj) + rj + b1 (7)

Each CSLMAD can be visualized as a periodically repeated but finite train of unit square waves defined
over a particular length of time. The quantity vj represents the distance between the bases bj and b1 in terms
of the number of iterations (or number of periods in the signal analogy). The quantity rj is an offset (or
phase in the signal analogy) representing whether the CSLMADs can potentially overlap. If rj is non-zero,
then the two CSLMADs can be thought of as being out-of-phase and can never reference the same memory
location.

Consider two CSLMADs f1 and fj as defined above over the domain i ∈ [0, u). Consider an interval
τ = [k×s+b1, (k+1)×s+b1) for any non-negative integer k. Figure 9 illustrate this situation for s = 5 and
u = 3. The interval shown in the figure is for k = 1. Each of the CSLMADs f1 and fj references at most one
memory location in τ because their stride is s. Furthermore, if k ≥ (u+vj) or k < 0 then no memory location

15



in τ is referenced by either CSLMAD because there is no overlap between τ and the interval of memory
locations accessed by the CSLMADs (see Figure 9). Thus, no more than a total of 2 × (u + vj) memory
locations can be accessed by both CSLMADs combined. If rj = 0 the estimate is refined by recognizing that
the two CSLMADs are in-phase. In this case the only memory location that might potentially be accessed
in τ by either CSLMAD is k × s + b1 and, therefore, no more than (u + vj) memory locations are accessed.

The extension of the argument to n one-dimensional CSLMADs with the same stride s needs to determine
the maximum number of memory locations that might be accessed in the interval τ by all the CSLMADs
combined. Recall that the bases b1 to bn are arranged in ascending order. Therefore, given the definition
of vj in equation 4, it must be the case that vn = max(v1, v2, . . . , vn). Some of the values in the multiset
r1, r2, ..., rn may be repeated. Let the number of unique values in this multiset be q. Then, no more than q
memory locations in τ can be accessed by the n CSLMADs. This result can be proved by contradiction by
considering two CSLMADs fx and fy such that rx = ry and then assuming that they will access different
memory locations in the given interval. Given that a maximum of q locations can be accessed in τ and that
there are a maximum of u+vn such intervals that may have accesses, a total of q×(u+vn) memory locations
can potentially be accessed.

Another way of understanding the process to find the number of memory locations accessed by mul-
tiple overlapping one-dimensional CSLMADs is to consider the example in Figure 10(a). There are three
CSLMADs with stride s = 4, and bases such that bB = bA + 4 and bC = bA + 15. The upper bound for all
three CSLMADs is u = 5. Thus the accesses fall in the interval from bA to bC + s× (u− 1). This interval is
divided into subintervals of s elements each. The pattern of access in an interval that has the most accesses
is found. Then, for the purpose of data transfer and mapping, the analysis assumes that this pattern repeats
over the entire interval in which accesses may occur as shown in Figure 10(b). This assumption is equivalent
to defining new CSLMADs that stretch the original ones by including more accesses than the original ones
did.

Next the memory locations accessed by each CSLMAD group must be mapped to GPU addresses.
Jit4GPU allocates a vector of q × (u + vn) elements on the GPU. Each unique potentially accessed memory
location on the CPU must be mapped to a unique memory location on the GPU. Out of every s contiguous
locations only q locations may be accessed. The rest can be discarded and the q locations can be stored
packed into q contiguous locations on the GPU. Thus, the stride of the CSLMADs changes from s to q.

Before the CSLMADs are compacted in the CPU, the offset rj of each access is for a stride of s. However
compactation changes the stride to a value s′, thus the offsets of all the CSLMADs must be recomputed
for this new stride. Figure 10(c) illustrates how the compactation affects the value of the offsets. In the
implementation of this mapping, jit4GPU constructs a vector of length n with the values [r1, r2, ..., rn], sorts
the vector in ascending order and then removes the duplicates resulting in a vector V of length q. The offset
of the j-th CSLMAD is given by pj such that V [pj ] = rj assuming zero-based indexing. In other words, pj

is the rank of rj . Thus, the translation of the CSLMAD fj(i) = s × (i + vj) + rj + b1 to GPU address is
given by gj(i) = q × (i + vj) + pj + v0 where v0 is the starting address of the allocated vector on the GPU.

5.3.3 RCSLMAD: A special class of multi-dimensional CSLMAD

In general, multidimensional CSLMADs may have complex access patterns. This section deals with a special
class of CSLMADs with the property that every access is to a unique memory location. The following
example, in the C programming language, motivates the discussion:

1 double A[M] [N ] ;
2 double sum = 0 . 0 ;
3 for ( i =0; i<u1 ; i++){
4 for ( j =0; j<u2 ; j++){
5 sum += A[ i ] [ j ] ;
6 }
7 }
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The compiler converts the reference A[i][j] to the CSLMAD &A[0][0] + i×N + j. However, multidimen-
sional arrays in C are not true multidimensional arrays and are not bounds-checked. Thus, it is perfectly
legal for j to be larger than N .

If u2 ≤ N , then, for a given value of i, all the locations referenced by A[i][j] are in the i-th row. In this
case each point in the iteration space accesses a different array element. However, if u2 > N then there are
multiple references to the same location because, for a given value of i, the reference A[i][j] accesses elements
in multiple rows.

Given the general form of a two-dimensional CSLMAD f(i, j) = s1 × i + s2 × j + c, each access in this
CSLMAD is to a unique memory location if s2 × (u2 − 1) < s1. In other words, the span of j should be
contained within the stride of i. To verify this condition the compiler only needs the value of the loop
bounds and strides. If the condition is satisfied, the number of memory references is equal to the number of
iterations of the loop nest. Jit4GPU always knows the value of of loop invariant symbolic constants, such as
u1 and u2, because each loop is analyzed just before execution.

The example falls in a special class of CSLMADs that can be called Restricted CSLMADs or RCSLMADs.
RCLMADs are defined as follows.

Definition 1 Let f(i1, i2, ..., id) =
∑d

k=1 sk × ik + b be a CSLMAD defined over a domain
D = (i1, i2, ..., id)|ik < uk. If f satisfies the condition

∀k < d, sk >

d∑
p=k+1

sp × (up − 1) (8)

then f is as Restricted CSLMAD (RCSLMAD).

In a RCSLMAD, if the iteration vectors are ordered in lexicographic order, then the address of the
memory references in the RCSLMAD are ordered in ascending order. RCSLMADs have several important
properties proved in the following theorems.

Theorem 1 Let f(i1, i2, ..., id) =
∑d

k=1 sk × ik + b be a RCSLMAD defined over a domain
D = (i1, i2, ..., id)|ik < uk. For any two iteration vectors ~i, ~i′ ∈ D, f(~i′) > f(~i) if ~i′ is lexicographically
larger than ~i.

Proof 1 Let m be the first dimension where ~i and ~i′ differ. Thus, i′m = im + t for some positive integer t.
Let δk = ik − i′k for all 0 < k ≤ d. Therefore:

f(~i′)− f(~i) = sm × (−δm) +
d∑

k=m+1

sk × (−δk)

= sm × t−
d∑

k=m+1

sk × δk (9)

From δk ≤ (uk − 1), follows:

d∑
k=m+1

sk × δk ≤
d∑

k=m+1

sk × (uk − 1) (10)

From the defining constraints imposed upon the RCSLMAD:

d∑
k=m+1

sk × (uk − 1) < sm (11)
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Therefore, from inequalities 10 and 11:

d∑
k=m+1

sk × δk < sm (12)

Negating both sides and adding sm × t to both sides:

sm × t−
d∑

k=m+1

sk × δk > sm × t− sm (13)

But sm × t− sm ≥ 0. Therefore, from equation 9 and inequality 13,

f(~i′)− f(~i) > 0 (14)

Thus the theorem is proved.

Corollary 1 Let f(i1, i2, ..., id) =
∑d

k=1 sk × ik + b be a RCSLMAD defined over a domain
D = (i1, i2, ..., id)|ik < uk. All the memory locations accessed by the RCSLMAD are unique.

This corollary follows immediately from Theorem 1.
From the properties of the RCSLMAD it is obvious that the number of memory locations accessed by an

RCSLMAD defined over a domain D is equal to |D|.

5.3.4 Multiple CSLMADs with equal strides and different bases

A group containing multiple CSLMADs where all the CSLMADs have the same stride for each dimension
often arises in stencil-type computations. The solution to the problem of determining the set of memory
locations addressed is presented under two special cases.

In the first case all the CSLMADs are interleaved but definitely access disjoint sets of memory locations
and the differences between any two bases is smaller than the smallest stride.

Theorem 2 Consider n CSLMADs of d dimensions with bases b1, b2, . . . , bn. For all CSLMADs in the
group, the strides in each dimension are s1, s2, . . . , sd. Without loss of generality, b1 < b2 < b3 < . . . <
bn. The CSLMADs are defined over a domain D = i1, i2, . . . , id|ik < uk. Let the CSLMADs satisfy the
constraints:

∀k < d, sk > sd − 1 +
d∑

p=k+1

sp × (up − 1) (15)

∀m > 1, bm − b1 < sd (16)

Then, the number of memory locations referenced by this group of CSLMADs is n× |D|.

Proof 2 Each of the CSLMADs satisfies the constraints for definition of a RCSLMAD. Therefore, the
number of memory locations referenced by each RCSLMAD is |D|. Moreover, no two RCSLMADs in such a
group access the same memory location. This can be proved by contradiction. The assumption for the proof
is:

fp(~i) = fq(~i′) (17)

for ~i, ~i′ ∈ D and p < q. Three cases must be considered:

1. ~i is lexicographically less than ~i′. However, from theorem 1, fp(~i) < fp(~i′). Furthermore, fp(~i′) < fq(~i′)
because bp < bq. Therefore, fp(~i) < fp(~i′) which contradicts the assumption in the proof.
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2. ~i is lexicographically larger than ~i′ and the first dimension where they differ is d with id = i′d + t for
some positive integer t.

fp(~i)− fq(~i′) = bp − bq + sd × (id − i′d)
= bp − bq + sd × t (18)

From equations 17 and 18,

bq − bp = sd × t (19)

However, from the initial constraints, bq − bp < sd. Therefore, bq − bp < sd× t which is a contradiction
for this case.

3. ~i is lexicographically larger than ~i′ and the first dimension where they differ is m < d with im = i′m + t
for some positive integer t.

fp(~i)− fq(~i′) = bp − bq + sm × t +
d∑

k=m+1

sk × (ik − i′k) (20)

From equations 17 and 20,

bq − bp +
∑

k=m+1

sk × (i′k − ik) = sm × t (21)

The upper bound on bq − bp is sd − 1 and the upper bound on the value of
∑

k=m+1 sk × (i′k − ik) is∑
k=m+1 sk× (i′k− ik). Therefore, the upper bound on the LHS of equation 21 is sd−1+

∑
k=m+1 sk×

(i′k− ik). From the constraint in inequality 15, this upper bound is less than sm. Therefore sm > sm× t
which is a contradiction for this case.

Therefore, no two RCSLMADs in such a group can access the same memory location. Thus, the number
of memory locations accessed is n× |D|.

Constraint 15 is tighter than the constraint 8 used in the definition of RCSLMADs. The tighter constraint
is necessary to ensure that each RCSLMAD accesses memory locations that are distinct from the locations
accessed by other RCSLMADs in the group. For instance, consider two RCSLMADs f1(i, j) = 16× i+5× j
and f2(i, j) = 16× i + 5× j + 1 defined over D = {0 ≤ i < 8, 0 ≤ j < 4}. In this case, the RCSLMADs do
not obey the constraint 15 because for any i, f1(i + 1, 0) = f2(i, 3) and thus f1 and f2 access overlapping
memory locations. The tighter constraint ensures that there are at least ud intervals of length sd contained
within the stride sd−1. Thus the tighter constraint is necessary to ensure proper interleaving of the accesses.

In the second case a group G of RCSLMADs obeys constraint 15 but not constraint 16. Thus, the
difference between two bases is not necessarily smaller than the stride. Two RCSLMADs in the group have
similar memory access patterns but the patterns are offset from each other by an arbitrary integer value.
The RCSLMADs can therefore potentially overlap. For this case a heuristic solution is implemented. The
idea is to find a group G′ of n or less CSLMADs satisfying the constraints 15 and 16 with the same strides
as G but defined over a possibly larger domain than G such that G′ accesses a superset of memory locations
accessed by G. For every member f of group G, the idea is to construct a member f ′ in G′ that accesses a
superset of memory locations accessed by f . If such a group G′ can be successfully constructed, then |G′|
can be found using Theorem 2 and can be used as a conservative approximation of |G|. This is analogous to
the stretching of CSLMADs shown in Figure 10.

Such a solution is constructed by increasing the domain of the RCSLMAD. There are two possibilities:
(i) keep the base the same; or (ii) reduce the base of the RCSLMAD. The domain cannot grow unboundedly
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in dimensions 2 to d because the upper bounds of i2 to id are restricted by the defining conditions on strides
of RCSLMADs. If the base is reduced to a value b′, the domain must grow sufficiently to include the original
RCSLMAD in the new RCSLMAD. Moreover, the difference b− b′ must be re-writable as a sum of multiples
of strides to ensure that the shifted RCSLMAD does overlap with the original RCSLMAD.

Construction of the new group G′ is done by defining a set of constraints stating that the mth member
of G′ should be a superset of the mth member of G and then adding the constraints defined in inequalities
15 and 16 for G′ which contain unknown parameters. This linear constraint system is solved for a feasible
solution for the unknown parameters. If a feasible solution is found, then the G′ is successfully constructed.
If a feasible solution is not found, then the heuristic returns no solution in this case and the jit4GPU exits
passing the control back to the CPU fall-back path.

The number of distinct members of G′ is not known at the start of the algorithm. Instead, n suitable
RCSLMADs are sought, some of which can be duplicates and can be removed later. The bases of the
CSLMADs in G′ must be found. Let b′ < min(b1, b2, . . . , bn), b′ is a positive integer for which the algorithm
seeks a solution. Then, a rewriting of the mth RCSLMAD in G, of the following form, is sought:

fm(~i) =
d∑

k=1

sk × (ik + tmk) + rm + b′ (22)

0 ≤ rm < sd (23)
∀k, 1 ≤ k ≤ d , 0 ≤ tmk (24)
∀k, 1 ≤ k ≤ d , 0 ≤ ik < uk (25)

Values tmk and rm are also unknowns and will be found later. The above set can be transformed by
introducing variables i′k = ik + tmk.

fm(~i) =
d∑

k=1

sk × (i′k) + rm + b′ (26)

0 ≤ rm < sd (27)
∀k, 1 ≤ k ≤ d , 0 ≤ tmk (28)
∀k, 1 ≤ k ≤ d , tmk ≤ i′k < uk + tmk (29)

Then, it is possible to define a new CSLMAD that covers a superset of memory locations of fm by simply
changing the lower bound of i′k to 0. This rewriting scheme can be utilized to define the desired set of
constraints to obtain G′.

First, let the bases of the n CSLMADs in G′ be b′ + r1, b
′ + r2, . . . , b

′ + rn. Let the upper bounds of the
domain of G′ be u′1, u

′
2, . . . , u

′
n. The first condition imposed is to ensure that the difference of the bases does

not exceed sd. This is indirectly imposed as the following n constraints:

∀m, 1 ≤ m ≤ n,

0 ≤ rm < sd (30)

Second, it must be possible to do a rewriting of the mth member of G to the mth member of G′ as shown
above. It results in the following n constraints:

∀m, 1 ≤ m ≤ n,
d∑

k=1

sk × tmk + rm + b′ = bn (31)
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Third, the domain of the rewritten RCSLMAD fm must be contained within the domain of mth compo-
nent of G′. This requirement results in the following m× n constraints:

∀m,∀k, 1 ≤ m ≤ n, 1 ≤ k ≤ d,

uk + tmk ≤ u′k (32)

Fourth, strides and upper bounds of G′ must follow the conditions from Theorem 2 resulting in d − 1
conditions

∀k, 1 ≤ k < d,

sk > sd − 1 +
d∑

p=m+1

sp × (u′p − 1) (33)

Using the constraints 30,31,32,33 a feasible solution can be found and can be used to construct the group
G′. However, such a group may be defined over a larger domain than necessary. To obtain a good solution
in terms of the size of the domain, a linear objective function is introduced

Minimize :
d∑

k=1

u′k (34)

A final constraint restricts the domain of b′. It is necessary to constrain the search of b′ to a small domain
for an Integer Linear Program (ILP) solver to solve the system in a reasonable amount of time. The group
G′ is defined such that the pattern of memory accesses repeats after s1 addresses. Therefore, the search is
constrained to an interval of length s1.

b1 − s1 < b′ ≤ b1 (35)

The above objective function and constraints are given to an integer linear programming (ILP) solver
and if a solution is found, then the set G′ can be constructed. To constrain the JIT compilation time, the
compiler aborts the attempt to solve this case if the number of unknown variables exceeds a threshold. The
mapped GPU addresses are computed using Algorithm 1 where Im is the computed GPU address for the
mth RCSLMAD in the group.

5.4 Loop tiling for handling large loops

When the data to be transferred for an RCSLMAD group does not fit on the GPU memory resource, then
the compiler must attempt to tile the loop. The compiler only tiles parallel loops because such tiling is
always legal. Once an acceptable tile size is found, then the tiles are executed sequentially on the GPU. The
execution of the tiles can be pipelined but this possibility was not considered due to time constraints.

Ideally, tiling should minimize the total amount of data transferred between the CPU and GPU. However,
currently jit4GPU simply reduces the upper bound of each parallel loop to half of its original value. If there
are m parallel loops, then 2m tiles are formed. Jit4GPU then computes the amount of data to be transferred
for each tile and, if it still exceeds the capacity of a GPU memory resource, continues breaking the loop into
smaller tiles. Attempts to tile the loop are aborted if the total number of tiles exceeds a set threshold (64 in
this implementation).

5.5 Execution

After determining the properties of all the GPU resources, jit4GPU issues a series of run-time calls to allocate
resources and transfer of data. The run-time system uses the fastest method to transfer data depending on
strides and alignment of data in CPU memory. The runtime is also responsible for transferring data back
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Algorithm 1 computes the mapped address for multidimensional RCSLMAD problems solved using the
integer linear programming method
Inputs: Specified constants uk, sk, bm. Computed values tm,k, u′k, b′ and rm.
Outputs: A list of n expressions representing the addresses of RCSLMADs on the GPU
1: Construct a vector R1 = [b′ + r1, b

′ + r2, . . . , b
′
n].

2: Remove all duplicate entries from R1.
3: Compute q = length of R1.
4: Compute b0 = min(R1).
5: for each RCSLMAD Lm do

6: Im = b′ + rm − b0 +
d∑

k=1

q ∗ (ik + tm,k) ∗
d∏

l=k+1

(u′l).

7: end for
8: Return list {I1, I2, ..., In}

from resources to the same RCSLMADs after the computation is complete. To execute the loop nest, jit4GPU
assigns one GPU thread to each parallel loop iteration. The code is then compiled to AMD IL by jit4GPU,
passed to AMD CAL IL compiler which compiles the IL to GPU ISA and is then executed by jit4GPU using
the CAL API.

6 Experimental Evaluation

This experimental evaluation compares the performance of the following solutions: Generated OpenMP code,
CPU BLAS routines where available, generated GPU code without loop optimizations and generated GPU
code with loop optimizations. This experimental evaluation supports the following findings:

• Generated GPU code can reduce execution time by over an order of magnitude compared to generated
OpenMP code.

• GPU code generated from naive Python code can outperform very highly tuned CPU libraries such as
BLAS.

• Loop optimizations performed by jit4GPU are very effective in reducing the GPU execution time (by
up to 8 times).

6.1 Experimental Platform

Experiments were performed on a Phenom X4 925 2.8 GHz quad-core CPU equipped with a Radeon 5850
GPU clocked at 725 MHz with 1 GB of 1 GHz GDDR5. The software platform used was Python 2.6.5 with
NumPy version 1.3 running on 64-bit Linux 2.6.32 kernel. GCC 4.4.2 was used as the C/C++ compiler with
optimization flag -O3. All 4 cores were used when running CPU code. OpenMP code generation used the
flag -fopenmp in gcc.

7 Experimental results

For each benchmark, we compare the running time of C+OpenMP version with GPU accelerated version.
We also compare with hand-optimized C and with x86 assembler libraries when available. All experiments
were performed 30 times by repeatedly executing the application binary. The arithmetic average of these 30
execution times is reported. A 95% confidence interval was computed but it is not added to the bar graphs
because the variations are so small that the confidence intervals would not be visible in the graphs.
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Figure 11: Execution time for matrix multiplication comparing ATLAS BLAS and GPU performance

7.1 Matrix multiplication

Multiplies two N×N dense contiguous matrices. The comparison is against the CPU BLAS functions sgemm
and dgemm for single and double-precision respectively. For the double-precision case, the full matrices do
not fit in the GPU memory. Jit4GPU tiles the computation automatically so that the data required for one
tile of the computation fits in the GPU memory.

Execution times are shown in Figure 11. The naming convention that appears in this graph is used to
report all the experimental results: MmultD is the double-precision version and MmultS is the single-
precision version of the benchmark; the CPU bars are the execution times on the CPU; the GPU bars are
the total execution time, including transfer time and JIT overhead, in the GPU without the optimizations
described in this paper; the GPU-Opt bars are the total execution time for execution in the GPU when
the optimizations described in this paper are applied by the compiler. For this benchmark, the unoptimized
GPU versions perform slower than the corresponding ATLAS implementation, but the optimized GPU
version outperforms ATLAS and thus shows the importance of the optimizations performed by jit4GPU
such as loop unroll-and-jam and redundant-load elimination.

7.2 Rank-k update and Rank-2k update

Rank-k computes updates of the lower triangular part of a symmetric matrix. The triangular loop structure
prevented optimizations of one of the loops in the loop nest but the innermost loop was still optimized.
Performance is compared against the CPU BLAS functions ssyrk and dsyrk for single and double-precision
respectively. Rank-2k also computes updates of the lower triangular part of a symmetric matrix using a
triangular loop. Performance is compared against the CPU BLAS functions ssyr2k and dsyr2k for single
and double-precision respectively. Execution time for both benchmarks are shown in Figure 12.

7.3 Synthetic N-body kernel

Given points in a 3D space, the kernel computes the sum of distances of each point from every other
point. The sum of distances is in itself usually not a useful computation but may be used as part of
other computations. The kernel stores the coordinates of the points in three distinct arrays. The kernel
performs 9n4 floating-point operations (flops) for a problem size of n. Results are shown in Figure 13. The
optimized double-precision GPU version produces a throughput of approximately 240 GFlops compared to
approximately 8 GFlops on the CPU. Examination of the generated assembly by the OpenMP compiler
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Figure 12: Execution time for rank-k update and rank-2k update comparing ATLAS BLAS and GPU
performance

revealed that SSE instructions were generated. The CPU code is also fully multi-threaded. Thus, the
comparison is not unfair to the CPU. CPU reached approximately 17% of its theoretical ALU peak compared
to 57% achieved by the GPU.

High performance of the GPU compared to the CPU is expected in floating-point intensive benchmarks
such as this synthetic n-body kernel. At the time of writing, theoretical ALU peak of even top-end x86 server-
class CPUs such as a 12-core Opteron 6180SE is only around 120GFlops for double-precision operations.
Thus, even if the CPU version were to obtain a 100% efficiency (an unrealistic scenario) on a top-end CPU,
the reported performance in the GPU would still significantly outperform x86 CPUs on this benchmark.
Using faster AMD GPUs such as the Radeon 6970 will only widen the GPU lead in this benchmark.

7.4 Coloumbic Potential benchmark

CP (Coloumbic Potential) is a Python implementation of the CP benchmark from the Parboil benchmark
suite. CP computes the Coloumbic potential at each point on a grid. The properties of the point objects are
stored in a format emulating an array of structures. This is a single-precision benchmark. This benchmark
utilizes a single array of multiple components as opposed to multiple arrays of single components in the
nbody kernel. The GPU easily outperforms the CPU as shown in Figure 14. The data-transfer overhead
becomes a significant issue for the optimized GPU version and thus further speedups through any other
optimizations, or by using faster GPUs, will yield diminishing returns.

7.5 5-point stencil benchmark

This kernel performs an out-of-place 5-point stencil computation where the new value of each element in a 2-
dimensional matrix is a weighted average of five neighboring points including itself. The kernel performs very
little computation — see the time scale in Figure 15 — and the data transfer time and kernel compilation
time dominates execution as shown in Figure 16. This benchmark illustrates that the compiler is able
to perform accurate array access analysis and to generate GPU code even with relatively complex cases
involving multiple references to the same array. This is a double-precision benchmark.
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Figure 13: Execution time for N-body comparing generated OpenMP and GPU performance
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Figure 14: Execution time for CP comparing generated OpenMP and GPU performance
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Figure 15: Execution time for CP comparing generated OpenMP and GPU performance
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Figure 16: Percentage distribution of GPU execution time for all benchmarks
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7.6 Time Distribution in the GPU Execution

For executions that use the GPU, Figure 16 shows the percentage of the total execution time that is spent
performing computations in the GPU, on JIT compilation and on data transfers for all the versions of all the
benchmarks. JIT overhead includes the time for both jit4GPU and AMD CAL compiler. The most salient
effect of the optimization performed by jit4GPU is to reduce the time spent in execution in the GPU at the
cost of a small increase in the time spent in JIT compilation. A comparison between the “Opt” and the
corresponding non-optimized time distribution in Figure 16 confirms this expectation.

8 Related Work

Garg first described the combination of an ahead-of-time and a just-in-time compilater to create an end-to-
end system for the execution of numerical Python programs on CPU/GPU combinations [13]. A preliminary
description of unPython outlined the design strategy [14]. An earlier description of jit4GPU described the
programming model [15]. This archival article has a complete description of the data access analysis based
on LMADs and a throughly revised and updated final presentation of the experimental evaluation of the
entire compilation system.

Related work can be divided into three categories: (a) the conversion of code originally written to be
interpreted in Python to compiled code that runs in a CPU; (b) the analysis of memory accesses via arrays
and the transfer of relevant memory regions between the CPU main memory and the GPU memory; and (c)
the construction of compilers for general-purpose computations that execute in GPUs.

8.1 Compiling Python for CPUs

Various compilers have been developed that compile Python, or a closely related dialect, to C/C++ or other
lower-level languages. Pyrex [12] compiles the Pyrex language to C/C++. This language is statically typed
and has many syntactic similarities to Python. Pyrex also has special syntax for interaction with C libraries.
The major advantage of Pyrex over unPython is that it allows very easy interaction with C libraries and
it has a very simple and efficient way of generating Python bindings for C libraries. However, the Pyrex
language is not accepted by a Python interpreter. Further, Pyrex does not support NumPy arrays or parallel
programming. Cython [4] is a language derived from Pyrex that has a syntax much closer to Python and
supports efficient access to NumPy arrays. However, Cython does not support parallel programming.

Several compilers attempt to compile pure Python to lower-level languages using type inference. Shed-
skin [10] compiles non-annotated Python to C++. In order to implement type inference, Shedskin relies
on implicit typing restrictions on the Python code being compiled. Shedskin is a whole-program compiler
with a more advanced type inference algorithm than unPython. However Shedskin does not support efficient
accesses to NumPy arrays and does not have any parallel-programming features.

Another compiler that compiles non-annotated Python to a lower-level language is RPython [2] from the
PyPy [1, 6, 25] project. PyPy is an attempt to write the Python interpreter in Python itself. To achieve
this goal, the interpreter is written in a subset of Python, called RPython, that includes various implicit
type-based restrictions. A compiler then compiles RPython to various backends including C. PyPy will not
support efficient access of NumPy arrays until NumPy arrays are implemented in RPython.

8.2 Array access analysis

The primary objective of array access analysis is to find out the memory locations to be transferred between
the CPU and the GPU address spaces. The array access analysis used is based on the concept of LMADs.
LMADs were first defined by Paek et al. [24]. They proposed LMADs as an efficient way to capture very
accurate array access information. They also discussed several operations on LMADs such as a set intersection
of LMADs. However they did not describe a method to compute the union of LMADs on the lines of the
computation of RCSLMADs described in this paper.
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The array access analysis performed by jit4GPU benefits from knowledge of the value of loop-invariant
symbolic constants. Rus et al. present a run-time representation of LMADs called RT-LMADs [26, 27].
Their goal is to apply array access analysis to parallelization and hence they focus on computing dependence
information. In contrast, the goal of the analysis in this paper is to obtain an efficient representation of the
union of all regions accessed with the constraint that this union should easily map to a different address
space.

8.3 Compilers for GPGPU

The early use of GPUs for non-graphic computation relied on a stream programming model where the
streams represent data to be transferred to the GPU. Brook is an extension of the C programming language
that provides a stream data type and kernel functions that run in the GPU and manipulate streams [7].
The programmer has to code the transfer of data into, and out of, the GPU address space. The Brook
compiler compiled the kernel functions into OpenGL GLSL or DirectX 9 HLSL shaders. AMD extended
Brook to create a language called Brook+ to enable writes to arbitrary locations and to introduce several
new data types, but the programming model remains the same. Apart from Brook, several other stream-
based programming languages have been proposed for GPGPU such as StreamIt [30, 32], Sh [22] and Stream
Virtual Machine [18].

Current APIs to program GPUs to execute non-graphics code include OpenCL [23] and Nvidia CUDA [9].
Nvidia CUDA extends C/C++ and models the GPU as a Single-Program Multiple-Data (SPMD) machine
that executes the same code in many GPU threads. In CUDA, the GPU also has its own separate address
space and the programmer is required to manually transfer data between the CPU and GPU address spaces.
In CUDA the code to be executed in the GPU is in a device function. These functions are written in
a subset of C and can utilize GPU hardware features such as on-chip shared memory. CUDA’s low-level
programming model provides almost complete control of the GPU to the programmer. Any code that is
required to run both on GPU and CPU requires significant code duplication. OpenCL is based on concepts
similar to CUDA. In contrast, the programming model introduced in this paper is simpler and transfers the
burden of generating and optimizing GPU code from the programmer to the compiler.

Stratton et al.’s MCUDA is based on the premise that programmers should only write the CUDA version
of the performance-critical function and the MCUDA automatically generates a CPU version [29]. MCUDA
compiles CUDA code to multi-core x86 code. MCUDA’s philosophy is the opposite of ours. We provide the
programmer an illusion of executing the program on a symmetric multiprocessor machine while automatically
utilizing GPU.

Lee et al. describe a compiler that can automatically generate Nvidia CUDA code from C/C++ programs
with OpenMP annotations [19]. Even though this is the model that closest resembles the programming and
compilation model presented in this paper, there are three fundamental differences. First, their data-transfer
analysis can only deal with arrays but not with pointers — their analysis is based on array names and on
finding the declarations of the arrays in the source code. Moreover, they transfer entire arrays without
regard to specific memory locations that are accessed within a loop. In contrast the analysis presented in
this paper can handle both arrays and pointers, and restrict data transfers to memory regions that contain
mostly referenced locations. Moreover, our JIT-based approach does not require the source code of the entire
application. Also, they cannot tile or break the loop if the data does not fit into the GPU. Finally, their
loop transformations are different than the ones described in this paper because they target the Nvidia GPU
architecture while we target the AMD architecture.

Wang et al. introduces EXOCHI, an extension of C/C++ OpenMP for heterogeneous systems [33]. Their
implementation is for a multi-core x86 CPU and for an integrated Intel graphics chip set. These chip sets
are integrated into the north bridge of the CPU and can access the system RAM. Therefore EXOCHI does
not need to handle data movements between different address spaces: a simple remapping of the address
translation table enables the GPU to reference the data. Such a technique cannot be used with discrete
AMD GPUs. This remapping is handled by EXOCHI’s runtime. In EXOCHI’s programming model the
programmer must write GPU code but does not need to implement data transfers. EXOCHI is only suitable
to accelerators that can access system RAM directly. Therefore it is not applicable to the current generation
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of discrete GPUs. EXOCHI requires the programmer to directly write GPU-specific code sections in the
GPU ISA.

Saha et al. present a shared-memory programming model for a simulation of discrete Larrabee GPUs
based on the x86 instruction set [28]. However, they require the programmer to annotate some data structures
with declarations indicating which data structures are shared between CPU and GPU while our compiler
requires no such annotation. Their data-transfer scheme was based upon the ability of the GPU to indicate
a page fault when a memory address was not found on the GPU but current AMD GPUs do not throw such
exceptions. Hence their scheme is not implementable on current AMD GPUs.

Yang et al. [34] present a source-to-source compiler that takes as input a naive kernel consisting of code
for a single thread and outputs an optimized CUDA kernel. They analyze the memory access pattern of
array references and attempt to perform memory load coalescing, automatic utilization of on-chip shared
memory and unrolling and tiling of parallel loops. Their optimizations have a number of parameters and
they generate multiple versions of the optimized kernels and execute the kernels to select the best parameter
values for each kernel. They perform a case-by-case analysis of certain predefined patterns of affine references.
However, their analysis is limited to single induction variable in each dimension of the subscript.

Theano by Bergstra et al. [5] is a Python library that compiles expression graphs into either C code or
Nvidia CUDA code. For GPU code, Theano will automatically transfer all the input and output arrays in
an expression to and from the GPU. Unlike jit4GPU, Theano does not perform an array access analysis
and instead transfers whole arrays. Theano also gives the option of marking some arrays as shared and
such arrays are stored on the GPU by default and copied back to CPU only when required. Theano can
perform optimizations such as constant folding and redundant expression elimination but has no specific
optimizations for utilizing the texture memory or on-chip shared memory.

Copperhead by Catanzaro et al. [8] also describe a system that compiles high-level Python code to CUDA
code. However, their system is designed to compile functions with statements involving only a predefined
library of parallel operations on entire vectors such as replicate, map and reduce. Their system does not
handle explicit loops and their array indices can only be handled implicitly through operations such as
gather. Their approach is complementary to ours because they are solving a different problem.

Baskaran et al. describe a compiler to automatically generate CUDA kernels from C code using a
polyhedral representation of loop nests [3]. However, they do not discuss the strategy used to generate
the code to copy data between the CPU address space and the GPU address space. They only describe
transformations to generate the GPU kernel code. We speculate that, unlike jit4GPU, they transfer entire
arrays without analysis to reduce the amount of data transferred. To generate GPU kernel code, they
perform dependence analysis and automatically identify parallelism. Jit4GPU does not perform such an
analysis because it assumes that the programmer has identified the parallel loops to be executed on the
GPU. They perform analysis to improve the utilization of local memory and the balance between thread and
block-level parallelism. In contrast, jit4GPU’s transformations are aimed towards utilizing the texture cache
instead of local memory and are focused on using the large register file on AMD GPUs. Finally, jit4GPU
is designed to be fast in terms of compile time to be suitable for JIT compilation in contrast to utilizing
polyhedral model techniques in static compilers.

8.4 Software Managed Data Transfers

The automatic management of data transfers between CPU and GPU address spaces is analogous to the
management of data in Scratch-Pad Memories (SPMs) that are prevalent in embedded systems [20]. Kan-
demir et al. propose a method to combine loop tiling with a cost analysis to dynamically manage the transfer
of data into SPMs [17]. Their “extreme values of affine functions” method appears to have similar elements
to our data access analysis, but they do not have a similar address-mapping issue. Moreover, instead of using
LMADs to describe the loop accesses they offer an informal description of the array analysis. Li et al. also
use loop tiling to manage SPMs but their tiling requires an Integer Linear Programming (ILP) solver that
is too slow to be used in a JIT compiler [21]. Udayakumaran and Barua’s approach is less restrictive on the
constraints imposed on the loops containing the references to be transferred to SPM, but it only transfers
entire arrays and will not work for programs containing recursion or function pointers [31].
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Another architecture that requires a compiler to manage data transfers across different address spaces
is the CELL processor. The compiler for the CELL processor developed by Eichenberger et al. also uses
loop tiling, which they call blocking, to generate the SIMD code required for execution in a Synergistic
Processor Element (SPE) in the CELL architecture [11]. Similar to the compilation system presented in
this paper, their compiler provides a single shared-memory abstraction through the use of compiler-inserted
Direct Memory Access (DMA) transfers.

9 Conclusion

The key for building a compilation framework for the new programming model presented in this paper was
to split the compilation into two steps: an ahead-of-time compiler (unPython) and a just-in-time compiler
(jit4GPU). To implement the illusion of a shared address space, the compiler performs an analysis to deter-
mine the memory locations that must be transferred to the GPU. The compilation system does automatic
data transfer, based on a detailed analysis of data usage, between GPU and CPU. The paper formally de-
scribe an analysis based on integer constraints to enable a reduction in the number of memory locations
transferred between the CPU and the GPU address spaces. Moreover, some traditional loop optimizations
were successfully adapted to this environment to overcome important imbalances in the design of the GPU.
Only unobtrusive light annotation is needed in the Python code to assist with type inference and to indicate
which loops may be profitable to execute in the GPU. This compilation framework was implemented for an
AMD GPU. It delivers significant speedup over generated OpenMP code, and it either outperforms or is
very competitive with highly optimized multi-threaded CPU BLAS code for the same benchmarks.

Acknowledgements

This work was supported by Natural Science and Engineering Council (NSERC) of Canada. We would also
like to thank Micah Villmoh, Michael Chu and others at AMD Stream Computing group who provided many
clarifications about the CAL SDK.

References

[1] Pypy project (2009-09-30).
http://codespeak.net/pypy/dist/pypy/doc/.

[2] D. Ancona, M. Ancona, A Cuni, and N. Matsakis. ”RPython: A step towards reconciling dynami-
cally and statically typed OO languages”. In Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), pages 53–64, Montreal, QC, Canada, 2007.

[3] Muthu M. Baskaran, J. Ramanujam, and P. Sadayappan. Automatic C-to-CUDA code generation for
affine programs. In Compiler Construction (CC), pages 244–263, Paphos, Cyprus, 2010.

[4] Stefan Behnel, Robert Bradshaw, and Dag Sverre Seljebotn. Cython: C-Extensions for Python (2009-
09-30). http://www.cython.org.

[5] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume Des-
jardins, Joseph Turian, and Yoshua Bengio. Theano: a CPU and GPU math expression compiler. In
Proceedings of the Python for Scientific Computing Conference (SciPy), Austin, TX, June 2010.

[6] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. Tracing the meta-level: Pypy’s
tracing jit compiler. In Workshop on the Implementation, Compilation, Optimization of Object-Oriented
Languages and Progr. Systems, pages 18–25, Genova, Italy, 2009.

30



[7] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Houston, and Pat
Hanrahan. Brook for GPUs: stream computing on graphics hardware. ACM Transactions on Graphics
(TG), 23(3):777–786, 2004.

[8] Bryan Catanzaro, Michael Garland, and Kurt Keutzer. Copperhead: compiling an embedded data
parallel language. In Symposium on Principles and Practice of Parallel Programming (PPoPP), pages
47–56, San Antonio, TX, USA, 2011.

[9] Nvidia CUDA (2009-09-30). http://www.nvidia.com/cuda.

[10] Mark Dufour. Shed Skin - An experimental (restricted) Python to C++ compiler (2009-09-30).
http://code.google.com/p/shedskin/.

[11] Alexandre E. Eichenberger, Kathryn O’Brien, Kevin O’Brien, Peng Wu, Tong Chen, Peter H. Oden,
Daniel A. Prener, Janice C. Shepherd, Byoungro So, Zehra Sura, Amy Wang, Tao Zhang, Peng Zhao,
and Michael Gschwind. Optimizing compiler for the CELL processor. In Parallel Architectures and
Compilation Techniques (PACT), pages 161–172, St. Louis, MO, USA, 2005.

[12] Greg Ewing. Pyrex - a Language for Writing Python Extension Modules (2009-09-30).
http://www.cosc.canterbury.ac.nz/ greg.ewing/python/Pyrex/.

[13] Rahul Garg. A compiler for parallel execution of numerical Python programs on graphics processing
units. Master’s thesis, Computing Science, Univ. of Alberta, Edmonton, AB, Canada, September 2009.

[14] Rahul Garg and J. Nelson Amaral. unPython: Converting python numerical programs to C.
In Proceedings of the 7th Python in Science Conference (ScyPy), Pasadena, CA, August 2008.
http://conference.scipy.org/proceedings/SciPy2008/, NSERC.

[15] Rahul Garg and J. Nelson Amaral. Compiling Python to a hybrid execution environment. In 3rd
Workshop on General-Purpose Computation on Graphics Processing Units, pages 19–30. ACM, 2010.

[16] Wendy Jones. Beginning DirectX 10 Game Programming. Course Technology Press, Boston, MA, USA,
1st edition, 2007.

[17] M. Kandemir, J. Ramanujam, M. J. Irwin, N. Vijaykrishnan, I. Kadayif, and A. Parikh. Dynamic
management of scratch-pad memory space. In Design Automation Conference (DAC), pages 690–695,
2001.

[18] Francois Labonte, Peter Mattson, William Thies, Ian Buck, Christos Kozyrakis, and Mark Horowitz.
The Stream Virtual Machine. In Parallel Architectures and Compilation Techniques (PACT), pages
267–277, Antibes Juan-les-Pins, France, 2004.

[19] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. OpenMP to GPGPU: a compiler framework for
automatic translation and optimization. In Symposium on Principles and Practice of Parallel Program-
ming (PPoPP), pages 101–110, Raleigh, NC, USA, 2009.

[20] Lian Li, Lin Gao, and Jingling Xue. Memory coloring: A compiler approach for scratchpad memory
management. In Parallel Architectures and Compilation Techniques (PACT), pages 329–338, St. Louis,
MO, USA, 2005.

[21] Lian Li, Hui Wu, Hui Feng, and Jingling Xue. Towards data tiling for whole programs in scratchpad
memory allocation. In Asia-Pacific Conference Advances in Computer Systems Architecture (ACSAC),
pages 23–25, Seoul, Korea, August 2007. Springer.

[22] Michael D. McCool, Zheng Qin, and Tiberiu S. Popa. Shader metaprogramming. In ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware, pages 57–68, Saarbrucken, Germany,
2002. Eurographics Association.

31



[23] OpenCL - The open standard for parallel programming of heterogeneous systems (2009-09-30).
http://www.khronos.org/opencl/.

[24] Yunheung Paek, Jay Hoeflinger, and David Padua. Efficient and precise array access analysis. ACM
Transactions on Programming Languages and Systems (TOPLAS), 24(1):65–109, 2002.

[25] Armin Rigo and Samuele Pedroni. PyPy’s approach to virtual machine construction. In Workshop
Companion to Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), pages
944–953, Portland, OR, USA, 2006.

[26] Silvius Rus, Lawrence Rauchwerger, and Jay Hoeflinger. Run-time Assisted Interprocedural Analysis of
Memory Access Patterns. Technical report, Department of Computer Science, Texas A&M University,
2001.

[27] Silvius Rus, Lawrence Rauchwerger, and Jay Hoeflinger. Hybrid analysis: static & dynamic memory
reference analysis. International Journal of Parallel Programming, 31(4):251–283, 2003.

[28] Bratin Saha, Xiaocheng Zhou, Hu Chen, Ying Gao, Shoumeng Yan, Mohan Rajagopalan, Jesse Fang,
Peinan Zhang, Ronny Ronen, and Avi Mendelson. Programming model for a heterogeneous x86 plat-
form. In Conference on Programming Language Design and Implementation (PLDI), pages 431–440,
Dublin, Ireland, 2009.

[29] John A. Stratton, Sam S. Stone, and Wen-Mei W. Hwu. MCUDA: An efficient implementation of
CUDA kernels for multi-core CPUs. In Workshop on Languages and Compilers and Parallel Computing
(LCPC), pages 16–30, Edmonton, AB, Canada, August 2008.

[30] William Thies, Michael Karczmarek, and Saman Amarasinghe. StreamIt: A Language for Streaming
Applications. In Compiler Construction (CC), pages 49–84, 2002.

[31] Sumesh Udayakumaran and Rajeev Barua. Compiler-decided dynamic memory allocation for scratch-
pad based embedded systems. In International Conference on Compilers, Architecture and Synthesis
for Embedded Systems (CASES), pages 276–286, San Jose, California, USA, 2003.

[32] A. Udupa, R. Govindarajan, and M.J Thazhuthaveetil. Software Pipelined Execution of Stream Pro-
grams on GPUs. In International Symposium on Code Generation and Optimization (CGO), pages
200–209, Seattle, WA, USA, 2009.

[33] Perry H. Wang, Jamison D. Collins, Gautham N. Chinya, Hong Jiang, Xinmin Tian, Milind Girkar,
Nick Y. Yang, Guei-Yuan Lueh, and Hong Wang. EXOCHI: architecture and programming environment
for a heterogeneous multi-core multithreaded system. In Conference on Programming Language Design
and Implementation (PLDI), pages 156–166, San Diego, CA, USA, 2007. ACM.

[34] Yi Yang, Ping Xiang, Jingfei Kong, and Huiyang Zhou. A GPGPU compiler for memory optimization
and parallelism management. In Conference on Programming Language Design and Implementation
(PLDI), pages 86–97, Toronto, ON, Canada, 2010.

32


