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Abstract

A consumer’s “reservation price” (RP) is the highest price that s/he is willing

to pay for one unit of a specified product or service. It is an essential concept in

many applications, e.g., personalized pricing, auction and negotiation. While

consumers will not volunteer their RPs, we may be able to predict these values,

based on each consumer’s specific information, using a model learned from

earlier consumer transactions.

This thesis proposes a novel framework of learning RP distributions that

involves a model of formulating the relationship between consumers’ RPs and

their purchasing decisions, and a data collection method. Within this frame-

work, we show a way to estimate the consumer-specific RP distribution us-

ing techniques from the survival prediction — here viewing the consumers’

purchasing choices as the censored observations. To validate our new frame-

work of RP, we run experiments on realistic data, with four survival methods.

These models performed very well (under three different criteria) on the task

of estimating consumer-specific RP distributions, which shows that our RP

framework can be effective.

As we found that the multi-task logistic regression model (MTLR) domi-

nated the other models under all three evaluation criteria, we explored ways

to extend it, leading to extensions that are more general and more flexible.

Moreover, we prove that it is the general regularizer, instead of the smoothness

regularizer, that results in a smooth predicted distribution; this leads further

simplification of the MTLR model.
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Chapter 1

Introduction

1.1 Motivation

Reservation price (RP) is the highest price a consumer is willing to pay for

one unit of a certain product or service [17], which is an important and widely

used concept in both the economics and marketing literature. It is critical for

designing various pricing strategies, such as personalized pricing [7, 1], one-to-

one promotion [26], and optimal pricing [19]. Many other fields like auction

[35, 22], ad exchange [2], negotiation, and the design and pricing of bundles

[34, 28] also heavily rely on accurate estimations of consumers’ RPs.

For example, suppose that we are interested in setting the price of a certain

product ω to achieve maximum profit when selling it to a certain population. If

we know the reservation price ri of each subject i, then we can easily compute

the overall purchasing probability function PPF (v) over price v for this specific

population as

PPF (v) =
1

n

n∑
i

(1−Ni(v)), (1.1)

where n is the total number of subjects and Ni(v) = I{v < ri} is a counting

process for subject i (see Figure 1.1).

With the knowledge of PPF (v), we can achieve the maximum expected

profit by setting the price of ω to be

v∗ = arg max
v

((v − c) · PPF (v)), (1.2)

where c is the production cost of ω.
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Figure 1.1: The overall purchasing probability function for a certain popula-
tion.

Moreover, if it is allowed to sell ω at different prices to different subjects,

i.e., first degree price discrimination [32], then the seller’s best strategy for

maximum profit is to sell ω to the subjects at their individual reservation

prices, i.e., using Figure 1.1, sell to Tom at $672, then Chris at $502, etc.

(Here, assume the production cost is under $502.).

In the scenario of e-commerce, which has enjoyed booming development

recently, the online retailers also have great interest in designing pricing strate-

gies, understanding consumers’ purchasing decisions, doing one-to-one promo-

tion and so on, which rely on accurate estimation/elicitation of consumers’

RPs. Additionally, online retailers usually have more information available

than the traditional offline ones about their consumers, such as consumer-

specific information (demographics, historical transactions and so on) and con-

sumers’ historical transactions, which may be related to consumers’ RPs. This

motivates us to find ways to better estimate consumers’ RPs with this extra

information.

1.2 Related Work

As revealing the true RPs will put consumers at a disadvantage in making deals

with sellers, they would not volunteer to do it. This had led to a huge amount

of research efforts in designing incentive compatible methods for eliciting fixed-
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point RPs [35, 4, 21, 16, 36]. Generally speaking, methods like the Becker-

Degroot-Marschak (BDM) method strive to guarantee that consumers realize

that revealing the true RP is their best strategy (see Figure 1.2), which is the

key to accurate elicitation of consumers’ RPs.

Step 1: Seller: I have a preset price for
      ($v), not known to you.  
- If your offered price r is 
greater than v, you have to buy 
it at price $r. 
- Otherwise, you cannot buy it.

Consumer: My offer is $rStep 2:

Step 3:  Consumer buys it or not, depending on 
               whether 

!

r � v

Figure 1.2: The Becker-Degroot-Marschak method.

However, it would be unrealistic to assume that a consumer’s RP for a

product always stays the same. Wang, et al [36] also notes that there is even

uncertainty within an individual’s RP, due to the consumer’s uncertainty about

his/her own preference [11] and the product performance [25].

Therefore, several different interpretations of the RPs have been proposed

[13, 23, 33], which are associated with different probabilities of purchasing (see

Figure 1.3):

(1) Floor RP: the maximum price at or below which the consumer will buy

with 100% probability [13].

(2) Indifferent RP: the price at which a consumer is indifferent between the

money and the product — i.e., s/he will buy it with 50% probability [23].

(3) Ceiling RP: the minimum price at or above which the consumer will

never buy it — i.e., s/he has 0% probability of buying [33].

Furthermore, ICERANGE [36] embraced the inherent uncertainty of RP,

by viewing a consumer’s RP as a price range instead of a single price point,

3
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which here means simultaneously eliciting several price points associated with

different purchasing probabilities.

However, none of these methods deal with the challenge raised in the e-

commerce scenario, i.e., how to utilize the extra information in e-commerce

to help the task of understanding consumers’ RPs. What is worse, they also

suffer from several drawbacks, which make them ineffective in the e-commerce

scenario:

• First, consumers have little patience and no motivation to participate in

the elicitation activity.

• Second, it is hard to validate if consumers realize that their best strategy

is to tell their true RPs, which may lead to inaccurate elicitation of RPs.

• Third, these methods have no capability of making individual-level RP

predictions, i.e., each new consumer must go through the whole elicita-

tion procedure to estimate his/her RP for the product of interest.

Therefore, we need a new model that can overcome these drawbacks and

can effectively utilize the new information available in e-commerce setting to

help the task of estimating consumers’ RPs.

4



1.3 Contribution

In this thesis, we propose a novel framework of formulating the RP estimation

problem, within which we explicitly define a consumer’s RP as a random vari-

able conditional on the consumer’s features. This definition not only captures

the inherent uncertainty of RP, but also allows us to use stochastic models to

express the relationship between RP and consumer-specific features.

The common understanding of RP, i.e., the highest price a consumer is

willing to pay for one unit of a certain product or service, suggests that a

consumer’s purchasing decisions are closely related to his/her RP and thus we

may indirectly infer consumers’ RPs from their transaction data (the observa-

tion that a consumer decided to “buy” a product at some specified price) and

non-transaction data (the observation that a consumer decided to “not buy”

a product at some specified price). Motivated by this fact, we propose a con-

sumer decision model, which formulates the relationship between consumers’

RPs and their purchasing decisions. This idea of using purchasing decisions to

infer RPs does not suffer from the first two drawbacks described in Section 1.2

any more, as we do not ask consumers to directly report their RPs.

Moreover, within this framework, the purchasing (resp., non-purchasing)

observations in the RP setting are equivalent to right censored (resp., left cen-

sored) observations in the survival analysis setting, which indicates that we

can utilize various survival techniques to model and learn the relationship be-

tween the RP and the features of a consumer from historical (non-)transaction

data. This means that a seller, who knows the features of a consumer, can

then make an individual-level prediction on the consumer’s reservation price

for a certain product, even if that consumer is new or has not bought the

product of interest before.

Lastly, as MTLR (one of the survival models) achieves great performance

in the experimental phase, we further develop a more general and succinct

framework from MTLR, which provides more flexibility and reduces the train-

ing time tremendously.

5



1.4 Outline

Chapter 2 describes our framework of RP estimation. Section 2.1 introduces

the formal definition of RP. Section 2.2 introduces the decision model that

formulates the relationship between consumers’ purchasing decisions and their

RPs. Section 2.3 illustrates our way to collect (non-)transaction data, which

can be used to learn the RP distributions.

Chapter 3 first describes the relationship between the RP estimation prob-

lem and survival analysis problem. Then Section 3.2 introduces four survival

models that can be utilized to estimate RP, e.g., Kaplan-Meier Estimator, Cox

proportional hazard model, accelerated failure time model, and MTLR model.

In Chapter 4, we describe how we collect the data used in this thesis and

some basic information about the four datasets. We also discuss several po-

tential problems of data quality and the way to address them.

The empirical results of applying survival models to the RP estimation is

presented in Chapter 5. Sections 5.1, 5.2 and 5.3 present the performance

of survival models on the consumer-specific RP estimation under three dif-

ferent evaluation criteria: the mean absolute error of the RP predictions, the

classification accuracy of purchasing choice, and the profit acquired with a

simple pricing strategy. All results are based on ten-fold cross validation. The

great performance of survival models on consumer-specific RP estimation task

supports the effectiveness of our novel framework. Also we find that MTLR

dominates the other approaches under all three evaluation criteria.

Chapter 6 presents the future work and the contributions of this thesis.

Section 6.1 discusses three potential directions for future work. Then Sec-

tion 6.2 summarizes the contributions of this thesis.

In Appendix A, we provide details about how we generalize MTLR and

simplify the model.
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Chapter 2

Framework of Reservation Price
Estimation

The common understanding of RP — i.e., the highest price a consumer is

willing to pay for a certain unit of product or service — indicates that con-

sumers’ purchasing decisions on a certain product are closely related to their

RPs of the product. In the BDM method, actual purchasing is also required

for accurate measurements of RPs. This suggests that instead of directly ask-

ing consumers to report their RPs, we may be able to infer their RPs from

their purchasing decisions, which are much easier to collect in practice. There-

fore, in this chapter, we propose a consumer decision model that formulates

the way consumers reach purchasing decisions and how it is related to their

RPs. This decision model and a corresponding way of collecting data make up

our framework of RP estimation. Within this framework, we can design new

methods or utilize existing methods to learn the RP distributions from the

observations of consumers’ purchasing decisions, i.e., (non-)transaction data.

2.1 Stochastic Setting of Reservation Price

First, we denote the random vector representing the features of consumers as ~X

and a certain vector of feature values, corresponding to a single consumer, as ~x.

Now, we formally define two crucial random variables, i.e., consumer-specific

reservation price and consumer-specific purchasing decision; see below.

Definition 1 (Consumer-Specific Reservation Price) For a certain prod-

7



uct ω, the consumer-specific RP Rω|~x ∈ <≥0 is a random variable conditioning

on the features of a consumer ~X = ~x.

Definition 2 (Consumer-Specific Purchasing Decision) If a product ω

is offered at price v, the consumer-specific purchasing decision Aω,v|~x ∈ {buy,

not buy} is a binary random variable, conditioning on the features of a con-

sumer ~X = ~x.1

2.2 Consumer Decision Model

In this section, we propose a decision-making model that describes how the

consumer’s purchasing decision Aω,v|~x is related to the RP Rω|~x.

When a consumer with features ~X = ~x is faced with a certain offer, i.e.,

a specific product ω is being sold at price v, s/he reaches her/his purchasing

decision a ∼ Aω,v|~x in a two-step procedure

Step 1. Draw an “instant RP”: an instant RP r is drawn from the dis-

tribution of Rω|~x

Step 2. Make a decision:

Consumer will buy ω for price v iff v ≤ r

i.e.,

a = I{r ≥ v}

That is, we assume that after drawing an instant RP r ∼ Rω|~x, the cus-

tomer’s decision is determined by the relationship between r and v (see Fig-

ure 2.1).

Then it is explicit that the relationship between the purchasing decision

random variable Aω,v|~x and the reservation price random variable Rω|~x is

Aω,v | ~x = I{v ≤ Rω|~x}. (2.1)

1Note that Aω,v1 |~x and Aω,v2 |~x are two different random variables, for v1 6= v2.

8



Consumer

r ⇠ R!|~x

a! = I{r � v}

Product Price

Decision

v

Figure 2.1: How consumers reach a purchasing decision when offered product
ω at price v.

We can also derive the purchasing probability function PPFω(~x, v), i.e.,

the probability that consumer ~x will buy product ω at price v, to be

PPFω(~x, v)
∆
= Pr(Aω,v = 1 | ~x ) = Pr(Rω ≥ v | ~x ) = 1− FRω |~x(v) (2.2)

where FRω |~x(·) is the cumulative distribution function (CDF) of consumer ~x’s

RP for product ω.

Note that this decision-making process strictly conforms with the common

understanding of RP, i.e., the highest price a consumer is willing to pay for a

unit of a certain product or service.

2.3 Data Collection and Format

As shown in the previous section, RPs and purchasing decisions are closely

related to each other, which suggests that we can indirectly infer consumers’

RPs for a certain product from their purchasing decisions. Therefore, for a

certain product ω, instead of directly asking consumers for their instant RPs

ri, we collect the (non-)transaction data, i.e., consumers’ decisions ai,ω on

whether they purchase ω at different prices v. Each observation in the dataset

Dω of product ω is a vector in the format (xi, ai,ω, vi,ω). An example dataset

is shown in Table 2.1.

While the traditional RP models require consumers to be highly involved

in a sophisticated elicitation procedure in order to make them understand

that telling the true RP is their optimal choice, our data collection process is

9



features of consumers ~xi price vi,ω decision ai,ωage gender monthly income ...
18 male $200 ... $3.50 0
26 female $3000 ... $5.00 1
... ... ... ... ... ...
28 female $2000 ... $4.5 0

Table 2.1: An example dataset of some product ω.

significantly simpler and does not make assumptions about consumers’ under-

standing, as we do not ask consumers to report their RPs directly.

10



Chapter 3

Reservation Price Prediction
Models

In this chapter, first we illustrate the relationship between the RP estimation

problem and survival analysis problem and how we can learn the consumer-

specific RP distribution from the (non-)transaction data via survival prediction

techniques. We then introduce three popular survival models and one recent

effort from the machine learning community in predicting patient-specific sur-

vival distributions.

3.1 Relation to Survival Analysis

The typical survival analysis focuses on time-to-event data, where the variable

of interest is the death/event time T . In general, survival models strive to learn

the survival function ŜT |~x(t), which is defined as 1 − FT |~x(t), from censored

(left, right, or interval) data and event data. This task differs from ordinary

regression as it must deal with censored observations, which are incomplete

observations of the event time T .

There are many possible sources of censoring. For example, in a cancer

study, where the variable of interest is the death time of patients with cancer,

if an (alive) patient chooses to drop out of the study at time t, then we will

never know his/her actual time of death T . All we know is that his/her death

time is after his/her censored time t, which is only partial information about

T . The phenomenon in this specific example is called right censoring, as the

11



unknown event time is on the “right” side of censored time t. Similarly, we

also have left censoring and interval censoring (see Figure 3.1).

TimeStudy Starts Study Ends

left censoring

right censoring

interval censoring

event/death

patient 1

patient 2

patient 3

patient 4

patient 5

patient 6

patient 7

Figure 3.1: Left, right and interval censored observations.

Right censored observation: the unknown true event time is after a cer-

tain time t, e.g., patients 1, 3 and 5 in Figure 3.1.

Left censored observation: the unknown true event time is before a cer-

tain time t. For example, in a breast cancer relapse study, a patient gets

her first examination at the sixth month and is diagnosed as having al-

ready experienced a relapse. In this case, all we know is that the relapse

happened in the first six months, e.g., patient 7 in Figure 3.1. (Here, we

only know that the subject was dead at the end, but not when she died.)

Interval censored observation: the unknown true event time is in a certain

time range [t1, t2]. For example, in a breast cancer relapse study, where

patients take monthly examinations (at different days), if a patient is

diagnosed as having a relapse, then we only know that the relapse time

is in the previous one month, e.g., patient 6 in Figure 3.1.

In most survival studies, we typically have complete observations about

some subjects — i.e., we know when some actually died. In the RP estima-

12



tion problem defined within our framework, however, we have no complete

observations of consumers’ RPs at all, since we do not ask consumers to re-

port their true RPs. Instead, we only have purchasing transactions, where the

consumers’ true RPs are greater than or equal to the price of products v, and

non-purchasing transactions, where the consumers’ true RPs are less than the

price of products v. That is, for r ∼ Rω | ~x:

Purchasing transaction: aω = 1 ⇔ rω ≥ v;

Non-purchasing transaction: aω = 0 ⇔ rω < v.

If we take the RP R as the variable of interest instead of T , the purchasing

(resp., non-purchasing) observations in the RP setting are equivalent to right

censored (resp., left censored) observations in the survival analysis setting.

To be more clear, Table 3.1 shows the matching relationship between the

terminologies in these two settings.

Survival Analysis Reservation Price
Event time variable: T Reservation price variable: R
Survival distribution: f(t) RP distribution: f(v)
Survival function: ST (t) Purchasing probability function: PPF (v)
Left censored observation c = 0 Non-purchasing transaction a = 0
Right censored observation c = 1 Purchasing transaction a = 1

Table 3.1: Terminology/symbol matching table.

Then we can utilize survival models to learn the distribution of R using the

(non-)purchasing transactions. An illustration of the whole learning system

and how it works on new consumers is shown in Figure 3.2.

Section 3.2 below introduces four survival models: Kaplan-Meier estimator

[18], Cox proportional hazard model [9], accelerated failure time model [37],

and multi-task logistic regression model [38]. We will test their performance

in Chapter 5, to evaluate the effectiveness of our framework of RP.

13
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Figure 3.2: Illustration of the whole learning system and how it works on new
instances.

3.2 Survival Models

3.2.1 Kaplan-Meier Estimator

The Kaplan-Meier (KM) estimator [18] is an empirical non-parametric model

that estimates the survival function S(t). This tool is designed for comparing

the survival curves of two subpopulations in order to identify the risk factors,

i.e., the features important to survival, and is widely used in clinical study.

For a dataset consisting of only right censored and event data, the empirical

estimate of S(t) is

Ŝ(t) =
∏

j:τj<t

(
1− dj

rj

)
(3.1)

where τ1, τ2, ..., τK are the set of all K distinct death times in the dataset, dj

is the number of deaths at time τj and rj is the number of subjects at risk

right before τj (i.e., number of subjects died or were censored at or after τj).

Since an RP dataset only consists of left and right censored data, but no

event data, we have to resort to the Expectation-Maximization approach of

Turnbull [31] to estimate the survival curve, where both left and right censored

data are treated as interval censored data.
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Notice that the KM estimator does not consider the features of the subjects,

which means it predicts (summarizes) the same survival curve for all subjects

and thus is not personalized. We still include it here for completeness, as it is

one of the most widely accepted and used models in survival analysis.

3.2.2 Cox Proportional Hazards Model

The Cox proportional hazards (Cox) model is a semi-parametric model de-

signed for comparing the survival time of two populations or to identify the

risk factors critical to survival [9]. Unlike the KM model, the Cox model does

use the subject features and works with the hazard function λ(t) 1 instead of

survival function.

λ(t) = lim
∆t→0

Pr(t ≤ T < t+ ∆t|T ≥ t)

∆t
=
f(t)

S(t)
(3.2)

The hazard function in the Cox model is modeled as

λ(t|xi) = λ0(t) exp(~xTi θ), (3.3)

where λ0(t) is the baseline hazard function, and θ is learned from a data

sample.

Here, the relative influence of each feature xi,k depends linearly (“propor-

tionally”) on the corresponding coefficient θk (albeit in the exponent). This is

why it is called proportional hazard model.

One of the advantages of this model is that we can estimate θ by maximum

partial likelihood estimation [9], which requires no knowledge of the baseline

hazard λ0(t). This simplifies the task of identifying the risk factors. However

when it comes to the prediction task, the proportional hazard assumption

restricts the shapes of predicted survival curves of all patients to be the same,

as shown in Figure 3.3. Its predictions on subjects’ survival rates may thus be

not calibrated [38].

Similar to Section 3.2.1, we treat both left and right censored data as

interval censored data and utilize the Cox model designed for interval censored

1The hazard function is also called the “failure rate” since it reflects the subject’s in-
stantaneous rate of failure.
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Figure 3.3: Survival curves for four patients from North Alberta Cancer
Dataset generated by Cox model.

data to estimate our model [24, 14]. Specifically, we train the Cox model using

the R package intcox [14].

3.2.3 Accelerated Failure Time Model (Tobit Model)

The accelerated failure time model (AFT) is a parametric model, which di-

rectly models the distribution of T with some parametric distribution [37], as

shown below:

log Ti = θT~xi + δ ε, (3.4)

where δ is the scale parameter and ε is the error term. Different distributions

of ε yield different forms of the AFT model. The most common distributions

used for ε are the Weibull distribution, Gamma distribution and the standard

normal distribution. With ε ∼ N (0, 1) (Gaussian distribution with mean being

0 and standard deviation being 1), AFT model is actually equivalent to the

well-known Tobit model in the economics literature [12].

In the AFT model, the effect of covariates is to accelerate/decelerate the

scale of life time, while in the Cox model, the effect of covariates is to multiply

the hazard by a constant. Figure 3.4 shows an example of the predicted

survival curves of four patients in North Alberta Cancer Dataset, by the AFT
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model with ε following the log-normal distribution. In our experiments, we fit

the AFT model with ε following the log-normal distribution using the function

survreg in the R package survival [30].
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Figure 3.4: Survival curves for four patients from the North Alberta Cancer
Dataset [38] generated by the AFT model.

3.2.4 Multi-Task Logistic Regression

Multi-task logistic regression is a recent effort from the machine learning com-

munity to produce a patient-specific survival function, which works well, ac-

cording to several criteria [38].

Unlike the Cox model, MTLR does not have an explicit assumption or

restriction about the hazard function or the shape of survival curves. Survival

curves of different individuals can be very different and can intersect with

each other. This offers greater prediction capacity and flexibility. Figure 3.5

shows the predicted survival functions from MTLR for fifteen patients from

the North Alberta Cancer Dataset [38].

MTLR first discretizes the continuous time axis into K + 1 time points

{τ0, τ1, τ2, . . . , τK}, with τ0 = 0 and τK = ∞, and then transforms the sur-

vival function prediction task into a sequence of binary classification tasks, by

constructing initially a logistic regression model for each time point τj, j =

17



Figure 3.5: Survival curves for fifteen patients from North Alberta Cancer
Dataset generated by MTLR model.

1, ..., K − 1:

Pr( yj = 0 | �x ) =
(
1 + exp(�xT · �θj + bj)

)−1

(3.5)

where �θj and bj are the parameters associated with the jth time point and

yj = I{T < τj} indicates if the subject �x has incurred an event before τj.

Then if we (for now) treat the classifiers as independent, we have the

probability mass function (PMF) of �y as

P̃ r( �y | �x) =
exp

(∑K−1
k=1 (�x

T · �θk + bk)yk

)
∏K−1

k=1 (1 + exp(�xT · �θk + bk))
(3.6)

However, as we must prevent the case that yj = 1 and yj+1 = 0 from

holding (that is, after someone dies, that person cannot come back alive), the

normalization term is the summarization of the unnormalized “probability” of

these K legal �ys, which are (1, 1, . . . , 1, 1), (0, 1, . . . , 1, 1), . . . , (0, 0, . . . , 0, 1),

and (0, 0, . . . , 0, 0). The final form of the PMF of T is

Pr( τj−1 ≤ T < τj | �x )

= P̃ r( �y = (y1 = 0, . . . , yj−1 = 0, yj = 1, ..., yK−1 = 1) | �x)

=
exp

(∑K−1
k=1 (�x

T · �θk + bk)yk

)
Z(Θ, B, �x)

=
exp

(∑K−1
k=j (�x

T · �θk + bk)
)

Z(Θ, B, �x)
,

(3.7)
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where Θ = (~θ1, ~θ2, ..., ~θK−1), B = (b1, b2...bK−1) and

Z(Θ, B, ~x) =
K∑
j=1

exp

(
K−1∑
k=j

(~xTi · ~θk + bk)

)

is the normalization term.

Then it is trivial to derive the log-likelihood function of a dataset D =

{[~xi, ti]}, where the first Ne instances are uncensored and the remaining Nc

are censored.

LL(D; [Θ, B]) =
Ne∑
i=1

K−1∑
k=1

(~xTi · ~θk + bk)yk(ti)) +

Ne+Nc∑
i=Ne+1

log

[
K∑
j=1

cj(ti) exp

(
K−1∑
k=j

(~xTi · ~θk + bk)

)]
−

Ne+Nc∑
i=1

log (Z(Θ, B, ~xi)) ,

(3.8)

where yk(ti) = I{ti < τk}, cj(ti) = I{ti < τj} for right censored observations

and cj(ti) = I{ti ≥ τj−1} for left censored observations.

Yu et al. [38] proposed finding the parameters [Θ, B] that optimize the log-

likelihood together with two regularizers:
∑K−1

k=1 ‖θk‖ and
∑K−2

k=1 ‖θk+1 − θk‖.
The first regularizer is designed to reduce the chance of overfitting. The second

one is designed to smooth the prediction and control the model capacity, which

is commonly seen in multi-task learning [6]. However, we prove that the second

regularizer does not do its job (of smoothing the predicted distribution), and

in fact may even harm the prediction performance. This proof can be found

in Appendix A.

Moreover, we have also reformulated MTLR into a multi-class softmax

classifier and developed a more general form of it, which allows for more flex-

ibility. Unfortunately, though we benefit greatly in training speed by saving

about 90% of training time, this new progress does not lead to a better (or

worse) performance under the three evaluation criteria used in this thesis.

Therefore, this further analysis appears in Appendix A.
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Chapter 4

Dataset

4.1 Data Collection

While there are many datasets of financial transactions, they all report only

the actual purchases, but not the “non-purchases” — i.e., not situations where

a consumer has declined an offer. For our stochastic RP setting, we need a

dataset that contains both purchases and non-purchases. While the donation

dataset used in KDD Cup 1998 [15] does provide “non-donate” transactions,

these non-donations only happen when a donor’s “reservation donation” is

zero, which means that this dataset provides no left-censored observations.

We therefore designed and executed our own online survey on Qualtrics,

asking subjects to provide information about themselves, and about their in-

terest in purchasing each of four different specific-types of chocolate bar.

Here, we acquire one dataset for each type of chocolate, leading to four

datasets in total. For each consumer, we collected 41 features, e.g., the con-

sumer’s demographics information, and preference towards the chocolate brand

and flavor, the time when s/he ate her/his last meal and so on.1 Note that

the subjects did not purchase any product in the survey; they just provided

information, for which they were paid.2

In our survey, instead of recording the responses of consumers to offers of

products at certain prices, as described in Section 2.3, we directly ask for their

1For more details about the survey, please visit https://qtrial2014.az1.qualtrics.

com/SE/?SID=SV_0kycgJjTgOj5Z8p.
2We obtained the appropriate ethics permission for this study with human participants.
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instant RPs ri,ω and used this to determine their responses ai,ω to certain offers,

i.e., (non-)transaction data, following the decision-making process proposed in

Section 2.1. N.b., our learning algorithms do NOT use those ri,ω ’s — instead,

they just use the (non-)transaction data; see Figure 3.2. We only collected the

ri,ω values in the study as a way of evaluating our learners.

4.2 Data Quality

To ensure that our data quality is good and the reported RPs are accurate, our

online survey included five attention-check questions, one RP understanding

question and a two-step RP elicitation procedure [29]. We eliminated any

subject who failed any attention-check or RP understanding question or who

showed any inconsistency in his/her answers about RP. We also eliminated

blatantly ridiculous responses — e.g., a subject willing to pay $10000 for a

100g chocolate bar.

At last, 722 responses (out of 1080 submissions) qualified for each of the

four chocolates. The basic statistics appear in Table 4.1.

Lindt Godiva Valrhona Hersheys
Mean of RP 3.88 4.84 2.94 1.48
Std of RP 1.89 2.92 2.08 1.05

Retail Price 6.00 10.00 7.50 2.00

Table 4.1: Summary of four chocolate datasets.

While we tried to produce a dataset with good quality, the hypothetical

response bias [36] cannot be completely avoided, as there were no real pur-

chases.

The good news is, as our goal is to evaluate the performance of survival

models within our novel framework of RP, this systematic bias will not be

a serious issue. When online retailers later collect (non-)transaction data in

practice, the consumers will be making purchases, which will mitigate this

hypothetical response bias.
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4.3 Generation of (Non-)transaction Data

After acquiring the true RPs and features of the consumers, we simulated

a (non-)transaction data collection session by first sampling one query price

vi,ω for each consumer from a stretched Chi-Square distribution3 and then

determining the consumer’s response ai,ω following the decision-making process

defined in Section 2.1. That is, the consumer’s purchasing decision is simply

ai,ω =

{
yes if vi,ω ≤ ri,ω
no otherwise

(4.1)

This led to a database, for each product, that had 722 instances, whose ith

row described the ith consumer using 41 features. It also had an offer price

vi,ω for each ith instance of product ω, and the response bit ai,ω. That is, the

format of this dataset strictly conforms with the example dataset shown in

Table 2.1 (see also Figure 3.2).

Note in particular that the dataset does not include the consumer’s RP

ri,ω nor did we use the true RP data in training nor in the hyper-parameter

selection via cross validation. The true RP data is only available in the final

testing phase for evaluating the RP prediction performance.

3First we set the parameter k in χk to be the mean of the RPs in the whole datasets and
then used a linear mapping to match the variance of the distribution χ2

k with the variance
of the RPs in the whole dataset.
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vi,ω ∼ χ̃2ω(D)

Consumer Product Price

Decision

vi,ω

ai,ω = I{ri,ω ≥ vi,ω}

Decision-Making
Model 

Draw an offered priceSurvey-Collected Instant RPs
ri,ω

ri,ω

(Non-)transaction Data
features price response
�x1 v1,ω a1,ω
�x2 v2,ω a2,ω
... ... ...
�xN vN,ω aN,ω

D: the whole trainset

Figure 4.1: Procedure of generating (non-)transaction data.
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Chapter 5

Experimental Results

In this section, we present empirical results for three reasonable evaluation cri-

teria. All results are based on ten-fold cross-validation: for each type of choco-

late and for each of our four survival models (KM, Cox, AFT, and MTLR),

we train a model on 9/10 of the subjects; we then use that learned model to

produce a “RP distribution” for each of the remaining 1/10 of the subjects.

For MTLR, within each fold we execute an internal five-fold cross validation

to select the best hyper-parameter, e.g., regularization constant.

5.1 Mean Absolute Error

Given the learned CDF F̂Rω |~xi(v) of consumer ~xi’s RP for product ω, we use

the median RP as the prediction for consumer ~xi’s RP value1:

Median(~xi) = r̂i,ω s.t. F̂Rω |~xi(r̂i,ω) = 0.5 (5.1)

As we have collected the consumers’ true instant RP ri,ω, we can compute

the mean absolute error (MAE) of our predicted RPs.

MAEω =
1

N

N∑
i=1

|r̂i,ω − ri,ω| (5.2)

where N is the number of consumers.

Note that we cannot use this criterion in cross validation to select hyper-

parameters, because the learners do not have access to the true RP.

1We use the median price point as the RP prediction, as it is more robust than mean.
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Brand Lindt Godiva Valrhona Hersheys
KM 2.03(0.29) 2.34(0.44) 1.63(0.22) 0.88(0.12)
Cox 1.71(0.22) 2.15(0.27) 1.45(0.18) 0.73(0.08)
AFT 1.36(0.13) 2.03(0.17) 1.37(0.18) 0.68(0.06)

MTLR 1.23(0.12) 1.79(0.15) 1.25(0.16) 0.60(0.08)
Baseline 1.40(0.21) 2.14(0.27) 1.54(0.18) 0.72(0.10)

Table 5.1: Ten-fold cross validation MAE. Each cell gives the “mean(std dev)”
over the ten-fold cross validation, of running a particular learner on a dataset.
Bold values are the best performance across the four models for that dataset.
Table 5.2 uses the same format.

Table 5.1 shows the the ten-fold cross validation MAE for all four survival

models. The bottom row is a strong “cheating” baseline, which computes the

median value of RP in the training set, then uses that as a prediction over

the test set. This “cheating” baseline utilizes the consumers’ true RPs, which

are not available to the learners, and so should not be used in training. The

results are visualized in Figure 5.1.

We see that the MTLR and AFT model achieve lower MAE than the

cheating baseline, on all four chocolate datasets. Moreover, their standard de-

viations of the MAE for all four datasets are also very small, which indicates

that the performance of MTLR and AFT is stable. Figure 5.2 shows a scat-

ter plot of the true reservation prices and the predicted reservation prices of

MTLR over the Godiva dataset. The predictions on the whole dataset come

from the ten-fold cross validation procedure. The correlation coefficient of the

predictions and true reservation prices is 0.5321.

It is worth noting that among all four models, MTLR performs the best

in each of the four chocolate datasets. (One-side t-test shows that MTLR was

significantly better than others here, each at p < 0.05.)

5.2 Binary Classification Accuracy

This evaluation criterion tests if the learned models can accurately predict the

consumer’s response to our offer of ω at price v. This too is very important in
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Figure 5.1: Mean absolute error, MAE (ten-fold CV).

real applications. Here, each predictor predicts the response using

âi,ω =

{
yes if PPFω(~xi, v) = 1− F̂Rω |~xi(v) ≥ 0.5
no otherwise

(5.3)

We then compute the classification accuracy as

ACC =
1

N

N∑
i=1

I{âi,ω = ai,ω} (5.4)

Brand Lindt Godiva Valrhona Hersheys
KM 0.57(0.04) 0.68(0.07) 0.70(0.06) 0.62(0.08)
Cox 0.64(0.08) 0.67(0.11) 0.76(0.09) 0.75(0.04)
AFT 0.57(0.04) 0.69(0.06) 0.77(0.04) 0.76(0.03)

MTLR 0.81(0.04) 0.80(0.06) 0.81(0.04) 0.81(0.03)
Baseline 0.53 0.50 0.53 0.54

Table 5.2: Classification accuracy (ten-fold cross validation).

Table 5.2 and Figure 5.3 show that the classification accuracies of all four

survival models (even the non-personalized KM) are significantly better than

the “random guess” baseline, i.e.,
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Figure 5.2: Scatterplot of true reservation prices and predicted median reser-
vation prices on the Godiva dataset.

baseline =
max{#purchasing transactions,#non-purchasing transactions}

#all transactions

Among those models, MTLR again performs the best on all four datasets

and this result is statistically significant (p < 0.05 in t-test).

5.3 Profit Using a Simple Pricing Strategy

RP is a very important concept in designing pricing strategies for various

purposes, e.g., high customer loyalty or more profit, as discussed in Section 1.1.

In this section, we want to evaluate whether survival models within our

RP framework can lead to real profit in practice. The pricing strategy we use

here is simple and intuitive, which aims to maximize the expected profit and

relies on good estimates of the PPF.

As we have a predicted purchasing probability function ˆPPFω(~xi, v) =

1− F̂Rω |~xi(v) for each consumer ~xi, we know the predicted expected profit by

offering ω at price v to ~xi would be (v − c) · ˆPPF (~xi, v) where c is the seller’s

cost to produce ω. Here, the seller should therefore offer the product ω to ~xi

at the price v̂i(c) with maximum expected profit:
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Figure 5.3: Classification accuracy (ten-fold cross validation).

v̂i(c) = arg max
v
{(v − c) · ˆPPF ω(~xi, v)} (5.5)

The true mean profit PFT (c) with cost being c for product ω is computed

as

PFTω(c) =
1

N

N∑
i=1

I{v̂i(c) ≤ ri,ω} · (v̂i(c)− c) (5.6)

However, since we are not sure about the true manufacturing cost c of

chocolates, we compute (ten-fold CV) mean profit, for each cost c ∈ {$0, $0.1,

$0.2, ..., $4.9, $5.0}; see Figure 5.4.

For comparison, we also evaluate the performance of three probabilistic

classifiers, i.e., näıve Bayes (NB), logistic regression (LR) and random forest

(RF) on the profit criterion, as these models can also be used to estimate PPF,

though in a different manner. To do this, we define the purchasing decision

variable as Ac ∈ {0, 1} and use ( ~X, V ) as the input variables, where V is the
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product price variable. That is, the PPF can be represented as

PPF ′ω(~xi, v) = Pr(Ac = 1| ~X = ~xi, V = v)

However, note that for RF and NB, the PPF ′ω(~xi, v) is not guaranteed to

be monotonically non-increasing over price v.

The “Retail” lines in Figure 5.4 show the profit associated with selling the

product at the standard price (see Table 4.1). We see in Figure 5.4 that this

näıve approach, which is the standard approach, returns very low profit —

indeed, for many costs, essentially all of the predictors do much better.

To further evaluate whether our idea, of estimating the consumer-specific

RP instead of uniform RP for all consumers, helps in practice, we computed

the profit of selling the product at six different fixed prices ($1.0, $2.5, $4.0,

$5.5, $7.0, $8.5) and compare them with the profit earned by MTLR. As

shown in Figure 5.5, at almost all cost points, the profit of MTLR is higher

than selling the product at any fixed price. This result strongly support our

idea of estimating RP on individual level.

5.4 Discussion

First, the fact that two survival models (MTLR, AFT), with no knowledge of

the true RP, can beat the cheating baseline on the MAE evaluation criterion,

shows that even without direct measurement of consumers’ true RPs, but only

censored observations, we can still have pretty good estimations of consumers’

RPs. It suggests that our way of collecting data may work in practice for the

RP estimation task.

Moreover, it is worth noting that the performance on all three evaluation

criteria of the personalized models — i.e., MTLR, AFT, and Cox — are gen-

erally much better than the non-personalized one, i.e., KM. This can serve

as strong empirical support for our idea of modeling consumer-specific RPs

instead of a uniform RP. Moreover, the fact that the personalized MTLR ob-

tained more profit than selling the product at any fixed price further bolsters

our personalized setting.
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Figure 5.4: Profits across production costs from $0 to $5 (ten-fold cross vali-
dation). The dashed line indicates the likely production cost of the chocolate,
which is %20 of its retail price [10].

Additionally, the great performance of survival models (all much better

than the baselines) on the ACC and PFT evaluation criteria suggests that

our way of estimating RP can be helpful in reality for predicting if consumers

would accept an offer or not and achieve better profit. This is extremely

useful for online retailers who want to conduct private promotions or general

first degree price discrimination [27].

Among all survival models, MTLR did extremely well — better than the

others — on all three evaluation criteria, on all four chocolate datasets. This

suggests that MTLR is probably a good choice for predicting RP distribution

predictions, in general. Besides right censored and event data, MTLR can also

handle left censored and interval censored data without modifications, while

most packages of KM and Cox only deal with event and right censored data.
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Figure 5.5: Profit comparison between fixed-prices and MTLR across produc-
tion costs from $0 to $5 (ten-fold cross validation).

Note that these strong results are based on four similar and relatively small

datasets, of only 722 subjects. We anticipate getting significantly better results

if we uses larger datasets, with more consumers, and perhaps more information

about each.
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Chapter 6

Conclusion

6.1 Future Work

6.1.1 Transaction-Specific RP Estimation

One easy but meaningful extension is to integrate the product features ~Y in the

dataset, with which we could achieve (consumer, product)-specific reservation

price estimation. This is an easy extension to our framework and involves just

estimating R|~x, ~y instead of R|~x. By doing this, we can

• learn the model for different products at the same time, instead of treat-

ing each as an independent dataset.

• transfer the knowledge of RP between similar products, e.g., we can even

estimate a consumer’s RP for a new product, as long as we know the

product features.

However, as we only have data about four similar products right now, it is

not realistic for us to experiment on this task.

A more ambitious goal is to include other information, such as transaction

time and transaction location. Again, our framework can easily handle this

case too.

6.1.2 Unbalanced Data

In real settings, most consumers will turn down most products — that is,

most consumers will not accept most offers from online retailers. This means
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that most datasets will be (seriously) unbalanced [20], where the degree of

unbalance will depend on several factors, such as the promotion strategy, dis-

tribution of offer price and the product itself. We plan to further study this

direction, to see if survival models can handle such very unbalanced datasets.

6.1.3 Online Predictor

Suppose we have two consumers ~xi and ~xj where ~xi and ~xj are very similar,

then we find that ~xi declines our offer for ω at vi = $5. Should we then offer

ω to ~xj at a price higher than $5? Probably not, as ~xi and ~xj are similar.

This example argues that we should generate the offers sequentially, utilizing

the previous responses, as this may be better than generating the offers vi in

a batch mode. This leads to many interesting contextual bandit issues, and

associated analyses [3]. We plan to extend our system to this on-line context.

6.2 Contributions

Motivated by the new demands of e-commerce, my thesis has proposed a novel

framework of estimating consumer-specific reservation price, which consists

of a consumer decision-making model, and a corresponding data collection

method.

This framework has three major advantages over the traditional elicitation

methods in the marketing literature, which help it meet the new demands of

the e-commerce scenario:

• It captures the inherent uncertainty of reservation price.

• It connects the RP estimation task to survival prediction, which allows

us to use survival models (standard and novel) to perform an individual-

level RP prediction based on consumer-specific information.

• It is much easier and more practical for online retailers to implement

our framework than the traditional elicitation method. As our data

collection method does not ask consumers to report their true RPs, but
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indirectly infers consumers’ RPs based on historical (non-)transaction

data.

The experimental results show that survival prediction models, especially

MTLR, perform well on this task under three different criteria. This empir-

ically shows that our framework of RP is meaningful and useful in practice.

Given this success based on a relatively small dataset, we anticipate that others

may try this approach on larger datasets.

Last, motivated by the great performance of MTLR on the RP estimation

task, we further explored this model, and succeeded in developing a more

general framework, which provides more flexibility. We also prove that the

smoothness regularizer ‖θj−θj−1‖ in the original MTLR model is not useful, as

the smoothness of predicted distribution is actually controlled by ‖θj‖ instead;

see Appendix A.
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Appendix A

Multi-task Logistic Regression

A.1 Reformulation of MTLR

First, instead of viewing MTLR as a sequence of logistic regressors as dis-

cussed in Section 3.2.4, we reformulate the survival problem into a multi-class

classification problem and motivate MTLR as a multi-class softmax classifier.

This simplifies the next two sections and gives some insight about how this

model works.

⌧0 = 0 ⌧1 ⌧2 ⌧K = 1⌧K�1......

c1 c2 ...... cK

Figure A.1: K intervals and classes.

Similar to [38], we discretize the time axis into K intervals as shown in

Figure A.1, but here we treat each interval as a class. We define a new random

variable C out of the event time variable T as

C = cj iff τj−1 ≤ T < τj, (A.1)

then each uncensored patient is associated with a class label, while for censored

patients, we know that their true class label C|~x ∈ {cj | Tc < τj}, where Tc

denotes the censored time.

It is intuitive that we would like the model to have the smoothness property

that if τj − τk is small,

Pr(C = cj | ~x) ≈ Pr(C = ck | ~x). (A.2)
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Suppose that we have a unique probability expression for each class, then

one intuitive way to achieve the smoothness property is to guarantee the prob-

ability expressions of classes for close intervals are similar to each other. This

observation suggests the candidate way of modeling the probability for differ-

ent class cj

Pr(C = cj|~x) =
exp(~xT θj + ...+ ~xT θK−1)

Z(Θ, ~x)
, (A.3)

where Z(Θ, ~x) =
∑K

j=1 exp(~xT θj + ... + ~xT θK−1) is the normalization term.

Here, for simplification, we omit the intercept terms B = {b1, b2, ..., bK−1},
which are usually not important in a softmax model.

The difference between Pr(C = cj|~x) and Pr(C = ck|~x) in the exponential

term is
k−1∑
t=j

~xT θt

which means that the closer j is to k, the more similar the probability expres-

sion of Pr(C = cj|~x) is to that of Pr(C = ck|~x). Therefore, the smoothness

property is achieved.

It is not hard to see that this way of coding described above is exactly the

same with the MTLR model described in Section 3.2.4.

A.2 Smoothness

In the last section, we motivate MTLR from a different perspective and trans-

form the whole problem into a multi-class classification problem. In this sec-

tion, we provide more detailed analysis about the smoothness property of the

predicted probability distribution.

Supposed that τj and τj+1 are very close to each other, then a good model

has to predict

P̂ r(C = cj | ~x) ≈ P̂ r(C = ck | ~x).

as justified in the previous section.

Here we compute the ratio of Pr(C = cj−1|~x) and Pr(C = cj|~x), which is
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rj =
Pr(C = cj−1|~x)

Pr(C = cj|~x)
= exp(~xT θj) (A.4)

Thus a sufficient condition for rj to be close to one, which means that

Pr(C = cj−1|~x) ≈ Pr(C = cj|~x), is that ‖θj‖ is small.

Surprisingly, this result indicates that the general regularizer
∑K−1

k=1 ‖θj‖
not only prevents overfitting, but also controls the smoothness of the predicted

probability distribution.

Now we examine how the original smoothness regularizer term ‖θj − θj+1‖
works. As rj = exp(~xT θj) and rj+1 = exp(~xT θj+1), if θj is close to θj+1, then

we have

rj = exp(~xT θj) ≈ exp(~xT θj+1) = rj+1

which leads to
Pr(C = cj−1|~x)

Pr(C = cj|~x)
≈ Pr(C = cj|~x)

Pr(C = cj+1|~x)
(A.5)

It is unclear if this property will help, as it suggests a constant ratio of the

probabilities for adjacent times.

We therefore tried omitting this regularizer, and instead just sought the

parameters that optimized the log-likelihood with the general regularizer ‖Θ‖
only. Our experimental results, over several survival datasets show that the

performance of MTLR under several evaluation criteria, e.g., concordance in-

dex, mean absolute error, mean square error and log-likelihood, does not de-

generate without the smoothness regularizer.

One major advantage of eliminating this regularizer is that we could save

lots of training time, as we now have one less regularizer constant to tune in

the cross validation phase.

A.3 Generalization of MTLR

This section illustrates how we can generalize MTLR into a more general form

and discusses several special cases.

Here with some simple linear algebra operations, we can rewrite the Pr(C =

cj|~x) as
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Pr(C = cj|~x) =
exp(~xT

∑K−1
k=j θk)

Z(Θ, ~x)

=
exp(~xTΘG~yj)

Z(Θ, ~x)

(A.6)

where G = (~g1, ~g2, ..., ~gK) and ~gj is a (K − 1)-dim vector with first j − 1

elements being zero. We call G the coding matrix. See Figure A.2 (left) for

an example with K = 4. The definition of ~y can be found in Section 3.2.4.
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Figure A.2: Examples of possible coding matrices.

By using different Gs (not restricted to square matrices), we can derive

different multi-class classifiers out of this general formula.

For example, if G in Figure A.2(mid) is adopted, then this model turns into

the multinomial logistic regression (MNLR) [5]. In this case, the smoothness

regularizer would be quite helpful to smooth the distribution prediction.

We can even use an m × K dimensional G, where m 6= K − 1 (e.g.,

Figure A.2 (right)). In this case, the dimension of Θ would also be altered to

be p×m instead of p× (K − 1). If we have m < K − 1, then we will have less

parameters in Θ to tune, which speeds up the training process.

With this extension, one can design his/her own G with appropriate regu-

larizers to fulfill his/her own need, which comes in handy. Note that the two

basic principles for choosing G are that

• No two classes share the same probability expression (which means the

columns of G must be different)
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• Classes representing time intervals close to each other should have similar

probability (smoothness property) — which means G’s adjacent columns

should be similar.

As similar probability expressions would be a sufficient condition for smooth-

ness, generally we want the probability expressions of close time intervals to be

similar. Meanwhile, an obvious exception is the MNLR model. The probabil-

ity expressions for all classes are different from each other, but the smoothness

regularizer ‖θj−θj−1‖ can still serve the purpose of restricting the probabilities

at close time intervals to be close. (So for MNLR, one might want to continue

using smoothness regularizer.)

This general formulation of MTLR also allows us to easily kernelize the

model. Also this model is related to import vector machine (IVM) [39] —

an extension of support vector machine [8] — which gives probabilistic output

for multi-class classification problem. Exploring the relationship between IVM

and MTLR is also of future interest.
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