*E National Library
of Canada du Canada

Bibliotheque nationale

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily dependent upon the
quality ot the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

I{ pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproductionin full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1872, ¢. C-30, and
subsequent amendments.

NL-339 {r.88/04) ¢

-

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

Sl _matique des pages, veuillez communiguer avec
l'université qui a conféré le grade.

La-qualité d'impression de certaines pages peut laizser 3
désirer, surtout si les pages originales ont é1é dactylogta

phiées & l'aide d'un ruban usé ou si l'universilé nous a fait
parvenir une photocopie de qualité inférieure.

La reproduction, méme pantielle, de cette microforme est
soumise a la Loi canadienne sur e droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents.

(B]]

Canada

University of Alberta

Symbolic Generation of The Dynamic
Equations for Rigid and Flexible Link
Manipulators

by
" Luai L El-Rayyes

A thesis
submitted to the Faculty of Graduate Studies and Research
in partial fulfilment of the requirements for the degree of

Master of Science

Department of Mechanical Fugineeriug

Edmonton, Alberta
Spring 1990

l * ! National Library
of Canada du Canada

Biblioth&que nationale

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

T4 wuslity of this microform s heavily dependent upon the
quikiy of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

li pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially i the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is govemned
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons

tout fait pour assurer une qualité supérieure de reproduc-
tion.

S'it manque des pages, veuillez communiquer avec
Funiversité qui a conféré le grade.

La qualité d'irnpression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées & l'aide d'un ruban usé ou si l'université nous a fait
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielie, de cette microtorme est
soumise 3 (a Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents.

ISBN 0-315-60253-8

NL-339 (r.88/04) ¢

Canada

V0 (o)

Uuniversity of Alberta

Release Form

Name of Author: Luai I. El-Rayyes

Title of Thesis: Symbolic Generation of The Dynamic Equations
for Rigid and Flexible Link Manipulators

Degree: Master of Science

Year this degree granted: 1990

Permission is hereby granted to The University of Alberta Library to
reproduce single copies of this thesis and to lend or sell such copies for private,

scholarly, or scientific research purposes only.

The author reserves other publication rights, and neither the thesis nor extensive
tracts from it may be printed or otherwise reproduced without the author’s written

consent. p)
‘!

(Student’s signature)
Luai I. El-Rayyes
472 Wanyandi Road
Edmonton, Alberta
T5T 4M6

...............

The University of Alberta
Faculty of Graduate Studies and Research

The nndersigned certify that they have read, and recommend to the Faculty of

Graduate Studies and Research for acceptance, a thesis entitled

Symbolic Generation of The Dynamic Equations for Rigid and Flexible
Link Manipulators
submitted by
Luai I. El-Rayyes

in partial fulfilment of the requirements for the degree of

Master of Science.

Dedication

To My Parents

iv

Abstract

The development of computationally efficient dynamic algorithms is a vital part
of robotics research. In this thesis, ttex dynamics of both rigid link manipulators and
ilexible link manipulators are automatically generated using the symbolic generation
technique. A Newton-Euler algorithm for rigid link manipulators was programmed
in the symbolic generator NEDYN. A modified Lagrangian algorithm for the flexible
link manipulators was programmed in the symbolic generator FLEX. A post-processor
called CLEAR is utilized to further simplify and optimize the generated dynamics.
Several dynamiics problems were treated which include recursive inverse dynamics,
closed form inverse dynamics and direct dynamics. The implementation of the
symbolic generation techniques results in great reductions in the computational
requirements for both rigid link and flexible link manipulators. Furthermore, the
computational efficiency of the symbolic generator NEDYN was in many cases
superior to the most efficient symbolic generators reported in literature to date. For
the case of flexible link manipulators the symbolically generated direct dynamics
code required only between 2.8% and 5.7% of the computations needed by the
generic numerical formulations. Systematic documentation of the computational
requirements for the flexible link manipulators is presented in this work. Several test
cases were studied to verify both the dynamic models and the correct implementation

of the different algorithms in the symbolic generatcrs.

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Dr. Roger Toogood

for his guidance and support throughout this research.

I also would like to acknowledge the financial support provided to me by

the department of mechanical engineering in the form of research and teaching

assistantships.

vi

Contents

1 Introduction
1.1 The Dynamics of Rigid Link Open Chain Robot Manipulators
1.1.i Computational requirements of numerical programming
1.1.2 Symbolic Generation of the Dynamics.

1.2 The dynamics of lexible link manipulators

1.3 Outline cf this work

............................

2 Dynamics of Robot Manipulators

2.1.1 Kinematics
2.1.2 Dynamics i it i e
2.2 TheDirect Dynamics
23 The JacobianMatrix
2.4 The Closed Form Dynamics =
24.1 ThelInertiaTerm
2.4.2 Centrifugal and Coriolis Term

vii

11

13

16

18

243 GravityTerm

244 External Force Term
2.5 Inverse Dynamic Algorithm for Flexible Link Manipulator
2.5.1 Kinematics of The Flexible Links

2.5.2 Dynamics of the Flexible Links

2.5.3 Computational scheme,

3 Symbolic Generation

3.1 The Symbolic Generators.
3.2 The CLEAR Post-Processor
3.2.1 Removingunused terms
3.2.2 Pre-computation of constant terms
3.2.3 Renaming of duplicate multiplication terms
3.2.4 Trigonometric simplifications.
325 Factoring
3.2.6 Pre-determined sequence
3.2.7 Statistics. L

4 Verifications and Results

4.1 Rigid Link Dynamics
4.1.1 InverseDynamics
4.1.2 Closed form dynamics

40

44

46

53

33

54

36

60

60

61

61

65

4.1.3

Computational Requirements of Inverse Dynamics 72
4.14 Direct Dynamics 79
4.1.5 Computational Requirements of Direct Dynamics 79
4.16 JacobianMatrix. L L 83
4.2 Flexible Link Dynamics 85
421 CaseStudies. 85
422 Verification 110

4.2.3 The Computational Requirements to Calculate the Direct
Dynamics for Flexible Link Manipulators 110
5 Summary.and Conclusions 118
References 123
A Newton-Euler Formulation for Rigid Link Manipulators 129
A.l KinematicsoftheLinks 130
A2 DynamicsoftheLinks 132

ix

List of Tables

1.1

1.2

3.1
3.2
3.3
3.4
3.5

4.1

4.2

4.3

4.4

4.5

4.6

Computational Requirements of General Purpose Numerical
Formulations{d2]

Inverse Dynamics Computational Requirements For the Stanford Arm
Using Fully Automatic Customized Symbolic Algorithms

List of the symbolic generators.
Special cases implemented in the multiplication procedure
Special cases implemented in the addition procedure.
The locations of each term in the Fortrancode

Common locations for each pairof terms

Inverse Dynamics Computational requirements for Neuman and
Murray’s ARM generator (29]

Inverse Dynamics Computational Requirements for Six DOF
Manipulators Using NEDYN

Inverse Dynamics Computational Requirements for Three DOF
Positioning Systems Using NEDYN

Direct Dynamics Computational Requirements for Three DOF
Positioning Systems Using NEDYN

Direct Dynamics Computational Requirements for Six DOF
Manipulators Using NEDYN

Direct Dynamics Computational i~guirements for Neuman and
Murray’s ARM generator [29]

......

4.7 Manipulator Jacobian Matrix Computational Requirements
4.8 Link material and geometry parameters used in the test cases

4.9 Ratios of the contribution of the first four modes to the static deflection
for a link in bending with a point load at the end

4.10 Comparison between the theoretical and simulated frequencies for a
single flexible link in bending.

......................

4.11 Ratios of the contribution of the first four modes to the static defiection
for a link in torsion with an external torque at the end

4.12 Comparison between the theoretical and simulated frequencies for a
single flexible link in torsion.

......................

4.13 The definitions of "o cases used in the computational efficiency
comparisons

................................

1.14 The computational requirements of the generator FLEXHB

4.15 The computational requirements of the generator FLXDYN

List of Figures

2.1
2.2
2.3
2.4

31
3.2
3.3
5.4
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5

Denavit and Hartenberg Parameters.
Forces and Moments exertedon each link
Flowchart for program NEDYN

Coordinate Frames and Transformations attached to link:

sample segments of the generated Fortrancode
Fortran code before removing unused terms
Fortran code after removing unused terms
Foriran code a) before and b) after computations of constant terms .
Fortran code before renaming of duplicate multiplication terms
Fortian code after renaming of duplicate multiplication terms

Fortran code a) before and b) after trigonometric simplifications . . .
Fortran code a) before and b) after factoring

Statistical report produced at the end of CLEAR operation

Six DOF Stanford manipulator
finematic Stateof Joint 2 L L L.
“'omputed Joint Torques Using Dynamic Code Generated by DYNAM
Computed Joint Torques Using Dynamic Code Generated by NEDYN

Dynamic Terms Contributions to the Total Torque for Joint 2 of the
Stanford Manipulator

68
69
70
71

4.6 Torque for Joint 2 computed by NEDYN
4.7 Single flexible link in bending

......................

4.8 Response of bending variables of a single flexible link:a) 1st mode b)

2ndmode
4.9 Response of bending variables of a single flexible link:a) 3rd mode b)
dthmode
4.10 Single flexible linkintorsion

4.17 Response of torsion variables of a single flexible link: a) 1st mode b)
2ndmode oL

4.12 Response of torsion variables of a single flexible link: a) 3rd mode b)
4th mode

.................................

4.13 Double flexible compound pendulum

4.14 Joint angle responses for double compound flexible pendulum: a)
EI=10.178 Nm? b) EI=101.78 Nm? c) rigid model

...........

4.15 Joint angle responses for double compound flexible pendulum: a)
EI=10.178 Nm? b) EI=101.78 Nm? c) rigid model

4.16 Response of bending variables for link 1 :a) EI=10.178 Nm? b)
EI=101.78 Nm?

4.17 Response of bending variables for link 2 :a) EI=10.178 Nm? b)
EI=101.78 Nm? e

4.18 Two flexible link manipulater

...........

4.19 Responses of the manipulatorincase4.1
4.20 Responses of the manipulatorincase4.2
4.21 Responses of the manipulatorincase4.3

4.22 Responses of the manipulatorincase4.4

xiii

Chapter 1

Introduction

Industrial rebots are being increasingly utilized in modern industrial plants. With
this growing interest in robot manipulators, robot dynamic analysis has become
the target of extensive research in tiie past few years. This research is aimed at
the generation of efficient dynamic equations with the fewest number of arithmetic
operations. Efficient robot dynamics are necessary for two main purposes : control

and simulation.

When a certain task is required to be performed by the robot, a motion trajecto.y
must be generated to specify the path the robot must follow to execute this task.
These trajectories are often generated so as to provide continuity of position, velocity
and acceleration. In the case of slow moving robots with constant and small
payload, the desired trajectories are programmed in a simple feedback controller.
The controller will command the appropriate torque at the joint actuators so that the
manipulator can closely follow the planned path. However, the recent trend now is to
build faster robots with heavier payloads. For these kinds of robots, simple feedback

controllers will not be able to accommodate the dynamic disturbances resulting from

to

the increased speed and payload. Therefore, more sophisticated controllers which
incorporate the robot dynamics into their control schemes are required. For these
controllers, an efficient dynamic model is essential hecause the computations must
be performed in real time for on-line control. Furthermore, as the lowest structural
resonant frequency of most industrial robots is about 10 Hz, the sampling frequency
of the controller must be more than 60 Hz to assure that controller commands will

not excite any structural resonances in the manipulator [25, 34].

Simulation plays an important role in the initial design of industrial robots
as well as in the planning of tasks for existing robots. During the initial design
stage, simulations can provide valuable information regarding the suitability of the
structure, the required actuators sizes, the ability of the robot to perform certain
tasks under different loading conditions. In addition to this, using simulation,
controllers and controlling schemes can be investigated to determine their suitability
to perform certain tasks in an acceptable manner. Furthermore, for existing
robots and controllers, simulation can provide the expected response of the robot
when performing a proposed task, and hence reduce the down time required for
programming and testing. Thus, in order to optimize the cost of these simulations,

efficient dynamic algorithms are needed.

The dynamic analysis of open chain robot manipulators can be divided into two
classes of problem : the inverse dynamics problem and the direct dynamics problem.
In the inverse dynamics problem, the joint torques or forces are computed for a set of
specified joint positions, velocities and accelerations. The inverse problem is required
in the control algorithms. The direct dynamics problem is used te calculate the joint
accelerations for specified joint torques or forces, positions and velocities. The direct
problem is utilized in the simulation routines where the response of the robot to a

set of joint forces or torques is to be determined. Walker and Orin (48] have devised

efficient methods to obtain the direct dynamics from the inverse dynamics. Therefore
if an efficient inverse dynamic algorithm is achieved, a direct algorithm can be easily

derived from it.

As outlined later in this chapter, several techniques have been implemented to
derive the equations of motion. Most of these techniques could be classified as either
a Lagrangian method based on Lagrange’s equation or a Newton-Euler method based
on D’Alembert’s principle or they could be a hybrid of the two. Deriving the equations
of motion manually using one of these techniques is manageable for manipulators with
three or fewer degrees of freedom. For manipulators with a higher number of degrees

of freedom, manual derivation becomes very tedious and error prone.

A second alternative to manual derivation is to program these algorithms
numerically. Numerical programming has some short falls: the programming itself
sometimes becomes so complex that there is an ample opportunity for errors.
Furthermore, numerical programming, as will be shown later, is not very efficient
in terms of computational requirements. Some of this lack of efficiency is due to
the presence of unproductive computations such as multiplication by zero or one,
duplicated operations and overlooked simplification opportunities. Also there is some
overhead involved in numerical programming such as looping, testing for counters,
calling subroutines and passing parameters which causes the slower execution of

generic numerical code on computers.

As an alternative to numerical programming, researchers are focusing on the
automatic symbolic generation of the equations of motion. The purpose of automatic
symbolic generation is to simplify the process of the computer code development
and to maximize the efficiency of the produced code. In symbolic generatiou,
mathematical operations involved in the dynamics algorithm are performed utilizing

alphanumeric symbols rather than numerical values. For a particular manipulator,

the symbolic generation of its equations of motion is performed only once. The
output of these symbolic generation programs (referred to as generators throughout
the remainder of this work) is a computer code containing the dynamics of the
specific manipulator. The generated code is usually called “customized” because
it is specifically tailored to calculate the dynamics of a specific manipulator with
the minimum number of necessary operations. This customization process greatly
improves the efficiency of the dynamic code because all special geometric and mass
features of the manipulator are incorporated in the code. These features include
the type of joints (translational or rotational), the presence of parallel or intersecting

joints and the presence of zero elements in the geometric, mass and inertia parameters.

Robot manipulators can be classified into two categories : the rigid link
manipulatcrs aad the flexible link manipulators. For a rigid link manipulator, all links
and joints are assumed rigid and static deformation and vibration due to different
loading conditions are ignored in the dynamic analysis. In fact, this kind assumption
is, for all practical purposes, reasonable as most of the present industrial robots are
designed with rigid links. These rigid structures reduce the static deformation to
very small values. Also, as the rigidity increases, the link vibrations tend to be of
high frequencies and small amplitudes. However, there is a price to be paid for this
rigidity because as the structure gets heavier, the required actuator torques that are
needed to drive the links get larger. This means bigger and heavier actuators and,
in turn, larger loads as the actuators are carried by other actuators. In the end, this
results in a small useful payload to manipulator mass ratio. Also with the increased
masses of links and actuators, speed is compromised. For example, the Excalibur
robot has a mass of about 35 kg while its maximum payload capacity is about 3.5
Kg [37]. A more precise manipulator is the Puma 560. This 6 degrees of freedom
manipulator has a mass of 55 kg and payload capacity of 2.5 Kg [22]. This results in

(&

a mass to payload ratio of 22 to 1 which indicates that most of the power consumed is
wasted just moving the links of the manipulator. With the desire to make lighter and
faster robots with higher payload to mass ratio, attention is being made to design
new robots that have links with lower structural rigidity and sophisticated control
systems to account for structural flexibility. This class of robots is called flexible link
manipulators. Light weight manipulators have many advantages over bulky “rigid”

link manipulators [45]:

o higher speeds can be achieved.

less material requirements.

smaller actuators.

less power consumpticn.

better ability to manoeuvre.

e lower mounting strength and rigidity requiremeats.

built-in compliance at the end effector.

However, flexible link manipulators have some serious disadvantages as accuracy in
terms of the response of the end effector to the joint controlling commands will be
very pcor. This poor accuracy is due to the deformation of the links especially
when the different loading conditions excite structural oscillations. In order to take
advantage of the benefits of this class of manipulators and make them accurate enough
for industrial applications, controlling systems must be designed to account for and
control the deformations and the vibration modes of the links. Therefore, an efficient
and accurate dynamic model is crucial for the purpose of control and also for the

purpose of simulation to design the optimum robot configuration and control scheme.

1.1 The Dynamics of Rigid Link Open Chain
Robot Manipulators

The dynamic equations of motion are the heart of both control and simulation
processes. As it was pointed out, the speed of execution of thes¢ dynamic algorithms

is of utmost importance.

For an open chain manipulator with N degrees of freedom, the general form of the

equations of motion is :

Hyjg + Clg,g)g + G(a) + @) k=71 (1.1)

where
H (q) N x N symmetric inertia matrix.
C (g,q) N x N matrix specifying centrifugal and coriolis effects.
G (q) N x 1 vector specifying gravitational effects.
J (q) 6 x N Jacobian matrix specifying the torque (forces)
created at each joint due to external load at link N.
k 6 x 1 vector specifying external forces and

couples exerted on link V.

T N x 1 vector of actuator torques (forces) at each joint.
q N x 1 vector of joint variable (joint angle or offset).
q,q N x 1 vector of joint velocity and acceleration respectively.

Several formulations can be utilized to derive the equations of motion. These can
be classified into either closed form formulations or recursive formulations [28]. These
dynamic formulations have been shown to be equivalent {41), that is, although they

possess different formats, they represent exactly the same dynamic behaviour.

The classical Lagrange formulation yields seperate kinetic and poteniial energy
terms. The kinetic energy is composed of inertial, centrifugal and coriolis coefficients.
The resulting equations separately calculate the different coefficients of equation 1.1
and therefore are referred to as closed form dynamic model. A closed form formulation
gives better insight into the dynamics of the manipulator and hence it is more useful

for designing the control systems.

The recursive formulation involves the implementation of some intermediate
quantities to compute the required joint forces or torques. These intermediate
quantities sometimes consist of the angular and translational velocities and
accelerations and local and total forces and moments. For example in the Newton-
Euler formulation, the angular and trauslational velocities and acceleration (kinematic
state) of link ¢ serve as the intermediate quantities which are calculated using the
kinematic state of the previous link ; — 1. Examples of the recursive formulation are

the recursive Lagrange formulation [15] and the recursive Newton-Euler formulation

[25].

The closed form formulations can be obtained by expanding the recursive
formulation; that is by elimirating the intermediate quantities and then extracting

the coefficients of the closed form model from the joints torques/forces equations.

1.1.1 Computational requirements of numerical

programming

The computational requirements to calculate the inverse dynamics using different
numerical techniques, measured by the number of addition and multiplications
needed, are shown in table 1.1 [5]. The first entry in the table is Uicker- Kahn

Classical Lagrangian formulation. In this formulation (and in all other Lagrangian

formulations), the joint variables g; are readily utilized as the generalized variables.
A coordinate frame is attached to each link. Transformation matrices [5. 34] are
use to specify the positions of the different links and the end effector. These
transformation matrices are functions of the joint variables g;. The time derivatives
of these transformation matrices specify the motion of the different links. The kinetic
and potential energies are formulated in terms of these transformation matrices. As
shown in table 1.1, it is clear that the computational requirements of the general
purpose Classical Lagrangian formulation developed by Uicker-Kahn are very high
as the required number of additions and multiplications are polynomial functions
of degree 4 of the number of degrees of freedom. This intensive computational
requirement is due to the fact that each joint torque/force is calculated directly and
separately from the other joints. In spite of the heavy computational requirements,
this closed form formulation is very important as it gives an insight t¢ the dominant
dynamic terms for a certain manipulator and hence is useful for the manipulator and

controller design engineers.

Due to the extensive computational requirements, simplifying assumptions can be
applied to the equations of motion to reduce the intensity of computations. These
simplifications include neglecting the coriolis and centrifugal terms, assuming some
links to be massless and ignoring some joint offsets. In spite of the resulting reduction
in the computational burden due to these assumptions, the dynamic model is not a
good representation of the actual system. For example, the coriolis and centrifugal

terms are sometimes not negligible even for low speeds [5].

In order to reduce the inefficiency of Uicker-Kahn classical Lagrangian formulation
and remove the repetitiveness of computations, Waters [49] re-wrote the Uicker-Kahn
algorithm in a more efficient recursive form. Later, this algorithm was refined by

Hollerbach [15]. Initially, Hollerbach utilized the standard 4 x 4 transformation

Table 1.1: Computational Requirements of General Purpose Numerical

Formulations{42]
Algorithm Author Degrees of Freedom
N 6
Classical Lagrange Uicker-Kahn
multiplications 32N* 4 86N3 + 171N? + 53N — 128 67984
additions 25N* 4+ 66N + 129N? + 42N — 96 51456
Recursive Lagrange Hollerbach (4x4)
multiplications 830N — 592 4388
additions 675N — 464 3586
Recursive Lagrange Hollerbach (3x3)
multiplications 412N - 227 2195
additions 320N — 201 1719
Newton-Euler Hollerbach
multiplications 150N — 48 852

additions 131N — 48 738

10

matrices and their time derivatives to represent the position and motion of the
manipulator. The computational requirements of Hollerbach’s 4 x 4 recursive
Lagrangian formulation are shown in table 1.1. It can be seen that this new recursive
formulation is a great improvement in efficiency over Uicker-KKahn formulation. The
computational requirement has a linear dependency on the number of degrees of
freedom. Nevertheless, there are some obvious inefficiencies still present in this
algorithm. These inefficiencies arise from the fact that the fourth row of the 4 x 4
transformation matrix contains only zeros and ones. To overcome this, Hollerbach
modified his algorithm by using 3 x 3 rotational transformation matrix to specify the
orientation and a vector to specify the translation. These modifications resulted in

great improvement in the efh iency of the algorithm as shown in table 1.1.

The last entry in table 1.1 is the Newton-Euler formulation. As shown in this
table, the numerical Newton Euler formulation is the most efficient among all the
numerical algorithms. This makes it the most attractive to implement. Silver [41]
proved that the recursive Lagrangian formulation and the recursive Newton-Euler
formulation are exactly equivalent. What makes the Newton-Euler formulation more
efficient is the representation chosen for rotational dynamics. In the Lagrangian
formulation, the first and second time derivatives of transformation matrices are used
to represent the angular motion of the system. But the transformation matrices have
9 components while only 3 independent components are required to completely specify
the orientation of an object. On the other hand, vectors are utilized in the Newton-
Euler formation to describe the angular motion which eliminates the redundancies

present in the Lagrangian formulation.

11
1.1.2 Symbolic Generation of the Dynamics

In order to eliminate the unnecessary operations such as multiplications by
zero and one or the addition of zero and also to alleviate the computational
overhead associated with numerical algorithms, much recent work has been directed
at autor 1tically generating the equations of motion utilizing symbolic generation
techniques. Besides optimizing the generated codes in terms of efficiency, symbolic
generation is an attractive way to simplify the process of code development itself by

eliminating tedious manual derivation or numerical programming.

Dillon [12] in 1973 developed the first symbolic generator OSSAM which is
based on the classical Lagrangian formulation. The main contribution of this
generator is its implementation of a symbolic processor designed specifically to
address the requirements of robot dynamics. In 1980 Vecchio et al. [46] developed
the computational robot dynamics program DYMIR .. automatically produce the
dynamics of manipulators. DYMIR is based on the classical Lagrangian formulation
and utilizes the symbolic language REDUCE. Vecchio et al. used DYMIR to generate
the complete clused- form dynamics of robots. Luk and Lin [24] in 1981 proposed some
simplification procedures by comparing similar algebraic expressions and removing
negligible terms. They also proposed the implementation of the recursive Newton-
Euler formulation. Unfortunately, these authors did not report the number of
computations involved in the generated computer codes. In the early stages of the
development of the symbolic generation schemes, concerns were raised that symbolic
generation may lead to a greater computational requirement than the numerical
programming. Kane and Levinson [18] stated that symbolic generators “tend to
lead to computational algorithms involving large numbers of unnecessary arithmetic
operations”. They also pointed out the increasing length of the algebraic expressions

and the extensive computer memory requirement.

12

The computational requirements for the inverse dyvnamics for the Stanford
manipulator for different symbolic generators are shown in table 1.2 (part of this data
is obtained from Nielan and Kane [32]). Rosenthal and Sherman [38] implemented
Kane’s method in their symbolic generator. Hussain and Noble utilized the algebiaic
manipulation system MACSYMA to symbolically generate the dynamics based on
the classical Lagrange formulation. The drawback of this method was that very
long alg.braic expressions were produced which resulted in large computational
and memory requirements. Due to the apparent inefficiency that accompanies the
utilization of general purpose symbolic manipulation languages such as REDUCE
and MACSYMA, researchers »re focusing on the development of specialized symbolic
manipulation programs for the purpose of generating the dynamics of manipulators.
These specialized programs have two advantages: the first is the computer time
required to generatz the computer codes containing the dynamics is greatly reduced by
the elimination of the unnecessary overhead found in the general purpose programs.
Secondly, the generated code is more computationally efficient as these specialized

programs are designed to take advantage of the simplification opportunities that are

inherent in the dynamic equations.

Toogood [42, 43] and Kermack [19] applied Hollerbach’s 4 x4 recursive Lagrangian
formulation [15] in the symbolic generator DYNAM. This system has two stages: the
dynamic algorithm is implemented in DYNAM which produces a unique computer
code containing the dynamics of a certain manipulator without any sophisticated
simplification. In the second stage the generated code is read by a post processor
called CLEAR [42} and a series of more advanced simplification procedures are

performed on i da,

Neuman and . 28, 29, 30, 31] developed the highly successful symbolic

generator ARM (A “wobot hiodeler). Several formulations are implemented in

13

ARM which iuclude the Newton-Euler f>rmulation among others. Both closed form
and recursive form dynamics cquations ~an be generated. ARM, which requires a
minicomputer to run, consists of two modules: A “composer” which implements the
symbolic mathematical operations to produce the dynamic model and a “performer”
which performs the operations specified by the composer. By changing the composer,
different formulations can be used. The internal algebraic representations can be
changed by altering the performer. The composer is written in the C programming

language and the performer is written in LI5P.

Recently, Khalil and Kleinfinger [20] implemented a recursive Newton-Euler
formulation to produce the inverse dynamics. The rest.ting dynamics code is
very efficient as shown in table 1.2. This high efficiency was attributed partly
to the implementation of a new system to describe the manipulators by applying
some modification to the Denavit and Hartenberg representation. Furthermore, the
recursive Newton- Euler equations were rearvanged to allow regrouping of the mass
and inertia terms. This permitted the computation of these terms to be performed off-
line. The authors did not specify whether these regrouping operation were performed

manually or automatically.

1.2 The dynamics of flexible link manipulators

As mentioned earlier, efforts are being directed at the incorporation of link
flexibility in the manipulator dynamics. Including flexibility will allow the design
of lighter and faster robots with greater useful payloads. The dynamic model of the
flexible manipulator consists of two coupled sets of partial differential equations. The
first set describes the rigid body motion of links while the second set describes the

flexibility of the links. These two sets of partial differential equations are dynamically

i4

Table 1.2: Inverse Dynami. , Computational Requirements For the Stanford
Arm Using Fully Automatic Customized Symbolic Algorithms

Author program vear | mult. add. total
Rosenthal and Sherman [32] 1983 | 632 400 1032
Hussain & Noble [17] 1984 | 5320 1837 7157
Kane and Nielan [18] 1986 | 772 456 1228
Toogood DYNAM |[1987| 331 267 598
Neuman & Murray [29] ARM 1987 148 185 333
Khalil & Kleinfinger [20] SYMORO {1987 | 142 99 241

coupled due to the presence of variable inertia, centrifugal and coriolis terms [2).
Researchers started to consider flexibility as early as 1975 [3]. All these early works
were characterized by the implementations of linear models which ignored coupling
effects between the rigid and flexible dynamics. Since the lemand for light robots
is espectally important in aerospace applications, early research was aimed at the
modelling and control of flexible spacecraft. An example of this is the work done
by Singh and Likins [39]. Their model was derived by expanding Kane’s method for

rigid dynamics. Modal expansion was used to model flexibility.

Recently, more research effort was directed specifically at the dynamic modelling
and control of flexible manipulators. Two methods have been used to model the
flexible links. These methods are the modal expansion and the finite element method.
Sunada and Dubowsky [40] modelled the links of the manipulator using finite element
techniques based ou the 4 X 4 recursive Lagrangian formulation. They also employed
coordinate reduction techniques to reduce the computational requirements. Usoro

[45] also used finite element and Lagrangian methods.

For the previously mentioned methods, no information was reported concerning

the computational requirements of the different formulations.

Book [4] utilized 4 x 4 transformation matrices to represent the kinematics of both
the rotary joint motion and the link deformation. Link deflections were approximated

by the summation of assumed modes. Book’s algorithm is recursive.

To capitalize on the efficiency of the Newton-Euler formulation, King,
Gourishankar and Rink [21, 22] derived the equations of motion using a modified
Lagrangian approach. They used angular velocities and 3 x 3 rotation matrices
to represent link kinematics producing a recursive algorithm that is similar to the
Newton Euler formulation. Modal expansion was utilized to approximate deflections.
They reported that this numerical method is more efficient than Book’s [4] method
while both methods have the same accuracy as assumptions and approximations were

identical.

Similar to rigid link manipulators, symbolic generation of the dynamics of the
flexible link manipulators appears to be a good altcrnative to both numerical
programming and manual derivations. When the equations of motion are extended to
include the flexibility of the links, the resulting coupled differential equations become
too complex to be derived manually. Also, as in the case of rigid link manipulators, the
numerical programming incorporates many redundant and unproductive arithmetic
operations. Therefore it is logical to seek the aid of symbolic manipulation programs.
Most of the work done in symbolic programming has been performed utilizing
commercially available symbolic manipulation languages such as SMP, MACSYMA
and REDUCE. Examples of this, is the work done by Cetinkunt et al. [6, 7, 8],
Nicosia et al. [33] and Tomei [44]. Unfortunately, none of these researchers reported

the computational requirements of their algorithms.

Mackay [26] implemented a modified version of Book’s algurithm [4] in the
symbolic generator FLXDYN which is based on the 4 x 4 recursive Lagrange

16

formulation and assumed modes. The computational requirements of some cases

studied are reported later in this work.

1.3 Outline of this work

In this work, the symbolic generation of inverse and direct dynamics for both
rigid link manipulators and flexible link manipulators are treated. The Newton-
Euler inverse dynamics formulation of Luh et al. [25] was implemented in the
symbolic generator NEDYN. This program generates antomatically a computer code
containing the inverse dynamics of rigid link manipulators. NEDYN employs the
symbolic manipulation techniques developed by Toogood [42] and ! ~rmack [19] for
the symbolic generator DYNAM. The Newton-Euler formulation was chosen because
the numerical Newton-Euler algorithm is one of the most efficient algorithms. It
was anticipated therefore that this high efficiency will carry on to the symbolically
generated algorithms. NEDYN was then modified to symbolically generate the direct
dynamics of manipulators utilizing Walker and Orin’s technique [48]. NEDYN was
also modified to symbolically generate the dynamic coefficients found in equation
1.1 such as centrifugal coefficients and coriolis gravitational coefficients. Assembling
these coefficients together produced the closed form model of the manipulator. It was

also modified to generate the manipulator Jacobian matrix.

The inverse dynamics ior flexible link manipulators is programmed in the
symbolic generator FLEX utilizing King’s modified Lagrangian formulation [22]. This
formulation utilizes a kinematic representation very similar to the efficient Newton
Euler formulation. Additional symbolic generators were derived from FLEX to
symbolically generate the direct dynamics utilizing Walker and Orin procedures (48].

A post-processor called CLEAR is utilized to further optimize the generated

17

computer code by performing a sequence of simplifying procedures. CLEAR.
originally developed by Toogood [42], was extensively modified and expanded by

the present author.

In chapter two, a very brief outline of the Newton-Euler inverse dynamics
formulation of Luh et al. [25] will be presented. Also the Walker and Orin [48]
methods to obtain the direct dynamics from the inverse dynamics will be illustrated.
The method by which the dynamic coefficients are obtained from the inverse recursive
dynamics to formulate the close form dynamics will be explained. King’s modified

Lagrangian formulation for flexible manipulators will be sketched.

Chapter three will present the technique of symbolic generation, the different
generators developed as well as the different simplification techniques as they are

implement in the post-processor CLEAR.

Chapter four presents the computational requirements of the dynamics generated
using the different symbolic generators together with a comparison with other
symbolic generators. Some test cases will be presented to verify the correct
implementation of the dynamics algorithm in the symbolic generators for the rigid
link manipulators. For the flexible link manipulator, some test cases are presented
which will indicate the correct implementation of the algorithm in the symbolic
generator though they do not rigorously evaluate the accuracy of the original dynamic
formulation. Such a verification require comparison with experimental results. Little

usable experimental data is available for this.

Finally, chapter five will summarize the findings of this work and present

conclusions and recommendations for further work.

Chapter 2

Dynamics of Robot Manipulators

In this chapter, an overview will be presented of the dynamic algorithms
implemented in the symbolic generators. Both rigid and flexible link manipulators
will be discussed. The Newton-Euler algorithm of Luh et al. [25] for rigid link
manipulators is outlined in the first section. This algorithm was implemented in
the symbolic generator NEDYN. In the second section, the methods of Walker et al.
(48] for obtaining the direct dynamics from the inverse dynamics will be presented.
The third section presents a new method to deduce the manipulator Jacobian matrix
from the inverse dynamics. Algorithms for obtaining other dynamic terms as used in
closed form analysis (the inertia, centrifugal and coriolis, gravity, and external force
term) are described in the fourth section. In the last section, the main features of the
modified Lagrangian algorithm of King et al. {21, 22], implemented in the flexible link
dynamic generator FLEX, will be discussed. The computational requirements of the
various algorithms will be presented in a subsequent chapter, including comparisons

with the source algorithms and other symbolic generation schemes.

In this chapter a notation convention is adapted. Vectors are represented by bold

18

19

italics, matrices by bold upper case roman letters and other variables are represented
by italics. A leading super-script defines the frame of reference and a subscript denotes

ihe link number.

2.1 The Recursive Newton-Euler Inverse
Dynamic Algorithm for Rigid Link

Manipulators

Referring back to table 1.1 it is apparent that the numerical Newton-Euler
algorithm is the most efficient among all the presented numerical formulations.
Anticipating that this high efficiency will carry on to symbolic generation, this
technique was implemented in the symbolic generator NEDYN. The Newton-Euler
algorithm implemented is that of Luh, Walker and Paul 25]. In the following sections,

the kinematics and dynamics will be discussed.

2.1.1 Kinematics

In this algorithm, a coordinate system is attached to the distal end of each link
according to Denavit and Hartenberg convention [34, 11]. Four geometric parameters
a; , d;, &; and 6; are utilized to describe the relative orientation and position of two
adjacent link coordinate systems as shown in figure 2.1. The parameter a; represents
the link length, d; the joint offset, o; the twist of the link and 6; the joint angle.
Manipulator joints can be classified into two types: revolute (rotational) joints or
prismiatic (translational) joints. In the case of a revolute joint the variable parameter

is the joint angle §; and the rest of the parameters are constants while in the case of

20

a prismatic joint, the variable parameter is the joint offset d;. The orientation of the
coordinate system of link 7 is specified with respect to the coordinate system of link

i — 1 by the direction cosine matrix ‘~1A; :

cosf; —cosa;sinf; sinq;siné;
1A |)
A= sinb; cosaicosf; —sina, cosé; (2.1)
0 sin a; CoSs «v;

while the position of the origin of coordinate system of link i with respect to the

origin of the coordinate system of link i — 1 is denoted by the vector ‘p? as shown in

figure 2.2:

a;
‘p} = d; sin a; (2.2)
d; cos q;

The angular and linear velocities, ‘w; and *v;, the angular and linear accelerations,
‘w; and ‘9; and also the linear acceleration of the center of mass '9; of the different
links are calculated recursively starting at the base link and moving towards the
end effector. By giving the base link linear and angular velocities of zero, angular
acceleration of zero and linear acceleration equal one g in the z, direction, the
algorithm includes gravitational effects without explicitly including the weight of each

link. The complete kinematics of these links are found in Appendix A.

2.1.2 Dynamics

Equation 1.1 provides the general form of the equation of motion of a manipulator.

In the inverse dynamics schemes, the joint forces or moments 7; are calculated given

joint ;
link -1

Figure 2.1: Denavit and Hartenberg Parameters

joint ;)

21

the kinematic state of the manipulator. The Newton-Euler algorithm of Luh et al.
(23] is one of the most efficient numerical algorithms to calculate the inverse dynamics.
The advantage of Luh et al. formulation cver the earlier Newton-Euler formulations is
that all the joint forces and torques are referenced in the link’s own coordinate frame.
According to D’Alembert’s principle, the total external vector force ' F; exerted on
link : is given by:

iF.= M, ‘v (2.3)

where M; is the mass and ‘®; is the linear velocity of center of mass of link /. The

total external vector moment *IN; exerted on link i is given by
N =" Ty 4 fwi x (35 fwy) (2.4)

where 'J; is the inertia matrix of link ¢ about its center of mass referenced to the
local coordinate system of the link. Referencing each link’s dynamics to its own
coordinate system has a great advantage as this eliminates considerable computations
that otherwise are necessary to transform all the kinematic and dynamic quantities
to the base coordinate system. For example, if the dynamics were reference to the
inertial (global) coordinate system, the inertia matrix of the link will change following

any change in the configuration of the manipulator during its movement.

Performing equilibrium of forces and moments on link i as shown in figure 2.2

results in

‘fi = iAi+1(i+lfi+1)+ ‘F; (2.5)
ini = ‘Ai+1[i+1ni+1 +(i+1Ai ipf) X i+l.fi+1]+(ipf +
i5;) x 'F; + 'N; (2.6)

where ‘f; and ‘n; represent the force and torque vectors respectively exerted on

23

(i ¥y zi)
center vf mass of link i .

(ziz1y Yiz1y 2i-1)

Figure 2.2: Forces and Moments exerted on each link

24

link ¢ by link 7 — 1. Notice that gravity forces are not included in the balance of
forces. Rather, it is included in the kinematic analysis by giving link 0 (base link) an

acceleration equal one g upwards.

The resulting joint force or torque ; is projection of ‘fi or ‘n; about the z;_, axis
to give
‘nl - ("Ai_; *'z,) rotational: (
Ti =) . .
FTL(AL *“1z,1) translational

o
~1
et

A flow-chart of the recursive Newton-Euler algorithm as implemented in NEDYN
is shown in figure 2.3. The program first generates the link transformation matrices.
The forward recursion then generates the kinematic terms beginning at the base
link and proceeding outward to the end effector. An external load vector may be
applied at the end effector. The backward recursion then proceeds to generate terms

representing the interaction forces and moments, and the joint torques until the base

link is reached.

2.2 The Direct Dynamics

In the direct dynamic problem, the Joint accelerations in equation 1.1 are
calculated for specified joint torques or forces, positions and velocities. Four schemes
for the direct dynamics solution of 1.1 have been presented by Walker and Orin [48].

Methods 2 and 3 proceed as follows: Equation 1.1 is re-written in the form

H(@)g=7-[Cla.4)q + Gla) + I(g) &| (2.8)

or

H(q)g = (1 — b) (2.9)

(Start

v
LRead Geometric and Inertial Parametal

\ 4
——FOR i = 1 TO N DO]
Y

Generate A;, AT and ‘p;

r

T
set°w°=0,0d’o=0,0‘éo=[009]

—>{FOR i = 1 TO N DO|

Generate fw; s ‘d},‘ y "b,‘) "l.i,' , l.F',' s iN,'

—[I NEXT : l

set N*:fy., , Ntiny,, equal to the external load on link N

W
—>FOR i = N _ DOWNTO ! DO]

Calculate °f; , ‘m; , ir

y
~INEXT]

END

Figure 2.3: Flowchart for program NEDYN

25

where
b=C(q.q)g + Glq) + Iq)T k (2.10)

is a bias vector. Note that the bias vector can be computed from the inverse dynamics

subroutine by setting the joint accelerations to zero.

To compu ~ the inertia matrix, H (gq), all velocity and gravity terms and the

payload vector in equation 1.1 are set to zero. Equation 1.1 is then utilized as

H{q) e; = h; (2.11)

where e; is a vector containing all zeros except for row j which contains a one.
That is, e; is a vector representing a unit acceleraticn of joint j with all other joint
accelerations zero. The result returned by the inverse dynamics is h; which is the
j*h column of the inertia matrix H (g). Since H (q) is symmetric, only the terms
on and either above or below the diagonal have to be calculated. Walker and Orin’s
method 2 computes the terms on and below the diagonal. When calculating the jt
column of the inertia matrix in this method, the manipulator is considered as having
only N — j + 2 links with N — j + 1 degrees of freedom. Alternatively, Walker and
Orin’s method 3 computes the terms on and above the diagonal. Method 3 is similar
to method 2 in considering only the last N — j + 2 links. But in method 3, the last
N —j +1link are regarded as a single rigid body for which a nev. center of mass and
n nent of inertia is calculated. With H (q), b and 7 known, the system of linear

equations can be solved for ¢. Since H (q) is a symmetric, positive definite matrix,

an efficient algorithm for this solution is Cholesky (LU) decomposition [9)].

To produce the direct dynamics it is possible to utilize the inverse dynamic code
generated by NEDYN and perform the procedures of Walker and Orin’s method
2 each time the direct dynamics are required (e.g. each integration step in a

simulation program). Nevertheless, it is more efficient to symbolically generate the

9
-~1

direct dynamics as many redundant and unproductive operations can be eliminated.
This was done by modifying the inverse dynamics generator NEDYN to generate
the inertia matrix H according to either Walker and Orin’s method 2 or method 3.
The modifications consisted of setting all the velocity and gravity terms to zero and
utilizing equation 2.11 and the procedure outlined above to symbolically generate the
inertia matrix. The new generator was renamed HMAT. Also, NEDYN was modified
to generate the bias vector b, by setting the joint accelerations to zero, and renamed
BVECT. Subsequently, HMAT and BVECT were combined to form a generator
called HBMAT which will generate the complete direct dynamics. This merger was
performed because the generated codes by HMAT and BVECT sometimes contain
some common operations and hence it is more efficient to combine the generators and

the generated codes together.

2.3 The Jacobian Matrix

The Jacobian matrix is very important for the control of manipulators. In order
to control the end effector in Cartesian coordinates, the Jacobian matrix and its
inverse are required to transform rates and forces from Cartesian coordinates to joint
coordinates and visa versa. In order to make it suitable for implementation in real
time control schemes, the evaluation of the Jacobian matrix has to be performed

on-line and hence very efficient algorithms are needed [34, 36].

It is possible to obtain the Jacobian matrix from the inverse dynamics subroutine
in a manner similar to that used to obtain the inertia matrix. This is done by setting
all the joint accelerations, velocities and gravity terms to zero in equation 1.1 which
can then be re-written as:

J(q)T e = ji (2.12)

28

where e; is a (1 x 6) vector containing all zeros except for row i which contains a one.
The result of 2.12 is §; which is the ¢** column of the transpose of the Jacobian matrix
J (¢)T (" rowof J (q)). Thatis, e; is a vector representing a unit external force or
moment applied at the end effector in the direction 7 with all other external forces and
moments applied at the end effector set to zero. Indexes 1,2 and 3 represent external
forces along @,y and z axes of the end effector respectively, while indexes 4.5 and
6 represent external moments about x,y and z axes respectively. This procedure is

repeated six times, with 2 = 1...6, to evaluate the complete Jacobian matrix.

Calling the inverse dynamics subroutine six times whenever it required to evaluate
the Jacobian matrix is not efficient as many duplicate and unproductive operations
exist. Therefore it is more efficient to perform the previous process only once. This
is done by modifying the inverse dynamics symbolic generator to generate directly
a single subroutine for the evaluation of the Jacobian matrix. The computational

requirements of the new symbolic generator (named JACOB) are discussed in chapter

four.

2.4 The Closed Form Dynamics

To formulate the closed form dynamics it is necessary to compute each of the
dynamic terms found in equation 1.1 separately. As mentioned earlier, the closed
form inverse dynamics, though it is computationally less efficient than the recursive
dynamics, is very important to robot design and control engincers as it gives an
insight to the dominant dynamic terms for a certain manipulator under given loading

conditions. The following dynamic terms are evaluated separately :

e The inertia term H(q)g

29

o Centrifugal and coriolis term C(q,q) ¢
e Gravity term G(q)

e External force term J(q)7 &

2.4.1 The Inertia Term

The inertia term was basically computed in the direct dynamics. To calculate the
inertia term one has only to multiply the inertia matrix H(q) times the generalized
acceleration vector §. Nevertheless, computing the inertia term in this manner is very
inefficient because it is computationally intensive to calculate H(q). Alternatively,
the inertia term can be calculated directly from the recursive inverse dynamics by
setting all velocity and gravity terms and the payload vector to zero. A more efficient
algorithm is produced. NEDYN was modified to directly generate the inertia term
and was renamed HTERM.

2.4.2 Centrifugal and Coriolis Term

The centrifugal and coriolis term is calculated from the recursive inverse dynamics
by setting all acceleration and gravity terms and the payload vector in equation 1.1
to zero. NEDYN was modified to directly generate the centrifugal and coriolis term
and was renamed CTERM.

2.4.3 Gravity Term

The gravity term is calculated from the recursive inverse dynamics by setting

all acceleration and velocity terms and the payload vector in equation 1.1 to zero.

30

NEDYN was modified to directly generate the gravity term and was renamed

GTERM.

2.4.4 External Force Term

The external force term can be calculated by multiplying the transpose of the
manipulator Jacobian times payload vector. However it is more efficient to generate
it directly from the inverse dynamics by setting all accelcration, velocity and gravity
terms 1.1 to zero. Again NEDYN was modified to directly generate the external force
term and was renamed KTERM.

2.5 Inverse Dynamic Algorithm for Flexible Link

Manipulator

In the following sections, the dynamic algorithm for flexible link manipulators
developed by King [22] will be briefly outlined. The detailed algorithm and its
derivations are found in King [22]. Although the efficiency of the Newton-Euler
formulation over the different Lagrangian formulations in the case of rigid dynamics
is attractive, it is difficult to apply the Newton-Euler approach to flexible links
experiencing torsional and flexural vibrations. In order to gain the advantages of
both formulations, King utilized the more straightforward Lagrangian formulation to
derive the equations of motion while representing the rotational kinematics of the
links by angular velocity vectors and coordinate transformations by 3 x 3 rotational
transformation matrices and position vectors. Recursive expressions for the velocities
and accelerations were derived using the theories of moving coordinates which is the

same process as the Newton-Euler algorithm. Subsequently, the Lagrange’s equation

31

was applied to produce a set of recursive equations which form the non-linear dynamic
model of the flexible manipulator. The resulting equations of motion are very similar

to the Newton-Euler recursive equations for the rigid link dynamics.

2.5.1 Kinematics of The Flexible Links

To describe the kinematics of a flexible link 7, two coordinate frames are utilized
as shown in figure 2.4. The first set is the coordinate frame z/, y!, 2! which is utilized
to describe the gross rigid body motion of the link assuming that the link is not
deflected. A convention identical to that of Denavit and Hartenberg used in the
kinematics of rigid link manipulators is utilized for flexible link manipulators. The
rigid link parameters q; , d; , a; and 6; are employed to describe the relative position
and orientation of the origin of this “rigid” frame with respect to the origin of the
coordinate frame ®;_,,yi_,, 2i—, of link i — 1 by the vector P; and direction cosine

matrix “~!A;. Only revolute joints were considered both here and in King’s algorithm

[22].

The second set is the coordinate frame iy Yi, 2;. This frame is attached to the
end of the deflected link and constitutes the true coordinate frame of the link. To
describe the deflections of the link along its axis and also to describe the position
and orientation of the “true” coordinate frame relative to the “rigid” coordinate
frame, additional kinematic parameters are required. These parameters consist of the
instantaneous flexural and torsional deflections of the link along its axis. The lateral
deflections in the transverse y; and z directions o the link 7 at a distance 7 from its
proximal end and at time t are represented by w,(7,t) and w=i(7n,t) respectively. In
this algorithm, longitudinal vibrations in the z/ direction are neglected. &yi(n,t) and

@:i(n.t) represent the rotational angles of the link cross-section about y; and z! axes

32

(zih ysy =)

E/

w;

(mi—l’ Yi-1, zi—l)

(an Yo, ZO)

Figure 2.4: Coordinate Frames and Transformations attached to link :

33

due to the link : bending deflections. ¢,i(n,t) represents ihe angle of torsion about

the x| axis.

A homogenous transformation matrix E7/ is utilized to describe the orientations
of the origin of the =;,y;,2; frame relative to the origin of the “rigid” T Y, 2!
frame. If it is assumed that the angles of rotation due to link deflections are smal! so

that
sin{¢) = ¢
and

cos(¢) =~ 1

then the following transformation matrix is obtained

1 ~¢.i by
Ef=| ¢ 1 -4 (2.13)
- ¢yi ¢1‘i 1
where
¢zi = ¢xi(ai,t)

¢yi = ¢yi(ai,t)
¢ = ¢zi(ai’t)

The transformation that defines the orientation of the end effector coordinate

frame zn, Yy, 2y with respect to the base can be written in the form :

Tn = A EY 'A, EYf ... N-1Ay BN (2.14)

In this algorithm, the assumed modes method is used to calculate the deflections

of the link. The total flexural and torsional deflections are approximated by the

34

finite summation of products of m; time varying generalized variables §(¢) and space

dependent shape functions A(n) and ®(n) which can be written as:

$=i(n,1)
byiln, 1)
¢:i(n, %)
wyi(7, 1)
wei(7,)

or

i = Y

where ®,;x(7),

link ¢ , m; is the number of assumed modes per direction of flexibility and 6,4, é

L

mg

= Z 6::ak

= - Z 5znk

= Z 6ynk

= Z 6g|k

= Z 6.k(t) A

0 0 0

0 byix O

0 0 6zik

bz 0 0
0 b O
0 0 6:ik

()
ytk)
@i (n
Ayix(n)

-ak)

0
Ayik
Azik

ik
—®.ik
D ik

and 6y are the generalized time varying coordinates.

(2.20)

(2.21)

®,ic(n), D2k (n), Ayik(n) and A.ik(n) are k*» mode shape function of the

yik

For the “rigid” coordinate frames z!, y!, 2/, recursive expressions for the linear and

rotational velocities °v] and %w? and the linear and rotational accelerations %»7 and

%w! are written which calculate these quantities serially starting at the base link and

proceeding to the last link. Similar expressions are written to calculate the linear and

35

rotational velocities ®v; and ®w; and also the linear and rotational accelerations °%;
and °%w;. The derivation of these expressions is similar to the corresponding derivation
in the Newton-Euler rigid dynamic formulations with the inclusion of the parameters
describing the flexibility of the links. As an example, the expressions to calculate ‘o7

and 9; are

BTo= A [i_l'i’i—l] + @f x' pf + W x (i“’f x‘P?)

9, = EJT [fo7 +¥ @l xF i + wf x (fw] x° wi) + 2 (fw] x ;) + i
where N .
o0 o0 0
i'lbi = Z 0 5yik 0 Ayik (222)
k=1 .

and X - -
o 0 0 0
i'&’i = Z 0 Sy,'k 0 Ayik (2'23)
k=1 "

0 0 6. Ak

L J

where () and (7) denote the first and second time derivatives as seen in the rigid
coordinate frame. Notice that the equation which calculates ‘! is identical to the
expression used in the Newton-Fuler formulation for rigid link manipulator (refer to
Appendix A). The complete set of the expressions to calculate the kinematics are

found in reference [22].

2.5.2 Dynamics of the Flexible Links

In King’s algorithm, it was assumed that the links are slender with high aspect

ratios. These links can be considered as Euler-Bernoulli beams which (in the absence

36

of external transverse loads) comply to the following partial differential equation:

8? (EI(U)azw(n,t)> +u(n)62w(n,t)

6—7]2 on? ot2 =0 (

o
tJ
-
~

where
w(7,t) the lateral deflection of the link at time ¢
at a distance n from its proximal end along its axis
EI(5) link’s flexural stiffness
w(n) mass density (mass per unit length at location)

The mode shape functions used in the present work are the eigenfunctions
of equation 2.24 assuming clamped-iree boundary conditions. The choice of the
appropriate boundary conditions that applies to the links of manipulator is a very
difficult task complicated by the fact that these boundary conditions change during
the motion of the manipulator. Nevertheless, a number of researchers have indicated
that using clamped-free boundary condition resulted in a better approximation in
the modelling of flexible manipulators. An example of this is the work performed
by Hasting and Book [14] in which results from experimental data obtained from a
flexible arm were compared to data obtained from a linear dynamic computer model
utilizing both clamped-free and pinned-free boundary conditions. They concluded
that the application of clamped free boundary condition is far more accurate than
the pinned-free boundary condition. Furthermore, King [22] showed that results using
the finite element method to model deflections gave results very close to those using

the assumed modes with clamped free boundary condition.

For the torsional deflections, the following partial differential equation is utilized:

F6.(n,t) _ Gi 6%6:(n.1)
ot? pi On?

(2.25)

37

where
#z(n,t) the angular displacement of the link about the z axis
at time t and at location 7 from its proximal end,
G; link’s shear modulus,
pi mass per unit volume.
The eigenfunctions of equation 2.25 assuming also a clamped-free boundary

condition were used in the present work.

To derive the equation of motion, the Lagrangian approach is applied. Referring

to figure 2.4, the kinetic energy of the link ; can be written as follows:
1 .. 1 . .
KEi = 5 /r,- iidm + E/p Tui Gai - o dn (2.26)

where I; is the polar moment of inertia of the links’s cross section area about the '

axis. Noting that

T = Ritria

/
Tim = Tim + Wi

and defining the following parameters:

€ = /A;kdm (2.27)
Cc; = °w.~dm
= Z [&'k] €k (228)
k=1
é,‘ = o'!b,'d'm

= Z [8,'1‘] €k (229)

hi = / (rf‘m x° 1'0.-) dm
d,‘ = / (ow; XO ’w,) dm
i),‘ = %/ (o'lb.' .90 w,) dm +

% xip/dsri ' éﬁz.dU

After some manipulations the kinetic energy can be written as follows:

KB = 304 (%1.7) + 3 (w1 100) 4

b; +° v; - [(ow,’-’ X c.-) + é.‘] +0w’ . (h. + d.‘)
where I; is the link inertia tensor which can be calculated as follows:
II = trace(J))X —J¢
I/ = (trace(JT)X — J7) + (trace(J7)X — J74)7
Il = trace(J/)X ~ 3/
L = L+ +Y

where

X = identity tersor

N L B
Y= [irl- CwiTdm
¥ o= [Pwl-Pwifen

e
<
I

Cod

IR

[
I

The total kinetic energy of the manipulator will then be

KEtotal = ZKE,

38

(2.30)

(2.31)

—_—
| 8
(%]
(%)

~—

(2.34)
(2.35)
(2.36)
(2.37)

(2.38)
(2.39)

(2.40)

(2.41)

39

The potential energy of link : will take the form

1 .'395:;'2 ,.a%iz %2
PE,’ = 5 /{ G: I;n (’517) + E: Iyl (FT]—) + E: Izz 677 dT] (242)

Notice that the gravitational potential energy is not included in the previous
expression but accounted for, as in the Newton-Euler algorithm, by giving the base

of the first link an upward acceleration equal to 1 g.

The total elastic potential energy of the manipulator will be

PEjotat =)_ PE; (2.43)

Lagrange’s equations are then applied to obtain the equations of motion. This
results in two sets of coupled differential equations. The first set governs the gross rigid
body motion of the manipulator’s joints. Knowing that the elastic potential energy

is independent of the generalized joint variables g;, the first set can be obtained from

i [aKEtotal] _ aI<Etotal _

Zi | o 7! (2.44)

0g; J

The second set describes the vibrations of the links and is obtained by

ﬁ [?KEM;‘GI] _ aKEtotal + aPEtotal = Tyik (245)

dt | 96,

where &, is the kth generalized flexibility variable in the transverse y direction.

6y,'k 6yik

Similar expressions are written to calculate 7, and 7. By the proper choice of the

modal functions, these generalized deflection forces will be zero.

After substituting the expressions for the kinetic energy and potential energy in

equation 2.44 and manipulating of terms as described in King [22], the Lagrangian

equation for the joint can be written as follows:

N 0.7 or
T = Z{[af"]-[M?i,,- + %7 x ¢; +
9g; |

i=3

owf X (wa X c;) +2 (Ow}' % é,—) + c.] +

Oeor .
9 Yil. [I,- %Wl + L %wi + %w! x I; %Wl +
94;

C; Xo';'): + %! x (h. + d,‘) + h; +&,‘]}
and the equation of flexibility is written in the following way:

X f[8%; v
Tyik = Z{[-'}-4\I?i1;+°d:fxc,~+
Y i=j aéyik [

o,.r

w? X (Ow,'- X c;) +2%WwT x ¢ + C.]

0 ” .
+ B;"] - [IP0F + e +° wf x Bwi+

vik
¢ x°o; + °w! x (ft; +d;) + hi +&i]
+0yik}

where

v 08 ok, da;
ik = 0';'—-'—+0'5'[__'_'—+ "]
T VT Y

o) e
'oldt Bsyik 65y;k dt aéyik
1, . oL

m;
_ w..-——.——owf-i- Oyt K yi
2 aéyik § yil £ yilk

2.5.3 Computational scheme

The inertial forces and moments are given by:

Fi= M+ o] <o+ wl x (W] xPe) +2 (w] X&) +é

40

(2.46)

(2.47)

(2.48)

(2.49)

41

'Ni = Lol + Lwf + (w] < Twl) + e x4
+Hw! x ("f.u.,' +a 0 Fa (2.50)

Equations 2.49 and 2.50 are deduced from equation 2.46 following the procedures
described in Silver [41].

As in the Newton-Euler rigid dynamics, the interaction forces and moments

between links can be expressed in the following way:

‘fi=E ‘A, i+ F (2.51)
n = EY A o, + [‘P? + wi] xE[f Apy MU+ [‘P’f +! éi] x'Fi+'N;
(2.52)

and the joint tbques are given by
=1z 'T'A; ‘ny (2.53)

The flexibility equations can be deduced in a similar way from equation 2.47 to

give:
Trik = Ozik +Pmi - B TAj, i, (2.54)
Tyt = Oyik +Pyr - E Ay o, + Ay - EF AL 1 fier (2.55)
Tk = Ozt + o+ Eif Ay Flng + A - EV A UL (2.56)
where

q).tik
Q.‘rik = 0

Puir = | Byir

P = 0

Aa yik = Ay,'k

Avik

Detailed derivations and proofs of this algorithm are given in King [22].

This algorithm was implemented in the symbolic generator FLEX which generates
the inverse dynamics of flexible link manipulators. FLEX was then modified to
generate the direct dynamics according to Walker and Orin [48] method 2 described
earlier. This resulted in two more generators : FLEXH which generates the inertia
matrix and FLEXB which generates the bias vector. Subsequently, FLEXH and
FLEXB were combined in one generator FLEXHB which generatecs the complete

direct dynamics.

In this chapter a brief description of the dynamic algorithms implemented in

43

the symbolic generators was presented. The computational efficiencies and the
verification of the symbolic generators implementing these algorithms are given in

chapter four.

Chapter 3

Symbolic Generation

As a part of this work, several symbolic generation programs were developed
to automatically generate expressions, terms and relations involved in the dynamic
analysis and simulation of robot manipulators. The output of these programs is a
unique compiler-ready Fortrau code representing one of several possible algorithms
for the manipulator under study. A list of these generating programs is found in
table 3.1. These programs are written in Pascal and run on a micsocomputer. Since
the entire process is automatic, the required user input is only the geometric and
inertia parameters of the manipulator. The genexation process is very fast, taking
between 1 to 5 seconds' to generate the code for the inverse or direct dynamics of
a manipulator. In this chapter, the mechanism of symbolic generation and how it is
employed to generate the equations of dynamics for robots will be explained. Also,
the algorithms that perform the post-processing to optimize the generated code as

implemented in CLEAR will be presented.

ldepending on the complexity of the manipulator, the type of problem whether direct or inverse,

and the presence of fiexible links

44

Table 3.1: List of the symbolic generators

Dynamic Model

Pingram Algorithm Flexible Rigid Generated Dynamics Formulation
Links Liaks

NEDYN Newton-Euler . inverse dynamics recursive
HMAT Newton-Euler . inertia matrix recursive
BVECT Newton-Euler ° bias vector recursive
HBMAT Newton-Euler . inertia matrix + bias vector | recursive
GTERM Newton-Euler o gravity term closed form
HTERM Newton-Euler . inertia term closed form
CTERM Newton-Euler . centrifugal & coriolis term | closed form
KTERM Newton-Ewer ° external force term closed form
JACOB Newton-Euler ® Jacobian matrix

FLEX Lagrangian °) inverse dynamics recursive
FLEXH Lagrangian . . inertia matrix recursive
FLEXB Lagrangian . . bias vector recursive
FLEXHB Lagrangian ° . inertia matrix + bias vector | recursive

46

3.1 The Symbolic Generators

A library of symbolic manipulation procedures was developed. These procedures
perform the algebraic operations that are required in the dynamic analysis of
robot manipulators. In addition to simple arithmetic operations such as addition.
subtraction and multiplication of two quantities, these operations involve some more
complicated operations such as vector and matrix algebra. This library is shared
by all the generation programs. Using these procedures, the Newton-Euler inverse
dynamics algorithin [25] is programmed in the generator NEDYN, the Newton-
Euler direct dynamics algorithm [48] is programmed in the generators HMAT.
BVECT and HBMAT, and the closed form formulation where the dynamic terms
are generated separately is generated by the generators GTERM, HTERM, CTERM
and KTERM. The Lagrangian algorithm in a Newton-Euler like iormulation for a
flexible link manipulator [22] is programmed in FLEX (inverse) and FLEXB, FLEXH
and FLEXHB (direct) generators.

For all the generators, the output is Fortran code having a very simple structure
which is only a series of assignment statements (see sample code in figure 3.1).
Conversion of this code to any other computer languages is easily accomplished using

a standard text editor or filter program.

The “customized” code which is unique to the manipulator being studied,
is generally more efficient in terms of computational speed than its numerically

programmed generic counterpart. This gained efficiency is due mainly to the following

factors :

e Unproductive arithmetic operations such as multiplication by zero or one are

eliminated. This feature is very powerful when performing mathematical

47

operations on partially filled matrices and vectors which are frequently

encountered in the dynamics of robots.

o Unlike numerical programming, the generated code cvntains no lcoping,
incrementing, calling for external subroutines, testing for counters. etc. These
are some “intangible” advantages of the symbolically generated code which
makes its gained ef”-iency over a numerical code much greater than what might
be indicated by examining only the savings obtained in the number of required

arithmetic operations (multiplications or additions).

e By implementing symbolic generation it is possible to take advantage of
particular geometric and mass parameters for each robot (e.g. links with
zero length, parallel joint axes, sparse center of gravity vectors. .. etc.).
This “customization” process reduces the computational requirements of
the generated code by avoiding unnecessary operations and exposing some

trigonometric identities.

e The generated code can be further optimized by performing some post-
processing on it to remove most of the unproductive and redundant

computations.

In symbolic generation all variables (this includes all scalars and vector and
matrix elements) are represented and stored in memory as alphanumeric strings.
as opposed to real or integer numbers. Mathematical operations are performed by
string manipulation of these variables rather than floating point arithmetic as in
numerical programming. Two basic procedures (subroutines) were written to perform
the addition and the multiplication of string symbols. The procedure that performs

the multiplication of two strings consists mainly of the concatenation of the strings

48

Table 3.2: Special cases implemented in the multiplication procedure

Variable;, Variable, Result
STR1 0 0
STR1 1 STR1
STR1 -1 —-STR1

—-STR1 -1 STR1

STR1 STR2 STR1* STR2
~STR1 STR2 | —STR1*STR2
STR1 ~STR2 | —STR1% STR2
~STR1 —-STR2 | STR1%STR2

with the insertion of the multiplication sign “*” in between. Table 3.2 lists some of
the special cases this procedure implements. It should be noted here that variables
STR1 and STR2 could be single strings or multiple strings related together by one

or more multiplications. Also the two variables could be in any order.

A similar procedure was developed to perform the addition of two strings which
is mainly the concatenation of the strings with the insertion of the addition sign “+”

or subtraction sign “-”

in between. This procedure implements the special cases
outlined in table 3.3. Again, STR1 and ST R2 could be simple? strings or compound

strings 3.

These two basic procedures were the building blocks for a library of procedures
that perform vector and matrix algebra. This library includes procedures for the

following operations :

Zstrings representing single variables

3strings each representing more than one variable related by arithmetic operations

49

Table 3.3: Special cases implemented in the addition procedure

Variable, Variable, Result
STR1 0 STR1
STR1 —-STR1 0
STR1 —-STR2 | STR1 - 5TR2
STR1 STR2 | STRY+ STR2

o The dot and cross product of vectors.

The addition and subtraction of vectors.

Scalar times a vector.

Matrix multiplication, addition, and subtraction.

Scalar times a matrix.

To alleviate the problem of increasing string length and also to reduce the
amount of redundant computations, an elementary process of string simplification
was implemented. This simplification scheme was developed by Kermack [19] as a
solution for the rapidly increasing string length in the symbolic generator DYNAM.
When a string is formed wlich contains one or more additions or more than a specified
number of multiplicat vus°, 1 view dummy variable is generated which takes the form
of “Z#t###" where #### is an automatically incremented counter. This dummy
van:able replaces the string in memory and an assignment statement defining this
variable is appended to the Fortran code. For example pre-multiplying a vector B by

a matrix A, where

A

isix multiplications i the current implementation.

Cl 0 -$1 BX
A=1S81 0 (1 B = BY
0 -1 © Z00603

results in a vector C which is stored in the memory as

20005
C =1| 20006
~BY

and the following Fortran statements are appended to the generated code :

20005 Cl*BX - S1% 20003

Z0006 S1* BX + C1x% Z0003

This simplification procedure is similar to the function “LAYER” which maintains
a “symbol list” in the algebraic manipulation language MACSYMA. The major
difference is that in MACSYMA the symbolic list is modified during the generation
phase while in the current system no modifications are performed in this phase.
Furthermore, the MACSYMA function “CLEAR” will automatically perform a
procedure called “replacement layering” which is the replacement of duplicated strings
in the symbol list with a previously defined symbol. In the present system, this type
of simplification is performed in a post-processor called CLEAR which is described

in the next section.

The required user input to the generators is limited to a file containing robot
geometry parameters (e.g. number and type of links, lengths, offsets , twist angles
...etc.) and mass and inertia parameters (e.g. masses, center of mass vectors

and moment of inertia tensors). For the flexible link generators, the user must

31

also designate the flexible links and their stiffness, the directions of flexibility, the
number of assumed modes to approximate deflections. The generators are interactive
programs. The user is also given the options to read the robot paraméters from an
existing file, to input them manually and then save them, or to alter an existing
parameter file. The user is given the option of including a payload vector and the

choice of the coordinate frame in which this vector is described.

The output of the generators is a compiler-ready Fortran subroutine. This Fortran
subroutine consists of three main parts as shown in figure 3.1. The first part is
a declaration section where all the strings that identify the mass and geometric
constants are assigned to their numeric values. Some of these values, such as masses
and lengths, are obtzined from the input parameter file. Other parameters such
as flexibility constants for flexible links are calculated by the generating program
automatically. Note that these constants are assigned names that start with a
lower case letter. This convention was adopted in order to make it easy for the
post- processor CLEAR to identify them as constants. The second part consists of
a series of assignment statements defining the ‘Z####’ terms described earlier.
These terms constitute the bulk of the Fortran subroutine. It should be mentioned
that these terms do not have any dynamic significance. They are only a tool to
solve memory problems and reduce computational requirements. For the 6 degrees
of freedom Stanford arm, about 197 of these ‘Z####’ are generated for the inverse
rigid link dynamics computation using the generator NEDYN. Using the generator
FLEX to generate the inverse dynamics code for a 7 degrees of freedom flexible link
manipulator °, about 324 of these ‘Z###+ are produced. The third part of the
Fortran subroutine contains a series of statements which assign the resultant forces

or moments to their correspouding output vectors.

Sone rigid link and two flexible links each having two directions of flexibility

SUBROUTINE NEDYN(TH, THD,THDD, LD, RES)
IMPLICIT REAL * 4(A ~ 2)
REAL TH(6), TH D(6), THDD(6), LD(6), RES(6)

Y

g = 9.81
al = 0.00000
Cl = COS(TH(1))
51 = SIN(TH(1))
@b = THD() Part 1
QF1 = THDD(1)
ml = 9.2900
sz1 = ~-0.110500
Jj11 = 0.159722
j31 = 0.06815%)
Z0001 = -—-C2+QD1xQD2-52+QF1
Z0002 = -S2xQD1x)D2+C2+QF1
Z0003 = -C2xQD1*xC2+xQD1-QD2+«QD?
Z0004 = -C2x@D1xC2xQD1-52xQD1+52+«QD1
Z0005 = -@QD2+«QD2-S2xQD1%xS52xQD1
Z0006 = -Z0002-QD2+S52+«QD1
Z0193 = 852+ 20184 - C2xZ0186
201" = —spylxmlsRQD1*QDlxszl +spzlxmlxg
70195 = —j21%xQF1 —sp=l*ml+xQF1#s2l
Z0196 = 20194+ 20192
Z0197 = Z0195+ Z0193
RES(1) = -Z0197
RES(2) = zo0185 [Part?
RES(3) = Z0i66
RETURN
END

 Part 2

Figure 3.1: sample segments of the generated Fortran code

(&1

to

3.2 The CL£AR Post-Processor

After the generation procedure, the generated code is further simplified and
optimized in a post-processing program called CLEAR. This program was originally
developed by Toogood [42, 43] a- ~n modified by the present author where some
structures were revised and nev ~ uions were added. A text file containing the
generated Fortran code is read by CLEAR and a series of simplification procedures
are performed automatically on this file. These procedures include removing of
unused terms, trigonometric simplification, renaming of duplicate multiplication
terms, factoring and pre-computation of constant terms (usually involving inertia and
mass properties). On an 80386-based microcomputer, the processing time required
to perform the simplification depends on the length of the generated code and varies
from a few seconds for robots with simple geometries up to a few minutes for complex
robots with a large number of degrees of freedom. Using dynamic memory allocation,
CLEAR can accommodate 3200 text lines. For rigid manipulators with six degrees
of freedom, fewer than 400 lines are required while about 450 lines are needed for a
7 degrees of freedom flexible link manipulator. In the following sections, some more

detailed description of the functions of CLEAR will be presented.

3.2.1 Removing unused terms

The removal of unused terms is one of the origiral and most powerful functions
in CLEAR. Some unproductive assignment statements are present in the original
generated Fortran code which do not contiibute to the calculation of the final results.
For example, when a certain variable is multiplied by a zero it will disappear from
subsequent Fortran assignment statements and all the assignment statements that

are devoted solely to calculate this variable can be deleted without altering the final

54

results. The removal of unused terms in CLEAR works as follows: starting at the
end of the file and working to the top, the Z## 44 term of left hand side of each
assignment statement is extracted and the following statements in the text file are
scanned for the presence of this term. If the term is located then this statement is
saved; otherwise, the statement is erased from the file. For e:"ample in figure 3.2 the
term Z0195 is present in one of the following assignment statements and therefore it
was retained as shown in figure 3.3. On the other hand, the terms Z0196 and 20198

were deleted from the file because they were not used in the subsequent statements.

By utilizing this procedure, usuali; about 10% to 30% of the statements and

computations in the file are eliminated.

3.2.2 Pre-computation of constant terms

The pre-computation of constant terms is one of the new procedures added
to CLEAR. In the generated codes, mathematical operations involving constant
terms are sometimes encountered. These constants often represent mass, inertia and
geometrical parameters, or combinations of these, that are fixed for the manipulator
and do not vary with the positions of the differvat [oints. To ease the process of
identification of these simplification opportunitie:, cc ustant terms are always saved
in the lower case alphanumeric string form while the upper case form is utilized for the
variable terms. CLEAR extracts these terms, performs the mathematical operation
(either multiplication or addition), assigns the -esult to an automatically generated

x### term and then substitutes back the z##+# term in the original statement.

As an example, the assignment statement that defines Z0017 in figure 3.4 contains
some constant terms (732, j22) which represent moments of inertia. CLEAR will

factor out the other terms, generate the z### term and substitute it back. By

Ot
ot

20195 = —j21*QF1—spz1*ml*QF1xszl
Z0196 = Z0194+ Z0192

Z0197 = Z0195+ Z0193

Z0198 = spyl+«mlxQF1xsz1+ 20185
RES(1) = —-2Z0197

RES(2) = 20185

RES(3) = 20166

Figure 3.2: Fortran code before removing unused terms

20195 = —j21*QFl—spzl*xml=QF1xs:z1
Z0197 = Z0195+ Z0193
RES(1) = —-Z0197

RES(2) = Z0185
RES(3) = Z0166

Figure 3.3: Fortran code after removing unused terms

36

utilizing this function of CLEAR most of the computations that can be executed
off-line are performed and hence a reduction in the number of on-line computations

is achieved.

a) Z0017 = QD2x%j32%C2xQD1~ C2+QD1+j22% QD2
b) C 2001 = ;32— j22

001 = 0.026343

Z0017 = C2+ QD1 * QD2 % z001

Figure 3.4: Fortran code a) before aud b) after computations of constant terms

3.2.3 Renaming of duplicate multiplication terms

Locating and renaming of duplicate multiplication of the same two terms is
another powerful function of CLEAR developed by the present author. When two
terms (e.g. C2 and @D1 in figure 3.5) are multiplied together in more than one
location in the code, a new Y### term (Y001 in figure 3.6) is generated and
inserted into the appropriate position in the code. The two terms (i.e. C2xQD1) are
replaced in all other locations with the Y### term as shown in figure 3.6. Thercfore.
instead of performing a certain multiplication operation several times thrcughout the
code, it needs to be done only once. This usually reduces the number of multiplication

required by up to 20%.

This procedure works as follows : starting at the top of the text file. cach
assignment statement is factored to its basic terms. For example the first part of
the assignment statement defining Z0001 in figure 3.1 is factored to produce the
terms C2, @ D1 and QD2. The rest of the file is scanned to search for the occurrence

of these terms (terms detected are shown in bold face in figure 3.3). When one of

(91}
b |

these terms is found, the location is stored in an array as shown in table 3.4. This
location code is a combination of the line number and the position® of the term in the
line. Then the arrays containing the location codes of all the terms in the first part of
the statement are intersected to determine the common locations of each pair of the
terms (i.e. the locations where the two terms are multiplied together). For example.
the locations of the terrs C2 and Q D1, which are found in the first and second rows
of table 3.4 respectively, are intersected to give the common locations as shown in
the first row of table 3.5. Finally, the pair of terms th+* are multiplied together most
frequently (i.e. C2 and @D1 as shown in table 3.5) are replaced by the Y ### term.
The procedure is repeated for the rest of the terms including the new Y### term.
As a result of the extent of processing due to this algorithm, renaming of duplicate

terms requires the most time of all CLEAR functions.

Table 3.4: The locations of each term in the Fortran code

Term Locations

C2 | 255 261 265 270 272 285 287 306 308 318 561
QD1 | 254 256 259 261 270 272 274 283 285 287 293 306 308 318
QD2 | 254 259 261 270 274 282 287 291 306 321 323 325

Table 3.5: Common locations for each pair of terms

Term 1 | Term 2 | Common locations Count
C2 @D1 | 261270272 285 287 306 308 318 1 8"
C2 @D2 | 261270 287 306 4
QD1 QD2 | 254259 261 270 274 287 306 7

After this procedure, the Fortran code will appear as shown in figure 3.6.

5By position, it is meant whether the term is found in the first part of the assignment statement

before the addition or subtraction sign or in the second part.

20001 = -C2*xQD1xQD2-QF1%52

70002 = —QD1+QD2x52+C2+QF1
70004 = -QDI+QD1
70006 = —2Z0002— QD1 + QD2 + §2

Z0011 = Z0001+ C2+QD1 QD2
Z0012 = Z0006=di2—S52xgq
Z0013 = Z001l+di2+C2#g
Z0014 = Z0006 * sy2 + Z0012
Z0016 = Z0011=*sy2+ Z0013
Z0017 = C2+QD1x*QD2 * 1001
Z0018 = C2=+QD1 « QD1 * 52 2002
Z0019 = QD1 xQD2x 52 %7003
Z0020 = Z0001=* ;124 Z0017
Z0021 = QF2=%;22+ Z0018

20022 = Z0002=* 332+ Z0019

20025 = —QD2+ QD2 ~ QD1 + QD1 * $2 + §2
70027 = QF2—C2+ QD1+ QD1 * 52

20029 = —Z0001+ C2+ QD1+ QD2

Figure 3.5: Fortran code before renaming of duplicate multiplication terms

Ct
o

Y001 = C2x+QD1
Y002 = Y00lxQD2
Z0001 = —Y002- QF1=«S2
Y003 = QD1xS2

Y004 = Y003 QD2

Z0002 = —Y004+C2+QF1
20004 = —QD1+QD1
Z0006 = -Z0002 — Y004

Z0011 = Z0001 + Y002
Z0012 = Z0006xdI2 — S2+g
Z0013 = Z00ll+di2+C2+%g
Z0014 = Z0006 x sy2 + Z0012
Z0016 = Z0011 *sy2 + Z0013
Z0017 = Y002 * 2001
Y005 = 1001+Y003
Z0018 = Y005 % z002
Z0019 = Y004 *z003
Z0020 = Z0001 ;12 + Z001T
20021 = QF2 %22+ Z0018
Z0022 = Z0002 = j32 + Z0019

20025 = —QD2*QD2— Y003 QD1 + 52
20027 = QF2 - Y005
Z0029 = —Z0001+ Y002

Figure 3.6: Fortran code after renaming of duplicate multiplication terms

oy
3.2.4 Trigonometric simplifications
Opportunities for trigonometric simplifications often arise in the gencrated Fortran

code especially if the manipulator has some parallel revolute joint axcs. CLEAR

searches for a number of trigonometric identities such as

+sin(6,) *sin(8,) £ cos(6y) x cos(6,) = =1
cos(8,) * cos(b,) Fsin(6,) *sin(f;) = cos(f; + <)

+ cos(fy) *sin(f2) + cos(f2) *sin(6;) = sin(# £ 6-)

and performs the simplification. Examples of such simplifications are shown in figure

3.7. The program detects the simplification opportunities automatically.

a) Z0004 = —-C2xQD1xC2xQ@D1—-S52xQD1xS52xQD1
20102 = C4x20099% S5+ Z0099* C35 « 54

by S45 = SIN(TH(4)+TH(3))
20004 = —-QD1xQ@D1

Z0102 = Z0099 * 545

Figure 3.7: Fortran code a) before and b) after trigonometric simplifications

3.2.5 Factoring

Factoring is one of the original functions of CLEAR. By using this procedure. the
program searches for opportunities to extract some common factors in order to reduce

the amount of computations as shown in figure(3.8).

61
3.2.6 Pre-determined sequence

The previous procedures can be performed in any order although a preset
automatic sequence can be initiated. By experimenting with the order of these
operations, a certain sequence was found to preform the greatest simplifications. This

pre-determined sequence is in the following order:

1. Removing unused terms

SV

. Trigonometric identities
3. Pre-computation of operations involving constants
4. Renaming of duplicate multiplication terms

5. Factoring

3.2.7 Statistics

CLEAR also provides a tally of arithmetic operations required for each Fortran
code. At the end of simplification runs, CLEAR provides a report containing a
count of the number of operations and assignment statements at the end of each
simplification procedure. For example, after processing the inverse dynamics code
for the Stanford arm, CLEAR will produce a statistical report as shown in figure
3.9. The number of arithmetic operation required by the numerical Newton- Euler
algorithm to compute the inverse dynamics for the six DOF Stanford manipulator is
about 984 multiplications and 1125 additions which adds to a total of 2109 arithmetic
operations. From this report, it can be noted that the symbolically generated source
code (S) had a total of 561 arithmetic operation before proccssing. This means

that the computational requirements of the symbolically generated code for this

G2

particular example is only about 27 % of computational requirements of the original
numeric algorithm even before performing any simplification by the post-processor
CLEAR. After the removal of the unused terms. the total number of operations was
reduced to 433 with a saving of about 23 % . Trigonometric (T) simplification cut 6
operations. pre-computation of operation involving constants (C) cut 80 and renaming
of duplicate terms (D) cut 38 arithmetic operations. For this particular case. factoring
(F) did not reduce the computational requirements. The total processing by CLEAR
reduced the total number of arithmetic operations from 571 operations to 309 which
means a reduction of 252 operations or about 45 %. A more detailed analysis of the

computational efficiencies of the symbolically generated dynamics is found in chapter

four.

In this chapter the basics of symbolic generation and the way it is employved to
generate codes containing the dynamics for manipulators was presented. Also. the
simplification procedures that optimize the generated code as they are implemented in
the post-processor CLEAR were explained. In the following chapter a comparison of
the computational efficiency between this system and other systems will be presented

together with some test cases for verification.

a) Z0009 —Z0002 * sy2 — Y004 = sy2
b) Z0009 = sy2=+(—Z0002— Y 004)

Figure 3.8: Fortran code a) before and b) after factoring

63

64

Case : Stanford arm Date : 1989/6/19
Description : Inverse Dynamics
Payload Vector : Not Included
Gravity is acting in the -ve direction of : 2
S U T C D F Z 8]
= 310 218 218 233 267 267 267 254
Zxxx 198 156 156 152 152 152 152 152
Yxxx 0 0 0 6 17 17 17 17
Xxxx 0 0 0 19 19 19 19 17
* 363 277 272 212 174 174 174 174
+/~ 198 156 155 135 135 135 135 135
The total number of operations = 309
Total processing time = 37.03 seconds

Remarks :

Figure 3.9: Statistical report produced at the end of CLEAR operation

Chapter 4

Verifications and Results

This chapter will present test cases which verify the dynamic models and
demonstrate the computational efficiencies of the symbolic generators developed as
a part of this work. The first section will discuss the generated dynamics for rigid
link manipulators. The second section will examine the generated dynamics for the

flexible link manipulators.

4.1 Rigid Link Dynamics

This section presents several test cases used to verify the correct implementation
of the recursive Newton Euler technique of Luh et al. [25] in the inverse dynamic
symbolic generator NEDYN and in the closed form and direct dynamics generators
which were derived from NEDYN. In addition to this, the computational efficiencies
of the dynamic codes produced by NEDYN and the other generators are compared to

recently reported results in the literature for some common industrial manipulators.

65

66

4.1.1 Inverse Dynamics

The first stage of verifying the correct implementation of the recursive Newton-
Euler algorithm in the symbolic generator NEDYN consisted of generating inverse
dynamics codes for simple one and two degrees of freedom linkages. These were a
single link pendulum and a double link pendulum. The generated dynamics : ades
were compared to manually derived equations of motion for these cases. The result

was complete agreement between the manually derived dynamics and the symbolically

generated ones.

In the second stage. inverse dynamics codes symbolically generated by NEDYN
were verified against dynamics codes generated by DYNAM whi. h was developed by
Toogood {42] and Kermac! 719]. DV'NAM is based on Hollerbach’s 4 x 4 recursive
Lagrangian formulaticn. DYNAM .aderwent rigorous verification firstly by cross
checking it against a numerically | ‘..)grammed version of the recursive Lagrangian
aigorithm and secondly by compari - its generated dynamics codes with manually
derived equations of motion for a ni. nber of test cases as documented in [43].
Comparison of the results produced by the dynamic codes generated by NEDYN
and the codes generated by DYNAM showed complete agreement. This conformns

with the fact that all of the different dynamic formulations are actually equivalent

[41].

As an example of the second stage verification, inverse dynamic codes for the six
degrees of freedom Stanford manipulator (see figure 4.1) were generated using both
DYNAM and NEDYN. A motion trajectory was created and fed into the inverse
dynamics codes in order to calculate the required joint torques that are needed to
sustain this motion trajectory. Figure 4.2 shows a typical position, velocity and

acceleration profile supplied to each joint (in this case joint 2) to calculate the joint

67

torque. The other 5 joints were given similar kinematic states but with different

ranges of joint movement.

The joint torques corresponding to these kinematic states computed using the
dynamic codes produced by DYNAM and NEDYN are shown in F igures 4.3 and 4.4

respectively.

It can be seen from these figures that the computed torques using the two symbolic
generators are the same. The calculated torques by the two methods agreed to the
fifth decimal place. The very small discrepancy is due to round off errors which results
from the different representation of the inertia term in Newton- Euler and Lagrangian
dynamics. For example, in the Newton-Euler algorithm the input moments of inertia
parameters are calculated about the center of mass of the link while in the Lagrangian
algorithm the input moments of inertia parameters are computed about the link’s

coordinate system.

4.1.2 Closed form dynamics

As mentioned earlier in chapter two, in order to calculate the closed form
dynamics, each of the dynamics terms such as the inertia term and the gravitational
term is caiculated separately and independently. The verification of these dynamic
terms was performed by comparing the sum of the individual dynamic terms for a
given manipulator at a given kinematic state to the values of torques calculated by the
recursive inverse dynamics for the same manipulator and kinematic state. The sum

of these terms should equal the torque calculated by the recursive inverse dynamics.

As an example, the closed form dynamics of the Stanford manipulator were
generated and evaluated for a kinematic state similar to one presented in figure 4.2.

The computed dynamic terms as well as their sum for joint 2 are plotted in figure 4.5.

Figure 4.1: Six DOF Stanford manipulator

68

69

e

00
2t/pel 1300

-0 &
Al

~

-3 4

00 oI~
o\vehﬁ.ﬂuuo.uﬂxr

61

c.-e [0 Bl
PRI NOILISOd

10.0

TIME IN SECONDS

Figure 4.2: Kinematic State of Joint 2

70

JOINT 1
0‘0

~20.0

RN

JOINT 2

-10C

o

\/W

100.0

JOINT 3
80 0

1.0

z

~1.0

j.o
1

]

JOINT B

1

JOINT 6 %1073

0.0 2.0 5.0 10.0

+.0 6.0
TIME IN SECONDS
Figure 4.3: Computed Joint Torques Using Dynamic Code Generated by DYNAM

29.0
-1
—

0.0

Iy

(N

JOINT &

0.0 30.0 ~30.90

JOINT 2

S
:

~108
)

100.9

JOINT 3
30.0

0.0

JOINT &
0.9

N~/

¥ ¥ \J

0.0 2.0 ¢.0 8.0 8.0 10.0
TIME IN SECONDS

Figure 4.4: Computed Joint Torques Using Dynamic Code Generated by NEDYN

-5.8

JOINT 6 *1073
0.9

-1
[1™

The torques for joint 2 calculated for the same kinematic state using the recursive

inverse dynamic generator NEDYN are shown in figure 4.6.

It is evident from these plots that the sum of the dynamic terms is identical to
the torque calculated from the recursive inverse dynamic algorithm. This agreement

suggests the correctness of the calculation of the individual dynamic terms.

it is noticed that the gravity term contribution to total torque at the second joint!
is very high which is expected as link 2 is very massive. It is also observed that the
gravity term contribution to the torque is zero when all the joint angle positions are
zeros (i.e. the manipulator is stretching upwards.) and hence the weight of the
last five links at this position won’t exert any moment on joint 2. The gravity term
approaches its maximum value when link 2 is closest to its horizontal position. It is
also noticed that the inertia term for joint 2 is maximum when the acceleration of
joint 2 is maximum. In calculating the external force term, a constant payload vector
consisting of a force of {5,5,5]7 N and a moment of [5,5,5]7 Nm was applied to the
end effector. It is observed that the torque required to offset the external payload
is much smaller than the torque required to compensate for the gravitational forces.
This is an unfortunate cost that must be paid when designing manipulators to have

massive ana rigid structures.

4.1.3 Computational Requirements of Inverse Dynamics

As mentioned earlier, one of the biggest advantages of using symbolic generation
techniques is to produce dynamics code with the minimal number of arithmetic
operations. The usefulness of a particular generator is therefore measured by the

computational efficiency of the dynamics code as well as the ease of piroducing this

link 2 is the shouldex for the Stanford manipulator.

8.0
'y

Il

GRAVITY Nm

—-1060.0-%0.0

AV VM

INBRTIA Nm

-100.0-80.0

COR & CENT el:n

=100.2-50.0

ZXT. LOAD Nm
0.0

~100.0-38.0

MS Nm
¢.0

\

-

d

8.9 2.0

SUM OF TER
~100.0-50.0

.0 6.0 8.8 10.9
TIME IN SECONDS
Figure 4.5: Dynamic Terms Contributions to the Total Torque for Joiat 2 of
the Stanford Manipulator

TORQUE Nm

\/\L

—~100.0~-30.0

0.0 3.0 6.0 o9
TIME 1IN SECONDS

Figure 4.6: Torque for Joint 2 computed by NEDYN

=1
Ot

code. Researchers have employed some “benchmarks”, which are commonly used
manipulators, to compare the relative efficiency of the different symbolic generation
schemes. Toillustrate the computational efficiency of the symbolic generator NEDYN
and the generators for the direct dynamics and closed form dynamics. a comparison
between its efficiency and the efficiency of the highly successful symbolic generator
ARM (27, 28, 29, 30, 31] will be presented. Four benchmark manipulators are utilized
to compare the compi:.:ivral efficiency. The manipulators used are the six degrees
of freedom Stanford v - ::i¢o., the three degrees of freedom Stanford positioning
system, the six degreescedom Puma 360 manipulator and the three degree
of freedom Puma 560 positioning system. Table 4.1 illustrates the computational
requirements of the code produced by the ARM generato: It is no*- [.1 this
table that the closed form formulation in ARM i: the most efficient fc+ /= 3 DOF
freedom manipulators while the recursive formulation shows the better ciiciency for
the 6 DOF manipulators. Another note from this table is that the computational
requirements vary considerably for different geometries even if the number of egrees

of freedom is the same.

Tables 4.2 and 4.3 present the computational requirements of the recursive and
closed form inverse dynamics for the 6 DOF and 3 DOF manipulator: respectively
using NEDYN. For the 6 DOF manipulators the dinamic code generated by NEDYN
is more efficient than the code proiluced by ARM for both the recursive form and the
closed form. For the 6 DOF Stanford manipulator 309 and 600 arithmetic operations
are required to compute the recursive and the closed form dynamics respectively
using NEDYN, whereas it takes 333 and 741 arithmetic operations to perform
equivalent operations using the ARM generator. Similarly, for the 6 DOF Puma
560 manipulator, NED_ YN 1equires 358 and 733 arithmetic operations to perform the

recursive and closed form inverse dynamics respectively compared to 398 and 813

-1
(o]

Table 4.1: Inverse Dynamics Computational requirements for Neuman and
Murray’s ARM generator [29]

Manipulator Algorithm Mult. Add. Total
Six-DOF Stanford closed form 432 309 741
recursive 185 148 333

Three-DOF Stanford closed form 40 24 64
recursive ST 47 104
Six-DOF Puma 560 closed form 461 352 813

recursive 224 174 398
Three-DOF Puma 560 closed form 55 42 97

recursive 99 75 174

operations required by ARM. For the three degrees of freedom positioning systems
NEDYN recursive foumnulations are still more computationally efficient than ARM.
However, ARM produced more computationally efficient closed form inverse dynamics

for the three degrees of freedom positioning systems.

It is worth noting also from tables 4.2 and 4.3 that the coriolis and the
centrifugal term is the most expensive to calculate in the closed form dynamics yet
its contribution to the total joint torque is not as significant as the contribution of
the gravity term for example. Therefore, depending on the operating speed of the
manipulator, the coriolis and centrifugal term should be the first to be ignored if the
computational facilities of the system cannot accommodate the calculation of all of

the dynamic terms at a sufficiently fast rate.

Table 4.2: Inverse Dynamics Computational Requirements for Six DOF
Manipulators Using NEDYN

Manipulator Generator Dynamics Payload Mult. Add. Total
Generated Vector

Stanford h NEDYN inverse recursive no 174 135 309
NEDYN inverse recursive yes 174 141 315

GTERM gravity term 56 35 91

HTERM inertia term 110 T 187

CTERM cent. & coriolis 165 113 278

KTERM external force 28 16 44

Total closed form 359 241 600

Puma 560 NEDYN inverse recursive no 204 134 338
NEDYN inverse recursive yes 206 162 368

GTERM gravity term 69 43 112

HTERM inertia term 133 90 223

CTERM cent. & coriolis 193 134 327

KTERM external force 44 27 71

Total closed form 439 294 733

Table 4.3: Inverse Dynamics Computational Requirements for Three DOF
Positioning Systems Using NEDYN

Manipulator Generator Dynamics Payload Mult. Add. Total
Generated Vector

Stanford NEDYN inverse recursive no 49 37 — 86
NEDYN inverse recursive yes 52 44 96

GTERM gravity term T 2 9

HTERM inertia term 27 17 44

CTERM cent. & coriolis 41 19 60

KTERM external force 6) 11

Total closed form 81 43 124

Puma 560 NEDYN inverse recursive no 204 1534 358
NEDYN inverse recursive yes 206 162 368

GTERM gravity term 16 8 24

HTERM inertia term 46 28 74

CTERM cent. & coriolis 66 39 103

KTERM external force 14 9 23

Total closed form 142 84 226

v 4]

4.1.4 Direct Dynamics

The direct dynamics produced by the symbolic generators HMAT. BVECT and
HBMAT were verified by establishing closure between the inverse and the direct
dynamics. To prove closure, the inverse dynamics code for a certain manipulitor
was used to calculate the joint torques corresponding to a given kinematic state
(joint positions, velocities ¢nd accelerations). The computed joint torques together
with joint positions and velo-ities were then utilized in the direct dynamic code (see
equation 2.9) to solve for joint accelerations. The resulting joint accelerations should
equal the joint accelerations that were initially employed to calculate the joiut torques.
A number of test cases were performed including one case for the 6 DOF Stanford

manipulator. All of the test cases showed complete closure.

Furthermore, simulations were performed for small cases utilizing the symbolically
generated dynamics codes and were compared with simulations that employed
manually derived equations of motion. The result was complete agreement between
the simulations utilizing the symbolically generated dynamics and simulations using

manually derived dynamics codes.

Also, inertia matrices obtain by Walker and Orin’s method 2 and method 3 (see

section 2.2) were cross checked and found to provide identical results.

4.1.5 Computational Requirements of Direct Dynamics

This section will preseat results demonstrating the computational efficiency of the
code produced by NEDYN and its derivatives. The computational efficiency of the
direct dynamics code produced by NEDYN will also be compared with the dynamic
code produced by ARM.

S0

The direct dynamics code can be generated using three different methods. The
first method is to produce the inertia matrix utilizing Walker and Orin’s method
2 (see section 2.2) using the symbolic generator HMAT and the bias vector using
BVECT separately. The second method is to generate the inertia matrix and the
bias vector simultaneously in order to combine some of the common computations of
the two routines. This is done in the symbolic generator HBMAT. Morecover. HBMAT
is capable of producing the inertia matrix using either Walker and Orin method 2
or method 3. Tables 4.4 and 4.5 show the arithmetic requirements of the dynamics
computation using the various generators for the 3 DOF and 6 DOF manipulators.

respectively. It should be noted that the direct dynamics codes are in a recursive

form.

From these tables it can be seen that combining the gencration of the bias vector
and the inertia matrix in one routine results in a slightly more efficient dynamic
code than by separately generating the bias vector and the inertia matrix. Although
the gained efficiency is small in terms of the number of saved arithmetic operations.
there is a benefit in reducing the number of trigonometric function calls 2 which are
very computationally extensive. The merits of using Walker and Orin’s method 3
instead of method 2 are mixed. For the 3 DOF manipulators, method 2 gives better
results {:» ull ihe test cases. For the 6 DOF manipulators the most efficient method
is dependert on the geometry of the manipulator. For example, the complete direct
dynamics for the 6 DOF Stanford arm requires a total of 590 arithmetic operations if
metho 2 is used an4 601 arithmetic operations when using metliod 3. On the other
hand the calculation of the direct dynamics for the 6 DOF Puma 560 manipulator
requires 768 arithmetic operation if calculated by method 2 and ouly 680 coperations

if metned 5 wtilized. This is true in spite of the indication that the Stanford arm.

e pra e ——

“10 instead of 20 tur tie 6 DOF Stanford manipulator

Table 4.4: Direct Dynamics Computational Require:zents for Three DOF
Positioning Systems Using NEDYN

Manipulator Generator Dynamics Mult. Add. Total
Generated

" Stanford HMAT Inertia matrix (method 2) 18 13 31

BVECT Bias vector 45 23 68

Total HMAT & BVECT 63 36 99

HBMAT lnertia & Bias (method 2) 62 35 97

ABMAT Inertia & Bias (method 3) 85 35 14u

Puma 360 HMAT Inertia matrix (method 2) 41 27 68

BVECT Bias vector 68 41 109

Total HMAT & BVECT 109 68 177

HBMAT Inertia & Bias (method 2) 107 68 175

HBMAT Inertia & Bias (method 3) 132 92 224

81

Table 4.5: Direct Dynamics Computational Requirements for Six DOF
Manipulators Using NEDYN

Manipulator Generator Dynamics Mult. Add. Total
Generated

Stanford HMAT Inertia matrix (method 2) 187 122 309
BVECT Bias vector 169 117 286

Tatal HXAT & BVECT 356 239 595

HBMAT Inertia & Bias (method 2) 352 238 590

HBMAT Inertia & Bias (method 3) 345 256 601

Puia 560 HMAT Inertia matrix (method 2) 258 183 441
BVECT Bias vector 195 136 331

Total HMAT & BVECT 453 319 772

HBMAT Inertia & Bias (method 2) 449 319 768

HBMAT Inertia & Bias (method 3) 396 284 680

o

to

83

which includes a prismatic joint and an additional offset (d;). appears to be a more
gcometrically complex manipulator. The presence of a prismatic joint may have

reduced the computational requirements for the Stanford manipulator.

Table 4.6 shows the computational requirements to calculate the direct dynamics
using code generated by ARM. For the 3 DOF manipulators. it is clear that closed
form direct dynamic codes gencrated by ARM are superior to the recursive forms.
including the present results. in terms of computational efficiency. The recursive
direct dynamics code generated by HBMAT method 2 is slightly mor efficient
than the recursive dynamics code generated by ARM. For 6 DOF manipulators
ARM recursive codes are more efficient than the closed form. For the 6 DOF
Stanford manipulator ARM generated recursive direct dynamic code contained only
553 arithmetic operation while it takes the code generated by HBMAT 590 arithmetic
operation to perform the same calculations. For the 6 DOF Puma 560 manipulator.
the recursive dynamic code generated by HBMAT contained 680 arithmetic operations

which is slightly more efficient than the 686 operations reporied for ARM.

4.1.6 Jacobian Matrix

The Jacobian matrix for the 6 DOF Puma 560 manipulator was generated nsing
the symbolic generator JACOB which is a modified version of NEDYN. The generated
matrix was verified against a manually derived matrix for the same manipulator
by Leahy et al. [23]. Table 4.7 lists the computational requirements to compute
the Jacobian matrix using different methods. From this table it is clear that the
algorithm implemented to generate the Jacobian matrix in JACOB is not the most
efficient method to generate this matrix. Nevertheless it offers an interesting method

to easily obtain the Jacobian matrix from the inverse dynamics, thereby avoiding the

Table 4.6: Direct Dynamics Computational requirements for Neuman and

Murray's ARM generator [29]

Manipulator Algorithm Mult. Add. Total
Six-DOF Stanford closed form 402 280 682
recursive 309 244 533
Three-DOF Stanford closed form 33 17 50
recursive 62 48 110
Six-DOF Puma 360 closed form 430 320 750
recursive 392 294 686
Three-DOF Puma 360 closed form 46 33 79
recursive 135 98 233

Table 4.7: Manipulator Jacebian Matrix Computational Requirements

84

Manipulator Author _ sinfcos Mult. Add. Total
Puma 560 Leahy et al. |23] 12 66 30 99
Puma 560 El-Rayyes (JATOB) 10 92 49 141
General 6 DOF Orin and Schrader [20) 10 93 24 117
Simplified Puma 560 Paul et al. [35] 11 46 21 67

complexity of manual derivations.

oS
ot

4.2 Flexible Link Dynamics

In this section the process of verifying the correct implementation of King's [22]
algorithm for the flexible manipulators in the symbolic generator FLEX will be
presented. In the absence of experimental data. rigorous verification of this model is
very difficult to achieve. Nevertheless, several test cases were studied which implied
the correctness of both the model and the symbolic generation. The geometric and
inertial parameters of the flexible links used in the first three test cases are found in

table 4.8.

4.2.1 Case Studies

In the following test cases simulations were performed to verify the direct dynamic
code produced by the symbolic generators *LEXH and FLEXB. The system of
linear equations 2.9 are solved for the generalized accelerations by Cholesky(LT)

decomposition [9] and then integrated using the fourth order Runge-Kutta scheme.

Case 1: Single Flexible Link in Bending

This test case was devised to examine the bending response of a single flexible
link to an external step function point force exerted at the free end of the link
as shown in figure 4.7. The mode shape functions implemented in this model are
the eigenfunctions of the Euler-Bernoulli equation for a beam in bending assuming
clamped-free boundary condition. The displacement response of this link to a general
dynamic loading can “- calculated by the superposition of a number of assumed
modes. For this case the i xural deflection was approximated using the first four

modes. If damping was introduced and the vibrations were let to die away. it

86

was possible to calculate the static response of a link using the dynamic model.
(Certainly not the most efficient way to calculate it!) FLEXH and FLEXB were
used to svmboli-ally generate the inertia matrix and the bias vector for this test
case. The response of the link to a step function point load of 10 N, applied at
the end of the link. was simulated. The static deflection of the tip of the link as a
result of this load calculated from strength of material considerations is 0.01637 m.
The simulated response of the first four generalized deflection variables are shown in
figures 4.8 and 4.9. In these figures it is noticed that the generalized variables are
vibrating about a mean value which corresponds to the mode contribution to the
static deflection of the link. If damping is introduced these vibrations will die out
and the generalized variables will reach a value corresponding to the static deflection.
To obtain the contribution of each mode to the total displacement, the value of
cach of the generalized deflection variables has to be multiplied by the value of
the corresponding shape function. By comparing the static displacement with the
expressions for the dynamic response of the different assumed modes, it is possible
to calculate the contribution of each of the modes to the total deflection [10] for that
particular loading condition. The theoretical values of the ratio of the contribution of
the first four modes divided by the static deflection for a clamped free beam with a
concentrated external force acting at the end are found in table 4.9. From this table it
can be seen that the first mode contributes about 97 % of the total deflection. Table
4.9 also presents the ratios of the simulated deflections divided by the theoretical
static deflection for the four assumed modes. From this table it can be seen that the
simulated ratio are virtually the same as the theoretical ones considering round off
and truncation errors encountered in numerical integration. Furthermore, table 4.10
shows nearly a perfect agreement in the comparison between the simulated frequencies

for the first four assumed modes and theoretical natural frequencies. This test case

v
-1

z, 10N
Yo £

Figure 4.7: Single flexible link in bending

proves that the flexibility parameters for a single link such as stiffness and inertia are

modelled correctly in the symbolic generator.

The integration time step used was 0.1 ms. If the integration time step size was
increased, the amplitude of the vibrations start to decay experiencing what might be
called “numerical damping”. This phenomena is more evident in the higher modes
of vibrations which have higher frequencies. This numerical damping is attributed to
truncation errors that are associated with numerical integration. For example, mode
4 has a frequency of about 388 Hz which corresponds to a period of 2.6 ms. Using a
rcagh rule of thumb, the integratiow time step should be less than 5 of the period or
less than 0.26 ms. Therefore. by using a time step of 0.1 ms. numerical complications

were not evident.

38

Table 4.8: Link material and geometry parameters used in the test cases

Link parameters

Length 1.00 m
Radius 0.06 m
Mass 0.5 kg

Youngs Modulus 2 x 10'! Pa
Modulus of Rigidity 8.3 x 10'° Pa
Xsectional Area 1.1309734 x 107* m?
| 2.035752 x 10~° m*

I, & I.. 1.017876 x 107° m*

Table 4.9: Ratios of the contribution of the first four modes to the static
deflection for a link in bending with a point load at the end

gr?node theoretical/static simulated/static
1 0.97069 0.97070
2 0.02472 0.02472
3 0.00315 0.00315
4 0.00082 0.00082
Table 4.10: <" -»zparison between the theoretical and simulated frequencies for
¢ ==, %e flexible link in bending.
mode theoretical simulated

frequency Hz {requency Hz

1 11.29 11.29
2 70.76 70.80
3 198.1 198.3

4 388.3 388.2

0.02

0.00

/

2
DEFLECTION 6z11

-0.02

0.00 0.02 0.04 0.06 0.08 0.10 0.12

MOV

500 002z 004 006 008 010 012
TIME I SECONDS

Figure 4.8: Response of bending variables of a single flexible link:a) 1st mode

b) 2nd mode

*10 ¢
50

DEFLECTION 6z12
0.0

-5.0

0
- o
-t O
* o~
o e
Nﬂ
“©
z
Co
£
u) : W\f\/\[\f \/
=
-l
;-,_,o
[N o hy |
Ql
<
-]
-l
| T T T T T

0.00 0.02 0.04 0.08 0.08 0.10 0.12

-3

*10
2.0

1.0
——

0.0
]

DEFLECTION 6z14
-1.0

~2.0

0.00 002 004 006 008 010 0.2
TIME IN SECONDS

Figure 4.9: Response of bending variables of a single flexible link:a) 3rd mode
b) 4th mode

90

91

Case 2: Single Flexible Link in Torsion

Similar to case 1. this test case was devised to verify the response of a single
foxible link when it is loaded in torsion as shown in figure 4.10. The mode shape
functions utilized to model torsion are the eigenfunctions of equation 2.25 for a beam
in torsion assuming clamped-free boundary condition. The torsional deflection for
this test case was approximated by the first four assumed modes. This test case was
simulated using dynamic codes generated by the symbolic generators. The simulated
responses of the generalized variables to a step external torque of 12 Nm and an
integration time step of 0.01 ms are shown in figures 4.11 and 4.12. The theoretical
values of the ratio of the contribution of the first four modes divided by the static
torsional deflection for a clamped free beam with an external torque acting at the
end are found in table 4.11. It is noticed that the first mode contributes about 31 %
of the total deflection. The ratios of the simulated response of the different modes
divided by the theoretical static deflection of 0.0710196 rad are almost identical to
the theoretical ratios as shown in table 4.11. Furthermore, the simulated frequencies
were very close to the theoretical ones as shown in table 4.12. The period of mode
4is 0.13 ms. Using the “time step less than & of the period” rule of thumb, a time
step of 1.01 should be adequate. However, a small error is noted for mode 4 and even
for mode 2. This leads to the conclusion that the time step should be less than —3'3 of
the natural frequency as in test case 1 where int~gration errors were smaller. Finaily.
this test case gives the confidence that torsion for a single flexible link is modelled

correctly.

zll

Yo

/
am———
Zo

Figure 4.10: Single flexible link in tors:on

Table 4.11: Ratios of the contribution of the first four modes to the static
deflection for a link in torsion with an external torque at the end

mode theoretical/static simulated/static

1

2
3
4

0.8106
0.0901
0.0324
0.0165

0.8108
0.0901
0.0324
0.0165

93

0.2

0.0 0.1
1 1

DEFLECTION 6x11
-0.1

-0.2

0:000 0.602 0.604 0.606 0.508 0.010

0.02

I3

0.01

1

0.00

DEFLECTION 6x12

-0.01

-0.02

©.000 0.002 0004 0006 0008 0.010

TIME IN SECONDS
Figure 4.11: Response of torsion variables of a single flexible link: a) 1st mode
b) 2nd mode

04

0.010

0.905

N

———

0.600

)

£
DEFLECTION 6x13

-0.010-0.003

1) 1
2900 0.002 0.004 0.008 .008 0.010

*10?
5.0

2.5
/]

0.0
A

0.000 0.002 0.004 0.008 0.008 0.010
TIME IN SECONDS

Figure 4.12: Response of torsion variables of a single flexible link: a) 3rd mode
b) 4th mode

DEFLECTION 6x14
-2.3

-5.0

Table 4.12: Comparison between the theoretical and simulated frequencies for
a single flexible link in torsion.

mode theoretical simulated T

frequency Hz frequency Hz

1 1083 1083
2 3250 3252
3 3416 3414
4 7582 7591

Case 3: Double Compound Flexible Pendulum in Bending

This test case was designed to test the correct modeling of the rigid body dynamics
and consists of a double compound pendulum with flexible links and a mass attached
to the end of the second link as shown in figure 4.13. The equations of motion
were first derived using the rigid link dynamics generator HBMAT. A second set of
the equations of motion were generated using the flexible link dynamics generator
FLEXHB and assuming flexible links with a stiffness (EI) equal to 10.178 Nm?. The
second set were used to perform a simulation using the same initial conditions and
integration time step. A third set of equations of motion similar to second set were
generated assuming a link stiffness of 101.78 Nm?. Using these equations, simulations
were performed using an integration time step of 0.5 ms and initial positions of -1.75
and -0.50 for the first and the second joints respectively. The response of the joint
angles in the three simulations are shown in figure 4.14 for the first joint and in figure

4.15 for the second joint.

From these figures it is noticed that gross motion of the flexible links with
a stiffness 10.178 Nm? (a in figures 4.14 and 4.15) resembles the motion of the

completely rigid links (c in figures 4.14 and 4.15) with the superposition of vibrations

Figure 4.13: Double flexible compound pendulum

96

0.0

JOINT ANGLE q1

~4.0

0.0

=
JOINT ANGLE qi

~4.0

0.0

\/\/\’\/\/\/\/

Ke)
JOINT ANGLE qt
-2.0

—4-0

0.0 1.0 2.0 3.0 4.0 5.0
TIME IN SECONDS

Figure 4.14: Joint angle responses for double compound flexible pendulum: a)
EI=10.178 Nm? b) EI=101.78 Nm?) rigid model

1.0

a)

=

JOINT ANGLE q2

-1.0

1.0

0.0
§

=
JOINT ANGLE q2

-1.0

1.0

0.0
1

JOINT ANGLE q2

-1.0

1.0 2.0 3.0 4.0 5.0
TIME IN SECONDS

e
)

Figure 4.15: Joint angle responses for double compound flexible pendulum: a)
EI=10.178 Nm? b) EI=101.78 Nm? c) rigid model

98

Figure 4.16:

99

0.2

Deflection 611
0l .0

N

Qo

i T 1 T T

6.0 1.0 2.0 3.0 4.0 5.0

e
? N
(o]
4t
*
3o
QO
a Q
Q
n‘g
(3]
=
v o
A o

I T L L T

0.0 1.0 2.0 3.0 4.0 5.0

TIME IN SECONDS

Response of bending variables for link 1 :a) EI=10.178 Nm? b)
EI=101.78 Nm?

b)

Figure 4.17:

100

6.2

Deflection by,
Ol.O

-0.2

0.0 1.0 2.0 3.0 4.0 5.0

Deflection 8,5, * 1072

--2.0

\ LI v

0.0 1.0 2.0 3.0 4.0 5.0
TIME IN SECONDS

Response of bending variables for link 2 :a) EI=10.178 Nm? b)
EI=101.78 Nm?

101

of higher frequencies accounting for the vibrations of the links. When the links were
given the higher stiffness of 101.78 Nm?. the response of the joint angle (b in figures
4.14 and 4.15) approached the response of the completely rigid links. As the stiffness
increases, the vibration of the links occurs at higher frequencies and lower amplitudes
as shown in figures 4.16 and 4.17. This test case indicated that rigid body motion is

modelled correctly in the symbolic generator.

Case 4: Double Flexible Link Manipulator

This test case was performed to test the correct coupling of the various modes
of vibrations of the different links. The manipulator used is a two flexible link
manpulator shown in figure 4.18. The parameters of the two links are the same as in
table <.8 except for the mass of the link which is assigned a valueof 1 Kg. J oint masses
of 2 g were added to each link. Flexibility was modelled using one assumed mode per
direction of flexibility. Several simulations were performed using the direct dynamic
code symbolically generated by FLEXHB assuming different initial conditions. In
these simulations, the gravitational term was ignored and the integration time step
used was 1 ms. During these simulations the joints were made free to rotate by

supplying zero torques to the joints.

Case 4.1

The first simulation was performed with the initial values of both the first joint
and the second joint angles set to zero. The links were made flexible in the two

directions of bending®. The deflection variable é,,; was given an initial value of

3bending in the plane defined by the = and y axes of the link and bending in the plane defined

by the z and = axes

2q

Figure 4.18: Two flexible link manipulator

z 5:21
1
611 byn
yO z 7 5y11y1 - d
P -7 e - ..H;?
e - P dhad —_—
i N
U
mo wl

102

103

0.002724 which is equivalent to a bending deflection of 5.448 mm in the ry plane.
The system was then released with no torques supplied to any joint. The response
of the deflection variables and joint angles are found in figure 4.19. Bending in the
zy plane for the second link represented by the deflection variable &,»; back drives
the second joint ¢; with the same frequency but 180° out of phase. Bending in the
zy plane for the first link represented by the deflection variable 8y, also back drives
the first joint with the same frequency and also 180° out of phase. The bending
vibration of the second link in the zy plane induced bending vibration in the ry
plane of the first link but it did not induce vibrations in the xz planes of either
the first or the second link. The induced vibrations in the irst link have the same
frequency as the second link but the amplitude is different. This simulation indicates
the correct coupling between the vibrations in the zy plane ap.! the other modes of
vibration in the previous links. The simulated frequency of oscillation of mode &y
was about 31.2 Hz which is closer to the theoretical natural frequency of the second
link assuming pinned-free boundary condition model (= 3:.01 Hz) than the model
assuming clamped-free boundary condition (= 7.98 Hz). Although clamped-free mode
shapes were implemented in the symbolic generator, the simulated frequency came
closer to pinned-free frequency as the link was not actually clamped but pinned in

this direction of vibration.

Case 4.2

The second simulation is similar to the first one as the initial values for the joint
angles are set to zero and the links are made flexible in the same directions. The
deflection variable 8,2; which represents the bending deflection in the zz plane is
given an initial value of 0.002724 which is equivalent to a deflection of 5.448 mm.

The response of the different variable are found in figure 4.20. The bending vibration

104

100 X To-0-
th of3ue juiof

o

LR 00 oI
=0T * ih ofduw jutop

[M 4 0o'e o~
¢-0T * 12y norpdage(d

- 01 xR wondogoq

0.4

g

¥
.8

TIME IN SRCONDS

1

re
o
e
[M 4 o0 13 25
«-01 * 1279 uorpaga(q
e
L4
*
e
(2]
=
L]
...w
[
a
w
VQM
+
bd
L]
o
LA) 01

+-01 * 1129 wonpdoygaqg

Figure 4.19: Responses of the manipulator in case 4.1

109

in the rz plane of the second link excited vibration in the rz plane of the first link
with the same frequency. As expected, the vibrations in the r: plane did not excite
any vibrations in the ry planes in either link nor did it excite vibrations in the joint
angle as the directions of the initial vibrations are parallel to the joint axes. The
simulated frequency of oscillations of mode 6.5, is about 11.3 Hz which is closer to
the natural frequency of the link assuming clamped-free boundary condition (7.98

Hz) than the frequency assuming pinned-free boundary condition (35.01 Hz).

Case 4.3

In the third simulation, the first joint angle was set to zero and the second joint
angle was set to 90°. The first link is made flexible in torsion in addition to the
two directions of bending. The second link is made flexible in the two directions
of bending. The deflection variable 6,2; which represents the bending deflection in
the zz plane is given an initial value of 0.002724 which is equivalent to a deflection
of 5.448 mm. The response of the different variables are found in figure 4.21. The
bending vibration in the zz plane of the second link excited bending vibration of the
same frequency in the zz plane of the first link and also excited torsional vibrations
about the z axis of the first link. As the bending vibration of the second link exerts
strong torques on the first link in this configuration, the amplitude of the torsional
deflections? of the first link (0.0058 rad) is significant. The first link is vibrating in
the zz plane® with two frequencies. The lower frequency (= 4 Hz) can be attributed
to the natural frequency of the first link . The higher frequency (= 38 Hz), which

is superimposed on the lower frequency, could be attributed to the excitation by the

4represented by the generalized deflection variable é:11
Srepresented by the generalized deflection variable 6;13

6approximated as a beam clamped in one end and has a concentrated mass in the other end

106

\
ey e [28 o
zh ofdue yputof
0°y L T

«-0T * 1D o[3uv jutof

et e 33 &

«-01 * 120 wonpdoga(Q

o'y e [2 24

«—01 * 1% uondaogaQq

y 0. ..

TIME IX SECONDS

\

0.1

[N &

¢-01 * 127 uonaygoq

.6

e.a 0.3]
TIME IX SRCOXDS

P

| 28 g

0T * '1%g uonoagaQ

Figure 4.20: Responses of the manipulator in case 4.2

107

vibrating mode é.2; of the second link. Very small vibrations (two orders of magnitude
smaller) are induced in the ry planes of both the first and the second link. The joint
angles are vibrating in the same manner as vibrations in the ry plane of both links

but also with very small amplitudes.

Case 4.4

This test case geometry was identical to the previous test case but the system
was excited differently. The first link was given an initial torsion of 0.002 rad and
then released. The response of the different variables are shown in figure 4.22. The
torsional vibrations excited the same modes of vibrations as in the previous test case.
For example, it excited bending vibrations in the zz plane of the second link with the
same frequencies as the previous test case. It also excited bending in the z= plane of
the first link in ¢ ~ same manner as the previous test case. The amount of induced
bending is smaller than the previous test case since the amplitude of the exciting

torsional vibrations was lower,

108

A
0TL8°Y 80LC'T 904V
zh ofdue juiof

——

=
=

P

=2

01 0'0 o'tT—
c-0T * 12, wonpoayaQ

ot Q._Q 01—
p-0T * W ofdue puog

1C

o

00'0 10°0—
1o notpogoQg

(101 00 0'1-
0T * g wonafla(]

0.%

0.¢

T.JW

|

Figure 4.21: Responses of the manipulator in case 4.3

o'y 0'0 [M B

¢-0T * 1279 uonoge(q

0.4

¢.3 0.3
TIME IN SRCONDS

0.1

ot) & v-

--01 * 179 uonageq

TIME IN SECONDS

109

o140t s048't 0049°T
zh o18ue julof

o7 00 [s 2 S
<01 * 19 wondaged

[¢ [8] [2 £l

+-0T * b ofdue jutop

<
a-e 00 09 0% 00 e
0T * 117 wonoogeQ 0T * 1% wonoayR(d

0.9

Wiy

0.3 0.4
TIME IN SECONDS

-
0.2

6.1

\
ot 00

0 t-

¢-01 * 1% wonoayeq

\/\/

0.3 0.4
~IME IN SECONDS

2.3

0.1

y
o't 0°0

0°%T—

¢—0T * '17g wond9yaqg

Figure 4.22: Responses of the manipulator in case 4.4

110

4.2.2 Verification

In summary, verification of the correct implementation of flexible link manipulator
dynamics in the symbolic generator FLEX was performed first by comparing the
performance of the symbolically generated dynamics to the analytically derived
dynamics as demonstrated in the first two test cases. In the third test case it was
proved that the flexible link dynér:ics converge to rigid link dynamics as the stiffness
of the links increases. In the fourth test case the coupling between the various modes
of vibrations of the different links and also between the flexible modes and rigid
link motion were examined and found reasonable. This is not considered a rigorous
proof but rather an indication of the correctness of both the dynamic model and
the symbolic generation. Furthermore, the dynamics of test cases three and four
were generated using Mackay’s syrubolic generator FLXDYN [26] which is based on
Book’s algorithm [4] that uses the recursive Lagrangian algorithm. Employing the
same simplifying assumptions, the manipulator dynamics generated by FLXDYN
were utilized to perform the same simulations as in test cases three and four. The
outcomes of these simulations were identical (neglecting very small numerical errors)
to the simulations performed using dynamic code generated by FLEXHB. Although
almost totally different methods were used to generate the dynamics, the results of

the simulations were in a very close agreements.

4.2.3 The Computational Requirements to Calculate the

Direct Dynamics for Flexible Link Manipulators

As mention earlier, the advantage sought of the symbolic generation is the low
computational requirements to calculate the dynamics. It is not only a matter of

reducing the cost of simulation by making the dynamics more efficient, but it is also

111

a question of the feasibility of doing the simulation in the first place. As it will be
illustrated later, employing symbolic generation techniques can considerably reduce

the computational requirements to calculate the dyvnamics.

Several test cases were examined to determine the computational requirements for
the direct dynamics code symbolically generated by FLEXHB. The computational
requirements are compared to the computational requirements of a numerically
programmed version of King’s algorithm. Comparisons are also made between the
computational requirements of the direct dynamics code symbolically generated by
FLEXHB and the direct dynamics code produced using Mackay’s generator FLXDYN
and also with a numerically programmed version of Book’s algorithm. Table 4.13
lists the different test cases employed in the comparison which vary in the complexity
from 6 DOF to 14 DOF. The second column ir ‘he table specifies the number of
links. The third column specifies the flexural freedom(s) of the links. “R” denotes
that the link is rigid, “BB” denotes flexibility in the two directions of bending and
«T7 denotes flexibility in torsion. For example “R-TBB-BB” means that the first
link is rigid, the second link is flexible in the two directions of bending in addition
to torsion and the third link is flexible in the two directions of bending. The fourth
column in the table specifies the number of assumed modes used to approximate
each direction of flexibility. The fifth column lists the number of joint masses the
manipulator possesses which makes the manipulator slightly more complex. The last

column 1ndicates whether or not the gravity term is included in the computations.

Tables 4.14 and 4.15 present the computational requirements to calculate the
direct dynamics for the test cases presented in table 4.13 using FLEXHB and Mackay’s
FLXDYN symbolic generators respectively. The computational requirements of the
symbolically generated code and an estimate of the computational requirements of

the generic numerical code are presented for each test case. This estimate was

112

Table 4.13: The definitions of the cases used in the computational efficiency

comparisons
Case Number Directions of Number Joint Degrees Gravity
of Links Flexability of Modes Mass of freedom Term
N L M N+ (L+ M) Included

A 2 4 (BB-BB) 1 0 6 YES
B 2 4 (BB-BB) 1 0 6 NO
C 2 4 (BB-BB) 1 2 6 YES
D 2 4 (BB-BB) 1 2 6 NO
E 2 5 (TBB-BB) 1 0 7 YES
F 2 5 (TBB-BB) 1 0 7 NO
G 2 5 (TBB-BB) 1 2 7 YES
H 2 5 (TBB-BB) 1 2 7 NO
I 2 4 (BB-BB) 2 2 10 NO
J 2 5 (TBB-BB) 2 2 12 NO
K 3 4 (R-BB-BB) 1 0 7 YES
L 3 4 (R-BB-BB) 1 2 7 YES
M 3 5 (R-TBB-BB) 1 0 8 YES
N 3 5 (R-TBB-BB) 1 2 8 YES
o) 3 4 (R-BB-BB) 2 2 11 YES
P 3 5 (R-TBB-BB) 2 2 13 YES
Q 6 4 (R-BB-BB-R-R-R) 1 0 10 YES
R 6 4 (R-BB-BB-R-R-R) 2 0 14 YES

113

obtained by counting the number of arithmetic operations in the original algorithm
processed by the symbolic generator. These numbers include the number of arithmetic
operations needed to calculate the bias vector and the inertia matrix. The number
of arithmetic operations presented for the symbolically generated dynamics is the
number of operations the dynamic code contained after being simplified by the post-

processor CLEAR described in chapter three.

The first observation from table 4.14 is that the FLEXHB generated dynamics
code is always more efficient, by a great margin, than the nimerically programmed
generic dynamics. It is noticed that the symbolically generated routine requires
only between 2.8% and 5.7% of the amount of computations required by the generic
numerical formulation. This means the symbolically =« erated customized dynamics
are between 17.5 and 35.7 times more efficient than the generic numerical dynamics.
The amount of saving is highly dependent on the inertial and geometric complexity
of the manipulator under study. This observation is valid also for Mackay’s FLXDYN
symbolic generator. The dynamics generated by this generator requires only between
2.9% and 6.1% of the computations needed in Book’s algorithm if programmed

numerically.

Comparing the computational requirements of the generator FLEXHB with
Mackay’s generator FLXDYN, it can be concluded that FLEXHB is more efficient
in computing the dynamics for these test cases. FLEXHB needed only between 50 %
and 80 % of the arithmetic computations contained in dynamics codes generated by
FLXDYN. The amount of saving is dependent on the configuration of the manipulator
under study. The FLEXHB higher efficiency is due to the more efficient algorithm of
King where the equations of motion are written in a Newton-Euler like formulation.
This further proves that the higher efficiency of the Newton-Euler algorithm carries on

to the flexible link dynamics from rigid dynamics. By examining the computational

114

requirements of the numerical algorithms of both Book and King, it is observed that
numerically programmed version of King's algorithm is more efficient than Book’s

numerical algorithm.

From table 4.14 it is noticed that approximating vibrational deflections by
including a higher number of assumed modes has a smaller effect on the computational
burden than increasing the number of links. For example, adding an extra 5 DOF by
approximating each direction of flexibility by two assumed modes (test case J) instead
of one assumed mode as in (test case H) added 533 extra arithmetic operation or 107
operation for each extra degree of freedom. By examining the remaining test cases
presented, it can be noticed that increasing the number of assumed modes used to
approximate deflections will add between 85 and 130 arithmetic operations for each

added mode of deflection.

Introducing torsion in the manipulator model increases the computational
requirements to calculate the dynamics by a greater amount than by increasing the
number of modes of flexure. For example, adding torsion increases the computational
requirements of the previous test cases (e.g. going from case A to E,Bto F, C to G,

D to H and K to M) by about 180-200 arithmetic operations.

Introducing more links is the most computationally expensive. In the previous
examples, the addition of an extra rigid link added between 400 and 500 arithmetic

operations to the computational requirements.

Another interesting comparison in the computational requirements is between
flexible manipulators and the same manipulators but assuming rigid links. Two
extreme cases are examined. The first case is case A which is a two link manipulator
(see figure 4.18). Assuming rigid links, the manipulator will have only 2 DOF instead
of the 6 DOF if flexibility of links were considered. The rigid link model will reduce the

computational requirements for this case from a total of 563 mathematical operations

115

to only 30. From these numbers it can be concluded that considering the flexibility of
the links for this particular case will add considerably to the computational burden.
However, we must keep in mind that the number of degrees of freedom were tripled
when going from the rigid model to the flexible model. The second case 1s case
Q which is a 6 link manipulator similar to the Puma 560 rigid manipulator except
that links 2 and 3 were made flexible in both directions of flexure. To calculate the
direct dynamics for the 6 DOF Puma 560 manipulator 768 arithmetic operations’ are
needed compared to 2038 operation required for the 10 DOF case Q where flexibility
is considered. The penalty of including flexibility in this case is not as heavy as the
first case, due to the fact that the number of degrees of freedom are increased only
by about 67 %. Therefore, modelling the flexibility of only the links that are likely to
be susceptible to vibrations may result in dynamics codes that can be executed with

reasonable speed.

A note worth mentioning is that for the same number of degrees of freedom, the
computational requirements of the FLEXHB generated codes are slightly less than the
computational requirement of rigid manipulators with the same number of degrees
of freedom. For example for cases A through D in table 4.14 which have 6 DOF,
the number of arithmetic operations required range between 559 and 636 operations.
For the case of 6 DOF rigid link manipulators presented in table 4.5 the number of
computations that are required to calculate the same dynamics range between 590

and 772 operations.

7using Walker and Orin’s method 2

Table 4.14: The computational requirements of the generator FLEXHB

116

Case | DOF Numerical Symbolic % Of Numerical
Mult. Add. Total | Mult. Add. Total Algorithm
A 6 5522 6004 11526 | 337 226 563 4.9
B 6 5522 6004 11525 336 223 539 4.9
C 6 9304 9952 19256 | 372 267 639 3.3
D 6 9304 9952 19256 | 372 264 636 3.3
E T 6540 7146 13696 | 443 306 749 3.5
F 7 6540 7146 13696 | 441 302 743 5.4
G 7 10862 11668 22530 482 354 836 3.7
H 7 110862 11668 22530 | 480 350 830 3.7
I 10 | 17108 18152 35260 | 553 424 977 2.8
J 12 | 20966 22410 43376} 767 596 1363 3.1
K 7 8468 9116 17584 | 566 398 964 5.5
L 7 112790 13628 26418 635 483 1118 4.2
M 8 9785 10587 20372{ 675 482 1157 5.7
N 8 14647 15663 30310 752 576 1328 4.4
o) 11 | 21900 23184 45084 | 878 695 1573 3.5
P 13 | 26356 28080 54436 | 1104 876 1980 3.6
Q 10 | 20546 21836 42382 | 1172 866 2038 4.8
R 14 | 31414 33204 64618 | 1691 1286 2977 4.6

117

Table 4.15: The computational requirements of the generator FLXDYN

Case | DOF Numerical Symbolic % Of Numerical
Mult. Add. Total | Mult. Add. Total Algorithm
A 6 0982 9960 19942 579 368 947 1.8
B 6 9982 9960 19942 | 569 360 929 1.7
C 6 9982 9960 19942 | 582 380 962 4.8
D 6 0982 9960 19942 574 372 946 4.7
E T 112724 12701 25425| 640 416 1056 4.2
F 7 12724 12701 25425| 627 406 1033 4.1
G 7 12724 12701 25425 | 644 428 1072 4.2
H 7 112724 12701 25425| 632 418 1050 4.1
I 10 | 21106 20920 42026 | 918 602 1520 3.6
J 12 {29720 29504 59224 | 1026 679 1705 2.9
K 7 14067 14092 28159 | 1096 722 1818 6.5
L 7 | 14067 14092 28159 | 1141 803 1944 6.9
M 8 17145 17189 34334 | 1262 830 2092 6.1
N 8 | 17145 17189 34334 | 1313 913 2226 6.5
0 11 | 26023 25900 51923 | 1848 1257 3105 6.0
p 13 | 35309 35196 70505 | 2112 1461 3373 5.1
Q 10 | 30602 30688 61290 | 2202 1516 3718 6.1
R 14 | N/A" - - - - - -

* Not available

Chapter 5

Summary and Conclusions

The production of computationally efficient dynamics for manipulators is very
essential in both the initial robot design stage and later in the operational stage. In
the design stage the expected behaviour of the robot under different conditions is
simulated to optimize the design parameters of the robot. In the operational stage
simulation can provide verification of the ability of the robot to perform certain tasks.
Furthermore, as the current trend is in the direction of employing faster robots, control
algorithms are being developed which incorporate the dynamics of the manipulator
in their control schemes to account for the dynamic coupling that is associated with

faster moving robots.

Several methods can be used to model the dynamics of manipulators. In chapter
two, a description was given of the recursive Newton-Euler method of Luh et al.
[25] which is one of the most efficient methods to derive the dynamics for rigid
link manipulators. Flexible link manipulators were also treated in this work. The
algorithm implemented for these manipulators was King’s [22] modified Lagrangian

scheme which is written in a Newton-Euler like recursive formulation .

118

119

As an answer to the need for more efficient dynamics code, symbalic generation
was introduced as an alternative to numerical programming. The Newtou-Euler
method for rigid link manipulators was programmed in the symbolic generators
NEDYN', HMAT?, BVECT 3 and HBMAT*. An alternative method to generate the
manipulator Jacobian matrix was implemented in the symbolic generator JACOB.
King’s method for flexible link manipulators was programmed in the symbolic
generators FLEX 3, FLEXH ©, FLEXB 7 and FLEXHB ®. A description of the
different techniques employed in the symbolic generation was given in chapter three.
Following the generation process, a post-processor called CLEAR is utilized to fnrther
simplify and optimize the generated dynamics. This thesis involved developirnant
and implementation of many important improvements in the operation of CLEAR.
New added pracedures such as renaming of duplicate multiplications terms and pre-
computations of terms involving constants greatly improved the simplifying power
of CLEAR. A typical run of the post-processor CLEAR will eliminate 50 % of the
arithmetic calculations contained in the code produced by the symbolic generators.
These improvements in CLEAR enabled the production of very efficient dynamics

code for both rigid and flexible link manipulators.

Several test cases were studied to verify both the dynamic models and the correct

implementation of the different algorithmsin the symbolic generators. Although these

Inverse dynamics
2Inertia matrix
3Bias vector
4Direct dynamics
SInverse dynamics
6Inertia matrix
7Bias vector

8Direct dynamics

120

tost cases do not constitute rigorous proofs, they nevertheless indicate the soundness
of the dynamics algorithms and their implementation in the symbolic generators. The

verification procedure included some of the following tests:

e Agreements between the algorithm and analytical solutions for simple cases.

e Cross-checking between the dynamics codes for the same manipulators which
are produced using totally different algorithms. For example the cross-
checking between dynamics code generated by DYNAM which is based on the
recursive Lagrangian algorithm and NEDYN which is based on the Newton-
Euler algorithm.

e For the flexible manipulators, the dynamic model for flexible links should

converge to the dynamic model for rigid links if stiffness is increased.
¢ Dynamic model. should demonstrate closure.

e Reasonable qualitative behaviour of the coupling between the different

generalized variables in the model.

The implementation of the symbolic generation techniques resulted in great
reductions in the computational requirements for both rigid link and flexible link
manipulators. As illustrated in chapter four, the computational requirements of the
symbolically generated direct dynamics for flexible link manipulators by FLEXHB is
only about 2.8 to 5.7% of the computational requirement of the generic numerically
programmed dynamics. The same note applies to the dynamics of rigid manipulators,
where the computational efficiency of the symbolically generated dynamics greatly

surpasses the efficiency of the numerically programmed version.

For the case of rigid link manipulators, the higher com; ational efficiency

of the numerical Newton Euler method carried on to the svmbolically generated

121

dynamics. The symbolically generated dynamics codes using NEDYN are generally
more efficient than generators implementing other methods especially for higher
degrees of freedom and recursive dynamics. For these cases. the dynamic codes
generated by NEDYN required only about half of the computations needed by
the corresponding dynamic code generated by DYNAM (42, 43] which is based on
Hollerbach’s recursive Lagrangian method. The computational requirements of the
dynamic code generated by the symbolic generator NEDYN matched (and in many
cases surpassed) the most efficient dynamics reported in literature to date including

Neuman and Murray’s ARM generator [27, 28, 29, 30, 31].

For the case of flexible link manipulators the implementation of King's algorithm
[22] also resulted in great savings in the number of computations. In this algorithm,
a modified Lagrangian method is used where the equations are written in a Newton-
Fuler like structure to capitalize on the inherent efficiency of the Newton Euler
method. Therefore the numerically programmed version of King’s algorithm is more
efficient than other Lagrangian based algorithms including Book’s [4] algorithm which
is one of the successful algorithms reported in the literature. Similar to the rigid link
dynamics, the higher efficiency of King’s algorithm (compared to Book’s algorithm)
is carried on to the symbolically generated dynamics code. As reported in chapter
four, the dynamic code generated by the symbolic generator FLEXHB requires only
50 to 80 % of the number of computations needed in code generated by Mackay’s
FLXDYN [26]. The computational cost of adding more degrees of freedom to the
manipulator model varies depending on the nature of the new degrees of freedom.
For example, it is more computationally expensive to add a new rigid link than to

increase the number of assumed modes that approximate a certain deflection.

The important contributions of this thesis include the presentation of very efficient

methods to generate the dynamics of rigid and flexible link manipulators using

122

symbolic generation techniques. Furthermore, to the au.hor’s knowlcdge, this is
the first known systematic documentation of the computational requirements for the

flexible link manipulators, with the exception of Mackay’s work [26].

As a final note, the following problems could be recommended for further

investigations:

e The simplification procedures in the post-processor CLEAR could be

reexamined to determine if more efficient simplifications could be achieved.

e The symbolic generation technique showed great utility in the area of robot
dynamics. Therefore it should be investigated if the benefits of this technique
could be realized in other problems in the dynamics of mechanisms such as

helicopter rotors or multi-legged robots.
¢ Experimental verification especially for the flexible link models.

e With the interest in parallel computation, the problem of automatic partitioning
of the dynamics code for execution on a number of independent processors could

be explored.

References

[1) R.E. Bishop and D.C. Johnson, The Mechanics of Vibration, Cambridge
University Press, Cambridge, 1979.

(2] S.K. Biswas and R.D. Klafter, “Dynamic Modeling and Optimum Control of
Flexible Robotic Manipulator”, IEEE 1988 International Conference on Robotics
and Automation, Vol 1, pp 15-20, 1988.

[3] W.J. Book, O. Maizza-Neto and D.E. Whitney, “Feedback Control of Two Beam,
Two Joint Systems With Distributed Flexibility”, ASME Journal of Dynamic
Systems, Measurement and Control, Vol 97, No. 4, Dec., pp 424-430, 1975.

[4] W.J. Book, “Recursive Lagrangian Dynamics of Flexible Manipulators”, The
International Journal of Robotics Research, Vol. 3, No. 3, pp 87-101, 1984.

[5] M. Brady , J. Hollerbach , T. Johnson , T. Lozano-Perez,and M. Mason, Robot
Motion: Planning and Control,The MIT Press, Cambridge, Mass, 1982.

[6] S. Cetinkunt, B. Siciliano, W.J. Book, * Symbolic Modelling and Dynamic
Analysis of Flexible Manipulators”, 1986 IFKE Internaiional Conf. Systems,
Man, and Cybernetics, Atlanta, pp 798-803, 1986.

[7] S. Cetinkuat and W.J. Book, “Symbolic modeling of Flexible Manipulators”,
1987 IEEE Conference on Robotics and Automation, pp 2074-2080, 1987.

123

124

(8] S. Cetinkunt and W.J. Book, “Symbolic Modeling and Dynamic Simulation of
Robotic _.Ianipulators with Compliant Links and Joints”, Robotics & Computer-
Integrated Manufacturing, Vol.5, No.4, pp 301-310, 1989.

[9] S.C. Chapra and R.P. Canale, Numerical Methods For Engineers, 2nd Ed..
McGraw Hill Book company, pp 288-291, 1988.

[10) R.W. Clough, Dynamics of Structures, McGraw-Hill, pp 328-335, 1975.

[11] J. Denavit and R.S. Hartenberg, “A Kinematic Notation for lower-Pair

Mechanisms”, ASME J. of Applied Mechanics, June, pp 215-221, 1955.

[12] S.R. Dillon, Comy uter Assisted Equation Generation in Linkage Dynamics, PhD
dissertation, Dept. of Electrical Engineering, Ohio State University, Columbus,
OH, August, 1973.

cf. Neuman and Murray (28]
[13] H. Goldstein, Classical Mechanics, 2nd ed., Addison-Wesley Publishing, 1980.

(14] G.G. Hasting and W.J. Book, “A linear Dynamic Model for Flexible Robotic
Manipulators”, IEEE Control System Magazine, 7(1), Feb., pp 61-64, 1987

[15] J.M. Hollerbach, “A Recursive Formulation of Lagrangian Manipulator
Dynamics and a Comparative Study of Dynamics Formulation Complexity”.

IEEE Trans. Systems, Man, and Cybernetics SMC-10, pp 730-736, 1980.

[16] P.C. Hughes, “Dynamics of a Flexible Manipulator Arm for Space Shuttle”,
Paper 28, Proceeding of the American Astronautical Society and American
Institute of Aeronautics and Astrodynamics Spe-ialist Conference, J ackson Hole,

Wyoming, Sept. 7-9, 1977.

[17] M.A. Hussain and B. Noble, “Application of Symbolic Computation to the
Analysis of Mechanical Systems, Including Robot Arms”, in Computer Aided
Analysis and Opiimization of Mechanical System Dynamacs, NATO ASI Series,
Vol. F9 (E.J. Haug, ed.), Springer-Verlag, Berlin, pp 283-306, 1984.

[18] T.R. Kane and D.A. Levinson, “The Use of Kane's Dynamical Equations in
Robotics”, The Int’l. J. of Robotics Research, Vol. 2, No. 3, pp 3-21, 1983.

[19] 1. Kermack, The Effect of Misalignments on Manipulator Performance, M.Sc.
Thesis, Dept. of Mech. Eng., University of Alberta, 1986.

[20] W. Khalil and J. Kleinfinger, “Minimum Operations and Minimum Parameters
of the Dynamic Models of Tree Structure Robots”, IEEE Journal of Robotics
and Automation, Vol. RA-3, No.6, pp 517-526, 1987.

[21] J.0. King, V.G. Gourishankar and R.E. Rink, “Lagrangian Dynamics of Flexjble
Manipulators Using Angular Velocities Instead of Transformation Matrices”,
IEEE Transactions on Systems, Man and Cybernetics, Vol. SMC-17, No. 11,
pp 1059-1068, 1987.

[22] J.0. King, Recursive Models and Controllers of Flezible Manipulators, Ph.D.
Thesis, Dept. of Elect. Eng., University of Alberta, 1988.

[23] M.B. Leahy, Jr., L.M. Nugent, G.N. Saridis, and K.P. Valavanis, “Efficient
PUMA Manipulator Jacobian Calculation and Inversion”, Journal of Robotic
Systems, 4(2), pp 185-197, 1987.

[24] J.Y.S. Luh and C.S. Lin, “Automatic Generation of Dynamic Equations foc
Mechanical Manipulators”, Proc. Joint Automatic Control Conf., Charlottesville,
Va., 1981.

126

[25] J. Luh, M. Walker and R.P. Paul, “On-line Computational Scheme for
Mechanical Manipulators”, ASME J. of Dynamic Systems, Measurement, and
Control, Vol. 102, 1980.

[26] D.J. Mackay, A Simulator for Robots with Flezible Links, M.Sc. Thesis, Dept. of
Mech. Eng., University of Alberta, 1988.

[27] J.J. Murray and C.P. Neuman, “ARM: An Algebraic Robot Dynamic Modeling
Program”, Proc. Int’l. Conf. Robotics, Atlanta, Ga., pp 103-113, 1984.

[28] C.P. Neuman and J.J. Murray, “Computational Robot Dynamics: Foundations

and Applications”, Journal of Robotic Systems, Vol.2, No.4, pp 425-452, 1985.

[29] C.P. Neuman and J.J. Murray, “Customized Computational Robot Dynamics”,
Journal of Robotic Systems, Vol.4, No.4, pp 503-526, 1987.

[30] C.P. Neuman and J.J. Murray, “Symbolically Efficient Formulations for
Computational Robot Dynamics”, Journal of Robotic Systems, Vol.4, No.6, pp
743-769, 1987.

(31] J.J. Murray and C.P. Neuman, “Organizing Customized Robot Dynamics
Algorithms for Efficient Numerical Evaluation”, IEEE Trans. on Systems, Man,
and Cybernetics, Vol.18, No.1, pp 115-125, 1988.

[32] P.E. Nielan and T.R. Kane, “Symbolic Generation
of Efficient Simulation/Control Routines for Multibody Systems in Dynamics
of Multibody Systems”, IUTAM/IFTOMM Symposium Udine, Italy (G. Bianchi
and W. Schiehlen, eds.), Springer- Verlag, Berlin, pp 153-164, 1986.

[33] S. Nicosia, P. Tomei and A. Tornambe, “ Dynamic Modelling of Flexible Robot
Manipulators”, 1986 IEEE, pp 365-472, 1986.

127

[34] R.P. Paul, Robot Manipulators: Mathematics, Programming, and Control, The
MIT Press, Cambridge, Mass., 1981.

[35] R. Paul, M. Renaud, and C.N. Stevenson, “A Systematic Approach for
obtainig the Kinematics of Recursive Manipulators Based on Homogeneous
Transformations”, Robotics Research, M. Brady and R. Paul (ed.), The MIT
Press, Cambridge, Mass., 1984.

[36] D.E. Orin and W.W. Schrader, “Efficient Jacobian Determination for Robot
Manipulators”, Robotics Research, M. Brady and R. Paul (ed.), The MIT Press,
Cambridge, Mass., 1984.

[37] Robotic System International Ltd, Ezcalibur User’s Manual, Sidney, B.C.,
Canada, 1986.

[38] D.E. Rosenthal and M.A. Sherman, “Symbolic Multibody Equations via Kane’s

Method”, AAS/AIAA Specialist Conference, paper 83-803, Lake Placid, New
York.

[39] R.P. Singh and P.W. Likins, “Manipulator Interactive Design with
Interconnected Flexible Elements”, Proceedings of the 1983 Automatic Control

conference, The American Control Council, San Francisco, Ca., June, 1983.

[40] W. Sunada and S. Dubowsky, “On the Dynamic Analysis and Behavior of
Industrial Robotic Manipulators with Elastic Members”, Transactions of the
ASME J. Mech., Trans., and Automation in Design, 105, pp 42-51, 1983.

[41] M.W. Silver, “On the Equivalence of Lagrangian and Newton-Euler Dynamics
for Manipulators”, Proc. of the 1981 Joint Automatic Control Conference, The

American Automatic Control Council, June, San Francisco, Ca., 1983.

128

[42) R.W. Toogood, Symbolic Generation of Robot Dynamics Fquations Part I:
The DYNAM/CLEAR System, ACMIR Technical Repozt 87-04, University of
Alberta.

(43] R.W. Toogood, Symbolic Generation of Robot Dynamics Equations Part II: Case
Studies Using the DYNAM/CLEAR System, ACMIR Technical Report &7-05,
University of Alberta.

[44] P. Tomei and A. Tornambe, “ Approximate Modeling of Robots Having Elastic
Links”, IEEE Transactions on Systems, Man and Cybernetics, Vol. 18, No. 5,
Sept/Oct, pp 831- 839, 1988.

[45] P.B. Usoro, R. Nadira and S.5. Mahil, “Control of Light Weight Flexible
Manipulators: A Feasibility Study. Proceedings of the 1984 Automatic Control
conference, San Diego, Calif. 2, pp 1209-1216, 1984.

[46] L. Vecchio, S. Nicosia, F. Nicolo and D. Lentini, “Automatic Generation of
Dynamical Models of Manipulators”, Proceedings of the Tenth International
Symposium on Industrial Robots, Milan, Italy, March, pp 293-301, 1980.

cf. Neuman and Murray [28]

[47] C.W. Wampler, Computer Methods in Manipulator Kinematics, Dynamics, and
Control: A Comparative Study, Doctoral Thesis, Stanford University, 1984.

[48] M.W. Walker and D.E. Orin, “Efficient Dynamic Computer Simulation of
Robotic Mechanisms”, ASMF J.Dynamic Systems, Measurement, and Control,
Vol 104, pp 205-211, Sept. 1982.

[49] R.C. Waters, Mechanical Arm Control, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, AIM 549, 1979.

Appendix A

Newton-Euler Formulation for

Rigid Link Manipulators

In this appendix, the computational scheme of the recursive Newton-Euler
algorithm of Luh et al. [25) for rigid link manipulators is presented. This formulation
is based on D’Alembert’s principle which states “the elements of the system will be in
equilibrium under a force equal to the actual force plus a reversed effective force”[13].
This reversed effective force equals the time rate of change of linear momentum. This
is equivalent to Newton’s second law of motion. Euler’s equations relates torques and
angular momentums in a similar fashion. For a system that has elements of constant

mass, Newton’s second law of motion reduces to
F=mv (A.1)

For manipulators, equation A.1 relates the resultant force vector F acting on the link

to the acceleration ® of the center of mass. Euler’s equation

N=I.wo+wx(l-w) (A.2)

129

130

is used to relate the resultant torque IN about the center of mass to the inertia about
the center of mass I, the angular velocity w and angular acceleration w. The form
of the equations makes this formulation naturally recursive. The kinematics of the
links are calculated recursively starting with the first link and approaching the end
effector. Then the dynamic computations are performed serially starting with the

last link and working backward to the first link.

Section A.1 presents tke forward recursion. In this run the kinematics of links are
calculated starting at the first link and moving toward the end effector. Section A.2
presents the backward recursion which calculates the dynamics of the links. This run

starts at the end effector and proceeds towards the base link.

A.1 Kinematics of the Links

Linki=0

%%we = |0 00

) I }T
%0 = {0 0 0
- T
%2¢ = |0 0 0
: T

131
Linki=1...N

. A (Flwi_1 + 'zio1¢;) rotational;
Ww; =

A Tlwig translational.

Ay Tlwig translational

i { iAo Tlwia + Tlziad + =11 x (*"'z;-14i)] rotational;
w; =
{ fw; X pr 4+ Aoy Tl rotational;

A [l zind + o] Hwi x ipt translational.

i X ipr 4 fwp x (fwi x P+ iA;_; "19;.; rotational;
o = { (A (Flzisd + Tio) 4+ i X ipf+

2iw; x (FAior lzicigi) + twi X (fw; x ‘p!) translational

Velocity of the center of mass '9;

g, = ‘wi x ‘& + ‘v

i, = ‘w; x ‘% + w; X (fw; X i6) + ‘o

132

A.2 Dynamics of the Links

Link i = N+1

N+1fyv. = External forces applied to the end effector

N+ip v = External moments applied to the end effector

Linki=N...1

‘F; = M;'v
iNy = Jitas + ‘wi x (U3 fwi)
fo = ‘Aia(t i)+ 'F

in, = ‘Am[tnga + (AP x ML)+ CpE + fd) x R+ NG

{ inT . (*Ai-; "1z;_,) rotational;
T =

ifT.(FAi_y *'2z;-;) translational

