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Abstract

Text-to-SQL conversion, the process of transforming natural language queries

into executable SQL commands, stands at the forefront of bridging human

linguistic capabilities with the structured logic of databases. This dissertation

embarks on a journey to elevate text-to-SQL systems to new heights, aiming

to narrow the performance gap between human expertise and automated sys-

tems within the landscape of large language models (LLMs). Our endeavor

unfolds in three pivotal stages. Initially, we harness the power of cutting-

edge proprietary LLMs such as GPT-4, enhancing their prowess through an

in-context learning methodology tailored explicitly for text-to-SQL tasks. Our

proposed method is the state-of-the-art Text-to-SQL method which improved

upon the previous works by %5 execution accuracy. Recognizing the criti-

cal importance of privacy and the economic considerations tied to proprietary

LLMs, we then introduce a decomposed, two-stage supervised fine-tuning ap-

proach. This method not only optimizes the efficiency of smaller LLMs but also

achieves performance metrics on par with their larger counterparts. Using our

proposed two-step method, a small LLMs with 7B parameter can achieve com-

parable results to GPT-4. Finally, our thorough examination and critique of

existing text-to-SQL benchmarks, using human annotation and Standard SQL

validation, illuminates the path for future research, highlighting the necessity

for more comprehensive and accurate evaluation frameworks. Our analysis

of the current Text-to-SQL benchmarks reveals critical limitations, which can

hinder further advancement in this domain. By proposing methodologies in

ii



the realm of LLMs and shedding light on areas ripe for further advancement,

this thesis aspires to inch closer to the elusive goal of achieving human-level

proficiency in Text-to-SQL translation.
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Chapter 1

Introduction

”Data is the oil of the 21st century, and analytics is its combustion engine.”

This insightful observation, often credited to Peter Sondergaard from Gartner

Research, highlights the critical importance and transformative influence of

data in today’s world. In an era defined by rapid advancements and the

need for swift decision-making, the ability to derive meaningful insights from

data stands as a cornerstone of success. Since the inception of the Structured

Query Language (SQL) in 1986, businesses of all sizes have embraced relational

databases for data storage and have relied on SQL for querying and extracting

valuable insights. SQL revolutionized data handling by offering two pivotal

benefits over previous read-write APIs such as ISAM or VSAM: first, it enabled

the retrieval of multiple records through a single command; second, it obviated

the necessity to specify the path to a record, whether indexed or not, thereby

streamlining data access [70].

Crafting SQL queries demands a deep understanding of the SQL lan-

guage, leading many companies to hire data scientists specifically for this

purpose. The role of a data scientist often entails interpreting a natural lan-

guage question from a business user, pinpointing the relevant tables, columns,

and database entities related to the query, and then iteratively developing and

refining a SQL query to extract the information that answers the business

question. Text to SQL technology streamlines this process by converting nat-

ural language queries into SQL commands, thus enabling users to interact with

databases without the need to master SQL syntax. Situated at the crossroads
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Figure 1.1: An example of text-to-SQL task.

of natural language processing (NLP) and database management, text to SQL

aims to facilitate data retrieval by allowing questions or requests to be made

in everyday language. Utilizing sophisticated algorithms and machine learn-

ing models, text to SQL systems decipher the semantics of natural language

inputs, deduce the query’s intent, and translate it into the corresponding SQL

commands for database execution. This innovation finds broad application,

from improving database management system interfaces to making data anal-

ysis more intuitive in business intelligence tools. By making database querying

more accessible to non-technical users, text to SQL is instrumental in narrow-

ing the divide between intricate database systems and users, thereby enhanc-

ing the accessibility of data-driven insights across different sectors. Figure 1.1

illustrates an example of the text-to-SQL task.

There are several challenges associated with the text to SQL task, marking

it as a promising area for further research and development. As highlighted by

[20], despite significant advancements in the NLP field through the introduc-

tion of Large Language Models (LLMs), there remains a substantial disparity

between human performance and the capabilities of top-performing LLMs.

These challenges can be broadly categorized into two main areas. The first

pertains to the issues linked with formulating questions, akin to the difficulties

encountered in question-answering domains. Non-technical users, when posing
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questions, often lack a detailed understanding of how data is organized within

relational databases. Consequently, their questions are prone to ambiguities,

complicating the text to SQL generation process and the evaluation of text to

SQL systems—sometimes introducing subjectivity. In Chapter 4, we will delve

deeper into these issues through human annotation and standard SQL valida-

tion techniques. In addition to question-related challenges, there are obstacles

related to how database information is presented to models and instructing

models on interpreting data stored in databases. Data in relational databases

often spans millions of rows, making the linearization of tables and feeding

this information into models impractical. Furthermore, industrial databases

frequently contain noisy, disorganized data, including columns with ambigu-

ous names that poorly represent the contained data. Such challenges largely

arise because, in many organizations, the individual responsible for database

creation also undertakes SQL query writing, leading to numerous implicit as-

sumptions that are difficult to identify simply by examining the data.

Initial endeavors in text-to-SQL parsing by the database community [78]

achieved notable progress, albeit requiring extensive human engineering and

frequent user system interactions. Designing SQL templates beforehand for

a wide array of scenarios or domains proves to be challenging. Recent years

have witnessed significant advancements in deep learning and the availability

of vast training datasets, which have considerably improved text-to-SQL pars-

ing through neural generation models. A notable example of such methods

is the sequence-to-sequence (Seq2Seq) model [60], which autonomously learns

the mapping function from an input natural language (NL) question to the

corresponding SQL output via encoder-decoder frameworks. The fundamental

concept involves developing an encoder to comprehend the input NL questions

and associated table schema, and employing a grammar-based neural decoder

to predict the desired SQL. Seq2Seq-based approaches have risen to promi-

nence in text-to-SQL parsing largely because they can be trained end-to-end,

thus reducing the reliance on specialized domain knowledge [52].

Various neural generation models have evolved to enhance both the encoder

and decoder for more effective text-to-SQL translation. On the encoding side,
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multiple general neural networks are applied for comprehensive reasoning over

natural language queries and database schemas. For instance, IRNet [23] uses

a bi-directional LSTM [22] combined with a self-attention [64] mechanism

to encode the question and table schema separately. RYANSQL [7] employs

a convolutional neural network with dense connections for encoding. The

advent of pre-trained language models (PLMs) marked a significant evolution;

SQLova [28] was among the first to utilize PLMs like BERT for encoding.

Further advancements saw the use of graph neural networks in RAT-SQL

[66], SADGA [3], and LGESQL [4] to capture the relational structure between

database schema and queries.

On the decoding side, approaches to SQL generation fall into two main

categories: sketch-based and generation-based methods [72]. Sketch-based

methods, such as those employed by SQLova [28], decompose the SQL gener-

ation task into sub-modules, each responsible for a specific type of prediction

slot. These sub-modules are later combined to generate the final SQL query.

However, the advent of large language models, with their impressive abil-

ity for few-shot or zero-shot in-context learning [2], and their exceptional per-

formance across a wide array of tasks, has led researchers to pivot towards

leveraging these models for text to SQL conversion. Initial investigations in

this area primarily focused on the zero-shot in-context learning capabilities

of these models [53]. Our research aims to delve deeper into their potential

by employing more sophisticated prompting techniques and supervised fine-

tuning strategies to closely mirror human performance, thereby narrowing the

existing gap [40].

1.1 Key Contributions

In this thesis, we concentrate on enhancing the performance of LLMs for the

text-to-SQL task. Our approach involves decomposing the task into simpler

components, thereby making it more manageable and aiming to achieve state-

of-the-art results. We place a particular emphasis on both the scalability and

efficiency of our proposed methods to ensure they are practical and effective.
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Overall, the key contributions are as follows:

1. Introducing a multi-stage few-shot in-context learning approach, DIN-

SQL, which sets a new benchmark in performance for Text-to-SQL tasks.

Our method enhances performance by customizing prompts to match

the complexity of the queries and by developing Text-to-SQL specific

reasoning prompts that incorporate intermediate steps.

2. Proposing Text-to-SQL specific self-correction prompts, enabling large

language models to autonomously refine and adjust their own generated

SQL queries.

3. Bridging the gap between smaller, open-source large language models

with 7B parameters and their larger, costly proprietary counterparts,

such as GPT-4, by introducing a decomposed text-to-SQL fine-tuning

methodology.

4. Conducting a thorough evaluation and systematic analysis of text-to-

SQL benchmarks to identify the critical limitations within these bench-

marks that obstruct a fair comparison among different text-to-SQL meth-

ods.

1.2 Dissertation Layout

The dissertation layout is structured into chapters that delve into different as-

pects of improving text-to-SQL translation using LLMs and evaluating bench-

marks. Here’s a brief explanation of what each chapter does:

1. Decomposed In-context Learning With Self-correction: This chap-

ter addresses the challenge of in-context learning for text-to-SQL. It

introduces a decomposition approach that enhances the efficacy of in-

context learning, particularly focusing on learning from few-shot samples

provided in the prompt and task decomposition.

2. Decomposed Text-to-SQL with Small Large Language Models:

This chapter proposes a method leveraging smaller open-source LLMs
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with fine-tuning to achieve results comparable to those of larger propri-

etary models like GPT-4. It explains the methodology behind supervised

fine-tuning for text-to-SQL task and introduces a novel two-step decom-

posed fine-tuning approach.

3. Evaluating Models and Benchmarks: This chapter focuses on evalu-

ating text-to-SQL models and benchmarks. It covers text-to-SQL bench-

marks, discusses evaluation metrics, and identifies common execution ac-

curacy failures. The chapter details experiments conducted to evaluate

models and benchmarks, including query rewriting, human evaluation,

and standard SQL validation.

4. Conclusion: The concluding chapter summarizes the key findings and

contributions of this thesis. It reflects on the implications of this work

for the field of text-to-SQL translation and points out potential avenues

for future research.

Each chapter of this dissertation is self-contained, covering the relevant

works to that chapter.
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Chapter 2

Decomposed In-context
Learning With Self-correction

This chapter explore a decomposition approach to enhance the efficacy of

in-context learning, specifically focusing on learning from few-shot samples

provided in the prompt, for the text-to-SQL task, under the assumption that

only a limited number of question and SQL pair examples are available. In

many real-world scenarios, especially in niche domains or newly developed

databases, the abundance of labeled data (question and SQL pairs) is rare.

This assumption mirrors the reality of many applications, making research

under this assumption applicable to practical situations.

2.1 Introduction

Natural language interfaces to databases aim at making it easier for end users

to access data in a relational database. For example, given the utterance “find

employees who make more than their managers” and the schema of tables

employees and manages, one may want to generate a query in SQL that re-

trieves those employees from a database. Over the past two decades, research

in this field has progressed through several phases, with early systems being

domain-specific, supporting controlled natural language [36], [42], [48], [49]

or relying on rule-based approaches [58] while more recent systems offering

greater domain-independence using supervised models trained on diverse do-

mains and datasets [77], [87] and more recently deep neural models trained on
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large text and code repositories [14], [15].

The latest development in this progression is the use of LLMs under zero-

shot and few-shot prompting [44], [53]. It has been shown that LLMs provide

strong baselines using only a few demonstrations and no fine-tuning [2], [5],

[45]. However, these models fall behind on commonly used benchmarks (e.g.,

Spider) compared to well-designed and fine-tuned models. Table 2.1 shows

the performance of two latest LLMs, CodeX and GPT-4, on the development

set of the Spider dataset. Despite a strong performance, LLMs fall behind,

compared to existing methods [37], [55], especially on medium and complex

queries. The question investigated in this paper is where these LLMs fail and

if some of the problems that they are facing can be mitigated to push the

performance to reach or surpass fine-tuned SOTA models.

Approach Execution Accuracy
Fine-tuning Approaches

RED-SQL 3B + NatSQL [37] 84.5
T5-3B + PICARD [55] 79.3

Inference-only Approaches
Zero-shot GPT-4 (Ours) 64.9
Few-shot GPT-4 (Ours) 67.4
Zero-shot CodeX [53] 55.1

Few-shot CodeX (Ours) 61.5

Table 2.1: Zero-shot and few-shot prompting compared to fine-tuned ap-
proaches on the dev set of Spider.

It has been recently shown that the performance of LLMs can be improved

on more complex tasks (e.g., math word problems, compositional navigation

steps) using approaches such as chain-of-thought [69], least-to-most [88], and

decomposed [31] prompting techniques where a task is broken down into mul-

tiple steps and the intermediate results are used to generate a final answer.

Unlike algebraic expressions, which consist of clear steps or operations, break-

ing a complex SQL query can be a more daunting task because of the declar-

ative structure of the language and the complex relationships between query

clauses.

In this chapter, we propose a novel method based on few-shot prompt-
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ing that decomposes the task of natural language text to SQL (referred to as

text-to-SQL) into multiple sub-tasks.Previous works on text-to-SQL prompt-

ing using LLMs are only evaluated in a zero-shot setting [44], [53]. However,

zero-shot prompting only provides a lower bound on the potential power of

LLMs for most tasks [2], [32], [67], [69], [80]. We show that our proposed

method outperforms the few-shot prompting method by a large margin. We

also compare our method with previous approaches on two cross-domain chal-

lenging benchmarks, Spider and BIRD. For Spider dataset, we use the two

official evaluation metrics of execution accuracy and exact set match accuracy

[83]. We utilize two variants of the CodeX family, namely Davinci and Cush-

man [5], and the GPT-4 model for prompting. On the holdout test set of

Spider, our method achieves an execution accuracy of 85.3% and 78.2% re-

spectively using GPT-4 and CodeX Davinci models and an exact set match

accuracy of 60% and 57% respectively using the same models. The large gap

between the exact match and execution accuracies is due to the few-shot in-

context nature of our method. Pretrained and fine-tuned approaches are more

likely to generate SQL queries with a higher exact set match accuracy simply

because these models have seen many examples during training that follow the

composition style of the queries in the test set (queries in both sets are often

written by the same people). Before our work, the SOTA on the test set had

an execution accuracy of 79.9% [37] and an exact set match accuracy of 74%

[39], and our method sets a new ground in terms of the execution accuracy. On

the BIRD benchmark, our approach achieves a new SOTA result, attaining an

execution accuracy of 55.9% on the holdout test set and 50.72% on the devel-

opment set when employing GPT-4. Moreover, using the valid efficiency score

introduced in this benchmark, our approach outperformed a GPT-4 baseline,

demonstrating a 9% improvement on the development set. This highlights the

effectiveness of our method.

Our contributions can be summarized as follows: (1) improving the per-

formance of LLM-based text-to-SQL models through task decomposition, (2)

introducing adaptive prompting strategies tailored to task complexity, (3) ad-

dressing schema linking challenges in the context of prompting, and (4) using
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LLMs for self correction.

To replicate the reported results, visit our GitHub repository 1 for access

to the prompts, results, and the code.

2.2 Related Work

Sequence-to-sequence models [60] have shown great potential in code gener-

ation tasks including text-to-SQL. The key idea is to jointly encode a given

natural language question and the database schema and leverage a decoder to

predict the target SQL.

On the encoder side, learning a representation for the question and the

database schema is carried out using bidirectional LSTM in IRNet [22], con-

volutional neural networks in RYANSQL [7], pretrained language models such

as BERT in SQLova [28] and graph neural networks in RATSQL [66], SADGA

[3], and LGESQL [4].

[20] propose an intermediate representation to bridge the gap between

the natural language question and SQL statements. There has been also

work on tabular language models that encode both tables and text such as

TaBERT [74], TaPas [25], and Grappa [75].

The methods on the decoder side can be categorized into sketch-based

slot-filling and generation-based methods [52]. Sketch-based methods break

the problem into several slot prediction sub-problems and aggregate the pre-

dictions for the slots of the SQL query to be generated [27], [28], [72]. A

drawback of these methods is that they cannot generalize to queries that do

not follow the predefined templates. The generation-based methods [4], [23],

[26], [66] decode the SQL query as an abstract syntax tree.

In contrast to pretrained and fine-tuned models, [53] and [44] conduct an

evaluation of the zero-shot prompting capability of LLMs on text-to-SQL using

different prompts on the Spider dataset. Prompting techniques have been also

used for tasks such as table understanding, table reasoning, and table-to-text

generation [6], [24], and some remarkable results have been reported using

1https://github.com/MohammadrezaPourreza/Few-shot-NL2SQL-with-prompting
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Figure 2.1: Statistics of simple few-shot failures using CodeX Davinci (Op
refers to operators, Cond refers to conditions, and cols refers to columns)

LLMs with just a small number of examples given in the prompt.

2.3 Few-shot Error Analysis

To better understand where LLMs fail under a few-shot setting, we randomly

sampled 500 queries from different databases in the training set of the Spider

dataset, excluding all databases used in our prompts. We searched for the

queries that produced results different than those of gold queries, hence failing

the execution accuracy. We manually examined these failures and classified

them into six categories as shown in Figure 2.1 and discussed next.

Schema linking This category contained the largest number of failed queries

and included instances where the model failed to identify column names, table

names, or entities mentioned in questions. In some cases, the query required

an aggregation function, but a matching column name was chosen instead.
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For instance, the database schema for question “What are the average and

maximum capacities for all stadiums?” included a column named “average”,

which was selected by the model instead of taking the average of the capacity

column.

JOIN This was the second largest category and included queries that needed

a JOIN but the model was unable to identify all the tables required or the

correct foreign keys to join the tables.

GROUP BY This category included cases where the SQL statement required

a GROUP BY clause, but the model either did not recognize the need for

grouping or wrong columns were used for grouping the results.

Queries with nesting and set operations

For this category, the gold query used nesting or set operations but the model

did not recognize the nested structure or was unable to detect the correct

nesting or set operation.

Invalid SQL A small set of the generated SQL statements had syntax errors

and could not be executed.

Miscellaneous This category included cases that did not fit under any of

the previously mentioned categories. Examples included SQL queries that

contained extra predicates, missed a predicate, or had missing or redundant

DISTINCT or DESC keywords. This category also included cases where the

WHERE clause was missing or the query had redundant aggregation functions.

2.4 Methodology

Despite improvements over zero-shot, few-shot models struggle on more com-

plex queries including those where schema linking is less trivial and the queries

that use multiple joins or have a nested structure, as discussed in Section 2.3.

Our approach to address these challenges is to break down the problem

into smaller sub-problems, solve each sub-problem, and use those solutions

to construct a solution for the original problem. Similar approaches (e.g.,

chain-of-thought prompting [69] and least-to-most prompting [88]) have been

taken to improve the performance of LLMs on tasks that can be broken down
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Figure 2.2: An overview of the proposed methodology including all four mod-
ules

into multiple steps such as math word problems and compositional general-

ization [9], [33]. Unlike these domains where the tasks have a procedural

structure with one step directly feeding into the next step, SQL queries in

most parts are declarative and the possible steps and their boundaries are less

clear. However, the thought process for writing SQL queries may be broken

down to (1) detecting database tables and columns that are relevant to the

query, (2) identifying the general query structure for more complex queries

(e.g., group by, nesting, multiple joins, set operations, etc.), (3) formulating

any procedural sub-components if they can be identified, and (4) writing the

final query based on the solutions of the sub-problems.

Based on this thought process, our proposed method for decomposing a

text-to-SQL task consists of four modules (as depicted in Figure 2.2): (1)

schema linking, (2) query classification and decomposition, (3) SQL genera-

tion, and (4) self-correction, which are explained in detail in the following sub-

sections. While these modules may be implemented using techniques from the

literature, we implement them all using prompting techniques to show that

LLMs are capable of solving them all if the problems are simply broken down

to the right level of granularity. The few-shot examples used in the prompts

are obtained from the training set of the respective benchmarks.

2.4.1 Schema Linking Module

Schema linking is responsible for identifying references to database schema

and condition values in natural language queries. It is shown to help with

13



Figure 2.3: schema linking module

the generalizability across domains and the synthesis of complex queries [35],

making it a critical preliminary step in almost all existing text-to-SQL methods

[4], [23], [66], [73]. This was also a single category with the largest number of

failures made by the LLM in our case (Figure 2.1).

We designed a prompt-based module for schema linking. The prompt

includes ten randomly selected samples from the training set of the Spider

dataset. Following the chain-of-thought template [69], the prompt begins with

“Let’s think step by step,” as suggested by [32]. For each mention of a column

name in the question, the corresponding columns and their tables are selected

from the given database schema. Possible entities and cell values are also ex-

tracted from the question. Figure 2.3 illustrates an example with the prompt

used for this module.
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2.4.2 Classification & Decomposition Module

For each join, there is some chance that a correct table or join condition is not

detected. As the number of joins in a query increases, the chance that at least

one join fails to generate correctly increases. One way to alleviate the problem

is introduce a module that detects the tables to be joined. Also some queries

have procedural components such as uncorrelated sub-queries, which may be

generated independently and be merged with the main query.

To address these issues, we introduce a query classification and decompo-

sition module. The module classifies each query into one of the three classes:

easy, non-nested complex and nested complex. The easy class includes single-

table queries that can be answered without join or nesting. The non-nested

class includes queries that require join but no sub-queries, and the queries in

the nested class can contain joins, sub-queries and set operations. The class

labels are important for our query generation module, which uses different

prompts for each query class. In addition to class labels, query classification

and decomposition also detects the set of tables to be joined for both non-

nested and nested queries as well as any sub-queries that may be detected for

nested queries. Figure 2.4 shows an example input given to the model and the

output that the model generates.

2.4.3 SQL Generation Module

As the queries become more complex, additional intermediate steps must be

incorporated to bridge the gap between the natural language question and the

SQL statement. This gap, known as the mismatch problem in the literature

[23], poses a significant challenge to SQL generation, which stems from the fact

that SQL is primarily designed for querying relational databases and not repre-

senting the meaning in natural language [30]. While more complex queries can

benefit from listing the intermediate steps in a chain-of-thought style prompt-

ing, such listings can degrade the performance for simpler tasks [69]. On the

same basis, our query generation comprises of three modules, each geared

toward different classes.
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Figure 2.4: classification and decomposition module

For questions in our easy class, a simple few-shot prompting with no in-

termediate steps is adequate. The demonstration for an example Ej of this

class follows the format (Qj, Sj, Aj), where Qj and Aj give the query text in

English and SQL respectively and Sj indicates the schema links.

Our non-nested complex class includes queries that require join. Our error

analysis (§ 2.3) revealed that finding the right columns and foreign keys to

join two tables can be challenging for LLMs under simple few-shot prompt-

ing, especially when the query requires joining multiple tables. To address

this issue, we resort to an intermediate representation to bridge the gap be-

tween queries and SQL statements. Various intermediate representations have

been introduced in the literature. In particular, SemQL [23] removes opera-

tors JOIN ON, FROM, and GROUP BY, which have no clear counterparts

in natural language queries, and merges the HAVING and WHERE clauses.

NatSQL [20] builds upon SemQL and removes the set operators. Expressions

in natural language queries may not clearly map to a unique SQL clause or
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they may map to multiple clauses, so removing operators makes the transi-

tion from natural language to SQL easier. As our intermediate representation,

we use NatSQL, which is shown to have a state-of-the-art performance when

combined with other models [37]. The demonstration for an example Ej of the

non-nested complex class follows the format (Qj, Sj, Ij, Aj), where Sj and Ij

respectively denote the schema links and the intermediate representation for

the jth example.

Lastly, the nested complex class is the most sophisticated type and requires

several intermediate steps before generating the final answer. This class can

contain queries that not only require sub-queries using nesting and set oper-

ations such as EXCEPT, UNION, and INTERSECT but also multiple table

joins, same as the previous class. To break down the problem further into

multiple steps, our prompt for this class is designed in a way that the LLM

should first solve the sub-queries, generated from the previous module, and

then use them to generate the final answer. The prompt for this class follows

the format (Qj, Sj , (Qj1 , Aj1 , ..., Qjk , Ajk) , Ij, Aj), where k denotes the num-

ber of sub-questions, and Qji and Aji respectively denote the i-th sub-question

and the i-th sub-query. As before, Qj and Aj denote the query in English and

SQL respectively, Sj gives the schema links and Ij is a NatSQL intermediate

representation.

2.4.4 Self-correction Module

The generated SQL queries can sometimes have missing or redundant keywords

such as DESC, DISTINCT and aggregation functions. Our experience with

multiple LLMs indicates that these issues are less common in larger LLMs

(e.g., queries generated by GPT-4 have less bugs than those from CodeX) but

are still present. To address this, we propose a self-correction module where

the model is instructed to correct those minor mistakes.This is achieved in a

zero-shot setting, where only the buggy code is provided to the model and it is

asked to fix the bugs. We propose two different prompts for the self-correction

module: generic and gentle. With a generic prompt, we request the model to

identify and correct the errors in the “BUGGY SQL”. The gentle prompt, on
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the other hand, does not assume the SQL query is buggy, and instead asks

the model to check for any potential issues and provides some hints on the

clauses to be checked. Our evaluation indicates that a generic prompt can

yield a better result with the CodeX model, while a gentle prompt is more

effective for the GPT-4 model. Unless explicitly stated otherwise, the default

self-correction prompt in DIN-SQL is set to gentle for GPT-4 and generic for

CodeX.

2.5 Experiments

2.5.1 Models

We evaluated the proposed method using two variants of the CodeX family

(Davinci and Cushman variants) and the GPT-4 model. These are the largest

open-access LLMs at the time of writing this paper. Smaller models are less

applicable since prompting is believed to be an emergent ability of the LLMs

with the number of parameters in the scale of billions [68].

2.5.2 Hyperparameter

All models were accessed via the OpenAI API. Greedy decoding was used to

generate the output by setting the temperature at zero. The max tokens was

set to 350 for the self-correction module and 600 for all other modules. The

stopping token sequence was set to “#;\n \n” for the self-correction module

and “Q:” for all other modules.

2.5.3 Dataset

Our evaluation was conducted on two cross-domain challenging datasets, Spi-

der and BIRD. Spider consists of 10,181 questions and 5,693 unique com-

plex SQL queries across 200 databases, covering 138 domains, each contain-

ing multiple tables. The standard protocol for this dataset divides it into

8,659 training examples across 146 databases, 1,034 development examples

across 20 databases, and a holdout of 2,147 test examples across 34 databases.

The databases used in each of these sets are non-overlapping. SQL queries
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are categorized into four difficulty levels, based on the number of SQL key-

words used, the presence of nested subqueries, and the usage of column se-

lections and aggregations. BIRD comprises an extensive dataset with 12,751

unique question-SQL pairs, encompassing 95 large databases totaling 33.4 GB

in size. It spans a wide array of more than 37 professional domains, including

blockchain, hockey, healthcare, and education. BIRD also introduces external

knowledge as an additional resource to assist models in generating accurate

SQL queries. Specifically four sources of external knowledge were introduced:

numeric reasoning knowledge, domain knowledge, synonym knowledge, and

value illustration. Notably, the SQL queries in the BIRD dataset tend to be

more intricate than those in the Spider dataset. Language models without

access to database content often encounter challenges with schema linking.

Therefore, our prompts for the BIRD dataset include sample rows from each

table to aid the model in schema linking. Furthermore, we have concatenated

the provided external knowledge for each question as a hint, placed immedi-

ately after each question. However, due to constraints such as limited context

window size, the presence of external knowledge, and the inclusion of sample

rows, we have had to reduce the number of demonstrations within the prompts

for the BIRD dataset.

2.5.4 Metrics

The performance of our models are evaluated using the official metrics of

each dataset: exact-set-match accuracy (EM) and execution accuracy (EX)

for Spider and valid efficiency score (VES) and execution accuracy (EX) for

BIRD.

The exact-set-match accuracy (EM) treats each clause as a set and com-

pares the prediction for each clause to its corresponding clause in the reference

query. A predicted SQL query is considered correct only if all of its compo-

nents match the ground truth. This metric does not take values into account.

The execution accuracy (EX) compares the execution output of the predicted

SQL query with that of the ground truth SQL query on some database in-

stances. Execution accuracy provides a more precise estimate of the model’s
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performance since there may be multiple valid SQL queries for a given ques-

tion, and exact set match accuracy only evaluates the predicted SQL against

one of them. The Valid Efficiency Score (VES) is a metric designed to measure

the efficiency of running the generated SQL queries. This metric is meaning-

ful if the generated queries are correct, meaning their result matches that of

the reference query. Therefore, the VES metric takes into account both the

accuracy of the generated queries and their efficiency in terms of the execution

time.

2.5.5 Results

Test set results

As shown in Table 2.2 for the holdout test set of Spider, our method achieves

the highest execution accuracy using GPT-4 and the third-highest execution

accuracy using CodeX Davinci among all officially published results at the time

of this writing. This is achieved without even utilizing the database content.

In terms of exact set match accuracy, our method achieves comparable results

to previous works that do not utilize database content. As demonstrated in

Table 2.3, in the case of the BIRD dataset, our method using GPT-4 achieved

a test set execution accuracy of 55.9%, setting a new SOTA.

Model EX EM
DIN-SQL + GPT-4 (Ours) 85.3 60

RESDSQL-3B + NatSQL (DB content used) [37] 79.9 72
DIN-SQL + CodeX davinci (Ours) 78.2 57

Graphix-3B+PICARD (DB content used) [39] 77.6 74
SHiP+PICARD (DB content used) [81] 76.6 73.1

N-best Rerankers + PICARD (DB content used) [79] 75.9 72.2
RASAT+PICARD (DB content used) [51] 75.5 70.9
T5-3B+PICARD (DB content used) [55] 75.1 71.9

RATSQL+GAP+NatSQL (DB content used) [20] 73.3 68.7
RYANSQL v2 + BERT [7] - 60.6

SmBoP + BART [54] - 60.5

Table 2.2: Execution accuracy (EX) and exact set match accuracy (EM) on
the holdout test set of Spider.
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Model VES EX
DIN-SQL + GPT-4 (Ours) 59.44 55.9

GPT-4 60.77 54.89
Claude-2 - 49.02

ChatGPT + CoT [40] 56.56 40.08
ChatGPT 51.40 39.30
Codex 41.60 36.47
Palm-2 - 33.04
T5-3B 27.80 24.05

T5-Large 25 20.94
T5-Base 14.7 12.89

Table 2.3: Execution accuracy (EX) and Valid Efficiency Score (VES) on the
holdout test set of BIRD.

Development set results

Most of our evaluation during development was conducted on the development

set of Spider which was easily accessible unlike the test set that was only

accessible through an evaluation server provided by [77]. Table 2.4 shows

the performance of our method using different LLMs, compared to zero-shot

prompting of [53] and [44] and our own few-shot prompting. To ensure a

fair comparison for the few-shot prompting, we incorporate all the examples

utilized for our three classes (easy, non-nested complex, and nested complex)

inside the prompt. Given that the CodeX Cushman model has a smaller input

context size than the CodeX Davinci and the GPT-4 models, we only use 2

examples from each class (for a total of 6 examples).

Our method significantly outperforms both simple few-shot prompting and

zero-shot prompting, in terms of both exact set match and execution accura-

cies, and the improvement is consistent across all models despite their sizes.

For example, compared to few-shot prompting, our method improves the exe-

cution accuracy for all models by at least 10%.

On the development set of BIRD, our approach demonstrates a substantial

improvement, achieving a 4% gain in execution accuracy and a remarkable 9%

improvement in valid efficiency score over a GPT-4 baseline [40], establishing

a new SOTA. These and other results are reported in Table 2.5.

The performance of our method on the test set (as reported in Tables 2.2
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Prompting Model EX EM
DIN-SQL (Ours) GPT-4 74.2 60.1
DIN-SQL (Ours) CodeX Davinci 69.9 57.2
DIN-SQL (Ours) CodeX Cushman 47.6 35.7
Few-shot (Ours) GPT-4 67.4 54.3
Few-shot (Ours) CodeX Davinci 61.5 50.2
Few-shot (Ours) CodeX Cushman 43.1 30.9
Zero-shot (Ours) GPT-4 64.9 40.4
Zero-shot [44] ChatGPT 60.1 -
Zero-shot [53] CodeX Davinci 47.5

Zero-shot (DB content used) [53] CodeX Davinci 55.1
Zero-shot (DB content used) [53] CodeX Cushman 53
Zero-shot (DB content used) [53] GPT3 21.7

Table 2.4: Performance compared to zero-shot and few-shot prompting using
different LLMs on the dev set of Spider.

Model VES EX
DIN-SQL + GPT-4 (Ours) 58.79 50.72

GPT-4 49.77 46.35
Claude-2 - 42.70

ChatGPT + CoT [40] 42.30 36.64
ChatGPT 43.81 37.22
Codex 43.41 34.35
Palm-2 - 27.38
T5-3B 25.57 23.34

T5-Large 22.74 19.75
T5-Base 12.90 11.54

Table 2.5: Execution accuracy (EX) and Valid Efficiency Score (VES) on the
development set of BIRD.

and 2.3) is higher than that on the development set for both Spider and BIRD.

It is hard to pinpoint the exact reason when the test set is hidden, but we

speculate that fewer questions in the test set may require the knowledge of the

database content, making it easier for our method to predict a correct SQL

query. Furthermore, the development set has schema ambiguity (e.g., a query

entity can be mapped to multiple database entities but only one is considered

correct), and it is possible that the test set has less ambiguity.

We further analyzed the performance of our proposed method on queries

with different levels of difficulty. Table 2.6 presents the performance of our
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proposed method compared to a basic few-shot prompting on the development

set of Spider.

Execution accuracy (EX)
Prompting Model Easy Medium Hard Extra All
DIN-SQL GPT-4 (Ours) 91.1 79.8 64.9 43.4 74.2
DIN-SQL CodeX Davinci (Ours) 89.1 75.6 58 38.6 69.9
Few-shot GPT-4 (Ours) 86.7 73.1 59.2 31.9 67.4
Few-shot CodeX Davinci (Ours) 84.7 67.3 47.1 26.5 61.5
Exact set match accuracy (EM)
Prompting Model Easy Medium Hard Extra All
DIN-SQL GPT-4 (Ours) 82.7 65.5 42 30.7 60.1
DIN-SQL CodeX Davinci (Ours) 78.6 67.3 38.5 17.5 57.2
Few-shot GPT-4 (Ours) 87.9 54 47.1 12 54.3
Few-shot CodeX Davinci (Ours) 77 53.8 38.5 12.7 50.2

Table 2.6: Performance compared to our basic few-shot prompting across dif-
ferent query difficulty levels.

Our proposed method outperforms the basic few-shot prompting across

all difficulty levels, with the greatest improvement in performance observed

for the extra hard and hard classes where the few-shot prompting performed

poorly. Our improvement on the easy class (compared to basic few-shot) is

due to incorporating schema links in the prompt, highlighting the importance

of our schema-linking module.

Error improvements

In Section 2.3, we did an error analysis of basic few-shot prompting on 500

queries randomly chosen from the training set. To understand the degree those

errors are resolved, we ran DIN-SQL on the same 500 queries. As shown in

Figure 2.5, our proposed approach improves the performance for all categories

with the largest improvement seen for the JOIN and Nested categories. Despite

having an explicit module for schema-linking, the largest portion of failure

cases still belong to this category.
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Figure 2.5: The break-down of failure cases for DINSQL (green) and the basic
few-shot prompting (blue) across different categories

2.5.6 Ablation study

In an ablation study, we evaluated our approach with and without each of the

four modules. As shown in Table 2.7 for the CodeX Davinci model, excluding

any of the modules leads to an overall decrease in performance, in terms of

the execution accuracy.

More details emerge as we study the effectiveness of each module across

different query classes. Schema linking helps all query classes with the least

improvement for the hard class. Our inspection of a sample of the failed

cases reveals that schema linking sometimes finds redundant links due to an

ambiguity in the question or schema, and this can introduce redundant joins

or output columns.

Without a classification, we had to use either a simple few-shot prompt-

ing or a decomposed chain-of-thought (COT) prompting for all queries. The

reported performance without a classification module in Table 2.7 is for our

comprehensive framework that includes all our components except classifica-

tion. This means that the approach contains not only COT prompting but

also Schema Linking, Self-Correction, and NatSQL Intermediate Representa-

tion, all of which are significant contributions of our work. The decomposed
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Prompting Model Easy Medium Hard Extra All
DIN-SQL (generic self-corr) CodeX 89.1 75.6 58 38.6 69.9
DIN-SQL (gentle self-corr) CodeX 87.5 76.9 51.7 36.1 68.7
DIN-SQL w/o self-corr CodeX 83.9 75.4 52.3 36.1 67.3
DIN-SQL w/o schema-linking CodeX 87.3 70.6 57.6 27.1 65.9
DIN-SQL w/o classification
(simple few-shot prompting) CodeX 87.9 68.2 51.7 27.1 63.1
DIN-SQL w/o classification
(decomposed COT prompting) CodeX 84.2 71.2 54.3 38.6 68.2
DIN-SQL (gentle self-corr) GPT-4 91.1 79.8 64.9 43.4 74.2
DIN-SQL (generic self-corr) GPT-4 89.9 76.5 59.2 34.3 70.0
DIN-SQL w/o self-correc GPT-4 91.1 79.1 63.2 41.6 73.3

Table 2.7: Performance of our method, in terms of execution accuracy, on the
dev set with and without each module

chain-of-thought result presented in this table refers to employing the most

complex prompt, developed for the nested complex class, for all questions

instead of adopting a classification-based approach to determine prompt com-

plexity based on the question’s level of difficulty. In contrast, the result for the

DIN-SQL with simple few-shot prompting refers to using the simplest prompt-

ing class, easy class, for all questions across different level’s of difficulty. As

expected, a decomposed chain-of-thought prompting works better for hard and

extra hard queries whereas a simple few-shot works better for the easy class.

For self-correction, we ran our study using both CodeX Davinci and GPT-

4. For CodeX Davinci, a generic self-correction prompt helps the model across

all query classes. A gentle self-correction prompt is also helpful but the gain is

smaller than generic one for CodeX Davinci. However, there is less chance that

GPT-4 generates a buggy code, and giving a generic prompt of “Buggy SQL:. . .

Fixed SQL:. . .” can hurt the performance. A gentle prompt work better for

GPT-4 and improves the performance across all of the classes except the easy

class.

2.6 Discussion

In this chapter, we have witnessed a notable performance improvement in the

text-to-SQL domain through task decomposition, employing large proprietary
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language models like GPT-4 and Codex. Prompting with task decomposition

is a strategy that warrants careful consideration for each specific task. While

breaking down the problem into smaller, more manageable parts can lead

to higher accuracy levels from the model due to the simplification of tasks,

it’s also essential to weigh the costs involved. These costs include both the

potential increase in system latency and the expenses associated with using or

deploying the models. In the text-to-SQL domain, given the complex nature

of understanding data formatting in tables and constructing accurate SQL

queries, we believe the performance gains achieved through decomposition

justify these costs.
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Chapter 3

Decomposed Text-to-SQL with
Small Large Language Models

Although employing few-shot in-context learning with proprietary language

models like GPT-4 and GPT-3.5-Turbo shows promising results, two major

concerns arise with this approach. Firstly, since these models are accessed

through APIs, there are valid concerns regarding data privacy and security.

Secondly, the expense associated with utilizing these models can be signifi-

cant, making them unaffordable for many small businesses. Therefore, in this

chapter, we propose a method that leverages smaller, open-source large lan-

guage models with fine-tuning to achieve results comparable to those of large

proprietary models like GPT-4.

3.1 Introduction

Natural language interfaces for databases allow users to derive insights from

structured databases using natural language instead of complex SQL queries.

Leading open-source methods [21], [50] for this task heavily depend on pro-

prietary LLMs like GPT-4 and GPT-3.5-turbo, which have demonstrated su-

perior performance in text-to-SQL benchmarks [17], [41], [77]. However, this

reliance on large proprietary models has privacy and cost implications. For

instance, many large enterprises cannot share their customer data with the

model-providing companies due to privacy considerations. Additionally, cost

is a factor, especially for small businesses, in adopting these models.
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Recent attempts to utilize open-source LLMs [21] and fine-tune them using

question-SQL query pairs have fallen short of the zero-shot performance of

GPT-3.5-turbo. Table 3.1 presents a performance comparison of the fine-tuned

open-source LLMs on the Spider development set, contrasting with methods

that employ GPT-4’s prompting techniques. This paper aims to address this

disparity by introducing a novel two-step decomposed fine-tuning method,

employing two smaller LLMs, each with a parameter size of 7 billion. This

approach achieves a performance comparable to methods that are using GPT-4

with few-shot learning and well-designed prompts.

Model EX EM
Fine-tuning methods

Llama2 7B [21] 66.7 63.9
Llama2 13B [21] 67.0 62.7

Prompting methods
DAIL-SQL + GPT4 [21] 84.4 74.4
DIN-SQL + GPT4 [50] 74.2 60.1

Table 3.1: Performance comparison of the prompting methods and fine-tuning
method on the Spider validation dataset

We evaluate the performance of our proposed method using two text-

to-SQL benchmarks: Spider [77] and Spider-SYN [17] and two 7B LLMs:

DeepSeek [13] and Mistral [29]. Our approach demonstrates a performance

improvement of approximately 3 to 7 percent in execution accuracy compared

to the conventional single-step fine-tuning method employed in previous stud-

ies [21]. This consistent performance gain across both datasets highlights the

generalizability of our method. Moreover, our fine-tuning strategy, utilizing a

7 billion parameter LLM, surpasses all previous open-source methods on the

Spider development set and achieves comparable results to the state-of-the-art

open-source methods using GPT-4 [21], [50] on the Spider test set. We have

provided all the necessary code to replicate the results, along with the models’

predicted SQL queries, in our GitHub repository 1.

1https://anonymous.4open.science/r/DTS-SQL-2A42
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3.2 Methodology

A notable development in LLMs is their post-pretraining refinement, which

enhances their alignment with preferred behaviors, as documented by [46],

[61], [65]. Common methods of alignment include Supervised Fine-Tuning

(SFT) using human demonstrations, as reported by [47], [63] and Reinforce-

ment Learning from Human Feedback (RLHF), as detailed by [1], [8], [57],

[89].

The absence of extensive datasets containing either human or AI feedback

[34] has led to a predominant focus on supervised fine-tuning in the text-to-

SQL field. This approach necessitates a collection of specific instructions or

prompts along with their corresponding outputs or responses. In the following

section, we will delve into the established methods of supervised fine-tuning

for LLMs within the text-to-SQL context. Subsequently, we introduce our

novel two-step fine-tuning approach, designed to enhance the performance of

models in the text-to-SQL domain.

3.2.1 Supervised fine-tuning for Text-to-SQL

In this section, we explore the supervised fine-tuning process for text-to-SQL

tasks, as practiced in the open-source community [21]. Given a set of databases

Di comprising pairs of questions qi and corresponding SQL queries si, the

goal is to fine-tune a large language model M using a set of training data

T = {(qi, si, Di)}, where qi and si represent the natural language question

and its associated SQL query on database Di. The objective of supervised

fine-tuning is to minimize the empirical loss defined as:

min
σ,M∗

1

|T |

|T |∑

i=1

L(M∗(σf (qi, Di, si)), (3.1)

where L is the loss function used to measure the difference between the SQL

queries generated by the model and the actual, correct (ground truth) queries.

The function σf determines the formatting of the question, the database

schema, and the SQL queries. A key challenge during inference is that we
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do not know in advance among all of the tables inside the database which

tables are relevant to a given question for generating accurate SQL queries.

Therefore, a common approach in fine-tuning involves including the schema of

all tables within the prompts together with the question and SQL pairs. This

method serves a dual purpose: teaching the model to generate the correct SQL

query and to identify the relevant tables from among all the provided tables.

This approach of training for two objectives simultaneously complicates the

SQL generation task for LLMs, particularly for smaller models with only a few

billion parameters. Each task – generating SQL queries and correctly linking

to the relevant schema – demands its own reasoning process. A significant

proportion of errors in LLMs can be attributed to incorrect schema linking,

highlighting this as a major challenge in the field [16], [50].

3.2.2 Decomposed Supervised Fine-tuning

We propose a two-stage fine-tuning process, which separates schema linking

and SQL generation, aiming to enhance the performance of NL-to-SQL sys-

tems.

Schema-linking Fine-tuning

Schema linking involves identifying the pertinent columns and tables in a

database in response to natural language queries. It has been demonstrated to

enhance cross-domain generalizability and facilitate the creation of intricate

queries [35]. In prior studies, schema linking has primarily been accomplished

through in-context learning methods or implicitly during the fine-tuning pro-

cess for SQL generation [4], [23], [50], [71]. In this work, we treat schema

linking as a distinct task and explicitly fine-tune LLMs to identify relevant

tables and columns when presented with a natural language query. Given the

training dataset T = {(qi, si, Di)}, we extract all of the columns and tables

used in the SQL queries and create a new dataset of T = {(qi, Ti, Ci, Di)}

where Ti and Ci represent lists of tables and columns used in the SQL query

si. The primary objective during supervised fine-tuning for schema linking is

to minimize the empirical loss, as defined by the following equation:
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min
σ,M∗

1

|T |

|T |∑

i=1

L(M∗(σs(qi, Ti, Ci, Di)), (3.2)

Here, L represents the loss related to the model’s next token prediction,

comparing the predicted column and table names with the actual ground truth

names.

SQL Generation Fine-tuning

After identifying the appropriate tables for SQL generation, the next step

is to utilize a model that constructs the SQL query based on the question

and the schema of the correct tables. Since we have already identified the

potentially correct tables using the schema-linking module, there is no need

to include all tables in the input for the SQL generation model. In contrast

to previous approaches for fine-tuning LLMs, we extract the relevant tables

from the training dataset T = {(qi, si, Di)} corresponding to the ground truth

SQL queries. We then fine-tune the LLM while minimizing the following loss

function:

min
σ,M∗

1

|T |

|T |∑

i=1

L(M∗(σg(qi, Ti, si)), (3.3)

The loss function is same as the loss function defined in Section 3.2.1. This

decomposition of the text-to-SQL training process allows LLMs to be trained

with a singular objective. By segregating the schema-linking and SQL query

generation tasks, we improve the training process, enabling more focused and

effective fine-tuning.

3.3 Experiments

3.3.1 Models

Our methodology’s performance was assessed using two recent LLMs from

distinct architectures. These models are Mistral 7B [29] and DeepSeek 7B

[13]. The DeepSeek model, sharing similar architecture with the LLama model

family [62], has been pretrained on an extensive dataset comprising 2 trillion
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tokens and supports a sequence length of 4096. Mistral 7B, although not

specifically pretrained for code generation, surpasses many counterparts in its

scale category [29].

3.3.2 Hyperparameters

The two LLMs were trained on Nvidia Tesla A100 GPUs, employing a batch

sizes of 64 and 32 with a learning rate of 1*e-5 and 5*e-5 respectively. To

enhance the training efficiency, we incorporated Flash Attention techniques as

detailed in [10], [11].

3.3.3 Datasets

We conducted our evaluation using cross-domain, challenging text-to-SQL

datasets. Spider, was introduced by [77] and includes 200 database schemas.

Of these, 160 schemas are allocated for training and development, while the

remaining 40 are set aside for testing purposes. Our second dataset was Spider-

Syn [17], which modifies the original Spider dataset by replacing schema-

related words with synonyms and removing explicit mentions that link natural

language queries (NLQs) to the database schema.

3.3.4 Metrics

In our evaluation of text-to-SQL models, we utilized exact set match accuracy

and execution accuracy. The former involves comparing the components of

SQL queries, such as select, where, having, group by, and order by clauses,

focusing on the matching of columns and predicates without considering the

order. The latter determines equivalence between a model-generated query

and a reference query if they produce identical results across various database

instances.
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3.3.5 Results

Spider test set

As depicted in Table 3.2, our method employing DeepSeek 7B, when tested on

the Spider test dataset, achieves results comparable to state-of-the-art open-

source methods in terms of execution accuracy and exact set match accuracy.

Model EX EM
DAIL-SQL + GPT-4 [21] 86.6 -
DIN-SQL + GPT-4 [50] 85.3 60
DTS-SQL + DeepSeek 7B (Ours) 84.4 73.7
C3 + ChatGPT + Zero-Shot [16] 82.3 -
RESDSQL-3B + NatSQL [38] 79.9 72
DIN-SQL + CodeX [50] 78.2 57
DTS-SQL + Mistral (Ours) 77.1 69.3
Graphix-3B + PICARD [39] - 74

Table 3.2: The comparison of different methods on the test set of Spider.

Spider dev set

In Table 3.3, we showcase the results of our two-stage fine-tuning method on

the dev set of Spider. The performance is compared against two distinct sce-

narios: firstly, a one-stage scenario where the model is fine-tuned on all tables

without employing our two-stage approach, and secondly, a perfect schema

linking scenario where we provide the ground truth tables to our fine-tuned

SQL generators. This latter scenario is denoted as the ’Upper Bound’ in the

table. Our two-stage model’s performance is measured by initially using our

fine-tuned schema linker model to identify potentially relevant tables, which

are then provided as context to the SQL generator model.

In Table 3.4, we offer a detailed comparison between our method and vari-

ous other baseline approaches. For the baselines, we selected diverse methods

from different families of approaches that are using LLMs and are available

as open source. Our two-stage decomposed approach with DeepSeek 7B at-

tained state-of-the-art performance on the Spider development set, surpass-

ing all previous methods that utilized prompting techniques and fine-tuning.
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Model Tuning EX EM
Mistral 7B FT Tuning 71.9 70.9
Mistral 7B DTS-SQL (Ours) 78.6 73.3
Mistral 7B Upper bound 86.6 80.7
DeepSeek 7B FT Tuning 82.1 69.0
DeepSeek 7B DTS-SQL (Ours) 85.5 79.1
DeepSeek 7B Upper bound 90.3 84.2

Table 3.3: Performance of the LLMs with different tuning methods on the Spi-
der dev set. FT stands for Full Table Finetuning; Upper bound performance
is the performance achievable with perfect schema linking.

Additionally, the results of our two-stage method on Spider-SYN dataset is

provided in the Table 3.5 section.

Model EX EM
Instruction tuning methods

DTS-SQL + Mistral 7B (Ours) 78.6 73.3
DTS-SQL + DeepSeek 7B (Ours) 85.5 79.1
Llama2 7B [21] 66.7 63.9
Llama2 13B [21] 67.0 62.7

Prompting methods
DIN-SQL + GPT4 [50] 74.2 60.1
DIN-SQL + CodeX [50] 69.9 57.2
DAIL-SQL + GPT4 [21] 84.4 74.4
C3 + GPT-3.5 [16] 81.8 -

Table 3.4: Performance of different methods with LLMs on the dev set of
Spider.

Schema-linking Performance

As discussed in Section 3.2, our approach employs two LLMs: one for schema

linking and another for SQL query generation. The schema-linking model plays

a pivotal role in our pipeline, as inaccuracies in table detection could hinder the

SQL generator’s ability to formulate the correct SQL queries. We fine-tuned

two models, based on the Deepseek and Mistral models, for schema linking.

Evaluation metrics, including exact set match, precision, and recall, were used

to assess their performance. Detailed information about these models on two

distinct datasets can be found in Table 3.6.
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Model Tuning EX EM
Mistral 7B FT Tuning 67.0 63.9
Mistral 7B DTS-SQL (Ours) 71.1 64.6
Mistral 7B Upper bound 81.9 74.5
DeepSeek 7B FT Tuning 70.4 56.6
DeepSeek 7B DTS-SQL (Ours) 76.2 68.9
DeepSeek 7B Upper bound 85.5 78.1

Table 3.5: Performance of the LLMs with different tuning methods on the
Spider-SYN dev set. FT stands for Full Table Finetuning; Upper bound per-
formance is the performance achievable with perfect schema linking.

Model Dataset EX PR RE
DeepSeek Spider 93.1 98.4 97.7
Mistral Spider 91.1 97.5 97.8
DeepSeek Spider-SYN 87.6 94.6 94.7
Mistral Spider-SYN 85.3 91.2 90.5

Table 3.6: Performance of the schema-linker model on Spider and Spider-SYN
dev sets. PR stands for Precision, RE is Recall, and EX is Exact Set Match
Accuracy.

3.4 Discussion

While our two-step approach has achieved state-of-the-art results on the de-

velopment set of Spider and demonstrated comparable performance to larger

models like GPT-4 on the test set, there is still significant room for improve-

ment, particularly for the schema-linking models. Currently, our schema-

linking models achieve roughly 90% exact set match accuracy. However, as

noted in Table 3.3, the substantial gap between the upper bound performance

of the SQL generator and that of DTS-SQL calls for further research into the

schema-linking.
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Chapter 4

Evaluating Models and
Benchmarks

In our experiments with various text-to-SQL models, we observed instances

where, despite achieving an execution accuracy of zero, the generated SQL

queries accurately addressed the posed questions. This chapter aims to criti-

cally assess and analyze text-to-SQL benchmarks to uncover their limitations.

4.1 Introduction

Significant progress has been made in translating natural language text to

SQL statements over the past few years. The execution accuracy on the hold-

out test of Spider [77]–a large-scale cross-domain text-to-SQL benchmark– has

improved from 53.5 in May, 2020 [85] to 85.3 in March, 2023 [50]. The ex-

act set match accuracy, without considering database cell values, on the same

benchmark and over the same period has improved from 65.6 [66] to 74.0 [39].

Measuring such progress is hinged on reliable benchmarks and evaluation met-

rics.

Two standard metrics for evaluating the performance in this domain have

been exact set match accuracy and execution accuracy. The former measures

if a model-generated SQL query lexically matches a reference SQL query,

whereas the latter measures if a model-generated SQL query produces the

same output as a reference query (§ 4.4).

Consider the example in Figure 4.1, which consists of a model-generated
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Figure 4.1: An example question with two correct SQL queries, each cor-
responding to a different interpretation. There is an ambiguity in schema
mapping, with two different database columns describing the name.

query (shown on the left) and a reference query (shown on the right). Both

SQL queries return the id and name of makers that have more than 3 mod-

els. However, the model-generated query returns the column FullName, which

gives the full name of a maker (e.g., “Ford Motor Company”), whereas the ref-

erence query given in the benchmark returns the column Maker, which gives

the short common name of a maker (e.g., “Ford”). The model-generated query

fails an exact set match since the column names in the select clause are dif-

ferent. The query outputs are also different and the model-generated query

fails the execution accuracy as well. The natural language utterance is not

specific about the type of name to be returned, and a human evaluator tags

both queries correct.

As the models improve, these types of failures make up most of the errors,

and the performance metrics become less relevant, as shown in our evaluation.

In particular, we re-evaluated all development set queries of Spider on which

two top-performing models, one using a fine-tuned model [55] and another

using a large language model [50], failed. We found out that 25% of the queries

generated by one model and 87% of the queries generated by the other model
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were indeed correct but were wrongly evaluated by the benchmark. For the

same set of queries, our re-evaluation of the ground truth queries found 33%

of the SQL queries incorrect, which was more than the number of incorrect

queries generated by one of the models. This evaluation places one of the

models above the ground truth queries in this re-evaluation.

We further re-evaluated two well-known benchmarks, Spider [77] and Spider-

DK [19], and a newly released benchmark, BIRD [41], and found similar prob-

lems in all three benchmarks that affect the evaluation. Our evaluation reveals

that 18% of the queries in the train sets and 20%-23% of the queries in the

dev sets of these benchmarks are subject to ties in the dataset and which

one of the tied rows are returned. This means a model-generated query will

be deemed incorrect if it does not return the same row, among tied rows, as

the ground truth query. This can severely impact the evaluation, especially

when there is a tight race among models. Considering these observations, it

is crucial to emphasize the significance of additional independent evaluations

when utilizing these benchmarks. To enhance the evaluation process further, a

potential solution is to incorporate multiple SQL queries as the ground truth,

each representing a different interpretation that may be valid.

Our objective in this paper is to provide a comprehensive evaluation of ex-

isting Text-to-SQL benchmarks, underscoring the inherent issues they possess.

We refrain from introducing a new dataset due to several considerations. First,

addressing the identified issues by updating these benchmarks requires consid-

erable human effort. Additionally, benchmarks in the Text-to-SQL domain,

like Spider and BIRD, have holdout test sets used for official leaderboards and

comparisons of text-to-SQL methodologies. We only have access to the devel-

opment and training sets of these benchmarks, which limits our capability to

alter the test sets. As a result, making changes only to the development and

training sets would not completely address the benchmark’s inherent problems,

given that final performance is gauged using the problematic test sets.
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4.2 Related Work

Limited research has been dedicated to assessing the reliability and effective-

ness of Text-to-SQL benchmarks. The authors of SQL-PaLM [59] note in their

qualitative analysis of their model that some queries, labelled as incorrect by

execution accuracy, were considered correct by human annotators.

Similarly, [35] conduct an analysis highlighting the discrepancy between

automatic evaluations and human annotations. They emphasize that certain

queries produced by the models were labeled as incorrect SQL queries but

human annotators labelled them as correct queries. Generally, a query that is

equivalent (but not identical) to ground truth may be mistakenly classified as

incorrect by automated evaluation metrics. Another study by [82] identifies

limitations within the Spider benchmark, such as issues with ties and certain

syntactic problems. Their analysis is primarily focused on a subset of Spider,

without quantifying the extent or impact of these limitations or conducting

an assessment of other benchmarks.

4.3 Text-to-SQL Benchmarks

Benchmarks have played a crucial role in advancing the field and providing

a platform for evaluation. WikiSQL [86] consists of over 24,000 tables from

Wikipedia with SQL queries generated based on some predefined rules and

templates. The queries in this dataset are considered easy since they are

all single-table queries. Spider, introduced by [77], consists of 200 database

schemas of which 160 schemas are published as train and dev sets and 40

schemas are kept hidden for testing. The queries are written on those schemas

by Computer Science students without using templates. This is considered a

challenging dataset. Some other benchmarks are developed based on Spider,

including Spider-Syn [18], which replaces schema-related words with synonyms

and eliminates explicit mentions between NLQ and schema, and Spider-DK

[19], which introduces rarely observed domain knowledge into the Spider devel-

opment set. Other benchmarks include FIBEN [56], created for the financial
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domain and BIRD [41], which comprises 12,751 queries over 95 databases

spanning 37 professional domains.

Our study in this paper focuses on cross-domain large-scale benchmark Spi-

der, its variants Spider-DK and Spider-SYN, and a more recent cross-domain

large-scale benchmark BIRD. The selection of these benchmarks stems from

their resemblance to real-world datasets, which is a crucial factor in conducting

comprehensive research and analysis. One notable advantage of these bench-

marks is the availability of a large training set, which plays a pivotal role

in training and fine-tuning large-scale models. The inclusion of a substantial

amount of training data enables the development of more robust and pow-

erful models that can better handle the complexities and nuances present in

real-world databases.

4.4 Evaluation Metrics

The performance evaluation of text-to-SQL systems involves comparing them

to a reference system, typically a gold standard set of known correct SQL

queries. Generating a reference can be challenging due to multiple interpre-

tations of natural language questions, while SQL queries are based on logic

and tend to cover only one interpretation. Even if an interpretation is fixed,

detecting if a model-generated query is equivalent to a reference query is chal-

lenging, due to the halting problem which is undecidable [12]. Nonetheless,

to assess progress, proxy measures of performance have been developed in

the literature. As two such metrics, we review exact set match accuracy and

execution accuracy in this paper.

Under exact set match accuracy, SQL queries are evaluated by matching

the query clauses and components independently, such as the select, where,

having, group by, and order by clauses. The matching is based on compar-

ing columns and predicates, disregarding the ordering of columns and predi-

cates. An exact matching of literals can be challenging since predicates such as

nationality=‘‘Canada’’ and nationality=‘‘Canadian’’ will not match.

However, accurately generating those literals without accessing database con-
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tent may not be possible. Under exact set matching without values, which is

used in Spider [77], a matching of literals is not required.

Two equivalent SQL queries can have different expressions and may not

match under an exact set match. An alternative metric that can reduce the

number of false negatives is the execution accuracy. Under execution accuracy,

the equivalence between a model-generated query and a reference query is

established if they both produce the same results on all possible databases

instances [76]. While testing all instances is impractical, running queries on

a subset of instances can help identify candidates that are not equivalent to

the reference query. Although execution accuracy can detect queries that are

equivalent but not identical, it may mistakenly identify queries as equivalent

if they produce the same result on tested instances. Therefore, an effective

execution-based evaluation requires finding instances that cover various edge

cases and can detect queries that are not equivalent to the reference. Test

suite accuracy [84], which is simply referred to as execution accuracy in Spider

benchmark and in our work, aims to minimize false positives by evaluating

queries on a carefully selected collection of database instances, known as a test

suite. Nevertheless, an execution-based accuracy cannot capture all correct

SQL queries, highlighting the limitations and the continued importance of

human evaluation for reliable assessment.

4.5 Execution Accuracy Failures

A model-generated query can be correct but still fail the execution accuracy.

We classify these failures into three categories: (1) failures due to ties in

output, (2) ambiguity in schema matching, (3) wrong assumptions made about

database content.

4.5.1 Failures Due to Ties in Output

SQL queries can lead to ties and a subset of the tied rows may be returned.

The selection of tied rows can vary between queries and this can affect the

execution accuracy. We identify a few sources for such ties, as discussed next,
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Benchmark LIMIT 1 LIMIT N GROUP BY ORDER BY Total

Dev set

BIRD 255(16%) 42(2%) 20(1%) 4(0.2%) 321(20.86%)
Spider 171(16%) 10(0.9%) 51(4.5%) 2(0.2%) 234(22.63%)
Spider-DK 94(17%) 2(0.3%) 30(4.5%) 2(0.3%) 128(23.85%)

Train set

BIRD 1558(16%) 211 (2%) 23 (0.2%) 4(0.04%) 1796 (18.22%)
Spider 989(14%) 106(1%) 254(3%) 10(0.1%) 1359(18.1%)

Table 4.1: The number of SQL queries having a specific type of limitation
together with the percentage on both development set and train set. The
Spider-DK dataset does not have any training set.

and study their impact on benchmark evaluations in Section 4.6. Table 4.1

provides a detailed breakdown of the number of queries that can potentially

yield tied rows in both train and development set of Spider, Spider-DK, and

BIRD benchmarks.

Top with Ties

Sometimes the query asks for top rows that satisfy some conditions (e.g., the

student with the highest GPA, or the youngest student). When there is a

tie for the top position, and the query in natural language is not specific on

how the ties should be handled, the corresponding SQL query may return all

ties or only one. This becomes a problem in evaluation if a model-generated

query and the reference query treat the ties differently. Figure 4.2 provides

a concrete example from the Spider dataset, illustrating this issue, where the

reference SQL query in the benchmark fails to account for ties and returns

only one of them using the LIMIT keyword.

LIMIT N

The problems associated with using the LIMIT n clause in SQL queries is

not limited to the top position, as discussed above. The use of this clause is

problematic for evaluation in general. Firstly, without an explicit ordering,

the result of a SQL query is expected to be a set. Two equivalent (but not

identical) queries can return the same set of results, each listed in different

orders, but selecting the first n rows from one ordering will not necessarily

match the same selection from a different ordering. Secondly, with query
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Figure 4.2: An example question that can have two correct SQL queries, each
corresponding to a different interpretation. The SQL query on the left returns
all tied values, while the SQL query on the right returns only one of the tied
values.

results sorted, there can be a tie on row n with multiple rows having the same

values. The ordering among tied rows can vary between two queries, and so

is the first n rows that are returned. All benchmarks studied in this paper

(Spider, Spider-DK, Spider-SYN, BIRD) use the limit keyword and suffer from

the aforementioned problems associated with ties.

GROUP BY

Many text-to-SQL benchmarks encounter a different type of issue associated

with ties, particularly arising due to incorrect usage of non-aggregated columns

in both the SELECT clause and the GROUP BY clause. Within the bench-

marks, these ties manifest in two scenarios: 1) a column appears in the SE-

LECT clause without being inside an aggregation function and without being

included in the GROUP BY clause; 2) the SELECT clause contains a mix

of aggregated and non-aggregated columns without utilizing a GROUP BY

clause. In both cases, multiple records can be associated with the same group-

ing column or aggregation value, whereas each group can only return one

record. Some database systems including Oracle and DB2 prevent these cases
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Figure 4.3: An example question that can have two correct SQL queries, each
corresponding to a different interpretation. The SQL query on the left returns
all languages of each country, each pair of country and language in a separate
row, whereas the SQL query on the right returns one of tied values for the
column LANGUAGE.

by treating them as syntax errors. However, other database systems such as

SQLite and MySQL take a more lazy approach (sometimes for efficiency rea-

sons) and allow these cases to happen. Many text-to-SQL benchmarks follow

SQLite syntax and suffer from this issue. The affected queries in our bench-

marks were identified after migrating from SQLite to PostgreSQL, as detailed

in Section 4.6.4, and checking for queries that failed during PostgreSQL exe-

cution. Figure 4.3, illustrates one example of such a problem from the Spider

dataset.

ORDER BY

Another subtle ambiguity with tied values arises in queries where the SE-

LECT clause incorporates the ”distinct” keyword, paired with an ORDER BY

clause referencing a column absent in the SELECT clause. Consider the ex-

emplary query from Spider train set: SELECT DISTINCT district name FROM

district ORDER BY city area DESC. The ordering of the output, as well as

the result of a comparison with a reference query, becomes uncertain if a single
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’district name’ value maps to multiple ’city area’ values. Similar to GROUP

BY, the affected queries in the benchmarks were identified through a SQLite

to PostgreSQL migration(§ 4.6.4).

4.5.2 Ambiguity in Schema Matching

Schema matching refers to the task of establishing the correspondence be-

tween a natural language question and the tables, columns, and cell values in

the database ([4], [41], [50], [66]. Ambiguities arise when there are multiple

columns in the database that can represent the same semantic meaning, and

the information needs of a query may be satisfied using any of those columns.

As a result, there exist multiple SQL queries that can produce the correct

answer, yet most benchmarks only provide one query among the many pos-

sible correct answers. Figure 4.1 illustrates an example question that can be

satisfied by two different SQL queries, both of which are valid responses to the

question at hand.

4.5.3 Wrong Assumptions on DB Content

Lastly, one type of limitation in text-to-SQL benchmarks stems from incor-

rect assumptions regarding cell values. It is common to make assumptions

about database content and constraints when writing SQL queries, but those

assumptions may not be supported by the database schema or content. This

issue arises when the database content is created under assumptions that do

not align with those in queries, leading to potential failures in the evaluation

process. Text-to-SQL models often lack access to full database content due to

limitations such as the context window problem and the inability to pass all cell

values to the models for reasons such as privacy and cost. These models typi-

cally rely on the provided database schema and a selected sample of database

rows to represent potential values [39], [43], [44], [50], [53], [59]. Consequently,

the assumptions made by these models may not align with the actual ground

truth, resulting in SQL queries that are correct under the assumption made

but do not match the reference query in the benchmark.
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Figure 4.4: An example of a question and SQL pair with a wrong assumption
on the cell values. The SQL query on the left does not make the same as-
sumption.

One observed case is when certain conditions (e.g., PetType=‘dog’) are

omitted from SQL queries due to the erroneous assumption that the condition

holds for all rows in the database. Figure 4.4 exemplifies this issue using an

example from the Spider dataset, where both queries yield the same answer

on a specific database instance. However, changing the database values could

result in failure, especially when evaluating performance using test-suite ac-

curacy, which involves querying different database instances. Another case

observed in the benchmarks is when the ground truth SQL queries assume a

specific column has unique values, but in reality, that column does not possess

that unique constraint. Figure 4.5 depicts an example of this problem from

the Spider dataset.

4.6 Experiments

To understand the extent at which the aforementioned problems affect the

benchmarks, our evaluation and the ranking of the models, we conducted

three types of evaluations on three benchmarks: Spider, Spider-DK, BIRD.

Our findings here apply to the Spider-SYN dataset as well, which employs the
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Figure 4.5: An example of a question and SQL pair with a uniqueness assump-
tion on the “name” column, which is not supported by the schema. The SQL
query on the left does not make the same assumption.

same SQL queries as in the Spider dataset. For the same reason, we did not

conduct a separate analysis of that benchmark.

4.6.1 Evaluation Through Query Rewriting

In this experiment, our focus is on ties and how a tie breaking strategy af-

fects the benchmarks and our evaluation. This is done through query rewrit-

ing. Automating query rewriting faces inherent challenges, particularly when

dealing with failures stemming from schema ambiguity, erroneous assumptions

about the database content, and the ambiguity of natural language utterances.

These challenges arise because there is no specific structure to address the

failures systematically. Successful query rewriting in these cases necessitates

a deeper understanding of table and column semantics to identify ambiguities

and erroneous assumptions. In cases of ambiguity, human expertise is essen-

tial to disambiguate the context, as these situations often lack clear guidelines.

Detecting erroneous assumptions often involves introducing new data to the

database and meticulously reviewing and correcting failed queries on a case-

by-case basis. Therefore, our efforts have been channeled towards rewriting
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queries concerning tied values, which adhere to a specific syntax structure, and

the problems associated with the ambiguity in schema matching and wrong

assumptions on database content are studied in the next section.

Many benchmark queries use “LIMIT 1” to find top rows that satisfy some

conditions. If there are ties on top, one arbitrary row among ties is returned.

An alternative is to return all ties. We rewrote all queries that used “LIMIT 1”

to return all ties. This was done by introducing min() and max() aggregation

functions within nested queries to accurately identify extreme values. An

example of such rewriting is shown in Figure 4.1. Breaking ties for queries

that used “LIMIT n” for n > 1 was not straightforward, and those queries

were left unchanged.

For resolving ties introduced by an incorrect usage of GROUP BY in

benchmark queries, we included all non-aggregated columns from the SELECT

clause in the GROUP BY clause. For example, if the SELECT clauses included

id and name, but the GROUP BY clause only included name, we added id to

the GROUP BY clause. This change will not affect queries where there is a

one-to-one mapping between id and name, but it will resolve the ambiguity

when such mapping does not hold.

With these two changes, 16% to 20% of the reference queries in our bench-

marks were affected. Under a perfect evaluation scheme, the accuracy should

not be affected with these changes that simply resolve the uncertainty. Table

4.2 displays both the execution accuracy and the exact set match accuracy for

the reference queries from the BIRD, Spider, and Spider-DK benchmarks after

our modifications. It’s important to highlight that the performance metrics

provided in this table encompass the entire development set of these bench-

marks, combining both modified and unaltered queries. For clarity, in the

Spider dataset, out of 1034 queries, 206 were modified. The performance as-

sessment took into account a mixed set of predicted queries: 206 that were

adjusted and 828 that remained as originally presented. This culminated in

an execution accuracy of 92.3 percent.

It can be noted that the execution accuracy is not as adversely affected as

the exact set match accuracy. We hypothesize that this could be attributed
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Benchmark Affected Queries Exec Acc Set Match Acc
Spider 206 (19%) 92.3 81.6

Spider-DK 112 (20%) 95 83.9
BIRD 252 (16%) 96.87 -

Table 4.2: Performance of the revised SQL queries on the development set of
the benchmarks.

to the absence of ties in the test data used for these benchmarks. An evi-

dence of this is the following two queries, (Q1) SELECT name, capacity FROM

stadium WHERE average = (SELECT max(average) FROM stadium), and (Q2)

SELECT name, capacity FROM stadium ORDER BY average DESC LIMIT 1,

labelled as a correct match by the test scripts of Spider.

4.6.2 Human Evaluation

To gain a deeper understanding of the limitations within the benchmarks, we

conducted an experiment focused on the widely-used text-to-SQL benchmark,

the Spider dataset. Specifically, we evaluated two top-performing methods

from the Spider leaderboard: DIN-SQL [50] and T5-large + PICARD [55].

This experiment involved running these methods on the development set of

Spider, which comprised 1034 question-query pairs. From the results obtained,

we extracted the questions for which both methods failed to produce a cor-

rect answer, based on the execution accuracy, resulting in 102 pairs. We

then presented these questions, along with the SQL queries generated by the

methods as well as the ground truth SQL queries (treating them the same

as model-generated queries), to two annotators 1 for labelling. The annota-

tors had access to the database schemas and were tasked with identifying the

queries they deemed correct for each question, without knowing which model

generated which query or if the query was from the ground truth queries. An-

notators could also create databases and validate queries, ensuring a thorough

evaluation.

Following our initial labelling process, we wanted to minimize the potential

impact of human errors in our evaluation. For this, we identified queries with

1The human annotators are the authors of this paper.
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Method Acc Incon
DIN-SQL [50] 81.6 4
T5-large + Picard [55] 25.5 4
Ground Truth 67.3 4

Table 4.3: Accuracy of the SQL queries generated by two methods and the
ground truth SQL queries based on human evaluation. In four cases, the two
annotators did not agree on a label even after a second round.

inconsistent labels among the annotators and presented them to the annota-

tors. Each annotator was asked to provide an explanation for their assigned

labels. In the final stage of evaluation, each annotator was presented the

inconsistent queries and the explanations provided by the other annotator.

They were then asked if they would revise their labels based on this additional

information.

The results of this experiment are presented in Table 4.3. This table

presents the outcome of human evaluation on a sample of 102 queries that both

DIN-SQL and T5+PICARD methods were deemed incorrect in terms of exe-

cution accuracy. SQL experts conducted this evaluation, with 81.6% of these

queries judged as correct for DIN-SQL, and only 25.5% for T5+PICARD. No-

tably, among the reference queries, only 67.3% were deemed correct. Even after

the second round of annotation, a few queries (more specifically, four question-

query pairs) still exhibit inconsistent labeling by the annotators. The main

challenge with these particular pairs is the inherent ambiguity in the ques-

tions or the subjectivity of interpretations, which leads to a lack of a definitive

answer. Figure 4.6 demonstrates one example of such a question with two

possible SQL query as answers.

An intriguing observation emerged from this experiment: the DIN-SQL

method, powered by GPT-4, produced the highest number of correct answers,

surpassing even the ground truth SQL queries. This finding sheds light on the

limitations of the current benchmarks and raises doubts about the reliability

of current leaderboards and performance metrics.
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Figure 4.6: An example of a question with two possible SQL queries as the
answers. Both of these SQL queries are correct under different interpretations.

4.6.3 Error Analysis of Human Evaluation

We performed an error analysis of the SQL queries that were labelled as in-

correct in our human evaluation to better understand the error types and

causes and to provide insights into areas for improving the ground truth SQL

queries. Additionally, we compared the errors in ground truth queries with

those of fine-tuning and prompting approaches. The identified errors, cate-

gorized into five groups, are briefly discussed next. The distribution of SQL

queries across these groups is depicted in Figure 4.7.

Schema The primary issue responsible for the majority of errors, affecting

both the reference SQL queries and the two methods, is the incorrect usage of

schemas, which arises when the SQL query utilizes incorrect tables or columns

to answer the given question. These errors indicate ambiguities in the database

schema and/or questions, as discussed in Section 4.5. Notably, the reference

set shows the least number of errors, which is closely followed by DIN-SQL.
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Figure 4.7: Distribution of SQL queries across error groups for the two models
being evaluated and the ground truth. M0 refers to SQL queries in the refer-
ence (ground truth) set, M1 refers to the DIN-SQL method, and M2 refers to
T5+PICARD.

Condition The second-largest group of errors observed pertains to the usage

of incorrect conditions within the SQL queries. Unlike the schema group,

where the tables and columns were incorrect, in this group, the correct tables

and columns are used, but the conditions in the WHERE clause are erroneous.

This error primarily manifested in the queries generated by the T5-PICARD

method, but was also present in the reference set. The T5 model’s tendency to

introduce additional columns or omit necessary conditions could be attributed

to its smaller size relative to larger models like GPT-4, limiting its grasp of

intricate SQL syntax.

Nested The source of this problem is using a non-unique column for the

nested SQL query, as also discussed in Section 4.5. Figure 4.5 shows an exam-

ple of such an error in a SQL query. This error was more common in the SQL

queries provided in the reference set as well as those of T5-PICARD.

GROUP BY This category includes queries that incorrectly used GROUP

BY, resulting in ambiguity or uncertainty in the result as discussed in Section

4.5. Notably, the reference set showed the largest number of errors, closely

52



followed by the fine-tuned T5-PICARD. DIN-SQL exhibited the least number

of errors.

LIMIT As highlighted in Section 4.5, one of the error scenarios involves

not properly handling ties when using the LIMIT keyword. The DIN-SQL

method demonstrates a lower incidence of this type of error, attributed to its

prompting nature. Conversely, T5-PICARD exhibits identical performance to

the ground truth in this particular case.

4.6.4 Standard SQL validation

We undertook an extensive review of the development set of Spider, BIRD,

and Spider-DK benchmarks through the lens of standard SQL validation. The

objective was to identify some of the problematic queries discussed in Sec-

tion 4.5 and assess the portability of the benchmarks. As part of this analysis,

we migrated the databases and queries of these three benchmarks from Sqlite

to PostgreSQL. Our decision to use PostgreSQL, a widely recognized RDBMS,

stemmed from its rigorous adherence to SQL standards. Following the migra-

tion, we executed every query from the development set on these PostgreSQL

databases, with a keen focus on identifying queries that failed during Post-

greSQL execution.

Table 4.4 provides a breakdown of queries by error type across all three

benchmarks. Notably, errors such as UndefinedColumn, SyntaxError, and Un-

definedFunction emerge due to the different SQL formats supported by Sqlite

and PostgreSQL. These variances necessitate adjustments to make the queries

compatible with PostgreSQL standards. For instance, the Spider dataset fre-

quently showcases errors stemming from PostgreSQL’s strict typing conven-

tions. While SQLite allows for comparisons of int with text, PostgreSQL does

not. Also, some queries run into problems because of SQLite-exclusive func-

tions, such as strftime and iff, or because PostgreSQL interprets literals in

double quotations as column names.

The two other types of failures, group by and Order by, included queries

that introduced ambiguities to the benchmarks, as discussed in Section 4.5.
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Benchmark SyntaxErr UndFunc UndCol Order By Group By
Spider 4 69 211 2 51

Spider-DK 134 62 80 2 30
BIRD 5 103 1 4 20

Table 4.4: Breakdown of SQL errors observed in Spider, BIRD, and Spider-
DK, following migration to PostgreSQL.

It should be noted that these benchmarks present a range of issues that are

not solely confined to syntax. Challenges related to wrong assumptions on DB

content and ambiguities in schema matching are notably pervasive.

4.7 Discussion

Our analysis (§ 4.6.1) reveals the limitations of major text-to-SQL benchmarks,

highlighting the fact that even with a perfect model, achieving a perfect accu-

racy on these benchmarks is not possible. The accuracies presented in Table

4.2 serve as a lose upper bound for the achievable accuracy by models. It is

lose because our rewritings were unable to address cases that required manual

intervention to reconstruct a correct query. Thus, the upper bound is expected

to be lower considering other issues such as wrong assumptions on the database

content and ambiguity in schema matching.

Our human evaluation (§ 4.6.2) further supports our claim and provides

more insight into the limitations within one of the benchmarks studied. The re-

sults in Table 4.3 demonstrate that prompting methods, such as DIN-SQL, are

less affected by the inherent limitations of the training set in the benchmarks.

However, they are not fully immune because of the few-shot input-output

demonstrations that are taken from the train set. On the other hand, fine-

tuned approaches, such as T5+PICARD, perfectly mirror the distribution of

errors seen in the ground truth queries for types nested, LIMIT, and GROUP

BY. The largest number of wrong queries in schema and condition classes be-

long to our fine-tuned model, due to inability of the model to generate correct

SQL queries.
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Chapter 5

Conclusion and Future Work

5.1 Summary of Contributions

This thesis aims to advance the field of text-to-SQL translation by addressing

the challenges associated with creating more accurate and efficient Natural

Language Interface to Databases (NLIDBs). Through the research presented

in the core chapters, we have made significant contributions toward under-

standing and improving the performance of LLMs in the text-to-SQL domain.

The key contributions of this thesis can be summarized as follows:

1. Decomposed In-context Learning with Self-correction: Prompt-

ing has enabled large language models to achieve impressive performance

on numerous NLP tasks across different domains, without requiring a

large training set. Prior to our research, the effectiveness of prompting

methods utilizing LLMs for the text-to-SQL task was inferior to that

of models fine-tuned for the task. To bridge this gap, we have devised

a decomposition technique to tackle some of the challenges that caused

this disparity. Our extensive experiments on two challenging datasets of

Spider and BIRD show that our method significantly improves the per-

formance of prompting across all query classes, producing comparable or

even superior results to state-of-the-art fine-tuned approaches.

2. Decomposed Text-to-SQL with Small Large Language Models:

Before our research, small open-source models lagged behind large pro-

prietary models in performance on the text-to-SQL task. Our two-stage
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fine-tuning approach breaks down the task into two simpler components,

enabling small open-source models to rival larger ones. Subsequent ef-

forts could focus on enhancing the performance of these stages and ex-

ploring improved methods for transferring the output of one stage to the

next.

3. Evaluating Models and Benchmarks: The reliance on standard

text-to-SQL evaluation metrics, namely exact set match accuracy and

execution accuracy, has become less reliable as the model performance

approaches human-level performance. Our work is the first to systemati-

cally study the limitations of these metrics and benchmarks through both

human evaluation and query rewriting. Our re-evaluation of well-known

benchmarks (Spider, Spider-DK, and BIRD) uncovers common system-

atic issues that affect the evaluation process and performance estimates,

revealing that a significant portion of queries in the train and devel-

opment sets are impacted by these issues. Incorporating multiple SQL

queries as the ground truth and representing different interpretations of

queries offer a promising solution to enhance the evaluation process and

achieve a more comprehensive and accurate assessment of text-to-SQL

models.

The findings of this thesis underscore the importance of task decompo-

sition and fine-tuning strategies in enhancing the performance of LLMs for

the text-to-SQL task. The proposed methodologies demonstrate significant

improvements over existing approaches, thereby contributing to the develop-

ment of more robust and scalable NLIDBs suitable for real-world applications.

5.2 Future Work

Given the complexities posed by ambiguous questions, intricate table schemas,

the vast quantity of tables and columns, and the disorderly nature of database

contents, achieving truly human-like SQL generation remains a considerable

challenge. Even the most advanced LLMs, including GPT-4, fall short of
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human performance when confronted with these hurdles. This underscores

the pressing necessity for more robust and effective strategies to bridge the

gap. In this chapter, we discuss the open problems based on the insights we

gained doing this thesis.

5.2.1 Schema linking

Schema linking remains a formidable challenge in the field of text-to-SQL due

to the inherent complexities of accurately mapping natural language queries to

specific database schema elements. This process is crucial for generating cor-

rect SQL queries, as it involves identifying references to database schema com-

ponents and condition values within the queries. However, ambiguities in natu-

ral language, such as synonyms, vague references, or the presence of homonyms

within the schema, compound the difficulty of schema linking. Moreover, the

diverse structures and naming conventions across different databases exacer-

bate the challenge, as a single term in a query might correspond to multiple

columns or tables, or conversely, similar database elements might be referred

to by different terms in queries. Additionally, the schema linking performance

is directly influenced by the ability of the underlying model to understand

and interpret the query in the context of the given database schema, which

varies significantly based on the model’s training and the specificity of the

data. As text-to-SQL models strive for generalizability across domains, the

need to adapt schema linking strategies to handle a wide range of databases

and query types further highlights the complexity of this task.

5.2.2 Self-reflection

When data scientists craft SQL queries, the process typically involves not

just writing a SQL query but executing it, analyzing its results, and iterat-

ing over this cycle to refine the query until the desired outcome is achieved.

This iterative refinement process, crucial for navigating complex databases and

extracting precise information, presents a significant challenge for enhancing

the performance of LLMs in SQL generation tasks. Currently, even the most

advanced LLMs lack the capability to interact with databases directly or to
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introspect and refine their own output based on the execution results of previ-

ously generated queries. They operate in a largely one-shot manner, generating

SQL queries based on the input prompt without the ability to evaluate the

effectiveness of these queries or their results. To bridge this gap, a promising

avenue for future research involves the integration of agents and tools that

enable LLMs to simulate or enact this iterative process. By equipping LLMs

with the ability to “execute” queries in a controlled environment, analyze

hypothetical outcomes, and adjust their strategies accordingly, we can move

closer to replicating the nuanced and adaptive approach of human data sci-

entists. This could involve developing sophisticated simulation environments

or interfaces that allow LLMs to interact with mock databases, incorporating

feedback loops that inform the model’s ongoing learning and query refinement.

Pursuing these innovations could significantly enhance the applicability and

accuracy of LLM-generated SQL queries, opening new possibilities for auto-

mated data analysis and insight generation.
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and memory-efficient exact attention with IO-awareness,” in Advances
in Neural Information Processing Systems, 2022.

[12] M. Davis, The undecidable: Basic papers on undecidable propositions, un-
solvable problems and computable functions. Courier Corporation, 2004.

59



[13] DeepSeek-AI, “Deepseek llm: Scaling open-source language models with
longtermism,” arXiv preprint arXiv:2401.02954, 2024. [Online]. Avail-
able: https://github.com/deepseek-ai/DeepSeek-LLM.

[14] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[15] L. Dong and M. Lapata, “Language to logical form with neural atten-
tion,” in Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 2016, pp. 33–43.

[16] X. Dong, C. Zhang, Y. Ge, et al., “C3: Zero-shot text-to-sql with chat-
gpt,” arXiv preprint arXiv:2307.07306, 2023.

[17] Y. Gan, X. Chen, Q. Huang, et al., “Towards robustness of text-to-SQL
models against synonym substitution,” in Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Vol-
ume 1: Long Papers), Online: Association for Computational Linguis-
tics, Aug. 2021, pp. 2505–2515. doi: 10.18653/v1/2021.acl-long.195.
[Online]. Available: https://aclanthology.org/2021.acl-long.195.

[18] Y. Gan, X. Chen, Q. Huang, et al., “Towards robustness of text-to-sql
models against synonym substitution,” arXiv preprint arXiv:2106.01065,
2021.

[19] Y. Gan, X. Chen, and M. Purver, “Exploring underexplored limitations
of cross-domain text-to-sql generalization,” arXiv preprint arXiv:2109.05157,
2021.

[20] Y. Gan, X. Chen, J. Xie, et al., “Natural sql: Making sql easier to infer
from natural language specifications,” arXiv preprint arXiv:2109.05153,
2021.

[21] D. Gao, H. Wang, Y. Li, et al., “Text-to-sql empowered by large language
models: A benchmark evaluation,” arXiv preprint arXiv:2308.15363, 2023.

[22] A. Graves and A. Graves, “Long short-term memory,” Supervised se-
quence labelling with recurrent neural networks, pp. 37–45, 2012.

[23] J. Guo, Z. Zhan, Y. Gao, et al., “Towards complex text-to-sql in cross-
domain database with intermediate representation,” arXiv preprint arXiv:1905.08205,
2019.

[24] Z. Guo, M. Yan, J. Qi, et al., “Few-shot table-to-text generation with
prompt planning and knowledge memorization,” arXiv preprint arXiv:2302.04415,
2023.

[25] J. Herzig, P. K. Nowak, T. Müller, F. Piccinno, and J. M. Eisensch-
los, “Tapas: Weakly supervised table parsing via pre-training,” arXiv
preprint arXiv:2004.02349, 2020.

60



[26] J. Huang, Y. Wang, Y. Wang, Y. Dong, and Y. Xiao, “Relation aware
semi-autoregressive semantic parsing for nl2sql,” arXiv preprint arXiv:2108.00804,
2021.

[27] B. Hui, X. Shi, R. Geng, et al., “Improving text-to-sql with schema
dependency learning,” arXiv preprint arXiv:2103.04399, 2021.

[28] W. Hwang, J. Yim, S. Park, and M. Seo, “A comprehensive exploration
on wikisql with table-aware word contextualization,” arXiv preprint arXiv:1902.01069,
2019.

[29] A. Q. Jiang, A. Sablayrolles, A. Mensch, et al., “Mistral 7b,” arXiv
preprint arXiv:2310.06825, 2023.

[30] R. Kate, “Transforming meaning representation grammars to improve
semantic parsing,” in CoNLL 2008: Proceedings of the Twelfth Confer-
ence on Computational Natural Language Learning, 2008, pp. 33–40.

[31] T. Khot, H. Trivedi, M. Finlayson, et al., “Decomposed prompting: A
modular approach for solving complex tasks,” arXiv preprint arXiv:2210.02406,
2022.

[32] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large lan-
guage models are zero-shot reasoners,” arXiv preprint arXiv:2205.11916,
2022.

[33] B. Lake and M. Baroni, “Generalization without systematicity: On the
compositional skills of sequence-to-sequence recurrent networks,” in In-
ternational conference on machine learning, PMLR, 2018, pp. 2873–
2882.

[34] H. Lee, S. Phatale, H. Mansoor, et al., “Rlaif: Scaling reinforcement
learning from human feedback with ai feedback,” arXiv preprint arXiv:2309.00267,
2023.

[35] W. Lei, W. Wang, Z. Ma, et al., “Re-examining the role of schema link-
ing in text-to-sql,” in Proceedings of the 2020 Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP), 2020, pp. 6943–
6954.

[36] F. Li and H. V. Jagadish, “Constructing an interactive natural language
interface for relational databases,” Proceedings of the VLDB Endowment,
vol. 8, no. 1, pp. 73–84, 2014.

[37] H. Li, J. Zhang, C. Li, and H. Chen, “Decoupling the skeleton parsing
and schema linking for text-to-sql,” arXiv preprint arXiv:2302.05965,
2023.

[38] H. Li, J. Zhang, C. Li, and H. Chen, “Resdsql: Decoupling schema link-
ing and skeleton parsing for text-to-sql,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 37, 2023, pp. 13 067–13 075.

61



[39] J. Li, B. Hui, R. Cheng, et al., “Graphix-t5: Mixing pre-trained trans-
formers with graph-aware layers for text-to-sql parsing,” arXiv preprint
arXiv:2301.07507, 2023.

[40] J. Li, B. Hui, G. Qu, et al., Can llm already serve as a database interface?
a big bench for large-scale database grounded text-to-sqls, 2023. arXiv:
2305.03111 [cs.CL].

[41] J. Li, B. Hui, G. Qu, et al., “Can llm already serve as a database inter-
face? a big bench for large-scale database grounded text-to-sqls,” arXiv
preprint arXiv:2305.03111, 2023.

[42] Y. Li, H. Yang, and H. Jagadish, “Nalix: A generic natural language
search environment for xml data,” ACM Transactions on database sys-
tems (TODS), vol. 32, no. 4, 30–es, 2007.

[43] X. V. Lin, R. Socher, and C. Xiong, “Bridging textual and tabular data
for cross-domain text-to-sql semantic parsing,” arXiv preprint arXiv:2012.12627,
2020.

[44] A. Liu, X. Hu, L. Wen, and P. S. Yu, “A comprehensive evaluation of
chatgpt’s zero-shot text-to-sql capability,” arXiv preprint arXiv:2303.13547,
2023.

[45] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-
train, prompt, and predict: A systematic survey of prompting methods
in natural language processing,” ACM Computing Surveys, vol. 55, no. 9,
pp. 1–35, 2023.

[46] S. Mishra, D. Khashabi, C. Baral, and H. Hajishirzi, “Cross-task general-
ization via natural language crowdsourcing instructions,” arXiv preprint
arXiv:2104.08773, 2021.

[47] L. Ouyang, J. Wu, X. Jiang, et al., “Training language models to fol-
low instructions with human feedback,” Advances in Neural Information
Processing Systems, vol. 35, pp. 27 730–27 744, 2022.

[48] A.-M. Popescu, A. Armanasu, O. Etzioni, D. Ko, and A. Yates, “Modern
natural language interfaces to databases: Composing statistical parsing
with semantic tractability,” in COLING 2004: Proceedings of the 20th
International Conference on Computational Linguistics, 2004, pp. 141–
147.

[49] A.-M. Popescu, O. Etzioni, and H. Kautz, “Towards a theory of natural
language interfaces to databases,” in Proceedings of the 8th international
conference on Intelligent user interfaces, 2003, pp. 149–157.

[50] M. Pourreza and D. Rafiei, “Din-sql: Decomposed in-context learning of
text-to-sql with self-correction,” arXiv preprint arXiv:2304.11015, 2023.

[51] J. Qi, J. Tang, Z. He, et al., “Rasat: Integrating relational structures into
pretrained seq2seq model for text-to-sql,” arXiv preprint arXiv:2205.06983,
2022.

62



[52] B. Qin, B. Hui, L. Wang, et al., “A survey on text-to-sql parsing: Con-
cepts, methods, and future directions,” arXiv preprint arXiv:2208.13629,
2022.

[53] N. Rajkumar, R. Li, and D. Bahdanau, “Evaluating the text-to-sql ca-
pabilities of large language models,” arXiv preprint arXiv:2204.00498,
2022.

[54] O. Rubin and J. Berant, “Smbop: Semi-autoregressive bottom-up se-
mantic parsing,” arXiv preprint arXiv:2010.12412, 2020.

[55] T. Scholak, N. Schucher, and D. Bahdanau, “Picard: Parsing incremen-
tally for constrained auto-regressive decoding from language models,”
arXiv preprint arXiv:2109.05093, 2021.

[56] J. Sen, C. Lei, A. Quamar, et al., “Athena++ natural language querying
for complex nested sql queries,” Proceedings of the VLDB Endowment,
vol. 13, no. 12, pp. 2747–2759, 2020.

[57] N. Stiennon, L. Ouyang, J. Wu, et al., “Learning to summarize with
human feedback,” Advances in Neural Information Processing Systems,
vol. 33, pp. 3008–3021, 2020.

[58] N. Stratica, L. Kosseim, and B. C. Desai, “Using semantic templates
for a natural language interface to the cindi virtual library,” Data &
Knowledge Engineering, vol. 55, no. 1, pp. 4–19, 2005.

[59] R. Sun, S. O. Arik, H. Nakhost, et al., “Sql-palm: Improved large lan-
guage modeladaptation for text-to-sql,” arXiv preprint arXiv:2306.00739,
2023.

[60] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learn-
ing with neural networks,” Advances in neural information processing
systems, vol. 27, 2014.

[61] R. Thoppilan, D. De Freitas, J. Hall, et al., “Lamda: Language models
for dialog applications,” arXiv preprint arXiv:2201.08239, 2022.

[62] H. Touvron, L. Martin, K. Stone, et al., “Llama 2: Open foundation and
fine-tuned chat models,” arXiv preprint arXiv:2307.09288, 2023.

[63] L. Tunstall, E. Beeching, N. Lambert, et al., “Zephyr: Direct distillation
of lm alignment,” arXiv preprint arXiv:2310.16944, 2023.

[64] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[65] S. Victor, W. Albert, R. Colin, et al., “Multitask prompted training
enables zero-shot task generalization,” in International Conference on
Learning Representations, 2022.

[66] B. Wang, R. Shin, X. Liu, O. Polozov, and M. Richardson, “Rat-sql:
Relation-aware schema encoding and linking for text-to-sql parsers,”
arXiv preprint arXiv:1911.04942, 2019.

63



[67] J. Wei, M. Bosma, V. Y. Zhao, et al., “Finetuned language models are
zero-shot learners,” arXiv preprint arXiv:2109.01652, 2021.

[68] J. Wei, Y. Tay, R. Bommasani, et al., “Emergent abilities of large lan-
guage models,” arXiv preprint arXiv:2206.07682, 2022.

[69] J. Wei, X. Wang, D. Schuurmans, et al., “Chain of thought prompting
elicits reasoning in large language models,” arXiv preprint arXiv:2201.11903,
2022.

[70] Wikipedia contributors, Sql — Wikipedia, the free encyclopedia, [On-
line; accessed 9-March-2024], 2024. [Online]. Available: https://en.
wikipedia.org/wiki/SQL.

[71] K. Xu, Y. Wang, Y. Wang, Z. Wen, and Y. Dong, “Sead: End-to-
end text-to-sql generation with schema-aware denoising,” arXiv preprint
arXiv:2105.07911, 2021.

[72] X. Xu, C. Liu, and D. Song, “Sqlnet: Generating structured queries
from natural language without reinforcement learning,” arXiv preprint
arXiv:1711.04436, 2017.

[73] K. Xuan, Y. Wang, Y. Wang, Z. Wen, and Y. Dong, “Sead: End-to-
end text-to-sql generation with schema-aware denoising,” arXiv preprint
arXiv:2105.07911, 2021.

[74] P. Yin, G. Neubig, W.-t. Yih, and S. Riedel, “Tabert: Pretraining for
joint understanding of textual and tabular data,” arXiv preprint arXiv:2005.08314,
2020.

[75] T. Yu, C.-S. Wu, X. V. Lin, et al., “Grappa: Grammar-augmented pre-
training for table semantic parsing,” arXiv preprint arXiv:2009.13845,
2020.

[76] T. Yu, M. Yasunaga, K. Yang, et al., “Syntaxsqlnet: Syntax tree net-
works for complex and cross-domaintext-to-sql task,” arXiv preprint
arXiv:1810.05237, 2018.

[77] T. Yu, R. Zhang, K. Yang, et al., “Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic parsing and text-to-sql
task,” arXiv preprint arXiv:1809.08887, 2018.

[78] J. M. Zelle and R. J. Mooney, “Learning to parse database queries using
inductive logic programming,” in Proceedings of the national conference
on artificial intelligence, 1996, pp. 1050–1055.

[79] L. Zeng, S. H. K. Parthasarathi, and D. Hakkani-Tur, “N-best hypothe-
ses reranking for text-to-sql systems,” arXiv preprint arXiv:2210.10668,
2022.

[80] Z. Zhang, A. Zhang, M. Li, and A. Smola, “Automatic chain of thought
prompting in large language models,” arXiv preprint arXiv:2210.03493,
2022.

64



[81] Y. Zhao, J. Jiang, Y. Hu, et al., “Importance of synthesizing high-quality
data for text-to-sql parsing,” arXiv preprint arXiv:2212.08785, 2022.

[82] R. Zhong, C. Snell, D. Klein, and J. Eisner, “Active programming by ex-
ample with a natural language prior,” arXiv preprint arXiv:2205.12422,
2022.

[83] R. Zhong, T. Yu, and D. Klein, “Semantic evaluation for text-to-sql with
distilled test suite,” in The 2020 Conference on Empirical Methods in
Natural Language Processing, Association for Computational Linguistics,
2020.

[84] R. Zhong, T. Yu, and D. Klein, “Semantic evaluation for text-to-sql with
distilled test suites,” arXiv preprint arXiv:2010.02840, 2020.

[85] V. Zhong, M. Lewis, S. I. Wang, and L. Zettlemoyer, “Grounded adapta-
tion for zero-shot executable semantic parsing,” arXiv preprint arXiv:2009.07396,
2020.

[86] V. Zhong, C. Xiong, and R. Socher, “Seq2sql: Generating structured
queries from natural language using reinforcement learning,” CoRR,
vol. abs/1709.00103, 2017.

[87] V. Zhong, C. Xiong, and R. Socher, “Seq2sql: Generating structured
queries from natural language using reinforcement learning,” arXiv preprint
arXiv:1709.00103, 2017.

[88] D. Zhou, N. Schärli, L. Hou, et al., “Least-to-most prompting enables
complex reasoning in large language models,” arXiv preprint arXiv:2205.10625,
2022.

[89] D. M. Ziegler, N. Stiennon, J. Wu, et al., “Fine-tuning language models
from human preferences,” arXiv preprint arXiv:1909.08593, 2019.

65



Appendix A

Prompts

This section presents a comprehensive list of all the prompts utilized in the

four modules of our proposed methodology in Chapter 2 for both the GPT-4

and CodeX models. The prompts used for each module are provided in detail

to allow for easy replication and understanding of the approach. Additionally,

we have also included the prompt we used for the few-shot and zero-shot

implementations of our method.
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A.1 Few-shot prompting

# Create SQL queries for the given questions.

Table advisor, columns = [*,s ID,i ID]

Table classroom, columns = [*,building,room number,capacity]

Table course, columns = [*,course id,title,dept name,credits]

Table department, columns = [*,dept name,building,budget]

Table instructor, columns = [*,ID,name,dept name,salary]

Table prereq, columns = [*,course id,prereq id]

Table section, columns = [*,course id,sec id,semester,year,building,room number,

time slot id]

Table student, columns = [*,ID,name,dept name,tot cred]

Table takes, columns = [*,ID,course id,sec id,semester,year,grade]

Table teaches, columns = [*,ID,course id,sec id,semester,year]

Table time slot, columns = [*,time slot id,day,start hr,start min,end hr,end min]

Q: ”Find the buildings which have rooms with capacity more than 50.”

SQL: SELECT DISTINCT building FROM classroom WHERE capacity ¿ 50

Q: ”Find the room number of the rooms which can sit 50 to 100 students

and their buildings.”

SQL: SELECT building , room number FROM classroom WHERE capacity

BETWEEN 50 AND 100

Q: ”Give the name of the student in the History department with the most

credits.”

SQL: SELECT name FROM student WHERE dept name = ’History’ ORDER

BY tot cred DESC LIMIT 1

Q: ”Find the total budgets of the Marketing or Finance department.”

SQL: SELECT sum(budget) FROM department WHERE dept name = ’Mar-
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keting’ OR dept name = ’Finance’

Q: ”Find the department name of the instructor whose name contains ’Soisa-

lon’.”

SQL: SELECT dept name FROM instructor WHERE name LIKE ’%Soisa-

lon%’

Q: ”What is the name of the department with the most credits?”

SQL: SELECT dept name FROM course GROUP BY dept name ORDER BY

sum(credits) DESC LIMIT 1

Q: ”How many instructors teach a course in the Spring of 2010?”

SQL: SELECT COUNT (DISTINCT ID) FROM teaches WHERE semester

= ’Spring’ AND YEAR = 2010

Q: ”Find the name of the students and their department names sorted by

their total credits in ascending order.”

SQL: SELECT name , dept name FROM student ORDER BY tot cred

Q: ”Find the year which offers the largest number of courses.”

SQL: SELECT YEAR FROM SECTION GROUP BY YEAR ORDER BY

count(*) DESC LIMIT 1

Q: ”What are the names and average salaries for departments with average

salary higher than 42000?”

SQL: SELECT dept name , AVG (salary) FROM instructor GROUP BY

dept name HAVING AVG (salary) ¿ 42000

Q: ”How many rooms in each building have a capacity of over 50?”

SQL: SELECT count(*) , building FROM classroom WHERE capacity ¿ 50

GROUP BY building

68



Q: ”Find the names of the top 3 departments that provide the largest amount

of courses?”

SQL: SELECT dept name FROM course GROUP BY dept name ORDER BY

count(*) DESC LIMIT 3

Q: ”Find the maximum and average capacity among rooms in each build-

ing.”

SQL: SELECT max(capacity) , avg(capacity) , building FROM classroom

GROUP BY building

Q: ”Find the title of the course that is offered by more than one department.”

SQL: SELECT title FROM course GROUP BY title HAVING count(*) ¿ 1

Q: ”Find the total budgets of the Marketing or Finance department.”

SQL: SELECT sum(budget) FROM department WHERE dept name = ’Mar-

keting’ OR dept name = ’Finance’

Q: ”Find the name and building of the department with the highest bud-

get.”

SQL: SELECT dept name , building FROM department ORDER BY budget

DESC LIMIT 1

Q: ”What is the name and building of the departments whose budget is more

than the average budget?”

SQL: SELECT dept name , building FROM department WHERE budget ¿

(SELECT avg(budget) FROM department)

Q: ”Find the total number of students and total number of instructors for

each department.”

SQL: SELECT count(DISTINCT T2.id) , count(DISTINCT T3.id) , T3.dept name

FROM department AS T1 JOIN student AS T2 ON T1.dept name = T2.dept name

JOIN instructor AS T3 ON T1.dept name = T3.dept name GROUP BY
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T3.dept name

Q: ”Find the title of courses that have two prerequisites?”

SQL: SELECT T1.title FROM course AS T1 JOIN prereq AS T2 ON T1.course id

= T2.course id GROUP BY T2.course id HAVING count(*) = 2

Q: ”Find the name of students who took any class in the years of 2009 and

2010.”

SQL: SELECT DISTINCT T1.name FROM student AS T1 JOIN takes AS

T2 ON T1.id = T2.id WHERE T2.YEAR = 2009 OR T2.YEAR = 2010

Q: ”list in alphabetic order all course names and their instructors’ names

in year 2008.”

SQL: SELECT T1.title , T3.name FROM course AS T1 JOIN teaches AS T2

ON T1.course id = T2.course id JOIN instructor AS T3 ON T2.id = T3.id

WHERE T2.YEAR = 2008 ORDER BY T1.title

Q: ”Find the title of courses that have two prerequisites?”

SQL: SELECT T1.title FROM course AS T1 JOIN prereq AS T2 ON T1.course id

= T2.course id GROUP BY T2.course id HAVING count(*) = 2

Q: ”Find the name and building of the department with the highest bud-

get.”

SQL: SELECT dept name , building FROM department ORDER BY budget

DESC LIMIT 1

Q: ”Find the title, credit, and department name of courses that have more

than one prerequisites?”

SQL: SELECT T1.title , T1.credits , T1.dept name FROM course AS T1 JOIN

prereq AS T2 ON T1.course id = T2.course id GROUP BY T2.course id HAV-

ING count(*) ¿ 1
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Q: ”Give the name and building of the departments with greater than av-

erage budget.”

SQL: SELECT dept name , building FROM department WHERE budget ¿

(SELECT avg(budget) FROM department)

Q: ”Find the id of instructors who taught a class in Fall 2009 but not in

Spring 2010.”

SQL: SELECT id FROM teaches WHERE semester = ’Fall’ AND YEAR =

2009 EXCEPT SELECT id FROM teaches WHERE semester = ’Spring’ AND

YEAR = 2010

Q: ”Find the name of the courses that do not have any prerequisite?”

SQL: SELECT title FROM course WHERE course id NOT IN (SELECT

course id FROM prereq)

Q: ”Find the salaries of all distinct instructors that are less than the largest

salary.”

SQL: SELECT DISTINCT salary FROM instructor WHERE salary ¡ (SE-

LECT max(salary) FROM instructor)

Q: ”Find the names of students who have taken any course in the fall semester

of year 2003.”

SQL: SELECT name FROM student WHERE id IN (SELECT id FROM takes

WHERE semester = ’Fall’ AND YEAR = 2003)

Q: ”Find the minimum salary for the departments whose average salary is

above the average payment of all instructors.”

SQL: SELECTmin(salary) , dept name FROM instructor GROUP BY dept name

HAVING avg(salary) ¿ (SELECT avg(salary) FROM instructor)

Q: ”What is the course title of the prerequisite of course Mobile Comput-

ing?”
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SQL: SELECT title FROM course WHERE course id IN (SELECT T1.prereq id

FROM prereq AS T1 JOIN course AS T2 ON T1.course id = T2.course id

WHERE T2.title = ’Mobile Computing’)

Q: ”Give the title and credits for the course that is taught in the classroom

with the greatest capacity.”

SQL: SELECT T3.title , T3.credits FROM classroom AS T1 JOIN SECTION

AS T2 ON T1.building = T2.building AND T1.room number = T2.room number

JOIN course AS T3 ON T2.course id = T3.course id WHERE T1.capacity =

(SELECT max(capacity) FROM classroom)

A.1.1 Schema linking prompt

# Find the schema links for generating SQL queries for each question based

on the database schema and Foreign keys.

Table city, columns = [*,City ID,Official Name,Status,

Area km 2,Population,Census Ranking]

Table competition record, columns = [*,Competition ID,Farm ID,Rank]

Table farm, columns = [*,Farm ID,Year,Total Horses,Working Horses,

Total Cattle,Oxen,Bulls,Cows,Pigs,Sheep and Goats]

Table farm competition, columns = [*,Competition ID,Year,Theme,Host city ID,Hosts]

Foreign keys = [farm competition.Host city ID = city.City ID,competition record.Farm ID

= farm.Farm ID,competition record.Competition ID = farm competition.Competition ID]

Q: ”Show the status of the city that has hosted the greatest number of com-

petitions.”

A: Let’s think step by step. In the question ”Show the status of the city that

has hosted the greatest number of competitions.”, we are asked:

”the status of the city” so we need column = [city.Status]

”greatest number of competitions” so we need column = [farm competition.*]

Based on the columns and tables, we need these Foreign keys = [farm competition.Host city ID
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= city.City ID].

Based on the tables, columns, and Foreign keys, The set of possible cell values

are = []. So the Schema links are:

Schema links: [city.Status,farm competition.Host city ID = city.City ID,farm competition.*]

Table department, columns = [*,Department ID,Name,Creation,Ranking,Budget in Billions

,Num Employees] Table head, columns = [*,head ID,name,born state,age]

Table management, columns = [*,department ID,head ID,temporary acting]

Foreign keys = [management.head ID = head.head ID,management.department ID

= department.Department ID]

Q: ”How many heads of the departments are older than 56 ?”

A: Let’s think step by step. In the question ”How many heads of the depart-

ments are older than 56 ?”, we are asked:

”How many heads of the departments” so we need column = [head.*]

”older” so we need column = [head.age]

Based on the columns and tables, we need these Foreign keys = [].

Based on the tables, columns, and Foreign keys, The set of possible cell values

are = [56]. So the Schema links are:

Schema links: [head.*,head.age,56]

Table department, columns = [*,Department ID,Name,

Creation,Ranking,Budget in Billions,Num Employees]

Table head, columns = [*,head ID,name,born state,age]

Table management, columns = [*,department ID,head ID,temporary acting]

Foreign keys = [management.head ID = head.head ID,management.department ID

= department.Department ID]

Q: ”what are the distinct creation years of the departments managed by a

secretary born in state ’Alabama’?”

A: Let’s think step by step. In the question ”what are the distinct creation

years of the departments managed by a secretary born in state ’Alabama’?”,

we are asked:

”distinct creation years of the departments” so we need column = [depart-
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ment.Creation]

”departments managed by” so we need column = [management.department ID]

”born in” so we need column = [head.born state]

Based on the columns and tables, we need these Foreign keys = [depart-

ment.Department ID = management.department ID,management.head ID =

head.head ID].

Based on the tables, columns, and Foreign keys, The set of possible cell values

are = [’Alabama’]. So the Schema links are:

Schema links: [department.Creation,department.Department ID = manage-

ment.department ID, head.head ID =management.head ID,head.born state,’Alabama’]

Table Addresses, columns = [*,address id,line 1,line 2,city,zip postcode

,state province county,country]

Table Candidate Assessments, columns = [*,candidate id,qualification,assessment date

,asessment outcome code]

Table Candidates, columns = [*,candidate id,candidate details]

Table Courses, columns = [*,course id,course name,course description,other details]

Table People, columns = [*,person id,first name,middle name,

last name,cell mobile number,email address,login name,password]

Table People Addresses, columns = [*,person address id,

person id,address id,date from,date to]

Table Student Course Attendance, columns = [*,student id,course id,date of attendance]

Table Student Course Registrations, columns = [*,student id,course id,registration date]

Table Students, columns = [*,student id,student details]

Foreign keys = [Students.student id = People.person id,People Addresses.address id

= Addresses.address id,People Addresses.person id =

People.person id,Student Course Registrations.course id =

Courses.course id,Student Course Registrations.student id =

Students.student id,Student Course Attendance.student id =

Student Course Registrations.student id,Student Course Attendance.course id

= Student Course Registrations.course id,Candidates.candidate id =

People.person id,Candidate Assessments.candidate id = Candidates.candidate id]
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Q: ”List the id of students who never attends courses?”

A: Let’s think step by step. In the question ”List the id of students who never

attends courses?”, we are asked:

”id of students” so we need column = [Students.student id]

”never attends courses” so we need column = [Student Course Attendance.student id]

Based on the columns and tables, we need these Foreign keys = [Students.student id

= Student Course Attendance.student id].

Based on the tables, columns, and Foreign keys, The set of possible cell values

are = []. So the Schema links are:

Schema links: [Students.student id = Student Course Attendance.student id]

Table advisor, columns = [*,s ID,i ID]

Table classroom, columns = [*,building,room number,capacity]

Table course, columns = [*,course id,title,dept name,credits]

Table department, columns = [*,dept name,building,budget]

Table instructor, columns = [*,ID,name,dept name,salary]

Table prereq, columns = [*,course id,prereq id]

Table section, columns = [*,course id,sec id,semester,year,building,room number,time slot id]

Table student, columns = [*,ID,name,dept name,tot cred]

Table takes, columns = [*,ID,course id,sec id,semester,year,grade]

Table teaches, columns = [*,ID,course id,sec id,semester,year]

Table time slot, columns = [*,time slot id,day,start hr,start min,end hr,end min]

Foreign keys = [course.dept name = department.dept name,instructor.dept name

= department.dept name,section.building = classroom.building

,section.room number = classroom.room number

,section.course id = course.course id,teaches.ID = instructor.ID,teaches.course id

= section.course id,teaches.sec id = section.sec id,

teaches.semester = section.semester,teaches.year = section.year,student.dept name

= department.dept name,

takes.ID = student.ID,takes.course id = section.course id,

takes.sec id = section.sec id,takes.semester = section.semester,

takes.year = section.year,advisor.s ID = student.ID,
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advisor.i ID = instructor.ID,prereq.prereq id = course.course id,prereq.course id

= course.course id]

Q: ”Give the title of the course offered in Chandler during the Fall of 2010.”

A: Let’s think step by step. In the question ”Give the title of the course offered

in Chandler during the Fall of 2010.”, we are asked:

”title of the course” so we need column = [course.title]

”course offered in Chandler” so we need column = [SECTION.building]

”during the Fall” so we need column = [SECTION.semester]

”of 2010” so we need column = [SECTION.year]

Based on the columns and tables, we need these Foreign keys = [course.course id

= SECTION.course id].

Based on the tables, columns, and Foreign keys, The set of possible cell values

are = [Chandler,Fall,2010]. So the Schema links are:

Schema links: [course.title,course.course id = SECTION.course id,SECTION.

building,SECTION.year

,SECTION.semester,Chandler,Fall,2010]

Table advisor, columns = [*,s ID,i ID]

Table classroom, columns = [*,building,room number,capacity]

Table course, columns = [*,course id,title,dept name,credits]

Table department, columns = [*,dept name,building,budget]

Table instructor, columns = [*,ID,name,dept name,salary]

Table prereq, columns = [*,course id,prereq id]

Table section, columns = [*,course id,sec id,semester,year,

building,room number,time slot id]

Table student, columns = [*,ID,name,dept name,tot cred]

Table takes, columns = [*,ID,course id,sec id,semester,year,grade]

Table teaches, columns = [*,ID,course id,sec id,semester,year]

Table time slot, columns = [*,time slot id,day,start hr,start min,end hr,end min]

Foreign keys = [course.dept name = department.dept name,instructor.dept name

= department.dept name,

section.building = classroom.building,section.room number = classroom.room number,
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section.course id = course.course id,teaches.ID = instructor.ID,teaches.course id

= section.course id,

teaches.sec id = section.sec id,teaches.semester = section.semester,teaches.year

= section.year,

student.dept name = department.dept name,takes.ID = student.ID,takes.course id

= section.course id,

takes.sec id = section.sec id,takes.semester = section.semester,

takes.year = section.year,advisor.s ID = student.ID,advisor.i ID = instruc-

tor.ID,

prereq.prereq id = course.course id,prereq.course id = course.course id]

Q: ”Find the id of instructors who taught a class in Fall 2009 but not in Spring

2010.”

A: Let’s think step by step. In the question ”Find the id of instructors who

taught a class in Fall 2009 but not in Spring 2010.”, we are asked:

”id of instructors who taught ” so we need column = [teaches.id]

”taught a class in” so we need column = [teaches.semester,teaches.year]

Based on the columns and tables, we need these Foreign keys = [].

Based on the tables, columns, and Foreign keys, The set of possible cell values

are = [Fall,2009,Spring,2010]. So the Schema links are:

Schema links: [teaches.id,teaches.semester,teaches.year,Fall,2009,Spring,2010]

Table advisor, columns = [*,s ID,i ID]

Table classroom, columns = [*,building,room number,capacity]

Table course, columns = [*,course id,title,dept name,credits]

Table department, columns = [*,dept name,building,budget]

Table instructor, columns = [*,ID,name,dept name,salary]

Table prereq, columns = [*,course id,prereq id]

Table section, columns = [*,course id,sec id,semester,year

,building,room number,time slot id]

Table student, columns = [*,ID,name,dept name,tot cred]

Table takes, columns = [*,ID,course id,sec id,semester,year,grade]

Table teaches, columns = [*,ID,course id,sec id,semester,year]
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Table time slot, columns = [*,time slot id,day,start hr,start min,end hr,end min]

Foreign keys = [course.dept name = department.dept name,instructor.dept name

= department.dept name,

section.building = classroom.building,section.room number = classroom.room number,

section.course id = course.course id,teaches.ID = instructor.ID,teaches.course id

= section.course id,teaches.sec id = section.sec id,

teaches.semester = section.semester,teaches.year = section.year,student.dept name

= department.dept name,takes.ID = student.ID,takes.course id = section.course id,

takes.sec id = section.sec id,takes.semester = section.semester,takes.year =

section.year,advisor.s ID = student.ID,

advisor.i ID = instructor.ID,prereq.prereq id = course.course id,prereq.course id

= course.course id]

Q: ”Find the buildings which have rooms with capacity more than 50.”

A: Let’s think step by step. In the question ”Find the buildings which have

rooms with capacity more than 50.”, we are asked:

”the buildings which have rooms” so we need column = [classroom.capacity]

”rooms with capacity” so we need column = [classroom.building]

Based on the columns and tables, we need these Foreign keys = [].

Based on the tables, columns, and Foreign keys, The set of possible cell values

are = [50]. So the Schema links are:

Schema links: [classroom.building,classroom.capacity,50]

Table city, columns = [*,City ID,Official Name,Status,

Area km 2,Population,Census Ranking]

Table competition record, columns = [*,Competition ID,Farm ID,Rank]

Table farm, columns = [*,Farm ID,Year,Total Horses,

Working Horses,Total Cattle,Oxen,Bulls,Cows,Pigs,Sheep and Goats]

Table farm competition, columns = [*,Competition ID,Year,Theme,Host city ID,Hosts]

Foreign keys = [farm competition.Host city ID = city.City ID,competition record.Farm ID

= farm.Farm ID,competition record.Competition ID = farm competition.Competition ID]

Q: ”Show the status shared by cities with population bigger than 1500 and

smaller than 500.”
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A: Let’s think step by step. In the question ”Show the status shared by cities

with population bigger than 1500 and smaller than 500.”, we are asked:

”the status shared by cities” so we need column = [city.Status]

”cities with population” so we need column = [city.Population]

Based on the columns and tables, we need these Foreign keys = [].

Based on the tables, columns, and Foreign keys, The set of possible cell values

are = [1500,500]. So the Schema links are:

Schema links: [city.Status,city.Population,1500,500]

A.1.2 Classification & decomposition prompt

# For the given question, classify it as EASY, NON-NESTED, or NESTED

based on nested queries and JOIN.

if need nested queries: predict NESTED

elif need JOIN and don’t need nested queries: predict NON-NESTED

elif don’t need JOIN and don’t need nested queries: predict EASY

Table advisor, columns = [*,s ID,i ID]

Table classroom, columns = [*,building,room number,capacity]

Table course, columns = [*,course id,title,dept name,credits]

Table department, columns = [*,dept name,building,budget]

Table instructor, columns = [*,ID,name,dept name,salary]

Table prereq, columns = [*,course id,prereq id]

Table section, columns = [*,course id,sec id,semester,year

,building,room number,time slot id]

Table student, columns = [*,ID,name,dept name,tot cred]

Table takes, columns = [*,ID,course id,sec id,semester,year,grade]

Table teaches, columns = [*,ID,course id,sec id,semester,year]

Table time slot, columns = [*,time slot id,day,start hr,start min,end hr,end min]

Foreign keys = [course.dept name = department.dept name,instructor.dept name

= department.dept name,section.building = classroom.building,section.room number
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= classroom.room number,

section.course id = course.course id,teaches.ID = instructor.ID,teaches.course id

= section.course id,teaches.sec id = section.sec id,teaches.semester = section.semester,

teaches.year = section.year,student.dept name = department.dept name,takes.ID

= student.ID,takes.course id = section.course id,takes.sec id = section.sec id,takes.semester

= section.semester,takes.year = section.year,advisor.s ID = student.ID,

advisor.i ID = instructor.ID,prereq.prereq id = course.course id,prereq.course id

= course.course id]

Q: ”Find the buildings which have rooms with capacity more than 50.”

schema links: [classroom.building,classroom.capacity,50]

A: Let’s think step by step. The SQL query for the question ”Find the build-

ings which have rooms with capacity more than 50.” needs these tables =

[classroom], so we don’t need JOIN.

Plus, it doesn’t require nested queries with (INTERSECT, UNION, EXCEPT,

IN, NOT IN), and we need the answer to the questions = [””].

So, we don’t need JOIN and don’t need nested queries, then the the SQL query

can be classified as ”EASY”.

Label: ”EASY”

Q: ”What are the names of all instructors who advise students in the math

depart sorted by total credits of the student.”

schema links: [advisor.i id = instructor.id,advisor.s id = student.id,instructor.name,

student.dept name,student.tot cred,math]

A: Let’s think step by step. The SQL query for the question ”What are the

names of all instructors who advise students in the math depart sorted by

total credits of the student.” needs these tables = [advisor,instructor,student],

so we need JOIN.

Plus, it doesn’t need nested queries with (INTERSECT, UNION, EXCEPT,

IN, NOT IN), and we need the answer to the questions = [””].

So, we need JOIN and don’t need nested queries, then the the SQL query can

be classified as ”NON-NESTED”.
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Label: ”NON-NESTED”

Q: ”How many courses that do not have prerequisite?”

schema links: [course.*,course.course id = prereq.course id]

A: Let’s think step by step. The SQL query for the question ”How many

courses that do not have prerequisite?” needs these tables = [course,prereq],

so we need JOIN.

Plus, it requires nested queries with (INTERSECT, UNION, EXCEPT, IN,

NOT IN), and we need the answer to the questions = [”Which courses have

prerequisite?”].

So, we need JOIN and need nested queries, then the the SQL query can be

classified as ”NESTED”.

Label: ”NESTED”

Q: ”Find the room number of the rooms which can sit 50 to 100 students

and their buildings.”

schema links: [classroom.building,classroom.room number,classroom.capacity,50,100]

A: Let’s think step by step. The SQL query for the question ”Find the room

number of the rooms which can sit 50 to 100 students and their buildings.”

needs these tables = [classroom], so we don’t need JOIN.

Plus, it doesn’t require nested queries with (INTERSECT, UNION, EXCEPT,

IN, NOT IN), and we need the answer to the questions = [””].

So, we don’t need JOIN and don’t need nested queries, then the the SQL query

can be classified as ”EASY”.

Label: ”EASY”

Q: ”Find the title of course that is provided by both Statistics and Psychology

departments.”

schema links: [course.title,course.dept name,Statistics,Psychology]

A: Let’s think step by step. The SQL query for the question ”Find the title

of course that is provided by both Statistics and Psychology departments.”

needs these tables = [course], so we don’t need JOIN.
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Plus, it requires nested queries with (INTERSECT, UNION, EXCEPT, IN,

NOT IN), and we need the answer to the questions = [”Find the titles of

courses that is provided by Psychology departments”].

So, we don’t need JOIN and need nested queries, then the the SQL query can

be classified as ”NESTED”.

Label: ”NESTED”

Q: ”Find the id of instructors who taught a class in Fall 2009 but not in

Spring 2010.”

schema links: [teaches.id,teaches.semester,teaches.year,Fall,2009,Spring,2010]

A: Let’s think step by step. The SQL query for the question ”Find the id

of instructors who taught a class in Fall 2009 but not in Spring 2010.” needs

these tables = [teaches], so we don’t need JOIN.

Plus, it requires nested queries with (INTERSECT, UNION, EXCEPT, IN,

NOT IN), and we need the answer to the questions = [”Find the id of instruc-

tors who taught a class in Spring 2010”].

So, we don’t need JOIN and need nested queries, then the the SQL query can

be classified as ”NESTED”.

Label: ”NESTED”

Q: ”Find the name of the department that offers the highest total credits?”

schema links: [course.dept name,course.credits]

A: Let’s think step by step. The SQL query for the question ”Find the name

of the department that offers the highest total credits?.” needs these tables =

[course], so we don’t need JOIN.

Plus, it doesn’t require nested queries with (INTERSECT, UNION, EXCEPT,

IN, NOT IN), and we need the answer to the questions = [””].

So, we don’t need JOIN and don’t need nested queries, then the the SQL query

can be classified as ”EASY”.

Label: ”EASY”

Q: ”Find the total number of students and total number of instructors for
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each department.”

schema links: [department.dept name = instructor.dept name,student.id

,student.dept name = department.dept name,instructor.id]

A: Let’s think step by step. The SQL query for the question ”Find the to-

tal number of students and total number of instructors for each department.”

needs these tables = [department,instructor,student], so we need JOIN.

Plus, it doesn’t need nested queries with (INTERSECT, UNION, EXCEPT,

IN, NOT IN), and we need the answer to the questions = [””].

So, we need JOIN and don’t need nested queries, then the the SQL query can

be classified as ”NON-NESTED”.

Label: ”NON-NESTED”

Q: ”Give the name and building of the departments with greater than av-

erage budget.”

schema links: [department.budget,department.dept name,department.building]

A: Let’s think step by step. The SQL query for the question ”Give the name

and building of the departments with greater than average budget.” needs

these tables = [department], so we don’t need JOIN.

Plus, it requires nested queries with (INTERSECT, UNION, EXCEPT, IN,

NOT IN), and we need the answer to the questions = [”What is the average

budget of the departments”].

So, we don’t need JOIN and need nested queries, then the the SQL query can

be classified as ”NESTED”.

Label: ”NESTED”

A.2 SQL generation

A.2.1 Easy Class

# Use the the schema links to generate the SQL queries for each of the ques-

tions.
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Table advisor, columns = [*,s ID,i ID]

Table classroom, columns = [*,building,room number,capacity]

Table course, columns = [*,course id,title,dept name,credits]

Table department, columns = [*,dept name,building,budget]

Table instructor, columns = [*,ID,name,dept name,salary]

Table prereq, columns = [*,course id,prereq id]

Table section, columns = [*,course id,sec id,semester,year,

building,room number,time slot id]

Table student, columns = [*,ID,name,dept name,tot cred]

Table takes, columns = [*,ID,course id,sec id,semester,year,grade]

Table teaches, columns = [*,ID,course id,sec id,semester,year]

Table time slot, columns = [*,time slot id,day,start hr,start min,end hr,end min]

Q: ”Find the buildings which have rooms with capacity more than 50.”

Schema links: [classroom.building,classroom.capacity,50]

SQL: SELECT DISTINCT building FROM classroom WHERE capacity ¿ 50

Q: ”Find the room number of the rooms which can sit 50 to 100 students

and their buildings.”

Schema links: [classroom.building,classroom.room number,classroom.capacity,50,100]

SQL: SELECT building , room number FROM classroom WHERE capacity

BETWEEN 50 AND 100

Q: ”Give the name of the student in the History department with the most

credits.”

Schema links: [student.name,student.dept name,student.tot cred,History]

SQL: SELECT name FROM student WHERE dept name = ’History’ ORDER

BY tot cred DESC LIMIT 1

Q: ”Find the total budgets of the Marketing or Finance department.”

Schema links: [department.budget,department.dept name,Marketing,Finance]

SQL: SELECT sum(budget) FROM department WHERE dept name = ’Mar-
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keting’ OR dept name = ’Finance’

Q: ”Find the department name of the instructor whose name contains ’Soisa-

lon’.”

Schema links: [instructor.dept name,instructor.name,Soisalon]

SQL: SELECT dept name FROM instructor WHERE name LIKE ’%Soisa-

lon%’

Q: ”What is the name of the department with the most credits?”

Schema links: [course.dept name,course.credits]

SQL: SELECT dept name FROM course GROUP BY dept name ORDER BY

sum(credits) DESC LIMIT 1

Q: ”How many instructors teach a course in the Spring of 2010?”

Schema links: [teaches.ID,teaches.semester,teaches.YEAR,Spring,2010]

SQL: SELECT COUNT (DISTINCT ID) FROM teaches WHERE semester

= ’Spring’ AND YEAR = 2010

Q: ”Find the name of the students and their department names sorted by

their total credits in ascending order.”

Schema links: [student.name,student.dept name,student.tot cred]

SQL: SELECT name , dept name FROM student ORDER BY tot cred

Q: ”Find the year which offers the largest number of courses.”

Schema links: [SECTION.YEAR,SECTION.*]

SQL: SELECT YEAR FROM SECTION GROUP BY YEAR ORDER BY

count(*) DESC LIMIT 1

Q: ”What are the names and average salaries for departments with average

salary higher than 42000?”

Schema links: [instructor.dept name,instructor.salary,42000]

SQL: SELECT dept name , AVG (salary) FROM instructor GROUP BY
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dept name HAVING AVG (salary) ¿ 42000

Q: ”How many rooms in each building have a capacity of over 50?”

Schema links: [classroom.*,classroom.building,classroom.capacity,50]

SQL: SELECT count(*) , building FROM classroom WHERE capacity ¿ 50

GROUP BY building

Q: ”Find the names of the top 3 departments that provide the largest amount

of courses?”

Schema links: [course.dept name,course.*]

SQL: SELECT dept name FROM course GROUP BY dept name ORDER BY

count(*) DESC LIMIT 3

Q: ”Find the maximum and average capacity among rooms in each build-

ing.”

Schema links: [classroom.building,classroom.capacity]

SQL: SELECT max(capacity) , avg(capacity) , building FROM classroom

GROUP BY building

Q: ”Find the title of the course that is offered by more than one department.”

Schema links: [course.title]

SQL: SELECT title FROM course GROUP BY title HAVING count(*) ¿ 1

A.2.2 Non-Nested Complex

# Use the the schema links and Intermediate representation to generate the

SQL queries for each of the questions.

Table advisor, columns = [*,s ID,i ID]

Table classroom, columns = [*,building,room number,capacity]

Table course, columns = [*,course id,title,dept name,credits]

Table department, columns = [*,dept name,building,budget]
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Table instructor, columns = [*,ID,name,dept name,salary]

Table prereq, columns = [*,course id,prereq id]

Table section, columns = [*,course id,sec id,semester,year,

building,room number,time slot id]

Table student, columns = [*,ID,name,dept name,tot cred]

Table takes, columns = [*,ID,course id,sec id,semester,year,grade]

Table teaches, columns = [*,ID,course id,sec id,semester,year]

Table time slot, columns = [*,time slot id,day,

start hr,start min,end hr,end min]

Foreign keys = [course.dept name = department.dept name,

instructor.dept name = department.dept name,section.building = classroom.building,

section.room number = classroom.room number,section.course id = course.course id,teaches.ID

= instructor.ID,teaches.course id = section.course id,

teaches.sec id = section.sec id,teaches.semester = section.semester,teaches.year

= section.year,

student.dept name = department.dept name,takes.ID = student.ID,takes.course id

= section.course id,takes.sec id = section.sec id,takes.semester = section.semester,

takes.year = section.year,advisor.s ID = student.ID,advisor.i ID = instruc-

tor.ID,prereq.prereq id = course.course id,

prereq.course id = course.course id]

Q: ”Find the total budgets of the Marketing or Finance department.”

Schema links: [department.budget,department.dept name,Marketing,Finance]

A: Let’s think step by step. For creating the SQL for the given question, we

need to join these tables = [].

First, create an intermediate representation, then use it to construct the SQL

query.

Intermediate representation: select sum(department.budget) from department

where department.dept name = ”Marketing” or department.dept name = ”Fi-

nance”

SQL: SELECT sum(budget) FROM department WHERE dept name = ’Mar-

keting’ OR dept name = ’Finance’
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Q: ”Find the name and building of the department with the highest bud-

get.”

Schema links: [department.budget,department.dept name,department.building]

A: Let’s think step by step. For creating the SQL for the given question, we

need to join these tables = [].

First, create an intermediate representation, then use it to construct the SQL

query.

Intermediate representation: select department.dept name , department.building

from department order by department.budget desc limit 1

SQL: SELECT dept name , building FROM department ORDER BY budget

DESC LIMIT 1

Q: ”Find the total number of students and total number of instructors for

each department.”

Schema links: [department.dept name = student.dept name,student.id,

department.dept name = instructor.dept name,instructor.id]

A: Let’s think step by step. For creating the SQL for the given question, we

need to join these tables = [department,student,instructor].

First, create an intermediate representation, then use it to construct the SQL

query.

Intermediate representation: ”select count( distinct student.ID) , count( dis-

tinct instructor.ID) , department.dept name from department group by in-

structor.dept name

SQL: SELECT count(DISTINCT T2.id) , count(DISTINCT T3.id) , T3.dept name

FROM department AS T1 JOIN student AS T2 ON T1.dept name = T2.dept name

JOIN instructor AS T3 ON T1.dept name = T3.dept name GROUP BY

T3.dept name

Q: ”Find the title of courses that have two prerequisites?”

Schema links: [course.title,course.course id = prereq.course id]

A: Let’s think step by step. For creating the SQL for the given question, we
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need to join these tables = [course,prereq].

First, create an intermediate representation, then use it to construct the SQL

query.

Intermediate representation: select course.title from course where count ( pre-

req.* ) = 2 group by prereq.course id

SQL: SELECT T1.title FROM course AS T1 JOIN prereq AS T2 ON T1.course id

= T2.course id GROUP BY T2.course id HAVING count(*) = 2

Q: ”Find the name of students who took any class in the years of 2009 and

2010.”

Schema links: [student.name,student.id = takes.id,takes.YEAR,2009,2010]

A: Let’s think step by step. For creating the SQL for the given question, we

need to join these tables = [student,takes].

First, create an intermediate representation, then use it to construct the SQL

query.

Intermediate representation: select distinct student.name from student where

takes.year = 2009 or takes.year = 2010

SQL: SELECT DISTINCT T1.name FROM student AS T1 JOIN takes AS

T2 ON T1.id = T2.id WHERE T2.YEAR = 2009 OR T2.YEAR = 2010

Q: ”list in alphabetic order all course names and their instructors’ names

in year 2008.”

Schema links: [course.title,course.course id = teaches.course id,teaches.id =

instructor.id,instructor.name,teaches.year,2008]

A: Let’s think step by step. For creating the SQL for the given question, we

need to join these tables = [course,teaches,instructor].

First, create an intermediate representation, then use it to construct the SQL

query.

Intermediate representation: select course.title , instructor.name from course

where teaches.year = 2008 order by course.title asc

SQL: SELECT T1.title , T3.name FROM course AS T1 JOIN teaches AS T2

ON T1.course id = T2.course id JOIN instructor AS T3 ON T2.id = T3.id
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WHERE T2.YEAR = 2008 ORDER BY T1.title

A.2.3 Nested Complex

# Use the intermediate representation and the schema links to generate the

SQL queries for each of the questions.

Table advisor, columns = [*,s ID,i ID]

Table classroom, columns = [*,building,room number,capacity]

Table course, columns = [*,course id,title,dept name,credits]

Table department, columns = [*,dept name,building,budget]

Table instructor, columns = [*,ID,name,dept name,salary]

Table prereq, columns = [*,course id,prereq id]

Table section, columns = [*,course id,sec id,semester,year,

building,room number,time slot id]

Table student, columns = [*,ID,name,dept name,tot cred]

Table takes, columns = [*,ID,course id,sec id,semester,year,grade]

Table teaches, columns = [*,ID,course id,sec id,semester,year]

Table time slot, columns = [*,time slot id,day,start hr,start min,end hr,end min]

Foreign keys = [course.dept name = department.dept name,

instructor.dept name = department.dept name,

section.building = classroom.building,

section.room number = classroom.room number,

section.course id = course.course id,teaches.ID = instructor.ID,teaches.course id

= section.course id,teaches.sec id = section.sec id,

teaches.semester = section.semester,teaches.year = section.year,student.dept name

= department.dept name,takes.ID = student.ID,takes.course id = section.course id,

takes.sec id = section.sec id,takes.semester = section.semester,takes.year =

section.year,advisor.s ID = student.ID,advisor.i ID = instructor.ID,prereq.prereq id

= course.course id,prereq.course id = course.course id]

Q: ”Find the title of courses that have two prerequisites?”
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Schema links: [course.title,course.course id = prereq.course id]

A: Let’s think step by step. ”Find the title of courses that have two prereq-

uisites?” can be solved by knowing the answer to the following sub-question

”What are the titles for courses with two prerequisites?”.

The SQL query for the sub-question ”What are the titles for courses with two

prerequisites?” is SELECT T1.title FROM course AS T1 JOIN prereq AS T2

ON T1.course id = T2.course id GROUP BY T2.course id HAVING count(*)

= 2

So, the answer to the question ”Find the title of courses that have two prereq-

uisites?” is =

Intermediate representation: select course.title from course where count ( pre-

req.* ) = 2 group by prereq.course id

SQL: SELECT T1.title FROM course AS T1 JOIN prereq AS T2 ON T1.course id

= T2.course id GROUP BY T2.course id HAVING count(*) = 2

Q: ”Find the name and building of the department with the highest bud-

get.”

Schema links: [department.dept name,department.building,department.budget]

A: Let’s think step by step. ”Find the name and building of the department

with the highest budget.” can be solved by knowing the answer to the follow-

ing sub-question ”What is the department name and corresponding building

for the department with the greatest budget?”.

The SQL query for the sub-question ”What is the department name and corre-

sponding building for the department with the greatest budget?” is SELECT

dept name , building FROM department ORDER BY budget DESC LIMIT

1

So, the answer to the question ”Find the name and building of the department

with the highest budget.” is =

Intermediate representation: select department.dept name , department.building

from department order by department.budget desc limit 1

SQL: SELECT dept name , building FROM department ORDER BY budget

DESC LIMIT 1
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Q: ”Find the title, credit, and department name of courses that have more

than one prerequisites?”

Schema links: [course.title,course.credits,course.dept name,course.course id =

prereq.course id]

A: Let’s think step by step. ”Find the title, credit, and department name

of courses that have more than one prerequisites?” can be solved by knowing

the answer to the following sub-question ”What is the title, credit value, and

department name for courses with more than one prerequisite?”.

The SQL query for the sub-question ”What is the title, credit value, and

department name for courses with more than one prerequisite?” is SELECT

T1.title , T1.credits , T1.dept name FROM course AS T1 JOIN prereq AS T2

ON T1.course id = T2.course id GROUP BY T2.course id HAVING count(*)

¿ 1

So, the answer to the question ”Find the name and building of the department

with the highest budget.” is =

Intermediate representation: select course.title , course.credits , course.dept name

from course where count ( prereq.* ) ¿ 1 group by prereq.course id

SQL: SELECT T1.title , T1.credits , T1.dept name FROM course AS T1 JOIN

prereq AS T2 ON T1.course id = T2.course id GROUP BY T2.course id HAV-

ING count(*) ¿ 1

Q: ”Give the name and building of the departments with greater than av-

erage budget.”

Schema links: [department.dept name,department.building,department.budget]

A: Let’s think step by step. ”Give the name and building of the departments

with greater than average budget.” can be solved by knowing the answer to

the following sub-question ”What is the average budget of departments?”.

The SQL query for the sub-question ”What is the average budget of depart-

ments?” is SELECT avg(budget) FROM department

So, the answer to the question ”Give the name and building of the depart-

ments with greater than average budget.” is =
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Intermediate representation: select department.dept name , department.building

from department where @.@ ¿ avg ( department.budget )

SQL: SELECT dept name , building FROM department WHERE budget ¿

(SELECT avg(budget) FROM department)

Q: ”Find the id of instructors who taught a class in Fall 2009 but not in

Spring 2010.”

Schema links: [teaches.id,teaches.semester,teaches.YEAR,Fall,2009,Spring,2010]

A: Let’s think step by step. ”Find the id of instructors who taught a class in

Fall 2009 but not in Spring 2010.” can be solved by knowing the answer to

the following sub-question ”Find the id of instructors who taught a class in

Spring 2010”.

The SQL query for the sub-question ”Find the id of instructors who taught

a class in Spring 2010” is SELECT id FROM teaches WHERE semester =

’Spring’ AND YEAR = 2010

So, the answer to the question ”Find the id of instructors who taught a class

in Fall 2009 but not in Spring 2010.” is =

Intermediate representation: select teaches.ID from teaches where teaches.semester

= ”Fall” and teaches.year = 2009 and teaches.semester != ”Spring” and teaches.year

= 2010

SQL: SELECT id FROM teaches WHERE semester = ’Fall’ AND YEAR =

2009 EXCEPT SELECT id FROM teaches WHERE semester = ’Spring’ AND

YEAR = 2010

Q: ”Find the name of the courses that do not have any prerequisite?”

Schema links: [course.title,course.course id]

A: Let’s think step by step. ”Find the name of the courses that do not have

any prerequisite?” can be solved by knowing the answer to the following sub-

question ”What are the courses that have any prerequisite?”.

The SQL query for the sub-question ”What are the courses that have any

prerequisite?” is SELECT course id FROM prereq

So, the answer to the question ”Find the name of the courses that do not have
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any prerequisite?” is =

Intermediate representation: select course.title from course where @.@ not in

prereq.course id

SQL: SELECT title FROM course WHERE course id NOT IN (SELECT

course id FROM prereq)

Q: ”Find the salaries of all distinct instructors that are less than the largest

salary.”

Schema links: [instructor.salary]

A: Let’s think step by step. ”Find the salaries of all distinct instructors that

are less than the largest salary.” can be solved by knowing the answer to the

following sub-question ”What is the largest salary of instructors”.

The SQL query for the sub-question ”What is the largest salary of instructors”

is SELECT max(salary) FROM instructor

So, the answer to the question ”Find the salaries of all distinct instructors that

are less than the largest salary.” is =

Intermediate representation: select distinct instructor.salary from instructor

where @.@ ¡ max ( instructor.salary )

SQL: SELECT DISTINCT salary FROM instructor WHERE salary ¡ (SE-

LECT max(salary) FROM instructor)

Q: ”Find the names of students who have taken any course in the fall semester

of year 2003.”

Schema links: [student.id,student.name,takes.id,takes.semester,fall,2003]

A: Let’s think step by step. ”Find the names of students who have taken any

course in the fall semester of year 2003.” can be solved by knowing the answer

to the following sub-question ”Find the students who have taken any course

in the fall semester of year 2003.”.

The SQL query for the sub-question ”Find the students who have taken any

course in the fall semester of year 2003.” is SELECT id FROM takes WHERE

semester = ’Fall’ AND YEAR = 2003

So, the answer to the question ”Find the names of students who have taken
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any course in the fall semester of year 2003.” is =

Intermediate representation: select student.name from student where takes.semester

= ”Fall” and takes.year = 2003

SQL: SELECT name FROM student WHERE id IN (SELECT id FROM takes

WHERE semester = ’Fall’ AND YEAR = 2003)

Q: ”Find the minimum salary for the departments whose average salary is

above the average payment of all instructors.”

Schema links: [instructor.salary,instructor.dept name]

A: Let’s think step by step. ”Find the minimum salary for the departments

whose average salary is above the average payment of all instructors.” can

be solved by knowing the answer to the following sub-question ”What is the

average payment of all instructors.”.

The SQL query for the sub-question ”What is the average payment of all in-

structors.” is SELECT avg(salary) FROM instructor

So, the answer to the question ”Find the minimum salary for the departments

whose average salary is above the average payment of all instructors.” is =

Intermediate representation: select min(instructor.salary) , instructor.dept name

from instructor where avg ( instructor.salary ) ¿ avg ( instructor.salary ) group

by instructor.dept name

SQL: SELECTmin(salary) , dept name FROM instructor GROUP BY dept name

HAVING avg(salary) ¿ (SELECT avg(salary) FROM instructor)

Q: ”What is the course title of the prerequisite of course Mobile Comput-

ing?”

Schema links: [course.title,course.course id = prereq.course id,prereq.prereq id,

course.title,Mobile Computing]

A: Let’s think step by step. ”What is the course title of the prerequisite of

course Mobile Computing?” can be solved by knowing the answer to the fol-

lowing sub-question ”What are the ids of the prerequisite of course Mobile

Computing?”.

The SQL query for the sub-question ”What are the ids of the prerequisite
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of course Mobile Computing?” is SSELECT T1.prereq id FROM prereq AS

T1 JOIN course AS T2 ON T1.course id = T2.course id WHERE T2.title =

’Mobile Computing’

So, the answer to the question ”What is the course title of the prerequisite of

course Mobile Computing?” is =

Intermediate representation: select course.title from course where @.@ in pre-

req.* and course.title = ”Mobile Computing”

SQL: SELECT title FROM course WHERE course id IN (SELECT T1.prereq id

FROM prereq AS T1 JOIN course AS T2 ON T1.course id = T2.course id

WHERE T2.title = ’Mobile Computing’)

96


	Introduction
	Key Contributions
	Dissertation Layout

	Decomposed In-context Learning With Self-correction
	Introduction
	Related Work
	Few-shot Error Analysis
	Methodology
	Schema Linking Module
	Classification & Decomposition Module
	SQL Generation Module
	Self-correction Module

	Experiments
	Models
	Hyperparameter
	Dataset
	Metrics
	Results
	Ablation study

	Discussion

	Decomposed Text-to-SQL with Small Large Language Models
	Introduction
	Methodology
	Supervised fine-tuning for Text-to-SQL
	Decomposed Supervised Fine-tuning

	Experiments
	Models
	Hyperparameters
	Datasets
	Metrics
	Results

	Discussion

	Evaluating Models and Benchmarks
	Introduction
	Related Work
	Text-to-SQL Benchmarks
	Evaluation Metrics
	Execution Accuracy Failures
	Failures Due to Ties in Output
	Ambiguity in Schema Matching
	Wrong Assumptions on DB Content

	Experiments
	Evaluation Through Query Rewriting
	Human Evaluation
	Error Analysis of Human Evaluation
	Standard SQL validation

	Discussion

	Conclusion and Future Work
	Summary of Contributions
	Future Work
	Schema linking
	Self-reflection


	References
	Appendix Prompts
	Few-shot prompting
	Schema linking prompt
	Classification & decomposition prompt

	SQL generation
	Easy Class
	Non-Nested Complex
	Nested Complex



