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Abstract—Electromagnetic interference (EMI) modeling and
prediction are essential for the design of most power electronics
apparatuses. This article aims at finding a fast method to select time
step for explicit solver-based simulation of high frequency low loss
(HFLL) circuits like EMI filter. The state-space model of HFLL
circuit is constructed and its eigenvalues are proved to be very
close to the imaginary axis. Both the nondegenerate and degenerate
circuit cases are discussed. During the analysis, a circuit lemma is
summarized on how to transform degenerate circuit into nonde-
generate circuit and the corresponding inversion of its coefficient
matrix is derived based on Sherman–Morrison’s formula. Then the
Laguerre–Samuelson’s inequality is employed to find the upper
bound of HFLL circuit’s eigenvalues. This process only requires
two matrix multiplications and traces of the matrix operation
results, thus keeping the computational complexity retaining in
O(N2). A typical EMI filter is constructed and its equivalent
circuit including the parasitic effects is extracted from ANSYS. This
filter is simulated in application between a dc/ac converter and the
grid using the fourth-order Runge–Kutta (RK4) solver with a time
step selected by the proposed method. Numerical test shows that
the spectrum results are very close to those obtained by experiment
while being much more efficient than traditional methods, which
demonstrates that this time-step selection method could benefit the
analysis and time-domain simulation of HFLL circuits.

Index Terms—Circuit simulation, eigenvalues and
eigenfunctions, electromagnetic interference, numerical stability,
state space methods.

I. INTRODUCTION

T IME-DOMAIN simulation of electromagnetic interfer-
ence (EMI) circuit model in power electronics has received

more and more attention in recent years [1]–[3]. Compared with
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frequency-domain simulation, time-domain simulation is more
straightforward in terms of performance evaluation but suffer
from longer execution time because of much higher amount
of computations needed [4]. Therefore, if possible, the circuit
simulation users always want to use larger time step for efficient
analysis and design, which makes time-step selection one of the
most critical procedures in time-domain simulation. However,
the time step cannot be set arbitrarily large. There are two
constraints that determine the upper bound of the time step. One
is that the simulation results should meet some accuracy require-
ment. For example, if the 40th harmonic of a current/voltage is
to be analyzed, then the time step should be at most half the
reciprocal of 40 times the base (modulation) frequency. The
other constraint is the numerical stability of the solver adopted
in computation. This is especially important to explicit solvers
because they are always conditionally stable.

Numerical stability is requisite for digital simulation to ensure
the results do not diverge during the computation process. It’s a
property requires that the errors in one step do not grow along
the succeeding steps [5]. The numerical stability of a given
problem is determined by two factors: the numerical solver, and
the simulation model. There are two types of numerical solvers
that are available for circuit simulation: Implicit and explicit
solver. The implicit solvers usually have large stability region
in the complex plane. Some even include the whole left half
plane, which means they are always numerically stable as long
as the simulation model itself is stable in continuous domain (real
parts of all eigenvalues are negative). Examples of implicit solver
include the backward Euler (BE) and the trapezoidal rule (TR).
However, BE and TR methods are deemed to be inefficient when
dealing with circuits that contain high-frequency oscillatory
phenomenon [6]. Inefficiency comes from the fact that matrix
inversion or its equivalent alternative (like Gaussian elimination
or some iterative algorithms) is inevitable when utilizing the
implicit solver. The computational complexity of such process
increases as a cubic function O(N3) of the system size. More-
over, the implicit solver is not suitable for parallel computation,
which is the trend of future high performance computing.

The explicit solvers, on the other hand, usually have smaller
stability regions in the complex plane. But they can get rid of
matrix inversion and are very suitable for parallel computation.
The corresponding computational complexity increases only
as quadratic function O(N2) of the system size and can be
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apportioned on distributed computational resources. It should
be noted that the numerical stability of a digital simulation
problem is assessed by the numerical solver selected and the
simulation model together [7], so the product (z = hλ) is chosen
for stability evaluation, where h is the time step and λ is the
eigenvalue of the model. The difficulty of applying explicit
solver is how to find the proper time-step h so that every z of the
simulation model lies within the stability region of the solver.

It is worth mentioning that although explicit solvers generally
have smaller stability regions, it does not mean they are less
accurate than implicit solvers. The accuracy of a solver is usually
quantified by local truncation error (LTE) and it only relates to
the numerical order of that solver. In general, a method with
O(hn+1) LTE is said to be of nth order. For example, the
Heun’s method (explicit) and Tustin method (implicit) offer the
same accuracy results at the same time step as long as they are
numerical stable because they are both order-2 methods and their
LTEs are in O(h3).

Although the stability region of a given solver in the complex
z plane can be found beforehand, the eigenvalues of the circuit
model may distribute randomly. To determine the suitable time
step, all the eigenvalues have to be found because usually the
stability region has different lengths (from the edge to the origin)
along different directions. However, the computational complex
of eigenvalue problem is alsoO(N3). That creates a dilemma: If
a O(N3) problem has to be solved before using explicit solver,
why not just use implicit solver directly? Not to mention the
effort that has to made to construct the state-space model of the
circuit.

The time-step selection process of simulating a general circuit
using explicit solver is in no way easy. In many cases this is done
by estimation, then trial and error iteration, which is very time
consuming. Some variable time-step methods, like the Runge–
Kutta–Fehlberg (RKF45) method [8], estimate the numerical
error by comparing two different order (fourth and fifth order
Runge–Kutta) solutions and adaptively modify the time step
according to the comparison results [9]. However, the RKF45
method still possesses the risk of generating inappropriate time
step and producing fundamentally incorrect solutions, especially
when it is applied to solve stiff ordinary differential equations
(ODEs) [10]. Failure of such time-step control scheme can be
explained by the lack of taking the information from circuit itself
into consideration.

Nevertheless, for some special classes of circuits, the time-
step selection process can be expedited by leveraging the circuit
properties. The high-frequency low loss (HFLL) circuit is one
of such type. High frequency means there are oscillatory phe-
nomenon in the circuit. Typically, the influences of parasitic
capacitance and inductance have to be considered so that small
time step has to be utilized. Low loss in this article means
the energy dissipated in the circuit is negligible so that the
eigenvalues of the circuit are very close to the imaginary axis. In
such cases, only the maximum or upper bound of the eigenvalues
needs to be found to determine the suitable time step.

HFLL circuit is not rare in electrical application. The EMI
filter is one typical example. It is commonly equipped in power
converting applications like motor drive systems, renewable

Fig. 1. Stability regions of first to fourth-order Runge–Kutta methods in z
plane.

energy generations, electric vehicle charging infrastructures, and
modern more electric aircrafts, etc [11]. There are many papers
in literature discussing derivation of the equivalent circuit model
of EMI network [12]–[15]. These models are obtained either
by impedance measurement and then parameter extraction or
by some advanced modeling methodologies like finite element
method and partial element equivalent circuit (PEEC) method.
Few of them pay attention to the time-domain simulation of
the equivalent circuit model, which is not easy for the existing
simulation tools. For example, the time needed for a 55-μs
transient simulation of a multiconductor cable EMI equivalent
circuit using SPICE is 3.6 s on a standard PC, as reported in [16],
that is almost 65 thousand times slower than real time.

This article presents a quick method to select time step for
explicit solver-based simulation of HFLL circuit. The proposed
method is easy to implement and remains O(N2) in compu-
tation. Such property preserves the efficiency superiority of
explicit solver over implicit solver. The validity of this method
is verified by time-domain simulation of an EMI filter in a dc/ac
converter compared with experimental results and its strength in
efficiency is confirmed by comparison with the same simulation
conducted in commercial software.

II. STABILITY REGION OF EXPLICIT SOLVER

Stability region is an important property of a numerical solver.
It is evaluated by applying the solver to the Dahlquist test
equation

ẋ = λx, x(0) = x0 (1)

where ẋ means derivative of x, λ is eigenvalue of the problem,
and x0 is the initial value. The stability region is quantified in
the complex z plane (z = λh), where h is the time step.

The region that makes x(k) converging to its analytic solution
as k → ∞ is called stability region, where x(k) represents the
kth step solution. Fig. 1 illustrates the stability regions of first
to fourth-order Runge–Kutta (RK) methods.

In actual applications, it is more common to solve the multi-
variable state-space equation

ẋ = Ax,x(0) = x0 (2)
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where x is state vector and A is system matrix. It may be
obscure how the numerical stability results derived from (1) can
be applied to analyze (2). A simple matrix transformation can
make it clear.

If A is diagonalizable (which is often the case in engineering
problems), then there exists a matrix P that satisfies

A = PΛP−1 (3)

where Λ is a diagonal matrix. It also can be proved that the
diagonals of Λ are the eigenvalues of A and the columns of P
are the corresponding eigenvectors. If y = P−1x is selected as
the new state vector, then (2) can be transformed into

ẏ = P−1APy = Λy. (4)

Solving (4) is like solving n individual Dahlquist equations,
where n is the dimension of y. Once y is obtained, x can be
obtained by simple linear transformation.

The above analysis implies that as long as all the eigenvalues
of A times time-step h locate in the stability region of a given
solver, then it is numerically safe to use that solver in simu-
lation. Generally speaking, it is difficult to find the complete
set of eigenvalues of matrix A. However, for HFLL circuit, its
eigenvalues are very close to the imaginary axis, which makes
only the maximum eigenvalue matters in quantifying the time
step.

This article chooses the classical fourth-order Runge–Kutta
(RK4) method as the solver because it offers a good balance
between accuracy and computation effort. It is the highest order
method in RK family that uses the same number of function
evaluations as with the order of accuracy at each time step.
Higher order RK methods need much more computation efforts
but do not necessarily bring better accuracy results or significant
increase in stability region. Such properties make RK4 the pre-
ferred choice for many scientific users on numerical integration
methods [17].

The stability region of RK4 method can be found in Fig. 1.
Its intersections with imaginary axis are ±j2.83. Therefore, the
time step that is used for solving HFLL circuit should satisfy

h ≤ 2.83

λ̄
(5)

where λ̄ is the upper bound of eigenvalues of HFLL circuit.

III. FINDING THE UPPER BOUND OF EIGENVALUES

OF HFLL CIRCUIT

There are various ways to find the upper bound of eigenvalues
of a given matrix. The most straightforward way must be finding
all the eigenvalues first, then the maximum eigenvalue can be
identified. This is definitely not an efficient choice because most
information are wasted and only the maximum value is of con-
cern. There are also some iterative algorithms available that can
be used to find the maximum eigenvalue, like the power iteration,
the Lanczos algorithm and the Arnoldi algorithm. However,
these algorithms are either prone to convergence problem or
subject to some restrictions. Most importantly, they are not
computationally efficient as they require O(N2) calculations
in each iteration. In the worst case, N iterations are needed to

Fig. 2. Nondegenerate circuit consisting of only capacitors and inductors.

finish the process. Therefore, they are still O(N3) algorithms in
complexity.

Unlike the above methods, this article utilizes Laguerre–
Samuelson’s inequality to find the upper bound of eigenvalues
of HFLL circuit. This inequality can be expressed as the follow-
ing [18].

Let
∑n

k=0 cks
k be a polynomial with all real roots. Then, all

roots of this polynomial are bounded by

−cn−1

ncn
± n− 1

ncn

√
c2n−1 −

2n

n− 1
cncn−2. (6)

It is known that the eigenvalues of a matrix are the roots
of its characteristic polynomial. When applying this inequality
to the characteristic polynomial of a matrix, the above bounds
can be even simplified because cn = 1. Then only two scalar
values, cn−1 and cn−2, need to be computed to find the upper
bound. The following two subsections explain how to compute
these two scalar values for nondegenerate and degenerate HFLL
circuits’ state-space system matrix, respectively. A circuit is
called degenerate when there exists at least one loop in the circuit
formed by only capacitive and voltage source type branches,
or cutset formed by only inductive and current source type
branches [19]. Nondegenerate circuits are those do not contain
such loops and cutsets. The handling of these two cases are
slightly different.

A. Nondegenerate Circuit Case

As indicated previously, the energy dissipation in HFLL cir-
cuit is negligible, which means the values of resistors in the
circuit are either very large or very small so that the current
or voltage of the resistor can be neglected. In the first step,
these resistors are removed from the circuit to expedite the
analysis. The large value resistor branch is viewed as open circuit
while the small value resistor branch is viewed as short circuit.
After removing these resistors, the remaining part contains only
capacitors and inductors. To proceed with the analysis, it is
necessary to show that a circuit consisting of only capacitors
and inductors has all its eigenvalues on the imaginary axis.

It is proved in [20] that for a given circuit that has b branches
and n nodes, there exist n− 1 branches to be viewed as voltage
sources and the remaining b− n+ 1 branches to be viewed as
current sources, so that the voltage/current relationship of these
branches can be expressed in form of an antisymmetric matrix.

For a nondegenerate circuit consisting of only capacitors and
inductors, the capacitors are suitable to be viewed as voltage
sources while the inductors are suitable to be reviewed as cur-
rent sources. Take the circuit in Fig. 2 as an example. If the
branches of C1, C2, C3, C4 are viewed as voltage sources and
the branches of L5, L6, L7 are viewed as current sources, then
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their voltage/current relationship can be express as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ib1

ib2

ib3

ib4

ub5

ub6

ub7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −1 0 0

0 0 0 0 1 −1 −1

0 0 0 0 0 1 1

0 0 0 0 0 0 1

1 −1 0 0 0 0 0

0 1 −1 0 0 0 0

0 1 −1 −1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ub1

ub2

ub3

ub4

ib5

ib6

ib7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

R (7)

As can be seen, the relation matrix R in (7) is an antisymmetric
matrix. More importantly, simply replacing the left-hand-side
vector in (7) with the derivative of right-hand-side vector times
the corresponding capacitor or inductor values, the state-space
model of this circuit can be obtained, as shown in⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1
dub1

dt

C2
dub2

dt

C3
dub3

dt

C4
dub4

dt

L5
dib5
dt

L6
dib6
dt

L7
dib7
dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −1 0 0

0 0 0 0 1 −1 −1

0 0 0 0 0 1 1

0 0 0 0 0 0 1

1 −1 0 0 0 0 0

0 1 −1 0 0 0 0

0 1 −1 −1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ub1

ub2

ub3

ub4

ib5

ib6

ib7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(8)
It is known that the eigenvalues of an antisymmetric matrix

are either 0 or purely imaginary, i.e., they all locate on the
imaginary axis. Although the state-space system matrix (A) of
a nondegenerate pure capacitor and inductor circuit is not an
antisymmetric matrix, it can be expressed as the product of a
diagonal matrix (D) and an antisymmetric matrix (R)

A = DR (9)

where the diagonals of D are the reciprocals of the capacitor
and inductor values. For the model in (8)

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
C1

0 0 0 0 0 0

0 1
C2

0 0 0 0 0

0 0 1
C3

0 0 0 0

0 0 0 1
C4

0 0 0

0 0 0 0 1
L5

0 0

0 0 0 0 0 1
L6

0

0 0 0 0 0 0 1
L7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10)

The characteristic polynomial of A can be expressed as

det(λI−A) = det(λI−DR)

= det(D
1
2 (λI−D

1
2RD

1
2 )D− 1

2 ) (11)

where I is identity matrix, D
1
2 and D− 1

2 are square roots of D
and D−1, respectively. Equation (11) shows that the eigenvalues
ofA are the same withD

1
2RD

1
2 . On the other hand,D

1
2RD

1
2 is

an antisymmetric matrix with all its eigenvalues on the imaginary

axis becauseD
1
2 is a diagonal matrix. Therefore, the eigenvalues

of A all locate on the imaginary axis, as well.
Another issue that has to be aware of is that the Laguerre–

Samuelson’s inequality is valid only when the roots of the poly-
nomial are all real. Thus it can not be applied to the characteristic
polynomial ofA directly. To fix this, recalling that the imaginary
parts of eigenvalues of a real matrix always appear in conjugate
pairs, thus it is more appropriate to calculate the square of eigen-
values of A to make the roots of the characteristics polynomial
all real. Doing so is equal to calculating the eigenvalues of A2

(denoted as Ā henceforth). Then the question is transformed
into computing coefficients (cn−1 and cn−2) of characteristic
polynomial of Ā accordingly.

Factoring Ā’s characteristic polynomial as follows:
n∑

k=0

cks
k =

n∐
i=1

(s− si) = sn −
n∑

i=1

sis
n−1 + · · · (12)

where si are the roots of the polynomial. Because the sum of
eigenvalues of a matrix is equal to the trace of it. It can be easily
found that

cn−1 = −
n∑

i=1

si = −trace(Ā) = −
n∑

i=1

āii (13)

where āii are the diagonals of Ā.
The computation of cn−2, however, is not that explicit. One

possible way is to find its relationship with the traces of powers
of Ā is by leveraging Newtons identities [21]. Āk, then the
following formula holds:

tk + cn−1tk−1 + · · ·+ c0tk−n = 0, (k > n)

tk + cn−1tk−1 + · · ·+ cn−k+1t1 = −kcn−k, (1 ≤ k ≤ n).

(14)

Setting k = 1 and 2 in (14), respectively, the expression of
cn−2 can be found by

cn−2 =
1

2

(
t21 − t2

)
. (15)

Combining (6), (13), and (15), the upper bound (in absolute
value) of eigenvalues of Ā can be written as

s̄ =
t1
n

−√
n− 1

√
t2
n

−
(
t1
n

)2

. (16)

Note that s̄ < 0 because the eigenvalues of Ā are all negative.
The expression (16) is exactly the same with the bound presented
in [22] and is claimed as the “tightest” when all the eigenvalues
are real.

The corresponding upper bound of eigenvalues of A is

λ̄ =
√

|s̄| =

√√√√− t1
n

+
√
n− 1

√
t2
n

−
(
t1
n

)2

. (17)

As can be seen that only two matrix multiplications (one
from A to Ā and one from Ā to Ā2) is required to obtain
the upper bound of the eigenvalues of a HFLL circuit using
this method. Besides, the second multiplication (from Ā to Ā2)
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is not necessarily to be accomplished completely because only
the diagonals are of concern. These mathematic operations still
remain O(N2) in computation complexity. Thus it preserves the
computation efficiency advantage of explicit solver.

In addition, because of the antisymmetry ofR, the calculation
of A2 can be further simplified. The matrix R and D can be
partitioned into the following form:

R =

[
0 R12

−R′
12 0

]
, D =

[
D11 0

0 D22,

]
(18)

where R′
12 is the transpose of R12. Then Ā and Ā2 can be

expressed as

Ā =

[
−D11R12D22R

′
12 0

0 −D22R
′
12D11R12

]
(19)

Ā2 =

[
(D11R12D22R

′
12)

2 0

0 (D22R
′
12D11R12)

2

]
. (20)

It also can be proved that the traces of D11R12D22R
′
12 and

D22R
′
12D11R12 are the same and so are the traces of their

square. Thus the dimension of matrix multiplication can be
reduced by half (that one quarter in mathematic calculation
amount).

It is interesting to note that there is a very concise formula for
calculating t1 of Ā

t1 = −
∑
rij �=0

didj (21)

where rij are the entries of R, and di and dj are the diagonals
of D. For the example in Fig. 2

t1 = − 2

(
1

L5C1
+

1

L5C2
+

1

L6C2
+

1

L7C2
+

1

L6C3

+
1

L7C3
+

1

L7C4

)
. (22)

In cases when only very rough estimation is needed, one can
simply assume cn−2 in (6) is 0, then the upper bound can be
selected as

λ̄ =
√
cn−1 =

√−t1 (23)

which is very convenient to compute.

B. Degenerate Circuit Case

Although nondegenerate case has covered a lot of circuits
in engineering application, there are still circumstances when
degenerate circuit may occur, especially in three-phase power
systems. Fig. 3(a) is a typical example of degenerate circuit in
which C1, C2, and C3 form a loop while L4, L5, and L6 connect
to a common node. In such circumstances, if all capacitors are
simply viewed as voltage sources and all inductors as current
sources, as shown in Fig. 3(b), their voltage-current relation
can no longer be represented by an antisymmetric matrix R
because of the singularity of the intermediary matrix during
derivation [20].

Fig. 3. Degenerate circuit consisting of only capacitors and inductors.

To fix this problem, one branch of the capacitor loop should be
viewed as current source and one branch of the inductor cutset
should be viewed as voltage source, as illustrated in Fig. 3(c).
Then their voltage/current relation can be developed following
the same routine as for nondegenerate case, as shown in⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ib1

ib2

ub3

ub4

ub5

ib6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 −1 −1 0

0 0 1 0 −1 0

−1 −1 0 0 0 0

1 0 0 0 0 1

1 1 0 0 0 1

0 0 0 −1 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ub1

ub2

ib3

ib4

ib5

ub6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(24)

Special attention should be given to the entries that are boxed.
For the branches that are altered types (C3, L6), their volt-
age/current are the opposite of summation of all remaining
branches’ voltage/currents in the loop/cutset that make the cir-
cuit degenerate. Thus the entries (rij) in the rows that corre-
sponding to these branches’ voltage/current relations are either

1 or 0. If branch i and branch j are in the same degenerate
loop/cutset, then rij = −1, otherwise rij = 0. In addition, be-
cause of the antisymmetry of matrix R, every 1 entry in these
rows has an opposite entry at the symmetric location in matrix
R. Just as the boxed entries are shown in (24).

When writing state-space equation of the degenerate circuit,
the branches that are altered types cannot be viewed as indepen-
dent branches because their states can be represented by other
branch’s states. For the example in Fig. 3⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ib3=C3
dub3

dt
= C3

d(−ub1−ub2)

dt
=C3

(
−dub1

dt
− dub2

dt

)

ub6 = L6
dib6
dt

= L6
d(−ib4 − ib5)

dt
= L6

(
−dib4

dt
− dib5

dt

)
(25)

while the other state equation can be written as usual⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1
dub1

dt
= ib3 − ib4 − ib5

C2
dub2

dt
= ib3 − ib5

L4
dib4
dt

= ub1 + ub6

L5
dib5
dt

= ub1 + ub2 + ub6.

(26)
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Substituting (25) into (26), the state-space representation of
Fig. 3 can be obtained

⎡
⎢⎢⎢⎣
C1 + C3 C3 0 0

C3 C2 + C3 0 0

0 0 L4 + L6 L6

0 0 L6 L5 + L6

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸

⎡
⎢⎢⎢⎣

dub1

dt
dub2

dt
dib4
dt
dib5
dt

⎤
⎥⎥⎥⎦

= M⎡
⎢⎢⎢⎣
0 0 −1 −1

0 0 0 −1

1 0 0 0

1 1 0 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
ub1

ub2

ib4

ib5

⎤
⎥⎥⎥⎦ . (27)

Compared with (8), the matrix M on the left hand side is no
longer a diagonal matrix, thus its inversion is not that explicit.
However, there are two features of M that can be leveraged
to simplify the solving process of its inversion. First, every
degenerate loop/cutset is decoupled from each other, thus M
can be partitioned into several square blocks on the diagonal so
that the inversion of M is transformed into the inversion of these
square blocks. Second, although these blocks are not diagonal
matrix, they can be expressed as the summation of a diagonal
matrix and a scalar times an all-ones matrix. For example

[
C1 + C3 C3

C3 C2 + C3

]
=

[
C1 0

0 C2

]
+ C3

[
1 1

1 1

]
. (28)

This is actually a rank-1 modification of the original diagonal
matrix. According to Sherman–Morrison’s formula [23], the
inversion of a rank-1 modification of the original matrix can
be expressed as

M−1 = (D+ uv)−1 = D−1 − σD−1uvD−1 (29)

where σ = 1/(1 + vD−1u) is a scalar.
Without loss of generality, assuming M has n− 1 individ-

ual diagonals (m1 to mn−1, n ≥ 2) and the same off-diagonal
entries (mn), then D, u, and v in (29) can be selected as

D =

⎡
⎢⎢⎢⎢⎢⎣
m1 0 · · · 0

0 m2 · · · 0
...

...
. . .

...

0 0
... mn−1

⎤
⎥⎥⎥⎥⎥⎦

u = mn

⎡
⎢⎢⎢⎢⎣
1

1
...

1

⎤
⎥⎥⎥⎥⎦ , v =

[
1 1 · · · 1

]
. (30)

The inversion of M can be derived as follows:

M−1 =

⎡
⎢⎢⎢⎢⎣

1
m1

0 · · · 0

0 1
m2

· · · 0
...

...
. . .

...

0 0 · · · 1
mn−1

⎤
⎥⎥⎥⎥⎦

− mn

1 +mn

n−1∑
i=1

1
mi

⎡
⎢⎢⎢⎢⎣

1
m1m1

1
m1m2

· · · 1
m1mn−1

1
m2m1

1
m2m2

· · · 1
m2mn−1

...
...

. . .
...

1
mn−1m1

1
mn−1m2

· · · 1
mn−1mn−1

⎤
⎥⎥⎥⎥⎦

=
1

n∑
j=1

n∏
i=1
i�=j

mi

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
j=1
j �=1

n∏
i=1
i�=j

mi −
n∏

i�=1
i�=2

mi · · · −
n∏

i�=1
i�=n−1

mi

−
n∏

i�=2
i�=1

mi

n∑
j=1
j �=2

n∏
i=1
i�=j

mi · · · −
n∏

i�=2
i�=n−1

mi

...
...

. . .
...

−
n∏

i�=n−1
i�=1

mi −
n∏

i�=n−1
i�=2

mi · · ·
n∑

j=1
j �=n−1

n∏
i=1
i�=j

mi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(31)

The above process of dealing with degenerate circuit is not
hard to be promoted to more general case and a circuit lemma
can be summarized.

Lemma 1: A degenerate circuit can be transformed into
nondegenerate by the following steps if the loops/cutsets
that make the circuit degenerate contain at least one ca-
pacitive/inductive branch. First, set the reference direction
of the branches in the degenerate loops/cutsets identical*.
Second, select one capacitive/inductive branch in the de-
generate loops/cutsets and remove it by viewing it as
open/short circuit. Third, add self-capacitance/inductance to
every branch and mutual-capacitance/inductance to every two
branches in these loops/cutsets. The added self- and mutual-
capacitance/inductance value is the same with the capaci-
tance/inductance value of the branch that is removed.

When applying the above lemma to the most simple case, i.e.,
two capacitors connect in parallel or two inductors connect in
series, it will result into one capacitor whose value is the sum of
these two capacitors and one inductor whose value is the sum of
these two inductors, which exactly coincide with the common
sense.

Once the degenerate circuit has been transformed into non-
degenerate circuit and the inversion of coefficient matrix M
has been found by (31), the upper bound of eigenvalues of the
degenerate circuit can be obtained following the same routine in
Section III-A.

*Setting the reference direction identical means the branch voltages in the
loop form either a clockwise or anticlockwise circle from their positive ends
to negative ends and the positive directions of branch currents in the cutset
either all flow into or all flow out the cutset. This is to make sure that the
removed branch’s voltage/current is the opposite of summation of all remaining
branches’ voltage/currents and to provide a reference direction to the added
mutual-capacitance/inductance.
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Fig. 4. (a) Structure of the EMI filter prototype. (b) Filter’s 3-D model in ANSYS. (c) Equivalent circuit of the test-bench.

IV. NUMERICAL VALIDATION ON EMI FILTER

To validate the effectiveness of the proposed time-step se-
lection method, a three-phase EMI attenuation filter prototype
is constructed and its 3-D model is developed in ANSYS, as
shown in Fig. 4(a) and (b). The filter is composed of a first-stage
common-mode inductor, followed by three X-capacitors in Δ-
connection and the second-stage common-mode inductor, then
three Y-capacitors in star-connection and finally a grounding
capacitor. This filter is placed between a three-phase two-level
converter and the ac grid to test its performance. The equivalent
circuit of the experimental setup is shown in Fig. 4(c) where
the parasitic resistors, capacitors, and inductors in the windings
and wires of the EMI filter are taken into account. The parasitic
network of common-mode inductor is adopted from [11] and the
parameters of these parasitic elements are extracted by ANSYS
Q3D tool using finite element method.

As can be seen that, this is a typical HFLL circuit where
the resistor values are very small. By neglecting the effects
of these resistors, the remaining parts become a lossless de-
generate circuit. As a consequence, some manual derivations
are needed to transform it into nondegenerate by following the
procedures presented in Section III-B. Once the nondegenerate
form is obtained, its state-space system matrix can be generated
automatically and the upper bound of this circuit’s eigenvalues
can be found by following the routine presented in Section III-A,
which is 3.3622 × 109. According to (5), the upper bound of the
selected time step using RK4 solver is 8.4171 × 10−10 s.

The corresponding numerical simulation is conducted on
Matlab platform using the modeling method proposed in [20]

with RK4 solver. The results are illustrated in Fig. 5(a) and
(b), respectively. It has to be mentioned that although the re-
sistors are neglected in the time-step selection analysis, they
are not neglected when conducting the modeling and simu-
lation because the dissipative effect is very important with
regard to attenuating the high-frequency noise. The authors in
[20] and [24] explained in detail how to take care of these
resistors.

The voltagevun (grid side phase-u line to reference ground n at
dc side) and current iu are selected for frequency domain analy-
sis. To make a complete evaluation, the high-frequency spectrum
(100 kHz to 30 MHz) of both simulation and experimental
results are also displayed in Fig. 5. Noted that unlike the typical
EMI measurement setup through line impedance stabilization
network (LISN) [25], this article chooses to measure converter
current/voltage directly and then conducts FFT to obtain the
corresponding frequency spectrum. This unavoidably brings
background noise in high-frequency range but manages to keep
the circuit HFLL to implement the proposed time-step selection
method.

As can be seen that, there are several spikes distributed along
the left half axis in the frequency spectrum. These spikes are
aroused by the switching devices working at 24 kHz, which is a
recognized phenomenon in power electronics analysis.

Most part of the high-frequency spectrum are below
100 dBμV or 100 dBμA, except for a resonant peak at
1.8909 MHz in simulation spectrum and 1.8846 MHz in
experimental spectrum. According to the analysis in [26],
this can be explained by the resonance between the parasitic
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Fig. 5. Time-domain and frequency domain comparison between the proposed time-step selection method-based simulation and experiment. (a) Upper-left: vun
from simulation, upper-right: vun from experiment, x-axis: 10 ms/div, y-axis: 0.25 kV/div; lower: frequency spectrum of vun (simulation results in red, experiment
results in blue), x-axis: log-scale from 100 kHz to 30 MHz, y-axis 25 dBµV/div. (b) Upper-left: iu from simulation, upper-right: iu from experiment, x-axis:
10 ms/div, y-axis 25 A/div; lower: frequency spectrum of iu (simulation results in purple, experiment results in cyan), x-axis: log-scale from 100 kHz to 30 MHz,
y-axis: 25 dBµA/div)

capacitor Cp and the equivalent parallel inductance of common
mode inductor LC and differential mode inductor LD. Since
there are two common mode inductors in the circuit, the reso-
nance frequency can be expressed as

fr =
1

2π
√

LCL′
D

2LC+L′
D
× C ′

p

= 1.8824 MHz (32)

where LC = 1.0 mH, L′
D = 0.66/3 = 0.22 mH, C ′

p = 3×
(15.171 + 6.833 + 2.041) = 72.135 pF. The reason L′

D is
divided by 3 while C ′

p is multiplied by 3 is because the
three-phase LD and Cp are connected in parallel in the
common-mode equivalent circuit.

As a comparison, the same test bench is also simulated us-
ing MALTAB/Simulink’s embedded solver and the results are
similar with those in Fig. 5. The selected numerical method
is the ODE23tb solver because it proves to be an efficient
choice for solving stiff problems when a crude error tolerance is
permitted [27]. Even though this is one of the most efficient
solver in Matlab/Simulink, it is still much slower than the

proposed time selection method with RK4 solver on this test
bench. To conduct the same 100.0-ms simulation in Fig. 5, the
RK4 solver with 8.4171×10−10-s time step consumes 902.7 s
while the ODE23tb solver costs 15128.6 s on the same computer.
The former is more than 16 times faster than the latter and also
faster than some reported performance on EMI time-domain
simulations like in [16] (9000 times versus 65 000 times slower
than real time).

The efficiency difference mainly results from the solver’s
computational complexity. RK4 solver is an explicit method so
that no matrix inversion is required at every time-step calculation
(the computation complexity remains O(N2)) while ODE23tb
is an implementation of trapezoidal rule with the second-order
backward difference formula (TR-BDF2), an implicit Runge–
Kutta formula with two stages [27], and this makes its com-
putation complexity in O(N3). Although the average time step
of ODE23tb solver (ODE23tb is a variable time-step method)
is 1.205 × 10−9 s and larger than the one selected for RK4
solver, the implicit solver still consumes much more time than
the explicit solver.
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The experimental and simulation results agree with each
other in very high degree, yet there are still some discrepan-
cies between them and the theoretic analysis. The following
factors may help explain the discrepancy. First, some nonlinear
features like the saturation of inductors, the temperature varying
phenomenon of capacitors and resistors are omitted. Second, the
near-field coupling between inductors, inductors and capacitors,
and between capacitors, especially the coupling between the
first filter stage and the second filter stage, could contribute to
some differences. Third, there are some background noise in the
experimental measurement. That’s also the reason spectrums
from experiment do not attenuate in frequency higher than
5 MHz. Fourth, the above frequency domain results are obtained
based on 10-ns sampling period, which is not the integer multiple
of the solver’s time step. Therefore, linear interpolation has to
be adopted to sample the signals at 10-ns interval. This may
lead to some frequency spectrum distortions. Nevertheless, it
is safe to say that the adopted numerical solver has achieved
numerical stability along the whole simulation. The selected
time step is valid and superior than some traditional time-step
selection schemes.

V. CONCLUSION

This article presents a fast method to select time step for
simulating high-frequency low loss circuit using explicit solver.
The state-space model analysis of HFLL circuit shows that
all its eigenvalues distribute close to the imaginary-axis, thus
transforming the time-step selection problem into finding the
upper bound of these eigenvalues. The process of formulating
nondegenerate and degenerate circuits’ state-space model is
elaborated and a transformation lemma from the former case
into the latter case is presented. Time step is selected based on
the Laguerre–Samuelson’s inequality, which involves only two
matrix multiplications during the calculation. As a verification,
the equivalent circuit of an EMI filter that takes into account
the parasitic effects is extracted from ANSYS and a numerical
simulation is conducted to compare the performance of the pre-
sented time-step selection manner. Numerical results show that
the presented method is able to capture all major and parasitic
features of the circuit while be much more (16 times) efficient
in computation time than the traditional method. Experimental
field test of the EMI filter in a dc/ac converter validates the
effectiveness of the proposed method.
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