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Abstract

With the rapid aging of the world’s population, the global burden of aging-

related mental disorders, such as Alzheimer’s dementia (AD), is also on the

rise. Unfortunately global healthcare systems are vastly under-resourced,

which means that many people who need mental health services are unable

to receive it. There is a critical need for timely, inexpensive, objective and

scalable mental health screening and monitoring methodologies to augment

currently available diagnostic tools. Speech analysis has the potential to be

utilized as a window into the state of the human mind, meaning it could pro-

vide support for timely, reliable, and objective screening of many psychiatric

disorders including AD.

In this dissertation, we present our research on machine learned models

that can diagnose AD based on linguistic and acoustic features derived from

speech. We show that AD can be detected reliably from spontaneous speech

samples, and that this can be done even independently of the language spoken.

The first part of this thesis presents machine learned models based on linguis-

tic and acoustic features derived from spontaneous English speech samples.

We find that linguistic features alone perform well, reaching 85% balanced

accuracy on a hold-out test set, and ensemble models based on linguistic and

acoustic features show comparable or slightly lower accuracy. The second

part presents models that use features derived from measures of speech rate,

complexity and intelligibility, this time in a cross-lingual setting (training on

English speech samples and testing on Greek speech samples). These learned
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models, despite the significant domain shift between the training and test

sets, reached a relatively high balanced accuracy of 70%, showing that AD

detection from speech is possible even across two different languages. Further-

more, we provide some exploratory data analyses of the features derived in the

cross-lingual experimental setting, and show that some of these features have

a visibly discriminating pattern that can be successfully utilized for clustering

the samples.

This work paves the way for building automated machine learned systems

for detecting and monitoring AD. With further validation on larger and more

diverse data sets, such systems have the potential of being deployed at scale

to flag early signs of AD and monitor the progression of AD severity.
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Preface

Chapter 3 “Language and acoustic models for detecting Alzheimer’s dementia

from English speech” reproduces a publication [56] written jointly with Jef-

frey Sawalha, Mashrura Tasnim, Shi-ang Qi, Prof. Eleni Stroulia and Prof.

Russell Greiner. My contributions were to develop the language-based models

presented in this paper, as well as to help write the paper and also serve as

project manager and coordinator. The preface and the notes and comments

sections of this chapter are entirely new additions for the purpose of this thesis.

Chapter 4 “Language-agnostic representations for detecting Alzheimer’s

dementia from multilingual speech” reproduces a publication [55] that was

written jointly with Fei Wang, Shi-ang Qi, Mahtab Farrokh, Mashrura Tasnim,

Manos Plitsis, Prof. Nassos Katsamanis, Prof. Eleni Stroulia and Prof. Russell

Greiner. My contributions were to serve as project manager/coordinator, liaise

with challenge organizers, manage research data and modeling results, as well

as develop methods based on acoustic and text embedding techniques. I also

contributed towards writing the publication and developing the conference

presentation. The preface and the notes and comments sections of this chapter

are entirely new additions for the purpose of this thesis.
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Chapter 1

Introduction

Mental health is a critical issue for the global human population. In 2019, one

in every eight individuals was living with some form of mental disorder [44].

Further, as a fallout of the COVID-19 pandemic, just in the year 2020 there

was a significant rise (estimated at 26 to 28 percent) in the number of people

living with anxiety and depression. With the rapid aging of the world’s popu-

lation, the global burden of aging-related mental disorders, such as dementia,

is also on the rise. More than 55 million people currently live with dementia,

with nearly 10 million new cases being added each year. Of these, about 60

percent live in low- and middle-income countries with limited access to mental

healthcare [45]. Dementia, with the most common form known as Alzheimer’s

dementia (AD), is a particularly insidious mental disorder characterized by

progressive degeneration of nerve cells in the brain. This degeneration results

in the deterioration of cognitive function, affecting memory, thinking and the

ability to perform daily activities. The societal burden of dementia is sub-

stantial, not only on patients but on caregivers and the healthcare system as

well.

Unfortunately global healthcare systems are vastly under-resourced. As

a result a large number of people needing mental health services are unable

to receive it. There is a critical need for timely, inexpensive, objective and

scalable mental health screening methodologies, with the potential to be de-

ployed at a larger scale as well as provide continuous (or more frequent) mental

health monitoring. Currently, a diagnosis of dementia, for example, is made
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based on a resource-intensive combination of clinically administered cognitive

assessments, brain imaging, cerebrospinal fluid and blood testing [2]. How-

ever, speech analysis has the potential to be utilized as a window into the

state of the human mind, and can provide support for timely, reliable and ob-

jective screening of many psychiatric disorders including dementia [28]. The

advent of smartphones and wearable technology has enabled frequent and in-

expensive measurement of personal health data. These innovations, coupled

with advancements in machine learning and speech signal processing, set the

stage for developing automated methods based on speech for identifying and

monitoring a range of psychiatric disorders.

In this dissertation, we present and discuss our research on machine learn-

ing models based on features derived from speech for the detection of Alzheimer’s

dementia (AD). We show that AD can be detected reliably from spontaneous

speech samples, even independent of the language spoken. This work paves

the way for building automated machine learned models for detecting and

monitoring AD. With further validation on larger and more diverse data sets,

such systems have the potential of being deployed at scale to flag early signs

of AD and monitor the progression of AD severity.

Our main contributions are:

(i) Demonstrating that speech features, both language and acoustic, can ef-

fectively determine whether a subject has dementia, and also its severity;

(ii) Showing that features based on language semantics and lexical complex-

ity are particularly important, and that these features need not be highly

complex to provide significant predictive performance on the given task;

(iii) Deriving novel features that capture aspects of speech production rele-

vant to identifying dementia irrespective of the language being spoken,

and thus providing the potential to develop models for low-resource lan-

guages as well;

(iv) Demonstrating that machine learned models based on these derived

speech features can be used to detect Alzheimer’s dementia with sig-
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nificant accuracy, even across different spoken languages; and

(v) Exploring the structure of the derived feature space in the multilingual

Alzheimer’s dementia setting, via data visualization and unsupervised

clustering.

The rest of this thesis is organized as follows: Chapter 2 introduces the nec-

essary background for understanding the utility of speech analysis in computa-

tional psychiatry and provides a literature review describing the use of speech

technologies for the assessment of psychiatric disorders; Chapter 3 presents

our work on machine learning models using language and acoustic features for

detecting AD from English speech samples; Chapter 4 describes our research

on a similar but harder problem, developing machine learning models using

language-agnostic speech features to enable the detection of AD from both En-

glish and non-English speech samples; Chapter 5 provides further exploratory

analysis of the language-agnostic speech representations from Chapter 4; and

Chapter 6 concludes this thesis with a discussion and comparative analysis

of the results, as well as potential future applications and research directions.

Additionally, Appendix A describes a pilot study we conducted using speech

analysis for detecting post-traumatic stress disorder (PTSD) in military vet-

erans.
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Chapter 2

Background and literature
review

Speech has long been known to be important in the diagnosis of psychiatric

disorders (e.g. depression, schizophrenia, bipolar disorder, psychosis, autism,

post-traumatic stress disorder, etc.). Speech provides a rich and varied view

of the state of human cognition. It enables the analysis of several different

behavioral and biological signals, including language, emotion, acoustic and

non-verbal paralinguistic cues. The assessment of speech is therefore a crucial

component of diagnostic and prognostic assessment by clinicians [57].

The intimate linkage between cognitive processes and speech production

makes speech analysis a promising non-invasive biomarker for identifying some

forms of cognitive deterioration and thus supporting the diagnosis and mon-

itoring of several types of mental illness. In recent years, there has been

significant interest in developing automatic speech analysis methods for the

assessment of various types of mental disorders. The rapid progress of speech

and machine learning technologies has enabled the development of automated

methods of speech analysis to screen for psychiatric disorders including de-

pression, anxiety, post-traumatic stress disorder, psychosis, schizophrenia, de-

mentia, and mild cognitive impairment (MCI) [12], [22], [28], [36], [41], [60].

Human speech and language production is a complex process involving a

variety of cognitive abilities, including working and short-term memory, plan-

ning and executive function, and knowledge of lexical, semantic and syntactic

concepts [27]. The cognitive decline typically associated with Alzheimer’s de-
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mentia can manifest in the deterioration of spoken language, which in turn

affects an individual’s ability to perform daily activities and interact with

their environment [59]. In fact, there is evidence to suggest that speech and

language impairment may occur even in the pre-clinical stage of Alzheimer’s

disease, known as the Mild Cognitive Impairment (MCI) stage [11]. Hence

automated speech-based machine learning models to detect and monitor de-

mentia status are very promising.

With this potential in mind, there have recently been a myriad of studies

exploring the development of speech-based machine learning methods for auto-

matically detecting Alzheimer’s dementia. In order to summarize the relevant

literature, we provide here a brief review of a recent survey paper [18], which

we found most relevant to the work described in this thesis, and additionally

point the reader to two other similar survey papers for further research [38],

[47]. Also, a few more task-specific research papers have been discussed in the

related work sections of the publications reproduced in Chapters 3 and 4.

The review compiled by Fuente Garcia et al. [18] covered 51 peer-reviewed

publications on speech-based machine learning methods for Alzheimer’s de-

mentia spanning the years from 2000 to 2019. Most of the reviewed papers

(41 out of 51) attempt the binary classification task of predicting the presence

or absence of cognitive impairment. Of the remaining papers, seven papers

attempt a multi-class classification of three or four disease stages, two explore

longitudinal cognitive changes, and one attempts to discover relevant patterns

via cluster analysis. Most studies reported scores on the Mini Mental State

Exam (MMSE) cognitive assessment to quantify dementia severity. This is de-

spite criticism that MMSE is biased due to ceiling and/or floor effects, reduc-

ing its sensitivity and/or specificity for detection of pre-clinical AD [17], [23].

Ceiling (and floor) effects occur when personal characteristics of the tested

individuals (such as race, gender or education levels) affect their performance

on a cognitive assessment tool, independently from their cognitive function-

ing which is actually being assessed. This can create bias in the assessment

results.

In terms of speech tasks performed by study participants [18], there is sig-
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nificant heterogeneity, with tasks including verbal fluency, story recall, picture

description, reading passages, and conversational interviews. The authors note

that, although constrained lab-based tasks have their merit for standardiza-

tion and control, it is also advantageous to study spontaneous speech elicited

from study participants for characterizing dementia, as this type of data can

be captured in a natural setting repeatedly over time. They also point out

that a picture description task can elicit relatively spontaneous speech, since

participants may describe the picture in any way they want, although the

content is somewhat constrained. 70% of the reviewed papers used a picture

description task to elicit spontaneous speech, whereas dialogue data is used

less frequently and more heterogeneously (structured, semi-structured, and

conversational interviews). Additionally, more than half the studies rely on

manually transcribed data, thus limiting their practical applicability. In terms

of data set sizes, only 27% of papers use 100 or more study participants. Fur-

thermore, there are only 6 studies working with data sets having 100 or more

participants per experimental group (with either two, three or four groups for

classification), all of which used the DementiaBank Pitt corpus [8]. Regarding

data balance, only 20 out of the 51 papers studied report a class-balanced

data set, and out of these only one study balanced age, gender and education

within and between classes as well. This is important to consider because

findings based on imbalanced data have a higher risk of bias, especially when

using smaller data sets. Regarding feature engineering, most studies rely on

automatic speech recognition (ASR) and voice activity detection (VAD) to pre-

process the samples, then compute text-based and acoustic features such as

type-token ratio, idea density, syntactic complexity, spectral features, speech

rates and pause features. Most studies use conventional machine learning

methods (e.g. decision trees, support vector machines), with only a few at-

tempting deep learning based approaches, likely due to the relatively small

data sets sizes. For evaluation, cross-validation (CV) is the preferred method

for most studies, although many studies neglect to mention whether a nested

CV is implemented for systematic hyperparameter tuning. Performance re-

sults are mostly reported in terms of classification accuracy, and range from
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less than 50% to more than 90%. However, the comparability of these perfor-

mance measures is relatively low, due to potential biases in terms of data set

size, data imbalance and non-standardized feature generation. The authors

note that even though there is a relatively large number of relevant studies

spanning the last twenty years, the heterogeneity of data and methodology

means that comparability of results remains low, hindering the translation of

these technologies into clinical practice.

We also provide here a brief overview of the editorial [32] describing the

research papers published under the Frontiers Research Topic “Alzheimer’s

Dementia Recognition through Spontaneous Speech”. The two main chal-

lenges here were AD classification and MMSE prediction, from spontaneous

speech elicited from the Boston Cookie Theft picture description task (Fig-

ure 2.1). Some studies published under this special topic adopted a different

experimental design, so these are ignored in this overview for better compara-

bility. Several of the relevant papers found that linguistic features derived from

transcripts were in general more discriminative compared to acoustic features

[4], [20], [21], [39], [62]. Pause and disfluency features are also shown to be

important in some studies [42], [61]. Another study [37] attempts to build a

multi-modal early fusion model, by fusing information from the language and

acoustic features at the sentence and word level using forced alignment and

a clustering-based method termed Active Data Representation (ADR); note

this achieved state-of-the-art accuracy (94%). Furthermore, most of the stud-

ies found no significant improvement in results by using deep learning based

methods compared to traditional machine learning methods.

Despite progress in the research on detecting Alzheimer’s dementia from

speech, there are certain shortcomings that can be considered as opportunities

for further research. As noted in the survey papers discussed above, the field

lacks standardization of data and methodology, making reproducibility a lim-

iting factor, and is plagued by lack of data, raising concerns of generalizability.

Furthermore, the multilingual and cross-lingual applicability of the proposed

methods is severely limited, which makes it difficult to bridge the gap for low-

resource languages. The ADReSS challenges [29]–[31] have attempted to fill
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Figure 2.1: ‘Cookie theft’ picture used to elicit spontaneous speech response
in the DementiaBank Pitt data set [8]

some of these gaps in order to move the research towards clinical adoption. Our

work, presented and discussed in the next chapters of this dissertation, show-

cases our contributions to the field, both in terms of methods using text-based

features derived from high-quality manual transcripts, as well as methods us-

ing more generalizable cross-lingual features based on multilingual ASR and

pause distributions. Our hope is that the community pushes to create and

share large, standardized, open, and multilingual speech data sets, so that the

methods presented here can be comprehensively validated in order to enhance

their scope and applicability.
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Chapter 3

Language and acoustic models
for detecting Alzheimer’s
dementia from English speech

3.1 Preface

In the next sections of this chapter, we reproduce our publication titled “Learn-

ing Language and Acoustic Models for Identifying Alzheimer’s Dementia From

Speech” [56] – with a few minor modifications. This preface is intended to pro-

vide additional background information and explain concepts in further detail

that could only be addressed briefly in the original paper. Here we explain the

Mini Mental State Examination (MMSE), an assessment tool used to measure

dementia severity, and provide some more conceptual background regarding

the language, fluency, and n-gram features, as well as the acoustic and prosodic

speech features, used in this study. We also provide a brief description of the

data set used in this study.

3.1.1 Mini Mental State Examination (MMSE)

The Mini Mental State Exam (MMSE) is a brief clinician-administered ques-

tionnaire designed to measure the severity of cognitive impairment in elderly

individuals [10], [16]. The score on the MMSE can range from 0 to 30. A

score of 23 or lower is considered to indicate cognitive impairment, with lower

values associated with more severe cognitive decline. The items on the MMSE

cover five areas of cognitive function: orientation, registration, attention and
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calculation, recall and language, which are designed to test short-term mem-

ory, verbal memory and naming, visuospatial skills, and basic problem-solving

skills. The MMSE is one of the most commonly used assessment tools for

assessing severity of dementia, although it is not used as a standalone tool to

obtain a conclusive dementia diagnosis. Further testing, including brain imag-

ing, comprehensive neurological exam, and possibly genetic testing, would be

required to establish dementia status.

3.1.2 Language features

Here we describe some of the concepts related to language modeling that we

used in this work: bag-of-words and bigram models, some preprocessing steps

like lemmatization and stopword removal, and the TF-IDF transform.

Language models

Language models are used to assign probabilities to sequences of words. Given

a sequence of words wi of length m, a language model assigns a probability

P (w1, . . . , wm) to the sequence.

The bag-of-words model is the simplest possible language model. This

model uses a drastic simplifying assumption, that each word in the sequence

is completely independent of any of its preceding words. It is derived by first

determining the vocabulary V of a corpus, which is just the set of unique words

seen in the corpus. Then a bag-of-words vector is computed for each document

in the corpus, with an element in the vector storing a frequency count of the

number of occurrences of the corresponding word in that document. Taken

together, these bag-of-words vectors form a fixed-dimension matrix of word

counts, with each row corresponding to a single document and each column

associated with a single word in the corpus vocabulary. A bag-of-words model

completely disregards word context and ordering, and only depends on the

frequency of occurrence of individual words.

The n-gram model is a relatively more complex language model, where an

n-gram is a sequence of n words [24]. Compared to a bag-of-words model that

does not consider word context, an n-gram model takes into account a context
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window (or a history) of size n− 1. So a 2-gram (or bigram) is a sequence of

two consecutive words, like (“please”, “go”), (“go”, “outside”), and (“outside”,

“and”), and a 3-gram (or trigram) is a sequence of three consecutive words,

like (“please”, “go”, “outside”) and (“go”, “outside”, “and”).

The n-gram model implicitly uses the Markov assumption, i.e. it assumes

that the probability of the next word in a sequence depends only on a fixed size

window of its preceding words. So a bigram model uses the single preceding

word to determine the probability of the next word in the sequence, whereas

a trigram model uses the last two words. In general, an n-gram model uses

a context window of n− 1 preceding words. The probability of a sequence of

words w1, . . . , wm under the bigram model is then given by:

P (w1, . . . , wm) = P (w1)P (w2|w1) P (w3|w1:2)P (w4|w1:3) . . .P (wm|w1:m−1)

= P (w1)P (w2|w1) P (w3|w2)P (w4|w3) . . .P (wm|wm−1)

The above equation uses the assumption that P (wk|w1:k−1) ≈ P (wk|wk−1)

for k ∈ 1, . . . , n. The conditional probabilities can be approximated using

maximum likelihood estimation (MLE). For the n-gram model, the MLE is

obtained using normalized frequency counts in a given text corpus.

Preprocessing

To prepare the transcripts for computing language representations, we also

performed a couple of preprocessing steps1, namely lemmatization and stop-

word removal. Lemmatization is the process of replacing each word in the

document (or transcript in our case) with its root word. So the words “stand-

ing”, “stands”, and “stood” are all replaced by the single root word “stand”.

This step normalizes the input text, ensuring that the subsequent language

model focuses on the actual semantic language content rather than the gram-

matical forms and parts of speech. Note that in our experiments, we did in

fact build models using features based on part-of-speech tags as well, but did

not find them useful for this particular task.

1We used the Python NLTK toolkit [7] for preprocessing
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Another preprocessing step we used was stopword removal. The assump-

tion here is that some generic words that occur with high frequency across

almost all texts, like conjunctions and prepositions, have low information con-

tent from a predictive standpoint and therefore can be removed to normalize

the input text. Some examples of such stopwords are: ‘the’, ‘to’, ‘and’, ‘a’,

‘in’, ‘it’, ‘is’, ‘I’, ‘that’, ‘had’, ‘on’, ‘for’.

Term Frequency Inverse Document Frequency (TF-IDF)

The language models we described above represent a document corpus with

a matrix of word frequency counts. However, raw frequency counts tend to

overemphasize the importance of ubiquitous words such as “boy”, “they” and

“good”. These words, that occur in a high frequency within most of the

documents in the given corpus, are not particularly discriminative between

individual documents. Hence, we would like to assign a lower weight to these

high-frequency words, but at the same time preserve the weight of the more

rare (and potentially more informative) words.

To do this, we use the TF-IDF normalization. It is defined as the product

of the term, or word, frequency (i.e. word counts with respect to a single

document) and the inverse of the document frequency (i.e. number of times

the word occurs across all available documents). It ensures that a frequently

occurring word in a document is given a higher weight, but only if that word

also occurs relatively infrequently in all other documents in the corpus. In

contrast, words such as “boy” and “good,” that appear in essentially every

document in the corpus, are seen as uninformative and therefore assigned a

lower weight.

3.1.3 Acoustic and prosodic features

Besides the actual words being spoken (i.e. language content), there is also a

lot of information encoded in the way in which the words are spoken. This

opens the possibility of extracting further informative features from the acous-

tic speech signal. Speech signal processing views speech in the time domain

as a time-varying waveform, and in the frequency domain as a combination

12



of sinusoidal components of different frequencies (using Fourier analysis [14]).

These two different views of the speech signal allow us to derive many speech

features that demonstrate varying levels of information content and relevance

to the performance task. The fundamental frequency F0, and the for-

mants (F1, F2, and so on) are speech features computed from the frequency

spectrum, and are related to the natural pitch characteristics of speech. Jit-

ter and shimmer are features related to variation in the period length and

amplitude of F0, and are perceived as roughness, breathiness, or hoarseness

in a speaker’s voice [3]. Note also that delta and delta-delta features refer to

the first- and second-order frame-to-frame difference between whichever speech

features are being considered.

Speech analysis algorithms assume that the speech signal is stationary.

This is seldom true over any meaningful time window of the speech signal.

Therefore we segment the signal into overlapping windows (typically 20-30

milliseconds long), and make the assumption of stationarity within each win-

dow. Then the spectrogram is constructed by applying the Fourier transform

separately to each window, and stacking each of the individual windows’ spec-

tra as columns of the spectrogram matrix. When these individual spectra are

resampled to the Mel-frequency scale, the resulting matrix is known as the

Mel-frequency spectrogram [14]. The Mel-frequency scale is a non-linear

mapping of the audible frequency range, with the effect of expanding the detail

in the lower frequencies and compressing it in higher frequencies (following typ-

ical human auditory perception, since human hearing is less sensitive at higher

frequencies).

The Mel-frequency cepstrum is another representation computed by ap-

plying a Discrete Cosine Transform (DCT) on the log magnitude of the Mel-

frequency spectrum. The word “cepstrum” is a word-play on ‘spectrum’,

meant to indicate that it is a spectrum of a spectrum. The Mel-frequency

cepstral coefficients (MFCCs) are a perceptually informed dimension re-

duction technique for speech signal processing, derived using the Mel-frequency

cepstrum (see Figure 3.2 below), and as such they have proven to be important

features for speech analysis tasks.
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3.1.4 ADReSS Challenge data set

Table 3.1: ADReSS training set characteristics
AD non-AD

Age M F MMSE (sd) M F MMSE (sd)
[50, 55) 1 0 30.0 (n.a.) 1 0 29.0 (n.a.)
[55, 60) 5 4 16.3 (4.9) 5 4 29.0 (1.3)
[60, 65) 3 6 18.3 (6.1) 3 6 29.3 (1.3)
[65, 70) 6 10 16.9 (5.8) 6 10 29.1 (0.9)
[70, 75) 6 8 15.8 (4.5) 6 8 29.1 (0.8)
[75, 80) 3 2 17.2 (5.4) 3 2 28.8 (0.4)
Total 24 30 17.0 (5.5) 24 30 29.1 (1.0)

The data set provided for this challenge2 is a subset of the DementiaBank

Pitt corpus [6]. It was balanced in terms of age, gender and binary class labels.

For details about the training and test data set characteristics, see Tables 3.1

and 3.2. The data included speech recordings of participants responding to the

Cookie Theft picture description task (Figure 2.1) from the Boston Diagnostic

Aphasia Exam [19], as well as high-quality transcripts annotated using the

CHAT coding system [33].

Table 3.2: ADReSS test set characteristics
AD non-AD

Age M F MMSE (sd) M F MMSE (sd)
[50, 55) 1 0 23.0 (n.a.) 1 0 28.0 (n.a.)
[55, 60) 2 2 18.7 (1.0) 2 2 28.5 (1.2)
[60, 65) 1 3 14.7 (3.7) 1 3 28.7 (0.9)
[65, 70) 3 4 23.2 (4.0) 3 4 29.4 (0.7)
[70, 75) 3 3 17.3 (6.9) 3 3 28.0 (2.4)
[75, 80) 1 1 21.5 (6.3) 1 1 30.0 (0.0)
Total 11 13 19.5 (5.3) 11 13 28.8 (1.5)

Training labels were provided for both the classification task (binary AD

vs non-AD) and the regression task (MMSE scores). Note that the binary

classification labels are not obtained via a simple thresholding of the MMSE

scores. The diagnosis of AD (or ‘Probable AD’ to be exact) was obtained by

2https://luzs.gitlab.io/adress/
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the clinicians involved in the original study [6], through a combination of var-

ious assessment methods including extensive neuropsychological examination,

laboratory tests, and (for some participants) post-mortem autopsies.

Each speech sample was segmented using voice activity detection, with a

maximum duration of 10 seconds per segment, and the segmented data set

was also made available (after some acoustic enhancements including noise

removal and volume normalization). The average number of speech segments

per participant was 24.86 (with a standard deviation of 12.84).

The next sections of this chapter reproduce the paper [56], with the final

section providing some additional comments.

3.2 Introduction

This paper is motivated by the Alzheimer’s Dementia Recognition through

Spontaneous Speech (ADReSS) challenge, hosted by the INTERSPEECH 2020

conference [30]. The data set provided in this challenge is a carefully curated

subset of the larger DementiaBank corpus [6]. Among the various challenge

submissions, the top-performing models analyzed both linguistic and acoustic

features, and many of these top submissions used deep learning methods (in-

cluding some pre-trained models) to generate their results. For example, Koo

et al. [26] used an ensemble approach with bi-modal convolutional recurrent

neural networks (cRNN), applied to a variety of feature sets from pre-trained

acoustic and linguistic algorithms in addition to some hand-crafted features.

They achieved an accuracy of 81.25% on their classifier evaluation and an

RMSE score of 3.75. Another study by Balagopalan et al. [5] achieved an

accuracy of 83.33% and an RMSE of 4.56 by appending a binary classification

layer to a pre-trained language algorithm developed by Google: Bidirectional

Encoder Representations from Transformers (BERT). The Sarawgi et al. [51]

submission applied RNNs and multi-layered perceptrons (MLP) to various

types of acoustic and linguistic features in an ensemble manner. They also

used transfer learning from the classification models to the MMSE scores by

modifying the last layer structure, achieving an RMSE of 4.6 and an accuracy
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of 83.33%. Lastly, Searle et al. [54] used linguistic features only, with pre-

trained Transformer-based models, and achieved their best performance using

features computed from the full transcripts (including both participant and

interviewer speech): a classification accuracy of 81% and an RMSE of 4.58.

The commonality among these top submissions was the use of deep-learning

methods along with pre-trained acoustic and/or language models.

Our study hopes to improve further by applying simple, computationally

inexpensive ML techniques to natural language and acoustic information. In

particular, we train models that use both acoustic and language features to dis-

tinguish AD from healthy age-matched elders and predict their MMSE scores.

Our system feeds the acoustic features into one pipeline, and the linguistic

ones in another. Each pipeline preprocesses the features, then uses internal

cross-validation to tune the hyperparameters and select the relevant subset of

features. We use ensemble methods to combine the various learned models, to

produce models that can (1) label a speech sample as either AD or control,

and (2) predict the associated MMSE score of that instance.

3.3 Methods

For this study, we were given a training set of 54 AD patients and an age- and

gender-matched set of 54 healthy controls (this is a subset of the larger De-

mentiaBank data set; see [6]). This subset of DementiaBank contained spon-

taneous speech samples of participants asked to describe the Cookie Theft

picture from the Boston Diagnostic Aphasia Exam ([19]). For each partici-

pant, we obtained

(1) the original recorded speech sample,

(2) the normalized speech segments extracted from the full audio sample after

voice activity detection, audio normalization and noise removal,

(3) the speech transcript files annotated using CHAT (Codes for Human Anal-

ysis of Transcripts) transcription format [34], and

(4) some descriptive features about these individuals, including age, gender,

binary class label (AD/control; the target for the classification task), and their
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MMSE score (which we try to predict in the regression task).

The challenge organizers withheld a test set containing data from 24 AD

and 24 healthy participants for final evaluation, the labels for which were

subsequently provided as well. For further details of this data set, we refer the

reader to [30].

We considered a set of possible base learners, applying each to some specific

subset of the features – the (1), (2) and (3) mentioned above. We used internal

5-fold cross validation to identify which of these base learners was best. Due

to the size of our data, we chose to use a 5-fold CV procedure. 10-fold CV

or Leave-one-out CV procedure would result in small partitions, leading to

possible overfitting (lower bias, higher variance). To ensure consistent and

reliable comparison between our models, we defined and used a common set of

folds that were balanced in terms of class labels (or MMSE scores) as well as

gender. For each model, we evaluated performance metrics (average accuracy

for classification, and average RMSE for regression) based on these test folds,

as well as on the final hold-out test set.

3.3.1 Language and fluency features

The organizers provided transcripts that were annotated using the CHAT cod-

ing system [34]. First we extracted only the participant’s speech from these

transcripts, removing the interviewer’s content. Then, using the CLAN (Com-

puterized Language ANalysis) program for processing transcripts in the CHAT

format, we computed the following set of global syntactic and semantic features

for each transcript: type-token ratio (TTR) – the number of unique words di-

vided by total number of words; mean length of utterance (MLU), where an

utterance is a speech fragment beginning and ending with a clear pause; num-

ber of verbs per utterance; percentage of occurrence of various parts of speech

(nouns, verbs, conjunctions, etc.); number of retracings (self-corrections or

changes); and number of repetitions. We also computed a number of flu-

ency features, including percent of broken words, part-word and whole-word

repetitions, sound prolongations, abandoned word choices, word and phrase
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repetitions, filled pauses, and non-filled pauses [35]. In total, we computed 62

such informative summary features for each transcript.

3.3.2 N-gram features

We processed the raw (unannotated) transcripts to compute bag-of-words and

bigram features. First, we standardized the transcripts by converting them

into a list of word tokens. Next, we used the WordNet lemmatizer [40] to find

and replace each word with the corresponding lemma; for example, words like

“stands”, “standing” and “stood” were all replaced by the common root word

“stand”. Finally, we removed stopwords from each transcript, where stopwords

are highly common (and presumably uninformative) words that may add noise

to the data (such as “I”, “am”, “was”, etc.), using a predefined stopwords list

from the Python natural language toolkit (NLTK) package.

Next, we used the standardized transcripts to compute bag-of-words vec-

tors (using words seen in the training set only) – that is, a vector of 514 integers

for each transcript, where the kth value is the number of times the kth word

occurred – and normalized these vectors with the Term Frequency-Inverse Doc-

ument Frequency (TF-IDF) function, which is a normalization procedure that

reflects how important a word is to a document in a corpus, effectively penal-

izing words that occur frequently in most of the documents in the corpus. For

example, in our case the word “boy” might occur frequently in all transcripts

(as one of the main subjects in the Boston Cookie Theft picture is a boy, see

Figure 2.1), so it may not be very informative. Finally, we also computed

bigram vectors in a manner similar to bag-of-words – where each bigram is a

pair of words that appear adjacent to one another. Note that these bigrams

are computed after preprocessing the transcripts, which included stopword

removal. We found a set of 2,810 bigrams.

3.3.3 Acoustic features

Using the speaker timing information provided in the transcripts, we extracted

the participants’ utterances (removing the interviewer’s voice) from the audio

recordings, for a total of 1501 participant utterances from the training set, and
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592 from the test set. We then normalized the audio volume across all speech

segments. We computed four different sets of features from each audio segment

using OpenSMILE v2.1 [15]. Note that our overall learner will consider various

base-learners, each running on one of these feature sets.

(Feature Set #1) The AVEC 2013 [58] feature set includes 2268 acous-

tic features including 76 low level descriptor (LLD) features and their sta-

tistical, regression and local minima/maxima related functionals. The LLD

features include energy, spectral and voicing related features; delta coefficients

of the energy/spectral features, delta coefficients of the voicing related LLDs

and voiced/unvoiced duration based features.

(Feature Set #2) The ComParE 2013 [53] feature set includes energy,

spectral, MFCC, and voicing related features, logarithmic harmonic-to-noise

ratio (HNR), voice quality features, Viterbi smoothing for F0, spectral har-

monicity and psychoacoustic spectral sharpness. Statistical functionals are

also computed, leading to a total of 6,373 features.

(Feature Set #3) Our third feature set consists of the following three

feature sets. The emo large [15] feature set consists of cepstral, spectral, en-

ergy and voicing related features, their first and second order delta coefficients

as LLDs; and their 39 statistical functionals. The functionals are computed

over 20 ms frames in spoken utterances. This produced 6552 acoustic features

across the utterances. The Jitter-shimmer feature set is a subset of INTER-

SPEECH 2010 Paralinguistic Challenge [52] feature set, consisting of 3 pitch

related LLDs and their delta coefficients. We also computed 19 statistical

functionals of the LLDs on the voiced sections of the utterances, resulting in

114 features. Finally, we extracted 7 speech and articulation rate features by

automatically detecting syllable nuclei [13], and used a script from the software

program Praat to detect peaks in intensities (dB) followed by sharp dips. We

also calculated other features, such as words per minute, number of syllables,

phonation time, articulation rate, speech duration and number of pauses for

each speech sample [9].

(Feature Set #4) We computed the MFCC 1-16 features and their

delta coefficients from 26 Mel-bands, which uses the fast Fourier transform
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(FFT) power spectrum. The frequency range of the Mel-spectrum is set from

0 to 8 kHz. Inclusion of statistical functionals resulted in 592 features. This

feature set is a subset of AVEC 2013 feature set [58].

We also added age and gender of the participants to each set of features.

3.3.4 Language based models

Given our two sets of linguistic features above (Sections 3.3.1 and 3.3.2), we ex-

plored various dimension reduction techniques and base learning algorithms to

find the best performing pipeline. The dimension reduction techniques include

Principal Component Analysis (PCA), Latent Semantic Analysis (LSA), and

univariate feature selection using ANOVA F-values. The base learning algo-

rithms explored for the classification task are logistic regression (LR), random

forest (RF), support vector machine (SVM), and extreme gradient boosting

(XGB). For the regression task, the regression versions of the same algorithms

are trained (except logistic regression is replaced by linear regression). Internal

5-fold cross-validation was used to tune the hyperparameters for each model

based on accuracy.

The hyperparameters explored were:

Dimension reduction:

1. For classification models, dimension reduction with PCA using {10, 20,

30, 50} components, and LSA using {100, 200, 500} components;

2. For regression models, dimension reduction with PCA using {20, 30, 50}

components, and LSA using {200, 500, 800} components.

Models:

1. SVM (regularization parameter C: {0.1, 1, 10, 100, 1000}, kernel: {linear,

RBF, polynomial});

2. LR (regularization parameter C: 20 values spaced evenly on a log scale

in the range [10−4, 104], loss function: {L1, L2});
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3. RF (number of trees: {100, 300, 500, 700}, maximum features at each

split: {5, 15, 25, 35, 45, 55}, minimum samples at leaf node: {1, 2, 3,

4}); and

4. XGB (maximum depth: {5, 6, 7, 8}, learning rate: {0.02, 0.05, 0.07,

0.1}, number of trees: {50, 100, 200, 500, 1000}).

The same hyperparameters were explored for the regression models as well

(with the exception of replacing LR with linear regression).

Our internal cross-validation found the best-performing language-based

classification model, which consisted of the following steps:

Step1: 5-component PCA transformation of the dense language and fluency

features described in Section 3.3.1 (after standardizing using z-scores);

Step2: 50-component LSA transformation of the sparse unigram and bigram

features described in Section 3.3.2 (after standardizing using TF-IDF trans-

form); and

Step3: L1-regularized logistic regression

The best language-based regression model involved the following:

Step1: 30-component PCA transformation of the dense language and fluency

features described in Section 3.3.1 (after standardizing using z-scores);

Step2: 100-component LSA transformation of the sparse unigram and bigram

features described in Section 3.3.2 (after standardizing using TF-IDF trans-

form); and

Step3: Random Forest Regressor, using 100 trees, minimum of 4 instances at

each leaf node, and 25 features considered for each split.

3.3.5 Acoustic models

All acoustic features were real values and were therefore standardized using

z-scores. We used PCA to reduce the dimensionality of the feature sets. For

Feature Set #1 and Feature Set #2, we used PCA, and kept the minimum

number of features capable of retaining 95% of the variance. In the case of

Feature Set #3 and Feature Set #4, the number of principals were determined

through internal 5-fold cross-validation. Therefore, the dimension of Feature
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Set #1 is reduced from 2,268 to 700, Feature Set #2 from 6,373 to 1100,

Feature Set #3 from 6,552 to 1000 and Feature Set #4 from 592 to 50. Next,

we selected the best 50 principal components from Feature Set #1, and the

best 70 from Feature Set #3, applying a univariate feature selection method

based on ANOVA F-value between the label and each feature. For Feature Set

#2, we calculated feature importance weights using a decision-tree regression

model, and selected only the features with importance weight higher than the

mean.

After this pre-processing stage, our system fed these audio features to

various machine-learning algorithms, that each identify patterns of features

that can distinguish dementia patients from healthy controls (the classifica-

tion task), and can compute a subject’s MMSE score (the regression task).

We explored several learning algorithms, including Adaboost, XGB, RF,

gradient boosting (GBT), decision tree (DT), hidden Markov model (HMM)

and neural network (NN). Our superlearner used internal 5-fold cross-validation

to tune the hyperparameters of the classifiers and regressors. The predictions

were made in two steps. In the first step, the classifiers (and resp., regres-

sors) were trained and tested with acoustic features, age and gender to predict

whether the speech segment was uttered by a healthy control or an AD patient

(and resp., to predict that subject’s MMSE score). Next, weighted majority

vote classification was performed to assign each subject a label of health con-

trol or AD, based on the majority labels of the segment level classification.

The predicted MMSE scores on all the segments of one subject were averaged

to calculate the final MMSE score of that subject.

The classifiers of acoustic data, that performed best (in cross-validation on

the training set) are the following (in order):

1. Neural network with 1 hidden layer, trained on Feature Set #1

2. AdaBoost Classifier with 50 estimators and logistic regression as the base

estimator, trained on Feature Set #4

3. Adaboost with 100 estimators and DT as the base estimator trained on

Feature Set #3.

23



The three regressors with the lowest root mean square error (RMSE) were

1. Gradient boosting regressor, trained on Feature Set #4

2. Decision tree with number of leaves 20, trained on Feature Set #2

3. Adaboost regressor trained on Feature Set #3 with 100 estimators.

3.3.6 Ensemble models

After obtaining our best-performing acoustic and language-based models, we

computed a weighted majority-vote ensemble meta-algorithm for classifica-

tion. We chose the three best-performing acoustic models along with the

best-performing language model, and computed a final prediction by using

weights learned on the individual model predictions. The weights assigned to

each model were proportional to that model’s mean cross-validation accuracy,

such that the best performing model is given the highest weight in the final

prediction. For regression (to predict the MMSE scores), we computed an

unweighted averaging of our best language and acoustic models.

3.4 Results

3.4.1 Classification

Table 3.3 presents the results for the classification task. The model that

obtained the highest average cross-validation accuracy (81% ± 1.17%) is a

weighted-majority-vote ensemble of the best language-based model and three

of the best acoustic-based models. The second highest accuracy (80%± 0.00%)

was obtained by the language-based logistic regression. However, a McNemar

test reveals that these two models do not exhibit a statistically significant dif-

ference in performance (McNemar test statistic = 4.0, p > 0.05). This is also

evident by the performance of these two models on the final held-out set, where

the language-based logistic regression gives the highest accuracy (85%) and the

weighted-majority-vote ensemble gives a slightly lower accuracy (83%). Us-

ing McNemar’s test to compare these two models on the held-out test set, we
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Table 3.3: Results of our best performing classification models distinguishing
AD from non-AD subjects. The ‘Baseline (Acoustic)’ model is described
in [30]. The right-most column shows accuracy on the held-out test set
of 48 subjects (24 AD and 24 non-AD). The rest of the table lists model
performance using 5-fold cross-validation on the training set of 108 subjects
(54 AD and 54 non-AD).

Classifiers Class Precision Recall F1 Score Accuracy Accuracy (Hold-out set)

AD 0.71 0.60 0.75

Logistic Regression (NLP) HC 1.00 1.00 0.83 80% ± 0.00% 85%

OVR 0.80 0.80 0.79

AD 0.68 0.84 0.75

SVM (NLP) HC 0.79 0.60 0.68 72% ± 1.85% 73%

OVR 0.73 0.72 0.72

AD 0.74 0.96 0.83

Majority vote (NLP + Acoustic) HC 0.94 0.66 0.78 81% ± 1.17% 83%

OVR 0.84 0.81 0.81

AD 0.71 0.78 0.74

Majority vote (Acoustic) HC 0.76 0.68 0.72 73% ± 1.36% 65%

OVR 0.73 0.73 0.73

AD 0.57 0.52 0.54

Baseline (Acoustic) HC 0.56 0.61 0.58 57% 63%

OVR 0.57 0.57 0.56

AD Alzheimer’s dementia HC Healthy control OVR Overall rating

obtain a test statistic of 3.0, with p > 0.05, indicating that the performance

difference between these models is not statistically significant.

Note that our ensemble model, which uses only acoustic features, performs

significantly better than the “baseline model” (provided by the organizers),

which also uses acoustic features only.

3.4.2 Regression

Table 3.4 shows the root mean square error (RMSE) of various regression

models; columns 2 and 3 show the average RMSE and R2 scores over the 5

cross-validation folds, and columns 4 and 5, on the hold-out test set (provided

by the organizers of the challenge). These results show that the language-based

model obtains the best RMSE of 6.43 on the cross-validation set and 5.62 on

the hold-out set. The combined language-acoustic model did not perform

as well as the standalone language-based model, with an average RMSE of

6.83 on the cross-validation set and 6.12 on the hold-out set. Further, the

Wilcoxon test between the RMSEs of the two best models (best acoustic + best
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Table 3.4: Results of our best performing regression models predicting a
subject’s MMSE score (ranging from 0 to 30, with lower values indicating
more severe dementia). The ‘Baseline (Acoustic)’ model is described in [30].
As in Table 3.3, the columns on the right show RMSE and R2 on the held-out
test set of 48 subjects (24 AD and 24 non-AD). The middle columns list
RMSE and R2 using 5-fold cross-validation on the training set of 108 subjects
(54 AD and 54 non-AD).

Regressors RMSE
RMSE

(Hold-out Set)

Random Forest (NLP) 6.43 ± 0.18 5.62

Gradient Boosting (Acoustic) 6.89 ± 0.17 6.67

Random Forest (NLP)

+ Gradient Boosting (Acoustic)

6.66 ± 0.18 6.01

Majority vote (All models) 6.85 ± 0.16 6.12

Baseline (Acoustic) 7.30 6.14

language-based combination versus best stand-alone language-based), returns

a test statistic of 66.0 with p < 0.05 on the hold-out set, and a test statistic

of 1375.0 with p < 0.05 on the cross-validation set. This suggests that these

two models are significantly different in performance (i.e., we cannot reject the

claim that they are significantly different in performance).

We also report the coefficient of determination (R2) for all our models:

the best R2 was 0.17 on the validation folds and 0.14 on the held-out test set.

These low numbers are expected, given the relatively small size of this challenge

data set and the complexity of the condition. Interpreting this statistic in an

absolute sense is problematic, especially as we did not find any other study

using the same data set that reported this metric. We note that models based

on language features achieved the best R2 values, which further supports our

claim that language features are very important for this task.

3.4.3 Discussion

We investigated a variety of ML models, using language and/or acoustic fea-

tures, to identify models that performed well at using speech information to

distinguish AD from healthy subjects, and to estimate the severity of AD.
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Our results, of over 85% accuracy for classification and approximately 5.6

RMSE for regression, demonstrate the promise of using ML for detecting cog-

nitive decline from speech. In our investigation, we explored multiple different

combinations of feature sets and ML algorithms; in the future, it would be

interesting to delve deeper into the behavior of our best models, to determine

the contribution of individual (or groups of) features to the model’s ability

to distinguish AD patients from healthy controls. Further, although we have

currently used the full set of standard stopwords for removing noise in our

language models, it may be worthwhile to see whether using a reduced set of

stopwords (for example, not removing pronouns) might be more advantageous.

Our current best-performing models outperform recent results reported in

the literature and provide evidence that, for discriminating between subjects

with AD versus healthy controls, features based on language (semantics, flu-

ency and n-grams) are very useful. Compared to other top ranked results,

our methods do not involve complex, computationally expensive algorithms.

Instead, we used an ensemble approach with simple models to produce com-

petitive results.

Furthermore, a weighted majority vote of acoustic and language based

models demonstrates competitive performance, implying that a combination

of acoustic and language features also holds potential. Finally, comparing

only acoustic models, we find that cross-validation performance improves sig-

nificantly compared to the baseline model [30] for both the classification and

regression tasks, although test set performance of the acoustic-only model on

the regression task does not show improvement. Hence, given the relatively

small data set size and the potential for overfitting, we cannot say conclusively

that the acoustic feature sets computed here are effective by themselves for

predicting MMSE scores quantifying AD severity.

Our competitive performance, obtained using simple feature engineering

along with classical machine learning algorithms, indicates that putting to-

gether an efficient machine learning pipeline from basic building blocks can

achieve nearly state-of-the-art results for the learning tasks explored in this

study. This result suggests that, for detecting AD from speech, it may be
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useful to explore traditional feature engineering and machine learning tools,

especially in a limited data setting, as this will additionally provide for better

interpretability and reproducibility compared to more complex deep learning

based methods.

3.5 Notes and comments

In this section (which was not part of the original publication), I elaborate

upon additional comments we received from journal reviewers and provide

further rationale for our design choices. I also discuss some limitations of this

work, and avenues for future research.

It was no surprise, given the focus on deep learning approaches in modern

machine learning, that some reviewers wondered why we did not choose deep

learning based feature extraction strategies, but instead used the hand-crafted

features that we employed in this work. There are three main reasons for

this. Firstly, we felt that the relatively small size of the available training

data would likely entail a high risk of overfitting, which we wanted to avoid.

Secondly, it is more difficult to analyze, validate and interpret black-box deep-

learning-based features compared to features obtained via traditional feature

engineering guided by subject matter expertise. Thirdly, since we were able

to achieve high accuracy using traditional machine learning and feature en-

gineering, without using highly parameterized deep learning models, we felt

there was no need to add more complexity to our approach. With our system-

atic data-driven approach, using nested cross-validation to explore a variety

of model architectures and pipelines, we developed models that demonstrated

a high classification accuracy (85%) that ranked 3rd out of 34 teams globally.

There are, however, some important limitations of this work that warrant

further discussion. Firstly, our highest performing models were trained us-

ing language-based features derived from the high quality transcriptions that

were provided to us by the challenge organizers. Hence these models depend

heavily on the quality of transcriptions available, and therefore cannot be con-

sidered fully automatic. Since good quality transcriptions are expensive to
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obtain, even in the English language setting, the bottleneck this creates has a

direct impact on the feasibility of deploying our models in a broader clinical

context. These methods need to be rigorously validated using transcripts gen-

erated from automatic speech recognition (ASR) systems, which are generally

much noisier and more error-prone, to quantify their robustness to this more

challenging setting.

A second limitation of the models described in this paper is that the data

set on which these models are trained is quite limited in size and scope. Even

though it is balanced for age and gender, we are not provided any additional

details about the income and education levels, demographics nor ethnicity of

the study participants. We can make an educated guess that most participants

are ethnically Caucasian, which in itself severely limits the generalizability of

methods developed using this data. Furthermore, we are also not provided

with information on confounding psychological disorders, such as depression

status, which may be highly relevant to understand the results and their gen-

eralizability. Additionally, since the data set is a purely English language one,

methods developed using it might not transfer to any other languages, espe-

cially lower-resource ones (although the study reproduced in the next chapter

tries to somewhat mitigate this last limitation).

Nevertheless, this work was important because we were able to compare

our methods against other competitors in a controlled environment. The data

set was carefully curated so that some confounding variables such as age and

gender could be ignored. This allowed us to concentrate on the speech analysis

and machine learning aspects of the work, which could be used as a founda-

tion for building automated speech-based machine learning frameworks for

dementia detection.
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Chapter 4

Language-agnostic
representations for detecting
Alzheimer’s dementia from
multilingual speech

4.1 Preface

In the next sections of this chapter, we reproduce our publication titled “Ex-

ploring Language-Agnostic Speech Representations Using Domain Knowledge

for Detecting Alzheimer’s Dementia” [55] (with small modifications for read-

ability), which briefly described the models we developed for the ICASSP-

hosted challenge “ADReSS-M: Multilingual Alzheimer’s Dementia Recognition

using Speech”1. This preface is intended to provide additional background in-

formation and explain concepts in further detail that could only be addressed

briefly in the original paper. We use this preface to discuss the data set that

we used, as well as the features that we found useful.

4.1.1 Challenge motivation and data set

While there has been considerable interest recently in developing automated

methods for dementia detection using speech [18], a large proportion of the

literature has focused on developing models for the English language only.

These methods, including our work for the ADReSS challenge reproduced in

1https://luzs.gitlab.io/madress-2023/
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Table 4.1: ADReSS-M training set characteristics (237 English speech sam-
ples)

AD non-AD
Age M F MMSE M F MMSE
[50, 55) 1 1 29.0 1 0 23.0
[55, 60) 6 16 29.2 7 6 17.3
[60, 65) 7 13 29.0 7 8 19.0
[65, 70) 11 23 28.9 7 22 19.2
[70, 75) 10 18 28.7 9 21 17.3
[75, 80) 5 4 29.3 12 22 17.2
Total 40 75 28.9 43 79 17.9

Table 4.2: ADReSS-M test set characteristics (46 Greek speech samples)
AD non-AD

Age M F MMSE M F MMSE
[50, 55) 2 0 28.0 0 0 -
[55, 60) 0 0 - 0 0 -
[60, 65) 0 10 29.2 1 2 20.3
[65, 70) 2 4 29.2 1 2 18.7
[70, 75) 2 1 29.0 0 7 20.7
[75, 80) 0 1 28.0 2 3 18.6
[80, 85) 0 2 28.0 1 2 24.0
[85, 90) 0 0 - 0 1 25.0
Total 6 18 28.9 5 17 20.5

the previous chapter, have found that in general, the semantic content of spon-

taneous speech is an important determinant of dementia status. However, such

language-focused models unfortunately do not have the capacity to be directly

utilized across different languages and, in that sense, are heavily language-

specific. The ADReSS-M challenge took a different, potentially more globally

impactful, approach to the problem of dementia detection from speech. The

motivation of this challenge was to spur the development of speech-based ma-

chine learning models capable of detecting early signs of dementia independent

of the spoken language. Hence the methods were expected to be transferable

across different languages with respect to their ability to detect dementia from

speech samples.

The training data set consisted of a balanced set of 237 spontaneous English

speech samples from the DementiaBank corpus. It is an age-, gender-, and
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label-balanced data set (see Table 4.1) of audio recordings of participants

describing the Boston Cookie Theft picture [19]. No transcripts or segmented

audio clips were provided. The test data set is a (similarly) balanced set of 46

audio recordings (see Table 4.2) of spontaneous speech in the Greek language,

with participants describing a different picture (i.e., not the Boston Cookie

Theft picture, but instead a picture of a “lion lying with a cub in the desert

while eating” [29]). This test set was retained by the challenge organizers as a

held-out set to compare the final performance of the submissions. Challenge

participants were provided a development data set consisting of 8 Greek audio

samples as well.

4.1.2 Pause rate features

Prior studies on AD [11], [59] suggest that memory deficiency and cognitive

decline result in deterioration of speech fluency, due in part to diminished

word-finding capacity. Therefore, in this work we hypothesized that disflu-

encies in speech, represented by pauses and hesitation, would be important

to distinguish between dementia patients and healthy controls. Hence we de-

rived features to represent the distribution of pauses in the speech samples.

To achieve this, we first used the voice activity detection procedure from the

OpenSMILE speech processing toolkit [15] to divide each audio sample into

voiced and unvoiced segments. From the timestamps of the unvoiced seg-

ments, we determined the individual lengths of all pauses. Then we derived

the following pause-related features:

(i) Sum of durations of all unvoiced segments per sample (AD vs control)

This set of features was meant to capture the total silence duration per

speech sample.

(ii) Durations of individual voiced segments (AD vs control)

This set of features captures the distribution of the lengths of voiced

segments (i.e. the length of speech without a pause).

For each type of feature, we computed basic statistics (like the mean sum

of unvoiced segment lengths, and the mean length of voiced segments). We

32



Figure 4.1: Histogram of pause distribution for AD patients, and best-fit
PDFs, for several parametric models

Figure 4.2: Histogram of pause distribution for healthy controls, and best-fit
PDFs, for several parametric models
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also computed the histograms of both types of features separately for dementia

patients (Figure 4.1) and healthy controls (Figure 4.2), and found the para-

metric pdf curve of best fit (from the log-normal, burr, gamma, beta, and

normal distributions). We then used the best fit parameters of the fitted pdf

as additional features for our model.

4.1.3 Whisper model and derived features

We used the Whisper model [48] to derive language-based features that would

be independent of the actual language spoken (and thus usable across different

languages, even low-resource ones). Whisper is a large-scale model recently

developed at OpenAI, capable of both speech recognition (i.e. transcribing an

audio into text in the language that is spoken) as well as speech translation

into the English language. It is a transformer-based weakly-supervised mul-

titask model trained on 680,000 hours of audio and corresponding transcripts

collected from the internet (out of which 117,000 hours of audio comes from

96 other non-English languages).

The Whisper model works on the premise of zero-shot transfer learning

(without the need for extensive fine-tuning). It benefits from the large scale

of the training data set, and builds robustness to the noisy weak supervision

it is trained on. However, the authors note a clear drop in performance (in

terms of Word Error Rate - WER) in proportion to the size of the data set

for low-resource languages. They point out that, if good quality supervised

speech data is available for a certain language, it would likely benefit further

from fine-tuning [48].

Nevertheless, for the purpose of the current analysis, we are less concerned

with Whisper’s WER as we derive coarse word-level features specifically useful

for Alzheimer’s dementia classification. We use Whisper’s capabilities of re-

turning timestamps demarcating word boundaries within the generated tran-

script, as well as the word-level confidence scores assigned to the predicted

word by the model. The word boundaries are determined using attention

weights from the cross-attention mechanism and the dynamic time warping

(DTW) algorithm for alignment. The word timestamps are used to compute

34



Figure 4.3: Whisper model training pipeline overview (source: Figure 1 in
[48]). It uses a Transformer-based multilingual multitask training framework,
for tasks including multilingual speech recognition, speech translation, spoken
language identification, and voice activity detection. This enables a single
model to perform the entire speech processing pipeline.
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the relative length of each spoken word, which is used here as a proxy for lexical

complexity. We make a simplifying assumption: typically words that are more

complex are longer in spoken duration than simpler words, across different

languages. For example, the phrases “I had a good time” and “I had a de-

lightful time” are identical except for the substitution of “delightful” in place of

“good”. Since “delightful” is a longer word (in terms of syllables), it will gen-

erally take longer to speak than the word “good”. This word-duration-based

lexical complexity measure is a coarse way of quantifying (without relying on

the actual transcription) the number of longer and supposedly more complex

words spoken.

The other set of features derived from the Whisper model’s output is in-

tended to be a proxy for speech intelligibility. In general, dementia patients

tend to have a greater incidence of both filled and unfilled pauses, hesitations,

repetitions, broken words and other such disfluencies. The pause distribution

features used in this study only account for unfilled (or silent) pauses, since

they are based on audio segmentation using voice activity detection. They do

not capture the other types of disfluencies mentioned here, which may also be

important for discriminating dementia patients from controls. Hence we use

word-level confidence scores for the predicted transcripts from the Whisper

model to indirectly quantify the relative intelligibility of the spoken words.

Here we make the assumption that predicted words having low confidence

scores assigned by the Whisper model are less intelligible due only to the

disfluencies mentioned above. We expect to see a higher incidence of such

disfluencies in dementia patients compared to healthy controls.

As discussed in further detail in Section 4.6, the assumptions we have made

here are quite simplistic in nature, and consequently need further validation

studies on additional multilingual dementia data sets to validate them. Never-

theless, they provide a solid starting point for multilingual dementia analysis

and enabled us to achieve remarkable performance on the given data. The

following sections reproduce the published paper.
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4.2 Introduction

With global population aging at an accelerated pace, worldwide prevalence of

Alzheimer’s dementia (AD) is also on the rise. This motivates today’s sig-

nificant interest in developing automatic, inexpensive, and scalable methods

to support early diagnosis of AD. Since AD is characterized by a progressive

decline in cognitive abilities, potentially leading to speech and language im-

pairment, the analysis of speech signals for AD detection holds great potential.

In this paper, we present our methods for tackling the ICASSP 2023 Signal

Processing Grand Challenge: “ADReSS-M: Multilingual Alzheimer’s Demen-

tia Recognition through Spontaneous Speech” [29], which sought methods for

detecting dementia from speech signals whose predictive performance is pre-

served across two different languages. Given a set of English speech samples of

subjects describing a specific picture, challenge participants developed models

that were then tested on Greek speech samples of different subjects, describing

a different picture.

Our submission explored various acoustic and language feature representa-

tions, based on pre-trained speech and language embeddings as well as conven-

tional acoustic and linguistic feature extraction methods. Our best-performing

classification model used a feature set based on language features derived from

word-level attention maps, a representation of the distribution of pauses, and

participant’s meta-features (age, gender, and education), with PCA for di-

mension reduction followed by a logistic regression model, to obtain a test set

accuracy of 69.57%. Our best regression model applied support vector regres-

sion to a representation of the distribution of pauses (silent segments) in the

audio files and meta-features as the input features, to obtain a test set root

mean squared error (RMSE) of 4.77 – leading to an overall fourth best score

(out of 24 participants).
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4.3 Data set and evaluation

The training data set contained 237 age- and gender-balanced audio files of

English speech samples as well as associated meta-data (age, gender, edu-

cation) and labels (Control vs AD2 for classification, and MMSE scores for

regression). We were also given a small set of 8 Greek audio samples, with

metadata and labels. To evaluate our models and to set the hyperparameters,

we used stratified 5-fold cross-validation (5SCV) on a fixed set of age-, gender-,

and label-balanced folds over the English data. We used the set of 8 Greek

samples as a separate hold-out test set.

4.4 Methodology

4.4.1 Feature extraction

Automatic Speech Recognition

Whisper [48] is a state-of-art Transformer-based multilingual speech-recognition

model that is capable of both transcribing given audio and also translating au-

dio context to another language – eg, Greek audio to English text. Here, we

used the Whisper-Large multilingual model to transcribe all audios and cre-

ated translations for each Greek speech audio using the same model. In our

work, we did not directly utilize transcripts or translations. However, we found

that the word-level features extracted from the model were highly beneficial.

Fluency and intelligibility

Many studies suggest that fluency and intelligibility may be important in-

dicators of cognitive decline and AD – eg, AD patients speak at a slower

rate than healthy older adults [50]; often exhibit increased levels of disfluency

(pauses, hesitations, or disruptions) in their speech, increasing as the disease

progresses [50]; and often exhibit reduced speech intelligibility, which can make

it more difficult for them to communicate effectively with others [25]. There-

fore, we compute the following three sets of features:

2The data set originally used the label “ProbableAD”. However, for simplification we
use “AD” here instead.
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(1) Word-level durations feature set describes whether the speakers are mostly

using short or long words, and how quickly they are uttering them. We ob-

tained the duration of each word in an audio recording using a modified version

of the Whisper model [48], which uses attention weights from cross-attention

mechanisms and dynamic time-warping methods to determine start and end

timestamps of each word. Note this method does not account for gaps between

words. For each audio sample, we compute the total number of words in the

speech, as well as the mean, maximum, minimum, and standard deviation of

the word durations.

(2) Pause rate feature set describes the distributions of detected pause seg-

ments in spontaneous speech. We identified the voiced and unvoiced segments

of the audio using the openSMILE toolkit [15], which also provided the time-

stamps of the onset of voiced segments, along with their duration. We used

this to compute 11 features related to silence and length of audio segments.

Besides some basic features like pause length means and variances, we also de-

rived features by fitting different probability density functions (PDFs) to the

histograms of total silence durations for cases versus controls over the com-

plete audio sample (see Figures 4.1 and 4.2), and the histograms of lengths of

unvoiced audio segments for cases versus controls. We then used the means

and variances of these fitted PDFs as input features for our models.

(3) Speech intelligibility feature set describes the ease and accuracy with which

a listener can comprehend the speech, which here is represented by the word-

level confidence score assigned to each recognized word by a speech-recognition

model. The confidence score for each word is expressed as the predicted prob-

ability of each word from the Whisper model. As with the word-level duration

feature set, we compute the mean, maximum, minimum, and standard de-

viation of the confidence scores for every word in the speech. Additionally,

we include a log-sum score of all confidence scores to represent the model’s

confidence in the entire transcript.
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4.4.2 Modeling

To identify the optimal pipeline, we considered several dimension reduction

techniques – including Principal Component Analysis (PCA) and Latent Se-

mantic Analysis (LSA) – and many base learning algorithms – Logistic regres-

sion, random forest, support vector machine (SVM), extreme gradient boost-

ing, and neural networks – using different combinations of the extracted fea-

tures mentioned above. We employed internal 5-fold stratified cross validation

(5SCV) to fine-tune the hyperparameters of each model based on accuracy

and RMSE.

4.5 Results

Our internal cross-validation identified the classification model with the best

performance: Apply logistic regression with L2-regularizer, to the features

corresponding to the top 10 PCA components of the union of meta-features,

word-level duration, pause rate, and speech intelligibility; this yielded mean

accuracies of 74.70 ± 4.90% (resp., 75%) on the 5SCV English dataset (resp.,

8 Greek samples). On the competition’s Greek test set, the accuracy dropped

to 69.57%. For the regression task, we trained an SVM (with a radial basis

function kernel and regularization parameter set to 1) on a combination of the

meta-features with the pause features of the English dataset. This produced

a 5SCV RMSE of 6.487 ± 0.696 (resp., 3.13) on the 5SCV English dataset

(resp., 8 Greek samples). On the test set, the RMSE was 4.7693.

Note that many previous models used thousands of text embedding features

and acoustic features, which makes them difficult to explain and, by implica-

tion, to trust. In contrast, both of our models focus on features thought to be

relevant to diagnosing AD – here, utilizing only 24 features: 3 meta features, 5

for speech rate, 11 for pause rate, and 5 for speech intelligibility. Collectively,

our outcomes show that machine-learned models can detect cognitive decline

from speech, even when trained on different languages (learned from English,

then used in Greek), and slightly different tasks (different pictures).
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4.6 Notes and comments

There are a few important limitations of the multilingual dementia detection

study presented in this chapter, that we aim to outline here. Firstly, since the

Greek-based test data set is relatively small, and since the distribution shift

between the English training data and Greek test data is significant, there is

a chance that the results obtained on the Greek test data may not be broadly

generalizable. There needs to be further validation studies to ensure that the

results can be generalized to a larger Greek test set, and should additionally

be validated against other non-English (and non-Greek) languages as well.

Further, the speech intelligibility features derived in this work need addi-

tional validation. Since these features are based on word confidence scores, and

the authors of the Whisper model concede that this model generally performs

worse on low-resource languages, there is a chance that low-resource languages

might have lower word confidence scores being returned by the model in gen-

eral. This would mean that speech samples from two healthy controls (one

English and the other Greek), with no apparent issues with respect to intelli-

gibility, might still have very different word confidence scores on average, with

the Greek sample having lower average word confidence scores. Although this

issue was not made immediately apparent in our models, we must still validate

it further to ensure that this was not overlooked.

Moreover, in this study we use the assumption that longer words are more

sophisticated from the viewpoint of lexical complexity. This intuition is par-

tially supported by linguistic studies as well [43]. However, much of the avail-

able literature studying lexical complexity is focused on the English language.

The languages used in this study (English and Greek) both belong to the

Indo-European family of languages. In these languages, more complex words

generally tend to have a greater number of syllables compared to simpler words.

The correlation between word length and lexical complexity that we exploited

in our research, may not hold as readily in other languages such as Chinese

and Japanese. Therefore, a promising future research direction could be to

investigate the predictive performance of our models on a different family of
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languages such as those of the Far East.

Additionally, with respect to the multilingual dementia models presented in

this chapter, we have as yet only utilized coarse features related to language

use. Another future research avenue could be to explore the semantic and

syntactic complexity of a given speech sample, while remaining independent

of the specific language being spoken. One way of achieving this is by building

semantic speech graphs and using multilingual word embeddings. Then a

measure of semantic complexity and coherence could potentially be derived

using these graphs, regardless of the language spoken.
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Chapter 5

Data visualization and
clustering of language-agnostic
speech representations

5.1 Introduction and data visualization

After submitting the paper “Language-agnostic representations for detecting

Alzheimer’s dementia from multilingual speech” (see Chapter 4), we revisited

the derived feature sets that we found useful in this publication. This time

we wanted to explore these speech representations from the perspective of

unsupervised clustering, with a view towards discovering any cluster structure

that may help characterize the underlying data better and support further

improvements in classification accuracy.

For the analysis presented in this section, we used the data set described

in Chapter 4. Since the data set consisted of only 291 speech samples, with a

total of 24 derived features per sample, some form of dimensionality reduction

was expected to be important. We explored the use of several different dimen-

sionality reduction methods, including Principal Component Analysis (PCA),

T-distributed Stochastic Neighbor Embedding (t-SNE), univariate feature se-

lection, and recursive feature elimination. Then, based on visual inspection of

reduced feature sets, we determined the most appropriate dimensionality re-

duction technique that may help cluster the AD participants separately from

the controls. We got the best results using PCA (with projection onto the

first and second principal components). We reduced the dimensionality of
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each feature set separately, to help visualize these feature sets and determine

an appropriate clustering methodology.

For the actual clustering step, we based our selection of clustering algorithm

on a visual inspection of potential cluster shapes, distributions and separabil-

ity, as well as cluster density and the distribution of outliers. Empirically

we found that k-means and k-medoids gave more meaningful results. For the

evaluation, we used classification accuracy, precision, recall, and F-scores. Ad-

ditionally we computed the Adjusted Rand Index (ARI) as well [49]. Here the

usual challenge of cluster validation was somewhat mitigated by the fact that

classification labels were available to us, and we were looking for only those

clusterings that would be meaningful from the perspective of AD classification.

To help visualize the different feature sets, we used PCA and projected

each feature set onto the first two principal components, obtaining a 2-D rep-

resentation of the data. In Figures 5.1, 5.2, and 5.3 below, the circles repre-

sent English speech samples and the triangles represent Greek speech samples.

Also, the positive label of ‘ProbableAD’ is shown in blue and the negative

label of ‘Control’ is shown in green.

Figure 5.1 shows a visualization of the pause distributions feature set. Here

we can see that this data follows a V-shaped pattern, with greater density near

the vertex. Additionally, most of the blue ‘ProbableAD’ samples are on the

left arm of the V shape, while most of the green ‘Control’ samples are on the

right. This seems to be the case for both the English and the Greek samples.

Although there is a significant amount of overlap between the two desired

classes of ‘ProbableAD’ and ‘Control’, still this plot seems to exhibit some

structure in the data that may be useful for clustering.

Figure 5.2 shows a visualization of the word feature distributions (this

is a combined view of the word durations and speech intelligibility feature

sets). Any cluster structure here is difficult to discern. There are significant

differences in data density, with an area near the origin showing high density,

and the scatter towards the right becoming sparser. Unfortunately there is

little separability between the ‘ProbableAD’ and the ‘Control’ samples using

this feature set.

44











would likely come from more nuanced feature engineering.
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Chapter 6

Conclusion

Speech is a promising biomarker to enable the early detection of a variety

of psychiatric disorders. In recent years the automated analysis of speech,

supported by machine learning technologies, has made remarkable advances.

This rapid progress has opened up the potential for developing speech-based

machine learning models for the automated detection, screening and monitor-

ing of psychiatric disorders such as depression, dementia and post-traumatic

stress disorder. Given the rising global demand for mental healthcare and the

limited resources available, the search for inexpensive, non-invasive, reliable,

and scalable mental health screening has become critically important. This

thesis has presented our research (spanning the last three years, and resulting

in two high-ranked challenge submissions and two peer-reviewed publications),

on developing speech-based machine learning models for the early detection of

Alzheimer’s dementia (AD).

Here we summarize a few key contributions made in this thesis. Firstly, we

have systematically explored both language-based and acoustic-based features

from the English-only speech data set. We found that, even though both types

of features demonstrated significant predictive performance, features based

on language semantics and lexical complexity are particularly important for

detecting early signs of dementia from English speech. Moreover, we were able

to demonstrate that traditional, interpretable machine learning algorithms,

coupled with appropriate feature engineering, could achieve a significantly high

accuracy for discriminating AD patients from controls.
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Additionally, we derived novel speech features that proved relevant to iden-

tifying dementia irrespective of the language being spoken. This enabled us

to build robust machine learning models based on these derived speech fea-

tures to detect Alzheimer’s dementia with significant accuracy, even across

different spoken languages. Even when the languages were different between

the training and testing data sets, and additionally the picture description

tasks for eliciting spontaneous speech were also different (i.e. different pic-

tures were used for these tasks), our models were able to detect Alzheimer’s

dementia with high accuracy. These results pave the way for further research

on speech-based models for Alzheimer’s dementia detection, even in challeng-

ing multilingual low-resource settings.

Furthermore, we also provided an exploratory analysis to visualize the

structure of the derived feature space in the multilingual Alzheimer’s demen-

tia setting, via data visualization and unsupervised clustering. This analysis

showed that, in particular, features based on the distribution of pauses in

speech demonstrated a visible structure that was useful to discriminate be-

tween AD patients and healthy controls (using simple unsupervised clustering

techniques such as k-means).
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Table 6.1: Summary and comparison of the two papers presented in this thesis
ADReSS paper (Chapter 3) ADReSS-M paper (Chapter 4)

Raw data types 1. Audio files
2. Good quality annotated transcripts
3. Segmented audio clips
4. Meta features

1. Audio files
2. Meta features

Data set (training) 108 English speech samples
(Cookie Theft pic. descr. task - Fig. 2.1).

237 English speech samples
(Cookie Theft pic. descr. task - Fig. 2.1).

Data set (test) 48 English speech samples
(Cookie Theft pic. descr. task - Fig. 2.1).

46 Greek speech samples
(pic. descr. task, but not Cookie Theft)

Features used - Language: 62 semantic, syntactic and fluency
features (Type-Token Ratio, Mean Length of Ut-
terance, parts of speech,. . . ) + Bag-of-words fea-
tures + Bigram features
- Acoustic: Four feature sets with different
acoustic features related to energy, pitch, voicing,
spectral, MFCCs, speech rate, etc.

- Pause rate features: 11 features based on dis-
tribution of silent pauses in the speech
- Word duration features: 5 features based on
word lengths derived from Whisper ASR times-
tamps
- Speech intelligibility features: 5 features
based on word prediction confidence scores from
Whisper ASR

Modeling Dimensionality reduction: PCA, LSA
Base learners considered: Random forest, SVM,
logistic regression, XGBoost, Neural nets
Ensemble models considered: Majority vote (clas-
sification), averaging (Regression)

Dimensionality reduction: PCA, LSA
Models: Random forest, SVM, logistic regression,
XGBoost, Neural nets

Evaluation Nested stratified 5-fold cross validation Nested stratified 5-fold cross validation

Performance
(5-CV)

Classification accuracy: 80%
Regression RMSE: 6.43

Classification accuracy: 75%
Regression RMSE: 6.49

Performance
(Test set)

Classification accuracy: 85%
Regression RMSE: 5.62

Classification accuracy: 70%
Regression RMSE: 4.77

Competition rank-
ing

Ranked 3rd out of 34 teams
(for classification accuracy)

Ranked 4th out of 24 teams
(over both tasks combined)
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6.1 Limitations and future directions

Both of the works presented in this thesis have focused on discriminating

Alzheimer’s dementia from healthy controls. Neither of them have attempted

the more difficult problem, of reliably discriminating the more advanced stages

of dementia from Mild Cognitive Impairment (MCI). One could argue that

the regression tasks in both studies are meant to develop models to predict

dementia severity, and low severity likely implies an MCI diagnosis. However,

such an analysis has not been made explicit, and calibration of the regression

models has not been studied here.

Furthermore, the different types of dementia besides Alzheimer’s dementia

(including vascular dementia, fronto-temporal dementia, and Lewy body de-

mentia) have not been considered in the works presented in this thesis. This

is important because of the possibility that differences in dementia type might

explain some subtle differences in speech and language processing. If appro-

priately harnessed, this information could potentially make our speech-based

dementia detection systems more robust.

Nevertheless, the main bottleneck that limits the development of clinical-

scale dementia screening systems is data. In order to create robust multilingual

dementia detection systems that are capable of being deployed to a clinical

setting, we must have large, diverse, multilingual, multi-site speech data sets.

Ideally, these data sets should have information on relevant comorbidities as

well. Additionally, longitudinal data sets would be invaluable for building

models capable of identifying the progression of the cognitive decline that is

associated with dementia. Furthermore, the quality of the data sets and their

broad representative capacities would be crucial to ensuring that there are no

bias and fairness issues when it comes to actual clinical deployment.

In conclusion, machine learning models based on speech analysis are ex-

tremely attractive for the early detection and monitoring of Alzheimer’s de-

mentia. We have demonstrated that significantly accurate models can be built

using relatively simple speech features, if done in a thoughtful and systematic

manner using relevant domain expertise. We have also shown that such models
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can be built in the multilingual low-resource setting as well. Further studies

should be conducted in order to comprehensively validate these findings on

larger and more diverse datasets, with the aim of enabling large-scale clinical

deployment of these multilingual speech-based machine learning models for

the early detection and monitoring of Alzheimer’s dementia.
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Appendix A

Machine learning for detection
of post-traumatic stress
disorder using speech

A.1 Introduction

In this appendix, we present another mental health related speech analysis

project we conducted. This project was done in collaboration with the Com-

putational Psychiatry unit at IBM T.J. Watson Research Center, the Psychi-

atry and Computing Science departments at the University of Alberta, and

Alberta Machine Intelligence Institute (Amii). We faced significant challenges

during the data collection part of this project (including recruitment problems

possibly related to the pandemic), due to which the scope of this research had

to be limited to pilot study status. For this reason, I have chosen to present

this project as an appendix of the main thesis, instead of a chapter in the main

body.

The diagnosis of psychiatric disorders, such as depression and psychosis,

is a challenging task. There are oftentimes no objective, readily measurable

biomarkers to characterize the disorder – i.e., there are no associated biophys-

ical symptoms (e.g. measurable by blood tests). Brain imaging technologies,

such as fMRI and CT scans, do provide some means to measure brain func-

tion. However, these modalities are plagued by the need for highly special-

ized, costly equipment, and sometimes invasive procedures. Could we make

use of an easier-to-measure, more available and less costly proxy, that can aid
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in objectively and reliably characterizing brain health? Variations in speech

patterns, both acoustic and semantic, are frequently used by experienced clin-

icians for assessing a subject’s emotional and psychological state. Hence, this

project was focused on studying the use of speech as a convenient and reliable

window into the human brain and its health. Specifically, our plan was to de-

velop and demonstrate a machine learning system based on speech analysis for

the diagnosis of Post Traumatic Stress Disorder (PTSD) in Alberta’s military

veterans.

Several fundamental research challenges need to be addressed in building

a robust performance system for PTSD diagnosis using speech analysis. We

planned to pursue the following two complementary directions:

(1) Acoustic and prosodic analysis: In general, this can be categorized as

a signal processing task. It pertains to analysis of lower level voice features

such as pitch, intonation, and pause duration. Our hypothesis is that subjects

with PTSD exhibit acoustic and prosodic features that are distinct from those

without PTSD.

(2) Semantic and syntactic analysis: This is characterized as a natural

language processing task. The idea here is to analyze the actual semantic

content of the speech as well as measures of speech complexity. Again, we

hypothesize that speech samples from PTSD subjects would have semantic and

syntactic characteristics that can reliably distinguish them from non-PTSD

subjects.

A.2 Data collection

Recruitment and data collection efforts for this project spanned the period

of March 2020 to April 2021. Two participant groups were recruited during

this time: a target group consisting of individuals having a positive current

diagnosis of PTSD, and a control group having no diagnosis of PTSD (See

Table A.1).
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Table A.1: Recruitment criteria for PTSD speech study
Target group Control group
Military personnel and veterans Military personnel, veterans, and

general population
Meet DSM-5 diagnostic criteria for
PTSD (with comorbid disorders)

No mental health diagnosis

18+ years old 18+ years old
Male/Female (4:1) Male/Female (4:1)
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The data collection process involved (after obtaining the participant’s signed

consent) a set of two recorded interview sessions via Zoom. During the first

session, each participant filled a demographic questionnaire online, and com-

pleted two tasks: (a) a baseline reading task, and (b) a picture description

task. Between the first and second Zoom sessions, participants completed a

mental health questionnaire, which consisted of many scales such as PCL-5,

AUDIT, and others. During the second Zoom session, the interviewer asked

each participant a predefined set of questions (See Table A.2). These questions

were designed to elicit a meaningful response from the participant, potentially

enabling the capture of such data that would support the development of

machine learning algorithms to distinguish between participants with versus

without PTSD.

Additionally, for each participant a binary outcome label was assigned

based on their score on the PCL-C questionnaire (with a score greater than 22

indicating a participant with PTSD, and a score less than 22 indicating one

without PTSD). The final data set consisted of demographic data, self-report

questionnaires and speech data from (only) 14 participants, out of which 8

participants met the DSM-5 criteria for PTSD (based on PCL-C scores).
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Table A.2: Interview questions asked of participants to collect conversational
speech samples

1. Where are you from originally?

2. How would your best friend describe you?

3. How would you describe yourself?

4. What is your dream job?

5. What color best describes your personality?

6. What are you most passionate about?

7. What do you consider your best attributes?

8. If you have friends coming for supper what would you cook?

9. What makes you happy/sad/angry?

10. Are you a religious person? Why or why not?

11. Do you have any pets? Why or why not? Are you an animal lover?

12. What is one thing on your bucket list?

13. If you could visit any place in the world, where would it be and why?

14. If you could have dinner with anyone you wanted, dead or alive, who would you
choose? And why?

15. Is there anything you’d change about yourself? What would that be?

16. What book/movie are you reading/watching (recently), what is it about?
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A.3 Data analysis

For a preliminary data analysis, we used audio recordings from the first of

the two Zoom interview sessions. We hypothesized that audio-based features

computed from the baseline reading task and picture description task will be

adequate for distinguishing participants with and without PTSD. Since we also

did not have good quality transcripts available for the second Zoom interview

at this time, we decided to conduct this analysis with data from the first

interview session only.

We used a set of 130 acoustic low-level descriptor features computed from

the audio recordings of each of the 14 participants. These proprietary features

were computed using IBM’s internal feature generation pipeline, and were

then provided to us by our collaborators at IBM. We systematically trained a

set of machine learning models on these input features (using the scikit-learn

package [46]). We used a nested leave-one-out cross validation procedure to

search over various model configurations for the best candidate in terms of

test accuracy. With 8 out of 14 positive samples, the baseline model accuracy

was 57% (from guessing majority class). See Table A.3 for a list of models and

hyperparameters that were explored.
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Table A.3: Models and hyperparameters
Model Hyperparameter values
Decision Tree (DT)
- config A

‘min samples split’: [2, 3, 4, 5]
‘max features’: [0.25, 0.5, 0.75, 1.0]

Decision Tree (DT)
- config B

‘max depth’: [2, 5, 10]

Logistic Regression (LR)
- config A

‘penalty’: [‘L1’,‘L2’,‘Elasticnet’]
‘C’: [100, 10, 1.0, 0.1, 0.01]

Logistic Regression (LR)
- config B

‘penalty’: [‘L1’]
‘C’: [0.01, 0.001, 1e-4, 1e-5]

Naive Bayes (NB) ‘var smoothing’: [1e-9, 1e-6, 1e-3]
Linear SVM (SVM linear)
- config A

‘penalty’: [‘L1’,‘L2’]
‘C’: [100, 10, 1.0, 0.1, 0.01]

Linear SVM (SVM linear)
- config B

‘penalty’: [‘L1’,‘L2’]
‘C’: [0.01, 0.001, 1e-4, 1e-5]

PCA + Decision Tree
(PCA DT)

‘PCA -n components’: [0.3, 0.5, 0.7, ‘MLE’]
‘Decision tree -max depth’: [2, 5, 10]
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A.4 Results and discussion

Figure A.1 shows the resubstitution accuracies and test accuracies obtained

from the machine learning model training procedure described in the previous

section. These results indicate that, given the input features, almost all of the

trained models had a hard time beating the baseline (with only the decision

tree configuration A demonstrating a test accuracy increase of about 7% over

the baseline). This is likely due to the small size of the data set, and possibly

also because we used only one interview session per participant in the current

analysis. Another contributing factor may be that only audio features were

used, since transcripts for all participants were not available at this time.

Figure A.1: Accuracy using leave-one-out cross validation

Results from this pilot study show that the machine learned models built

using IBM’s proprietary acoustic feature extraction pipeline were unable to dis-
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tinguish between study participants with versus without PTSD. However, for

several reasons we cannot generalize these results beyond this study. The most

obvious reason is that the data set we are working with is extremely small from

a machine learning perspective, with a total of only 14 data points across both

experimental groups. This is not enough to characterize the high-dimensional

feature space we are working with. Even with aggressive regularization, the

predictive performance we achieved was not better than baseline.

Additionally, due to limited resources and shifting priorities, we were un-

able to obtain good quality manual transcriptions and could not pursue ex-

periments using linguistic features. In our other experiments with Alzheimer’s

dementia, we did find that linguistic features had greater predictive power

compared to acoustic features, so it is possible that for PTSD as well, we may

discover specific linguistic features to be important. This will however need to

be validated using larger data sets.

To conclude, there is immense potential for training clinically relevant pre-

dictive models based on speech analysis to aid in screening for psychiatric

disorders such as PTSD and dementia. However, this opportunity can only

truly be explored if the data bottleneck is addressed, and researchers are given

access to large well-curated speech data sets covering a variety of psychiatric

disorders collected from multiple study sites in a collaborative manner.
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