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Abstract

in this process.

Background: In Arabidopsis, a large number of genes involved in the accumulation of seed storage reserves
during seed development have been characterized, but the relationship of gene expression and regulation
underlying this physiological process remains poorly understood. A more holistic view of this molecular interplay
will help in the further study of the regulatory mechanisms controlling seed storage compound accumulation.

Results: We identified gene coexpression networks in the transcriptome of developing Arabidopsis (Arabidopsis
thaliana) seeds from the globular to mature embryo stages by analyzing publicly accessible microarray datasets.
Genes encoding the known enzymes in the fatty acid biosynthesis pathway were found in one coexpression
subnetwork (or cluster), while genes encoding oleosins and seed storage proteins were identified in another
subnetwork with a distinct expression profile. In the triacylglycerol assembly pathway, only the genes encoding
diacylglycerol acyltransferase 1 (DGAT1) and a putative cytosolic “type 3" DGAT exhibited a similar expression
pattern with genes encoding oleosins. We also detected a large number of putative cis-acting regulatory elements
in the promoter regions of these genes, and promoter motifs for LECT (LEAFY COTYLEDON 1), DOF (DNA-binding-
with-One-Finger), GATA, and MYB transcription factors (TF), as well as SORLIP5 (Sequences Over-Represented in
Light-Induced Promoters 5), are overrepresented in the promoter regions of fatty acid biosynthetic genes. The
conserved CCAAT motifs for B3-domain TFs and binding sites for bZIP (basic-leucine zipper) TFs are enriched in the
promoters of genes encoding oleosins and seed storage proteins.

Conclusions: Genes involved in the accumulation of seed storage reserves are expressed in distinct patterns and
regulated by different TFs. The gene coexpression clusters and putative regulatory elements presented here
provide a useful resource for further experimental characterization of protein interactions and regulatory networks

Background

Seed storage reserves accumulated during embryogen-
esis in higher plants are crucial for plant propagation,
providing carbon and energy during germination prior
to seedling establishment. In mature Arabidopsis seeds,
storage lipids and proteins are the major storage com-
pounds, each accounting for 30% - 45% of the seed dry
weight [1]. The past decade has witnessed a substantial
progress in identification and characterization of genes
involved in the de novo fatty acid (FA) biosynthesis and
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triacylglycerol (TAG) assembly pathways [[1,4] and
references therein]. This advancement is particularly evi-
dent in the model plant Arabidopsis, largely owing to
the sequencing and release of its relatively compact gen-
ome in the year 2000 [5]. Moreover, characterization of
transcription factors (TFs) has led to the identification
of several master regulator genes that play critical regu-
latory roles in this biological process, including ABI3
(ABSCISIC ACID INSENSITIVE 3), LEC1 (LEAFY
COTYLEDON 1), LEC2 and FUS3 (FUSCA 3) [6-17].
These TFs interact with each other and form complex
regulatory networks [18-23], regulating multiple aspects
of seed development including storage reserve accumu-
lation through interaction with cognate cis-acting DNA
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elements in the promoter regions of target genes. ABI3,
FUS3 and LEC2 contain a plant-specific ‘B3" DNA-bind-
ing domain which targets RY-repeat regulatory ele-
ments, whereas LEC1 and L1L (LEC1-LIKE) contain a
NE-YB domain binding to the CCAAT boxes in the pro-
moter region [24,25]. Additional TFs such as
WRINKLED 1 (WRI1), a member of plant-specific APE-
TALA 2 (AP2) - ethylene response element binding fac-
tor (EREB) family, is also known to control transcription
of many FA biosynthetic genes [26], and recent studies
show it acts via binding to the AW-box motif present in
the promoter region of 19 FA biosynthetic genes [27].
Moreover, ABI4 (an AP2 family protein) and various
basic-leucine zipper (bZIP) TFs including ABI5 or EEL
(ENHANCED EM [EMBRYO MORPHORGENESIS]
LEVEL) are known regulators of the expression of SEED
STORAGE PROTEIN (SSP) genes, which act in the same
signalling network but downstream of ABI3 [28,29]. Dis-
tinct regulatory mechanisms are present in controlling
the accumulation processes of oils and proteins, perhaps
with cross-talk to coordinate the synthesis of seed sto-
rage compounds. This coordination could help to
explain the well-documented negative correlation (corre-
lation coefficient ranging from -0.60 to -0.90) between
oil and protein content in seeds of many oleaginous spe-
cies [[3] and references therein]. Moreover, several TFs,
such as LEC1, ABI3 and FUS3, have been demonstrated
to regulate many genes in the synthesis of both oils and
storage proteins in developing seeds [30-32].

In contrast to the great advancement in characterizing
individual genes involved in the accumulation of seed
storage reserves, the relationship of their expression and
regulation is not well understood. A more holistic view
of this biological process at the systems level would
prove beneficial in developing strategies to further
enhance seed yield and oil content, as well as in the
modification of oil composition. To gain insights into
global transcriptional dynamics in key cellular processes,
microarray is an effective method for analyzing the tran-
script abundance of a large number of genes simulta-
neously. Datasets obtained from profiling experiments
can be further used to infer gene regulatory networks.
In Arabidopsis, two cDNA microarrays were designed
several years ago based on the expressed sequence tag
(EST) sequences available at the time. One array was
used for tissue-specific expression profiling to identify
genes that are preferentially expressed in developing
seeds compared with vegetative leaves and roots [33],
and the other was used to study the temporal pattern of
gene expression during the critical period of seed filling
[34]. These transcriptional profiling studies in Arabidop-
sis seeds have greatly increased our understanding of
overall alterations of gene expression during seed devel-
opment and storage reserve accumulation. These two
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early cDNA-based microarrays, however, surveyed
<3500 unique Arabidopsis genes.

More recently, Schmid et al. [35] created a global gene
expression atlas AtGenExpress (Expression Atlas of Ara-
bidopsis development) representing the Arabidopsis life
cycle using the Arabidopsis ATH1 genome array (Affy-
metrix, Santa Clara, CA), which can measure nearly
24,000 genes in a single assay. In AtGenExpress, 237
chips were hybridized for 79 different samples collected
from various organs, growth stages and under various
environmental conditions, including 24 arrays for eight
stages of maturing seeds. Since its release, this excep-
tionally large transcriptome dataset has been a goldmine
for plant biologists to identify candidate genes for mole-
cular characterization. A number of studies have further
“mined” this dataset within different contexts of plant
biology. Wang et al. [36] extracted the expression data
for several TFs experimentally determined to regulate
seed development and genes that code for enzymes in
the FA biosynthesis pathway. Volodarsky et al. [37] uti-
lized the dataset to analyze hormone-related transcrip-
tional activities in Arabidopsis. Vandepoele et al. [38]
constructed coexpression networks and predicted cis-
regulatory elements for the cell cycle-related TF OBP1.
Recently, the identification of gene coexpression net-
works has emerged as a popular method for predicting
gene functions and interactions [38-41], and web-based
tools such as Genevestigator [42] and CressExpress [43]
have been developed to facilitate such analyses at a
small scale for plant biologists. Transcriptional coordi-
nation, or coexpression, of genes may be an indication
of functional relatedness, based on the “guilt-by-associa-
tion” principle [44]. In a coexpression network, a vertex
or node represents a gene whereas an edge is a connec-
tion inferred from the correlation coefficient calculated
from the gene expression data. Although the relation-
ship between coexpression networks and true biological
networks is often not clear, it has been shown that gene
groups identified from modular (cluster) analysis in
coexpression networks often exhibit an enrichment of
certain Gene Ontology (GO) categories [45], suggesting
the functional association of genes connected in a coex-
pression network. Hence, a coexpression edge can be
considered a putative interaction between two genes.
Genes in a coexpression network, particularly those
expressed in a specific tissue or sharing a semantic simi-
larity in the GO ‘Biological Process’” aspect, might be co-
regulated through common TF binding sites in their
upstream regions, leading to many attempts to identify
overrepresented cis-motifs in coexpressed genes [46-50].

In the current study, we took advantage of this public
transcriptome dataset in Arabidopsis [35], analyzed the
raw data thoroughly in the context of seed storage
reserve accumulation during seed development, and
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constructed coexpression networks for seed-expressed
genes. We focused on genes involved in FA biosynthesis
and the accumulation of storage lipids and proteins in
developing seeds. This comprehensive analysis has
resulted in the identification of a large number of genes
that are possibly coexpressed and function cooperatively
during seed maturation. Furthermore, we predicted a
large number of cis-regulatory elements for key seed-
expressed genes. This information could be useful in
designing experiments to probe regulatory mechanisms
underlying seed storage reserve accumulation.

Results and Discussion

Association of seed transcriptome with embryo
morphology in developing Arabidopsis seeds

Using the raw intensity data generated by AtGenExpress
for a global gene expression atlas throughout the Arabi-
dopsis life cycle [35], we performed a detailed analysis
of gene expression pertaining to seed storage reserve
accumulation during the eight stages of seed develop-
ment, ranging from globular embryo to mature embryo
stages (Table 1). Of the nearly 24,000 genes represented
on the Affymetrix GeneChip ATH1 genome array, we
estimated that approximately 12,353 genes (or ~54%)
were expressed in at least one of the eight development
stages. Our analysis took into account the fact that cer-
tain genes might be transiently expressed at only one
stage during seed development. The relatively high log2
intensity value of 6.0 was chosen as the threshold to
focus on the genes with at least a modest level of
expression. The global transcriptional activity in the
developing Arabidopsis seed is higher than in the leaf,
lower than in the flower, and comparable to that in the
apex, root or stem (data not shown).

To examine the overall transcriptome changes across
the eight seed development stages, we performed a prin-
cipal component analysis (PCA) in the ‘Sample’ space,
and the results indicated that the global transcriptional
program changes constantly during seed maturation
(Figure 1). In PCA, the first principal component (i.e.,
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development stage) was estimated to explain ~83% of
variance in the seed transcriptome, indicating that
embryogenesis is the predominant cause for the sub-
stantial variation observed in the transcript population.
The differences in the global gene expression patterns
among the eight developing stages were cross validated
by a global association test [51], showing that the seed
transcriptome varied across the eight developmental
stages in a statistically significant manner (P < 0.0001).
The presence of siliques in the young seeds (S3 to S5;
Table 1) may have had an effect on global transcript
profiles in the seeds of earlier development stages, but
its minor effect cannot be dissected from that of seed
development under the experimental design in [35].
Additionally, Figure 1 shows that each stage has a dis-
tinct transcriptome signature that generally corresponds
to its seed development stage defined by the embryo’s
morphology. For instance, as shown in Figure 1, the
globular embryo stage (with three replicates) grouped
tightly, the two samples from the bilateral stage clus-
tered together but separately from other stages, and in
general, samples from the expanded cotyledon stage and
the mature embryo stage also clustered corresponding
to their morphological stages, respectively. The tran-
scriptome signature for one expanded cotyledon stage
(with an asterisk in Figure 1), however, was closer to the
two samples of the mature cotyledon stage, rather than
the expanded cotyledon stage defined by embryo mor-
phology. This result suggests that staging of seed devel-
opment based on the embryo’s morphological shape
alone may not necessarily reflect the transcriptome state
in the seed, which is attributable to the fact that mole-
cular events, such as gene expression, occur prior to
morphological changes. Consistent with the highly
dynamic landscape in global gene expression, our analy-
sis on individual genes using the method in [52] indi-
cated that nearly all the genes expressed in developing
Arabidopsis seeds are differentially transcribed under a
stringent false discovery rate (FDR) threshold of 0.01
(data not shown). This lack of stably expressed genes

Table 1 Arabidopsis developing seed samples used for AtGenExpress microarray experiments.

Stage Sample name Tissue source Stage description Description

S3 Col-0_sil3 Seeds stage 3 with siliques C globular stage Mid globular to early heart

S4 Col-0_sil4 Seeds stage 4 with siliques D bilateral stage Early heart to late heart

S5 Col-0_sil5 Seeds stage 5 with siliques D bilateral stage Late heart to mid torpedo

Sé6 Col-0_seed6 Seeds stage 6 without siliques E expanded cotyledon stage Mid torpedo to late torpedo

S7 Col-0_seed7 Seeds stage 7 without siliques E expanded cotyledon stage Late torpedo to early walking-stick

S8 Col-0_seed8 Seeds stage 8 without siliques E expanded cotyledon stage Walking-stick to early curled cotyledons

S9 Col-0_seed9 Seeds stage 9 without siliques F mature embryo stage Curled cotyledons to early green cotyledons
S10 Col-0_seed10 Seeds stage 10 without siliques F mature embryo stage Green cotyledons

The descriptions of samples used for microarray experiments in AtGenExpress [35] were obtained from the TAIR where the raw data files were retrieved [71]. The
development stages for these seed samples range from four to 12 days after pollination, encompassing the accumulation phase of both oils and storage proteins [1].
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Figure 1 The transcriptome dynamics during Arabidopsis seed
development. The normalized, log,-transformed expression data for
the 24 samples were subjected to principal component analysis
(PCA) using the R prcomp function [83]. PC1 and PC2 are the first
two principal components in the dataset. Different symbols and
colours shown at the bottom of the figure were used for different
seed developmental stages to show the relationship between
molecular and morphological phenotypes. As in Table 1, the
different samples are as follows: S3: C globular stage; S4: D bilateral
stage; S5: D bilateral stage; S6: E expanded cotyledon stage; S7:

E expanded cotyledon stage; S8: E expanded cotyledon stage; S9:

F mature embryo stage; S10: F mature embryo stage.

with adequate transcript abundance brings into focus
the challenge of determining reference genes that can be
used for normalization in quantifying mRNAs in devel-
oping seeds [53]. In summary, this analysis demonstrates
that the transcriptional program is subject to constant
alterations during seed development as many other stu-
dies have shown, suggesting its tight regulation at the
transcriptional level.

Construction of gene coexpression networks in the
Arabidopsis seed transcriptome

To infer the gene coexpression network in the transcrip-
tome of developing Arabidopsis seeds, we focused on
the 12,353 genes with moderate or high expression
levels. The Pearson-based correlation coefficient was
used as a measure of expression coherence, and we
applied a correlation threshold of 0.90 and retained over
1.7 million correlated gene pairs representing 11,698
distinct genes. The resulting coexpression networks
encompassed approximately 95% of seed- expressed
genes, indicating that the majority of expressed genes in
Arabidopsis seeds act in a concerted manner. We chose
such a stringent correlation threshold considering the
relatively small sample size in the analysis so that gene
pairs in the coexpression network are statistically signifi-
cant (P = 0.0005 using Fisher’s Z transformation), mean-
ing the probability of randomly obtaining a correlation
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coefficient of > 0.90 in this seed transcriptome dataset is
small. The frequency distribution of the number of con-
nections is shown in Figure 2. Nayak et al. [40] used the
absolute correlation (|r|) to construct a gene coexpres-
sion network in human immortalized B cells, but we
believe that positive and negative correlations in gene
expression may indicate different biological interactions
(synergistic or antagonistic), and therefore we only
included gene pairs with positive correlation coefficients
above the threshold for the coexpression analysis.
Nevertheless, gene pairs consistently expressed in a
negatively correlated manner can also be of great inter-
est to biologists.

We also used a complementary clustering approach to
identify gene clusters with similar expression profiles
during seed maturation (Figure 3). We found six clusters
could sufficiently represent the distinct patterns inherent
in this seed transcriptome dataset, with some clusters
being the “mirror images” of others. The first two clus-
ters included the majority of genes related to the accu-
mulation of seed storage reserves, which will be
described in more detail below. It is important to point
out that the method for identifying coexpression net-
works is computationally similar to various clustering
approaches, using correlation coefficient (r) as the simi-
larity measure, or alternately 1 - |r| as the distance

Number of genes
2000 3000 4000
1

1000

0
L

r T T T T T T 1
1 2 50 100 150 200 250 =300
Number of edges

Figure 2 Summary of the gene coexpression network in
developing Arabidopsis seeds. Distribution of the number of
genes in different bins of edge numbers in the coexpression
network of seed-expressed genes. The edge numbers were divided
into different ranges and the frequency of nodes in each bin was
found to summarize the coexpression network. The bin categories
are as follows: 1; 2 - 49; 50 - 99; 100 - 149; 150 - 199; 200 - 249; 250

- 299; and =300.
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Figure 3 Fuzzy clustering of the expression data along seed development series. The six clusters showing the expression patterns during
Arabidopsis seed development. The gene expression values were standardized to have a mean value of zero and a standard deviation of one
for each gene profile. The transformed expressions were then clustered using the fuzzy c-means (FCM) clustering algorithm implemented in the
Bioconductor Mfuzz package [89]. Based on preliminary analysis, we found six clusters can well represent different expression patterns inherent
in the dataset, and another FCM parameter m = 1.75. A membership value in the range of 0-1 was assigned in clustering and the cluster cores
consisting of genes with membership value > = 0.90 were coloured pink.
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measure. An important difference exists, however, in the
parameters used in the two processes: the number of
clusters is often specified in clustering although certain
assessment can be performed beforehand, whereas the
correlation threshold is chosen in the coexpression net-
work analysis. We believe our approach of coexpression
network identification, coupled with clustering, is advan-
tageous for identification of genes in the same coexpres-
sion cluster with visible expression patterns during seed
maturation, enabling easier biological interpretation and
various complementary analyses.

Several parameters can be used to describe a biologi-
cal network, including the clustering coefficient and
scale-free topoplogy criterion. The scale-free topology
criterion ranges from zero to one for typical biological
networks under investigation [54-56]. The clustering
coefficient and scale-free topology criterion were 0.73
and 0.68, respectively, in this Arabidopsis seed coexpres-
sion network (Table 2), indicating topological similarity
to other biological networks. As shown in Figure 2, the
network is comprised of many genes with few links (e.g.,
most genes have two to 100 putative coexpression part-
ners) but relatively few genes with many connections,
which is consistent with the power-law distribution
widely present in biological networks. In the coexpres-
sion network, each gene has a median of 71 edges. It is
notable that a relatively large number of genes have
2300 edges (Figure 2), which is at least partly due to
this larger range containing all remaining numbers of
connections. We observed the edge numbers for genes
in different Gene Ontology (GO) ‘Biological Process’
categories and did not find any association between the
number of coexpression partners and obvious functional
significance (data not shown); TF gene LECI and a ribo-
somal protein S18 gene (RPSI8), for instance, were

Table 2 Network characteristics in the Arabidopsis seed
coexpression network

Total number of genes in the network 11,698
Mean number of connections per gene 160
Median number of connections per gene 71
Maximum connections 367
Clustering coefficient ° 073
Scale-free topology criterion ° 0.68
Gamma © 134

Network properties were analysed according to the methods in [40]. * The
clustering coefficient measures the “small-world” property in the network,
which is the likelihood that two genes connected to a common gene are also
connected to each other [54]. ® The scale-free topology criterion is used to
measure the topological similarity of a network to other biological networks.
Its value ranges from 0 to 1, with 1 representing networks that are most like
other biological networks [55]. < Gamma is the measurement of power-law
distribution in a network [56], which consists of many genes with relatively
few connections and a few genes (hubs) with many connections; a gamma
< 3 indicates that a network exhibits such a distribution [40].
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found to connect with 38 and 178 coexpression part-
ners, respectively. This indicates that, while the number
of edges for a node may suggest the functional signifi-
cance of the gene, the centrality (or location) of a node
in the network can be more important. This aspect has
been well described in social network analysis [57].

Genes encoding fatty acid biosynthetic genes and seed
storage reserve associated proteins are located in
different subnetworks

While the entire coexpression network is useful for
network topology analysis, isolation of a subnetwork (or
cluster) makes it more accessible to biologists [40,58].
More importantly, a subnetwork in the large coexpres-
sion network is often more biologically relevant in a
pathway context. Hence, we extracted subnetworks from
this gene coexpression network for genes relevant to the
accumulation of seed storage reserves (Figure 4). Of the
48 genes known to encode enzymes involved in FA bio-
synthesis [17,59], we identified 44 (or ~92%) genes
represented on the ATHI array, and all of them were
found in one subnetwork (Figure 4A). This subnetwork
cluster consists of 1854 genes (Additional File 1), which
is in general agreement with an interactive correlation
network generated genome-wide in Arabidopsis using a
heuristic clustering algorithm [41]. Such a gene list can
be used to identify interactors of genes in FA synthesis
in developing seeds. Consistent with the coexpression
subnetwork analysis, the majority of genes involved in FA
biosynthesis were associated with Cluster 1 (Figure 3).
Their expression levels increased steadily from the globu-
lar embryo stage, generally reached the peak at the
expanded cotyledon stage, and dramatically declined sub-
sequently throughout late seed maturation (Figure 4B).
Such a unified expression pattern for most FA biosyn-
thetic genes supports earlier studies showing that FA
supply can be a limiting factor for triacylglycerol (TAG)
accumulation in developing embryos of Brassica napus
[60], olive (Olea europaea L.) and oil palm (Elaeis gui-
neensis Jacq.)[61], as well as cuphea lanceolata and other
oil species [62]. Recent studies of metabolic flux in devel-
oping embryos of B. napus, however, indicated that TAG
assembly was more limiting than FA biosynthesis in reg-
ulating the flow of carbon into TAG [63]. The majority
of genes encoding oilbody oleosins and SSPs were found
in another subnetwork with a distinct expression pattern
(Figure 4C). The subnetwork encompassing genes encod-
ing oleosins and SSPs is comprised of 1392 genes (Addi-
tional File 2). Genes encoding oleosins and SSPs were in
Cluster 2 (Figure 3), and their expression profiles were
strikingly similar. These genes were virtually unexpressed
at the globular stage, increased rapidly (>1000-fold in
many cases) from the globular stage to the bilaternal
stage, and remained at the elevated expression level
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Figure 4 Subnetwork and temporal expression profiles for genes involved in seed storage reserve accumulation in developing
Arabidopsis seeds. A is the subnetwork for genes including those in fatty acid (FA) biosynthesis, and B depicts the expression profiles of FA
biosynthetic genes identified in the analysis. C is another subnetork including genes encoding oleosins and seed storage proteins (SSP), and D
depicts the expression profiles of genes encoding oleosin and SSP. In B and D, the expression values, AGI identifiers of the genes depicted are
listed in Additional File 3, and the log, expression values were standardised by subtracting the value at the first S3 stage for each gene. Dashed

red, blue lines indicate 2-fold up- or down-regulation, respectively.

throughout the remaining stages of seed maturation
(Figure 4D). Transcripts for OLEOSIN and SSP genes are
most abundant in the seed transcriptome late during
seed development. In contrast, most genes in the TAG
assembly pathway were found in different subnetworks,
exhibiting various expression profiles during seed devel-
opment (Figure 5). DIACYLGLYCEROL ACYLTRANS-
FERASE 1 (DGATI), FATTY ACID DESATURASE 2
(FAD2), FATTY ACID ELONGASE 1 (FAEI) and STEAR-
OYL DESATURASE (SAD) genes were identified in this
subnetwork, albeit expressed at substantially lower levels
compared to genes encoding oleosins and SSPs (Addi-
tional File 3). DGAT catalyzes the acyl-CoA-dependent

acylation of sn-1,2-diacylglycerol to produce TAG and
CoA [64]. FAD2 catalyzes the introduction of a second
double bond into acyl groups in phospholipid whereas
SAD catalyzes the formation of monounsaturated FA in
the plastid [65]. FAE1 catalyzes the elongation oleoyl-
CoA in the endoplasmic reticulum [65]. Our analysis
determined that AT1G48300, which was named DGATS3,
is the putative gene encoding a cytosolic DGAT in Arabi-
dopsis. The amino acid sequence of AT1G48300 has a
significantly high degree of similarity (expect value < 1 x
10?') to the soluble DGAT in peanut (Arachis hypo-
gaea), where the cytosolic DGAT gene in plants was first
discovered [66]. Notably, DGAT3 exhibited a similar
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expression pattern with DGAT1, but expressed higher
during late seed maturation. In earlier studies, quantifica-
tion of DGAT activity during seed maturation in B.
napus indicated that enzyme activity was maximal during
the rapid phase of oil accumulation with a substantial
decrease in activity occurring as oil levels reached a pla-
teau [67,68]. Assuming DGAT activity shows a similar
profile during seed development in Arabidopsis, this sug-
gests that DGAT may be down-regulated post-transcrip-
tionally and/or post-translationally during the latter
stages of seed development.

In summary, our new results suggest that genes acting
in a biological process (FA biosynthesis) can be indi-
cated by their presence in the same coexpression net-
work cluster, but genes involved in the same pathway
(TAG assembly) may not necessarily exhibit expression
coherence. As a result, computational approaches using
coexpression network to predict gene function, such as
in [40], will undoubtedly have limitations.

Putative regulatory elements underlying seed storage
reserve accumulation

To gain insight into possible relationships in gene coex-
pression and regulation, we first identified the expres-
sion patterns for several TFs known to regulate the
accumulation of seed storage reserves (Figure 6). AGLIS
(AGAMOUS-LIKE 15), GL2 (GLABRA2), LEC1, L1L, and
WRI1 exhibited similar expression patterns with most
genes encoding proteins involved in FA biosynthesis
(Figure 6A) whereas ABI3, EEL, and FUS3 all have simi-
lar expression profiles with genes encoding oleosins and
SSPs (Figure 6B). Two repressors of seed maturation
genes, ASIL1 (ARABIDOPSIS 6B-INTERACTING PRO-
TEIN I-LIKE 1) [69] and PICKLE (PKL) [70], were mod-
estly expressed and exhibited a stable expression pattern
throughout seed maturation (Figure 6C). Surprisingly,
LEC2, a TF gene known to regulate oil accumulation in
leaves and somatic embryogenesis [10,14,16], was barely
detectable in these developing seeds. Although this
result requires verification with other molecular meth-
ods, it was previously reported that LEC2 might be only
expressed during early embryo morphogenesis [15].
Additionally, based on phenotype descriptions of LECI,
LEC2 mutants in the Arabidopsis Information Resource
(TAIR) [71], the accumulation of storage compounds in
the mature /ec2 mutant seeds is only slightly defective
when compared to /ec] mutant seeds. Therefore, the
role of LEC2 as a regulator in the synthesis of seed sto-
rage reserves during late stages of zygotic embryo devel-
opment might not be as important as currently thought.
Likewise, ABI4 was also essentially unexpressed in these
seed samples. The expression similarity between genes
encoding TFs and their target genes is suggestive of
regulatory relationships. Both LEC1 and WRII were
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Figure 6 Expression profiles of several well-characterized
transcription factor genes. The dashed line at 6.0 on the y-axis is
often used as the cutoff for present (expressed; above the line) or
absent (unexpressed; below the line). All expression data were
transformed to the log, scale for plotting the profiles. Refer to
Additional File 3 for their AGI identifiers and full name of each
transcription factor gene. The gene abbreviations are as follows:
AGL5: AGAMOUS-LIKE 5; GL2: GLABRA 2; LECI: LEAFY COTELYDON 1;
L1L: LEAFY COTELYDON 1 LIKE; WRIT: WRINKLED 1; ABI3: ABSCISIC
ACID-INSENSITIVE 3; EEL: ENHANCED EM (EMBRYO MORPHOGENESIS)
LEVEL; FUS3: FUSCA 3; ABI5: ABSCISIC ACID-INSENSITIVE 5; PKL: PICKLE;
ASILT: ARABIDOPSIS 6B-INTERACTING PROTEIN 1-LIKE 1.
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clustered with most FA biosynthetic genes, while ABI5
was clustered with the majority of LATE-EMBRYOGEN-
ESIS ABUNDANT (LEA) genes (Figure 3 Cluster 3).
LECI and WRII are known to regulate many FA biosyn-
thetic genes [25-27], and ABIS regulates a subset of
LEAs [72].

To computationally identify cis-acting regulatory ele-
ments, the upstream promoter sequences for the genes
involved in storage reserve biosynthesis were extracted
from the RSAT server [73]. We included some 5-UTR
sequences as certain TF binding sites can be located
within this region of a gene [27,74]. On average, the G-
C content in the promoter sequences of the gene set
was found to be <35%, which is consistent with the
compositional bias of nucleotides towards A-T enrich-
ment observed in plant promoter regions [74,75]. Two
software tools, TFBS [76] and fdrMotif [77], were used
to search for putative TF-binding sites on both strands.
Both tools depend on TF- binding profiles (Position
Weight Matrix, or PWM) derived from experimentally
determined binding sites for the prediction, we thus
compiled 118 PWMs from the literature [27,74] and the
JASPAR database [78] (Additional File 4). In the JAS-
PAR database, we only considered the binding profiles
for plant-specific TFs because of their potential critical
roles in regulating the accumulation of storage reserves
during seed development, a unique physiological process
in higher plants.

We predicted a total of 1770 binding motifs in the
promoter regions of genes involved in FA biosyntheis,
TAG assembly, and genes encoding oleosins and seed
storage proteins (Additional File 5). Each TF can have
more than one putative binding site in each gene. As
our approach of using two predictive tools already fil-
tered out a large number of potentially false predictions,
the remaining number of putative motifs was relatively
small, making it difficult to perform statistical analysis
of motif enrichment. Therefore, we used a simple
approach to determine overrepresentation of a TF bind-
ing motif in the gene set, and defined the number of the
motifs for a particular TF as overrepresented if it is
greater than the sum of the average plus the standard
deviation of all predicted motifs in a gene set. Sequence
logos are used to show the degree of conservation, indi-
cated by the height of each nucleotide, at each position
(Table 3). For the Aw-box motif interacting with WRI1,
which possesses a sequence pattern of [CnTnG](n),[CG]
(where n is any nucleotide), we predicted binding sites
in 26 of 44 FA genes identified, seven more than
reported recently in [27]. The highly conserved CCAAT
motifs for LEC1 (and L1L) binding are significantly
enriched in promoters of all FA biosynthetic genes iden-
tified. Motifs that interact with TF genes known to reg-
ulate light-induced genes, such as Zinc-finger proteins
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Table 3 Overrepresented motifs identified in promoters
of genes involved in fatty acid synthesis, and oleosin
and seed storage protein accumulation

Sequence logo Matrix TF name Pathway
ID
MAT  WRI1 FA
i ,-CE I .cheVia_ synthesis
3 MAS DOF FA
’AAA synthesis
G MA40 MYB FA
‘crAAcCA
5 MA70  GATA FA
L ATAA synthesis
» MA103  SORLIPS FA
ki A - A synthesis
SRS
¥ MA117  CBF (LECT L1L) FA
‘CCAAT e
H MA97 B3-domain (ABI3/ SSP/
’CAT CAT VP1) Oleosoin
5 MA23  bzIP SSP/
CAC T - Oleosoin

Refer to Additional File 4 for each matrix identifier (ID). The abbreviations of
transcription factors (TF), promoter element, and pathway names are as
follows: WRI1: WRINLKED 1; DOF: DNA binding with One Finger; SORLIP:
Sequences Over-Represented in Light-Induced Promoter; CBF: CCAAT binding
factor; bZIP: basic leucine zipper; FA: fatty acid; SSP: seed storage protein.

DOF1 (MNB1A) and DOF2 [79], as well as GATA TFs
and SORLIP 5 (Sequences Over-Represented in Light-
Induced Promoter 5) [80], are overrepresented in the
promoters of FA biosynthetic genes. DOFI
(AT1G51700), however, was expressed only at the early
globular embryo stage. DOF2 (AT4G38000) exhibited a
similar expression profile during seed development as
for FA biosynthetic genes (data not shown). ARR (Arabi-
dopsis Response Regulator) genes encode ARR7 and
ARR15, which have been shown to regulate the interac-
tion of cytokinin and auxin in root stem-cell specifica-
tion during early embryogenesis [81]. We found no
binding matrices for these two regulators, but the bind-
ing matrix for ARR10 is present in our compiled matrix
set and ARR10 motifs are overrepresented in the pro-
moter regions of FA biosynthetic genes. We also found
no binding matrices for AGL 5 or GL2; binding profiles
for AGL 3 and AGL 15 were present in our analysis but
no enriched motifs were identified in the promoter
sequences of these FA biosynthetic genes.

For the genes and isoforms in the TAG assembly path-
way, no overrepresented motifs have been found. Our
goal was to identify putative promoter elements that can
be used for experimental studies (Additional File 5).
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Interestingly, promoter motifs for B3 domain TFs, such
as ABI3, FUS3 and LEC2, were found to be overrepre-
sented in promoters of genes encoding oleosins and
SSPs. Motifs for bZIP factors (e.g., bZIP67) also
appeared to be overrepresented in the promoter regions
of these genes, but there were no binding matrices for
bZIP ABI5 or EEL.

Our approach of computational promoter analysis was
limited by the availability of experimentally determined
TE-binding sites for deriving binding profiles of additional
TFs. We compiled a list of 118 binding matrices for this
analysis, but if binding profiles for other TFs can be gener-
ated from a reasonable number of known binding sites, we
could identify more TFs that possibly regulate the accu-
mulation of seed storage reserves. In addition, we only
considered upstream sequences of 1000 bp plus 200 bp 5’
UTR for each gene, because the majority of cis-acting reg-
ulatory elements are located in this region [74]. Other
genomic regions including the 3’-UTR, or even introns,
however, can also harbour TF binding sites.

Conclusions

Our analyses indicate that genes involved in the accumu-
lation of seed storage reserves, along with known TF
genes, are expressed in distinct patterns during seed
maturation. Promoter motifs for CCAAT binding factors
LEC1 and L1L, DOF and GATA factors, AP2 WRII as
well as MYB factors are enriched in the promoter regions
of genes involved in FA biosynthesis. Binding sites for
B3-domain factors (ABI3/VP1 TF family) and bZIP fac-
tors are overrepresented in the promoter regions of
genes encoding oleosins and seed storage proteins. When
binding profiles for additional TFs become available,
more putative regulatory elements will be detected,
which in turn can be validated for functionality.

Methods

Retrieval and processing of raw hybridization data

The 24 raw hybridization intensity data files (.CEL files)
for Arabidopsis seed development were retrieved from
The Arabidopsis Information Resource (TAIR) gene
expression data repository (http://www.arabidopsis.org/
servlets/TairObject?type=hyb_descr_collectio-
n&id=1006710873) [71]. Microarray gene expression
data analyses were performed using Bioconductor
packages [82] in the open-source statistical R environ-
ment [83]. The raw data files were imported into Bio-
conductor using the Simpleaffy package [84]. The
hybridization and RNA sample qualities were assessed
using a number of quality control metrics (data not
shown), and the raw data were background corrected,
normalized and transformed to the log, values using the
GCRMA package [85]. This normalization method is
developed on another normalization approach robust
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multi-array average (RMA; [86]), and uses probe
sequence information (G-C content) for estimating
hybridization affinity. The number of genes expressed in
seeds was filtered using a log2 value of 6.0 as the cutoff
for the binary ‘present’ or ‘absent’ calls, and any gene
with ‘present’ calls in less than three samples (corre-
sponding to one seed development stage) was consid-
ered as “unexpressed” in these seed samples. After
filtering, 12,353 genes expressed in at least one of the
eight development stages in developing Arabidopsis
seeds were used for subsequent high-level analyses. Cus-
tom Perl scripts were written to find the annotation of
each gene in the latest CSV file ATH1-121501.na30.
annot.csv (November 15 2009) released by Affymetrix
for the ATH1 Genome Array and revised in some cases
through sequence analysis using BLAST [87]. For exam-
ple, the TF gene WRINKLEDI1 (AT3G54320) was incor-
rectly annotated in the Affymetrix file as an
aintegumaenta-like protein or ovule development pro-
tein aintegumenta (Additional File 1).

Principal component analysis and association test of
global gene expression with seed development

The normalized, log,-transformed gene expression data
were used for principal component analysis (PCA) using
the R prcomp function [83]. For this analysis, expression
values of the three replicates for each seed development
stage were not combined in order to assess the reprodu-
cibility of biological replication. Global testing of the
transcriptome with a particular variable (e.g., seed devel-
opment stage) was carried out using the Globaltest
package [51]. This package tests the overall gene expres-
sion in group(s) of genes for significant association with
a given variable. The test gives one P-value for the
whole group instead of one P-value for each gene to
avoid the issue of multiple testing corrections.

Gene expression correlation analysis and construction of
coexpression networks

For the inference of gene coexpression networks in the
transcriptome of developing Arabidopsis seeds, we used
the 12,353 genes expressed at moderate or high levels
and used the Pearson-based correlation coefficient to
measure their expression coherence. We first used the
median expression data of the genes in the eight sam-
ples to compute pairwise correlation coefficients in the
R statistical environment, resulting in a correlation
matrix of 12353 x 12353. Then we removed self-pairing
and duplication, and applied a correlation cutoff of 0.90,
which retained over 1.7 million gene pairs representing
11,698 distinct genes for construction of the coexpres-
sion network for the Arabidopsis seed genes. This strin-
gent correlation threshold was chosen to eliminate
potential spurious correlations in a coexpression
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network. Network properties were determined using
custom scripts. Coexpression networks are visualized
using Cytoscape [88]. For time-course clustering analy-
sis, the gene expression values were standardized to
have a mean value of zero and a standard deviation of
one for each gene profile. This standardization of data
ensures that genes with similar temporal profiles are
close in Euclidean space during clustering, regardless of
their absolute expression levels. The transformed
expressions were then clustered using the fuzzy c-means
(FCM) clustering algorithm in the Bioconductor Mfuzz
package [89]. We determined six clusters can well sepa-
rate the expression patterns inherent in the dataset, and
another FCM parameter m = 1.75, which allows for
investigation of the clustering robustness. FCM assigns a
membership value in the range of 0-1 for each gene as
an indicator of how representative a gene profile is for a
specific cluster, and profiles with different membership
values were differently coloured.

Computational analyses of transcription factor binding
sites

The genomic sequences 1000 bp upstream plus 200 bp
5 untranslated regions (UTR) for the genes involved in
storage reserve biosynthesis were retrieved from the
RSAT server [73]. If the intergenic region with the
upstream neighbouring gene is <1000 bp long, we only
retrieved upstream sequence available in order to pre-
vent using the 3’-end sequence of the adjacent gene in
the upstream. Putative TF binding sites on both strands
were identified with two software tools, TFBS [76] and
fdrMotif [77]. Briefly, the 118 TF binding profiles (posi-
tion-specific weight matrix, or PWM) were compiled
from the literature [27,74] and the JASPAR database
[78], and converted into a format suitable for each soft-
ware tool (Additional File 4). In the TFBS search, an
80% similarity cutoff was adopted. In fdrMotif search,
for each input sequence 10 background sequences were
generated from a 4th-order Markov model and an upper
boundary of false discovery rate (FDR) of 0.15 as sug-
gested by fdrMotif was adopted to control FDR. Only
putative binding sites predicted by both tools were
retained for subsequent analysis. To ascertain the pre-
dictive performance, detected motifs were compared
with curated motifs in AtcisDB and AGRIS databases
[90,91]. Sequence logos for the predicted motifs for a
TF binding profile were created with WebLogo [92].

Additional material

Additional File 1: A list of select genes identified in the subnetwork
including the majority of fatty acid biosynthetic genes. Genes
without informative annotation such as hypothetical proteins were
excluded.
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Additional File 2: A list of select genes identified in the subnetwork
including those encoding oleosins and seed storage proteins. Genes
without informative annotation such as hypothetical proteins were
excluded.

Additional File 3: The log, expression values of genes involved in
storage reserve accumulation across the eight seed development
stages. Genes involved in seed storage reserve accumulation were
adopted from early surveys [17,59], and additional genes implicated in
this process were identified through sequence analysis using BLAST [87].

Additional File 4: The 118 high-quality position weight matrices
(PWMs) compiled for the analysis. In each matrix the definition line
starts with a >’ sign and an identifier (ID), followed by the description
including the transcription factor (TF) name. A row represents a position
in the motif sequence, and the four columns represent nucleotides A, C,
G, T respectively. Each matrix was standardized such that its frequency
sum for the four nucleotides at each position (row) is 1.0000. A blank
line was added between every two matrices. One matrix (MA17) was
excluded from the file via a manual examination due to ambiguous TF
description for the matrix existing in JASPAR [78].

Additional File 5: Predicted cis-acting promoter motifs for genes
involved in seed storage reserve accumulation. The start and end
positions of an predicted transcription factor (TF) binding site are relative
to the start of each promoter sequence, not to the transcription start site
(TSS) of the gene. The numbers +1 and -1 indicate sense and antisense
strand, respectively. The score was determined by the transcription factor
binding site analysis tool TFBS [76].
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