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Abstract

A prototype rotating hybrid magnetic resonance (MR) imaging system

and linac has been developed to allow for simultaneous imaging and radiation

delivery parallel to Bo. However, the design of a compact magnet capable

of rotation in a small vault with sufficient patient access and a typical clini-

cal source-to-axis distance (SAD) is challenging. This work presents a novel

superconducting magnet design that allows for a reduced SAD and ample

patient access by moving the superconducting coils to the side of the yoke.

The yoke and pole-plate structures are shaped to direct the magnetic flux

appropriately.

A closed symmetrical system with different pole plate structures was stud-

ied to find the most suitable optimization algorithm and pole plate structure.

Then, the outer surface of the pole plate for a non-axial design was optimized

subject to the minimization of a cost function, which evaluates the uniformity

of the magnetic field over an ellipsoid. This non-axial design is reminiscent

of a C-core transformer. Magnetic field calculations were performed with the

3D finite element method (FEM) software package Opera-3D. Each tentative

design strategy was virtually modeled in this software package, which is ex-

ternally controlled by MATLAB, with its key geometries defined as variables.

The optimization variables were the thickness of the pole plate at control

points distributed over the pole plate surface.

Optimized magnet assemblies that generate homogenous 0.2T and 0.5T

magnetic fields over an ellipsoid with a large axis of 60 cm and small axes of

40 cm were obtained.
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The distinct features of this model are the minimal distance between the

yoke’s top and the isocentre, which allows for a minimal SAD, and the im-

proved patient access. Additionally, obtaining field homogeneity over a large

field-of-view leads to a unit with enhanced imaging flexibility.
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Chapter 1

Introduction

External beam radiation is a common type of radiotherapy for cancer treat-

ment where the radiation source is located outside the patient’s body. For

this treatment, high-energy radiation consisting of photons or charged parti-

cles (electron, proton, or heavy ions) are delivered to the tumor. The medical

linear accelerator (linac) is the source most commonly used to generate either

the high-energy electron beam used to treat the superficial tumors, or the

high-energy photons used to treat the deep-seated tumors.

The clinical goal of radiotherapy is to deliver the highest dose to the tu-

mor, thereby maximizing the tumor control probability (TCP), while sparing

as much normal tissue as possible and minimizing the normal tissue complica-

tion probability (NTCP). To achieve this goal, the treatment that is delivered

should match the treatment that was planned. However, there are always un-

certainties associated with both the planning and delivery of radiotherapy.
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Treatment uncertainties can be related to patient set-up, variation in tu-

mor size over the course of treatment, or motion of the tumor during the

treatment. To account for the uncertainties, volumes and margins are de-

fined with respect to target anatomy for the treatment planning (1;2), shown

in figure (1.1). The gross tumor volume (GTV) is the gross visible extent of

cancerous tissue. The clinical target volume (CTV) includes the GTV and

microscopic spread of the malignant tissue, which requires sufficient dose to

be eliminated. An internal margin (IM) is added to the CTV to account

for any target motion and size and shape variation of the CTV during the

treatment. The CTV with the added margin is called internal target volume

(ITV) (2). A set-up margin (SM) is added to the ITV to account for patient

set-up; this final volume is called the planning target volume (PTV).

Based on the aforementioned tumor and target volume definitions, any healthy

tissue within the PTV is undesirably irradiated, leading to possible adverse

tissue complications. Intensity-modulated radiotherapy (IMRT) tackles this

issue by delivering a conformal dose distribution to the PTV using a sharp

dose gradient. However, it is important to avoid any positioning errors related

to the PTV while using highly conformal techniques such as IMRT. Hence,

imaging systems have been developed to provide information about the po-

sition of the tumor and its motion for Image-Guided RadioTherapy (IGRT).

The quality of radiotherapy has improved drastically by combining conformal

radiotherapy with IGRT.
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Figure 1.1: Volumes and margins defined by the International Commission on
Radiation Units (ICRU): gross tumor volume (GTV), clinical target volume
(CTV), internal margin (IM), internal target volume (ITV), set-up margin
(SM), and planning target volume (PTV).

1.1 Image-Guided Radiotherapy

IGRT is defined as the use of frequent imaging in the treatment room al-

lowing for adjustments that reduce geometrical errors in patient set-up and

account for geometrical changes of the tumor. The goal of IGRT is to reduce

the CTV to PTV margins, thereby reducing healthy tissue irradiation (3;4). A

wide variety of imaging modalities, including planar megavoltage (MV) and

kilovoltage (kV) imaging, cone beam computed tomography (CBCT), and 3D

ultrasound, are used to increase the accuracy of the treatment by the use of

the IGRT.
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On-board IGRT devices are MV and kV imagers attached to the linac. An

electronic portal imaging device (EPID) is a portal megavoltage (MV) imager,

which uses the treatment beam and flat-panel imaging detector to obtain a

two-dimensional image. An EPID can also be used for dose measurements,

and it is considered as a useful tool for quality assurance and plan verification

of IMRT treatment plans (5;6). MV images suffer from poor soft tissue contrast

and the superposition of other structures onto a 2D image decreases the con-

trast further. In addition, an additional dose is received by the patient during

the MV imaging. Another on-board imager is the kilovoltage (kV) imager,

where the X-ray source and detector system are perpendicular to the treat-

ment beam axis. The contrast can be improved and a lower dose is delivered

to the patient when the kV beam is used. Real-time tracking markers im-

planted in lung tumors, using fluoroscopic kV imaging, have been proposed (7).

Volumetric 3D images can be obtained using the on-board imagers. Cone-

beam computed tomography (CBCT) images are acquired from projection

images taken at different angles as the gantry is rotated through the beam

axis. However, it is not possible to do volumetric imaging while the treatment

beam is on. Also, CBCT has limitations for localizing tumors within the soft

tissue due to the poor soft tissue contrast compared to medical CT scanner

or MRI. Therefore, the use of the CBCT images is limited to positioning the

patient before the treatment.

Tomotherapy is a type of radiotherapy that combines the geometry of a CT

imager with the beam of a linac. The rotating MV beam delivers highly con-
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formal IMRT, slice-by-slice, as the patient is translated longitudinally through

the bore (8). The MVCT images can be used for patient setup, tumor align-

ment, and treatment verification (9). Similar to other imaging devices with

X-ray sources, extra dose is delivered to the patient. The dose from a single

scan might be quite low compared to the prescribed dose, but the accumula-

tive dose due to the day-to-day treatment should be considered. Furthermore,

the helical MVCT can not be used for the real-time motion tracking since the

imaging and treatment sources are the same.

Other modalities used for IGRT include ultrasound (US), or electromag-

netic field tracking, where no ionization radiation is involved. However, these

modalities have limitations. US can be used to visualize soft tissues and assist

with target localization prior to the treatment planning (10;11). The limitation

of US is the required presence of an operator, which makes it unusable for

real-time tracking. In addition, the anatomic diplacement caused by the pres-

sure of the imaging probe is a concern (12). In electromagnetic field tracking,

an electromagnetic transponder is implanted near the tumor and is electro-

magnetically tracked in real-time from outside the patient (13). The limitation

for this technique is the lack of volumetric information obtained about the

tumor. It also requires an additional invasive procedure for the patient, and

there is the possibility that the implants may migrate after implantation.

As mentioned, current imaging modalities for IGRT have limitations in one or

more aspects, which make them unsuitable to provide real-time imaging dur-

ing treatment. However, magnetic resonance (MR) imaging has been found
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to be a good choice for this task. MR can produce images with exquisite soft

tissue contrast helping to improve accuracy of the delineation of both tumor

and surrounding tissues. In addition, no ionizing radiation is involved during

the imaging process, so no extra dose is received by the patient. Given these

imaging abilities, a hybrid system combining a radiation treatment unit and

an MR imager would permit real-time image-guided radiotherapy, where a

continuous stream of images throughout the radiation treatment could be ac-

quired. As a result, any tumor motion could be identified, and the radiation

beam could be adapted to accommodate the change. Having the beam pre-

cisely on the target during the treatment would minimize the harm to normal

tissue near the tumor. The following section describes the developments in

the use of MR imaging for real-time IGRT.

1.2 Real-Time MRI-Guided Radiotherapy

There has been an increasing interest in using MR imaging in radiotherapy

in the recent years. At the present time, there are a number of prototypes for

hybrid radiation treatment and MR imaging systems both in production and

development (14;15;16;17;18).

One commercially available system is the ViewRay system designed for MR-

guided IMRT (14;19;20). This system consists of a double-doughnut 0.35 T su-

perconducting magnet, with a vertical gap to mount three 60Co sources on a

ring gantry. The advantage of this system is the lack of radio frequency (RF)

interference between the 60Co beams and MR imager. However, the charac-
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teristics of the 60Co beam, such as larger penumbra, less penetrating power,

higher surface dose, and lower output compared to a linac, are disadvantages

of this system (14).

A group at the UMC Utrecht, Netherlands, has constructed a prototype con-

sisting of a modified 1.5 T Philips Achieva MR system integrated with a

modified 6 MV Elekta accelerator (16;21). The redesigned stationary magnet

has a central region that is free of coils, opening a path for the beam. In

addition, a low-field toroidal zone is formed using active shimming to locate

the electron gun of the linac. The use of a 1.5 T field increases the signal

to noise ratio, which is an advantage of this system. However, the radiation

beam is perpendicular to the magnetic field for this system, which creates hot

and cold spots in the dose distribution at tissue-air interfaces, particularly

apparent at this higher field strength (22;23). This is due to the electron return

effect, where the Lorentz force on moving electrons results in the return of the

electrons back to the tissue at the beam exit point. This could be considered

a drawback of this system, and needs to be accounted for during treatment

planning, especially for lung, head, and neck cancers (21).

Our research group at the Cross Cancer Institute (CCI) in Edmonton, Al-

berta, Canada has built prototypes of integrated linac-MR systems (17;18;24) in

two phases. The development of these prototypes will be explained in the

following section.
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1.2.1 Linac-MR System

The Linac-MR system is designed as a 6 MV linac mounted onto a bi-planar

rotating MR scanner to allow for simultaneous imaging and radiation delivery.

The rotating bi-planer magnet permits two different potential orientations of

the radiation source with respect to the magnetic field: the perpendicular

and parallel configurations. Hence, one of the unique features of this rotating

design is the ability to transmit radiation parallel to the the Bo field, which

has been shown to have dosimetric advantages compared to the perpendicu-

lar configuration (18). These advantages take the form of a reduced penumbra

width (25), reduction of tissue-air interface effects, and increased dose in the

PTV, resulting in an overall reduction in dose to the surrounding normal tis-

sue (26).

For phase I, an integrated system of a 6 MV linac with an optimized per-

manent magnet sized for head imaging was built. The installation and me-

chanical rotation of the magnet for this system was easier because of the

absence of cryostat for cooling and relative lack of electrical wiring. A low

magnetic field (0.2 T) can be achieved using permanent magnets, which lead

to weak fringe fields and simplification of the linac magnetic shielding. The

limitation of this system is the challenge of obtaining the desired homogeneity

over a large field view, while still satisfying the dimensional constraints for

the Linac-MR system (27;28). The lateral dimension and pole diameter are con-

strained as the system should be able to rotate within a typical radiotherapy

vault. The permanent-magnet system was built to check the viability of the
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integration of two systems, and the world’s first MR image acquired during

irradiation was obtained by this system (17;24).

Figure 1.2: 3-D schematic of the bi-planar magnet with dimensions represen-
tative of the Linac-MR v2 system.

A hybrid system of a 6 MV linac and an optimized cryogen-free high-temperature

superconducting (HTS) magnet was developed and built for the second phase (17).

The superconducting magnet can produce higher fields, which improves the

image quality and acquisition speeds. There are two versions of the super-

conducting magnet as a commercial whole-body open-bore magnet. Our v1

system with a 0.5 T field has a source-to-axis distance (SAD) of 126 cm (18)

and the gap between two pole plates is 60 cm (17). The v2 system, gener-

ating a 0.5 T magnetic field, has a SAD of 130 cm (18), and a rectangular

opening with width of 110 cm and height of 60 cm for patient access. Three-
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dimensional illustration of the bi-blanar magnet for the v2 system is shown in

(1.2). The SAD is increased for the v2 system, which reduces the dose rate (18).

The linac system rotates around the isocentre, which is the intersection of

the rotation axis of the gantry and the central axis of the radiation beam.

To avoid patient repositioning for every beam angle during the treatment, an

isocentric method is used to deliver the radiation, where the target volume

centre is placed at the isocentre throughout the radiation. However, it is dif-

ficult, if not impossible, to apply the same technique for the patient with a

peripheral tumor while using one of the hybrid of MR and radiotherapy sys-

tems mentioned in the previous section. Considering the cylindrical nature

of the magnet with a bore of about 60 cm, it is difficult to position a patient

with his or her peripheral tumor positioned at isocentre.

For the Linac-MR system, the bi-planar nature of the magnet allows for a

wide-range of motion in a direction parallel to the face of the pole plate and

perpendicular to the radiation beam. Given that, a peripheral tumor treat-

ment positioning (PTTP) system and method, explained in detail in (29), can

be employed to make sure that the tumor is always kept in the axis of the

beam. Based on this method, a central position and a treatment position are

defined for the couch positioning. The collision between the patient and the

rotating Linac-MR system is prevented as long as the couch is located at the

central position. The treatment position is calculated based on the gantry

angle. At any specific angle, the couch is moved to the treatment position

for delivering the treatment then it is reversed to the central position for the
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gantry rotation. This is another unique feature of this system that allows for

the treatment of peripheral tumors such as breast or lung tumors.

1.3 Motivation

The main components of the biplanar magnet for the Linac-MR system are

yoke, pole plates, and superconducting coils. The yoke is a ferromagnetic

structure that supports the magnet poles, and carries the magnetic flux

around the system. Critical to the success of the biplanar Linac-MR sys-

tem is the design of a magnetic yoke structure that allows for a homogeneous

magnetic field over a large field of view. Magnetic field homogeneity allows

for artifact-free imaging and accurate geometrical information of the target

volume during the treatment. In addition to the stringent requirements on

the magnetic field uniformity for the image quality, there are other criteria

that are imposed on the system due to the unusual circumstances in which

the MR imager must operate. Specifically, the yoke should be designed to

have ample patient access, and to be sufficiently compact to rotate in a typ-

ical clinical vault. In addition, it must allow room for the linac assembly to

be positioned within a limited distance from the isocentre of the device.

The biplanar MR radiotherapy hybrid as being developed by our group (17),

has an increased SAD compared to the 100 cm standard, mainly due to the

position of the linac, which must be outside the yoke and in a low magnetic

field zone. The latest system has an SAD of 130 cm (18), where the radia-

tion beam is parallel to the direction of magnetic field. This increase in SAD
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will cause the reduction of the dose rate at the isocentre by 41% due to the

inverse square law, with potential consequences for patient treatment times.

Consequently, the reduction of this SAD will be a valuable objective of any

new design.

Conventionally, bi-planar superconducting magnets have the coils placed ax-

ially adjacent to the pole plates to produce the desired magnetic field (17;28).

The coils are enveloped by a bulky cryostat, which extends on the order of

30 cm or more in the vertical dimension. For the new design, the supercon-

ducting current loops are moved to surround the yoke supports that connect

the pole plates. This non-axial design is reminiscent of a C-core transformer.

The intention in this new design is to reposition as many structures that are

currently between the patient and the linac as possible. Moving the coils to

the side allows for reduced SAD while improving the patient access, which is

important to reduce patient claustrophobia and clinician access.

One of the primary functions of the Linac-MR system is tracking tumors.

For the new design, target field for the homogeneity is considered to be an

ellipsoid versus a sphere, which is the common practice for designing a mag-

net. This allows a wider field-of-view in lateral direction that increases the

accuracy for the patient set-up. Once the gantry is rotated, PTTP method (29)

is applied to keep the tumor in the axis of the beam, where an accurate small

field-of-view is required for tracking the tumor. However, the target volume

might be located anywhere along the beam axis.

This work presents the development of a unique non-axial superconducting
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biplanar magnet design as a proof of concept. Moving the coils to the yoke

support allows for a minimal SAD and improved patient access, which are the

distinct features of this design. Using a finite-element analysis technique, the

shape of the pole plate for the magnet assembly is optimized to achieve the

desired field uniformity over a field-of-view suitable for MR imaging.

1.4 Thesis Outline

The outline of this thesis is as follows:

A review on the design of an MR magnet is given in chapter 2. In addi-

tion, the mathematical tools applied for this work are introduced. A brief

description on the finite-element procedure is provided, then the application

of the method in a magnetostatic model is explained. Finally, the optimization

algorithms used for the optimization of the pole plate design are described.

Chapter 3 builds on investigations of two simplified designs in order to find the

proper optimization algorithm and pole plate structure for a final non-axial

design. The symmetrical magnet assemblies are the tapered conical projec-

tions model and the continuous cylindrical projections model. The technique

evaluation, using the closed models with no patient access, leads to the final

design. The shape of the pole plate for this design is then optimized. The

magnetic field calculations required for this work were performed with the 3D

finite element method (FEM) software package, Opera-3D (30). The design

features and optimization results are explained in chapter 4.
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Chapter 5 summarizes and presents conclusion on this work, and suggests the

direction for future work.



15

Chapter 2

Background

2.1 Magnetic Resonance Imaging

The basic principles of magnetic resonance (MR) imaging can be related to

the roles of different types of magnetic fields. The MR scanner has three main

components to generate images: the main magnet is used to generate a static

and highly uniform magnetic field (Bo), radio frequency (RF) coils are used

to generate a time varying magnetic field (B1), and gradient coils are used

to generate a highly linear magnetic field that can be turned on and off in

a time-varying fashion (31). The purpose of this section is to briefly review

the function of each magnetic field at different stages of imaging, using the

physical principles of MR imaging.
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2.1.1 Static Magnetic Field

Most atomic nuclei have intrinsic quantum mechanical properties including

non-zero spin (angular momentum) and a charge distribution. A charged

particle with angular momentum can be modeled as an electrical current loop

creating a magnetic moment µ expressed as:

µ = γ~I, (2.1)

where ~I is the angular momentum of the nucleus and γ is a constant called

the gyromagnetic ratio with its value depending on the element nucleus (32).

The most common nucleus targeted for MR imaging is the hydrogen (1H)

nucleus (proton) due to its abundance in the human body. It has I equal to

±1/2 and γ equal to 2.675 × 108 rad s−1 T−1. From here on, the system of

protons will be used to explain the MR imaging process.

When a proton is placed in a strong external magnetic field Bo, the proton

experiences a torque τ given by:

τ = µ×Bo. (2.2)

The torque causes precession of the proton’s magnetic moment with an an-

gular frequency proportional to the magnetic field strength. The precessional

frequency is called the Larmor frequency and is defined by the following equa-

tion:

fo =
γ

2π
Bo. (2.3)
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The proton can occupy two stable energy states, either spin-up (I = 1/2,

lower energy state) or spin-down (I = −1/2, higher energy state), which

can be explained by the use of quantum mechanics (33). The proton will be

aligned either parallel or anti-parallel to Bo for the low or high energy state,

respectively. It can be shown that there is slightly greater number of protons

in the parallel direction (33). Therefore, an ensemble of protons precessing at

thermal equilibrium about Bo, oriented in the longitudinal direction (z-axis)

generates a net static magnetization oriented in the z-direction and no net

magnetization in the transverse plane (xy-plane). As a result, there is no

detectable RF signal at this stage and the net magnetization needs to be

manipulated to produce a measurable signal.

2.1.2 Radio Frequency Magnetic Field

The system of protons must be perturbed to produce a detectable signal and

create an MR image. This can be done by applying an RF magnetic field

(B1) with a frequency equal to the Larmor frequency (fo) and perpendicular

to Bo. When enough energy is supplied using an RF pulse the net longitudinal

magnetization is tipped toward the transverse plane. The displacement of the

magnetization vector from the z-direction can be measured by an angle called

flip angle (α), which depends on the duration that the RF pulse is applied.

For α = 90o, the net magnetization (M) is projected onto the transverse plane

with no component in z-direction. This is called a full saturation. In addition,

the magnetization direction can be inverted if the RF pulse is applied with

flip angle of 180o (34).
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After tipping M toward the transverse plane, the transverse component (MT )

rotates about Bo due to the nuclear precession. Therefore, the MT vector has

a circular motion in the transverse plane, and creates a detectable signal.

The detectable signal decays due to two types of nuclear relaxations. The

first one is the spin-lattice relaxation due to the interaction of the spin with

the surrounding medium, and tends to cause recovery of the Mz component.

The time for spin-lattice relaxation is characterized by T1. The second mode

of relaxation can be explained in term of the spin-spin interactions, which

creates additional dephasing. This causes decay of the MT component and it

is characterized by the relaxation time T2. The resultant decaying signal is

called free induction decay (FID). The mathematical description of the Mz

recovery and the MT decay can be understood using the Bloch equations (35):

Mz = Mo − (Mo −Mz(0))
(

1− e−
t

T1

)
, (2.4a)

|MT | = |MT (0)| e−
t

T2 , (2.4b)

where Mz(0) is the value of Mz immediately after applying a RF pulse, and

ranges from −Mo to Mo. MT (0) is the value of MT right after applying a RF

pulse, and ranges from 0 to Mo. The final signal intensity depends on the

proton density, the recovery of the Mz, and the decay of the MT .

The main function of RF coils, which produce the RF magnetic field, is to

excite the magnetization. However, they are also used to receive the signal

created by the excited magnetization.
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The T2 relaxation time is always shorter than T1, for any given tissue. In

addition, T1 and T2 have different values in various tissues for different mag-

netic field strengths. These characteristics provide a range of possible contrast

mechanisms to generate an image using an MR scanner.

2.1.3 Gradient Magnetic Field

Using the primary and RF magnetic fields alone, all spins in an ensemble

of protons resonate at the same frequency, are excited, and produce a signal

with no spatial information. Spatial localization in a 3D volume can be done

using three gradient magnetic fields in three steps: slice selection, frequency

encoding, and phase encoding. The gradient magnetic fields can be defined

as additions to the main magnetic field, Bo, with the following equation:

Bz(x, y, z, t) = Bo + xGx(t) + yGy(t) + zGz(t). (2.5)

The field gradients, Gx, Gy, and Gz, are often expressed in units of millitesla

per meter (mT m−1). They are designed such that the center of an imaging

volume is located at x = y = z = 0. Then, the gradient magnetic fields vary

linearly with the position and can be controlled independently (35).

The first step for spatial localization is slice selection. Applying a gradient

field results in having different magnetic fields at different spatial locations.

Therefore, protons at different locations resonate with different Larmor fre-

quencies. In order to excite M and produce a signal, the frequency of the RF
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pulse must match the Larmor frequency. To select a single slice, the frequency

bandwidth of B1 must match the bandwidth of the resonance frequencies of

the spins in the slice of interest. The frequency bandwidth, ∆ωz, is defined

as:

∆ωz = γzGz. (2.6)

In order to select a transverse slice, a gradient field must be applied in the

z-direction, parallel to Bo. Based on (2.6), the slice thickness depends on the

bandwidth of the RF pulse and the gradient strength.

The frequency encoding gradient is applied in a direction perpendicular to

the direction of the slice selection gradient, which is the x or y-direction in

the case of transverse slice selection. Frequency encoding works in the same

way as slice selection, but the gradient is applied during signal acquisition.

Assuming a gradient field applied in the x-direction, the protons at different

x-positions precess with the frequencies determined by their position from the

center of the imaging volume. From each x-position, a signal is emitted with

the frequency determined by the x location and an amplitude dependent on

the number of protons at the location. The composite signal detected by a

receiver coil results from the sum over all individual signals. The composite

signal is decoded by use of a Fourier transform to recover the position infor-

mation (33).

The last step in spatial localization of a signal is phase encoding. The gradient

field for phase encoding is applied after the slice selection gradient, before the
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frequency encoding gradient, and in the direction of the third perpendicular

axis (y). Turning on the phase encoding gradient results in the variation of

the precessional frequency in the y-direction; similar to the last two steps.

After turning off the gradient, the different precessional frequencies are trans-

lated into phase differences. Assuming that the phase encoding gradient at

location y is on for a finite time τ , the phase difference (φy) can be defined

as:

φy = −γy
∫ τ

0

Gy(t
′) dt′. (2.7)

For Ny sampling points in the y-direction, the phase of the signal is changed

and expressed by φ1 to φNy for each point. After applying the frequency

encoding for Nx sampling points, the frequency as a function of position in x-

direction is expressed by f1 to fNx . Therefore, Nx data points are derived after

a single acquisition, and phase encoding gradients with different strengths

must be applied Ny times to fully encode the image (35).

2.2 Primary Magnet Design

The main magnet in a MR scanner is used to produce a static and homoge-

nous field throughout the scan. The magnetic field makes nuclear spins align

parallel to Bo, which induces a net longitudinal magnetization and preces-

sion. To design an optimal magnet, one needs to thoroughly understand the

required characteristics for the main magnet.
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2.2.1 Required Features for Main Magnets

Characteristics that might be considered when designing a magnet include:

the main field strength, temporal stability of the field, minimization of the

fringe field, field homogeneity, patient access and comfort, and cost effective-

ness (32).

Main Field Strength and Temporal Stability

The strength of the net magnetization, which is directly related to the received

signal, is dependent on the Bo field strength (35). In addition, the signal-to-

noise ratio (SNR), defined as the ratio between the signal and background

noise, is roughly proportional to Bo. For higher fields, there is a direct pro-

portionality between the SNR and Bo. However, the noise dynamic changes

and the SNR begins to drop more rapidly with Bo when the field strength is

roughly below a threshold of 0.5 T (32).

The signals produced to obtain MR images are acquired over a scan time,

through successive excitations of spin magnetization in the object. As the

term static magnetic field implies, the field should be time-independent dur-

ing imaging. The temporal stability is dependent on the magnet type and

design.
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Fringe Field Minimization

The magnetic field produced by the main magnet, but outside the imaging

environment, is called the fringe field. The fringe field should be kept be-

low 5 G in public areas to avoid any safety risks to people as 5 G has been

generally established as safe for the vast majority of implant devices. The

fringe field strength depends on the magnet type and its field strength. Any

excessive field may interact with magnetic materials and sensitive electronic

devices that are in the vicinity of the MR scanner, which is hazardous.

For unshielded magnets, producing field about 0.5 T and above, the fringe

field can be more than 5 G at distances of 10 to 30 m from the imaging

environment (32). Therefore, in order to minimize the effect of fringe fields,

shielding strategies should be considered when a magnet is designed. Two

types of shielding approaches can be employed: active shielding and passive

shielding.

In the active shielding approach, there are two sets of coils. The primary

set produces the Bo field, while the exterior secondary one set produces cur-

rents in the opposite direction. This design helps to keep the magnetic flux

in a smaller region and reduce the fringe fields.

In the case of passive shielding, ferromagnetic materials with high magnetic

permeability (µ) (such as steel) are employed in two ways. Firstly, after in-

stalling an unshielded magnet, steel materials are added to the wall of an
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imaging room. The presence of the iron lets some of the excess flux pass

through the shield, reducing the fringe field extending outside the room. In

an alternative approach, inclusion of the ferromagnetic material is considered

at the design stage. The primary source producing Bo is surrounded by a

large magnetic yoke structure, which contains the field lines and results in

reduced fringe fields.

Main Magnet Field Homogeneity

The required homogeneity of Bo varies based on the objective of the MR

imaging studies being performed and the imaging methodologies being used.

The homogeneity of the main field is quoted in terms of inhomogeneity, which

is defined by ∆B over the region of interest. It can be expressed in parts per

million (ppm) as:

∆B = max

(∣∣∣∣B(−→r )−Bo

Bo

× 106

∣∣∣∣) , (2.8)

where B(−→r ) is the magnetic flux value at the point −→r positioned at the re-

gion of interest. Main field inhomogeneity results in geometric distortion and

signal loss.

As mentioned before, the Larmor frequency is linearly dependent on Bo.

When a linear gradient is applied to encode the location of a spin, any field

variations (∆B) are added to the applied linear field gradient, which leads

to a deviation from the intended frequency of precession for the given spin.

Consequently, the actual location of the spin is misregistered, and the spatial
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distortion resulting from the inhomogeneity is given by (32):

∆x =
∆B

Gx

. (2.9)

In addition to geometric distortion, the relaxation due to the decay of the

transverse magnetization in the presence of field inhomogeneity is defined as:

1

T ∗2
=

1

T2

+
1

∆B
, (2.10)

where ∆B is the variation in the Bo field (35). Consequently, the rate of signal

decay is faster when there is an inhomogeneity in the syetem.

There are multiple factors that leads to the magnetic field inhomogeneity after

magnet installation. There are always inaccuracies in magnet manufacturing

such as machine error during the magnet fabrication or magnetic impurities

in any of the surrounding structures (35). In addition, the presence of steel

materials in the building might contribute to magnetic field inhomogeneity

after magnet installation. The process of assessing these inhomogeneities and

applying different methods to eliminate them is referred to as shimming.

The solution of Laplace equation (52Bz = 0) in spherical coordinates can

describe the magnetic field distribution within a volume with no currents,

where Bz is the component of the magnetic field in z-direction (more details

on electromagnetics will be described in the following section). This solution

can be expressed in terms of spherical harmonic functions (36;37), and the con-

cept can be used in the shimming process.
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Upon installation of a magnet, the magnetic field homogeneity is assessed

using field mapping. The field distribution, within the imaging volume of a

magnet, is determined using a field probe (consisting of a small nuclear mag-

netic resonance (NMR) coil and sample) to measure the Larmor frequencies at

points defined within the sample. The probe is typically moved over the out-

side of a volume (the surface of a sphere or cylindar). The measured magnetic

field can be expanded as a sum of weighted spherical harmonic components.

Using a computer algorithm, the coefficient of each spherical harmonic term is

calculated. Each coefficient determines the residual inhomogeneity associated

with the corresponding spherical harmonic (38). The next step is to determine

a magnetic source configuration to generate the spherical harmonic solution

that can eliminate the residual inhomogeneity (36). The process requires sev-

eral iterations of measurement and correction to obtain desirable homogeneity.

Similar to the approaches applied for the magnet shielding, there are active

and passive shimming methods for the main magnet. For passive shimming,

magnetic materials are placed in the magnet bore to compensate for unwanted

spherical harmonic components, and for active shimming, a set of shim coils

is added to the magnet to cancel the extra fields.

2.2.2 Superconducting Magnet

There are three types of magnets: permanent magnets, resistive magnets, and

superconducting magnets. The superconducting magnets have several advan-

tages when requirements of the magnet design are taken into consideration.
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From the field strength point of view, it is difficult to achieve fields for whole

body above 0.2 − 0.3 T with permanant magnets, and the resistive one typ-

ically operates in 0.3 − 0.5 T (31). The magnetic field generated by a wire is

linearly proportional to the current within the wire. Superconducting materi-

als can carry much larger current compared to the resistive one. Therefore, the

superconducting conductor can generate higher Bo, given a constant number

of windings. There are commercially available superconducting human whole

body systems with a Bo of 7 T.

Considering temporal stability, permanent magnets are quite sensitive to tem-

perature fluctuation, and a special system for temperature monitoring and

regulation are generally required for this system. The resistive magnets re-

quire a highly stable power supply and cooling system to reduce magnetic

field variations that might occur during the scanning session. This adds cost

to the system. However, the variation in field for superconducting magnets

is typically less (on the order of µT/hour), and generally small enough to

neglect for imaging purposes (32).

The characteristics of a superconducting material is determined by its critical

temperature, critical magnetic field strength, and critical electrical current.

The superconductor must operate at a temperature or current below the crit-

ical parameters to achieve zero electrical resistance.

Currently, niobium-titanium (NbTi) with a maximum critical temperature

of 9.5 oK (31) is the most popular superconducting material used in super-
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conductor magnets. The operating temperature for these magnets is kept at

4.2 oK, which is the temperature of liquid helium. Coils are submerged in a

liquid helium tank by an auxiliary cryostat vessel. However, there is an in-

creasing interest in using high-temperature superconducting (HTS) materials

such as MgB2, which has a maximum critical temperature of 39 oK (39). These

superconductors can be employed as conduction-cooled superconductor mag-

nets (40), which is free of liquid cryogens. This greatly reduces the complexity

of the systems.

2.3 Finite Element Method

The Finite Element Method (FEM) is based on the idea of discretization

of a continuous system to provide an approximate numerical solution for a

boundary value problem. A detailed description have been published in (41;42).

The method is widely used to find an approximate solution for problems in

engineering and physics that are defined by the general differential equation:

Lu = f, (2.11)

where L is a differential operator and f is the forcing (source) function. u is

the unknown solution that one is looking for on a domain Ω and boundary Γ,

with defined boundary conditions.

The method is formalized through four major steps that convert the differen-

tial equation, defined on a continuous and geometrically complicated domain,
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into a set of linear equations that can be solved numerically. The steps in-

clude: (i) the subdivision of the solution domain, (ii) selection of the finite

element basis functions, (iii) forming the system of linear equations via ele-

mental equations, and (iv) solving the system of equations numerically. The

steps are explained in more detail in the following sections.

2.3.1 Domain Subdivision

The first step is dividing the domain Ω into a finite number, m, of subdo-

mains Ωe (e = 1, 2, 3, ...,m). Each subdomain is called an element and the

vertices of each element are called nodes. The common types of the elements

for problems in different dimensions is illustrated in figure (2.1). The triangu-

lar and tetrahedral elements are commonly used for two-dimensional surfaces

and three-dimensional volumes with the irregular geometries. Potential er-

rors in the model can be minimized using these elements (41). Using elements

with right angles leads to unavoidable errors due to the nonconformity of the

elements to the true geometry.

To fill the whole domain properly (mesh generation) two adjacent elements

should be connected at their vertices, where no gaps and overlaps are per-

mitted. Mesh generation can be optimized using the Delauney triangulation

algorithm (42), while satisfying the mesh generation requirements.

To implement the FEM, one needs to have information for all the nodes,

which includes the local number (indicating position of the node within an
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Figure 2.1: Common elements (a) one-dimensional problem, (b) two-
dimensional problem, (c) three-dimensional problem; figures taken from (41).

element), the global number (indicating position of the node in the whole

domain), and the coordinates for each node (43). The index number, n(e, i),

relates the local number (i) for an element (e) to its global number (n). i

runs from 1 to j, where j is the number of nodes in the element. The global

number runs from 1 to N , where N is the total number of the nodes in the

domain. Using this information, an element connectivity matrix is formed to

map the local node numbers to the global node numbers, with the dimensions

of N ×N . A similar connectivity matrix is formed for the boundary nodes to

relate the local and the global nodes for the boundary surface with a defined

boundary condition. Another matrix is formed including the coordinates for

each node. These matrices are used to calculate the elemental equations and

matrix assembly for the next steps. The domain subdivision is considered

a preprocessing step because it can be done independently from the other

steps (41).
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2.3.2 Selection of the Finite Element Basis Functions

After the domain is discretized properly, one needs to find an approximation

to the function u using interpolating functions within each element (ue). The

approximation function, ũ, is defined as:

ũ =
m∑
e=1

ue, (2.12)

where m is the total number of elements, and ue is the basis function. The

most common basis functions are the Lagrange polynomials. The higher-order

polynomials are the most accurate approximation. However, the linear and

quadratic polynomials were used in this thesis due to the simplicity.

The polynomial basis function must be complete, which means it should al-

low for all combinations of the coordinate variables defined as xiyjzk, where

0 ≤ i + j + k ≤ q for polynomials of order q. As a result, one has n =

1
6
(q + 1)(q + 2)(q + 3) (41) terms with n unknown coefficients. Therefore, n

nodes are needed for each element to uniquely determine the unknown coef-

ficients.

To calculate the unknown coefficients, a system of equations can be defined

in terms of coordinates and the values of u at the nth nodal points for the

element e. Taking this into account, the basis function ue can be expressed
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in the following form as:

ue(x, y, z) =
n∑
i=1

uei λ
e
i (x, y, z), (2.13)

where n is the number of the nodes in the element e and uei is the value of

u at the nodal point i of element e with coordinate (xi, yi, zi). λ
e
i is the ba-

sis function for the element e and node i, which is a polynomial of the order q.

The basis function λei has a value of one for node i, and zero for the rest

of the nodes. These properties of the basis function can be summarized in

the following equation:

λei (xj, yj, zj) = δij. (2.14)

The other important property of λei is that it has compact support, which

means it is nonzero only within the element e.

For a Lagrangian tetrahedral element, the volume coordinate, also known

as Barycentric coordinate, is introduced to define the basis function λei . The

volume coordinate is a local coordinate, which is formulated using Lei (x, y, z)

with the following definition:

Lei (x, y, z) =
Vi(x, y, z)

V e
, (2.15)

where V e is the volume of the element e and Vi(x, y, z) is defined as the volume

of the sub-tetrahedral element when the nodal point i is replaced by point

P with coordinate (x, y, z). A tetrahedral element and sub-tetrahedrons,
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formed by replacing each point of the main element with an arbitrary point

P , are shown in (2.2).

Figure 2.2: Top row: tetrahedral element ABCD. Bottom row: sub-
tetrahedrons formed by replacing each point of the main element A, B, C,
and D with P , respectively.

Using the volume coordinate, the node i located at (xi, yi, zi) can be labeled

as (k1, k2, k3, k4) with the following definition for kj:

kj = q Lej(xi, yi, zi), (2.16)

where q is the order of the polynomial. Considering the volume coordinate

and nodal labels, λei can be formulated as (42):

λei (x, y, z) = lqk1(L
e
1) lqk2(L

e
2) lqk3(L

e
3) lqk4(L

e
4), (2.17)
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for Lei = Lei (x, y, z) and lqki
(Lei ) is defined as:

lqki
(Lei ) =

1

ki!

ki−1∏
j=0

(qLei − j), (2.18)

with lq0(Lei ) = 0. It can be verified that the basis function (λei ) defined by

(2.17) satisfies the properties summarized in (2.14) and
n∑
i=1

λei = 1.

For two dimensions, the triangle can be used as the element for the mesh

generation. A similar formulation can be used for this case by adjusting the

equations for two dimensions. The area coordinate known as Barycentric co-

ordinate system is employed to define the basis functions. An example of a

two-dimensional element to determine basis functions is given in Appendix A.

For the complex geometries, one must address the irregular boundaries. In

order to have an accurate approximation for the elements with the curved

boundaries, one can transform the curved element in xyz-space to a regu-

lar element in ξηζ-space, shown in figure (2.3). The transformation can be

described as:

x(ξ, η, ζ) =
n∑
i=1

λei (ξ, η, ζ) xi, (2.19a)

y(ξ, η, ζ) =
n∑
i=1

λei (ξ, η, ζ) yi, (2.19b)

z(ξ, η, ζ) =
n∑
i=1

λei (ξ, η, ζ) zi, (2.19c)
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where n is the number of the nodes for the element e. xi, yi, and zi indicate

the position of the ith node of the curved element in xyz-space. It can be

shown that the λei is given by (41):

λei (ξ, η, ζ) = lqk1(1− ξ − η − ζ) lqk2(ξ) l
q
k3

(η) lqk4(ζ), (2.20)

where lkki
has the same definition as (2.18). The transformed λei is called

the shape function. When the order of the polynomial in the shape function

and the basis function are the same, the transformed elements are called

isoparametric elements.

(a) (b)

Figure 2.3: (a)A tetrahedron in curved space. (b) The transformed tetrahe-
dron in the cartesian space; figures taken from (41).

2.3.3 Galerkin-Weighted Residual Approach

After discretizing the whole domain, the approximation of the exact solution

for (2.11) is expressed using the basis functions defined by (2.13). The basis
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functions are formed by a set of linearly independent functions defined locally

for each element e. A quantity called the residual (R) is defined as:

R = Lũ− f. (2.21)

The value of R is zero for the exact solution. To find the approximation

function (ũ), a scheme must be set-up to make the residual small over the

whole domain using the nodal values uei and the basis functions λei for each

element. There are different approaches to find the minimum value of the

residual such as least squares, variational methods, and weighted residual.

The most common method is the weighted residual, where a weighted integral

is introduced as:

Re
i =

∫
Ωe

wei (Lue − f) dΩe. (2.22)

wei is the selected weight and Ωe is the domain for element e. To determine

the unknown coefficients, Re
i is forced to be zero. When the selected weight

is chosen to be the same as the basis function, wei = λei , the method is called

the Galerkin method. Therefore, the weighted residual for each element is:

Re
i =

∫
Ωe

λei (Lue − f) dΩe. (2.23)

One can apply (2.23) to a general form of the partial equation with the dif-

ferential operator L defined as 5 · α5. Considering that the goal is to make
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Re
i become close to zero, one has:

∫
Ωe

λei (5 · α5 ue) dΩe −
∫

Ωe

λei f dΩe = 0. (2.24)

Applying integration by parts for the first term of (2.24) gives:

∫
Ωe

5λei · α5 ue dΩe −
∫

Γe

λei α5 ue · dn−
∫

Ωe

λei f dΩe = 0. (2.25)

For internal elements, the second integral is zero since the normal vector for

the common surface of two adjacent elements are in opposite directions and

the basis functions are the same, therefore they cancel each other for the

final matrix assembly. For the boundary elements, the second integral can

be calculated based on the boundary condition for the boundary element to

determine the nodal value for that element.

Using (2.12) and (2.13), the matrix form of (2.25) is obtained as Ku = F

with the following definitions for K, u, and F :

m∑
j=1

uj

m∑
e=1

Ke
ij︷ ︸︸ ︷∫

Ωe

5λei · α5 λej dΩe

︸ ︷︷ ︸
Kij

=
m∑
e=1

F e
i︷ ︸︸ ︷∫

Ωe

fλej dΩe

︸ ︷︷ ︸
Fi

, i = 1, 2, ...,m. (2.26)

The matrices K and F are known as the stiffness matrix and the load matrix

respectively. The integrals for (2.26) are calculated analytically for simple

cases, or numerically using Gauss-Legendre quadrature (41). Summation over

the elemental equation (2.26) and forming the stiffness and load matrices

using the element connectivity matrix is considered as the matrix assembly
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process for FEM.

With the system of equations in the matrix form, the final step is to solve the

equation: Ku = F . Having the basis function for the weight function, the

matrix K is a sparse matrix (44). There are a variety of methods to solve this

system of equations, mentioned in (41). The Opera-3D (30), FEM software pack-

age, applies the Newton-Raphson method - a suitable method for a nonlinear

problem in electromagnetics.

2.4 Finite Element Method in Electromagnet-

ics

The evaluation of electromagnetic fields is a crucial part of the design pro-

cess for different devices. The problem is defined by the partial differential

equations derived from Maxwell’s equations with appropriate boundary con-

ditions. The electromagnetic field simulation for the complicated geometries

of such devices should be done accurately. The FEM is one of the approaches

used to do numerical analysis for the electromagnetic field calculations.

2.4.1 Maxwell’s Equations

Maxwell’s equations describe the relation between the electromagnetic field

and the source of the electromagnetic field. The mathematical description of

electromagnetic fields is formulated by Maxwell’s equation in differential form
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as (45):

5 ·D = ρ, (2.27a)

5× E = −∂B
∂t
, (2.27b)

5 ·B = 0, (2.27c)

5×H = J +
∂D

∂t
, (2.27d)

where E, H, D, and B are the electric field intensity, the magnetic field

intensity, the electric flux density, and the magnetic flux density respectively.

The sources of the electromagnetic field are electric current density J and the

electric charge density ρ. The field quantities are not independent and are

described by the following equations called constitutive relations:

D = εE, (2.28a)

B = µH, (2.28b)

where ε is the permittivity and µ is the permeability of the medium through

which the electromagnetic fields propagate.

2.4.2 Magnetostatics Problems

The fields are independent of time for the magnetostatics case. Therefore,

the following set of Maxwell’s equations can describe this case:



2.4. Finite Element Method in Electromagnetics 40

5 ·B = 0, (2.29a)

5×H = J. (2.29b)

The magnetic field intensity, H, can be split into two parts: Hs and Hm
(46;47).

Hs is the magnetic field produced by the current source J, which is contained

in the region Ωj, and Hm is the rest of the field. Let 5×Hm = 0, Hm can

be derived using the scalar potential φ as:

Hm = −5 φ. (2.30)

Using the Biot−Savart law, Hs can be derived as:

Hs =
1

4π

∫
Ωj

J(rj)× (r− rj)

|(r− rj)|3
dΩj, (2.31)

where rj is the source point and r is the field point. The integral (2.31) can

be calculated numerically using Gauss-Legendre quadrature (30).

The magnetic field intensity is defined as:

H = −5 φ+
1

4π

∫
Ωj

J(rj)× (r− rj)

|(r− rj)|3
dΩj. (2.32)

Divergence of the magnetic flux density is always zero and the magnetic flux

density can be related to the magnetic field intensity using (2.28b). Therefore,

the final partial equation is summarized as:

5 · µ(r)5 φ(r) = 5 ·

(
µ(r)

4π

∫
Ωj

J(rj)× (r− rj)

|(r− rj)|3
dΩj

)
. (2.33)
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Equation (2.33) is a nonlinear Poisson type equation and the scalar potential

field, φ, is called the reduced scalar potential.

In the case of a material with high permeability, the numerical results from

(2.33) have been shown to be inaccurate compared to the analytical calcula-

tion in the region containing materials with high permeability (46). Inside the

magnetic material, the values of Hs (field from the known source) and Hm

(field from the calculated potential field) tend towards being equal and oppo-

site, i.e. Hs ≈ 5φ. This causes loss of precision as two separately-computed

parts cancel each other (47). This is called the cancellation error in numerical

calculations, which occurs when the error in the fields calculation dominates

the difference between Hs and 5φ (46).

The two-scalar potential formulation is introduced to apply for the case with

high permeability material (46;47). The problem’s region is divided into two

regions: one includes all the currents, Ω2, and one that includes the material

with high permeability and no currents, Ω1. Equation (2.33) is used to find

the scalar potential for Ω2. For Ω1, a scalar potential ψ is derived using:

5 · µ5 ψ = 0, (2.34)

where equation (2.29b) holds with J = 0 and ψ is called the total scalar po-

tential. This equation is the non-linear Laplace equation.

The FEM can be implemented to do the magnetostatic analysis by using
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(2.33) and (2.34), when the problem includes the high permeability material.

The vector F , defined in (2.26), is zero for region Ω1 and it is equal to 5·Hs

for region Ω2. Then, the solutions must be coupled at the interface between

two regions. Therefore, an extra boundary condition should be applied for

the nodes located at the interface of two regions as illustrated in figure (2.4).

Figure 2.4: Interface between two regions and corresponding scalar potentials.

The vector fields should be continuous at the interface of different materials,

thus the limiting forms of equations (2.29a) and (2.29b) give the interface

conditions as:

(B2 −B1) · n = 0, (2.35a)

(H2 −H1)× n = 0. (2.35b)
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Applying the continuity equations (2.35a) and (2.35b) at the interface of the

magnetostatic problem gives:

−µ1
∂ψ

∂n

∣∣∣
Ω1

= µ2(−∂φ
∂n

+ Hsn)
∣∣∣
Ω2

, (2.36a)

−∂ψ
∂t

∣∣∣
Ω1

= −∂φ
∂t

+ Hst

∣∣∣
Ω2

, (2.36b)

where n is the normal vector and t is the tangential vector at the interface.

Hsn is the normal component of Hs, and Hst is the tangential component of

Hs. The integral form of the second condition can be derived by integration

of (2.36b) along the interface:

ψ = φ−
∫ B

A

Hst dt (2.37)

At the interface, the residuals for each region can be derived using (2.25) as:

R1 =

∫
Ω1

5λi · µ5 ψ dΩ1 −
∫

Γ

λi µ
∂ψ

∂n
dΓ, (2.38a)

R2 =

∫
Ω2

5λi · 5φ dΩ2 −
∫

Γ

λi
∂φ

∂n
dΓ, (2.38b)

where Γ is the boundary interface between two region. µ2 has been taken

out from (2.38b) as it is assumed constant in the region Ω2. The sum of the

residuals should be zero, i.e. R1 + R2 = 0. Then, considering the boundary

condition requirements, (2.36a) and (2.37), continuity of the weight functions,
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and the residuals condition, the contribution for an element with the nodal

points on the interface is given in a matrix form as (46;47):

F = Kg − h, (2.39)

where K is the stiffness matrix (2.26), and g and h are column vectors defined

as:

g =

∫ B

A

Hst dt, (2.40a)

h =

∫
Γ

λi Hsn dΓ. (2.40b)

In summary, the double scalar potentials (ψφ) approach can be applied to

numerically solve the magnetostatic problem with the presence of material

with high permeability by the use of (2.26). Then, (2.39) can be applied for

the nodal points on the interface.

2.5 Optimization Strategies

Optimization methods are applied to solve problems in many different fields

such as engineering, science, and economics. They are used for modeling,

designing devices and circuits, solving system of equations, curve fitting, and

much more. Problems solved using the optimization methods are formulated
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mathematically with a function (f) as:

F = f(x1, x2, ..., xn). (2.41)

The function is called the objective function, F is a scalar quantity, and

x1, x2, ..., and xn are variables. They are usually formulated in a matrix form,

where variables form a vector called the design vector. The optimization al-

gorithm is employed to find a design vector in such a way that minimizes

(or maximizes) the objective function. The algorithm usually starts with an

initial guess for the solution, then the solution is gradually improved by ap-

plying a numerical procedure iteratively until the final goal of optimization is

achieved (48).

Optimization problems for real-life applications are complex, and they have

a large number of variables, and there is no detailed prior knowledge of the

shape and behavior of the objective function. They usually have multiple so-

lutions: some of these solutions are the local optima, but the desired solution

is the minimum (or maximum) of all the local optima (the global optimum).

The process of assessing the entire solution space to find the global optimum

is very expensive, meaning the optimization process will take too long. A

hybrid combination of two optimization algorithms can be used to avoid this

difficulty and increase the search efficiency. An algorithm with low cost can be

used to do a search over the solution space to find the approximate location of

the global optimum. Then, a second algorithm with low error can be applied

to refine the approximate solution, which usually guarantees convergence to
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the global optimum (49;50).

The optimization algorithms used in this work are the particle swarm op-

timization (PSO), for the global search, combined with a simplex method to

fine tune the solution. The algorithms will be introduced and discussed briefly

in the following sections.

2.5.1 Particle Swarm Optimization

PSO was originally introduced by Kennedy and Eberhart (51), inspired by the

collective behavior and social characteristics of organic swarms such as flocks

of birds or schools of fish. Therefore, it is a population-based algorithm look-

ing for the global optimum.

A swarm of n particles is considered to start the optimization process; each

particle represents a potential solution for the optimization problem. Two

vectors are assigned to each particle to navigate through the space of can-

didate solutions: a position vector and a velocity vector. The position of

each particle is the design vector with D components, where D is the number

of the variables in the model. The algorithm starts with random positions

and velocities within a defined range. Then, the velocity vector updates in-

telligently at each iteration, for each particle, and the position vectors are

updated based on their velocities. The velocity (v) and position (x) vectors
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of the ith particle at the k + 1th iteration are updated as follows:

vi(k + 1) = w vi(k) + c1γ1i(Pi − xi(k)) + c2γ2i(G− xi(k)), (2.42a)

xi(k + 1) = xi(k) + vi(k + 1), (2.42b)

where w is the inertia weight factor, c1 and c2 are the acceleration factors,

and γ1i and γ2i are two independently random variables distributed between

0 and 1. The randomness of γ1i and γ2i contributes to the stochastic nature

of the algorithm. In addition, each particle keeps track of the best solution

observed by particle i, Pi (local best), and the best solution observed by the

swarm, G (global best).

At each iteration, the position vector (2.42b) updates using three pieces of

information, which correspond to three terms in (2.42a) (49;52). The first term

is the inertia term that controls how the particle can turn. The inertia weight

(w) was set to be one for the original version of the PSO (51). However, it

has been shown that the algorithm performance can be improved if the vari-

ation of w (< 1) is considered (53;54;55). The optimization starts with a large

inertia weight, which means that the particle takes longer to turn, and there-

fore it searches a larger portion of the solution space. As the optimization

progresses, w decreases. The second term is the cognitive term, which con-

trols how the particle pursues it’s own local best solution. Finally, the last

term is the social term, which controls the movement of the particle toward

the global best solution. Therefore, c1 and c2 determine the weights of the

cognitive and social terms, respectively. Different considerations used to de-
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termine these parameters for PSO algorithm are discussed in the literature (56).

The random nature of the control parameters in (2.42a) results in an ex-

plosion of the swarm, which means the velocity and position values reach to

infinity in an uncontrolled way (54). To avoid particle explosions, a limit is

considered for each component of the velocity vector, and is defined as vmax.

Thus, if the value of the velocity (|v|), calculated by (2.42a), exceeds vmax, it

would be set to vmax
(49).

The optimization algorithm defined above is a generic form of the PSO algo-

rithm, and is used for this work. A 2D array of points are defined on the pole

plate surface of the magnet. The component of the position vector for each

particle is the thickness assigned to each point. Eight particles were chosen

for the swarm. Then, parameters for (2.42a) were chosen based on Trelea

type of PSO (55) where c1 = c2 = 2 and the inertia weight factor (w) starts

with 0.9 and linearly decreases to 0.4. The maximum velocity was set to be

4.

The generic PSO suffers from premature convergence and it can easily get

trapped in local optima. Combination of the PSO with other techniques,

such as the genetic algorithm (GA), have been developed to prevent conver-

gence toward local optima (57;58;59). In addition, the PSO algorithm progresses

fast initially, but it slows down. As mentioned before, a hybrid combination

of algorithms can be applied to speed-up the process (49).
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2.5.2 Pattern Search Algorithm: Nelder-Mead Simplex

Method

The pattern search algorithm is a subset of direct search methods, which are

used to minimize nonlinear unconstrained problems, defined by an objective

function f . Using the direct search method, there is no need to calculate the

derivative of f either exactly or approximately during the process. A key

characteristic of the pattern search algorithm is that the search is performed

by use of a pattern of points, where the pattern is independent of the objec-

tive function f (60).

The Nelder-Mead simplex method was introduced by Nelder and Mead in

1965 (61). The simplex-based algorithm is a multidirectional search that finds

the minimum of a nonlinear function with n variables. An initial guess is

required to start the process. Then, an initial simplex with n + 1 vertices is

formed, where the initial guess is one vertex and small variations of the initial

guess are used for the rest of vertices. The value of the objective function at

each vertex is computed, and the vertex with the worst value (the one with the

highest function value) is discarded and replaced by a new vertex to generate

a new simplex. Based on the algorithm steps, each iteration requires one or

more objective functions to be calculated using test points. The test points

are generated using different operators, including: reflection, expansion, con-

traction (in and out), and shrinking (62). Hence, a sequence of simplexes with

different shapes are generated during the process.
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Figure 2.5: Triangles are formed when a function with two variables is min-
imized: the triangle with bold lines is the initial simplex, and the triangles
with dashed lines are formed at different steps of the minimization process
based on which operators are acting on the initial triangle.

In the case of minimizing a function with two variables, a triangle is formed

as the simplex. Figure (2.5) shows triangles formed during the optimization

process. The triangle with bold sides is the initial triangle, and x(3) is the

vertex with the highest function value. The reflection operator generates

the new point r in the direction away from the worst vertex, where the size

and shape of the triangle is the same as the initial one. The expansion and

contraction (in and out) operators generate points s, cc, and c respectively,

where the size and shape of the original triangle is changed after applying

each operator. The shrinking operator uses two points, v(3) and m, to form

a shrunk triangle (52). Both points are moving toward the best vertex (x(2)),

which has the lowest function value. The iteration terminates by forming

a new simplex, which has vertices with function values that meet a descent

condition compared to the previous simplex (63). With a proper initial guess,
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the pattern search algorithm converges quickly to the local optimum.

The simplicity of the algorithm makes it a popular optimization technique

for computational implementation, and it is a standard optimization method

available in MATLAB using fminsearch command (64).

For this work, the PSO algorithm is used to search the solution space for

a global minimum. The convergence rate slows down as the algorithm pro-

ceeds. At this stage, the final solution for the PSO algorithm is used as the

initial solution for the Nelder-Mead simplex method. This method applies to

fine tune the solution.
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Chapter 3

Preliminary Design Evaluation

The basic design concept of the envisioned model consists of a steel biplanar

yoke with superconducting coils around the supports, and steel projections

attached to the pole plate to guide magnetic flux toward the region-of-interest.

The exact nature of the steel projections that would best serve our needs had

yet to be determined. Additionally, optimization schemes needed to be eval-

uated for their effectiveness. To accomplish these goals, a closed symmetrical

model (model with no patient access) with different structures for projections

was studied due to its simplicity. In addition, the symmetrical model is faster

to simulate, allowing a more rapid response for these preliminary investiga-

tions.

Various design concepts were explored to identify the one with optimal char-

acteristics. Finite-element analysis was used to test and optimize the magnet

designs using the 3-D FEM software package Opera-3D (30). In addition, the

optimization algorithm, used in MATLAB (64) to guide the convergence to a
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solution, needed to be investigated to ensure a fast and robust solution that

avoids local minima.

Two different structures for projections were investigated for the symmet-

rical magnet assembly: the tapered conical projections and the continuous

cylindrical projections. The tapered conical projections model was used ini-

tially as it was assumed that the tapered conical projections can provide a

means to direct the magnetic flux and it had limited number of variables to

be optimized. However, it became impractical due to the insufficient space.

More projections were needed to improve the homogeneity but they started

to overlap. To get around the overlap problem, the continuous cylindrical

projections model were investigated where there was no restriction since the

projections were adjacent.

Finding the appropriate optimization algorithm and the optimal pole plate

structure for the closed symmetrical model lead us to the next step, which is

the optimization of the pole plate surface for an open access non-axial model.

3.1 Evaluation of a Tapered Projection Ap-

proach

A tapered conical design is shown in figure (3.1). The projections for the

tapered conical design are added to the pole plate as tapered conical projec-

tions. The material used for both yoke and pole plate assembly in the closed
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symmetrical model is SiSteel. Using materials with high magnetic suscepti-

bility confines the magnetic flux inside the magnet, and this provides a path

through which the magnetic flux is manipulated to pass through the projec-

tions. For this model, there are two superconducting loops with currents in

opposite directions in the vicinity of the yoke to generate a maximal flux in

the material of the yoke supports.

Figure 3.1: One-eighth of the tapered conical projections model. Blue arrows
show the direction of currents.

In a tapered conical design, the projections can be oriented at a specific angle

to direct the magnetic flux toward the region of interest inside the field-of-

view, which is an ellipsoid with its centre located at the isocentre. Before

the optimization, the field is non-uniform inside the imaging field-of-view.

However, the location and orientation of each projection can be optimized to

manipulate the magnetic flux inside the field-of-view and alter the magnetic

field to a uniform one. Since the permeability of the steel is so much higher
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than that of the air gaps in between, it was hoped that the bulk of the avail-

able magnetic flux at the pole plate would be directed along the length of the

projections, providing a means to direct the field.

For this design, the optimization methods were applied to find the optimum

number of projections, the orientation, and the location of each projection.

3.1.1 Independent Projections Approach

Considering that the field lines would follow the same direction as the direction

of a projection after leaving it, the projections were first assumed to act

independently for an independent projections approach. Hence, the problem

can be defined as a linear one, where:

B =
n∑
i=1

Bi. (3.1)

B is the magnetic flux at a point inside the magnet for a model with n pro-

jections. Bi is the magnetic flux at the same point resulting from a model

with a single projection, where this projection has already been defined in the

model with n projections. By these assumptions, the linear model defined as

B × x = 0.5× I is solved for x. In detail, one has:
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α1, r1, t1 α2, r2, t2 αnP , rnP , tnP



B1,1 B1,2 · · · B1,nP

B2,1 B2,2 · · · B2,nP

...
...

. . .
...

Bnt,1 Bnt,2 · · · Bnt,nP

nt×np

×



x1

x2

...

xnp


np×1

∼= 0.5×



1

1
...

1


nt×1

.

(3.2)

Each column of matrix B has the magnetic flux values for a model of an in-

dividual projection with a defined orientation presented by angle αp, location

presented by radius rp, and thickness tp. np is the number of different scenar-

ios and nt is the number of targets points. A target surface is defined as an

ellipse with large axis (Y ) of 0.60 m and small axis (Z) of 0.40 m. Magnetic

flux is calculated at 400 points for one-eighth of the ellipse. The matrix x is

a binary matrix and 0.5 T is the desired magnetic flux at the isocentre.

Matrix (B)400×5 considers five independent projections and the matrix (B)400×1

uses all five projections together in a model were calculated to check the lin-

earity assumption. In general it was found that equation (3.3) is substantially

inaccurate, indicating that this projection model could not be approximated

as a linear system.

(B)400×5 × (I)5×1 6= (B)400×1 . (3.3)
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3.1.2 Pole Plate Optimization

After the linear system was shown to be insufficient, a nonlinear optimization

approach was attempted to define the optimal position and angle of each

projection with all projections included in the model. A cost function is

defined as:

f =

∫
A

[B(−→r ,
−→
P )−Bo]

2 da. (3.4)

A is a target surface, the field-of-view, defined as a 2-D ellipse with a large

axis (Y ) of 0.60 m, a small axis (Z) of 0.40 m, and its center located at

the isocenter. Due to the symmetry, magnetic flux was calculated over 400

uniformly distributed points for one-eighth of the ellipse. B(−→r ,
−→
P ) is the

magnetic flux at point −→r on the target patch for
−→
P .
−→
P (r2, ..., rn, α1, ..., αn)

is the design vector including all variables in the design. rn is the radius of

the nth tapered cone at the XY plane for Z equal to 0.33 m. r1 is constant

and equal to 12 cm to accommodate the 24 cm diameter hole at the center

of the magnet assembly that allows for the passage of radiation. αn is the

projection’s polar angle at Z equal to 0.33 m.

Two optimization algorithms were used to find the minimum of the cost

function. The gradient descent algorithm searches for the minimum in the

gradient direction. The algorithm converges to the local best solution. The

initial guess of the solution is important to guide us toward the minimum

value. This algorithm was used at early stage of the optimization. However,

the gradient should be calculated at each iteration so it is not the best choice
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for this model when the number of projection increases. The Nelder-Mead

simplex method is applied to find the minimum of a nonlinear function of n

real variables without using any derivative information (63).

It is important to have a good initial guess for both algorithms. The so-

lution for a 0.5 T homogeneous magnetic field over an ellipse, which is similar

to the elliptical target field, with a large axis (Y ) of 0.60 m and a small axis

(Z) of 0.225 m, was used to find a reasonable initial guess to start with. The

vector map of this solution was used to find the direction of the magnetic field

at Z = 0.33 m, shown in figure (3.2).

Figure 3.2: Vector map for a 0.5 T homogeneous magnetic field solution.

A quantity called Fill Density is defined as Bnorm(y)
Bsat

. Bnorm is the magnitude

of the magnetic flux at Z equal to 0.33 m and Bsat is the saturation field
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for SiSteel, which is 1.95 T. The first projection starts at Y equal to 0.12 m

because there is a hole with a 0.24 m longitudinal diameter at the center of

the magnet assembly. This hole is intended to be used as a path for radiation

to pass through the yoke in the final design. The thickness of each projection

(T ) is assumed to be 1 cm. The gap (G) between each projection is calculated

by the following equation:

T

Gap
=

Fill Density(Y )

1− (Fill Density(Y ))
. (3.5)

Four positions were found to locate each projection with the angles specific

to Y ∈ [ 0.12 m, 0.60 m ], illustrated in figure (3.3). The angle is defined as

arctan(Bz(Y )
By(Y )

).

Figure 3.3: Cross-sectional view of the pole plate with projections.

More projections were added to the pole plate based on the study of the

elliptical map of the magnetic flux at the center. The results are reported in

table (3.1).

The advantage of this design was its ability to steer the magnetic flux by

manipulating the angle of the conical projections. Despite this advantage, the

results showed that obtaining good uniformity is difficult using this model.
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Structure Optimization
no. of Projections no. of Variables Algorithm fvali fvalf

4 7 Steepest Descent 2.13×10−3 5.29×10−4

5 11
Steepest Descent 5.96×10−4 4.69×10−4

Simplex Method 4.69×10−4 4.06×10−4

7 13 Simplex Method 1.27×10−3 3.89×10−4

Table 3.1: Results of the tapered conical projections model. The fval is the
value of the cost function, f , defined by (3.4). Two variables are assigned to
each projection: the radius and the polar angle of the projection. however,
the radius of the first projection is fixed at 0.12 m. Therefore, the number of
variables are 2n− 1 for n projections model.

Therefore, a model with continuous cylindrical projections was investigated.

3.2 Determination of Optimization Algorithm

Using Continuous Projections

The continuous projections design consisted of n = 15 contiguous cylindrical

structures located at the pole plate from raduis of 0.12 m to 0.87 m with 5 cm

thickness, showed in figure (3.4). The cost function is defined by (3.4) with

the same target surface. The design vector
−→
P (l1, ..., l15) includes the variables,

which are the lengths of each projection. The length should be within the

range of 0.35 - 0.60 m.

Using the gradient descent algorithm is likely a poor choice for this design

because we have 16 parameters to optimize and the minimization would be

a time-consuming process as the gradient of the objective function should be

calculated at each iteration. The simplex method and the particle swarm
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Figure 3.4: One-eighth of the continuous projections model. Blue arrows show
the direction of currents.

optimization (PSO) algorithms were investigated for this design. The PSO is

a stochastic, population-based algorithm modelled on the social behaviour of

a flock of birds or a school of fish (57). It is a derivative-free search for a global

best solution.

Structure Optimization
no. of Projections Algorithm fvali fvalf

15
PSO 3.40×10−3 2.93×10−5

Simplex Method 2.93×10−5 2.52×10−5

Table 3.2: Results of the continuous cylindrical projections model

The results of optimization are reported in table (3.2). Based on the two

orders of magnitude of improvement in homogeneity using the PSO, this algo-

rithm was found to converge in an acceptable way for this design. In addition,

the simplex method can be used for fine tuning of the solution.

The preliminary evaluations of the design lead to use the continuous struc-
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ture for the pole plate assembly in the final non-axial model, where the pole

plate surface is divided into n cylinders and the thickness of the pole plate

is optimized based on the consideration that the design is a non-symmetric

model.
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Chapter 4

Open-Access Non-Axial Model

A version of this chapter has been submitted for publication. S. Yaghoobpour

Tari, K. Wachowicz, and B. G. Fallone, ”A Non-Axial Superconduct-

ing Magnet Design for Optimized Patient Access and Minimal SAD for

Use in a Linac-MR Hybrid: Proof of Concept”, (2016).

Preliminary design evaluation equipped us to work on the final non-axial

magnet design. The final magnet assembly has similar components to the

continuous cylindrical projections model except an opening for the patient.

A rectangular section of the yoke for the closed model is cut out to create an

opening for the patient access, as shown in figure (4.1). Two superconducting

loops with currents in opposite directions used in (3.1) and (3.4) simulate the

similar situation as the open-access non-axial system however this opening

clearly prevents a continuous coil from surrounding magnet as in the prelimi-

nary designs. Further, it was found that if the same coil design was modified

to wrap around each yoke support, only a field of approximately 0.2 T could
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be created. Hence, the distribution of coils should be modified to generate a

0.5 T magnetic field at isocentre, which is the field of interest for the Linac-

MR system. Finally, finite-element analysis and optimization algorithms were

applied to find the optimum surface of the pole plate, which yields the desired

uniformity over a field-of-view suitable for MR imaging.

The detailed characteristics of the non-axial magnet assmbly, pole plate opti-

mization method, and results for both magnet designs with 0.2 T and 0.5 T

are described in the following sections.

4.1 Magnet Assembly

The open superconducting magnet assembly is depicted in figure (4.1). The

superconducting coils have been moved from their conventional position (be-

ing centred on the magnet axis, with one adjacent to each pole plate) to

a non-axial position surrounding the yoke supports. The yoke supports are

composed of American Iron and Steel Institute (AISI) 1020 plain carbon steel

and serve both a mechanical and magnetic function, the structure may need

to be further fortified with non-magnetic supports. Mechanically they resist

the compressive force between the two magnetic poles, and magnetically they

serves as a flux pathway, guiding magnetic flux generated by the coils to the

pole plates, which are sculpted to distribute the field uniformly over a region-

of-interest. The pole plates are composed of grain-oriented (GO) silicon steel.

A grain is small crystal that forms inside the solid metal. GO silicon steel is

developed under controlled condition to produce grains with preferred crystal
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orientation, known as Goss texture (65), which improves magnetic properties

in the rolling direction. The GO silicon steel is a high-permeability material,

and can be constructed out of laminated sheets to resist the formation of eddy

currents during MR imaging. Eddy currents are induced in metals by rapidly

changing fields of RF and gradient coils due to the Faraday’s law (45).

The sculpted nature of the pole plates, as described above, is achieved by

considering this structure to be defined by a continuous array of vertical pro-

jections, each of which guides magnetic flux toward the target region, an

ellipsoid with its center located at isocentre. In this work, a homogeneous

field over the target region is achieved by optimizing the height of all these

projections. This procedure will be described in more detail below.

Figure 4.1: 3-D schematic of the magnet assembly.

In this proof of principle design, the minimum gap between two pole plates is
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set to 68 cm and the distance from the isocentre to the yoke’s top is 63 cm,

which results in a SAD equal to 123 cm. This assumes a 60 cm distance

between the target and the top of the yoke, which is distance from target to

end of the MLC for the standard, unmodified Varian 600C linac head (Varian

Linac Document; Drawing number: 1106021). There is an opening with a di-

ameter of 24 cm bored through the magnet to open a path for the radiation.

The linac head would be placed on the top of the outer surface of the magnet

into which the portal is drilled, and it is the height of this surface relative

to isocentre that would ideally be minimized. Further, this yoke design is

constructed to maintain the 110 cm lateral patient access that the current

model allows, being important for patient comfort and treatment flexibility.

4.1.1 Distribution of Coils

In this design, the material used for the superconducting coils is MgB2, which

is a high-temperature superconducting (HTS) material (39). This supercon-

ductor (Tc ∼ 39 oK) allows for greater flexibility, especially for a rotating

magnet, as no cryogens need to be stored at the coils, given that the coils

can be conduction cooled (40). In this work, the current density for the MgB2

coil is assumed to be 2.1× 108 Am−2, as was done in previous work on mag-

net design for linac-mr (66). This current density is theoretically achievable

at temperature of 10 oK and a magnetic field of 6.5 T (67), even assuming a

superconducting fill factor of only 20%. However, any implementation will be

very dependent on the exact manufacturing process of the wire, and therefore

the exact conductor distribution will need to be considered on a case-by-case
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basis, given that each conductor yields different specifications in terms of crit-

ical field, temperature and current density.

(a)

(b)

Figure 4.2: (a) One-eighth of the magnet with a thick coil, (b) one-eighth of
the magnet with three distributed coils.

For this proof-of-principle implementation, different scenarios were explored

to find a suitable current distribution. Two examples of these distributions
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are shown in figure (4.2). These examples reveal the non-linear nature of

the current distribution with respect to the field produced at isocentre. The

magnetic field generated at the isocentre is about 0.5 T for a solid coil with

thickness of 30 cm, illustrated in figure (4.2a). On the other hand, a 0.5 T

magnetic field can be generated by a coil distribution where the thickness of

the middle coil is 11 cm and the thickness of two outer coils is 2.5 cm, illus-

trated in figure (4.2b). The gap between the top and bottom coils is 25 cm.

Therefore, roughly the same field with considerably less current cross section

can be produced using distributed coil elements. This can be explained by

the fact that the AISI 1020 steel yoke supports saturate magnetically above

roughly 2T, after which additional current surrounding a similar location will

provide little additional flux through isocentre.

Magnetization of the magnet, M, measures the magnetic response of the mag-

net and is calculated by:

M =
B

µ0

−H. (4.1)

Figure (4.2) illustrates magnetization of the yoke support for aforementioned

coil configurations. Both distributions generate the same level of magnetiza-

tion, which means that they are fully saturated.

This coil distribution was not optimized exhaustively, and there may well

be more efficient designs. However, given that our primary interest was the

ability to sculpt a homogeneous field in this non-axial design by manipulation
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(a)

(b)

Figure 4.3: Cross-section of the magnet in Y Z plane. In addition, cross
sections of the cryostat are shown in dashed lines. The cryostat is extended
8 cm beyond the coil at each side. (a) Magnetization of the yoke support
for a thick-coil configuration, (b) Magnetization of the yoke support for a
three-coils configuration. Although the total current is different between the
panels, the magnetization is essentially identical due to the materials being
magnetically saturated.
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of the pole plates, the three-coil distribution as shown in figure (4.2b) was

used for the 0.5 T design.

Considering the points distributed over a circular surface around the isocen-

ter, the points in the regions close to the superconducting coils create hot

spots, such as the magnetic field map shown in figure (4.2). This makes the

optimization process difficult and this problem cannot be addressed by the

pole plate optimization alone, since there is not enough room with the pole

plate for the adjustment to accommodate these hot spots. Therefore, two

bulk metal shims consisting of GO silicon steel were added in the vicinity of

the coils to compensate. The presence of these bulk metal shims pulls some of

the excess magnetic flux away from the field of interest and partially corrects

for the hot spots seen on the lateral edges.

4.2 Method

4.2.1 Magnetic Field Simulation

The magnetic field calculations in this work were performed with the 3-D

FEM software package Opera-3D (30), using a magnetostatic model. The elec-

tromagnetic analysis is based on the following Maxwell’s equations:

5×H = J, (4.2)

5 ·B = 0, (4.3)
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where H is the magnetic field, B is the magnetic flux density, and J is the

current density.

The total magnetic field H can be defined as (46;47):

H = Hc + Hm. (4.4)

Hc is the magnetic field from the conductor, which can be calculated using

the Biot−Savart law:

Hc =
1

4π

∫
V

J× r

|r|3
dV. (4.5)

Hm is the rest of the field where 5×Hm = 0. Therefore, the magnetic field

Hm can be determined by:

Hm = −5 φ, (4.6)

where φ is the magnetic scalar potential.

Using the magnetic permeability, µ, the magnetic field and the magnetic flux

density can be related by the following equation:

B = µH. (4.7)

Given that the divergence of the flux density is always zero, the magnetic field

can be derived using the following equation:

5 · µ5 φ−5 · µ
(

1

4π

∫
V

J× r

|r|3
dV

)
= 0. (4.8)
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When there is a structure made of a material with high permeability in the

problem, the difference between the first and second terms of (4.8) is quite

small inside the high permeability region. Therefore, the error in the field

calculation dominates the difference between the first and second terms of

(4.8). To avoid this problem, the volume of the problem is divided into two

regions (46;47). The first region contains all the conductors and no material

with high µ, where (4.8) is applied to calculate the scalar potential. The sec-

ond region contains the material with the high permeability and no currents.

Since J = 0 in the second region, the scalar potential (ψ) is calculated for

this region using 5 · µ5 ψ = 0, which is derived from (4.2) and (4.3). Then

the solutions for two regions must be matched at the interface of two regions

with proper boundary conditions that are valid at the interface (46;47).

The nonlinear magnetization curves for the materials used in magnet are

shown in figure (4.4). The AISI 1020 steel data are assembled based on data

from (68;69) and the GO silicon steel are obtained from product documentation

from AK steel (M-2MILL-ANNEAL grain-oriented electrical steel).

A large cube with a dimension of 12 m is set to be the outer boundary. The

tangential magnetic field condition, H · n = 0, was applied for the outer

boundary, which is equivalent to ∂ψ
∂n

= 0. n is the outward normal unit vector

at the surface of the cube. However, the model is symmetric so one can solve

only one-eighth of the model using three cutting planes, which are the inter-

nal boundary of one-eighth of the model. The internal XZ and Y Z planes

should have the tangential magnetic field condition. But, for the internal XY
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Figure 4.4: Magnetization curves for GO Silicon Steel and AISI 1020 Steel.

plane, the normal magnetic field condition was applied, H × n = 0, which

means having a constant scalar potential across this boundary plane. Given

a well-defined boundary-value problem, the FEM technique can be applied to

derive the scalar potentials φ and ψ numerically using Opera-3D, allowing for

a magnetic field solution.

The FEM model is divided into approximately 1.3×105 tetrahedral elements.

The sizes of the elements vary for the various compartments of the model.

The minimum element size is about 1.5 cm for the surface of the target el-

lipsoid and the maximum size is about 240 cm for the outmost boundary.

All elements are linear for all geometrical compartments of the model except

the target ellipsoid where the quadratic elements are used to increase the

accuracy.
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4.2.2 Pole Plate Optimization

The outer surface of the pole plate is optimized subject to the minimization

of a cost function, which evaluates the uniformity of the magnetic field over

an ellipsoid. The cost function, f, is calculated as:

f =

∫
A

[B(−→r ,
−→
P )−Bo]

2 da. (4.9)

The cost function is the same function defined in the previous chapter. A

is a target surface defined in this work as the surface of an ellipsoid with a

major axis (Y) of 0.60 m, minor axes (X, Z) of 0.40 m, and its center lo-

cated at the isocenter. Due to the symmetry, magnetic flux is calculated over

only one-eighth of the ellipsoid surface, at 692 uniformly distributed points.

The points are chosen to be equally distanced over the ellipsoid’s surface.

B(−→r ,
−→
P ) is the magnetic flux magnitude at point −→r on the surface patch

for
−→
P .
−→
P (Z1, Z2, ..., ZNr) is the design vector including variables, Zi, in the

design, where Zi is the thickness of the pole plate for the defined point on

the surface of the pole plate in the XY plane . Bo is the magnetic flux at the

isocenter.

Considering the symmetry of the pole plate, only one fourth of the surface

needs to be optimized. The pole plate quadrant is divided into four sections

using five spokes, Nspk = 5, located at 0, π/8, π/4, 3π/8, and π/2. Further,

each spoke is represented by Nr control points as is displayed in figure (4.5).

The inner radius of the pole plate is located at r = 0.12 m and its outer ra-
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dius extends to r = 0.87 m. Nr = 16 and Nr = 31 evenly-spaced parameters

were chosen in the radial direction for the 0.2 T design and 0.5 T design,

respectively. Therefore, the distances between two control points is 5 cm and

2.5 cm for each case, respectively. This sampling density resulted in many

optimization parameters, but given the unknown nature of the solution, it

was felt that it was better to err on the side of excess samples than to impose

a potentially limiting assumption to the sampling density.

The total number of control points on the surface of the pole plate in the XY

plane are Nspk × Nr. A value of Zi is assigned to each control point. Using

four neighboring points located in two adjacent spokes and arcs, a structure

called a projection was constructed, as depicted in figure (4.5). The surface

of the pole plate is constructed piecewise using these projections. In order to

have a surface that remains faithful to the thickness at the four neighbouring

points, defining the boundaries of the projection, the projection is divided

into four triangular prisms. The middle point for the surface of the projec-

tion in the XY plane is the centre of the trapezoid, which is formed using

four neighboring points, and the Z value of the middle point is the average

Z values of those points.

The expectation of a smoothly varying pole plate in the azimuthal direction

allows to model the variation of these control points as a Fourier series. The

thickness (Z) for each point is defined as
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Figure 4.5: Points on the pole plate surface in the XY plane associated with
the optimization variables Zi. Zave is equal to the average values of the Zi
from the four neighboring points.

Z =
N∑
n=0

Cn(rk)e
−inθj , (4.10)

where rk is the radial coordinate of point k on y = 0 axis and θj is the angle of

each spoke. The pole plate surface faced toward iso-centre is shown in figure

(4.6); the parts with the same color should have the same structure.

The model is symmetric about θ = 0. Therefore, by removing the anti-

symmetric terms of (4.10), one has:

Z =
N∑
n=0

An(rk)cos(nθj). (4.11)

Given that by design the model must be periodic in π, only even frequencies

are permitted. Therefore if the series is truncated at N = 4, the pole plate’s
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thickness can be modeled as

Z = A0(rk) + A2(rk)cos(2θj) + A4(rk)cos(4θj). (4.12)

Therefore, the thickness of the pole plate can be defined by equation (4.12)

using low-resolution sinusoids with even coefficients of θj. Using (4.12), the

total number of parameters are reduced from Nspk×Nr to 3Nr since the points

on one arc but different spokes are not independent.

Figure 4.6: The surface of the pole plate in the XY plane.

The surface of the pole plate is optimized in 3 steps by considering one term of

equation (4.12) at each step. A0(rk), A2(rk), and A4(rk) are the variables at

each step. This further reduces the number of parameters at each stage of the
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optimization to Nr. The optimization was started with five spokes in angular

direction. For 0.5 T design, after all three terms in (4.12) were optimized,

the resolution was increased in the angular direction to nine spokes using the

best result for five spokes to avoid the sharp edges in azimuthal direction.

Because of having many variables to be optimized, the particle swarm op-

timization (PSO) (57), which is a stochastic algorithm searching for the global

best solution, was found to be the most suitable choice to do the optimization.

The pattern search algorithm, on the other hand (also known as the Nelder-

Mead simplex method (63)), can be used as a complementary algorithm to

locate the local best solution after the PSO search for the global minimum.

The simplex method is a derivative-free algorithm that converges quickly to

a local minimum and it requires a good initial solution. Therefore, as men-

tioned before, the PSO was used as the prime algorithm for the optimization

and the simplex method was used for the fine-tuning of the solution.

During the optimization of the 0.5 T design, the PSO optimization scheme

was at times found to be mired in a local minimum, as is known to be an is-

sue with optimization schemes of this type (59). Given sufficient iterations, the

optimization may have escaped the minima, but given the lengthy iteration

times (∼ 90 minutes for all particles in 0.5 T case), the operator occasionally

found the need to intervene. At such a time, a manual solution (constructed

by the operator) was introduced to prompt the algorithm to escape the local

minimum and return to its optimization.
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4.3 Results

4.3.1 0.2 T Model Results

For the 0.2 T model, a single coil is located at each side of the yoke, shown

in figure (4.7). The thickness of the coil is 10 cm. The optimization was

started by assigning Zi to 0.45 m at all control points on the pole plate.

The value for the objective function, fvali , defined by (4.9) was 3.93 × 10−2.

The optimization was started without bulk metal shims to investigate the

possibility of hot spot accommodation just by pole plate optimization. When

the necessity of the bulk metal shim’s presence was realized, the optimization

was started with the addition of the bulk metal shims. The effect of adding

a bulk metal shim is illustrated in figure (4.9). To speed up the optimization

process, the solution from the optimization without the bulk metal shims was

used as the initial solution for the optimization with the bulk metal shims.

The results from the minimization of the objective function are shown in table

(4.1).

Figure 4.7: 3-D schematic of the magnet assembly for 0.2 T design.
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Structure Optimization
Projections Algorithm fvali fvalf

16 Projections
PSO-First Term 6.31×10−4 1.79×10−5

PSO-Second Term 1.79×10−5 1.64×10−5

PSO-Third Term 1.64×10−5 9.61×10−6

Table 4.1: Optimization results for the 0.2 T model

The inhomogeneity of the field over the defined surfaces for the final solution

is measured using:

∆B = max

(∣∣∣∣B(−→r )−Bo

Bo

× 106

∣∣∣∣) , (4.13)

whereB(−→r ) is the magnetic flux value at point−→r located on a defined surface.

The ∆B values, obtained using (4.13), are reported in table (4.2).

FOV ∆B(ppm)a ∆BXY (ppm) ∆BXZ(ppm) ∆BY Z(ppm)
Ellipsoid 40-60-40 2245 825 2245 2245
Ellipsoid 30-50-30 395 235 395 395

DSV40b 2245 250 2245 2245
DSV30 395 25 395 395
DSV20 40 15 40 40

Table 4.2: ∆B for the best solution of 0.2 T model

[a] Part Per Million
[b] Diameter of Spherical Volume

The results for the XY planes reported in table (4.2), which is the target plane

for the optimization, are better improved compared to the other planes. The

presence of a bored magnet pole causes a cold spot in the Z direction that

can be addressed by further shimming.



4.3. Results 81

Most of the patient’s anatomy will fit in an ellipsoid with a major axis of

50 cm and a minor axes of 30 cm. The ∆B value for this surface is about

395 ppm. Magnetic field maps for this ellipsoid at different planes are shown

in figure (4.8).

(a)

(b)

(c)

Figure 4.8: (a) Magnetic field map for the 0.2 T model for the XY plane of
the ellipsoid 30-50-30 cm, (b) magnetic field map for the 0.2 T model for the
ZX plane of the ellipsoid 30-50-30 cm, (c) magnetic field map for the 0.2 T
model for the ZY plane of the ellipsoid 30-50-30 cm.
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4.3.2 0.5 T Model Results

For the 0.5 T model, the optimization was started using the model with the

pole plate as a bored cylinder. In this initial state, the Z value equal to 0.45 m

was assigned to all control points on the pole plate. Figure (4.9a) shows the

magnetic field map for a circle with diameter of 0.40 m in the XY plane when

there is no bulk metal shim in the design. Figure (4.9b) shows the magnetic

field map for a circle with diameter of 0.40 m in the XY plane after adding

the bulk metal shim to let some of the flux pass through them. The magnetic

force exerted on the bulk metal shim is calculated to be about 19 kN .

The objective function value defined by (4.9) is 2.25 × 10−2 for the bored

cylinder as the pole plate. To speed-up the optimization process, the final so-

lution for the 0.2 T magnet was considered as the initial solution for the final

design. The objective function value for this solution is 2.84 × 10−4, which

is fvali for the first term of the optimization. After finishing optimization for

all three terms of (4.12) using the PSO, a manual solution was added by the

operator to prompt the simplex method to escape the local minimum in which

the PSO seemed to get trapped. Based on the study of the XY plane map of

the magnetic field for a circle with diameter of 60 cm, the thickness of the pole

plate was manually adjusted at each control point to get a symmetrical map

with a reasonable objective function. In addition to adjusting the thickness

of the pole plate manually, the number of spokes were increased to nine to

further smooth the pole plate in angular direction. As the points on one arc

but different spokes are not independent, the number of parameters remained
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(a)

(b)

Figure 4.9: (a) Magnetic field map of the XY plane of an sphere with no bulk
metal shims, (b) Magnetic field map of the XY plane of an sphere with added
bulk metal shims.
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the same when nine spokes were used.

The results for the minimization of the objective function are shown in table

(4.3).

Pole Plate Structure Cost Function using (4.9)
Flat Pole Plate f = 2.25× 10−2

Optimization
Projections Algorithm fvali fvalf

30 Projections - 5 Spokes
PSO-First Term 2.84×10−4 2.16×10−4

PSO-Second Term 2.16×10−4 1.69×10−4

PSO-Third Term 1.69×10−4 8.59×10−5

30 Projections - 9 Spokes
Manual Solution 1.37×10−4 7.10×10−5

Simplex Method 7.10×10−5 6.09×10−5

Table 4.3: Optimization results

The inhomogeneities are calculated for the best solution of the 0.5 T model

for different surfaces using (4.13) and the results are reported in table (4.4).

The magnetic field maps for the ellipsoid 30-50-30 cm at different planes are

shown in figure (4.10). The total ∆B value for this surface is 400 ppm.

FOV ∆B(ppm) ∆BXY (ppm) ∆BXZ(ppm) ∆BY Z(ppm)
Ellipsoid 40-60-40 1370 1370 1150 980
Ellipsoid 30-50-30 400 320 300 140

DSV40 1150 240 1150 700
DSV30 300 65 300 90
DSV20 70 40 70 50

Table 4.4: ∆B for the best solution of the 0.5 T model using (4.13)
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(a)

(b)

(c)

Figure 4.10: (a) Magnetic field map for the 0.5 T model for the XY plane of
the ellipsoid 30-50-30 cm, (b) magnetic field map for the 0.5 T model for the
ZX plane of the ellipsoid 30-50-30 cm, (c) magnetic field map for the 0.5 T
model for the ZY plane of the ellipsoid 30-50-30 cm.
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∆B can be translated into spatial distortion using:

Spatial Distortion(SD) =
∆B(mT )

G(mT/m)
, (4.14)

where G is the gradient strength measured in mT/m. The spatial distortions

associated with the different gradient strengths, using ∆B values from table

(4.4), are reported in table (4.5).

G(mT/m) FOV SD(mm) SDXY (mm) SDXZ(mm) SDY Z(mm)

10

Ellipsoid 40-60-40 69.5 65.9 58.3 49.7
Ellipsoid 30-50-30 20.3 16.2 15.2 7.1

DSV40 58.3 12.2 58.3 35.5
DSV30 15.2 3.3 15.2 4.6
DSV20 3.5 2.0 3.5 2.5

15

Ellipsoid 40-60-40 46.3 43.9 38.9 33.1
Ellipsoid 30-50-30 13.5 10.8 10.1 4.7

DSV40 38.9 8.1 38.9 23.7
DSV30 10.1 2.2 10.1 3.0
DSV20 2.4 1.4 2.4 1.7

20

Ellipsoid 40-60-40 34.7 33.0 29.2 24.8
Ellipsoid 30-50-30 10.1 8.1 7.6 3.5

DSV40 29.2 6.1 29.2 17.7
DSV30 7.6 1.6 7.6 2.3
DSV20 1.8 1.0 1.8 1.3

Table 4.5: Spatial distortions associated with different gradient strengths.

The spatial distortion is not sufficient for the final design implementation.

However, it is standard MR practice to incorporate a system of passive and

sometimes active shims to accommodate any remaining inhomogeneity for the

magnetic field upon installation. These established techniques allow for re-

duction of the inhomogeneity significantly using passive shims. This involves

the installation of magnetic pieces at the specific locations to correct for the
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inhomogeneity. For example, in (70), the homogeneity is reduced by the order

10 using passive shimming and Jin et al. (71) showed the inhomogeneity reduc-

tion of the order 60 for DSV36 by applying passive shimming. Following this

standard procedure, it is reasonable to expect improvement in the homogene-

ity. However, further work needs to be done.

While for diagnostic purposes, spatial distortions on the order of several mil-

limeters will not affect the utility of the imaging, an accuracy of a millimetre

or better is required for the radiotherapy (72;73). When using the images from

the larger field-of view, the residual distortion can be reduced to the sub-

millimetre level by applying geometric correction algorithms to correct for the

spatial distortion (72;73;74;75). Using these algorithms to do further correction

on the larger FOV regions, the magnet can also be used for the patient set-up.

Interaction of the field lines with the projections is illustrated in Figure (4.11)

for the final solution of the pole plate.

It was showed that the presence of the field at the electron gun results in

a target current loss in the parallel configuration (76). In past designs, passive

shielding has been implemented to reduce the field at the electron gun (77). As

can be seen in Figure (4.12), the field at the target is on the order of 400 G,

meaning shielding at the linac would be essential for this model.
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Figure 4.11: Interaction of the field lines with the projections for optimized
pole plate.

Figure 4.12: Field map at the Linac head for optimized pole plate.
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Chapter 5

Conclusion and Future

Directions

The Linac-MR system developed by Fallone et. al (17;18) is an advanced ap-

proach to real-time image guided radiation therapy. This unique rotating

system with a bi-planar magnet can transmit radiation parallel to the mag-

netic field Bo. However, there are challenges to design a rotating bi-planar

magnet as it should be compact with homogeneous field Bo and ample patient

access. The work presented in this thesis proposed a novel design concept as

a superconducting non-axial magnet, which could create a large uniform Bo

field with fewer geometric restrictions.

Based on aforementioned design concept, the superconducting magnet was

designed with a reduced SAD of 123 cm and a gap of 68 cm with the mag-

netic field of 0.5 T at isocentre. This novel design has several advantages over

the current one (17). The comparison between this new design and the current
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system is summarized in table (5.1). The separation distance between two

magnetic poles is larger so better accessibility and more room to accommo-

date the patient can be achieved. The magnet assembly is designed to be

more compact in certain dimensions so the linac head can be moved closer

to isocentre compared to the current magnet. This model is optimized to

address the magnetic field homogeneity over a larger region; establishing the

potential for a wider field-of-view. The final magnetic field is not sufficiently

homogenous for raw implementation, but further passive shimming can be

implemented to create a field capable of the use with radiotherapy.

Improvement Current Design New Design
SAD 130 cm 123 cm

Location of Coils Pole Plate Area Side of the Yoke
Opening Gap 60 cm 68 cm

FOV DSV40 Ellipsoid 40-60-40
FOV - DSV40 6441 ppm 1150 ppm
Total Current 358 kA 3360 kA
Stored Energy 269 kJ 5622 kJ

Table 5.1: Comparison between the new design and the current system (17)

This non-axial design is in the early stages of development. Further optimiza-

tion can maximize the benefit of this design. The yoke and pole plate structure

can be further optimized to maximize the patient access, minimize the SAD,

and reduce areas in the yoke saturated by the magnetic field. In addition, the

current distribution needs to be further investigated and optimized to reduce

the amount of superconducting material and the magnetic field inside the coil.
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For the current model, the pole plate parameters are sampled uniformly in

the radial direction. Exploring non-linear sampling such as logarithmic sam-

pling for the pole plate in the radial direction to minimize sharp projections

that may not have a large effect on homogeneity is the subject of the future

work. In addition, modeling the variation of the control points in the ra-

dial direction, using different series such as sinusoidal or legendre polynomial

series, can be explored as an alternative approach to reduce the number of

parameters and minimize the sharpness of projections.

The complex structure of the pole plate surface would probably result in

random errors during the manufacturing of the magnet. The stability of the

final design can be investigated by adding random variations to the control

points and yoke dimensions to test robustness of the field. In addition, the

fluctuation of the magnetic field as a function of the temperature needs to

be evaluated. To model the impact of temperature changes, the magnetic

field calculation needs to done for the final design with different non-linear

magnetization curves for different temperatures.

By moving the coils to the side, the cryostat is being moved away from the

gradient coils. It is anticipated that the eddy currents might be reduced in

the cryostat, which improves the efficiency of the gradient coils. This needs

to be investigated for the final design.
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Appendix A

Finite Element Formulation for

a 2D Element

An example is presented to show how the elemental function for a linear tri-

angular element (as shown in figure (A.1)) is determined (41). The polynomial

Lagrange function, ue(x, y), for this element is defined as:

ue(x, y) = ae1 + ae2 x+ ae3 y, (A.1)

where ae1, ae2, and ae3 are unknown constant coefficients. To determine the

unknown coefficients, the values of ue(x, y) at three nodal points are used to

form a system of equations as follows:

ue(xe1, y
e
1) = ae1 + ae2 x

e
1 + ae3 y

e
1, (A.2a)

ue(xe2, y
e
2) = ae1 + ae2 x

e
2 + ae3 y

e
2, (A.2b)

ue(xe3, y
e
3) = ae1 + ae2 x

e
3 + ae3 y

e
3, (A.2c)
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where (xei , y
e
i ) is the coordinate value for the nodal point i (i = 1, 2, 3), shown

in figure (A.1). The nodal points are numbered in a counterclockwise manner.

Figure A.1: Example of a triangular element e

Using equations (A.2a) - (A.2c), the unknown coefficients of equation (A.1) are

found in terms ue(xei , y
e
i ). Substituting these coefficients back into equation

(A.1), the ue(x, y) is expressed as:

ue(x, y) =
3∑
i=1

uei λ
e
i (x, y), (A.3)

where uei is ue(xei , y
e
i ), and λei (x, y) is defined as :

λei (x, y) =
∆i

∆e
, (A.4)

where ∆i is the area of sub-triangle i within element e and ∆e is the area

of the triangular element e. Sub-triangle i is formed when the point (x, y) is

replaced by nodal point i.
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The location of point (x, y) inside the element e is given by equation (A.4)

in the barycentric coordinate system as: (∆1

∆e ,
∆2

∆e ,
∆2

∆e ). As mentioned before,

the λei (xj, yj) = δij for nodal point (xj, yj). In addition, it can be shown that

λei (x, y) = 0 if point (x, y) is located on the element side opposite to node i.

Using the coordinate values of nodal points and (A.4), λei (x, y) is calculated

as:

λei (x, y) =
1

2∆e
(ae1i + ae2i x+ ae3i y), (A.5)

where:

ae11 = xe2 y
e
3 − xe3 ye2; ae21 = ye2 − ye3; ae31 = xe3 − xe2, (A.6a)

ae12 = xe3 y
e
1 − xe1 ye3; ae22 = ye3 − ye1; ae32 = xe1 − xe3, (A.6b)

ae13 = xe1 y
e
2 − xe2 ye1; ae23 = ye1 − ye2; ae33 = xe2 − xe1. (A.6c)

The area of a triangle is calculated using the following determinant:

∆e =
1

2

∣∣∣∣∣∣∣∣∣∣
1 xe1 ye1

1 xe2 ye2

1 xe3 ye3

∣∣∣∣∣∣∣∣∣∣
. (A.7)

Having the elemental basis function determined, the contribution of this el-

ement to the stiffness matrix K and the load matrix F are evaluated using
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(2.26) as follows:

Ke
ij =

∫
Ωe

5λei · α5 λej dΩe, (A.8a)

F e
i =

∫
Ωe

fλej dΩe. (A.8b)

Using equation (A.5), the Ke
ij and F e

i are:

Ke
ij =

α

4∆e
(ae2ia

e
2j + ae3ia

e
3j), (A.9a)

F e
i =

∆e

3
f, (A.9b)

where α and f are assumed to be constants within the element e (41).


