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Nonlinear shear Alfv6n resonances in a dipolar 
magnetic field 

I. Voronkov, R. Rankin, V. T. Tikhonchuk, • and J. C. Samson 
Department of Physics, University of Alberta, Edmonton, Alberta, Canada 

Abstract. The effect of the ponderomotive force (PF) on the temporal evolution 
of shear Alfv6n field line resonances (FLtLs) is considered for a magnetic dipole 
geometry appropriate to the Earth's magnetosphere. We derive a set of equations 
which describes the coupling of shear Alfv6n and slow mode waves and show that in 
a dipole field, the PF initiates a spectrum of standing slow mode waves, rather than 
just the fundamental mode that arises in a Cartesian box model magnetosphere. 
Magnetic field aligned slow mode density perturbations lead to a nonlinear temporal 
phase shift between the compressional driver and shear Alfv6n wave. This results 
in nonlinear saturation of the wave fields of FLRs and may occur well in advance 
of linear saturation as a result of ionospheric dissipation. We derive expressions for 
the nonlinear frequency shifts caused by the slow mode spectrum and determine 
the timescale for nonlinear saturation of the shear Alfv6n wave fields. Finally, we 
compare our results with previous estimates made in a box model magnetosphere 
and show that our main conclusions remain valid. 

1. Introduction 

Field line resonances (FLRs) are standing shear Alfv6n 
waves (SAWs) that are excited by global compressional 
Alfv6n waves on closed magnetic surfaces in the Earth's 
magnetosphere. A particular class of ULF oscillations 
in the corresponding frequency range of Pc5 pulsations 
is often observed by satellites and ground-based sta- 
tions [Walker and Greenwald, 1981; Tian et al., 1991; 
Fenrich et al., 1995; Potemra and Blomberg, 1996]. 

According to an idea by Samson et al. [1992], FLRs 
play an important role in auroral dynamics. It is an- 
ticipated that FLRs can accumulate energy in local- 
ized regions of the magnetosphere and then release it 
in a short time period of perhaps a few minutes. The 
overall scenario of the energy transfer in the Earth's 
magnetosphere is as follows: perturbations in solar 
wind pressure and magnetic field excite global quasi- 
monochromatic oscillations corresponding to compres- 
sional Alfv•n wave (CAW)eigenmodes trapped in the 
magnetospheric cavity. Because of very rare particle 
collisions, these waves may persist for long time peri- 
ods so that the main mechanism for their dissipation 
will involve their resonant transformation into a SAW. 

The excited SAWs or FLRs are localized near particu- 
lar magnetic L shells at which there will appear a spa- 
tial concentration of the CAW energy. Providing iono- 
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spheric conductivities are high enough, the FLR will 
narrow and grow to amplitudes where nonlinear effects 
might limit further growth [Rankin et al., 1993b]. 

A nonlinear FLR saturation model has been proposed 
recently by Rankin et al. [1994, 1995]. In this model, 
the ponderomotive force of standing SAWs results in a 
redistribution of the plasma density along geomagnetic 
field lines [Allan et al., 1991; Allan, 1992, 1993a, b; 
Rankin et al., 1994, 1995; Guglielmi, 1997]. This plasma 
density redistribution changes the SAW eigenfrequency, 
detunes the resonance, and periodically decouples the 
SAW from the CAW driver. The density perturbations 
along the magnetic field line can be considered as ra- 
dially localized slow magnetosonic waves (SMWs) that 
are driven by the ponderomotive force, and therefore 
the FLR saturation is a result of the nonlinear coupling 
between SAWs, CAWs, and SMWs. As demonstrated 
by Rankin et al. [1995], the SAW nonlinear frequency 
shift also results in latitudinal motion and narrowing of 
the FLR. 

The nonlinear FLR model was originally developed 
using the geometry of straight magnetic field lines (box 
model) [Rankin et al., 1994, 1995]. Although the qual- 
itative predictions of the model are in agreement with 
some radar and satellite data (e.g., location of the den- 
sity depletion, timescale of evolution, and the latitudi- 
nal FLR drift [Rankin et al., 1995]), quantitative com- 
parisons cannot be made within the box model because 
of its neglect of plasma parallel inhomogeneity (and 
hence the plasma/•) and magnetic field line curvature, 
both of which might be expected to produce significant 
modifications to the FLR dynamics [Allan, 1993a]. 

This paper presents simplified theory and numerical 
simulation results for the nonlinear evolution of FLRs 
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in dipolar coordinates. Our model describes the non- 
linear coupling between driven SAW and SMW modes 
and accounts for several features that are not included 

in the previous box model: (1) We define the region 
of the most efficient coupling between the CAW and 
SAW and derive an analytical expression for the FLR 
amplitude which depends on the driver strength and 
shift between the driver oscillation frequency and SAW 
eigenfrequency. (2) In the box model, the spatial struc- 
ture of SAW and SMW modes is identical. Therefore 

the SAW couples only to the second spatial SMW har- 
monic. Conversely, in the dipolaf model, the pondero- 
motive force drives a wide spectrum of SMW eigen- 
modes which change the dynamics of the FLR satu- 
ration. (3) The dipolar model predicts such measur- 
able quantities as spatial FLR structure, the period of 
pulsations, and the location and magnitude of the den- 
sity perturbations. These results can be proposed as a 
guideline for experimental data analysis. 

An outline of this paper is as follows. Section 2 de- 
scribes the main features of the model and the analytical 
solution for the nonlinear FLR. Section 3 presents nu- 
merical results obtained from the solution of the com- 
piete set of nonlinear MHD equations. We compare 
these results with the predictions of the analytical the- 
ory. Finally, in section 4 we present our discussion and 
conclusions. 

2. Nonlinear Model of FLRs in Dipolar 
Geometry 

We consider the magnetohydrodynamic (MILD) set 
of equations: 

Ot vx(VxB) = 0, (1) 

0V 1 

P•7 + P(v'v)v + vP - •(vxs)xs = 0, (2) 

op 
0-; + v.(pv) = o, (3) 

d P 

d--• (•-•) - 0. (4) 
In these equations, B is the magnetic field, V is the 
fluid velocity, p is the plasma density, P is the thermo- 
dynamic pressure, and 7 is the adiabatic constant. 

We adopt dipolar coordinates (p,y, qb), where p = 
cosO/r 2 is the variable along the magnetic field line, 
v = sin20/r numerates magnetic shells, and • is az- 
imuthal. Here (r,O, c)) are spherical coordinates. The 
corresponding scale factors describe the transition be- 
tween spherical and dipolar coordinate systems: h, = 
r3/(1 + 3cos20) 1/2, h• = r2/(sinO(1 + 3cos20)1/2), and 
h• = r sin0. 

SAWs are initiated by the resonant mode interaction 
of a monochromatic CAW with a SAW on dipolaf mag- 
netic surfaces where the frequency of the compressional 

mode is close to the natural frequency of the magnetic 
shell. In reality, compressional modes are excited by 
some external source such as the solar wind, but if we 
assume that the CAW absorption rate is small and ne- 
glect changes of the CAW amplitude during the evo- 
lution of the FLR, we can model the CAW driver as 
a localized constant amplitude source that is applied 
in the vicinity of the resonant magnetic surface. We 
shall also consider low azimuthal wavenumber modes 

for which the SAWs are mainly toroidal. 
The equation for toroidal SAWs follows from the az- 

imuthal components of the Faraday law and momentum 
equations above: 

Oh•B• 1 0 
- -- -- (•V•) =0, (5) 

OV• Bo Oh•B• 
Ot 4•rpht, h • Op 

+ coVD sin(w*), (6) 

where the term cvVv sin(err) models the effect of a CAW 
driver with frequency co and velocity amplitude VD 
which can be taken as having an arbitrary dependence 
on p. We assume that Vv is independent of v. These 
equations also involve the dipolaf magnetic field Bt,(p , •) 
and the plasma density, p - po + 6p, where 6p is the 
density perturbation due to the ponderomotive force. 

It has been shown by Rankin et al. [1994, 1995] that 
the density perturbation 5p is the main nonlinearity 
in the SAW equation (6). According to the continu- 
ity equation (3), the density perturbation couples to 
the parallel plasma velocity perturbation V• and to the 
plasma pressure perturbation: 

Op I 0 (h•h•pV•) - 0 (7) 0-7 + 0-7 ' 

o v,,o] P + 77- 0, (s) 
OV t, i OP _ 

•- + •, Ou - 
vJ Oh• B• 

P h•h• Op 47rh•h• •Oh,B, • Frm. (9) 
01• 

The set (5)-(9) describes the coupling between the 
excited SAW and SMW modes as a result of the pon- 
deromotive force Fpm. As compared to the box model, 
the ponderomotive force in the dipolar geometry has 
an additional term which is dependant on the magnetic 
field line curvature. 

Note that (5)-(9) neglect the effect of SAW disper- 
sion in the radial direction which is valid only for small 
azimuthal numbers m and relatively smooth amplitude 
variation in the radial direction. We return to the dis- 

cussion of the applicability limits of the model in section 
4. 
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2.1. Linear SAW Eigenmodes 

Combining (5) with the homogeneous linear part of 
(6), one arrives at the linear SAW eigenmode equation 

0 •h•B• 1 0 V,• o 0 
= o, 

where V]0 = B•/4•po is the square of the Alfv•n ve- 
locity at the initial moment of time and • varies from 
the lower, •_, to the upper, •+, end of the magnetic 
field line. 

Equation (10) has a fundamental set of eigenmodes 
• e-i•n'SN(,), where wn and Sn(•) are the mode's 
eigenfrequency and eigenfunction, respectively. The set 
of eigenfunctions is orthonormMized • • d•h•SM SN 
= •,n, where •M,n is the Kronecker delta function. 

Assuming that the driver amplitude is sraM1 and that 
its frequency is close to the SAW eigenmode, Aw = 
wn -w << w, means that we can introduce the envelope 
approximation for the SAW: h•B• = Re[b•e-i•tSn(•)]. 
The equation for bN follows from (5) and (6)in the lin- 
ear approximation (p = p0)' 

02 1 

Ot • h•B• - • x 

__0 [ V•.__k •_• h•B• + h B•,wVDReie-'""] - 0. Op h• •' 
(11) 

Multiplying this equation by h•,.qM and integrating it 
along the field line, one finds a linear envelope equation 
for the SAW mode amplitude: 

where 

Obey co (12) Ot = -iAcobn + •R, 

R 1 f••'+ dSn =- dph,B•VD dp (13) CO _ 

is an effective driver amplitude. The solution to (12) 
describes the linear evolution of the driven SAW, 

h•B• = CORSN cos(COt)sin(ACO ACO •-t) (14) 
and predicts that the central resonant peak of the FLR 
grows linearly with time and that the width of the res- 
onance narrows with time. 

[ V]ø Oh• (05•) • lO$•v] (15) WN 2h•h• Op Op 20p ' 

Then, (7)-(9) may be reduced to an equation for the 
pressure variation 5P = P- P0' 

0 2 C•0 0 0 
atone - = o, 

where C•o(/.t ) = ')'Po/po is the square of the acoustic 
wave velocity at the initial moment of time. 

The case Fpm = 0 provides an equation for free SMW 
eigenmodes with eigenfrequencies fi, and eigenfunc- 
tions U,• which are defined as C•o5 p = •m nmUm. It 
follows from (16) that SMW eigenfunctions satisfy the 
orthonormality condition 

•+ 2 dp h•' Um• Um, -- •m• ß (17) _ C2so '"• 
Integrating (16) over p with the weight Um 2 2 •/Cso, 
one can then find an equation for the amplitude of the 
SMW: 

•2TLm 
Ot 2 • f••'+ 0 q- flmnm = - dpUm •h•(Fpra) 

= It,l" (18) 2 ' 

where n,• -- Re [n0me-m-•q. The driving force in (18) 
is proportional to the local SAW intensity, and the pro- 
jection fm of the ponderomotive force on the ruth SMW 
is 

•"+ 1 OUm OSn f.• = dP 47rh• Op Op -- 

Va2o OhiOSly Sn]. (19) •n a h•h• O•t 
The solution to (12) provides the following prescrip- 

tion for the amplitude of the driven SMW density per- 
turbations: 

2.2. Slow Magnetosonic Wave Response 

From (9), the growth of the amplitude of the SAW 
results in a corresponding increase in the magnitude 
of the ponderomotive force Fpm. This causes equator- 
ward motion of plasma along geomagnetic field lines 
and results in a redistribution of the plasma density 
and pressure. In magnetospheric plasmas, the SMW 
frequency is much smaller than CAW and SAW fre- 
quencies. Therefore we can neglect variations of Fpm 
within the period of the SAW and consider only the 
time-averaged (over a SAW period) part of Fpm in the 
equations for parallel plasma motion, (7)-(9): 

nm= 4F/•ACO• 

[ 1 ] f/• _ ACO2 (ACO•cøsf/mt- f/•mcøsACOt) q- 1 . (20) 
The fact that the FLR SAW can excite many SMW 

harmonics is the result of differences between the mode 

structure of SAW and SMW eigenfunctions due to the 
field-aligned spatial inhomogeneity of the system. In 
the model of homogeneous plasma [Rankin et al., 1994, 
1995], the ponderomotive force can only couple directly 
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to the fundamental mode SMW harmonic, and tMs cou- 
pling ultimately defines the nonlinear dynamics of the 
FLR. 

In order to make the interaction between SAWs and 

SMWs self-consistent, it •s necessary to account for the 
effect of the SMW density perturbations on the evolu- 
tion of the driven SAW. It was mentioned above that 

according to Rankin et al. [1994, 1995], the most im- 
portant nonlinear process affecting the SAW arises from 
the density perturbations in (6), which can be written 

Ot = 4•rpoh•,h• 1- •oo O# •' 
•Vv sin(•t). (21) 

Here we have assumed that the density perturbation is 
small, 5p << p. 

Substituting into (21) the eigenmode expansion of the 
density perturbations C•o5 p -- •m rimUrn, where nm 
can be found from (18), and repeating the derivation of 
the envelope equation for the SAW amplitude, one finds 
that the density perturbation contributes an additional 
term to (12): 

= + Ot 

where the nonlinear shift of the frequency of the SAW 
is defined by 

/k•n---- •;Zm d#2•h•,ooC•o ( O# ' rr• - 

Equations (18) and (22) describe the nonlinear evo- 
lution of externally driven and coupled SAW and SMW 
modes. In the particular case where only one SMW 
mode is excited, (18) and (22) coincide exactly with the 
rectangular box model derived by Rankin et al. [1994, 
1995]. The difference here is that field-aligned plasma 
inhomogeneity and magnetic field curvature result in 
multimode SMW excitation and a more complicated dy- 
namics for the nonlinear evolution of the FLR. However, 
the general analysis of equations developed by Rankin 
et al. [1994] Mso holds for the dipolaf model. 

3. Numerical Solution and Analysis 

In this section, we consider the nonlinear evolution 
of SAWs initiated by an external driver using one- 
dimensional full MHD simulations and the analytical 
model described above. We consider an example where 
the driver frequency resonates with the local SAW at 
L shell 10. The background density distribution is cho- 
sen in the form p0 = Peq(1- COS•2) --q, with Peq = 
1.044 x 10 -24 g/cm s and q = 4. For these parameters, 
the period T• of the first fundamental SAW mode equals 
254 s. The plasma pressure is uniform along the field 
lines in equilibrium. We consider cases corresponding to 
different plasma temperatures in the equatorial region 

of the magnetosphere. The CAW driver is modeled by 
a Gaussian distribution of the velocity along the geo- 
magnetic field line: VD(#)= Vo exp(-12/5 •) with V0 = 
1.6 km/s and 5 = 2 Rr. Here I is the distance along 
the magnetic field line from the equatoria• plane. 

The temporal evolution of the SAW amplitude bx, as 
predicted by (22) and obtained numerically using the 
complete set of MHD equations, is shown in Figure 1. 
Time is normalized by the driver period T = 2•r/w. In 
this example, the driver frequency w is set equal to the 
eigenfrequency of the SAW fundamental mode. The 
ambient plasma pressure P0 is 10 -20 dyn/cm 2, which 
corresponds to/• = 87rPo/B• = 2.65 x 10 -2 in the 
equatorial plane and • = 7.2 x 10 -9 near to the iono- 
sphere. From Figure 1, it can be seen that the analyti- 
cal model gives a good prediction of the SAW amplitude 
evolution during both the linear and nonlinear stages. 
Similar tests were done for different values of B. The 
analytical and numerical results are in close agreement. 

Now let us consider the influence of the temperature 
of the plasma in the equatorial plane on the growth 
and nonlinear saturation of the SAW. Figure 2 shows 
the time evolution of the SAW amplitude and phase for 
different equatorial values of •: 2.65 x 10 -4, 2.65 x 10 -s, 
2.65 x 10 -2, and 0.88, respectively. It can be seen that 
nonlinear saturation due to the ponderomotive phase 
shift of the SAW occurs in all cases, but as expected, 
lower plasma temperatures lead to faster saturation, 
so that one could expect to observe higher-amplitude 
SAWs on field lines which project into hot plasma re- 
gions of the equatorial magnetosphere. In fact, very 
large amplitude FLRs which produce active auroral arcs 
are seen in the evening sector on field lines threading 
the high-/• region of the plasma sheet [Samson et al., 
1996]. In our simulations for the hot plasma case with 
the driver defined above, the amplitude of the SAW ve- 
locity reaches a value of 80 km/s in the equatorial plane. 
Comparing Figure 2a with Figure 2b, note that in all 
cases, amplitude saturation coincides with a nonlinear 
temporal phase shift of •r/2. This is consistent with the 
results of Rankin et al. [1995]. 
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Figure 1. The growth of the amplitude of the shear 
Alfv•n wave (SAW) as predicted by the analytical 
model (solid line) and obtained numerically from the 
full set of MHD equations (dashed line). The value/• is 
2.65 x 10 -2 in the equatorial plane; T = 2•r/w. 
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Figure 2. The evolution of the SAW (a) amplitude 
and (b) phase for • = 2.õ5 x 10 -4 (solid line), 2.65 x 
10 -a (dashed line), 2.t55 x 10 -• (dotted line), and 0.88 
(dashed-dotted line). T = 2•r/w. 

An important feature of the theory of nonlinear dipole 
FLRs is the coupling of the excited SAW with a spec- 
trum of SMW modes. The temporal evolution of the 
amplitudes in the SMW spectrum are shown in Figure 3 
for the case/7 = 2.65 x 10 -5. Amplitudes have been nor- 
realized by the maximum amplitude in the SMW spec- 
trum at the moment of time for which each spectrum 
is computed. One can see that during the initial stage, 
a wide spectrum of SMW modes is excited. Later, the 
spectrum becomes sharply peaked at the second spa- 
tial harmonic, which is eventually responsible for the 
nonlinear SAW saturation. Note that it is the second 
harmonic SMW that has been accounted for in the box 

model of Rankin et al. [1994] which implies that the 
box model also reasonably predicts the FLR saturation 
although it falls short in describing the FLR dynamics. 

Figure 4 shows the field-aligned distribution of the 
pressure perturbation at the moment of FLR satura- 
tion (t = 30T), where T is the driver period. At this 
time, the SMW perturbation m•inly corresponds to the 
second harmonic with an amplitude 5P/Po ~ 0.4 in the 
equatorial plane. Higher SMW harmonics have smaller 
amplitudes of the order of a few percent of the ambient 
pressure. However, it is interesting to note that because 
of the field-aligned dispersion, these waves are concen- 
trated at distances of ~ 1 - 2 Re from the ionosphere, 
and therefore they might have a significant impact on 
particle heating and acceleration. Higher-frequency 
SMW harmonics interact intensively with ions with the 
rte ~ where = T,/T 

is the ratio of electron and ion temperatures [Chen, 
1984]. 

Another result that is of interest within this model 

is the growth and saturation of SAWs in the case when 
the driver frequency is detuned with respect to the SAW 
eigenfrequency. The amplitude of the SAW is presented 
in Figure 5 as a function of the frequency shift between 
the SAW and driver for the case • -- 2.65 x 10 -2 and 
for different moments of time. Notice that the SAW fre- 

quency depends on latitude, and therefore Figure 5 can 
be considered as the latitude dependance of the FLR 
amplitude. Initially, the FLR spreads over a wide range 
of latitudes. Later, the amplitude is peaked around the 
eigenfrequency of the resonant magnetic shell, and its 
maximum shifts toward lower-frequency shells. 

4. Discussion 

The theory of FLRs presented above is an advance 
from the previous box model [Rankin et al., 1994, 1995] 
toward a more realistic description of nonlinear FLRs. 
We have taken into account the dipolar geometry of res- 
onant magnetic shells and the nonuniform distribution 
of plasma density along geomagnetic field lines. The 
analytical theory and numerical simulations confirm the 
main results obtained using the box model. It is shown 
that the SAW grows because of a resonant coupling with 
a CAW. In turn, the SAW initiates a ponderomotive 
force which leads to plasma density redistribution and 
nonlinear saturation of the FLR due to frequency detun- 
ing of the resonant magnetic shell. Compared to the box 
model, this ponderomotive force consists of three parts' 
magnetic pressure, magnetic curvature, and particle in- 
ertia. We have shown that the density redistribution 
can be described using an equation for driven SMWs. 
Owing to the geometry and density inhomogeneity, the 
coupling between a SAW and nonlinear density pertur- 
bations results in the excitation of a wide spectrum of 
SMWs which gradually form a narrow peak in the vicin- 
ity of the second harmonic SMW. The second harmonic 
SMW is responsible for SAW detuning and FLR sat- 
uration. However, the smaller SMW modes may still 
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Figure 3. Normalized spectra of acoustic waves, gen- 
erated by the FLR at .time T (solid line), 4T (dashed 
line), 10T (dotted line), and 20T (dashed-dotted line) 
for/• = 2.65 x 10 -2 in the equatorial plane; T = 2•r/w. 
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Figure 4. Pressure perturbation distribution along the 
field line at t = 30T. The value fl = 2.65 x 10 -5 in the 
equatorial plane. The distance Z along the field line is 
normalized by the Earth's radius Rr, T = 2•r/w. 

reach significant amplitudes and might play an impor- 
tant role in particle heating at altitudes of 1-2 R• above 
the ionosphere. This heating, in conjunction with such 
mechanisms as two-fluid ponderomotive force accelera- 
tion [Li and Ternerin, 1993], can play an important part 
in the auroral magnetosphere-ionosphere interaction. 

Another result predicted by the dipolar FLR theory 
is that higher temperatures in the equatorial magneto- 
sphere increase the timescale for ponderomotive FLR 
saturation, in which case the FLR SAW can grow to 
large amplitude. This result appears to be in agreement 
with an observed latitudinal distribution of Pc5 pulsa- 
tions which have a maximum in the region correspond- 
ing to the hot plasmas of the ring current belts [Walker 
and Greenwald, 1981; Tian et al., 1991; Potemra and 
Biotaberg, 1996] and of the evening sector of the inner 
plasma sheet [Samson et al., 1996]. 

Neglecting plasma wave dispersion across magnetic 
L shells [$treltsov and Lotko, 1996], we have found 
that the FLR should evolve into a narrow channel near 

a resonant shell which can eventually lead to Kelvin- 
Helmholtz shear flow instabilities [Rankin et al., 1993a]. 
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Figure 5. SAW amplitudes as a function of the fre- 
quency shift between the driver and SAW at time 
5T (solid line), 20T (dashed line), 35T (dotted line). 
The value /3 = 2.65 x 10 -5 in the equatorial plane; 
T = 2•r/w. 

However, this result requires the further development of 
the model to take into account the radial gradients of 
plasma parameters. 

in this study, we assumed that ionospheric conduc- 
tivities are infinitely high. Low conductivity may cause 
energy dissipation from the Pedersen currents and the 
interaction of the toroidal and poloidal modes because 
of the Hall current [Allan and Knoz, 1979]. Another dis- 
persive mechanism which can affect the nonlinear evo- 
lution of FLRs is azimuthal gradients of high-amplitude 
SAWs. This effect can be significant for large-m (small 
azimuthal wavelength) SAWs [Klimushkin et al., 1995]. 
These waves have been observed in the midnight sector 
of the magnetosphere, whereas small-m FLRs appear in 
the dawn and dusk sectors [Fenrich et al., 1995]. The 
detailed modeling of these effects will be addressed in 
future investigations. 
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