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Abstract

The sharing of data  is often beneficial in data mining applications. I t has been proven 

useful to support both decision-making processes and to promote social goals. However, the 

sharing of d a ta  has also raised a  number of ethical issues. Some such issues include those 

of privacy, d a ta  security, and intellectual property rights.

In this thesis, we focus primarily on privacy issues in d a ta  mining, notably when data 

are shared before mining. Specifically, we consider some scenarios in which applications of 

association rule mining and d ata  clustering require privacy safeguards. Addressing privacy 

preservation in such scenarios is complex. One must not only meet privacy requirements 

but also guarantee valid d a ta  mining results. This status indicates the pressing need for 

rethinking mechanisms to  enforce privacy safeguards without losing the benefit of mining. 

These mechanisms can lead to  new privacy control methods to  convert a  database into a 

new one in such a way as to  preserve the main features of the original database for mining.

In particular, we address the problem of transforming a database to be shared into a 

new one tha t conceals private information while preserving the general patterns and trends 

from the original database. To address this challenging problem, we propose a unified 

framework for privacy-preserving data  mining tha t ensures th a t the mining process will not 

violate privacy up to a  certain degree of security. The framework encompasses a family of 

privacy-preserving d ata  transform ation methods, a library of algorithms, retrieval facilities 

to speed up the transform ation process, and a set of metrics to  evaluate the effectiveness 

of the proposed algorithms, in terms of information loss, and to quantify how much private 

information has been disclosed.

Our investigation concludes th a t privacy-preserving data  mining is to some extent possi­

ble. We demonstrate empirically and theoretically the practicality and feasibility of achiev­

ing privacy preservation in d a ta  mining. Our experiments reveal th a t our framework is 

effective, meets privacy requirements, and guarantees valid d ata  mining results while pro­

tecting sensitive information (e.g., sensitive knowledge and individuals’ privacy).
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Glossary

A sso c ia tio n  R u le s :  describe interesting relationships between items grouped together in 
a sufficient number of examples.

C o llec tiv e  P r iv a c y : is concerned with the protection of sensitive knowledge representing 
the activities of a group. The sensitive knowledge must be protected due to strategic 
or competitive reasons by the caretaker or the owner of the collected d ata  .

C lu s te r in g : is concerned w ith grouping objects into clusters (groups) of similar objects. 
The goal is to achieve high similarity between objects within individual clusters (in­
terclass sim ilarity) and low similarity between objects th a t belong to  different clusters 
(intraclass similarity).

C onfidence : in association rules, the confidence of a  rule X  —> Y  is defined as the ratio of 
transactions containing X  th a t also contain Y  over the transactions containing X .

D a ta  M a tr ix :  is a  m atrix in which the rows are points (vectors) in a  multi-dimensional 
space describing objects. Each dimension represents a distinct a ttribu te  of the objects. 
D ata m atrices are widely used in clustering.

D a ta  S a n itiz a tio n : is the process of hiding sensitive rules in transactional databases. The 
sanitization is achieved by modifying some transactions. In some cases, a number 
of items are deleted from a group of transactions (sensitive transactions) with the 
purpose of hiding the sensitive rules derived from those transactions. In doing so, 
the support of such sensitive rules are decreased below a  certain disclosure threshold 
defined by the d a ta  owner. Another way to hide sensitive rules is to  add new items to 
some transactions to  alter (decrease) the confidence of sensitive rules. For instance, 
in a rule X  —> Y ,  if the items are added to the antecedent part X  of this rule in 
transactions th a t support X  and not Y ,  then the confidence of such a rule is decreased.

D a ta  S h a r in g -B a se d  A lg o rith m s : are a class of sanitizing algorithm s in which the san­
itization process acts on the da ta  to remove or hide the group of sensitive association 
rules. A fter sanitizing a database, the released database is shared for association rule 
mining.

D im e n s io n a lity  R e d u c tio n : is the process of mapping d-dimensional objects onto k- 
dimensional objects, where k d. The goal of dimensionality reduction methods 
is to map each object to a point in a fc-dimensional space minimizing the relative error 
th a t the distances in k-d  space suffer from, on the average.

D isc lo su re  T h re s h o ld  (ip): In our framework, the process of hiding some sensitive rules 
satisfies a  disclosure threshold ip controlled by the database owner. This threshold 
basically expresses how relaxed the privacy preserving mechanisms should be. When 
ip =  0%, no sensitive association rules are allowed to be discovered from the sanitized 
database. W hen ip =  100%, there are no restrictions on the sensitive association rules. 
The advantage of having this threshold is th a t it enables a compromise to be found 
between hiding association rules while missing non-sensitive ones.
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D iss im ila r ity  M a tr ix : stores a collection of proximities th a t are available for all pairs of 
objects. This m atrix  is often represented by an m x m table, where m  is the number 
of objects, and each element d( i , j )  represents the difference or dissimilarity between 
objects i and j .

E u c lid e a n  D is ta n c e : is the most popular distance measure used to calculate the dissimi­
larity between objects i and j  in a d-dimensional space.

In d iv id u a l P riv a c y : is concerned with the protection of personally identifiable informa­
tion. In general, information is considered personally identifiable if it can be linked, 
directly or indirectly, to an individual person.

In fe re n c e  C h an n e ls : occur when someone mines a  sanitized set of rules and, based on 
non-sensitive rules, deduces one or more sensitive rules th a t are not supposed to be 
discovered.

P a t t e r n  S h a rin g -B a se d  A lg o rith m s: are a class of sanitizing algorithms in which the 
sanitization acts on the rules mined from a database instead of the data  itself. The 
sanitization removes not only all sensitive patterns b u t also blocks other patterns tha t 
could be used to  infer the sensitive hidden ones.

P la tfo rm  fo r P r iv a c y  P re fe re n c es  (P 3 P ) : a project developed by the World Wide Web 
Consortium, which is emerging as an industry standard  providing a  simple, autom ated 
way for users to gain more control over the use of personal information on Web sites 
they visit.

P r iv a c y -P re s e rv in g  D a ta  M in ing : encompasses the dual goal of meeting privacy re­
quirements and providing valid da ta  mining results.

R a n d o m  P ro je c t io n :  is one of the methods designed for dimensionality reduction. A 
random  projection from d dimensions to k  dimensions is a linear transform ation rep­
resented by a d x  k  matrix R, which is generated by first setting each entry of the 
m atrix to a value drawn from an i.i.d. Af(0,l) distribution and then normalizing the 
columns to unit length. Given a d-dimensional dataset represented as an n  x d matrix 
D, the mapping D  x R  results in a reduced-dimension dataset D'.

S e n s itiv e  K n o w led g e: is described as the knowledge th a t can provide competitive advan­
tage in the business world.

S e n s itiv e  R u le s : are a  special group of association rules which represent the sensitive 
knowledge mined from databases.

S e n s itiv e  T ra n sa c tio n s : are defined as a set of transactions which participate in the gen­
eration of the sensitive rules.

S u p p o r t :  in association rules, the support of an item set is defined as the ratio of the 
transactions containing the itemset over all the transactions.

T ra n sa c tio n a l D a ta b a se : is a relation consisting of transactions in which each transaction 
t  is characterized by a unique transaction identifier number (TID) and a  list of items 
making up the transaction. Transactional databases are widely used in association 
rule mining.

V ic tim  I te m : is defined as a candidate item th a t should be eliminated from the sensitive 
transactions in data sanitization. Removing this item  from sensitive transactions, one 
or more sensitive rules will be hidden in a transactional database.
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Chapter 1

Introduction

The beginning is the half of every action.

-  Greek Proverb

I f  you understand the beginning well, the end will not trouble you.

-  Ashanti Proverb

1.1 Motivation

Recent developments in information technology have made possible the collection and analy­

sis of millions of transactions containing personal data. These d ata  include shopping habits, 

criminal records, medical histories, and credit records, among others [18]. This progress in 

the storage and analysis of da ta  has led individuals and organizations to face the challenge 

of turning such d a ta  into useful information and knowledge.

D ata  mining is a promising approach to meet this challenging requirement. The area 

of d a ta  mining, also called Knowledge Discovery in Databases (KDD), has received special 

attention since the 1990s. This new research area has emerged as a means of extracting 

hidden patterns or previously unknown implicit information from large repositories of data 

[53], The fascination with the promise of analysis of large volumes of data  has led to an 

increasing num ber of successful applications of da ta  mining in recent years. Undoubtedly, 

these applications are very useful in many areas such as marketing, business, medical anal­

ysis, and o ther applications in which pattern discovery is param ount for strategic decision 

making.

Despite its benefits in various areas, the use of data  mining techniques can also result in 

new th rea ts  to privacy and information security. The problem is not data  mining itself, but 

the way d ata  mining is done [81]. As Vaidya & Clifton [140] state, “D ata mining results 

rarely violate privacy, as they generally reveal high-level knowledge rather than disclosing 

instances of d a ta .” However, the concern among privacy advocates is well founded, as 

bringing d a ta  together to support data  mining projects makes misuse easier. Thus, in the

1
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absence of adequate safeguards, the use of data  mining can jeopardize the privacy and 

autonomy of individuals.

More serious is the privacy invasion occasioned by secondary usage of data  when individ­

uals are unaware of “behind the scenes” use of da ta  mining techniques [74]. As an example, 

Culnan [36] made a particular study of secondary information use, which she defined as 

“the use of personal information for other purposes subsequent to the original transaction 

between an individual and an organization when the information was collected.” The key 

finding of this study was tha t concern over secondary use was correlated w ith the level of 

control the individual has over the secondary use.

Even though many nations have developed privacy protection laws and regulations to 

guard against private use of personal information, the existing laws and their conceptual 

foundations have become outdated because of changes in technology [91, 100, 46, 32]. As a 

result, these personal d a ta  reside on thousands of file servers, largely beyond the control of 

existing privacy laws, leading to potential privacy invasion on a scale never before possible.

Complex issues, such as those involved in privacy-preserving d ata  mining (PPDM ), can­

not simply be addressed by restricting d ata  collection or even by restricting the secondary 

use of information technology [7, 18, 101], Moreover, there is no exact solution th a t resolves 

privacy preservation in d ata  mining. An approximate solution could be sufficient, depending 

on the application since the appropriate level of privacy can be interpreted in different con­

texts [28, 27], In some applications (e.g., association rules, classification, or clustering), an 

appropriate balance between a need for privacy and knowledge discovery should be found.

Preserving privacy when data  are shared for mining is a challenging problem. The tradi­

tional methods in database security, such as access control and authentication [23, 58, 125] 

that have been adopted to successfully manage the access to d a ta  present some limitations 

in the context of da ta  mining. While access control and authentication protections can safe­

guard against direct disclosures, they do not address disclosures based on inferences tha t 

can be drawn from released data  [134, 52, 147]. Preventing this type of inference detection 

is beyond the reach of the existing methods [7, 101]. Therefore, the work presented in this 

thesis lies outside of traditional work on database security.

Clearly, privacy issues pose new challenges for novel uses of data  mining technology 

[100, 88, 98]. These technical challenges indicate a pressing need to rethink mechanisms to 

address some issues of privacy and accuracy when d ata  are either shared or exchanged before 

mining. Such mechanisms can lead to new privacy control methods to convert a database 

into a new one th a t conceals private information while preserving the general patterns and 

trends from the original database.

2
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1.2 Privacy Preservation: Problem Definition

In this thesis, we address the problem of transforming a database into a new one th a t 

conceals sensitive information while preserving the general patterns and trends from the 

original database. The sensitive information is not limited to personal data, but may reflect 

customers’ purchasing behaviour, financial, medical, and insurance liability information and 

sensitive patterns.

The transform ation applied to the database occurs before the sharing of d a ta  for mining, 

as can be seen in Figure 1.1. We focus primarily on privacy preserving d ata  mining, notably 

in the context of the mining tasks: a) association rules which describe interesting relation­

ships among items grouped together in a sufficient number of examples; and b) clustering 

which is concerned w ith grouping objects into classes of similar objects.

Data Mining
The Transformation Process

Original
Database

Transformed
Database

Privacy Preserving 
Discovered Patterns

Miners

Figure 1.1: An example of a database transformed before the  mining phase

We will approach the problem of transforming a database, before the sharing of data 

for mining, by first dividing it into two sub-problems: privacy-preserving association rule 

mining and privacy-preserving clustering.

1.2.1 Privacy-Preserving Association Rule Mining

In the context of privacy-preserving association rule mining, we do not address privacy of 

individuals. Rather, we address the problem of protecting sensitive knowledge mined from 

databases. The sensitive knowledge is represented by a special group of association rules 

called sensitive association rules. These rules are paramount for strategic decision and must 

remain private (i.e., the rules are private to the company or organization owning the data).

The problem of protecting sensitive knowledge in transactional databases, draws the 

following assumptions:

• D ata owners have to know in advance some knowledge (rules) th a t they want to pro­

tect. Such rules are fundam ental in decision making, so they m ust not be discovered.

• The individual d a ta  values (e.g. a  specific item) are not restricted. Rather, some 

aggregates and relationships must be protected. This approach works in the oppo­

site way to the idea behind statistical databases [23, 3, 38] which prevents against 

discovering individual tuples.

3

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



The problem of protecting privacy in association rule mining can be stated  as follows: If 

D  is the source database of transactions and R  is a set of relevant association rules th a t could 

be mined from D , the goal is to transform D  into a database D ' so th a t the most association 

rules in R  can still be mined from D ' while others, representing sensitive knowledge, are 

hidden. In this case, D ' becomes the released database.

1.2.2 Privacy-Preserving Clustering

The goal of privacy-preserving clustering is to  protect the underlying a ttribu te  values of 

objects subjected to clustering analysis. Unlike privacy-preserving association rule mining 

th a t aims at protecting sensitive knowledge in databases, privacy-preserving clustering fo­

cuses on protecting the privacy of individuals. In this context, the d a ta  are assumed to be 

a matrix D mx n , where each of the m  rows represents an object, and each object contains 

values for each of the n  a ttribu tes. The matrix D mXn may contain binary, categorical, or 

numerical attributes.

We assume that the a ttr ib u te  values associated with an object are private and must be 

protected. After transform ation, the attribu te  values of an object in D  would look very 

different from the original. Therefore, miners would rely on the transformed d ata  to build 

valid results, i.e., clusters.

The problem of privacy preservation in clustering can be stated as follows: Let D  be a 

relational database and C  a  set of clusters generated from D. The goal is to transform D  

into D' so th a t the following restrictions hold:

• A transformation T  when applied to D  must preserve the privacy of individual records, 

so th a t the released database D' conceals the values of confidential attributes, such as 

salary, disease diagnosis, credit rating, and others.

•  The similarity between objects in D 1 must be the same as th a t one in D,  or just 

slightly altered by the transform ation process. Although the transformed database D' 

looks very different from D,  the clusters in D  and D ' should be as close as possible 

since the distances between objects are preserved or marginally changed.

1.2.3 Knowledge Protection Versus Privacy Preservation

Protecting sensitive information in the context of our research encompasses two important 

goals: knowledge protection and privacy preservation. The former is related to privacy- 

preserving association rule mining, while the latter refers to privacy-preserving clustering.

An interesting aspect between knowledge protection and privacy preservation is that 

they have a common characteristic. For instance, in knowledge protection, an organization 

is the owner of the da ta  so it m ust protect the sensitive knowledge discovered from such

4
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data, while in privacy preservation individuals are the owner of their personal information. 

On the other hand, knowledge protection and privacy preservation also have a unique char­

acteristic. Privacy preservation is related to the protection of explicit d a ta  (e.g., salary), 

while knowledge protection is concerned with the protection of implicit da ta , i.e., patterns 

discovered from the data.

One lim itation with the approach of knowledge protection is th a t the sensitive knowledge 

should be known in advance by the data  owners. In this case, data  owners have to mine 

their databases and use interestingness measures (e.g., support and confidence) with the 

purpose of finding the valuable patterns, i.e, the sensitive knowledge. Subsequently, data 

owners hide the sensitive knowledge by using the algorithms introduced in Chapter 5. The 

released database is then shared for mining.

Another limitation of the approach of knowledge protection is tha t we do not focus on 

protecting against correlations between variables, such as salary and age. Rather, we protect 

specific binary rules (e.g., X  —* Y ),  where X  and Y  represent items purchased in a store or 

attributes with specific values. Again, these rules are private to the company or organization 

owning the d ata  and must be protected since they can provide competitive advantage in the 

business world.

1.3 Thesis Statement

In this work, we investigate the feasibility of achieving PPDM  by d ata  transformation. The 

central thesis statem ent of this research is presented as follows:

Privacy preservation in data mining, by data transformation, is to some extent 

possible.

This research demonstrates empirically and theoretically the practicality and feasibility of 

achieving PPDM . In particular, it is shown that a balance between privacy preservation 

and knowledge discovery can be accomplished when addressing knowledge protection in 

association rule mining and privacy preservation in clustering.

Four m ajor issues are addressed to support the central thesis statem ent of this research, 

as follows:

• It is possible to transform  a database by protecting the a ttribu te  values of objects 

subjected to clustering and get valid clustering results, i.e., the clusters generated in 

the transformed database are very similar to those mined from the original database.

• It is possible to protect sensitive knowledge discovered from databases without losing 

the benefit of mining the transformed database.

5

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



• It is possible to quantify the disclosure of sensitive knowledge discovered from a trans­

formed database.

• It is possible to measure the information loss in a transformed database available for 

association rule mining.

1.4 Thesis Contributions

The m ajor contributions of this thesis can be summarized as follows:

1. T ow ard  fo u n d a tio n s  o f  P P D M : We pu t forward foundations and standardization is­

sues in PPDM . In particular, we describe the problems we face in defining what in­

formation is private in da ta  mining, and discuss how privacy can be violated in data 

mining. We describe the basis of PPDM  including the historical roots, the definition 

of privacy preservation in data  mining, and models of da ta  miners in PPDM . We then 

analyze the implications of standard privacy principles in knowledge discovery and 

suggest some policies for PPDM  based on these privacy principles. Subsequently, we 

suggest some desirable privacy requirements th a t are related to industrial initiatives. 

These requirements are essential for the development and deployment of technical so­

lutions and will allow vendors and developers to make solid advances in the future of 

PPDM .

2. A  ta x o n o m y  o f  P P D M  te c h n iq u e s : We surveyed the existing PPDM  techniques in

the literature, and we propose a taxonomy including such techniques, which is de­

scribed in Chapter 4.

3. A  fam ily  o f p r iv a c y -p re se rv in g  m e th o d s : Addressing privacy preservation in data

mining requires different kinds of data  transform ation since the mining tasks are versa­

tile. We propose a  family of privacy-preserving d a ta  transform ation (PPD T) methods 

for protecting privacy before da ta  are shared for association rule mining and clustering. 

These methods are described in Chapter 5 and Chapter 6, respectively.

4. A  lib ra ry  o f a lg o rith m s : To enforce knowledge protection in association rule mining,

we propose a library of algorithms. Such algorithms are designed taking into account 

heuristics for our PPD T  methods presented in Chapter 5.

5. R e tr ie v a l fac ilities : These retrieval facilities are used specifically when some algo­

rithm s are applied to  protect sensitive knowledge in association rule mining. As 

mentioned in Section 2.1.2, pattern  discovery may require various scans over a trans­

actional database. To speed the process of hiding sensitive knowledge in transactional 

databases, our framework is built on an index. As a consequence, our algorithms
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require only two scans to protect sensitive knowledge regardless the num ber of asso­

ciation rules to  be hidden: one scan to build an inverted index, and the other scan to 

hide the sensitive rules. Other techniques require multiple scans [12, 37, 126].

6. A  se t o f  m e tr ic s : Since there is no exact solution to address privacy preservation in 

data  mining, we need to  be able to  measure how much sensitive information is disclosed 

and verify the usefulness of the d a ta  after the transformation process. To evaluate our 

method for association rule mining, we propose a set of metrics to  measure not only 

how much sensitive knowledge has been disclosed, but also to measure the effectiveness 

of the proposed algorithms in term s of information loss and in terms of non-sensitive 

rules removed as a side effect of the transform ation process.

Our contributions mentioned previously are the m ajor parts of a privacy preservation 

framework depicted in Figure 1.2.

Server

Collective Transformation

Client

Data not transformed

Individual Transformation

Transformed
Database

v— — s
PPDT Library o f

M ethods Algorithms

? Sanitization R e trie v a l

F a c ilitie s

Privacy Preserving Framework.

Metrics

A A

Figure 1.2: A schematic view of the framework for privacy preservation

1.5 Research Methodology

This research was conducted in a phased approach, as follows:

E v a lu a tio n  o f  p r io r  w ork : Research in the area of PPDM  is still a t a  very prelim inary 

stage. We have surveyed efforts to  address PPD M  and investigated the existing tech­

niques in the literature. The existing solutions for PPDM  are reviewed in C hapter 4.

C o n c e p tio n  a n d  d esig n  o f  n ew  P P D T  M e th o d s :  We designed new m ethods to  ad­

dress the problem of PPDM . These m ethods cover the main aspects of clustering 

and association rule mining. A part from the m ethods, we also designed some m etrics 

to  quantify how much private information is disclosed and to measure the im pact of 

the P P D T  methods on the data and on valid d ata  mining results.
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Im p le m e n ta t io n  a n d  te s t :  We implemented and tested both  existing and new PPD T 

methods. We applied our m ethods to real datasets to test their effectiveness and to 

study their performance.

E v a lu a tio n : We specified an evaluation framework to  compare the P P D T  methods. This 

framework, implemented in a  common platform, was used to determine the appropriate 

technique for each type of application. The impact of a P P D T  method on a data 

mining task was evaluated by measuring the result of the task with and without the 

transformation. For newly designed PPD T methods th a t found equivalent or similar 

counterparts in the literature, we compared with the published results. We evaluated 

the effectiveness and scalability of our algorithms as well. We also used our metrics 

to quantify the privacy level provided by the PPD T  methods, to measure information 

loss and the quality of the d a ta  mining results in the transformed datasets.

D isse m in a tio n : We disseminated the results of this research through submission of papers 

to peer reviewed conferences [102, 101, 103, 104, 105, 109, 108, 106, 107], The review 

process and discussions at conferences were essential for further improvement of our 

P P D T  methods.

1.6 Organization of the Dissertation

The rest of this dissertation is organized as follows:

• In Chapter 2, we present the fundamentals of knowledge discovery in databases (KDD). 

We also discuss the main differences between d ata  mining and statistical methods, and 

review the most common d a ta  stores for mining. Then, we highlight the basics of clus­

tering analysis and association rule mining since our PPD T  m ethods are designed to 

protect privacy when these mining tasks are applied to a transformed database. For 

clustering, we briefly review the m ajor distance-based clustering methods and the con­

cepts of data m atrix and dissimilarity matrix. For association rules, we concentrate on 

the support-confidence framework and some interestingness measures. In addition, we 

provide the definitions of sensitive association rules and sensitive transactions. Then, 

we describe the process of protecting sensitive knowledge in transactional databases. 

Finally, we review the basics of dimensionality reduction th a t are the basis of our 

proposed solution for privacy-preserving clustering in Chapter 6.

•  In Chapter 3, we take some steps toward the foundations of PPDM . In particular, 

we discuss the problems in defining privacy and how privacy can be violated in data 

mining. Then, we describe the historical roots and the basis of PPDM  including: a) 

the PPDM  landmarks th a t characterize the progress and success of this new research
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area; b) the definition of privacy preservation in d ata  mining; c) a number of challeng­

ing scenarios in PPDM ; and d) models of data miners in PPDM . Subsequently, we 

analyze the implications of the Organization for Economic Cooperation and Develop­

ment (OECD) d a ta  privacy principles in knowledge discovery. As a consequence, we 

suggest some policies for PPDM based on the OECD privacy guidelines. Moreover, 

we suggest some privacy requirements for the development and for the deployment of 

technical solutions.

• In Chapter 4, we review the state-of-the-art in PPDM  research. We describe the main 

idea behind the existing PPDM  techniques in the literature. Then, we classify the 

existing techniques into four major categories: data  partitioning, data modification, 

d a ta  restriction, and d a ta  ownership.

•  In Chapter 5, we introduce the data sanitization m ethod th a t hides sensitive associ­

ation rules by reducing either the support or the confidence of these rules. The pro­

tection of sensitive rules is achieved by modifying some transactions. In some cases, a 

number of items are deleted from a group of transactions with the purpose of hiding 

the sensitive rules derived from those transactions. To accomplish that, we introduce 

a set of algorithms for protecting sensitive rules. Those algorithms are classified into 

two groups: Data-Sharing approach and Pattern-Sharing approach. In the former, the 

sanitization acts on the d a ta  to remove or hide the group of sensitive association rules 

tha t contain sensitive knowledge. In the latter, the sanitizing algorithm acts on the 

rules mined from a database, instead of the data  itself. We also introduce a taxonomy 

covering these two categories of sanitizing algorithms.

• In Chapter 6, we introduce some PPDM methods for privacy preserving data clus­

tering. In particular, we show that the dual-goal of achieving privacy and accuracy 

can be accomplished by the idea of dissimilarity between objects but at a high com­

munication cost. We refer to this solution as Object Similarity-Based Representation 

(OSBR). In order to alleviate the communication cost introduced by OSBR, we show 

that a trade-off between privacy and accuracy can be accomplished by using the in­

tuition behind dimensionality reduction, notably random projection. We refer to the 

latter solution as Dimensionality Reduction-Based Transformation (DRBT). This la t­

ter solution aims a t finding a trade-off between privacy, communication cost, and the 

quality of the clusters mined from the transformed database.

• In Chapter 7, we validate our framework by using a broad set of experiments. First, we 

describe the methodology adopted to compare our algorithms with the similar coun­

terparts in the literature. We also describe the real datasets used in our experiments. 

Then we study the effectiveness and the scalability of our sanitizing algorithms. In
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the context of clustering, we study the trade-off between privacy, communication cost, 

and the quality of the clusters mined from the transformed database. We conclude 

this chapter w ith a discussion of the main results of our performance evaluation.

• Chapter 8 concludes this dissertation with a brief summary of the work presented, 

discusses the main results achieved in this research, draws some conclusions and points 

to future work directions as a continuation of this research.

• The complexity analyzes of our sanitizing algorithms are presented in Appendix A.

• The results of the performance evaluation of our sanitizing algorithms are available at 

Appendix B.

• The results of the performance evaluation of our dimensionality reduction-based trans­

formation (for privacy-preserving clustering) are available a t Appendix C.
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Chapter 2

Basic Concepts

Just definitions either prevent or put an end to a dispute.

-  Nathaniel Emmons

In this C hapter, we review the basic concepts th a t are necessary to understand the issues 

addressed in this research. We give special attention to association rules and clustering since 

these mining tasks are the focus of this research. Section 2.1 describes the foundations of 

knowledge discovery in databases (KDD). We outline the KDD process and the m ain data  

mining tasks. A brief discussion about the differences between d ata  mining and statistical 

methods is also included. Then we review a number of different d a ta  stores on which mining 

can be performed. Section 2.2 reviews the preliminaries of clustering. We briefly review the 

major distance-based clustering methods and the d ata  structures for clustering, such as data  

m atrix and dissimilarity matrix. Section 2.3 provides the basics of association rule mining. 

In particular, we define the support-confidence framework and review some interestingness 

measures. In addition, we provide the definitions of sensitive association rules and sensitive 

transactions. Subsequently, we describe the process of protecting sensitive knowledge in 

transactional databases. Finally, in Section 2.4, we review the basics of dimensionality 

reduction.

2.1 Knowledge Discovery in Databases

2.1.1 The KDD Process

Knowledge discovery in databases, also called the KDD process, is a non-trivial process of 

discovering useful knowledge from d ata  [55, 65], This process consists of several steps, as can 

be seen in Figure 2.1. In this process, knowledge simply refers to information th a t is relevant 

and actionable represented by patterns or models. A pattern  describes relationships among 

the facts in a subset of the given data, while a model is a characterization of the global 

dataset. In this context, discovering knowledge means finding patterns, fitting a model to 

data, or even any general high-level description of a set of data.
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Figure 2.1: An overview of the steps comprising the FDD process

The major steps in the KDD process can briefly be defined as follows:

1. D a ta  C lean in g : In the real world, d a ta  are often noisy or incomplete, and unless this 

is understood and corrected, it is likely tha t many interesting patterns will bo missed 

and the reliability of detected patterns will be low. D ata cleaning routines act on 

the d a ta  by filling in missing values, smoothing noisy data, identifying and removing 

outliers, and resolving inconsistencies.

2. D a ta  In te g ra t io n :  The way th a t da ta  are merged from multiple data stores may 

need to be transformed into forms appropriate for mining. In this step, d a ta  from 

multiple sources (with heterogeneous data) are combined into a coherent da ta  store, 

as in da ta  warehousing. These sources include multiple DBMSs, da ta  cubes, or even 

flat files.

3. D a ta  S e lec tio n : In this stop, the goal is to identify the data  that are relevant, to the 

analysis task and retrieve them from the database. Only the selected data  are subject 

to the mining process.

4. D a ta  T ra n sfo rm a tio n : In this step, the da ta  are transformed or consolidated into 

forms appropriate for mining. This is achieved by performing summary, aggregation, 

generalization, or normalization operations.

5. D a ta  M in in g : This is the central activity in the KDD process. It is concerned with 

the extracting of implicit, previously unknown, and potentially useful patterns from 

the data. To do so, computational techniques arc applied to produce a particular 

enumeration of patterns (or models) from the data.

G. P a t t e r n  E v a lu a tio n : In this step, intcrestingness1 measures arc applied with the 

purpose of searching for valuable patterns. This may be accomplished by using inter- 

estingncss thresholds to filter out discovered patterns. Also, correlation analyses may 

be applied to evaluate the importance of the discovered information.

'T hese functions arc used to separate uninteresting patterns from knowledge. Intcrestingness measures 
for associations rules include support and confidence.
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After the pattern evaluation phase, visualization and knowledge representation tech­

niques can be used to present the mined knowledge to the users. However, as can be seen 

in Figure 2.1, the KDD process may iterate many times over previous steps and the process 

usually requires a great deal of experimentation.

2.1.2 A Glance at Data Mining Tasks

In this section, we briefly describe the main idea behind the primary mining tasks [25, 41, 

55, 65, 26]. As pointed out by Chen et al. [25], data mining tasks can be classified according 

to the following criteria: (a) the kinds of databases to work on, (b) the knowledge to be 

mined (e.g., association rules), and (c) the techniques to be utilized (e.g., data-driven or 

query-driven). In this thesis, we focus on the second category (the knowledge to be mined).

Sum m arization: Also called characterization, summarization refers to general character­

istics or features of a target class of data. Sometimes, the goal is to simply extract 

compact patterns that describe a subset of data. The data corresponding to the user- 

specified class or subset are collected by a database query. For example, to analyze the 

characteristics of certain products whose sales increased by 15% in the last year, the 

data related to such products can be collected by executing an SQL query. In general, 

the summary data are typically generated using basic statistics or by aggregation in 

OLAP (e.g., roll-up operation) and can be presented in various graphical forms, such 

as pie charts or bar charts.

P red ic tive  M odeling: The goal of this mining task is to predict some attributes in a 

database based on other attributes. The target attribute is called class, i.e., the de­

pendent variable in statistics terminology. If the attribute being predicted is a numeric 

variable (e.g., salary), then the prediction problem is a regression one. In contrast, if 

the class label attribute is categorical, the task at hand is called classification. In both 

cases, a set of data is taken as input, and a model (a pattern or a set of patterns) is 

generated. This model can be used to predict values of the class for new data. For 

instance, given a dataset, only a part of it is typically used to generate a predictive 

model. This part is referred to as the training dataset. The individual tuples making 

up the training dataset are referred to as training samples and are randomly selected 

from the sample population. Since the class label of each training sample is provided, 

this step is known as supervised learning. The remaining part, which is called the 

testing set, is reserved for evaluating the predictive performance of the learned model. 

The testing set is used to estimate the performance of the model on new (unseen data),

i.e., to estimate the validity of the patterns on new data. Classification and regression 

have numerous applications including credit approval, medical diagnosis, and selective 

marketing.
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C lu s te r in g : Also known as segmentation, clustering is concerned w ith grouping objects 

into classes of similar objects. Given a dataset, the  task of clustering is to partition 

the d a ta  into new classes (clusters). The goal is to  achieve high similarity between 

objects within individual clusters (interclass similarity) and low similarity between 

objects th a t belong to different clusters (intraclass similarity). Unlike predictive mod­

eling th a t analyzes class-labeled data  objects, clustering analyzes d ata  objects without 

consulting a  known class label. For this reason, clustering is also known as unsuper­

vised learning. Clustering plays an outstanding role in d a ta  mining applications such 

as scientific d a ta  exploration, marketing, medical diagnostics, and computational bi­

ology. In Section 2.2, we discuss data  structures (e.g., d a ta  m atrix and dissimilarity 

matrix) for clustering, which are relevant to the PPD M  methods we propose in this 

thesis.

A sso c ia tio n  R u le s : Association analysis is the discovery of association rules describing 

interesting relationships among items grouped together in a sufficient number of ex­

amples. M arket basket analysis has been a strong motivation for the development of 

association rule mining. The task of finding association rules is typically performed 

in two steps. First, all frequent itemsets are found, where an itemset is said to be fre­

quent if it  appears in a t least a given percentage a  (called support) of all transactions. 

Then, associations rules are found of the form X  =>■ Y ,  where X  and Y  are frequent 

itemsets. Strong association rules are derived from frequent itemsets and constrained 

by a minimum confidence ip, i.e., the percentage of transactions containing X  th a t 

also contain Y . In Section 2.3, we formally define the support-confidence framework 

for association rules and review other interestingness measures besides support and 

confidence. We also describe the process of protecting sensitive knowledge (sensitive 

association rules) in transactional databases.

O th e r  D a ta  M in in g  T asks: The above d ata  mining tasks have received most attention 

within the data  mining field. Algorithms for performing such tasks are typically in­

cluded in d a ta  mining tools [148]. A part from these d ata  mining tasks, Han and 

Kamber [65] include other tasks, such as evolution analysis and outlier detection. We 

briefly describe them  as follows: (a) Evolution analysis describes and models regular­

ities or trends whose behaviour changes over time. It includes change and deviation 

detection [55], which focuses on discovering the m ost significant changes in the da ta  

from previously measured or normative values; (b) Outlier detection is concerned with 

finding d a ta  objects th a t do not fit the general behaviour or model of data. Such data  

objects are called outliers. Outliers can be of interest in fraud detection, for example. 

They can be found by looking for objects th a t are a  substantial distance away from any
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of the clusters in the data  or show large differences from the average characteristics of 

objects in a group.

2.1.3 Data Mining versus Statistical M ethods

Although statistical techniques are fundamental to  d a ta  mining, such techniques alone may 

not be sufficient to address some of the more challenging issues in data  mining, especially 

those arising from massive datasets [66]. When large or very large datasets are taken 

into account, it is not straightforward to know the facts about the data. Doing so requires 

sophisticated search and examination methods to make features understandable which would 

be readily apparent in small datasets. Indeed, the most fundamental difference between 

classical statistical applications and d ata  mining concerns the size of the dataset [54, 66].

To a conventional statistician, a large dataset may contain a few hundred d ata  points. 

However, from data  mining’s viewpoint, many millions or even billions of data  points are 

not unexpected. Such large databases are common in several real world applications today. 

For instance, the American retailer Wal-Mart makes over 20 million transactions daily, 

and it constructed an 11 terabyte database of customer transactions in 1998 [113]. Another 

example is reported in [54], in which the Sloan Digital Sky Survey created a raw observational 

dataset of 40 terabytes. W ith datasets of this size come problems beyond those traditionally 

considered by statisticians.

To deal with massive datasets, miners could apply some techniques such as sampling, 

segmentation, or summarization [66, 26], Sampling can be used as a data  reduction technique 

since it allows a large dataset to be represented by a  much smaller random sample of the 

data. In a sense, whether sampling is used or not distinguishes statistical analysis from da ta  

mining. While statistical analysis is applied to a set of sample data  for analysis, in data  

mining it is preferable tha t the entire set of data  is used for exploration. The reason is th a t 

since d ata  mining is a process seeking the unexpected, it does not try  to answer questions 

th a t were specified before data  were collected. On one hand, sampling may be ideally suited 

to  the purposes for which the d a ta  were collected but not adequate for data  mining uses.

Segmentation helps to keep the size of the data  under control. In this case, the d ata  

are divided into segments, and each segment is analyzed separately. The larger the dataset, 

the richer its patterns content. However, if someone analyzes a large dataset, patterns 

from different d a ta  segments begin to dilute each other and the number of useful patterns 

decreases.

A part from sampling and segmentation, summarization may be used to reduce data  sizes. 

In summarization, individual da ta  elements are replaced by the summary data. For instance, 

individual sales from each store are now replaced by the to tal sales from all stores. However, 

sum m arization can also cause problems since the sum m arization of the same dataset with
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two samplings may produce the same result. In addition, the summarization of the same 

dataset with two methods may produce two different results. Therefore, summarization 

should be used with caution.

Clearly, various problems arise from the difficulties of accessing very large datasets. The 

most serious is the fact th a t datasets are constantly evolving. Thus, distributed or evolving 

data  can multiply the size of the dataset, changing the nature of the problems requiring 

solution. While the size of a dataset may lead to difficulties, so also may other properties 

not often found in standard statistical applications.

Another fundamental difference between da ta  mining and statistics is tha t data mining 

relies on exploratory analysis, while statistics is concerned with confirmatory analysis. In 

confirmatory analysis, one has a hypothesis and cither confirms or refutes it. However, the 

bottleneck for confirmatory analysis is the shortage of hypotheses on the part of the analyst 

[66], In exploratory analysis, interesting patterns are discovered without the user thinking 

of the relevant questions first. In large databases, there are so many patterns tha t the user 

can never practically think of the right questions to ask.

2.1.4 Data Stores for Mining

D ata mining should be applicable to any kind of information repository [65]. The most 

common types of d a ta  repositories include fiat files (e.g., transactional databases), relational 

databases, and d a ta  warehouses.

Usually, applications in the real world contain various types of entities involved in multi­

ple tables in a database management system (DBMS) [42], A DBMS consists of a collection 

of interrelated data, known as a database, and a set of software programs to manage and 

access the data. The software programs contain mechanisms for the definition of database 

structures: (a) for d a ta  storage; (b) for concurrent, shared, or distributed data  access; and 

(c) for ensuring the consistency and security of the information stored [117]. A relational 

database is a collection of tables, each of which is assigned a  unique name. Each table con­

sists of a set of attributes (columns or fields) and usually stores a large set of tuples (records 

or rows). Each tuple in a relational table represents an object identified by a unique key 

and described by a set of a ttribu te  values.

In many cases, da ta  from relational databases is augmented with summary information 

covering a long period of time. Such data are consolidated in much larger repositories 

called warehouses [117], A data  warehouse is an integrated repository derived from multiple 

source (operational and legacy) databases which in principle can provide views2 of the data 

tha t are not practical for other kinds of databases [65, 26], A data  warehouse is usually 

modeled by a multidimensional database structure in which each dimension corresponds to

2A view  is a table w hose rows are not explicitly stored in the database, i.e., it temporarily relates 
information from m any tables together into a virtual relation.
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an attribute or a set of attributes in relational tables, with each cell storing the value of some 

aggregate measure. For instance, a supermarket chain may want to compare sales trends 

across regions at the level of products, broken down by months, and by class of store within a 

region. Such views are often precomputed and stored in special data stores, which are called 

multi-dimensional databases, that provide a multi-dimensional front-end to the underlying 

relational database. Figure 2.2 shows an example of locations, items, and sales represented 

as fragments of relations, while Figure 2.3(a) shows an example of a multi-dimensional view 

for a hiking equipment store.

locid city state country

1 Jasper AB Canada

2 Boston MA USA

3 Toronto ON Canada

Locations

item id in am e category price

11 B oots Hiking 125

12 Sunglasses Skiing 120

13 Sunscreen Body care 20

item id tim eid locid sales

11 1 1 112

11 2 1 102

11 3 1 93

12 1 1 215

12 2 1 183

12 3 1 100

13 1 1 78

13 2 1 61

13 3 1 12

Items Sales

Figure 2.2: Locations, items, and sales represented as fragments of relations.

locid

X

112 215 78

102 183 61

93 100 12

11 12 13
item id

(A)

TID List of Items

100 Ski pants, T-shirt, Gloves

200 Hiking boots, Sunglasses

300 Jackets, Sunglasses

400 Jackets, T-shirt, Gloves

500 T-shirt, Hiking boots, Gloves, Jackets

600 Sunglasses, T-shirt, Gloves

700 Sunglasses

(B)

Figure 2.3: (a): An example multi-dimensional view of relational data; (b): A sample 
transactional database for a hiking equipment store.

Because of the integration of multiple sources of data, data warehouses are capable 

of handling some problems associated with data integration [53, 117]. These problems 

include dealing with multiple formats, multiple database management systems, distributed 

databases, unifying data representation, and data cleaning.
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Once the data are transformed and pre-processed into forms appropriate for mining, the 

pattern  discovery can be done directly either from relational databases or d a ta  warehouses. 

However, the input of a data  mining algorithm  is most commonly a single flat table compris­

ing a number of variables or a ttribu tes (columns), and records or objects (rows). In general, 

each row represents an object and columns represent properties of objects. Such a  table 

represents the matrix form th a t has been traditionally used in statistics. One particular 

example of a single flat file is a transactional database, which is widely used in association 

rule mining. A transactional database is a relation consisting of transactions in which each 

transaction t is characterized by an ordered pair, defined as t =  ( TID, list.of.elem ents) , 

where TID  is a unique transaction identifier number and list.of'.elements is a list of items 

making up the transaction [26]. For instance, in market basket analysis, a transactional 

database is composed of business transactions in which the list of elements represents items 

purchased in a store. In general, transactional databases require the transform ation of re­

lational d a ta  into a single table. M iners are then able to look for patterns in this table. 

Figure 2.3(b) shows an example of a  transactional database for a store th a t sells hiking 

equipment.

2.2 The Basics of Clustering Analysis

2.2.1 The Major Distance-Based Clustering Methods

There exist a large number of clustering algorithms in the literature. The choice of clustering 

algorithm depends on the type of d a ta  available and on the particular purpose and appli­

cation [44]. In this thesis, we focus on m ethods for protecting privacy when distance-based 

clustering algorithms are used to mine a transformed database.

We review the major distance-based clustering methods as follows. More details regard­

ing clustering methods can be found in [152],

P a r t i t io n in g  m e th o d s : given a database of n  objects, a partitioning method first creates 

an initial set of k  partitions, where the param eter k is the number of partitions to 

construct, and uses an iterative relocation technique that attem pts to improve the 

partitioning by moving objects from one group to another. In the end, the partitioning 

method constructs k  partitions of the data, where each partition represents a cluster 

and k < n .  The most classical and popular partitioning methods are k-means [93] and 

k-medoid [86], where each cluster is represented by the gravity centre of the cluster in 

k-means or by the central objects of the cluster in k-medoid.

H ie ra rc h ica l m e th o d s  : these methods create a hierarchical decomposition of the given 

set of d a ta  objects. The goal is to produce a hierarchical series of nested clusters, 

ranging from clusters of individual points a t the bottom  to an all-inclusive cluster at
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the top. A diagram called a  dendogram graphically represents this hierarchy. These 

methods can be classified as being either agglomerative (bottom-up) or divisive (top- 

down) based on how the hierarchy decomposition is formed. To compensate for the 

rigidity of merge or split, the quality of hierarchical agglomeration can be improved by 

analyzing object linkages a t each hierarchical partitioning, such as in CURE [64] and 

Chameleon [84], or integrating other clustering techniques, such as iterative relocation 

as in BIRCH [154],

D e n s ity -b a se d  m e th o d s  : these methods cluster objects based on the notion of density. 

The main idea behind these methods is to continue growing the given cluster as long as 

the density, i.e., the num ber of d a ta  points in the neighborhood exceeds some threshold. 

In other words, for each d a ta  point within a given cluster, the neighborhood of a given 

radius has to contain a minimum number of points. Examples of these methods are 

DBSCAN th a t grows clusters according to the density of neighborhood objects [43], 

and DENCLUE which grows clusters according to  some density function [65].

G rid -b a se d  m e th o d s  : these methods quantize the object space into a finite number of 

cells tha t form a grid structure. The main advantage of this approach is its fast 

processing time, which is typically independent of the number of data  objects and de­

pendent only on the num ber of cells in each dimension in the quantized space. STING 

[143] is a typical example of grid-based method th a t relies on statistical information 

stored in grid cells. CLIQUE [5] and WaveCluster [131] are two clustering algorithms 

th a t are both grid-based and density-based.

2.2.2 Data Matrix

Objects (e.g., individuals, patterns, events) are usually represented as points (vectors) in 

a multi-dimensional space. Each dimension represents a distinct a ttribu te  describing the 

object. Thus, objects are represented as an m  x n  m atrix D, where there are m  rows, one 

for each object, and n  columns, one for each attribute. This m atrix may contain binary, 

categorical, or numerical a ttribu tes. It is referred to as a d a ta  m atrix, represented as follows:

a n • • O r - • d i n

^ 2 1 • • &2k 0 2 n

a m i O m k d m n

The attributes in a d a ta  m atrix are sometimes transformed before being used, The main 

reason is that different a ttribu tes may be measured on different scales (e.g., centimeters and 

kilograms). When the range of values differs widely from attribu te  to attribute, attributes 

with large range can influence the results of the cluster analysis. For this reason, it is 

common to standardize the d a ta  so th a t all attributes are on the same scale.
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There are many methods for da ta  normalization [65]. We review only two of them  in 

this section: m in-m ax normalization and z-score normalization.

Min-max normalization performs a linear transform ation on the original data. Each 

attribu te is normalized by scaling its values so th a t they fall within a small specific range, 

such as 0.0 and 1.0. Min-max normalization m aps a  value v of an a ttribu te  A  to  v' as 

follows:

v = v — m m  a
x (new .m axA  — n eu u n in A ) +  neui.m inA ( 2 .2 )

m a x a  — m m  a

where m inA  and m ax  a  represent the minimum and maximum values of an a ttribu te  A, 

respectively, while new .m inA  and new .m axA  arc the new range in which the normalized 

data will fall.

When the actual minimum and maximum of an attribu te  are unknown, or when there are 

outliers that dom inate the min-max normalization, z-score normalization (also called zero- 

mean normalization) should be used. In z-score normalization, the values for an a ttribu te  

A  are normalized based on the mean and the standard deviation of A. A value v is mapped 

to v' as follows:

v'
.1

<?A
(2.3)

where A  and a  a  are the mean and the standard deviation of the attribute A, respectively.

2.2.3 Dissimilarity Matrix

A dissimilarity m atrix  stores a collection of proximities tha t are available for all pairs of 

objects. This m atrix  is often represented by an m  x m  table. In (2.4), we can see the 

dissimilarity m atrix  D m  corresponding to the d a ta  m atrix D  in (2.1), where each element 

d (i,j)  represents the difference or dissimilarity between objects i and j .

D m  =

0
d( 2,1) 
d( 3,1)

0
d( 3,2) (2.4)

d(m, 1) d(m , 2)   0

In general, d( i , j )  is a nonnegative number th a t is close to zero when the objects i and 

j  are very similar to each other, and becomes larger the more they differ.

To calculate the  dissimilarity between objects i and j  one could use either the distance 

measure in Equation (2.5) or in Equation (2.6), or others, where i = ( xn, Xi 2 ,...,Xi„) and j  

=  { x j i , x j 2 , ..., Xjn ) are n-dimensional data  objects.

=  [ E k = i  l*<fc “ Sjfcl2 ]
1 / 2

(2.5)
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d(M ) ~  lL,k=i l3-^  (2-6)

The metric in Equation (2.5) is the most popular distance measure called Euclidean 

distance, while the metric in Equation (2.6) is known as M anhattan or city block distance. 

Both Euclidean distance and M anhattan distance satisfy the following constraints:

• d(i , j )  > 0: distance is a nonnegative number.

•  d(i, i ) =  0: the distance of an object to itself.

• d(i , j )  =  d ( j , i ): distance is a symmetric function.

• d(i , j )  < d(i, k) +  d(k, j):  distance satisfies the triangular inequality.

In case of binary variables (attributes), one can compute the dissimilarity between objects 

i and j  by using the Jaccard coefficient [145, 65], The Jaccard coefficient is defined as:

d{i , j )  = — (2.7) q +  r  +  s

where r is the number of variables th a t equal 1 for object i but th a t are 0 for object j ; s is 

the number of variables that equal 0 for object i but equal 1 for object j ,  and q is the number 

of variables th a t equal 1 for both objects i and j .  This metric assumes th a t variables are

asymmetric, i.e., the outcomes of the states are not equally im portant, such as positive and

negative outcomes of a disease test.

Nominal variables can be encoded either by asymmetric binary variables or by mapping 

them to a numerical domain. However, if a  dataset contains mixed variables, a more prefer­

able approach is to process all variable types together performing a  single cluster analysis. 

Combining the different variables into a single dissimilarity matrix brings all of the mean­

ingful variables onto a common scale of the interval [0.0, 1.0]. For a dataset containing p  

variables of mixed types, the dissimilarity d( i , j )  between objects i and j  is defined as [65]:

=  - — J f T  <2-8>
2^f= l °ij

where the indicator S\0  = 0 if either: (a) Xj/ or Xjj  is missing; or (b) Xij  =  Xj j  — 0 and 

variable /  is asymmetric binary; otherwise <5^ =  1. The contribution of variable /  to  the 

dissimilarity between i and j ,  d \p , is computed dependent on its type:

•  If /  is binary or nominal: d\p  =  0 if x ^  — Xjf ,  otherwise df-p = 1.

• If /  is interval-based: d\P = , where h runs over all non-missing 

objects for variable / .
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One advantage of using Equation (2.8) is th a t the dissimilarities between objects can be 

computed even when the variables describing the objects are of different types. Moreover, 

the dissimilarities are already normalized.

2.3 The Basics of Association Rule Mining

2.3.1 The Support-Confidence Framework

One of the most studied problems in d ata  mining is the process of discovering association 

rules from large databases. Most of the existing algorithms for association rules rely on the 

support-confidence framework introduced in (6, 8].

Formally, association rules are defined as follows: Let I  = { ii,...,in} be a set of literals, 

called items. Let D  be a  database of transactions, where each transaction t is an itemset 

such tha t t C I . A unique identifier, called TID, is associated w ith each transaction. A 

transaction t supports X ,  a set of items in I , if X  C t. An association rule is an implication 

of the form X  => Y , where X  C I , Y  C I  and X  fi Y  =  0. Thus, we say tha t a rule 

X  => Y  holds in the database D  with confidence <p if >  </?, where |A| is the number

of occurrences of the set of items A  in the set of transactions D . Similarly, we say th a t a 

rule X  =>Y holds in the database D  with support a  if >  a, where N  is the number

of transactions in D.

While the support is a  measure of the frequency of a  rule, the confidence is a measure 

of the strength of the relation between sets of items. A survey of algorithms for association 

rules can be found in [71].

2.3.2 Interestingness Measures

Interesting rules are defined as rules describing surprising uncommon situations [65], Sup­

p ort and confidence, reviewed in the previous section, are the m ost basic measures of rule 

interestingness. However, in many cases support and confidence are not sufficient. Many 

other measures have been proposed in the literature [135] for ranking association patterns 

according to their degree of interestingness. We describe some of those measures as follows:

L ift: also known as interest [20] and strength [39], lift is defined as l i f t ( X  => V) =  

support(X  U Y ) / (support (X)  x support(Y)). Lift only measures co-occurrence not 

implication, in th a t it is completely symmetric. Based on statistical independence, if 

lift is equal to 1 then the condition X  and the conclusion Y  are independent. If lift is 

greater than 1 then the condition is associated with the conclusion. If lift of a rule is 

between 0 and 1 then  the condition is negatively associated w ith the conclusion.

C overage : describes the im portance of dependency [132]. This measure is defined as 

coverage(X  => Y )  =  support(X  U Y )/su p p o rt(Y ). A rule has coverage c if c% of
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all transactions th a t contain Y  also contain X .  Its values belong to the interval [0,1]. 

Note th a t the formulas of confidence and coverage are very similar.

C o n v ic tio n : this measure was derived from the implication definition [20]. Logically, 

X  => Y  can be rew ritten as ~(A  A ~j3). This measure shows the level of de­

pendence between A  and ~ R . After some transform ation, conviction is defined as 

conviction(X  => Y )  =  support{X) x (1 — su p p o rt(Y ))/(support(X ) — supp o rt(X u Y )). 

Conviction values are in the interval [0, +oo]. If conviction is equal to 1, the antecedent 

and the consequent are independent. Conviction is different from confidence because 

it does not suffer from the the same problem of producing misleading rules.

P ia te ts k y -S h a p iro : th is measures was introduced in [111], and it is defined as P S ( X  => 

Y)  = support(X  U Y )  — support(X) x support{Y). Absolute value of this measure 

shows dependence between antecedent and consequent. Statistically independence 

occurs at P S  =  0. The values for this measure fall in the interval [-0.25, 0.25].

O th e r  M easu re s : other measures to determine the interestingness of association patterns 

can be found in [135]. The work presents a comparative study of interestingness 

measures for ranking association patterns. The key finding of this study was tha t there 

is no measure th a t is consistently better than the others in all cases. However, there 

are situations in which many of these measures are highly correlated with each other 

(e.g., when support-based pruning is used). For example, measures such as Laplace, 

Jaccard, Piatetsky-Shapiro, coverage, confidence, and Cosine IS behave similarly in 

the region of low support values, which typically occurs in large databases.

2.3.3 Sensitive Rules and Sensitive Transactions

Protecting sensitive knowledge in transactional databases is the task of hiding a group of 

association rules which contains sensitive knowledge. We refer to  these rules as sensitive 

association rules and define them  as follows:

D efin itio n  1 (S en sitiv e  A sso c ia tio n  R u les) Let D  be a transactional database, R  be a 

set of all association rules that can be mined from D  based on a m inimum support a , and 

R u lesh  be a set of decision support rules that need to be hidden according to some security 

policies. A set o f association rules, denoted by S r ,  is said to be sensitive iff S r  C R  and 

S r  would derive the set Rulesf j .  ~S r  is the set o f non-sensitive association rules such that 

~ S r  U S r  =  R.

A group of sensitive association rules is mined from a database D  based on a special 

group of transactions. We refer to these transactions as sensitive transactions and define 

them  as follows:
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D efin itio n  2 (S e n s itiv e  T ran sac tio n s) Let T  be a set o f all transactions in a transac­

tional database D  and S r  be a set of sensitive association rules mined from D . A set of 

transactions is said to be sensitive, denoted S t ,  i f  S t  C T  and V t € S t ,  3 sr & S r  such 

that items (sr) C  t.

2.3.4 The Process of Protecting Sensitive Knowledge

The process of protecting sensitive knowledge in transactional databases is composed of two 

major steps: identifier suppression and sanitization, as can be seen in Figure 2.4.

(CT Identifier
Suppression

[C
Sanitization

Original

Database

Transactional

Database

Sanitized

DatabaseS tc p l Step 2

Figure 2.4: M ajor steps of the process of protecting sensitive knowledge.

S tep  1: Id e n tif ie r  S u p p re ss io n

The first step of the sanitization process refers to the suppression of identifiers (e.g., IDs, 

names, etc) from the d ata  to be shared. The procedure of removing identifiers allows 

database owners to  disclose purchasing behavior of customers w ithout disclosing their iden­

tities [87]. To accomplish tha t, database owners must transform  the data  into forms appro­

priate for mining.

After removing identifiers, the selected data  which are subjected to mining, can be stored 

in a  single table, also called a transactional database. Figure 2.3B shows an example of a 

transactional database for a hiking equipment store. As can be seen in th a t Figure, the 

transactional database does not contain personal information, but only costumers’ buying 

activities.

Although the deletion of identifiers from the d ata  is useful to protect personal informa­

tion, we do not argue th a t this procedure ensures full privacy a t all. In many cases, it is 

very difficult to ex tract the specific identity of one or more costumers from a transactional 

database, even combining the transactions with other data . However, a specific transaction 

may contain some items th a t can be linked with other datasets to re-identify an individual 

or and entity [124, 123, 134],

Once the d a ta  is transformed into a transactional database, the process of hiding sensi­

tive rules from th is transactional database is the next step to be pursued.

S te p  2: S a n it iz a t io n

After removing the identifiers from the data, the goal now is to efficiently hide sensitive

24

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



knowledge represented by sensitive rules.

In most cases, the notion of sensitive knowledge may not be known in advance. That is 

why the process of identifying sensitive knowledge requires human evaluation of the inter­

mediate results before the sharing of d a ta  for mining. In this context, sensitive knowledge 

is represented by a  special group of rules referred to  as sensitive association rules.

An efficient way to hide sensitive rules is by transforming a transactional database into 

a new one th a t conceals the sensitive rules while preserving most of the non-sensitive ones. 

The released database is called a  sanitized database. To accomplish tha t, the sanitization 

process acts on the da ta  modifying some transactions. In some cases, a number of items are 

deleted from a group of transactions (sensitive transactions) with the purpose of hiding the 

sensitive rules derived from those transactions. In doing so, the support of such sensitive 

rules are decreased below a certain disclosure threshold denoted by ip. Another way to hide 

sensitive rules is to add new items to some transactions to alter (decrease) the confidence 

of sensitive rules. For instance, in a rule X  —> Y ,  if the items are added to  the antecedent 

part X  of this rule in transactions th a t support X  and not Y , then the confidence of such 

a rule is decreased. Clearly, the sanitization process slightly modifies some data, but this is 

perfectly acceptable in some real applications [12, 37, 126].

Although the sanitization process is performed to  hide sensitive rules only, the side effect 

of this process also hides some non-sensitive ones. By deleting some items in a  group of 

transactions, the support or even the confidence of non-sensitive rules are also decreased. 

Therefore, sanitizing algorithms m ust focus on hiding sensitive rules and, at the same time, 

reducing the side effect on the non-sensitive rules as much as possible.

2.4 The Basics of Dimensionality Reduction

In many applications of d a ta  mining, the high dimensionality of the da ta  restricts the choice 

of d a ta  processing methods. Examples of such applications include market basket data, 

text classification, and clustering. In these cases, the dimensionality is large due to  either a 

wealth of alternative products, a large vocabulary, or an expressive number of attributes to 

be analyzed in Euclidean space, respectively.

W hen data  vectors are defined in a  high-dimensional space, it is computationally in­

tractable to use data  analysis or p a tte rn  recognition algorithms which repeatedly compute 

similarities or distances in the original d a ta  space. It is therefore necessary to  reduce the 

dimensionality before, for instance, clustering the data  [85, 57],

The goal of the methods designed for dimensionality reduction is to map d-dimensional 

objects into fc-dimensional objects, where k  <§; d [89], These methods map each object to a
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point in a  fc-dimensional space minimizing the stress function:

stress2 = ( ^ 2  [dij ~  d ij)2) / ( ^ 2  <kj2) (2.9)
i,j i,j

where d ^  is the dissimilarity measure between objects i and j  in a d-dimensional space, 

and dij is the dissimilarity measure between objects i and j  in a /s-dimensional space. The 

function stress gives the relative error th a t the distances in k-d space suffer from, on the 

average.

2.4.1 M ethods for Dimensionality Reduction

There exists a number of methods for reducing the dimensionality of data, ranging from 

different feature extraction methods to multidimensional scaling. The feature extraction 

methods are often performed according to the nature of the data, and therefore they are 

not generally applicable in all data mining tasks [85]. The multidimensional scaling (MDS) 

methods, on the other hand, have been used in several diverse fields (e.g, social sciences, 

psychology, m arket research, and physics) to analyze subjective evaluations of pairwise 

similarities of entities [151].

Another alternative for dimensionality reduction is to project the d ata  onto a lower­

dimensional orthogonal subspace th a t captures as much of the variation of the d a ta  as 

possible. The best and most widely way to do so is Principal Component Analysis [59]. 

Principal component analysis (PCA) involves a m athem atical procedure th a t transforms a 

number of (possibly) correlated variables into a  smaller number of uncorrelated variables 

called principal components. The first principal component accounts for as much of the 

variability in the d ata  as possible, and each succeeding component accounts for as much of 

the remaining variability as possible. Unfortunately, PCA is quite expensive to compute for 

high-dimensional datasets.

Although the above methods have been widely used in data  analysis and compression, 

these m ethods are computationally costly and if the dimensionality of the original data 

points is very high it is infeasible to apply these methods to  dimensionality reduction.

Random projection (RP) has recently emerged as a  powerful method for dimensionality 

reduction. The accuracy obtained after the dimensionality has been reduced using random 

projection is almost as good as the original accuracy [85, 1, 16]. The key idea of random 

projection arises from the Johnson-Lindenstrauss lemma [75]: “if points in a vector space are 

projected onto a randomly selected subspace of suitably high dimension, then the distances 

between the points are approximately preserved.”

L e m m a  1 ([75]). Given e >  0 and an integer n, let k be a positive integer such that 

k  >  ko =  O(e~2log n). For every set P  of n  points in there exists /  : —> 3?fc such that

fo r  all u , v e P
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(1 -  e) || u -  v ||2< || f ( u)  -  f ( v)  ||2< (1 +  e) || u -  v  ||2.

The classic result of Johnson and Lindenstrauss [75] asserts th a t any set of n  points 

in d-dimensional Euclidean space can be embedded into fc-dimensional space, where k  is 

logarithmic in n  and independent of d.

We will refer to the Johnson and Lindenstrauss’ lemma as JL-lemma. In the last few 

years, this lemma has been useful in solving a variety of problems. The rationale is tha t 

by providing a low dimensional representation of the data, JL-lemma speeds up certain 

algorithms drastically, in particular algorithms whose run-tim e depends exponentially on 

the dimension of the working space. At the same time, the provided guarantee regarding 

pairwise distances often allows one to establish th a t the solution found by working in the 

low dimensional space is a good approximation to the solution found by working in the 

high dimensional space. We give a few example as follows. In the work presented in [110], 

Papadimitriou et al. proved th a t embedding a pointset A  into a low-dimensional space 

can significantly speed up the com putation of a low rank approximation to A  without 

significantly affecting its quality. In [67], Indyk and Motwani showed th a t JL-lemma is 

useful in solving the e-approximate nearest neighbor problem (in a pointset P)  in which one 

is to answer queries such as “Given an arbitrary point x , find a point y  6 P ,  such th a t for 

every point z & P,  || x  -  z  ||> || (1 — e) || x  — y  ||.” In a different approach, Schulman [130] 

used JL-lemma as part of an approximation algorithm for the  version of clustering in which 

one seeks to minimize the sum of the squares of intracluster distances.

In this research, we focus on random projection for privacy-preserving clustering. Our 

motivation for exploring random projection is based on the following aspects. First, it 

is a general da ta  reduction technique. In contrast to the other methods, such as PCA, 

RP does not use any defined interestingness criterion to optimize the projection. Second, 

random projection has shown to have promising theoretical properties for high dimensional 

da ta  clustering [57, 16]. Third, despite its computational simplicity, random projection 

does not introduce a significant distortion in the data. Finally, the dimensions found by 

random projection are not a subset of the original dimensions, which is relevant for privacy 

preservation. We provide the background of random projection in the next section.

2.4.2 Random Projection

A random projection from d dimensions to k  dimensions is a linear transform ation repre­

sented by a d x  k  m atrix R, which is generated by first setting each entry of the matrix 

to a value drawn from an i.i.d. ~ iV (0,l) distribution and then normalizing the columns to 

unit length. Given a d-dimensional dataset represented as an n x  d m atrix D , the mapping 

D  x R  results in a reduced-dimension dataset D \  i.e.,

D-nxk ~  D-nxdRdxk (2.10)

27

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Random projection is com putationally very simple. Given the random m atrix R  and 

projecting the n x  d m atrix D  into k  dimensions is of the order 0(ndk) ,  and if the matrix 

D  is sparse w ith about c nonzero entries per column, the complexity is of the order O (a ik)  

[110].

After applying random projection to  a dataset, the distance between two d-dimensional 

vectors i and j  is approximated by the scaled Euclidean distance of these vectors in the 

reduced space as follows:

y /d jk  || Ri -  Rj  || (2.11)

where d is the  original and k  the reduced dimensionality of the dataset. The scaling term  

y / d / k  takes into account the decrease in the dimensionality of the data.

To satisfy the JL-Lemma, the random  matrix R  must hold the follow constraints:

•  The columns of the random m atrix R  are composed of orthonormal vectors, i.e, they 

have unit length and are orthogonal.

•  The elements of R  have zero mean and unit variance.

Clearly, the choice of the random  m atrix R  is one of the key points of interest. The 

elements Uj  of R  are often Gaussian distributed, but this need not to  be the case. Achlioptas 

[1] showed th a t the Gaussian distribution can be replaced by a  much simpler distribution, 

as follows:

+1 w ith  probability 1/6
0 w ith  probability 2/3 (2-12)
— 1 w ith  probability 1/6

In fact, practically all zero mean, unit variance distributions of would give a mapping 

th a t still satisfies the Johnson-Lindenstrauss lemma. Achlioptas’ result means further com­

putational savings in database applications since the computations can be performed using 

integer arithmetics.

a =  Vs
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Chapter 3

Toward Foundations o f  
Privacy-Preserving D ata M ining

I f  you have built castles in the air, your work need not be lost; 

that is where they should be. Now put the foundations under them.

-  Henry David Thoreau (1817 - 1862)

Privacy-preserving d a ta  mining (PPDM ) is one of the newest trends in privacy and security 

research. I t  is driven by one of the  m ajor policy issues of the information era - the right to 

privacy. Although th is  research field is very new, we have already seen great interests in it: 

a) the recent proliferation of PPD M  techniques is evident; b) the interest from academia 

and industry has grown quickly; and c) separate workshops and conferences devoted to this 

topic have emerged in the  last few years.

In this chapter, we take some steps toward foundations for further research in PPD M , 

as follows. In Section 3.1, we discuss the  different meanings of privacy and how privacy can 

be violated in da ta  mining. The historical roots and the basis of PPDM  are introduced in 

Section 3.2. In Section 3.3, we analyze the implications of the Organization for Economic 

Cooperation and Development (OECD) data privacy principles concerning knowledge dis­

covery. We then show th a t some PPD M  principles can be adopted from the OECD privacy 

guidelines. We also suggest some policies for PPDM  based on instrum ents accepted world­

wide. In Section 3.4, we suggest some desirable requirements for the development and for 

deployment of technical solutions. These requirements are related to  industrial initiatives.

A preliminary version of this chapter appeared in a paper presented in the 3nd W orkshop 

on D ata Mining S tandards (DM-SSP 2004), in conjunction with KDD 2004 [108].
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3.1 The Different Meanings of Privacy

3.1.1 Problems in Defining Privacy

Analyzing what right to privacy means is a fraut with problems, such as the exact definition 

of privacy, whether it constitutes a fundam ental right, and whether people are and /o r should 

be concerned with it. Several definitions of privacy have been given, and they vary according 

to context, culture, and environment. For instance, in an 1890 paper [144], Warren & 

Brandeis defined privacy as “the right to  be alone.” Later, in a paper published in 1967 [146], 

Westin defined privacy as “the desire of people to  choose freely under w hat circumstances 

and to what extent they will expose themselves, their attitude, and their behavior to others” . 

In [129], Schoeman defined privacy as “the right to determine what (personal) information is 

communicated to others” or “the control an individual has over inform ation about himself 

or herself.” More recently, Garfmkel [60] sta ted  th a t “privacy is about self-possession, 

autonomy, and integrity.” On the  o ther hand, Rosenberg argues th a t privacy may not be a 

right after all but a taste [121]: “If privacy is in the end a m atter of individual taste, then 

seeking a moral foundation for it -  beyond its role in making social institutions possible 

tha t we happen to  prize -  will be no more fruitful than seeking a moral foundation for the 

taste  for truffles.”

The above definitions suggest th a t, in general, privacy is viewed as a social and cultural 

concept. However, with the ubiquity of computers and the emergence of the Web, privacy 

has also become a digital problem [119]. W ith  the Web revolution and  the emergence of 

da ta  mining, privacy concerns have posed technical challenges fundam entally different from 

those th a t occurred before the inform ation era. In the information technology era, privacy 

refers to the right of users to conceal their personal information and have some degree of 

control over the use of any personal inform ation disclosed to others [32, 2, 73].

Clearly, the concept of privacy is often more complex than realized. In particular, in 

data  mining, the definition of privacy preservation is still unclear, and there is very little 

literature related to this topic. A notable exception is the work presented in [29], in which 

PPD M  is defined as “getting valid d a ta  mining results without learning the underlying 

data  values.” However, a t this point, each existing PPDM  technique has its own privacy 

definition. Our primary concern about PPD M  is tha t mining algorithms are analyzed for the 

side effects they incur in da ta  privacy. Therefore, our definition for PPD M  is close to those 

definitions in [129, 29] -  PPD M  encompasses the dual goal of m.eeting privacy requirements 

and providing valid data mining results. Our definition emphasizes the dilem m a of balancing 

privacy preservation and knowledge disclosure.
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3.1.2 Privacy Violation in D ata Mining

Understanding privacy in data  mining requires understanding how privacy can be violated 

and the possible means for preventing privacy violation. In general, one m ajor factor con­

tributes to privacy violation in d ata  mining: the misuse of data.

Users’ privacy can be violated in different ways and with different intentions. Although 

d ata  mining can be extremely valuable in many applications (e.g., business, medical analysis, 

etc), it can also, in the absence of adequate safeguards, violate informational privacy. Privacy 

can be violated if personal d a ta  are used for other purposes subsequent to  the original 

transaction between an individual and an organization when the information was collected.

One of the sources of privacy violation is called data magnets [119]. D ata  magnets 

are techniques and tools used to collect personal data. Examples of data  m agnets include 

explicitly collecting information through on-line registration, identifying users through IP 

addresses, software downloads th a t require registration, and indirectly collecting information 

for secondary usage. In many cases, users may or may not be aware th a t information is 

being collected or do not know how th a t information is collected [36, 91]. Worse is the 

privacy invasion occasioned by secondary usage of data when individuals are unaware of 

“behind the scenes” uses of d a ta  mining techniques [74]. In particular, collected personal 

data  can be used for secondary usage largely beyond the users’ control and privacy laws. 

This scenario has led to an uncontrollable privacy violation not because of d a ta  mining 

itself, but fundamentally because of the  misuse of data.

3.2 The Basis of Privacy-Preserving Data Mining

3.2.1 PPD M  Landmarks

The debate on PPDM has received special atten tion  as data mining has been widely adopted 

by public and private organizations. We have witnessed three major landm arks th a t char­

acterize the progress and success of th is  new research area: the conceptive landmark, the 

deployment landmark, and the prospective landmark. We describe these landm arks as fol­

lows:

The Conceptive landmark characterizes the period in which central figures in the commu­

nity, such as O ’Leary [99, 100], Fayyad, Piatetsky-Shapiro and Smith [55, 112], and others 

[88, 31], investigated the success of knowledge discovery and some of the im portan t areas 

where it can conflict with privacy concerns. The key finding was th a t knowledge discovery 

can open new threats to informational privacy and information security if not done or used 

properly. They highlighted the success of knowledge discovery and some of im portant areas 

where it could conflict with privacy concerns. Since then, the debate on PPD M  has gained 

momentum.
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The Deployment, landmark is the current period in which an increasing number of PPDM  

techniques have been developed and have been published in refereed conferences. The 

information available today is spread over countless papers and conference proceedings1. 

The results achieved in the last years are promising and suggest that PPDM  will achieve 

the goals th a t have been set for it.

The Prospective landmark is a new period in which directed efforts toward standardiza­

tion occur. At this stage, there is no consent about what privacy preservation means in 

d ata  mining. In addition, there is no consensus on privacy principles, policies, and require­

ments as a foundation for the development and deployment of new PPDM  techniques. The 

excessive number of techniques is leading to confusion among developers, practitioners, and 

others interested in this technology. One of the most im portant challenges in PPDM  now 

is to  establish the groundwork for further research and development in this area.

3.2.2 Defining Privacy Preservation in Data Mining

In general, privacy preservation occurs in two m ajor dimensions: users’ personal information 

and information concerning their collective activity. We refer to  the former as individual 

privacy preservation and the latter as collective privacy preservation, which is related to 

corporate privacy in [29].

In d iv id u a l p riv acy  p re se rv a tio n : The prim ary goal of d a ta  privacy is the protection of 

personally identifiable information. In general, information is considered personally 

identifiable if it can be linked, directly or indirectly, to  an individual person. Thus, 

when personal data are subjected to mining, the a ttribu te  values associated with 

individuals are private and must be protected from disclosure. Miners are then able to 

learn from global models rather than  from the characteristics of a particular individual.

C o llec tiv e  p riv acy  p re se rv a tio n : Protecting personal data  may not be enough. Some­

times, we may need to protect against learning sensitive knowledge representing the 

activities of a group. We refer to  the protection of sensitive knowledge as collec­

tive privacy preservation. The goal here is quite similar to th a t one for statistical 

databases, in which security control mechanisms provide aggregate information about 

groups (population) and, at the same time, should prevent disclosure of confidential 

information about individuals. However, unlike as is the case for statistical databases, 

another objective of collective privacy preservation is to preserve (hide) strategic p a t­

terns th a t are paramount for strategic decisions, rather th an  minimizing the distortion 

of all statistics (e.g., bias and precision). In other words, the goal here is not only to 

protect personally identifiable information but also some patterns and trends that are 

not supposed to be discovered.

'T h e  Privacy-Preserving Data Mining Site: h ttp ://w w w .cs.u a lb erta .ca /~o live ira /psd m /p sdm Jn d ex .h tm l
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In the case of collective privacy preservation, organizations have to  cope with some in­

teresting conflicts. For instance, when personal information undergoes analysis, processes 

th a t produce new facts about users’ shopping patterns, hobbies, or preferences, these facts 

could be used in recommender systems to predict or affect their future shopping patterns. 

In general, this scenario is beneficial to both users and organizations. However, when or­

ganizations share d a ta  in a collaborative project, the goal is not only to  protect personally 

identifiable information but also to protect some strategic patterns. In the  business world, 

such patterns are described as the knowledge that can provide com petitive advantages, and 

therefore must be protected [138]. More challenging is to protect the knowledge discovered 

from confidential information (e.g., medical, financial, and crime inform ation). The absence 

of privacy safeguards can equally compromise individuals’ privacy. W hile violation of in­

dividual privacy is clear, violation of collective privacy can lead to  violation of individual’s 

privacy.

3.2.3 Characterizing Scenarios in PPDM

Before we describe the general param eters for characterizing scenarios in PPD M , let us 

consider two real-life m otivating examples where PPDM  poses different constraints:

S cen a rio  1: A hospital shares some data  for research purposes (e.g., concerning a group 

of patients who have a sim ilar disease). The hospital’s security adm inistrator may 

suppress some identifiers (e.g., name, address, phone number, etc) from patient records 

to  meet privacy requirements. However, the released d a ta  may not be fully protected. 

A patient record may contain other information th a t can be linked w ith other datasets 

to  re-identify individuals or entities [123]. How can we identify groups of patients with 

a similar disease w ithout revealing the values of the a ttribu tes associated with them?

S cen a rio  2: Two or more companies have a very large dataset of records on their customers’ 

buying activities. These companies decide to cooperatively conduct association rule 

mining on their datasets for their mutual benefit since this collaboration brings them 

an advantage over o ther competitors. However, some of these companies may not want 

to  share some strategic pa tterns hidden within their own d a ta  (also called sensitive 

association rules) w ith the o ther parties. They would like to  transform  their data in 

such a way th a t these sensitive association rules cannot be discovered but others can 

be. Is it possible for these companies to benefit from such collaboration by sharing 

their data while preserving some sensitive association rules?

Note th a t the above scenarios describe different privacy preservation problems. Each 

scenario poses a set of challenges. For instance, scenario 1 is a  typical exam ple of individual’s 

privacy preservation, while scenario 2 refers to collective privacy preservation.
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How can we characterize scenarios in PPDM ? One alternative is to describe them  in 

terms of general param eters. In [30], some param eters are suggested as follows:

O u tco m e: Refers to  the desired data mining results. For instance, someone may look for 

association rules identifying relationships among a ttribu tes, or relationships among 

customers’ buying behaviors as in scenario 2, or may even want to cluster d a ta  as in 

scenario 1.

D a ta  D is tr ib u t io n :  How are the data available for mining: are they centralized or dis­

tributed across m any sites? In the case of da ta  distributed throughout many sites, are 

the entities described w ith the same schema in all sites (horizontal partitions), or do 

different sites contain different attributes for one en tity  (vertical partitions)?

P riv a c y  P re s e rv a t io n :  W hat are the privacy preservation requirements? If the concern 

is solely th a t values associated with an individual entity  not be released (e.g., personal 

information), techniques must focus on protecting such information. In other cases, 

the notion of w hat constitutes “sensitive knowledge” may not be known in advance. 

This would lead to  hum an evaluation of the interm ediate results before making the 

data  available for mining.

3.2.4 M odel of D ata Miners

In this thesis, we assume th a t there are two types of d a ta  miners. The first type refers to 

the conscious d a ta  miners. These miners always act legally in tha t they perform regular 

data  mining tasks and  would never intentionally breach the  privacy of the data. On the 

other hand, malicious d a ta  miners would purposely breach the privacy in the data  being 

mined. Malicious d a ta  miners come in many forms. We focus on a  particular sub-class of 

malicious miners. T h a t is, malicious data miners follow standards but are curious [61, 62]: 

they follow proper protocols and standard procedures, but they may perform some analysis 

(i.e., they are curious) to  discover private information.

This kind of curious (nevertheless malicious) behavior is most common and has been 

widely adopted as an  adversary model in the literature [153]. This is because, in reality, 

a  workable system  m ust benefit both the conscious and the  malicious data miners. For 

example, in an online bookstore a data miner may use the  association rules of purchase 

records to make recom m endations to its customers (data providers). In addition, this da ta  

miner can also perform  some analysis to discover private information. This data  miner, as 

a long-term agent, requires large numbers of da ta  providers to collaborate with. In other 

words, even a malicious d a ta  miner desires to build a reputation  for trustworthiness. Thus, 

honest but curious behavior is an appropriate choice for m any malicious data miners.
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3.3 Designing Principles and Policies For PPDM

In this section, we highlight the privacy guidelines established by the Organization for 

Economic Cooperation and Development (OECD)2, and analyze the implications of those 

guidelines in the context of PPDM.

3.3.1 The OECD Privacy Guidelines

World-wide, privacy legislation, policies, guidelines, and codes of conduct have been derived 

from the set of principles established in 1980 by the  OECD. They represent the prim ary 

components for the  protection of privacy and personal data, comprising a commonly under­

stood reference point. A number of countries have adopted these principles as s ta tu to ry  law, 

in whole or in part. The OECD Privacy Guidelines outline the following basic principles:

1. C o lle c tio n  L im ita t io n  P rin c ip le : There should be limits to the collection of personal

d a ta  and any such data should be obtained by lawful and fair means and, where 

appropriate, with the knowledge or consent of the d ata  subject (consumer).

2. D a ta  Q u a lity  P r in c ip le :  Personal data  should be relevant to the purposes for which

they are to be used, and, to the extent necessary for those purposes, should be accurate, 

complete and up-to-date.

3. P u rp o s e  S p e c if ic a tio n  P rin c ip le : The purposes for which personal data are collected

should be specified not later than a t the tim e of da ta  collection and the subsequent 

use limited to the fulfillment of those purposes or such others as are not incompatible 

w ith those purposes and as are specified on each occasion of change of purpose.

4. U se  L im ita t io n  P rin c ip le : Personal d a ta  should not be disclosed, made available or

otherwise used for purposes other than  those specified in accordance with [the Purpose 

Specification Principle] except: (a) with the consent of the data subject; or (b) by the 

authority  of law.

5. S e c u rity  S a fe g u a rd s  P rin c ip le : Personal d a ta  should be protected by reasonable se­

curity safeguards against such risks as loss or unauthorized access, destruction, use, 

modification, or disclosure of data.

6. O p e n n e ss  P r in c ip le :  There should be a general policy of openness about develop­

ments, practices, and policies with respect to  personal data. Means should be readily 

available for establishing the existence and nature  of personal data, and the main 

purposes of their use, as well as the identity and usual residence of the data  controller 

(e.g., a public or a private organization).

-Privacy Online: O EC D  Guidance on Policy and Practice: h ttp ://w w w .oecd .org /d ataoecd /33 /43 /2096272 .p d f
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7. In d iv id u a l  P a r t ic ip a t io n  P rin c ip le : An individual should have the right: a) to ob­

tain from a data controller, or otherwise, confirmation of whether or not the data 

controller has data relating to him; b) to have communicated to him, d a ta  relating to 

him within a reasonable time; a t a charge, if any, tha t is not excessive; in a reasonable 

manner; and in a form th a t is readily intelligible to him; c) to be given reasons if a 

request made under subparagraphs (a) and (b) is denied, and to be able to challenge 

such denial; and d) to challenge da ta  relating to  him and, if the challenge is successful 

to  have the d ata  erased, rectified, completed, or amended.

8. A c c o u n ta b ili ty  P r in c ip le : A d ata  controller should be accountable for complying with

measures which give effect to  the principles stated above.

3.3.2 The implications of the OECD Privacy Guidelines in PPD M

We now analyze the implications of the OECD principles in PPDM. Then we suggest which 

principles should be considered absolute principles in PPDM.

1. C o lle c tio n  L im ita tio n  P r in c ip le :  This principle states tha t some very sensitive data

should not be held at all. Collection lim itation is too general in the d a ta  mining context 

incurring in two grave consequences: a) the notion of “very sensitive” is sometimes 

unclear and may differ from country to  country, leading to vague definitions; b) limiting 

th e  collection of data  may make the d ata  useless for knowledge discovery. Thus, this 

principle seems to be unenforceable in PPDM .

2. D a ta  Q u a lity  P r in c ip le : This principle is related to the pre-processing stage in data

mining in which data  cleaning routines are applied to resolve inaccuracy and inconsis­

tencies. Somehow, this principle is relevant in the pre-processing stage of knowledge 

discovery. However, most PPDM  techniques assume that the data  are already in an 

appropriate form to mine.

3. P u r p o s e  S p ec ifica tio n  P r in c ip le :  This principle is the fundamental basis of privacy.

Individuals should be informed of the purposes for which the information collected 

about them  will be used, and the information must be used solely for th a t purpose. 

In o ther words, restraint should be exercised when personal data  are collected. This 

principle is extremely relevant in PPDM .

4. U se  L im ita t io n  P rin c ip le : This principle is closely related to the purpose specifica­

tion principle. Use limitation is perhaps the most difficult principle to address in 

PPD M . This principle states th a t the purpose specified to the d a ta  subject (con­

sumer) a t the time of the collection restricts the use of the information collected, 

unless the d ata  subject has provided consent for additional uses. This principle is also 

fundam ental in PPDM.
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5. S e c u rity  S a feg u a rd s  P r in c ip le :  This principle is basically irrelevant in the case of

data  privacy, but relevant for database security. Security safeguards principle is typ­

ically concerned with keeping sensitive information (e.g., personal data) out of the 

hands of unauthorized users, which ensures th a t the data  is not modified by users 

who do not have permission to  do so. This principle is unenforceable in the context 

of PPDM .

6. O p e n n e ss  P r in c ip le : This principle, also called transparency, states th a t people have

the right to know what d a ta  about them have been collected, who has access to the 

data, and how the d a ta  are being used. In other words, people must be aware of 

the conditions under which their information is being kept and used. However, data  

mining is not an open and transparent activity requiring analysts to inform individuals 

about particular derived knowledge, which may inhibit the use of data. This principle 

is equally im portant in PPDM .

7. In d iv id u a l  P a r t ic ip a t io n  P r in c ip le : This principle suggests th a t d a ta  subjects should

be able to challenge the existence of information gained through d ata  mining appli­

cations. Since knowledge discovery is not openly apparent to d a ta  subjects, the data  

subjects are not aware of knowledge discoveries related to them. While debatably col­

lected individual information could belong to individuals, one can argue th a t collective 

information mined from databases belongs to organizations th a t hold such databases. 

In this case, the implications of this principle for PPDM  should be carefully weighed; 

otherwise, it could be too rigid in PPD M  applications.

8. A c c o u n ta b ili ty  P r in c ip le :  This principle states th a t da ta  controllers should inform

d ata  subjects of the use and findings from knowledge discovery. In addition, data  

controllers should inform individuals about the policies regarding knowledge discov­

ery activities, including the consequences of inappropriate use. Some countries (e.g., 

the UK, Japan, Canada) th a t have adopted the OECD privacy principles do not con­

sider this principle since it is not limited in scope, area, or application. Thus, the 

accountability principle is too general for PPDM .

O ur analysis above suggests th a t the OECD privacy principles can be categorized into 

three groups according to their influence on the context of PPDM: Group 1 is composed of 

those principles th a t should be considered as absolute principles in PPD M , such as Purpose 

Specification, Use Limitation, and Openness. Group 2 consists of some principles tha t 

somehow impact PPDM  applications, and their full implications should be understood and 

carefully weighed depending on the context. The principles th a t fall into this category are 

D ata Quality and Individual Participation. Group 3 encompasses some principles th a t are 

too general or unenforceable in PPDM . This group includes Collection Limitation, Security
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Safeguards, and Accountability. Clearly, the  principles categorized in groups 1 and 2 are 

relevant in the context of PPD M  and are fundamental for further research, development, 

and deployment of PPD M  techniques.

3.3.3 Adopting P P D M  Policies from the OECD Privacy Guidelines

One fundamental point to  be considered when designing some privacy policies is th a t too 

many restrictions could seriously hinder the normal functioning of business and governmen­

tal organizations. The worst th ing  is th a t restrictions, if not carefully weighed, could make 

PPD M  results useless.

Given these facts, we suggest some policies for PPDM based on the OECD privacy 

principles. We try  to  find a  good compromise between privacy requirements and knowledge 

discovery. We describe the policies as follows:

1. A w a re n e ss  P o licy : W hen a data  controller collects personally identifiable information,

the data  controller shall express why the da ta  are collected and whether such data  

will be used for knowledge discovery.

2. L im it  R e te n t io n  P o licy : A da ta  controller shall take all reasonable steps to  keep only

personal information collected th a t is accurate, complete, and up to  date. In the case 

of personal information th a t is no longer useful, it shall be removed and not subjected 

to  analysis to  avoid unnecessary risks, such as wrong decision making th a t may incur 

liability.

3. F o r th c o m in g  P o licy : Policies regarding collecting, processing, and analyzing th a t pro­

duce new knowledge about individuals shall be communicated to  those about whom 

the  knowledge discovered pertains, in particular when the discovered knowledge is to 

be disclosed or shared.

4 . D isc lo su re  P o lic y  : D ata  controllers shall only disclose discovered knowledge about an

individual for purposes for which the individual consents and the knowledge discovered 

about individuals shall never be disclosed inadvertently or w ithout consent.

3.4 Requirements for Technical Solutions

3.4.1 Requirements for the development of technical solutions

Ideally, a technical solution for a  PPD M  scenario would enable us to enforce privacy safe­

guards and to  control the sharing and use of personal data. However, such a solution raises 

some crucial questions:

•  W hat levels of effectiveness are in fact technologically possible and w hat corresponding 

regulatory measures are needed to achieve these levels?
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• W hat degrees of privacy and anonymity must be sacrificed to achieve valid da ta  mining 

results?

These questions cannot have “yes-110” answers, but involve a range of technological 

possibilities and social choices. The worst response to such questions is to ignore them  

completely and not pursue the means by which we can eventually provide informed answers.

Technology alone cannot address all of the concerns surrounding PPDM  scenarios [7]. 

The above questions can be to some extent addressed if we provide some key requirements 

to guide the development of technical solutions.

The following key words are used to  specify the extent to which an item is a requirement 

for the development of technical solutions to  address PPDM:

• M u s t: this word means th a t the item is an absolute requirement;

•  S h ou ld : this word means th a t there may exist valid reasons not to  trea t this item as 

a requirement, but the full implications should be understood and the case carefully 

weighed before discarding this item.

In d e p e n d e n c e : A promising solution for the problem of PPDM , for any specific d a ta  

mining task (e.g., association rules, clustering, classification), should be independent 

of the mining task  algorithm.

A ccu racy : When it is possible, an  effective solution should do better than  a trade-off 

between privacy and accuracy on the disclosure of data mining results. Sometimes a 

trade-off must be found as in scenario 2 in Section 3.2.3.

P r iv a c y  Level: This is also a fundamental requirement in PPDM . A technical solution 

m ust ensure th a t the mining process does not violate privacy up to  a certain degree 

of security.

A t t r ib u te  H e te ro g e n e ity : A technical solution for PPDM should handle heterogeneous 

attributes (e.g., categorical and numerical).

V e rsa tility : A versatile solution to address the problem of PPD M  should be applicable to 

different kinds of information repository, i.e., the data could be centralized, or even 

distributed horizontally or vertically.

C o m m u n ic a tio n  C o st: W hen addressing data  distributed across many sites, a technical 

solution should consider carefully issues of communication cost.

3.4.2 Requirements to guide the deployment of technical solutions

Information technology vendors in the near future will offer a  variety of products which 

claim to help protect privacy in d ata  mining. How can we evaluate and decide whether
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w hat is being offered is useful? The nonexistence of proper instrum ents to  evaluate the 

usefulness and feasibility of a solution to address a PPDM  scenario challenge us to identify 

the following requirements:

P r iv a c y  Id en tifica tio n : We should identify what information is private. Is the technical 

solution aiming at protecting individual privacy or collective privacy?

P r iv a c y  S ta n d a rd s : Does the technical solution comply with international instruments 

th a t state and enforce rules (e.g., principles and /o r policies) for use of autom ated 

processing of private information?

P r iv a c y  S afeguards: Is it possible to record what has been done w ith private information 

and be transparent with individuals about whom the private information pertains?

D isc lo su re  L im ita tio n : Are there metrics to measure how much private information is 

disclosed? Since privacy has many meanings depending on the context, we may require 

a set of metrics to  do so. W hat is most im portant is th a t we need to measure not only 

how much private information is disclosed, but also measure the impact of a technical 

solution on the data  and on valid mining results.

U p d a te  M a tc h : When a new technical solution is launched, two aspects should be consid­

ered: a) the solution should comply with existing privacy principles and policies; b) in 

case of modifications to privacy principles and /o r policies th a t guide the development 

of technical solutions, any release should consider these new modifications.

3.5 Summary

In th is chapter, we have laid down some concepts toward foundations of PPDM . Although 

our work described here is preliminary and conceptual in nature, we argue th a t it is a  vital 

prerequisite for standardization in PPDM . The absence of consensus on defining privacy 

preservation, policies and requirements for the development of new PPDM  techniques is 

leading to  confusion among developers, practitioners, and others interested in this technol­

ogy.

Our primary goal here is to conceive a  common framework for PPDM . Such a framework 

is composed of definitions, principles, policies, and requirements. The advantages of a 

framework of this nature are: (a) it will avoid confusing developers, practitioners, and many 

others interested in PPDM; (b) it will inhibit inconsistent efforts in different ways, and will 

enable vendors and developers to  make solid advances in the future in the PPDM  area.

Our contributions, in this chapter, can be summarized as follows: (1) we discussed 

the problems in defining privacy and how privacy can be violated in d ata  mining. Then, 

we described the historical roots and the basis of PPDM  including the PPDM  landmarks,
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the definition of privacy preservation in data mining, and some models of data miners in 

PPDM; (2) we analyzed the implications of the Organization for Economic Cooperation 

and Development (OECD) data privacy principles in knowledge discovery. We showed that 

some PPDM principles can be inherited from the OECD privacy guidelines; (3) we suggested 

some policies for PPDM based on the OECD privacy guidelines; and (4) we suggested some 

requirements for the development and for guiding the deployment of technical solutions. 

These requirements are related to industrial initiatives.
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Chapter 4

Privacy-Preserving D ata  
M ining: A  Literature Review

Revolution is not a onetime event.

-  Audre Lorde

Ideas are the factors that lift civilization. They create revolutions.

There is more dynamite in an idea than in m any bombs.

-  Bishop Vincent

Issues concerning privacy preservation in da ta  mining have emerged globally. A num ber of 

successful techniques have been proposed to obtain valid d a ta  mining results while m ain­

taining privacy safeguards. In this chapter, we review the existing PPDM  techniques in 

the literature. We classify these techniques into four m ajor categories: data partitioning, 

data  modification, d a ta  restriction, and data  ownership, as can be seen in Figure 4.1. D ata  

partitioning techniques are designed to  address some scenarios in which the data  available 

for mining are partitioned across multiple sites (parties). Instead of sharing the original 

d a ta  among the  parties, only the data  mining results are known to every party. We re­

view these techniques in Section 4.1. When the source d a ta  are to be shared or exchanged, 

da ta  modification and da ta  restriction techniques are needed. D ata modification techniques 

convert an original database into a new one th a t is subjected to mining. We review such 

techniques in Section 4.2. The data  restriction-based techniques are reviewed in Section 4.3. 

To preserve private information in a  released database, these techniques suppress some in­

formation from the da ta  before mining occurs. The fourth category of PPDM  techniques is 

called D ata Ownership. These techniques aim at protecting the ownership of da ta  by people 

about whom the d a ta  were collected. When sharing confidential data, these techniques can 

also be used to  ensure th a t no one can read confidential d a ta  except the receiver(s) th a t are 

authorized to  do so. We review such techniques in Section 4.4.
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■ 0  C ryp tography-B ased  Techniques 
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R otation-B ased  Transform ation

Figure 4.1: A taxonomy of PPDM techniques

4.1 Data Partitioning Techniques

Data partitioning techniques have been applied to some scenarios in which the databases 

available for mining are distributed across a number of sites, with each site willing to share 

only data mining results, not the source data. In these cases, the data are distributed either 

horizontally or vertically [30], In a horizontal partition, different entities are described 

with the same schema in all partitions, while in a vertical partition the attributes of the 

same entities are split across the partitions. The existing solutions can be classified into 

Cryptography-Based, Techniques and Generative-Based Techniques.

4.1.1 Cryptography-Based Techniques

In the context of PPDM over distributed data, cryptography-based techniques have been 

developed to solve problems of the following nature: two or more parties want to conduct 

a computation based on their private inputs. The issue here is how to conduct such a 

computation so that no party knows anything except its own input and the results. This 

problem is referred to as the secure multi-party computation problem [G2, 40, 114].

Generally speaking, secure multi-party computation is the branch of cryptography that 

deals with the realization of distributed tasks in a secure manner; in this case, the definition 

of security can have different flavours, such as preserving the privacy of the data or protecting 

the computation against malicious attacks [63]. Typically, secure multi-party computation 

consists of computing some function f ( x , y), where input x  is in the hands of one participant 

and input y is in the hands of the other. For the computation to be secure, no more 

information is revealed to a participant than can be inferred from that participant's input 

and the output of the function itself (the final results).
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The idea behind secure multi-party com putation was introduced in [150]. The paper 

introduces a technique that enables the im plem entation of any probabilistic computation 

between two participants in a secure manner. Later on, this technique was generalized 

to the setting of multiple participants [15, 24]. However, the concept of PPDM  by using 

secure m ulti-party computation was introduced in [92], In this model, two parties owning 

confidential databases (e.g. confidential patient records) wish to run a data mining algorithm 

on the union of their databases w ithout revealing any unnecessary information. In particular, 

this paper focuses on the problem of decision tree learning and uses ID3 [116], a popular 

and widely used algorithm for this problem. T he training set is distributed between two 

parties. This approach treats PPDM  as a  special case of secure multi-party computation, 

and not only aims a t preserving individual privacy but also tries to preserve leakage of 

any information other than the final result. The solution is efficient for da ta  partition 

applications and demands slow overhead of communication and reasonable bandwidth.

The solutions presented in [80, 139] aim a t mining globally valid results from distributed 

d ata  w ithout revealing information th a t compromises the privacy of the individual sources. 

In particular, the work in [80] addresses secure mining of association rules over horizontally 

partitioned data. This approach considers the discovery of associations in transactions th a t 

are split across sites, without revealing the contents of individual transactions. In this model, 

the d a ta  available in all parties have the same schema, and it is assumed that three or more 

parties are involved to  minimize the leakage of information. The solution is based on secure 

m ulti-party com putation to minimize the inform ation shared, while adding overhead to the 

mining task. On the other hand, the work in [139], addresses the problem of association rule 

mining in which transactions are distributed across sources. Each site holds some attribu tes 

of each transaction, and the sites wish to  collaborate to identify globally valid association 

rules. In this model, two parties are involved, one party being designated as the primary, 

which is the initiator of the protocol. The other party  is the responder. There is a join key 

present in both databases. The goal is to find association rules involving a ttribu tes other 

than  the join key.

In the context of privacy-preserving da ta  clustering, the first solution using secure multi­

party  com putation was introduced in [140]. Specifically, a method for k-means clustering 

was proposed when different sites contain different attributes for a common set of entities. 

Each site has information for all the entities for a  specific subset of attributes. In this 

model, it is assumed that the existence of an  entity  in a particular site’s database may be 

revealed (e.g., because of join operations w ith o ther parties). However, the values associated 

with an entity are private. In this solution, each site learns the cluster of each entity, but 

learns nothing about the attributes of an entity a t other sites. This work ensures reasonable 

privacy while limiting communication cost.
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Regarding privacy preservation in classification, one solution was proposed in [82] based 

on a Na'ive Bayes classifier. Naive Bayes is based on a Bayesian formulation of the clas­

sification problem which uses the simplifying assumption of a ttr ib u te  independence. This 

approach assumes th a t the d ata  available for mining are horizontally partitioned, i.e., all 

parties involved collect the same set of information about different entities. Parties want to 

improve classification accuracy as much as possible by leveraging other parties’ data. They 

do not want to reveal their own instances or the instance to  be classified. Thus, the parties 

decide on a model. The m odel’s param eters are generated jointly from the local data. Clas­

sification is performed individually without involving the o ther parties. Thus, the parties 

decide on sharing the model, but not the training set nor the instance to be classified.

More recently, a new approach was introduced in [21] to address privacy preservation in 

classification. An algorithm  is proposed to protect d a ta  before a d a ta  mining process takes 

place. The algorithm encrypts not only the a ttribu te  values but also the a ttribu te  labels. 

The algorithm is reversible, thus allowing the results of the models to  be translated back to 

the readable form, but only by the database owner. Although the  d a ta  are encrypted before 

the data  mining process, the da ta  remain unchanged (not-distorted), and the statistics inside 

the data remain the same. In this way, the modeling algorithm  performs equally well on 

the protected as on the non-protected data. This approach is especially useful when the 

knowledge discovery process is outsourced.

It should be pointed out th a t although universal and general, secure m ulti-party com­

putation can be very inefficient and heavy in terms of communication complexity when the 

inputs are large and when the function to compute is relatively complicated to describe 

[94, 128],

4.1.2 Generative-Based Techniques

Generative-based techniques are designed to perform distributed mining tasks. In this ap­

proach, each party shares ju s t a  small portion of its local model th a t is used to construct 

the global model. The existing solutions are built over horizontally partitioned data.

The solution presented in [141] addresses privacy-preserving frequent itemsets in dis­

tributed databases. Each site Si (3 <  i <  n) sends its frequent itemsets to a combiner 

th a t finds the globally frequent itemsets based on the local models. Each site uses another 

representation of the item sets (ABC becomes, for instance, 0-14-28) in a way such that 

the combiner is not able to  identify the itemsets. It is assumed th a t all sites use the same 

codification. After combining the locally frequent itemsets, the combiner sends the upper 

bound for the globally frequent itemsets to all sites, and each site is able to restore the orig­

inal itemsets’ codification. A t this point, each site knows only the information concerning 

its frequent itemsets and the upper bound of the globally frequent itemsets. Site S\ then
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generates a random number for each of its itemsets. This number is then added to the 

support count of each itemset, and the perturbed support counts are sent to  site 52. The 

algorithm  continues in the same way as before up to  the last iteration. After receiving the 

values of the total local counts, site S n requests from site 5 1 the values of random  numbers 

and their respective itemsets. Site 5„ simply decrements each global support count by the 

respective number and checks which itemsets are locally frequent. It is shown tha t the 

global model generated is accurate and the communication cost requires only one round of 

message passing around the sites and one reduction operation to  aggregate the final results.

The solution in [95] addresses privacy-preserving distributed clustering using generative 

models. This solution relies on Expectation Maximization (EM) based algorithms. These 

algorithm s are guaranteed to  asymptotically converge to  a global model th a t is locally op­

tim al as the sample size used to  obtain the global model goes to infinity. The intuition 

behind this approach is th a t, rather than  sharing parts of the original d a ta  or perturbed 

data , the param eters of suitable generative models are built a t each local site. Such pa­

ram eters are then transm itted to  a central location. The best representative of all da ta  is a 

certain “mean” model. It was empirically shown th a t such a model can be approxim ated by 

generating artificial samples from the underlying distributions using M arkov Chain Monte 

Carlo techniques. This approach achieves high quality distributed clustering w ith accept­

able privacy loss and low communication cost. This framework also encompasses a measure 

for quantifying privacy based on ideas from information theory.

4.2 Data Modification Techniques

These techniques modify the original values of a database th a t needs to  be shared, and 

in doing so, privacy preservation is ensured. The transformed database is made available 

for mining and must meet privacy requirements w ithout losing the benefit of mining. In 

general, da ta  modification techniques aim a t finding an appropriate balance between privacy 

preservation and knowledge disclosure. M ethods for da ta  modification include noise addition 

techniques and space transformation techniques.

4.2.1 Noise Addition Techniques

In statistical databases, noise addition techniques are used to protect individuals’ privacy, 

but a t the expense of allowing partial disclosure, providing information with less s ta tisti­

cal quality, and introducing biases into query responses [137], In d a ta  mining, the m ajor 

requirement of a security control mechanism (in addition to protect the  privacy) is not to  

ensure precise and bias-free statistics but ra ther to preserve the high-level descriptions of 

knowledge discovered from large databases [18, 45]. Thus, the idea behind noise addition 

techniques for PPDM  is th a t some noise (e.g., information not present in a particular tuple
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or transaction) is added to the original data to prevent the identification of confidential 

information relating to a particular individual. In other cases, noise is added to confiden­

tial a ttribu tes by randomly shuffling the attribu te  values to prevent the discovery of some 

patterns th a t are not supposed to be discovered. We categorize noise addition techniques 

into three groups: (1) data  swapping techniques; (2) da ta  perturbation  techniques; and (3) 

data  random ization techniques.

Data swapping techniques replace the original database with a  new one th a t has the same 

probability distribution. Such techniques are suitable for privacy protection in knowledge 

discovery. The idea behind data  swapping is tha t it interchanges the values in the records 

of the database in such a way tha t statistics about groups (e.g., frequencies, averages, etc) 

are preserved.

The m ethod proposed in [45] was designed for privacy preservation in classification. In 

this approach, a new training set, which is released to miners, is a  perturbed version of the 

original training set. A data  owner first builds a local decision tree over true data and then 

swaps values am ongst records in a leaf node of the tree to  generate randomized training data. 

The swapping is performed over the confidential a ttrib u te  (class label) rather than other 

attributes in the  dataset. As the class is typically a categorical a ttrib u te  containing just 

two different values, the swapping is performed by changing the class in a small number of 

records. This is achieved by randomly shuffling the values of the class in the heterogeneous 

leaves. It has also been shown that is possible to balance statistical precision against the 

security level by choosing to perform the swapping in the internal nodes rather than in the 

leaves of the decision tree, i.e., the closer to the root, the higher the security but the lower 

the precision.

The work presented in [45] was extended in [69, 68]. The proposed m ethod adds noise to 

datasets used for building decision trees. The method was evaluated taking into account the 

noise added to the  class label and the noise added to the other a ttribu tes in a  dataset. The 

authors measured the data  quality by the similarity between the tree produced from the 

original data  and a  tree produced from the perturbed data. It was experimentally shown 

th a t the decision trees built on the perturbed d ata  are very similar to  the decision trees 

built on the original data.

Data perturbation techniques distort the data to protect individuals’ privacy by introduc­

ing an error (noise) to  the original data. The noise is used to  generate the new (distorted) 

database which is subjected to  mining. Miners should be able to  obtain valid results (e.g., 

patterns and trends) from the distorted data. As opposed to  statistical d a ta  analysis, miners 

do not aim a t obtaining a  definite, unbiased statistical test th a t answers w ith a probabilistic 

degree of confidence whether the data fit a preconceived statistical model. D ata mining is 

not about hypothesis testing but about the generation of plausible hypotheses [66, 45].
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The work presented in [9] addresses privacy preservation in classification by using da ta  

perturbation. The proposed solution aims at building a decision-tree classifier from train ing 

da ta  in which the values of individual records have been perturbed by adding random values 

from a probability distribution. The resulting data records look very different from the 

original records, and the distribution of data  values is also very different from the original 

distribution. While it is not possible to accurately estim ate original values in individual 

da ta  records, the  authors proposed a novel reconstruction procedure to  accurately estim ate 

the distribution of original d a ta  values. By using these reconstructed distributions, one is 

able to build classifiers whose accuracy is comparable to the accuracy of classifiers built 

with the original data. The distribution reconstruction process naturally leads to  some loss 

of information, but it can be acceptable in many practical situations.

A new algorithm  for distribution reconstruction was introduced in [4], This algorithm  is 

more effective than  th a t one proposed in [9], in term s of information loss. More specifically, 

the new algorithm is based on Expectation Maximization (EM) algorithms. It converges to  

the maximum likelihood estim ate of the original distribution based on the perturbed data. 

W hen a large am ount of d a ta  is available, the EM algorithm provides robust estim ates of 

the original distribution. It was shown th a t the EM algorithm was in fact identical to  the 

Bayesian reconstruction proposed in [9], except for the approximation partitioning values 

into intervals. Furtherm ore, th e  work in [4] introduces two new metrics, namely privacy loss 

and information loss to capture the amount of da ta  in an individual record leaked to  the  

data  mining algorithm  and the fidelity of the estimate respectively.

As previously mentioned, the distribution reconstruction obtained by using an EM al­

gorithm was greatly improved in [4], However, it it shown in [149] th a t the number of 

computations a t each iteration is proportional to  the size of the dataset and the num ber of 

intervals used in the  estim ate. Thus, two ways to reduce such great amounts of com putation 

were proposed in [149]. In the first approach, the problem is studied from a signal processing 

viewpoint, and algorithms are proposed to reduce the com putation in the original protocol 

of perturbation. In particular, a Fourier series-based method is presented to  com pute, in 

one step, a good initial estim ate of the distribution to  reduce the number of iterations. In 

the second approach, a scheme for data  perturbation is presented by modifying the proto­

col of data perturbation  proposed in [4], Unlike EM algorithms, this scheme estim ates the 

unknown distribution in one step, and it is very simple to implement. This approach also 

achieves significant improvements over the previous ones [9, 4] in terms of the small privacy 

loss and the high fidelity in the estimate of the distribution.

A different line of work is investigated in [83], in which the authors question the utility 

of the random value perturbation techniques in privacy preservation. In particular, this 

paper considers a  class of techniques for PPDM  involving the random perturbation of the
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data  while preserving the underlying probabilistic properties. I t explores the random value 

perturbation-based approach presented in [9], This approach tries to preserve data  privacy 

by adding random  noise, while making sure th a t the random noise still preserves the “signal” 

from the data  so th a t the  patterns can still be accurately estim ated. In [S3] it is shown th a t 

in many cases, the  original da ta  can be closely estim ated from the perturbed da ta  using 

a spectral filter th a t exploits some theoretical properties of random  matrices. The paper 

presents the theoretical foundation and provides experimental results to support this claim.

Data randomization techniques allow one to  discover the general patterns in a database 

with error bound, while protecting individual values. Like da ta  swapping and data  per­

turbation techniques, randomization techniques are designed to  find a good compromise 

between privacy protection and knowledge discovery.

A framework for mining association rules from transactions consisting of categorical 

items was proposed in [50, 48]. In this approach, the d a ta  are randomized to preserve the 

privacy of individual transactions. The idea behind this approach is tha t some items in 

each transaction are replaced by new items not originally present in this transaction. In 

doing so, some tru e  information is taken away and some false information is introduced 

to obtain a reasonable privacy protection. In general, this strategy is feasible to  recover 

association rules th a t are less frequent than  they are originally, and preserve privacy using 

a straightforward uniform randomization. However, this technique introduces some false 

drops and may lead a  d a ta  analyst to  find association rules th a t  are not supposed to  exist.

The approach proposed in [50] is susceptible to privacy breaches. Intuitively, a privacy 

breach with respect to  some property P  occurs when, for some possible outcome of random ­

ization, the posterior probability P  is higher than  a given threshold called the privacy breach 

level. The work presented in [49] introduces new formulations of privacy breaches and a 

methodology for lim iting them . This approach addresses the problem of large transactions 

resulting from random ization from the perspective of reducing storage and communication 

costs. Specifically, a new compression technique for reducing the effective size of the ran­

domized database was introduced.

A new da ta  random ization technique has been applied to  Boolean association rules [120]. 

Again, the idea is to  modify da ta  values such th a t reconstruction of the values for any in­

dividual transaction is difficult, but the rules learned from the distorted data  are still valid. 

One interesting feature of this work is its flexible definition of privacy. For instance, the 

ability to correctly guess a  value of ‘1’ from the distorted da ta  can be considered a greater 

th reat to privacy th an  correctly learning a ‘O’. This scheme is based on probabilistic dis­

tortion of personal da ta , which is composed of a privacy m etric and an analytical formula. 

Although this framework provides a high degree of privacy to  the user and retains a  high 

level of accuracy in the  mining results, mining the distorted database can be, apart from
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being error-prone, significantly more expensive in term s of both time and space as compared 

to mining the original database. In [10], some issues of efficiency in privacy-preserving asso­

ciation rule mining are considered. The goal here is to  determine how to identify param eter 

settings for the perturbation method that, simultaneously ensure acceptable levels of pri­

vacy, accuracy, and efficiency in the mining process. To accomplish this, the authors derive 

a formula for estimating settings of the distortion param eters and present an optimization 

process tha t is applied to the reconstruction process so th a t the runtime efficiency is well 

w ithin an order of magnitude of th a t for undistorted database mining.

Considering tha t randomization is economical and an efficient approach for PPDM , some 

effort has been made to optimize the trade-off between knowledge discovery and the pro­

tection of individuals’ privacy. A general framework was proposed for randomization using 

mixture of models [156]. In this work, the au thors argue tha t the existing theory and 

m ethods for mixture of models can be employed to  facilitate the construction of optimal 

random ization for PPDM. In this framework, the im pact of randomization is quantified by 

performance degradation and mutual inform ation loss, while privacy and privacy loss are 

quantified by interval-based metrics. In the same direction, the work in [153] introduces a 

new random ization scheme for privacy-preserving association rule mining based on singular 

value decomposition. In comparison w ith the previous approaches, this new scheme intro­

duces a two-way communication mechanism between the data miner and d ata  providers 

with little overhead. In particular, the  d a ta  miner sends a perturbation guidance to the 

data  providers. The data  providers then  distort the  d a ta  transactions to be transm itted  to 

the miner. As a result, this scheme is able to  identify association rules more precisely than 

the previous approaches and, a t the same time, reaches a  reasonable level of privacy.

4.2.2 Space Transformation Techniques

Space transform ation techniques are specifically designed to address privacy-preserving clus­

tering. These techniques aim at protecting the underlying data  values subjected to  clus­

tering w ithout jeopardizing the similarity between objects under analysis. Thus, a space 

transform ation technique must not only meet privacy requirements but also guarantee valid 

clustering results.

A hybrid geometric d a ta  transform ation m ethod was proposed in [104] to  meet privacy 

requirements as well as guarantee valid clustering results. This method distorts numerical 

a ttribu tes by translations, scalings, and rotations or even by the combination of these ge­

ometric transformations. The viability of using either a specific or the combination of all 

transform ations (hybrid) for privacy preserving clustering was extensively studied. The key 

finding was th a t by transforming a d a ta  m atrix  by rotations only, one would a tta in  both 

accuracy and a  reasonable level of privacy. In contrast, transformation by translations are
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feasible if one is interested in accuracy since distortion by translations does not provide any 

level of privacy. The experiments also revealed th a t the scaling, hybrid (all transformations), 

and the Additive D ata Perturbation  (ADP) method, the la tte r of which is widely used in 

statistical databases, offer some level of privacy, but they do not preserve the distances be­

tween data points after the transform ation process. Therefore, they are not recommended 

for privacy-preserving clustering because they are non-isometric transformations. As a con­

sequence, they jeopardize the similarity between da ta  points compromising the clustering 

results.

A more accurate investigation on privacy-preserving clustering using geometric transfor­

m ation is presented in [106]. In particular, it is shown th a t distorting a ttribu te  pairs in a 

database by using only rotations is a promising approach. In this work, a spatial data trans­

formation method is introduced for privacy-preserving clustering, called Rotation-Based 

Transformation (RBT). The method is designed to protect the underlying a ttribu te  values 

subjected to  clustering w ithout jeopardizing the similarity between data objects under anal­

ysis. RBT can be seen as a technique th a t is similar to obfuscation since the transform ation 

process makes the original d a ta  difficult to perceive or understand, and preserves all the 

information for clustering analysis.

Two new space transform ation techniques were introduced in [107], called object similarity- 

based representation and dimensionality reduction-based transformation. T he former relies 

on the idea behind the sim ilarity between objects, i.e., a da ta  owner could share some da ta  

for clustering analysis by simply computing the dissimilarity m atrix (m atrix of distances) 

between the objects and then sharing such a m atrix  w ith a third party. Many clustering 

algorithms in the  literature operate on a dissimilarity m atrix [65]. This solution is simple 

to  be implemented but requires a high communication cost since its complexity is of the 

order 0 ( m 2), where m  is the number of objects under analysis. In addition, this solution is 

sometimes restrictive when an adversary has external knowledge of the original data. For 

instance, when two or more parties share data  for clustering, if one party  knows all the 

coordinates of a few points (the a ttrib u te  values of a few objects), the dissimilarity m atrix 

may disclose the original dataset.

The latter solution (dimensionality reduction-based transformation) can be used to ad­

dress privacy-preserving clustering when the a ttribu tes of objects are available either in a 

central repository or split across many sites. We refer to  the former approach as privacy- 

preserving clustering over centralized data, and the la tter as privacy-preserving clustering 

over partitioned data. By reducing the dimensionality of a dataset to a sufficiently small 

value, one can find a trade-off between privacy and accuracy. Once the dimensionality of 

a database is reduced, the released database preserves (or slightly modifies) the distances 

between data  points. In tandem  with the benefit of preserving the similarity between points,
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this solution protects individuals’ privacy since the underlying d a ta  values of the objects 

subjected to clustering are completely different from the original ones.

4.3 Data Restriction Techniques

D ata restriction techniques focus on limiting the access to mining results through either 

the generalization or suppression of information (e.g., items in transactions or attributes 

in relations), or even by blocking the access to some patterns th a t are not supposed to be 

discovered. Such techniques can be divided into two groups: Blocking-based, techniques and 

Sanitization-based techniques.

4.3.1 Blocking-Based Techniques

Blocking-based techniques aim a t hiding some sensitive information when d a ta  are shared 

for mining. The private information includes sensitive association rules and classification 

rules th a t must remain private. Before releasing data for mining, d a ta  owners must consider 

how much information can be inferred or calculated from large databases and must look for 

ways to  minimize the leakage of such information. In general, blocking-based techniques 

are feasible to recover patterns th a t are less frequent than they are originally since sensitive 

information is either suppressed or replaced with unknowns to  preserve privacy.

The work presented in [76, 77] investigates the need for developing secure policies to 

minimize or eliminate the th rea t introduced by classification algorithm s in the context of 

relational databases. I t is shown th a t from unclassified data, one is able to infer confidential 

information th a t is not supposed to be disclosed. Two algorithms are proposed to strate­

gically suppress some items in some attributes of a relational database w ith the purpose 

of limiting the disclosure of confidential information. This work was later extended in [78] 

for privacy-preserving association rule mining. A new methodology was proposed to hide 

knowledge in relational databases and to control the unauthorized disclosure of directed and 

indirected inferences.

Another blocking-based technique was introduced in [126,127] for association rules. A set 

of algorithms was designed to  hide sensitive information (sensitive rules) by replacing certain 

attribu tes of data items with a  m ark “?” (unknown), instead of deleting such items. In doing 

so, this solution obscures sensitive information, representing some sensitive association rules, 

and protects miners from learning “false” rules. This approach imposes some changes to 

the definition of support and confidence of an association rule. In this regard, the minimum 

support and minimum confidence will be altered into a minimum support interval and a 

minimum confidence interval correspondingly. As long as the support an d /o r the confidence 

of a sensitive rule lies below the  middle of these two ranges of values, then it is expected 

th a t the confidentiality of d a ta  is not violated.
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4.3.2 Sanitization-Based Techniques

Unlike blocking-based techniques th a t hide sensitive information by lim iting or replacing 

some items or a ttribu te  values with unknowns, sanitization-based techniques hide sensitive 

information by strategically suppressing some items in transactional databases, or even 

by generalizing information to preserve privacy in classification. These techniques can be 

categorized into two m ajor groups: data-sharing techniques and pattern-sharing techniques. 

In the former, the sanitization process acts on the data to remove or hide the group of 

sensitive association rules th a t contain sensitive knowledge. To do so, a small number of 

transactions th a t contain the sensitive rules have to  be modified by deleting one or more 

items from them  or even adding some noise, i.e., new items not originally present in such 

transactions. In the la tter case, the sanitizing algorithm acts on the rules mined from a 

database, instead of on the d a ta  itself. The algorithm removes all sensitive rules before the 

sharing process.

The idea behind data-sharing techniques was first introduced in [12]. The authors con­

sidered the problem of limiting disclosure of sensitive rules, aiming a t selectively hiding some 

frequent itemsets from large databases with as little impact on other non-sensitive frequent 

itemsets as possible. Specifically, the authors dealt with the problem of modifying a given 

database so th a t the  support of a  given set of sensitive rules, mined from th e  database, de­

creases below the  minimum support value. The authors focused on the theoretical approach 

and showed th a t the optim al sanitization is an NP-hard problem.

In [37], the authors investigated confidentiality issues related to  a broad category of 

association rules and proposed some algorithms to preserve the privacy of such rules above 

a given privacy threshold. A lthough these algorithms ensure privacy preservation, they are 

CPU-intensive since they require multiple scans over a transactional database. In addition, 

such algorithms, in some way, modify true data values and relationships by turning some 

items from 0 to 1 in some transactions.

A unified framework for protecting sensitive association rules was introduced in [102]. 

This framework combines techniques for efficiently hiding sensitive patterns: a transaction 

retrieval engine relying on an inverted file and Boolean queries; a set of algorithm s to 

“sanitize” a database; and a set of metrics to quantify the disclosure of information and 

to evaluate the im pact of the sanitization process on the released database. The sanitizing 

algorithms require two scans regardless of the database’s size and the num ber of sensitive 

patterns th a t m ust be protected. The first scan is required to build an index (an inverted 

file) for speeding up the sanitization process, while the second scan is used to  sanitize the 

original database. This work was extended in [103], in which two new sanitizing algorithms 

were introduced to  balance privacy and knowledge disclosure. One algorithm  hides sensitive 

association rules by removing some items randomly, and the other hides sensitive rules by
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removing some items in a  round robin fashion.

A new, efficient sanitizing algorithm, called the Sliding Window Algorithm (SWA), was 

proposed in [105]. SWA requires only one pass over a transactional database regardless of 

the database’s size and the  number of sensitive association rules th a t must be protected. In 

particular, SWA scans a group of I< transactions, one window a t a time, and then sanitizes 

the set of sensitive rules th a t can be mined from these K  transactions. This algorithm 

improves the balance between protection of sensitive knowledge and pattern  discovery, and 

it is useful for sanitizing large transactional databases. A nother advantage of SWA is the 

fact that it does not introduce false drops (rules that, do not exist in the original database) to 

the data. However, an ex tra  cost is incurred because some rules are removed inadvertently.

Regarding pattern-sharing techniques, the only known approach that falls into this cat­

egory was introduced in [109]. This framework addresses the sharing of association rules 

between two or more parties. In th is problem, one party  may decide to  disclose only p art of 

the knowledge and conceal strategic patterns, which we call sensitive rules. These sensitive 

rules must be protected before sharing since they are param ount for strategic decisions and 

need to remain private. The proposed framework is composed of a sanitizing algorithm 

for protecting sensitive knowledge before sharing association rules, and a set of metrics to 

evaluate attacks against sensitive knowledge and the im pact of the sanitization on the re­

leased association rules (non-sensitive ones). The algorithm blocks some inference channels 

to ensure th a t an adversary cannot reconstruct sensitive rules from the non-sensitive ones. 

It is shown th a t this algorithm  reduces drastically the side effect factor, i.e., the percentage 

of non-sensitive rules accidentally removed during the sanitization process.

In the context of predictive modeling, a framework was proposed in [70] for preserving 

the anonymity of individuals or entities when data  are shared or made public. To do so, 

this solution transform s an original database into a new one by using generalization and 

suppression to  satisfy some privacy constraints. In particular, this work investigates the 

privacy transform ations for building classification and regression models. This work also 

introduces some metrics to  quantify information loss in the transformed database. The 

data transform ation problem is solved by using a genetic algorithm framework to optimize 

the appropriate metric. This work considers the trade-ofT between privacy and information 

loss.

4.4 Data Ownership Techniques

Data ownership techniques can be applied to two different scenarios: (a) to  protect the 

ownership of d a ta  by people about whom the data  were collected; and (b) to identify the 

entity th a t receives confidential d a ta  when such data  are shared or exchanged.

In the context of d a ta  mining, the first effort toward a technical solution guaranteeing
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privacy of d a ta  owners was introduced in [56]. The idea behind this approach is th a t 

a data owner may prevent the data from being used for some purposes and allow them 

to be used for other purposes. To accomplish th a t, this solution is based 011 encoding 

permissions on the use of da ta  as theorems about programs t hat process and mine the data. 

Theorem proving techniques are then used to  guarantee tha t these programs comply with 

the permissions. The proposed technique provides a tool for verifiable implementation of 

the Use Lim itation Principle, one of the m ost known data privacy principles. The authors 

also discuss a mechanism by which this technique could be introduced in industrial practice.

A different approach was introduced in [97] for sharing of confidential data. W hen sharing 

or exchanging confidential data, this approach ensures that no one can read confidential data 

except the receiver(s). It can be used in different scenarios, such as statistical or research 

purposes, d a ta  mining, and on-line business-to-business (B2B) interactions. This framework 

is composed of a  fingerprint, encoder, decoder, and a detection algorithm. The main idea 

behind fingerprinting is tha t when data  are shared, each copy of the data  has a hidden mark 

th a t identifies not only the owner of the d a ta  bu t also the entity tha t receives the particular 

copy. This approach is complementary to  the work proposed in [56].

4.5 Summary

The proliferation of PPDM  techniques is evident. In this chapter, we reviewed the existing 

PPDM  techniques present in the literature. We classified such techniques into four m ajor 

categories: d a ta  partitioning, data modification, da ta  restriction, and da ta  ownership. We 

introduced a taxonom y of PPDM  techniques covering these four m ajor categories.

D ata  partitioning techniques address scenarios in which the data  available for mining are 

partitioned across multiple sites. The existing solutions can be classified into cryptography- 

based and generative-based techniques. Regarding da ta  modification techniques, these tech­

niques convert an original database into a  new one th a t is subjected to  mining. The released 

database balances privacy preservation and knowledge discovery. D ata modification tech­

niques can be classified into two groups: noise addition and space transform ation techniques. 

While noise addition techniques were designed to  address privacy preservation in association 

rule mining and classification, space transform ation techniques are specifically designed for 

privacy preservation in clustering. The th ird  category of PPDM  techniques th a t we intro­

duced in this chapter is called data restriction. This category includes blocking-based and 

sanitization-based techniques. The goal of such techniques is to limit the access to  knowledge 

mined from databases through either the generalization or suppression of information. In 

general, blocking-based techniques hide sensitive information by limiting or replacing some 

items or a ttrib u te  values with unknowns, while sanitization-based techniques hide sensitive 

information by suppressing some items in transactional databases, or even by generalizing
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some information to  preserve privacy in classification. The fourth category of PPDM  tech­

niques is called D ata Ownership. These techniques implement a mechanism enforcing data 

ownership by the individuals to  whom the da ta  belongs. W hen sharing confidential data, 

these techniques can also be used to ensure th a t no one can read confidential d a ta  except 

the receiver(s) th a t are authorized to do so.

Our contributions, in this chapter, include the space transformation techniques which 

were designed to address privacy-preserving clustering, and some of the sanitization-based 

techniques which were designed to  address privacy-preserving association rule mining. These 

techniques are described in more detail in Chapters 5 and 6.
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Chapter 5

M ethods for Privacy-Preserving  
A ssociation Rule M ining

The secret to creativity is knowing how to hide your sources.

-  Albert Einstein

I t is common sense to take a method and try it.

I f  it fails, admit it frankly and try another. B ut above all, try something.

-  Franklin D. Roosevelt

The sharing of association rules is often beneficial in industry, bu t requires privacy safe­

guards. One may decide to disclose only part of the knowledge mined from databases, and 

protect sensitive knowledge represented by sensitive rules. These sensitive rules must re­

main private since they are essential for strategic decisions. Some companies prefer to  share 

their d a ta  for collaboration, while others prefer to  share only the patterns discovered from 

their data. Our algorithm s presented in this chapter take into account these two im portant 

aspects, i.e., the sharing of da ta  and the sharing of patterns. The process of protecting 

sensitive rules in transactional databases is called d a ta  sanitization (see Section 2.3.4 for 

further information).

This chapter is organized as follows: In Section 5.1, we describe some scenarios th a t 

dem onstrate the need for techniques to protect collective privacy (e.g., sensitive knowledge) 

in association rule mining. We introduce our framework for protecting sensitive knowledge 

in transactional databases in Section 5.2. This framework is composed of a retrieval facility 

(e.g., inverted index), a set of algorithms to  “sanitize” a  database, and a set of metrics to 

measure how much private information is disclosed as well as the impact of the sanitizing 

algorithms on valid mining results. In Section 5.3, we introduce our d a ta  sharing-based 

sanitizing algorithms in which the sanitization process acts on the data to remove or hide 

the group of sensitive association rules. After sanitizing a database, the released database 

is shared for association rule mining. A different approach to hide sensitive knowledge is
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introduced in Section 5.4, called pattern  sharing-based. In this approach, the sanitizing 

algorithm acts on the rules mined from a database instead of the data  itself. Rather than 

sharing the data, data owners may prefer to mine their own data and share some discovered 

patterns. In this case, the sanitization removes not only all sensitive patterns but also blocks 

other patterns that could be used to infer the sensitive hidden ones.

5.1 Motivation for Privacy-Preserving Association Rule 
Mining

Today, collaboration has become prevalent in the competitive commercial world since it 

brings m utual benefits [118]. Such collaboration may occur between com petitors or compa­

nies th a t have conflicts of interest. However, collaborators are aware th a t they are provided 

with an advantage over other competitors.

Association rule mining creates assets tha t collaborating companies can leverage to ex­

pand their businesses, improve profitability, reduce costs, and support m arketing more ef­

fectively. In tandem with these benefits, association rule mining can also, in the absence 

of adequate safeguards, open new th rea ts  to  both individual and collective privacy. Let us 

consider some examples in which privacy-preserving association rule mining really matters.

•  Suppose we have a server and many clients, with each client having a  set of sold items 

(e.g., books, movies, etc). The clients want the server to gather statistical information 

about associations among items in order to  provide recommendations to the clients. 

However, the clients do not w ant the  server to be able to  derive some sensitive as­

sociation rules. In this context, the clients represent companies and the server hosts 

a  recommendation system for an  e-commerce application. In the absence of ratings, 

which are used in collaborative filtering for automatic recommendation building, as­

sociation rules can be effectively used to build models for on-line recommendations. 

W hen a  client sends its frequent itemsets to the server, this client sanitizes some 

sensitive itemsets according to  some specific policies. The sensitive itemsets contain 

sensitive knowledge th a t can provide a competitive advantage. The server then gathers 

statistical information from the sanitized itemsets and recovers from them the actual 

associations. Is it possible for these companies to benefit from such collaboration by 

sharing association rules while preserving some sensitive rules?

• Two companies have a very large dataset of records of their custom ers’ buying ac­

tivities. These companies decide to  cooperatively conduct association rule mining on 

their datasets for their m utual benefit since this collaboration brings them  an advan­

tage over other competitors. However, these companies may not want to share some 

strategic patterns hidden within their own data with the other party. They would like
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to transform  their d a ta  in such a way th a t these sensitive associations rules cannot 

be discovered. Is it possible for these companies to benefit from such collaboration by 

sharing their d a ta  while preserving some sensitive association rules?

•  Let us consider the case in which one supplier offers products in reduced prices to 

some consumers and, in turn, this supplier receives permission to  access the database 

of the consumers’ customer purchases. The threat becomes real whenever the supplier 

is allowed to derive sensitive association rules th a t are not even known to the database 

owners (consumers). In this case, the consumers benefit from reduced prices, whereas 

the supplier is provided with enough information to  predict inventory needs and ne­

gotiate other products to obtain a better deal for his consumers. This implies that 

the competitors of th is supplier s ta rt losing business. How can the consumers protect 

some sensitive association rules of customer purchases, while allowing the supplier to 

mine other useful association rules?

To address the above scenarios, we propose a framework to  protect sensitive knowledge 

in transactional databases. This framework is introduced in the next section.

5.2 The Framework for Privacy-Preserving Association 
Rule Mining

In this section, we introduce the framework to address privacy preservation in association 

rule mining. As depicted in Figure 5.1, the framework encompasses an inverted file to 

speed up the sanitization process, a library of sanitizing algorithms used for hiding sensitive 

association rules from the  database, and a set of metrics to  quantify not only how much 

private information is disclosed, but also the impact of the sanitizing algorithms on the 

transformed database and on valid mining results.

Inverted File

Sensitive
Rules

Transaction IDs

A

Transactional
Database

 v _
Sanitizing

Algorithms

A

zrirA
Metrics

Sanitized
Database

A

Figure 5.1: The sketch of the framework for privacy-preserving association rule mining.
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5.2.1 The Inverted File

Sanitizing a transactional database consists of identifying the sensitive transactions and 

adjusting them. To speed up this process, we scan a transactional database only once and, 

at the same time, we build our retrieval facility (inverted file) [14]. The inverted file’s 

vocabulary is composed of all the sensitive rules to be hidden, and for each sensitive rule 

there is a corresponding list of transaction IDs in which the rule is present.

Figure 5.2(b) shows an example of an inverted file corresponding to  the sample trans­

actional database shown in Figure 5.2(a). For this example, we assume th a t the sensitive 

rules are A,B —> D and A,C —> D.

TID Items

T1 A B C D
T2 A B C
T3 A B D
T4 A C D
T5 A B C
T6 B D

Inverted F ile

A, B ->  D — =»■ T l, T3

A, C ->  D ' Tl, T4

S en sitive

R ules

Transaction IDs

(A) (B)

Figure 5.2: (a) A sam ple transactional database. (b) The corresponding inverted file.

Note th a t once the  inverted file is built, a data  owner will sanitize only the sensitive 

transactions whose IDs are stored in the inverted file. Knowing the sensitive transactions 

prevents a d a ta  owner from performing multiple scans in the  transactional database. Con­

sequently, the CPU tim e for the sanitization process is optimized. A part from optimizing 

the CPU time, the inverted file provides other advantages, as follows:

•  The information kept in main memory is greatly reduced since only the sensitive rules 

are stored in memory. The occurrences (transaction IDs) can be stored on disk when 

not fitted in main memory.

•  Our algorithms require a t most two scans regardless of the number of sensitive rules 

to be hidden: one scan to  build the inverted file, and the o ther to sanitize the sensitive 

transactions. The previous methods require as many scans as there are rules to hide.

5.2.2 The Library of Sanitizing Algorithms

In our framework, the  sanitizing algorithms modify some transactions to hide sensitive rules 

based on a disclosure threshold t,b controlled by the database owner. This threshold indirectly 

controls the balance between knowledge disclosure and knowledge protection by controlling 

the proportion of transactions to be sanitized. For instance, if ip — 50% then half of the 

sensitive transactions will be sanitized, when ip =  0% all the sensitive transaction will be
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sanitized, and when =  100% no sensitive transaction will be sanitized. In other words, tjj 

represents the ratio of sensitive transactions th a t should be left untouched. The advantage 

of this threshold is th a t it enables a compromise between hiding association rules while 

missing non-sensitive ones, and finding all non-sensitive association rules but uncovering 

sensitive ones.

As can be seen in Figure 5.1, the sanitizing' algorithms are applied to the original database 

to produce the sanitized one. We classify our algorithms into two major groups: data 

sharing-based algorithms and pattern sharing-based algorithms, as can be seen in Figure 5.3.

Sanitizing Algorithms

Data Sharing-Based Algorithms

Round Robin Algorithm (RRA)

Random Algorithm (RA)

Item Grouping Algorithm (1GA)

Sliding Window Algorithm (SW A)

1 Pattern Sharing-Based Algorithms  Downright Sanitizing Algorithm (D SA )

Figure 5.3: A taxonomy of sanitizing algorithms.

In the former, the sanitization process acts on the d a ta  to remove or hide the group 

of sensitive association rules representing the sensitive knowledge. To accomplish this, a 

small number of transactions th a t participate in the generation of the sensitive rules have 

to be modified by deleting one or more items from them. In doing so, the algorithms hide 

sensitive rules by reducing either their support or confidence below a privacy threshold 

(disclosure threshold). In the latter, the sanitizing algorithm acts on the rules mined from 

a database, instead of the d ata  itself. The algorithm  removes all sensitive rules before the 

sharing process. In Section 5.3, we introduce our data  sharing-based sanitizing algorithms, 

and in Section 5.4 we present our pa tte rn  sharing-based sanitizing algorithms.

5.2.3 The Set of Metrics

In this section, we introduce the set of metrics to  quantify not only how much sensitive 

knowledge has been disclosed, but also to measure the effectiveness of the proposed algo­

rithm s in term s of information loss and in terms of non-sensitive rules removed as a side 

effect of the transform ation process. We classify these metrics into two m ajor groups: Data 

sharing-based metrics and Pattern sharing-based metrics.

a) D a ta  sh a r in g -b a se d  m e tr ic s  are related to  the problems illustrated in Figure 5.4. 

This figure shows the relationship between the set R  of all association rules in the database 

D , the sensitive rules S r , the non-sensitive association rules ~ 5 h , as well as the set R! of
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Hiding Failure —  ArtifactUal Patterns

Figure 5.4: D ata sharing-based sanitization problems.

rules discovered from the sanitized database D '. The circles with the numbers 1, 2, and 3 

are potential problems tha t respectively represent the  sensitive association rules th a t were 

failed to  be hidden, the legitimate rules accidentally missed, and the artificial association 

rules created by the sanitization process.

Problem, 1 occurs when some sensitive association rules are discovered in the sanitized 

database. We call this problem H iding Failure (HF), and it is measured in term s of the 

percentage of sensitive association rules th a t are discovered from D'. Ideally, the hiding 

failure should be 0%. The hiding failure is m easured as follows:

h f = t £ m  (51)
where #  S r (X )  denotes the number of sensitive association rules discovered from the 

database X .

Problem 2 occurs when some legitimate association rules are hidden as a side effect of the 

sanitization process. This happens when some non-sensitive association rules lose support 

in the database due to the sanitization process. We call this problem M isse s  C o s t (M C ), 

and it is measured in terms of the percentage of legitimate association rules th a t are not 

discovered from D '. In the best case, th is should also be 0%. The misses cost is calculated 

as follows:

M C = — —  <5-2>

where #  ~ S r (X )  denotes the number of non-sensitive association rules discovered from the 

database X .

Notice th a t there is a compromise between the misses cost and the hiding failure. The 

more sensitive rules we hide, the more non-sensitive rules we miss. This is basically the

justification for our disclosure threshold ip, which with tuning, allows us to find the balance
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between privacy and disclosure of information whenever the application permits it.

Problem 3 occurs when some artificial association rules are generated from D' as a 

product of the sanitization process. We call this problem A r ti fa c tu a l  P a tte r n s  (A P ),  

and it is measured in terms of the percentage of the discovered association rules tha t are 

artifacts, i.e., rules that are not present in the original database. Artifacts are generated 

when new items are added to  some transactions to  alter (decrease) the confidence of sensitive 

rules. For instance, in a rule X  —> Y ,  if the items are added to the antecedent part X  of 

this rule in transactions th a t support X  and not Y, then the confidence of such a rule is 

decreased. Artifactual patterns are measured as follows:

„„ \Ef \  -  |fl n m  , ,
A P =  > i  <5 3 )

where |Af| denotes the cardinality of X .

We could measure the dissimilarity between the original and sanitized databases by 

computing the difference between their sizes in bytes. However, we believe tha t this dissim­

ilarity should be measured by comparing their contents instead of their sizes. Comparing 

their contents is more intuitive and gauges more accurately the modifications made to the 

transactions in the database.

To measure the dissimilarity between the original and the sanitized datasets, we could 

simply compare the difference in their histograms. In this case, the horizontal axis of a 

histogram contains all items in the dataset, while the vertical axis corresponds to their 

frequencies. The sum of the frequencies of all items gives the total of the histogram. So the 

dissimilarity between D and D ’ is given by:

D if(D , D ') = - 1 -- x £  \ fD(i) -  f D,(i)) (5.4)
Li=i/DW frl

where f x f f )  represents the frequency of the z-th item  in the dataset X, and n  is the number 

of distinct items in the original dataset.

b) P a t t e r n  sh a r in g -b a se d  m e tr ic s :  are related to  the problems illustrated in Figure 5.5. 

Problem 1 conveys the non-sensitive rules (~ S r ) th a t are removed as a side effect of the 

sanitization process (R s e )• We refer to this problem as side effect. It is related to  the misses 

cost problem in d ata  sanitization (D ata sharing-based metrics). Problem 2 occurs when 

using some non-sensitive rules, an adversary may recover some sensitive ones by inference 

channels. We refer to such a problem as recovery factor.

S id e  E ffe c t F a c to r  (S E F )  measures the number of non-sensitive association rules that

are removed as a side effect of the sanitization process. The measure is calculated as follows:

S B F =  (|fl|-|S*l> (5'5)
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Rules to be shared (R’) Problem 1: Side effect (I^E)

Non-Sensitive j Sensitive
Rules ~S R | i  : Rules S R

------------------------- .lA -.r .--

Rules to hide \  Ruies hidden 

Problem 2: Inference

Figure 5.5: P a tte rn  sharing-based sanitization problems.

where R, R!, and S r  represent the set of rules mined from a database, the set of sanitized 

rules, and the set of sensitive rules, respectively, and |S | is the size of the set S.

R eco very  F a c to r  (R F )  expresses the possibility of an adversary recovering a sensitive 

rule based on non-sensitive ones. The recovery factor of one pa tte rn  takes into account the 

existence of its subsets. The rationale behind the idea is th a t all nonem pty subsets of a 

frequent itemset must be frequent. Thus, if we recover all subsets of a sensitive itemset 

(rule), we say th a t the recovery factor for such an itemset is possible, and thus we assign it 

the value 1. However, the recovery factor is never certain, i.e., an adversary may not learn 

an  itemset even with its subsets. On the other hand, when not all subsets of an  itemset are 

present, the recovery of the item set is improbable, thus we assign value 0 to  the recovery 

factor.

In the pattern  sharing-based approach, the set of sanitized rules to  be shared (R 1) is 

defined as R ' =  R  — (S r  +  R s e ), where R  is the set of all rules mined from a database, 

S r  is the set of sensitive rules, and R s e  is the set of rules removed as a side effect of the 

sanitization process.

5.3 Data Sharing-Based Sanitizing Algorithms

In this section, we describe two heuristics to  hide sensitive rules in transactional databases. 

We then introduce our d a ta  sharing-based algorithms tha t rely on these heuristics.

5.3.1 Heuristic 1: Sanitization Based on the Degree of Sensitive 
Transactions

As mentioned in Chapter 4.3.2, the optimal sanitization is an N P-hard problem [12]. To 

alleviate the complexity of the optim al sanitization, we could use some heuristics. An 

heuristic does not guarantee the optimal solution, but usually finds a solution close to  the 

best one in a faster response tim e [34].

Our first heuristic for d a ta  sanitization is based on the fact th a t, in many cases, a
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sensitive transaction (see Section 2.3.3) participates in the generation of one or more sensitive 

association rule to  be hidden. We refer to the number of sensitive rules supported by a 

sensitive transaction  as the degree o f a sensitive transaction, defined as:

D e fin itio n  3 (D e g re e  o f  a  S en sitiv e  T ra n sa c tio n )  Let D be a transactional database 

and S t  a set o f all sensitive transactions in D . The degree of a sensitive transaction t, 

denoted by degree(t), such that t € S t , is defined as the number o f sensitive association 

rules that can be found in  t.

Our sanitizing algorithms (Round Robin, Random, and Item Grouping), presented in 

the next sections, act on the original database taking into account the degree of sensitive 

transactions. For instance, given the number of sensitive transactions to alter, based on 

ip, our algorithm s select for each sensitive rule the sensitive transactions whose degree is 

sorted in descending order. The rationale is th a t by sanitizing the sensitive transactions 

th a t share a  common item with more than one sensitive rule, the hiding strategy of such 

rules is optimized and, consequently, the impact of the sanitization on the discovery of the 

legitimate association rules is minimized.

All our d a ta  sharing-based algorithms, which rely on Heuristic 1, have essentially four 

m ajor steps:

•  Step 1: Scan a  database and identify the sensitive transactions for each sensitive 

association rule. This step is accomplished when the  inverted file is built;

•  Step 2: Based on the  disclosure threshold ip, calculate for each sensitive association rule 

the num ber of sensitive transactions th a t should be sanitized and mark them. Most 

im portantly, the sensitive transactions are selected based on their degree (descending 

order);

•  Step 3: For each sensitive association rule, identify a candidate item th a t should be 

elim inated from the sensitive transactions. This candidate item is called the victim  

item ;

•  Step 4: Scan the  database again, identify the sensitive transactions marked to be 

sanitized and remove the victim items from them.

Most of our sanitizing algorithms mainly differ in step 2 where the sensitive transactions 

to  be sanitized are selected, and in step 3 in the way they identify a victim item to be removed 

from the sensitive transactions for each sensitive rule. Steps 1 and 4 remain essentially the 

same for all approaches. In general, the inputs for these algorithms are a transactional 

database D ,  a set of sensitive association rules S r , and a  disclosure threshold controlled 

by the database owner, while the output is the sanitized database D ' .
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5.3.2 The Round Robin Algorithm

The main idea behind the round robin algorithm, denoted by RRA, is th a t ra ther than 

selecting a unique victim item per given sensitive association rule, we select different victim 

items in turns starting  from the first item, then the second and so on in each sensitive 

transaction. The process sta rts  again at the first item of the sensitive rule as a victim item 

each time the last item is reached. The rationale behind this selection is th a t removing one 

item a t a time from the  sensitive transactions would minimize the number of non-sensitive 

rules removed as the side effect of the sanitization process, since this strategy tries to balance 

the decreasing of the support of the  items in sensitive association rules. The sketch of the 

round robin algorithm is given as follows:

A lg o r ith m  1: Round_Robin_A.lgorithm
i n p u t  : D, S r , ip  

o u t p u t :  D'

1 b e g i n

2

3

4

5

6
7

8 

9

10  

11 

12

13

14

15

16
17

18

19

20 

21 
22

23

24

25

26

27

28

29

30

31

32

33 | e n d

34 e n d

/ /  Step 1: Id e n t ify in g  s e n s i t iv e  tra n sa ctio n s and b u ild in g  index T
foreach transaction t £  D  do

Sort the items in t  is alphabetic order; 
foreach sens it ive  associa tion  rule sr i £  S r  do 

if  i t em s  ( s n )  C t  th en
| T [sri] .tidJ ist <— T[sri].tidJist U T ID .o f( t);  

end  
end  

end
/ /  Step 2: S e le c t in g  th e  number of s e n s it iv e  tr a n sa c tio n s
foreach sensitive association rule sr ; £ S r  do

Sort the vector T [sr i\.tid J is t  in descending order of degree;
N u m b T ra n ssri <— |T[sry]| x (1 — ip);

I I  |T[srj]| i s  the number o f s e n s it iv e  tra n sa ctio n s  fo r  sr* 
end
/ /  Step 3: Id e n t ify in g  v ic tim  item s fo r  each s e n s i t iv e  tr a n sa c tio n
foreach sensitive association rule sri £ S r  do 

for j  = 1 to N u m b T ra n ssri do
C h o sen ltem  <— i te m v such th a t item v £ sri and if there are k items in s i\, 

the ith  item is assigned to  item,, mod k  in round robin fashion 
V ictim s[T[sri, j]] .item J is t <—  Victim s[T[sri, j]] .item Jist U  C hosen ltem ; 

end  
end
/ /  Step 4: D ' <— D
Sort the vector V ic tim s  in ascending order of f/n ;
J 1;
foreach transaction t  £ D  do  

if  t j o  = =  V ictim s[j].tiD  th en  
t *— (f — V ic tim s[ j] .item lis t);

■ j  + 1;
e n d
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In the first step, the algorithm  builds an inverted index (represented by the vector T), 

based on the transactions in D, in one scan. The vocabulary of the inverted index contains 

all the sensitive rules, and for each sensitive rule there is a corresponding list of transaction 

IDs in which the rule is present. Before building the inverted index, the items in each 

transaction are first sorted in alphabetic order. Then for each association rule s?y e  S r , the 

algorithm verifies if such rule is present in the current transaction t. To do so, the algorithm 

performs binary searches, in the worst case on all items of the rule sr,; in the transaction 

t, to  make sure that this rule is present in t. If all the items in sri are found in t, the 

transaction t is sensitive, and this transaction ID is added to the occurrences of sr* (line 7).

In step 2, the algorithm sorts the sensitive transactions associated w ith all the sensitive 

rules in descending order of t / o  (line 13). This is the basis of our Heuristic 1. Then in line 

14, the number of sensitive transactions to be sanitized, in each sensitive rule srj, is selected 

based on the disclosure threshold ip.

In step 3, the structure V ic tim  is composed of two fields: t io  and ite m J is t  the latter 

which corresponds to a list of victim  items th a t are marked to be removed from the corre­

sponding transaction whose ID is t ip -  In line 20, the victim item of the current sensitive 

rule sri is chosen. In line 22, this chosen item is then added to the list of victim items in 

V ictim , which contains the items marked to  be sanitized.

In the last step, first the vector V ic tim  is sorted in ascending order of t / p  (line 26). Then 

the algorithm scans the database again (for the second and last time) in the loop from line 

28 to line 33. If the current transaction  (t j o ) is selected to be sanitized, the victim items 

corresponding to  this transaction t  are removed from it. In our implementation, transactions 

th a t do not need sanitization are directly copied from D  to D 1.

T h e o re m  1 The running time o f the Round Robin algorithm is 0 (n \  x IV x log N ) , in the 

worst case, where n \ is the number o f sensitive rules and N  is the number of transactions 

in the database.

The proof of Theorem 1 is given in Appendix A. 1.1.

5.3.3 The Random Algorithm

The intuition behind the Random Algorithm, denoted by RA, is to select as a victim item, 

for a given sensitive association rule s r ,, one item of such rule randomly. The selected items 

for each rule sr, are removed, one a t a time, from the sensitive transactions associated with 

sr,;. Like the Round Robin algorithm , the rationale behind this selection is th a t removing 

different items from the sensitive transactions would slightly decrease the support of non­

sensitive association rules th a t would be available for being mined in the sanitized database.

The selection of the sensitive transactions to sanitize is simply based on their degree. We 

evaluated the sanitization through the Random  Algorithm by selecting sensitive transactions
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sorted in ascending and descending order. The approach based on descending order, in 

general, yielded the best results. T h is is why we have adopted such an approach for our 

algorithm . T he sketch o f the Random  Algorithm  is given as follows:

A lg o r ith m  2: Random _Algorithm
i n p u t  : D , S r ,  t/j 
o u tp u t :  D'

1 b e g in
2 / /  S t e p  1: I d e n t i f y i n g  s e n s i t i v e  t r a n s a c t i o n s  and  b u i l d i n g  in d e x  T
3 f o r e a c h  transaction t € D  d o
4 Sort the items in t is alphabetic order;
5 fo r e a c h  sensitive association rule sri €  S r  d o
6 i f  items(sri) C t t h e n
7 | T\sri].tid-list *—T[sri].tid.listU TID -of{t)\
8 e n d
9 e n d

1 0  e n d
11 / /  S t e p  2: S e l e c t i n g  t h e  num ber o f  s e n s i t i v e  t r a n s a c t i o n s
12  f o r e a c h  sensitive association rule sri 6  S r  d o
13  Sort the vector T[sri].tidJist in descending order of degree;
14 NumbTranssri <— |T[sr;]| x (1 — r/>);
15 / /  ITfarj]! i s  t h e  num ber o f  s e n s i t i v e  t r a n s a c t i o n s  f o r
i c  e n d
17 / /  S t e p  3: I d e n t i f y i n g  v i c t i m  i t e m s  f o r  e a c h  s e n s i t i v e  t r a n s a c t i o n
i s  f o r e a c h  sensitive association rule sn  6  S r  d o
19  fo r  j  — 1 to NumbTranSsn d o
20  Chosenltem  <— item v such that item v €  sri and if there are k items in sr<,
21  the item assigned to item v is random(k);
22  Victims[T[sri,j]\.itemJist <— Victims[T[sri, j]].iiemJist U Chosenltem ;
23  e n d
24 e n d
25  / /  S t e p  4: D ' *— D
2 6  Sort the vector Victims in ascending order of t/o i
27 j  1;
28  f o r e a c h  transaction t €  D  d o
29 i f  t;o  = =  Victims[j].tio  t h e n
3 0  t *— ( t — Victims[j].itemJist);
31 j j  +  1;
32 e n d
3 3  e n d
3 4  e n d

The four steps o f th is algorithm  correspond to  those  in the Round Robin algorithm . The  

only difference is that the Random  algorithm  selects th e  victim  item  randomly (line 20), 

while the Round Robin algorithm  selects the victim  item  tak ing turns. The com plexities of 

the Round Robin and the Random  algorithm s are the sam e.
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5.3.4 The Item  Grouping Algorithm

The main idea behind the Item  Grouping Algorithm, denoted by IGA, is to group sensi­

tive rules in groups of rules sharing the same itemsets. If two sensitive rules intersect, by 

sanitizing the sensitive transactions containing both sensitive rules, one would take care of 

hiding these two sensitive rules a t once and consequently reduce the impact on the released 

database. However, clustering the sensitive rules based on the intersections between items 

in rules leads to  groups th a t overlap since the intersection of itemsets is not transitive. By 

computing the overlap between clusters and thus isolating the groups, we can use a repre­

sentative of the itemset linking the sensitive rules in the same group as a victim item for all 

rules in the group. By removing the victim item from the sensitive transactions related to 

the rules in the group, all sensitive rules in the group will be hidden in one step. This again 

would minimize the im pact on the database and reduce the potential accidental hiding of 

legitimate rules.

Like Round Robin and Random  algorithms, the Item  Grouping algorithm builds an 

inverted index, based on the transactions in D, in one scan. The vocabulary of the inverted 

index contains all the  sensitive rules, and for each sensitive rule there is a corresponding 

list of transaction IDs in which the rule is present. From lines 7 to 11, the IGA builds the 

inverted index, and in lines 4 and 5, the IGA computes the frequencies of all items in the 

database D. These frequencies (support) are used for computing the victim items in step 3.

Steps 2 and 4 are exactly the  same as those in the Round Robin and Random algorithms. 

The main difference is in step 3, in the way tha t the IGA selects the  victim items.

The goal of step 3 is to  identify a victim item per sensitive rule. The victim item in one 

rule si'i is fixed and m ust be removed from all the  sensitive transactions associated with 

this rule sr^. The selection of the victim item is done by first clustering sensitive rules in a 

set of overlapping groups G P  (step 3.1), such th a t all sensitive rules in the same group G 

share the same items. Then the  groups of sensitive rules are sorted in descending order of 

shared items (step 3.2). The shared items are the class label of the groups. For example, the 

patterns “ABC” and “ABD” would be in the same group labeled either A or B depending 

on support of A and B (step 3.3). However, “ABC” could also be in another group if there 

was one where sensitive rules shared “C.” From line 26 to  32, the IGA identifies such overlap 

between groups and elim inates it by favoring larger groups or groups with a class label with 

lower support in the  database.

Again, the rationale behind the victim selection in IGA is th a t since the victim item now 

represents a set of sensitive rules (from the same group), sanitizing a sensitive transaction 

will allow many sensitive rules to  be taken care of at once per sanitized transaction. This 

strategy greatly reduces the  side effect on the non-sensitive rules mined from the sanitized 

database. The sketch of the  Item  Grouping algorithm is given as follows:
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gorithm  3: Item.Grouping_A]gorithm
i p u t  : D , S r , ip 
u t p u t :  D'

e g i n

/ /  S tep  1: I d e n t i f y in g  s e n s i t iv e  t r a n s a c t io n s  and b u i ld in g  index  T
fo reach  transaction t £ D  d o  

fo r k =  1 to s i z e ( t ) do
Sup(item,k, D) <— Sup(iten ik , D) +  1; / /U pdate support of each iterrik in /•; 

Sort the items in t in alphabetic order; 
f o r e a c h  sensitive association rule sri € S r  d o  

i f  items(sr{) Q t t h e n

| T[sri].tidJist <— T [sri] .tidJ ist U T ID -o f(t);  
e n d  

e n d  

e n d
/ /  Step 2: S e le c t in g  th e  number of s e n s it iv e  tr a n sa c tio n s
f o r e a c h  sensitive association rule sr i  £  S r  d o

Sort the vector T [sn ] .tid J is t  in descending order of degree;
NumbTranSsr, |r[sr-i]| x (1 -  VO;
/ /  |T[srj]| i s  th e  number o f s e n s it iv e  tr a n sa c tio n s  fo r  s?', 

end
/ /  Step 3: Id e n tify in g  v ic tim  item s for each s e n s i t iv e  tra n sa c tio n
3.1 Group sensitive rules in a  set of groups G P  such th a t V G £ G P,

V s n ,s r j  £ G, sri and srj share the same itemset I .  Give the class label 
a  to G such th a t a  £ I  and V/? £ I , sup(a, D) < sup(/?, D);

3.2 Order the groups in G P  by size in terms of number of sensitive rules 
in the group;

/ /  Compare groups p a irw ise  G,; and Gj s ta r t in g  w ith  th e  la r g e s t
3.3 f o r a l l  sr^ £  Gi D Gj d o

i f  size(Gi) ^  size(G j) t h e n  

| remove sr^ from smallest(Gj, Gj); 
e l s e

remove srk from group with class label a such th a t sup(a , D) > sup(/3, D) 
and a, j3 are class labels of either Gi or Gj\ 

e n d  

e n d
3.4 f o r e a c h  sensitive association rule sr j £  S r  d o  

f o r  j  = 1 to N u m b T ra n ssr, d o

C hosen ltem  <— a  such th a t a  is the class label of G and sri G G; 
Victims[T[sri, j]] .item J is t  <— Victim s[T[sri, j]] .item J is t  U C hosenltem ;  

e n d

e n d
/ /  S t e p  4 :  D ' <— D
Sort the vector V ic tim s  in ascending order of t id ;
j  1;
fo reach  transaction t £ D  do  

if  tjD  = =  Victim s[j].tiD  th e n  
t <— (t — V ic tim s[j] .item dist);
j * ~ 3  +  i ;

en d
e n d

id
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T h e o re m  2 The running lim e of the Ilem Grouping algorithm is 0 (n \  x N  x log N ), where 

7T-1 is the number o f sensitive rules and N  is the number of transactions in the database.

The proof of Theorem 2 is given in Appendix A. 1.2.

To illustrate how our presented algorithms work, let us consider the sample transactional 

database in Figure 5.2(a). Suppose that we have a set of sensitive association rules S r  =  

{A,B—>D; A,C—>D}. This example yields the following results:

• Step 1: The algorithm s scan the database to identify the sensitive transactions. For 

this example, the  sensitive transactions S t  containing the sensitive association rules 

are {T l, T3, T4}. The degrees of the transactions T l ,  T3 and T4 are 2, 1 and 1 

respectively. In particular, the rule A,B—>D can be mined from the transactions T l 

and T3 and the rule A ,C—>D can be mined from T l  and T4.

• Step 2: Suppose th a t we set the disclosure threshold ip to  50%. Then the algorithms

sort the sensitive transactions in descending order of degree. The algorithms sani­

tize half of the sensitive transactions for each sensitive rule. In this case, only the 

transaction T l  will be sanitized.

•  Step 3: In this step, the victim items are selected. Note th a t the three algorithms

employ different strategies for this selection. The Round Robin algorithm selects

the victim items for each rule taking turns. The item  A is selected for both rules 

minimizing the im pact on the database. The Random  algorithm selects one item for 

each rule randomly. Let us assume th a t the item A was selected for the first rule and 

the item C was selected for the second rule. The Item  Grouping Algorithm clusters 

sensitive rules th a t  share a common item. Both rules share the items A and D. In this 

case, only one item  is selected, say the item D. By removing the item D from T l the 

sensitive rules will be hidden from T l in one step and the disclosure threshold will be 

satisfied.

• Step 4- The algorithm s perform the sanitization taking into account the victim items 

selected in the previous step. The sanitized databases using the algorithms Round 

Robin, Random, and Item  Grouping, respectively, are showed in Figure 5.6.

An im portant observation here is that any association rule th a t contains a sensitive 

association rule is also sensitive. Hence, if A,B-»D is a sensitive association rule, any 

association rule derived from the itemset ABCD will also be sensitive since it contains 

ABD. This is because if ABCD is discovered to be a frequent itemset, it is straightforward 

to conclude th a t ABD is also frequent, which should not be disclosed. In other words, any 

superset containing ABD should not be allowed to be frequent.
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TID Items

Tl B C D
T2 A B C
T3 A B D
T4 A C D
T5 A B C
T6 B D

TID Items

Tl B D
T2 A B C
T3 A B D
T4 A C D
T5 A B C
T6 B D

TID Items

Tl A B C
T2 A B C
T3 A B D
T4 A C D
T5 A B C
T6 B D

(a) (b) (c)

Figure 5.6: The sanitized databases using: (a) the Round Robin algorithm; (b) the Random 
algorithm; (c) the Item  Grouping algorithm.

5.3.5 H euristic 2: Sanitization Based on the Size of Sensitive Trans­
actions

In this section, we introduce the second heuristic to  hide sensitive knowledge in transactional 

databases. The idea behind this heuristic is to sanitize the sensitive transactions w ith the 

shortest sizes. The rationale is tha t by removing items from shortest transactions we would 

minimize the im pact on the sanitized database since the shortest transactions have fewer 

combinations of association rules. As a consequence, we would reduce the side effect of the 

sanitization process on  non-sensitive rules.

Our heuristic approach has essentially four steps as follows:

Step 1: Distinguishing the sensitive transactions from  the non-sensitives ones. For each 

transaction read from a database D, we identify whether this transaction is involved 

in the generation of any sensitive association rule. If not, the transaction is copied 

directly to  the sanitized database D '. Otherwise, this transaction  is sensitive and must 

be sanitized.

Step 2: Selecting the victim  item. In this step, we first com pute the frequencies of all items 

in the sensitive association rules presented in the current sensitive transaction. The 

item w ith the highest frequency is the victim item  since it is shared by a group of 

sensitive rules. If a  sensitive rule shares no item  with the other sensitive ones, the 

frequencies of its items are the same (freq =  1). In this case, the victim item for this 

particular sensitive rule is selected randomly. The rationale behind this selection is 

th a t removing different items from the sensitive transactions would slightly minimize 

the support of th e  legitim ate association rules th a t would be available for being mined 

in the sanitized database D '.

Step 3: Computing the number o f sensitive transactions to be sanitized. Given the disclosure 

threshold, ip, set by the database owner, we compute the number of transactions to  be 

sanitized. Every sensitive rule will have a list of sensitive transaction IDs associated
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with it. In this step, we sort the sensitive transactions computed previously for each 

sensitive rule. The sensitive transactions are sorted in ascending order of size. Thus, 

we s ta rt sanitizing the shortest transactions.

Step 4 •' Sanitizing a sensitive transaction. Given tha t the victim items for all sensitive 

association rules were selected in step 2, they can now be removed from the sensitive 

transactions. Every sensitive rule now has a list of sensitive transaction IDs with their 

respective selected victim item. Every time we remove a victim item from a sensitive 

transaction, we perform a  look ahead procedure to verify whether th a t transaction has 

been selected as a sensitive transaction for other sensitive rules. If so, and the victim 

item we ju st removed from the  current transaction is also part of this other sensitive 

rule, we remove tha t transaction from the list of transaction IDs marked in the other 

rules. In doing so, the transaction will be sanitized and then copied to  the sanitized 

database D ' . This look-ahead procedure is done only when the disclosure threshold is 

0%. This is because the  look-ahead improves the misses cost bu t could significantly 

degrade the hiding failure. W hen ip = 0, there is no hiding failure (i.e., all sensitive 

rules are hidden) and thus there  is no degradation possible but an improvement in the 

misses cost.

To illustrate how our heuristic works, let us consider the sample transactional database 

in Figure 5.2(a). Suppose th a t we have a set of sensitive association rules S r  =  {A,B—>D; 

A ,C—>D} and we set the disclosure threshold ip =  50%. This example yields the following 

results:

Step 1: The sensitive transactions are identified. In this case, the sensitive transactions of 

A,B—>D and A,C—»D are { T l, T3} and {T l, T4} respectively.

Step 2: After identifying the sensitive transactions, we select the victim items. For exam­

ple, the victim item in the transaction T l  could be either A or D since these items 

are shared by the sensitive rules and consequently their frequencies are equal to  2. 

However, the victim item for the sensitive rule A,B—>D in T3 is selected randomly 

because the items A, B, and D have frequencies equal to 1. Let us assume th a t the 

victim item selected is B. Similarly, the victim item for the sensitive rule A,C—>D, in 

transaction T4, is selected randomly, say, the item A.

Step 3: In this step, we compute the number of sensitive transactions to be sanitize, for each 

sensitive rule. This com putation is based on the disclosure threshold ip. We selected 

ip =  50% for both rules. However, we could set a particular disclosure threshold for 

each sensitive rule. We also sorted the sensitive transactions in ascending order of size 

before performing the sanitization in the next step.
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Step Jp. We then sanitize the transactions for each sensitive rule. Half of the transactions for 

each sensitive rule will be intact since the disclosure threshold ip =  50%. We start by 

sanitizing the shortest transactions (sorted in the previous step). Thus, transactions 

T3 and T4 are sanitized. The released database is depicted in Figure 5.7(b). Note that 

the sensitive rules are present in the  sanitized database, but with lower support. This 

is an example of partial sanitization. The database owner could also set the  disclosure 

threshold ip =  0%. In this case, we have a full sanitization since the sensitive rules 

will no longer be discovered. In this example, we assume th a t the victim item in 

transaction T l is D since this item  is shared by both sensitive rules. Figure 5.7(c) 

shows the database after a full sanitization. As we can see, the database owner can 

tune the disclosure threshold to  find a balance between protecting sensitive association 

rules by data  sanitization and providing information for mining.

TID Items

Tl A B C D
T2 A B C
T3 A B D
T4 A C D
T5 A B C
T6 B D

TID Items

Tl A B C D
T2 A B C
T3 A D
T4 C D
T5 A B C
T6 B D

TID Items

Tl A B C
T2 A B C
T3 A D
T4 C D
T5 A B C
T6 B D

(A) (B) (C)

Figure 5.7: (a): A copy of the sample transactional database in Figure 5.2(a); (b): An
example of partial sanitization; (c): An example of full sanitization.

In the next section, we introduce one algorithm based on the Heuristic 2, called the 

Sliding Window Algorithm (SWA). The SWA has an advantage over the previous algorithms 

- it allows a database owner to set a  specific disclosure threshold for each sensitive rule. This 

specific disclosure threshold works as a weight. In many cases, some rules are more important 

than  others. Thus giving different disclosure thresholds to  different rules is reasonable and 

may reflect the need in the real world.

5.3.6 The Sliding Window Algorithm

In this section, we introduce the Sliding W indow Algorithm (SWA) th a t is based on Heuristic

2. The intuition behind this algorithm  is th a t the SWA scans a group of K  transactions 

(window size) a t a  time. SWA then sanitizes the set of sensitive transactions, denoted by S t , 

considering a disclosure threshold ip defined by a database owner. All the steps in Heuristic 

2 are applied to  every group of K  transactions read from the original database D.

Unlike the previous sanitizing algorithm s th a t have a unique disclosure threshold for all 

sensitive rules, the SWA has a disclosure threshold assigned to each sensitive association

74

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



rule. We refer to the set of mappings of a sensitive association rule into its corresponding 

disclosure threshold as the set of mining permissions, denoted by M p, in which each mining 

permission mp  is characterized by an ordered pair, defined as m p  =  <  > , where Vi

si'i £ S r  and tj’i € [0 . . .  1]. The sketch of the Sliding Window algorithm  is given as follows:

A lg o rith m  4: Sliding.Window-Algoritlnn 
in p u t  : D, M p, K  
o u tp u t :  D'

l  b e g in
2 foreach K  transactions in D  do
3 / /  Step 1: Id e n t ify in g  s e n s it iv e  tr a n sa c tio n s  & b u ild in g  index
4 foreach transaction t  £ K  do
5 Sort the items in t in alphabetic order;
6 foreach sensitive association rule sri £  Mp do
7 if  item s (sri) C t th en
8 T[si'i].tidJist *— T[sri].tidJist U T ID .o f{ t) \  / / t  is sensitive
9 T [sri] .s izeJ ist <— T [sri].sizeJ ist U s ize (t);

10 }req[itemj[*— freq[item j\ +  1;

11 v.transac  <— vJtransac U f; //Sensitive transactions in memory
12 end
13 end
14 / /  Step 2: I d e n t ify in g  th e  v ic tim  item s
15 if  t is sensitive th en
16 Sort vector fr e q  in descending order;
17 foreach sensitive association rule sr , £ M p  do
18 Select i te m v such th a t item v £ sr, and V item k  S sri,
19 freq [item v\ > freq[itemk}\
20 if  fre q \ite m v] >  1 th en
21 | T[sri].victim  T[sri\.victim  U item v \
22 else
23 | T[sri].victim  <— T[sri\.victim  U R andom Item {sri)\
24 end
25 end
26 end
27 end
28 end
29 / /  Step 3: S e le c t in g  th e  number of s e n s i t iv e  tr a n sa c tio n s
30 foreach sensitive association rule sri 6 M p  do
31 N u m T ra n ssn  |T[sri]| x (1 -  ^ );
32 Sort the vector T  in ascending order of size;
33 end
34 / /  Step 4: D ' *- D
35 foreach sensitive association rule srj 6 M p  do
38 for 1 to N u m b T ra n ssri do
37 remove(v.transac[T[sri].tid.list[j],T[sri}.victim lj}])',
38 if ipi =  0 th en
39 do look-ahead{sri,T[sri\.tidJist\j}, T[sri].victim[j});
40 end
41 end
42 end
43 end
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The inputs for the Sliding Window algorithm are a transactional database D, a set of 

mining permissions M P, and the  window size K . The ou tp u t is the sanitized database D'.

The SWA has essentially four steps. In the first, the algorithm  scans K  transactions and 

stores some information in the da ta  structure T. This d a ta  s truc tu re  contains: 1) a list of 

sensitive transactions IDs for each sensitive rule; 2) a list w ith  the  size of the corresponding 

sensitive transactions; and 3) another list with the victim  item for each corresponding 

sensitive transaction. A transaction t is sensitive if it contains all items of at least one 

sensitive rule. The SWA also computes the frequencies of th e  items of the sensitive rules 

th a t are present in each sensitive transaction. This com putation will support the selection 

of the victim items in the next step. In line 11, the vector v .tra n sa c  stores the sensitive 

transactions in main memory.

In step 2, the vector with the frequencies, computed in the previous step, is sorted in 

descending order. Subsequently, the  victim item is selected for each sensitive transaction. 

The item with the highest frequency is the victim item and m ust be marked to be removed 

from the transaction. If the frequencies of the items is equal to  1, any item from a sensitive 

association rule can be the victim item. In this case, we select the  victim  item randomly.

In step 3, the number of sensitive transactions for each sensitive rule is selected. Line 

31 shows th a t ipi is used to compute the number N u m T ra n ssri of transactions to  sanitize. 

The SWA then sorts the list of sensitive transactions for each sensitive rule in ascending 

order of size. This sort is the basis of our Heuristic 2.

In the last step, the sensitive transactions are sanitized in the loop from line 35 to 42. 

If the disclosure threshold is 0 (i.e., all sensitive rules need to  be hidden), we do a look 

ahead in the mining permissions (Mp)  to check whether a sensitive transaction need not be 

sanitized more than  once. This is to  improve the misses cost. T he function look.aheadQ  

looks in M p  from s u  onward to determine whether a given transaction  t is selected as a 

sensitive transaction for another sensitive rule r. If this is th e  case and, T[sri].tidJist[j] 

and T[sri].victim[j] are part of the sensitive rule r, the transaction  t is removed from th a t 

list since it has already just been sanitized.

T h e o re m  3 The running time o f the SWA is 0 (n \  x N  x log K )  when ip ^  0 and 0 (n^  x 

N  x K ) when ip =  0, where n \ is the initial number o f sensitive ndes in the database D, K  

is the window size chosen, and N  is the number o f transactions in D .

The proof of Theorem 3 is given in Appendix A .1.3.

5.4 Pattern Sharing-Based Sanitizing Algorithms

The sanitizing algorithms introduced in Section 5.3 are designed to  protect sensitive knowl­

edge before the sharing of d a ta  for association rule mining. The heuristic behind those
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Figure 5.8: (a) A transactional database. (b) The corresponding frequent item set graph.

algorithms relies on transforming a transactional database to be shared in such a way th a t 

the sensitive rules can no longer be discovered or can only be discovered with lower sup­

port and confidence. In this section, we introduce a new heuristic for protecting sensitive 

knowledge. R ather th an  sanitizing a database before the mining phase, the new heuristic 

sanitizes sensitive rules from a set of rules mined from a database, while blocking some 

inference channels. The sanitization applied to  a set of sensitive rules must not leave a trace 

th a t could be exploited by an adversary to  recover sensitive rules from non-sensitive ones.

5.4.1 Heuristic 3: Rule Sanitization W ith Blocked Inference 
Channels

Before introducing our new heuristic, we briefly review some terminology from graph theory.

In particular, we represent the itemsets in a database as a directed graph. We refer to  such 

a graph as a frequent itemset graph and define it as follows:

D e fin itio n  4 (F re q u e n t I te m s e t  G ra p h )  A frequent itemset graph, denoted by G =  (C , E ), 

is a directed graph which consists o f a nonempty set of frequent item.sets C , a set of edges 

E  that are ordered pairings of the elements o f C , such that Vu, v 6  C  there is an edge from  

u to v i f  u  fl v =  u and |u| — |u| =  1, where \x\ is the size of item-set x.

Figure 5.8(b) shows a frequent itemset graph for the  sample transactional database 

depicted in Figure 5.8(a). In this example, the minimum support threshold a  is set to  2.

As can be seen in Figure 5.8(b), in a frequent item set graph G, there is an order for each 

itemset. We refer to such an ordering as the itemset level and define it as follows:

D e fin itio n  5 (T h e  I te m s e t  Level) Let G =  (C, E ) be a frequent itemset graph. The level 

of an itemset u, such that u & C, is the length of the path connecting an 1-itemset to u.

Based on Definition 5, we define the level of a frequent itemset graph G  as follows:

D e fin itio n  6 (F re q u e n t I te m s e t  G ra p h  L evel) Let G = (C, E ) be a frequent itemset 

graph. The level of G is the length of the m aximum path connecting an 1-item.set u to any 

other itemset v, sxtch that u ,v  S C, and u C v.
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In general, the discovery of itemsets in G is the result of top-down traversal of G con­

strained by a minimum support threshold a. The discovery process employs an iterative 

approach in which fc-itemsets are used to  explore (k +  l)-itemsets.

Our heuristic approach for rule sanitization has essentially three steps, as follows. These 

steps are applied after the mining phase, i.e., we assume th a t the frequent itemset graph G 

is built. The set of all itemsets th a t can be mined from G, based on a minimum support 

threshold a, is denoted by C.

S te p l :  Id e n tify in g  th e  se n s itiv e  i te m se ts . For each sensitive rule s r i  6  S r , convert it 

into a sensitive itemset Cj € C.

S te p 2 : S e lec tin g  su b se ts  to  sa n itiz e . In this step, for each itemset c, to be sanitized, 

we compute its item pairs from level 1 in G, subsets of c ,. If none of them is marked, 

we randomly select one of them  and mark it to be removed.

S te p 3 : S a n itiz in g  th e  se t o f  s u p e rs e ts  o f m a rk e d  p a irs  in  level 1. The sanitization 

of sensitive itemsets is simply the removal of the set of supersets of all itemsets in level 

1 of G th a t are marked for removal. This process blocks possibilities of inferring sen­

sitive rules. We refer to  these possibilities as inference channels th a t we describe in 

the next section.

5.4.2 Inference Channels in Pattern Sharing-Based Algorithms

In pa tte rn  sharing-based algorithms, an  inference channel occurs when someone mines a 

sanitized set of rules and, based on non-sensitive rules, deduces one or more sensitive rules 

th a t are not supposed to be discovered. We have identified some inferences against sanitized 

rules, as follows:

F o rw a rd -In fe re n c e  C h an n e l: Let us consider the frequent itemset graph in Figure 5.9(a). 

Suppose we want to sanitize the sensitive rules derived from the itemset ABC. The 

naive approach is simply to remove the itemset ABC. However, if AB, AC, and BC are 

frequent, a miner could deduce th a t ABC is frequent. A database owner m ust assume 

th a t an adversary can use any inference channel to  learn something more th an  ju s t the 

perm itted association rules. We refer to this inference as a forward-inference channel. 

To handle this inference channel, we must also remove at least one subset of ABC 

(randomly) in level 1 of the frequent itemset graph. This complementary sanitization 

is necessary. In the case of a deeper graph, the removal is done recursively up to 

level 1. Thus, the items in level 0 of the frequent itemset graph are not shared with 

a second party. We could also remove subsets of ABC recursively up to level 0. In 

this case, the balance between knowledge protection and knowledge discovery should
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Figure 5.9: (a) An example of forward-inference. (b) An example of backward-inference.

be considered in the released set of rules, since more frequent patterns are lost by the 

sanitization process.

B a c k w a rd - in fe re n c e  C h an n e l: A nother type of inference occurs when we sanitize a non­

term inal itemset. Based on Figure 5.9(b), suppose we want to sanitize any rule derived 

from the  itemset AC. If we simply remove AC, it is straightforward to infer the rules 

mined from AC, since both ABC and ACD are frequent. We refer to  this inference as 

a backward-inference channel. To block this inference channel, we must remove any 

superset th a t contains AC. In this particular case, ABC and ACD must be removed 

as well. This kind of inference clearly shows th a t rule sanitization is not a simple filter 

after the  mining phase to weed out or hide the sensitive rules. Trimming some rules 

out does not ensure full protection. Some inference channels must be blocked as well.

5.4.3 The Downright Sanitizing Algorithm

The idea behind the Downright Sanitizing Algorithm, denoted by DSA, is to sanitize some 

sensitive rules while blocking inference channels as well. To block inference channels, the 

DSA removes a t least one subset of each sensitive itemset in the level 1 of the frequent 

itemset graph. The removal is done recursively up to  level 1. The DSA starts removing 

from level 1 because we assume th a t the  association rules recovered from the sanitized 

itemsets (shared itemsets) have a t least 2 items. A data owner could also set DSA to sta rt 

removing from level 0, but this option would decrease the usability of the shared knowledge 

since more item sets would be removed, increasing the side effect factor and misses cost. 

Thus, the item s in level 0 of the frequent item set graph are not shared at all. In doing so, 

we reduce the inference channels and minimize the side effect on non-sensitive rules mined 

from the sanitized frequent itemset graph.

The inputs for the DSA are the frequent itemset graph G and the set of sensitive rules 

S r  to be sanitized. The output is the sanitized frequent itemset graph G '. The sketch of 

the Downright Sanitizing algorithm is given as follows:
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A lg o rith m  5: Downright-Sanitizing-Algorithm
i n p u t  . G, S r 
o u t p u t :  G'

1 b e g i n

2 / /  Step 1: Id e n t ify in g  the s e n s it iv e  item se ts
3 f o r e a c h  sensitive association rule sri £ S r  d o

4 | a  <— siy, //C o n v ert each sr, into a frequent item set c;
5 e n d

6 / /  Step 2: S e le c t in g  su b se ts  to  s a n it iz e
7 f o r e a c h  c, in the level k o f G, where k > 1 d o

8 Pairs(cj); //C o m p u te  all the item pairs of c;
9 if  (Pairs(ci) fl M a rked P a ir  =  0/ th e n

xo pi <— random (Pairs(cs)); //S e lec t randomly a pair p,- £ a;
11 M a rked P a ir  <— M a rkedP a ir  U pp, / /U p d a te  the  list M arkedP air
12  e n d

13 e n d

14 / /  Step 3: S a n it iz in g  th e  s e t  of su p ersets  of marked p a ir s
15 / /  in  le v e l  1 (R ' <— R )
16 f o r e a c h  itemset Cj £ G d o

17 | Sort the items in cj in alphabetic order;
18 e n d

19 f o r e a c h  item set Cj € G  d o

20  i f  3 a marked pair p, such that p  £ M arkedP a ir and p  C Cj t h e n

21 | Re move (cj) from R'\ / / c j  belongs to  the set of supersets of p:
22 e n d

23 e n d

24  e n d

To illustrate how the DSA works, let us consider the  frequent item set graph depicted in 

Figure 5.8(b). This frequent item set graph corresponds to the sample transactional database 

in Figure 5.8(a), with minimum support threshold cr =  2. Now suppose th a t we are sanitizing 

the sensitive rule A,B—>C before sharing the frequent itemset graph. This example yields 

the following results:

Step 1: Each sensitive rule is converted into its corresponding frequent itemset. In this 

case, the  rule A,B—>C is converted into the item set ABC.

Step 2: In this step, the subsets for each rule are selected. In general, the  subsets are 

selected from the level 1 in the  frequent itemset graph. For th is example, considering 

tha t there is no subset marked, we select one of the subsets of ABC randomly. If 

we had subsets m arked previously, the algorithm would select one already marked 

to optimize the sanitization process. Let us assume th a t we selected the subset AB 

randomly. Then the  subset AB was added to  the list M a rked P a ir , which contains all 

the marked pairs to be sanitized.

Step 3: In this step, the sanitization takes place. The algorithm removes all supersets of 

each pair p € M arkedP a ir. In this case, all the supersets of AB will be removed.
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Figure 5.10: An example of a frequent itemset graphs before and after sanitization.

Figure 5.10 shows the frequent itemset graphs before and after the rule sanitization. 

The sanitized frequent item set graph is shared for association rule mining.

T h e o re m  4 The running time o f the Downright Sanitizing Algorithm is 0 ( n  x (k 2 +  m  x 

log k)),  where n is the number o f sensitive rules to be sanitized, m  is the number o f itemsets 

in a frequent itemsets graph G, and k  the maximum number o f items in a frequent itemset 

in G.

The proof of Theorem 4 is given in Appendix A.2.1.

5.5 Summary

In this chapter, we have introduced three heuristics to  hide sensitive association rules by 

reducing either the support or the confidence of these rules. The protection of sensitive rules 

is achieved by modifying some transactions. In some cases, a  number of items are deleted 

from a group of transactions w ith the purpose of hiding the sensitive rules mined from those 

transactions. To accomplish th a t, we proposed a unified framework for privacy-preserving 

association rule mining, which is the m ajor contribution of this chapter. This framework 

encompasses: a) an inverted index to  speed up the sanitization process; b) a library of 

sanitizing algorithms used for hiding sensitive association rules from the database; and c) 

a  set of metrics to quantify not only how much private information is disclosed, but also 

the impact of the sanitizing algorithm s on the transformed database and on valid mining 

results.

To speed the process of hiding sensitive rules in transactional databases, our framework 

is built on an index. As a result, the  sanitizing algorithms require only two scans to protect 

sensitive rules regardless of the num ber of association rules to  be hidden: one scan to build 

an inverted index, and the other scan to hide the sensitive rules. O ther techniques proposed 

in the literature require multiple scans [12, 37, 126, 142],

The sanitizing algorithms are classified into two m ajor groups: Data-Sharing approach 

and Pattern-Sharing approach. In the former, the sanitization acts on the d ata  to  hide
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the group of sensitive association rules that contain sensitive knowledge. In the latter, the 

sanitizing algorithm acts on the rules mined from a database, instead of the data itself. We 

also introduced a taxonomy covering these two categories of sanitizing algorithms.

The set of metrics was designed to quantify not only how much sensitive knowledge 

has been disclosed, but also to measure the effectiveness of the sanitizing algorithms in 

terms of information loss and in terms of non-sensitive rules removed as a side effect of the 

transform ation process. The proposed metrics are classified into two major groups: Data 

sharing-based, metrics and Pattern sharing-based metrics.

It is im portant to note tha t our sanitization method is robust in the sense that there is 

no de-sanitization possible. The alterations to the original database are not saved anywhere 

since the owner of the database still keeps an original copy of the database intact while 

distributing the sanitized database for mining. Moreover, there is no encryption involved. 

There is no possible way to reproduce the original database from the sanitized one.

In Section 7.2, we will present our results of the perform ance evaluation for our data 

sharing-based algorithms, while in Section 7.3 we will present the results for our pattern  

sharing-based algorithm (DSA). Our performance evaluation suggests guidance on under 

which conditions one can use a specific sanitizing algorithm  to  balance privacy and knowl­

edge discovery.
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Chapter 6

M ethods for Privacy-Preserving  
D ata Clustering

You know m.y methods, Watson. Apply them.

-  A rthur Conan Doyle, “The Memoirs of Sherlock Holmes”

Where does a wise man hide a leaf? In the forest.

B ut what does he do i f  there is no forest? ... He grows a forest to hide it in.

-  G. K. Chesterton, “The Sign of the Broken Sword”

Preserving the privacy of individuals when data  are shared for clustering is a complex 

problem. The challenge is how to protect the underlying d ata  values subjected to clustering 

w ithout jeopardizing the similarity between objects under analysis. To address this problem, 

d a ta  owners m ust not only meet privacy requirements but also guarantee valid clustering 

results. In this chapter, we introduce some methods for privacy-preserving clustering (PPC). 

Our experiments dem onstrate th a t these methods protect individual privacy by disguising 

the underlying a ttribu te  values while providing useful d a ta  for clustering analysis.

This chapter is organized as follows: In Section 6.1, we describe a  number of realistic 

scenarios in which privacy issues in clustering really m atter. In Section 6.4, we show that 

the dual-goal of achieving privacy and accuracy can be accomplished by the  idea of dissimi­

larity between objects but at a high communication cost. We refer to  this solution as Object 

Similarity-Based Representation (OSBR). In order to alleviate the communication cost in­

troduced by OSBR, we show th a t a trade-off between privacy and accuracy can be achieved 

by using the intuition behind dimensionality reduction, notably random  projection [16, 1). 

We refer to the la tter solution as Dimensionality Reduction-Based Transformation (DRBT). 

The use of random projection in the context of PPC  is investigated in Section 2.4. Our so­

lution for PPC  based on random projection aims at finding a  trade-off between privacy and 

accuracy.
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6.1 Motivation for Privacy-Preserving Clustering

Achieving privacy when sharing da ta  for clustering poses new challenges for novel uses of 

data mining technology. Each application poses a new set of challenges. Let us consider 

some real-life motivating examples in which the sharing of da ta  poses different constraints.

• Let us consider a challenging problem described in [140]. A law enforcement agency 

wants to  cluster individuals based on their financial transactions and study the dif­

ferences between the clusters and known money laundering operations. Knowing the 

differences and similarities between normal individuals and known money launderers 

would enable better direction of investigations. An individual’s financial transactions 

may be divided between banks, credit card companies, tax  collection agencies, etc,

i.e., a transaction is composed of different a ttribu tes split into these parties. Each 

of these parties has effective controls governing release of information. How can the 

law enforcement agency learn about the clusters w ithout learning anything about the 

attribu te  values of these parties? Privacy safeguards must be provided to  avoid giving 

access to  an individual’s entire financial history.

• Two organizations, an Internet marketing company and an on-line retail company, 

have datasets w ith different attributes for a common set of individuals. These organi­

zations decide to  share their data for clustering to find the optimal customer targets 

so as to maximize return on investments. How can these organizations learn about 

their clusters using each other’s data  w ithout learning anything about the attribu te  

values of each other?

•  Small companies have recognized the value in data, especially w ith the introduction 

of the knowledge discovery process. However, small companies do not have enough 

(if any) expertise for doing data analysis, although they have good domain knowledge 

and understand their data. They have two choices: not mining the data  at all, which 

is not a good option due to  competitive reasons, or doing it with help from outside. 

Outsourcing the da ta  mining process poses a potential security th reat to data. A small 

enterprise could hire the service of a company specialized in da ta  mining, i.e., the data 

mining would be outsourced. How can this enterprise transform  its da ta  before the 

outsourced d a ta  mining occurs w ithout pu tting  in jeopardy the  analysis itself?

•  Suppose th a t a hospital shares some da ta  for research purposes (e.g., to  group patients 

who have a similar disease). The hospital’s security adm inistrator may suppress some 

identifiers (e.g., name, address, phone number, etc) from patient records to  meet 

privacy requirements. However, the released d a ta  may not be fully protected. A 

patient record may contain other information th a t can be linked w ith other datasets
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to re-identify individuals or entities [124, 123,134, 133]. How can we identify groups of 

patients with a similar disease w ithout revealing the values of the a ttribu tes associated 

with them?

Note th a t the above scenarios describe two different problems of PPC. We refer to the 

first two examples as PPC  over vertically partitioned data, and the last two scenarios as 

PPC  over centralized data. In this chapter, we address the problem of PP C  over centralized 

data. However, we show th a t one of our proposed methods (dimensionality reduction-based 

transform ation) can also be used to address P P C  over vertically partitioned d a ta  w ith little 

overhead in communication cost.

6.2 Addressing Privacy-Preserving Clustering

We will approach the problem of PP C  by first dividing it into two sub-problems: P P C  over 

centralized data  and PP C  over vertically partitioned data. In the centralized d a ta  approach, 

different entities are described with the same schema in a unique centralized d a ta  repository, 

while in a vertical partition, the a ttribu tes of the same entities are split across th e  partitions. 

We do not address the case of horizontally partitioned data.

6.2.1 PPC  over Centralized Data

In this scenario, two parties, A  and B , are involved, party A  owning a dataset D  and party  

B wanting to  mine it for clustering. The dataset is assumed to be a d a ta  m atrix  D m xn, 

where each of the m  rows represents an entity or object, and each entity contains values for 

each of the n  attributes.

Before sharing the dataset D  w ith party  B , party  A  must transform D  to  preserve 

the privacy of individual data  records. However, the transformation applied to  D  must 

not jeopardize the similarity between objects. Our first two real-life m otivating examples 

are particular cases of P P C  over centralized data . The problem associated w ith P P C  over 

centralized da ta  was stated in Section 1.2.2.

6.2.2 PPC  over Vertically Partitioned Data

Consider a scenario wherein k parties, such th a t k  > 2, have different a ttribu tes for a  com­

mon set of objects, as mentioned in the last two real-life examples. In these scenarios, the 

goal is to do a join over the k parties and cluster the common objects. The d a ta  m atrix for 

this case is given as follows:

85

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



b Party 1 Hb P arty  2 Hb . . .  -lb Party  k H 

«ii ■■■(in a \ i + i  ■ ■-a , \ j  a \ p + i . . . a . u ,

(6 . 1)

( Z j n l  • • • (Lmi ^ m z + 1  • • • @mj Qmp+l  • • ■ a inn

Note tha t, after doing a join over the k parties, the problem of PPC  over vertically 

partitioned d a ta  becomes a problem of P P C  over centralized data. For simplicity, we do not 

consider communication cost here since this issue is addressed later.

In our model for P P C  over vertically partitioned data, the parties are asymmetric, i.e., 

one of the parties is the central one which is in charge of merging the data  and finding the 

clusters in the  merged data. After finding the clusters, the central party would share the 

clustering results with the other parties. This central party could be any of the k  parties. 

The challenge here is how to move the data  from each party to  a  central party  concealing 

the values of the attribu tes of each party. However, before moving the da ta  to  a central 

party, each party  must transform its d a ta  to  protect the  privacy of the a ttribu te  values. We 

assume th a t the existence of an object (ID) should be revealed for the purpose of the join 

operation, bu t the values of the associated a ttribu tes are private.

A different approach is addressed in [140] in which all the parties participate of the 

com putation to  find the clusters. In th is approach, each party learns only its input and the 

clustering results. This solution is based on secure m ulti-party computation. We refer to 

this approach as the symmetric model, i.e., there is no privilege among the parties.

6.2.3 The Communication Protocol

To address the  problem of PPC  over vertically partitioned data, we need to design a com­

munication protocol. This protocol is used between two parties: the first party  is the central 

one and the o ther represents any of the  k  — 1 parties, assuming th a t we have k parties. We 

refer to  the central party as partyc and any of the other parties as party k- There are two 

threads on the  partyk  side, one for selecting the attributes to  be shared, as can be seen in 

Table 6.1, and the other for selecting the objects before the sharing data, as can be seen in 

Table 6.2.

Steps to  select the attribu tes for clustering on the partyk  side:
1. Negotiate the attributes for clustering before the sharing of data.
2. Wait for the list of a ttribu tes available in part,yc.
3. Upon receiving the list of a ttribu tes from partyc:

a) Select the attributes of the objects to  be shared.

Table 6.1: Thread of selecting the attribu tes on the partyk  side.
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Steps to select the list of objects on the partyk  side:
1. Negotiate the list of m  objects before the sharing of data.
2. W ait for the list of m  object IDs.
3. Upon receiving the list of m  object IDs from partyc:

a) Select the m  objects to be shared;
b) Transform the a ttribu te  values of the m  objects;
c) Send the transform ed m  objects to  p artyc.

Table 6.2: Thread of selecting the objects on the partyk  side.

6.3 Taxonomy of PPC  Data Transformations

In this section, we introduce a taxonom y including our m ethods for PPC , as can be seen in 

Figure 6.1. The taxonomy basically encompasses three m ajor categories: Attribute Value 

Masking, Pairwise Object Similarity, and Attribute Reduction. These categories are de­

scribed as follows:

PPC Data Transformations

 9 Attribute Value M asking 9 Rotation Data Perturbation

 9 Pairwise Object Similarity ---------- >- 9 Object Similarity-Based Representation

 9 Attribute Reduction------------------------ 9 Random Projection-Based Transformation

Figure 6.1: A taxonom y of PP C  d ata  transform ations.

A t t r ib u te  V alu e  M a sk in g  : This da ta  transform ation makes the  original a ttribu te  values 

difficult to perceive or understand and preserves all the information for clustering 

analysis. Our d ata  transform ation th a t falls into th is category is called Rotation-Based 

Transform ation (RBT) [106]. The idea behind this technique is th a t the a ttribu tes of 

a database are split into pairwise attributes selected randomly. One a ttrib u te  can be 

selected and ro tated  more th an  once, and the angle 0 between an attribu te  pair is also 

selected randomly. RBT can be seen as a technique on the border with obfuscation. 

Obfuscation techniques aim a t making information highly illegible w ithout actually 

changing its inner meaning [33]. In other words, using RB T the original data  are 

masked so th a t the transform ed d a ta  capture all the information for clustering analysis 

while protecting the underlying data  values. One interesting application of RBT is 

privacy preservation of health  d a ta  [11].

P a irw ise  O b je c t S im ila r ity  : This technique is a d a ta  m atrix representation in which a 

d a ta  owner shares the distance of the data  objects instead of the location of the data
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points. This technique relies on the idea of the similarity between objects, i.e., a data  

owner shares some data for clustering analysis by simply computing the dissimilarity 

m atrix  (m atrix of distances) between the objects and then sharing such a m atrix with 

a th ird  party  [107]. This solution is simple to  implement and addresses PPC  over 

centralized data. One of the most im portant advantages of this solution is th a t it can 

be applied to either categorical, binary, numerical attributes, or even a combination of 

these attributes. On the other hand, this solution can sometimes be restrictive since 

it requires a high communication cost. Our solution th a t lies in this category is called 

O bject Similarity-Based Representation (OSBR), described in Section 6.4.

A t t r ib u te  R e d u c tio n  : In this approach, the a ttribu tes of a database are reduced to  a 

smaller number. The small num ber of attribu tes is not a subset of the original a t­

tribu tes since the transform ation disguises the original a ttribu te  values by projecting 

them  onto a random space. Our d a ta  transform ation th a t lies in this category is called 

Dimensionality Reduction-Based Transform ation (DRBT) [107]. This da ta  transfor­

m ation can be applied to both P P C  over centralized data  and PPC  over vertically 

partitioned data. The idea behind this data transform ation is th a t by reducing the 

dimensionality of a database to a sufficiently small value, one can find a  trade-off be­

tween privacy and accuracy. Once the dimensionality of a database is reduced, the 

released database preserves (or slightly modifies) the  distances between data  points. 

In tandem  with the benefit of preserving the sim ilarity between points, this solution 

protects individuals’ privacy since the underlying d a ta  values of the objects subjected 

to  clustering are completely different from the original ones.

In this chapter, we concentrate on the last two solutions for PPC: Object Similarity- 

Based Representation (OSBR) described in Section 6.4, and Dimensionality Reduction- 

Based Transform ation (DRBT), described in Section 6.5.

6.4 The Object Similarity-Based Representation

One alternative to  achieve PPC  is to  share the distance between data  points w ithout reveal­

ing the location of such data points. This can be accomplished by a simple and effective da ta  

representation. In the context of this thesis, we refer to  such a representation as the Ob­

ject Similarity-Based Representation (OSBR). The OSBR is indeed the dissimilarity m atrix 

between a set of points, as defined in Section 2.2.3.

In this section, we investigate the feasibility of this solution for PPC  over centralized and 

vertically partitioned data. In particular, we study the complexity of the OSBR in terms of 

both space requirements and communication cost. In addition, we study the security offered 

by the OSBR and the evidence for attacks against this solution.
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6.4.1 General Assumptions

The solution to the problem of PPC, based on the similarity between objects, relies on the 

following assumptions:

•  The d a ta  m atrix D  subjected to clustering could contain either binary, numerical, or 

categorical attributes, or even a  combination of these attributes.

•  An object (ID) should be replaced by a fictitious identifier.

6.4.2 PPC  over Centralized Data

To address P P C  over centralized data, the OSBR performs three m ajor steps before sharing 

the d a ta  for clustering, as follows:

•  Step 1 - Suppressing identifiers: A ttributes th a t are not subjected to clustering (e.g., 

address, phone number, etc) are suppressed.

•  Step 2 - Normalizing numerical attributes’. If all the a ttribu tes subjected to clustering 

are numerical, they should be normalized. Normalization helps prevent attributes 

with large ranges (e.g., salary) from outweighing a ttribu tes w ith smaller ranges (e.g., 

age). If the dataset contains mixed variables, there is no need for normalization. The 

distances between objects are normalized when com puting the dissimilarity matrix 

using Equation (2.8).

•  Step 3 - Computing the dissimilarity matrix: In the last step, the pairwise distances 

between objects are computed. Euclidean distance is widely used for numerical a t­

tributes and the Jaccard coefficient for binary attributes. If the a ttribu tes are mixed 

types, Equation (2.8) can be used.

To illustrate how this solution works, let us consider the sample relational database in 

Table 6.3. This sample contains real data  from the Cardiac A rrhythm ia Database available 

a t the UCI Repository of Machine Learning Databases [17]. The a ttribu tes for this example 

are: age, weight, h.rate (number of heart beats per minute), int_def (number of intrinsic 

deflections), Q RS  (average of QRS duration in msec.), and P R J n t  (average duration between 

onset of P  and Q waves in msec.).

Now suppose these d ata  are made available for research purposes. One may be interested 

in clustering patients w ith similar characteristics to give a specific treatm ent to  each group. 

Our goal here is to protect the underlying attribu te  values and, a t the same time, guarantee 

accurate clustering results. Following the three steps of the OSBR, the dissimilarity matrix 

D m  corresponding to  the data matrix in Table 6.3, using the Euclidean distance in Equation 

(2.5), is given as follows:
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ID age weight h .ra te int.def QRS PR .int
123 75 80 63 32 91 193
342 56 64 53 24 81 174
254 40 52 70 24 77 129
446 28 58 76 40 83 251
286 44 90 68 44 109 128

Table 6.3: A cardiac arrhythm ia database.

0
2.2436 0
3.3489 2.4776 0
3.6903 3.8844 3.1767 0
3.0203 4.0828 4.1303 3.9955 0

The dissimilarity matrix is the dataset shared for clustering. Many clustering algorithms 

in the literature operate on a dissimilarity m atrix  [65]. In Section 6.4.3, we show th a t a 

dissimilarity m atrix is no longer invertible, as long as the d ata  analysts have no extra 

knowledge concerning the original data. This situation generally occurs when the a ttribu te  

values are not split across many parties.

6.4.3 How Secure is the OSBR?

Now we move on to  show that sharing a dissimilarity matrix is a secure procedure, as long as 

the original da ta  points are not revealed to the other parties. Our goal here is to show th a t 

given the  distance between two d-dimensional vectors, one cannot determine the coordinates 

of these two vectors.

L e m m a  2 Let D M mxm be a dissimilarity matrix, where m  is the number o f objects. It 

is impossible to determine the coordinates o f the two objects by knowing only the distance 

between them.

P ro o f : Let i and j  be any two vectors in a d-dimensional space and let r  be the distance 

between these vectors. For any given distance r, there exist infinitely many pairs of vectors 

i and j  such th a t d(i, j )  = r. In fact, for every vector i there exists a vector j  such that 

d ( i , j )  =  r. Therefore, the coordinates of i can be chosen completely arbitrarily, and there is 

no way to  deduce the coordinates of i from r. □

Even when sufficient care is taken, a solution th a t adheres to OSBR can be still vulnerable 

to partial disclosure. For instance, suppose th a t a  user who has access to  a dissimilarity 

m atrix, shared by a d a ta  owner, knows all the attribu te  values of one particular object Oi. 

In this case, partial disclosure may occur.

L e m m a  3 Knowing the coordinates of a particular object i and the distance r between i 

and any other object j ,  it is possible to estim,at,e the attribute values of j .
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P ro o f: Let. i and j  be any two vectors in a  d-dimensional space and let r  be the distance 

between these vectors. If all the coordinates of i are known, then every coordinate of j  

cannot differ from the corresponding coordinate of i by more than r  since j  will lie on the 

sphere of radius r. In this case, one can make some estimates of the coordinates of j ,  as long 

as some attribu te  ranges are known. □

In [22], Caetano shows th a t if an  adversary knows the dissimilarity m atrix  of a set of 

points and the coordinates of d +  I points, where d is the number of dimensions of the da ta  

points, it is possible to  disclose the entire dataset. This result holds if and only if the  d -1-1 

points do not lie in a (d — l)-dim ensional vector subspace.

To illustrate C aetano’s lemma, let us consider a particular case in 5R2, as can be seen in 

Figure 6.2. In this example, suppose th a t three points (d + 1) objects (d =  2) and their 

distances are known. If the  center of the  dashed circle does not lie in the  same straight 

line, the (d — l)-dimensional vector subspace, defined by the centers of the o ther two circles, 

the intersection set has at most one point (the one pointed to by the arrow). Thus, if one 

adversary has the distances of o ther p  points to  these three points in Figure 6.2, s /h e  can 

determine the coordinates of the p  points.

Figure 6.2: An example of C aetano’s lemma in 322 [22],

Lemma 3 and C aetano’s lemma suggest th a t the  OSBR can sometimes be ineffective to  

address PPC  over vertically partitioned data. The main reason is th a t knowing the a ttribu te  

join (the object’s ID used for the join purpose) and some da ta  points (objects’ a ttribu te  

values), one may disclose the entire dissimilarity matrix. Therefore, we suggest th a t the 

OSBR should be used to  address P P C  over centralized data  since an adversary does not 

have external knowledge to  disclose the a ttribu te  values of the original dataset.

6.4.4 The Complexity of the OSBR

Here we analyze the space requirements and communication costs for the OSBR. A dissim­

ilarity m atrix is an m x  m  table, where m  is the number of objects under analysis. W hen
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m  grows, which is not unexpected in data  mining applications, this solution becomes too 

expensive, especially in term s of both space requirements and communication cost.

For instance, for a d a ta  m atrix where m  =  1,000,000 objects, the number of pairwise 

distances (elements of the m atrix) is a combination of m  elements taken two at a time, i.e., 

Cm ,2 =  [rn x (in — l ) ) /2  =  5 e + ll .  Thus, the space requirements of the OSBR is of the 

order 0 ( m 2). However, only half of the dissimilarity m atrix is transm itted  from one party 

to another since distance is a symmetric function. Thus, the communication cost of the 

OSBR takes 0 (( (m  x (m  — 1 ))/2 ) x /), where I represents the size (in bits) of one element 

of the m  x m  dissimilarity matrix.

6.4.5 The Advantages and Disadvantages of OSBR

We have shown th a t it is possible to address PPC  over centralized d a ta  based on the concept 

of the dissimilarity m atrix. The main advantages of this solution are:

•  it is independent of the  distance-based clustering method.

•  it preserves the privacy of the a ttribu te  values subjected to  clustering.

•  it is accurate and very simple to implement.

•  it can be applied to  datasets containing binary, numerical, or categorical attributes, 

or even a combination of these attributes.

On the other hand, in the context of PPC over vertically partitioned data, the OSBR 

present two limitations, as follows:

•  Lemma 3 shows the restriction of the OSBR when an adversary has external knowledge 

of the original data. W hen two or more parties share data  for clustering, if one party 

knows all the coordinates of a few points, the dissimilarity m atrix  may disclose the 

original dataset.

•  T he significant communication cost of the OSBR indicates th a t this solution is not 

attractive for PPC  over vertically partitioned data. In addition, in vertically parti­

tioned data, IDs need to  be shared among the parties, which would lead to  the problem 

illustrated in Lemma 3.

The above limitations motivate our next solution based on the  idea of dimensionality 

reduction.

6.5 The Dimensionality Reduction Transformation

W hen two or more parties share d a ta  for clustering, privacy preservation and the commu­

nication cost are key requirements. On the one hand, the sharing of d a ta  requires privacy
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safeguards. On the other hand, sharing a large amount of d a ta  for mining can be, in many 

cases, prohibitive.

In this section, we show th a t the dual-goal of achieving privacy preservation and a 

reduced communication cost in PP C  can be accomplished by dimensionality reduction. By- 

reducing the dimensionality of a dataset to a sufficiently small value, one can find a trade­

off between privacy and accuracy. In particular, random project (see the basics of random 

projection in Section 2.4, page 25) can fulfill this dual-goal. We refer to  this solution as the 

Dimensionality Reduction-Based Transformation (DRBT).

Dimensionality reduction techniques have been studied in the context of pattern  recogni­

tion [59], information retrieval [16, 51, 72], and data mining [57, 51]. To our best knowledge, 

dimensionality reduction has not been used in the context of d a ta  privacy in any detail.

6.5.1 General Assumptions

The solution to the problem of P P C  based on random projection draws the following as­

sumptions:

• The data m atrix D  subjected to clustering contains only numerical attributes that 

must be transformed to protect individuals’ data values before the d ata  sharing for 

clustering occurs.

• In PPC over centralized data , the existence of an object (ID) should be replaced by 

a fictitious identifier. In P P C  over vertically partitioned data, the IDs of the objects 

are used for the join purposes between the parties involved in the solution.

•  The transformation (random  projection) applied to the original d a ta  might slightly 

modify the distance between d ata  points. Such a transform ation justifies the trade-off 

between privacy and accuracy.

One interesting characteristic of the solution based on random projection is that, once 

the dimensionality of a database is reduced, the attribu te  names in the  released database are 

irrelevant. In other words, the released database preserves, in general, the similarity between 

the objects, but the underlying d a ta  values are completely different from the original ones. 

We refer to the released database as a disguised database, which is shared for clustering.

6.5.2 PPC over Centralized Data

To address PPC over centralized data , the DRBT performs three m ajor steps before sharing 

the data  for clustering:

• Step 1 - Suppressing identifiers: A ttributes th a t are not subjected to  clustering (e.g., 

address, phone number, etc.) are suppressed.
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•  Step 2 - Reducing the dimension oj the original dataset: After pre-processing the data 

according to  Step 1, an original dataset D is then transformed into the disguised 

dataset D ' using random projection.

• Step 3 - Computing the stress function: This function is used to determine whether 

the accuracy of the  transformed dataset is marginally modified, which guarantees the 

usefulness of the d a ta  for clustering.

To illustrate how this solution works, let us consider the  sample relational database in 

Table 6.3. We are going to  reduce the dimension of this dataset from 6 to  3, one at a time, 

and compute the error (stress function). To reduce the dimension of this dataset, we apply 

Equation (2.10). In this example, the original dataset corresponds to the matrix D. We 

compute a random  m atrix R i  by setting each entry of the m atrix  to  a value drawn from 

an independent and identically distributed (i.i.d.) iV(0,l) d istribution and then normalizing 

the columns to  unit length. We also compute a random m atrix  i ? 2  where each element r,j 

is computed using Equation (2.12). We transform D  into D ' using both R \  and f?2 - The 

random transform ation R P\ refers to the random projection using R \,  and RP 2  refers to 

the random projection using R?-

The relative error th a t the distances in 6-3 space suffer from, on the average, is computed 

using Equation (2.9). Table 6.4 shows the values of the error using RP\ and RP 2 . In this 

Table, k  represents the number of dimensions in the disguised database D '.

Transformation k =  6 k =  5 k =  4 k =  3
RP\ 0.0000 0.0223 0.0490 0.2425
RP2 0.0000 0.0281 0.0375 0.1120

Table 6.4: The relative error th a t the distances in 6-3 space suffer from, on the average.

In this case, we have reduced the dimension of D  from 6 to  3, i.e, the transformed 

dataset has only 50% of the dimensions in the original dataset. Note tha t the error is 

relatively small for both R P\ and RP 2 , especially for R P 2 . However, this error is minimized 

when the random  projection is applied to high dimensional datasets, as can be seen in 

Table ??, in Section 7.4.3.

After applying random  projection to a dataset, the a ttrib u te  values of the transformed 

dataset are completely disguised to  preserve the privacy of individuals. Table 6.5 shows 

the a ttribu te  values of the transformed database with 3 dimensions, using both RP\ and 

RP 2 - In this table, we have the attributes labeled A ttl ,  Att2, and AttS  since we do not 

know the labels for the disguised dataset. Using random  projection, one cannot select the 

attributes to  be reduced beforehand. The attributes are reduced randomly. More formally, 

Mi if A ttri £ D \  then A ttr i £  D.
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ID D ' using RP\ D ' using R P '2

A ttl Att2 Att3 A ttl A tt2 Att3
123 -50.40 17.33 12.31 -55.50 -95.26 -107.96
342 -37.08 6.27 12.22 -51.00 -84.29 -83.13
254 -55.86 20.69 -0.66 -65.50 -70.43 -66.97
446 -37.61 -31.66 -17.58 -85.50 -140.87 -72.74
286 -62.72 37.64 18.16 -88.50 -50.22 -102.76

Table 6.5: Disguised dataset, D' using IiP \ and RP>.

As can be seen in Table 6.5, the a ttribu te  values are entirely different from those in 

Table 6.3.

6.5.3 PPC  over Vertically Partitioned D ata

The solution for P P C  over vertically partitioned data is a  generalization of the solution for 

PPC  over centralized data. In particular, if we have k  parties involved in this case, each 

party m ust apply the random  projection over its dataset and then send the reduced da ta  

matrix to  a central party. Note th a t any of the k  parties can be the central one. We show 

in Section 6.5.6 th a t DRBT greatly alleviates the communication cost when compared with 

the communication cost in OSBR.

W hen k  parties (k >  2) share some d a ta  for P P C  over vertically partitioned data, these 

parties must satisfy the following constraints:

• Agreement. The k  parties must follow the communication protocol described in Sec­

tion 6.2.3.

•  M utual exclusivity: We assume tha t the a ttribu te  split across the k  parties are mutually 

exclusive. More formally, if A {D \), A(Z?2 )..., A(D k) are a set of a ttribu tes of the k 

parties, Mi ^  j  A ( D j )  fl A (D j) = 0. The only exception is th a t IDs are shared for the 

join purpose.

The solution based on random  projection for PPC  over vertically partitioned da ta  is 

performed as follows:

•  Step 1 - Individual transformation: If k  parties, k >  2, share their da ta  in a collabo­

rative project for clustering, each party  ki must transform  its da ta  according to  the 

steps in Section 6.5.2.

•  Step 2 - Data exchanging or sharing: Once the da ta  are  disguised by using random 

projection, the k parties are able to  exchange the d a ta  among themselves. However, 

one party  could be the central one to aggregate and cluster the data.
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•  Step 3 - Sharing clustering results: After the data have been aggregated and mined in 

a central party  k,, the results could be shared with the other parties.

6.5.4 How Secure is the DRBT?

In the previous sections, we showed that transform ing a  database using random projection is 

a promising solution for PPC  over centralized d a ta  and consequently for P P C  over vertically 

partitioned d a ta  since the similarities between objects are marginally changed. Now we show 

th a t random projection also has promising theoretical properties for privacy preservation. 

In particular, we dem onstrate th a t a random projection from d dimensions to k , where 

k <£Ld, is a non-invertible transformation.

L e m m a  4 A random projection from d dimensions to k dimensions, where k -C d, is a 

non-invertible linear transformation.

P ro o f : A classic result from Linear Algebra asserts th a t there is no invertible linear transfor­

m ation between Euclidean spaces of different dimensions [13]. Thus, if there is an invertible 

linear transform ations from 3Jm to 3in, then the constraint m  = n  must hold. A random  pro­

jection is a  linear transform ation from to 5Rfc, where k  ■C d. Hence, a random  projection 

from d dimensions to k  dimensions is a non-invertible linear transformation. □

W hen a set of points in a high dimensional space are mapped onto a lower dimensional 

space by random  projection, the coordinates of the  points in the low space are completely 

disguised. In other words, there is no means to  reconstruct the coordinates of the points 

in the original space based on the coordinates of the points in the low dimensional space. 

Therefore, a da ta  owner would not give away the original points. The only useful inform ation 

preserved in the lower dimensional space are the  distances between the points but w ith a 

relatively small error th a t is acceptable for practical applications. T hat is the basis of 

privacy preservation of the DRBT.

6.5.5 The Accuracy of the DRBT

In Section 2.4, we pointed out th a t random projection has emerged as a powerful m ethod for 

dimensionality reduction. Theoretical results indicate th a t the method preserves distances 

quite nicely. Some effort has been done to determ ine the proper number of dimensions for a 

random  projection to  effectively preserve distances. However, to our knowledge it is still an  

open question how to choose the dimensionality for a  random projection in order to preserve 

separation among clusters in general clustering applications.

In the context of PPC , our goal is to evaluate the quality of data for general clustering 

applications after dimensionality reduction. In particular, the results presented in [130, 57] 

suggest th a t random projection is promising for clustering.
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4 ci, 4
C l f r e q i ' i f r e q i f i  . • freqi , / .
C 2 freq2, i f r e q 2 ,2 freq2,k

Ck f r eq ic,i f r e q k ,2 • ■ f r e q k,k

Table 6.6: The number of points in cluster c, th a t falls in cluster c'- in the transformed 
dataset.

W hen using random  projection, a perfect reproduction of the Euclidean distances may 

not be the best possible result. The clusters in the transformed datasets should be equal 

to  those in the original database. However, this is not always the case, and we have some 

potential problems after dimensionality reduction: a) a noise data  point ends up clustered; 

b) a point from a  cluster becomes a noise point; and c) a point from a cluster migrates to a 

different cluster. In this research, we focus prim arily on partitioning methods. In particular, 

we use K-Means [93], one the most used clustering algorithms. Since K-means is sensitive to 

noise points and clusters all the points in a dataset, we have to  deal with the th ird  problem 

mentioned above (a point from a cluster migrates to  a different cluster).

Our evaluation approach focuses on the overall quality of generated clusters after dimen­

sionality reduction. We compare how closely each cluster in the transformed da ta  matches 

its corresponding cluster in the  original dataset. To do so, we first identify the matching 

of clusters by computing the m atrix of frequencies showed in Table 6.6. We refer to such a 

m atrix  as the clustering membership m atrix (CMM), where the rows represent the clusters 

in the original dataset, the columns represent the clusters in the transformed dataset, and 

f r e q i j  is the number of points in cluster c; th a t falls in cluster c'- in the transformed dataset.

After com puting the frequencies fr e q i j ,  we scan the clustering membership m atrix cal­

culating precision, recall, and F-measure for each cluster c'- with respect to c, in the  original 

dataset [90]. These formulas are given by the following equations:

Precision  (P ) =  (6.3)
lCil

Recall (R ) =  (6.4)
|Ci|

, „  2 x  P  x  R
F  -  m easure  (F ) =  (p  ±  (6-5)

where |A | is the number of points in the cluster X .

For each cluster c;, we first find a cluster c'- th a t has the highest F-measure among all

the cj, 1 < I < k. Let F(c,;) be the highest F-measure for cluster a , we denote the overall

F-measure as the weighted average of F (cj), 1 <  i < k, as follows:
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Overall F  — m easure (OF) =  ^  *- (6.6)
E;=i lc»l

In section 7.4, we present our performance evaluation results for clustering based on 

Equation (6.6).

6.5.6 The Complexity of the D R BT

One of the major benefits of a solution th a t adheres to the DRBT is the communication 

cost to  send a disguised dataset from one party  to  a central one. In general, a disguised data 

m atrix is of size m  x k, where m  is the number of objects and k is the number of attributes 

(dimensions). The complexity of D R B T  is of the order 0 (m  x k), however k  m.

To quantify the communication cost of one solution, we consider the num ber of bits or 

words required to transm it a dataset from one party to a central or th ird  party. Using 

DRBT, the bit communication cost to  transm it a dataset from one party  to  another is 

0 (m lk ) ,  where I represents the  size (in bits) of one element of the m  x k  disguised data 

m atrix.

Recall th a t the communication cost in the  OSBR is much more expensive, i.e., 0 (((m  x 

(m -1 ) ) /2 )  x I), where I represents the  size (in bits) of one element of the m x m  dissimilarity 

m atrix. Clearly, the solution th a t adheres to  the DRBT is much more effective for addressing 

the  problem of PPC  over vertically partitioned data.

6.6 Summary

In this chapter, we have shown th a t transform ing data  to address P P C  is to  some extent 

possible. In particular, we showed th a t the challenging goal of achieving full privacy and 

accuracy can be accomplished by the  idea of dissimilarity between objects, bu t a t a high com­

munication cost. We referred to  th is solution as the Object Similarity-Based Representation 

(OSBR). One major advantage of the  OSBR is th a t it can be applied to  datasets containing 

either binary, numerical, or categorical a ttribu tes, or even a combination of these attributes. 

On the other hand, we showed th a t the OSBR is ineffective to address P P C  over vertically 

partitioned data  when an adversary has external knowledge of some a ttribu tes subjected to 

clustering. As a result, the OSBR is more effective to address P P C  over centralized data.

In order to alleviate the communication cost introduced by the OSBR, we showed that 

a trade-off between privacy, accuracy, and communication cost can be achieved by using 

the intuition behind random  projection. We referred to  this solution as the Dimensionality 

Reduction-Based Transform ation (DRBT). This solution is promising to either PPC  over 

centralized or vertically partitioned da ta  since it greatly alleviates communication costs 

while preserving the accuracy of reduced d a ta  as well as the accuracy of the original data.

98

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



The highlights of our approaches are as follows: a) they are independent of distance- 

based clustering algorithms; b) they have a sound mathematical foundation; and c) they do 

not require CPU-intensive operations.

In Section 7.4, we will present our results of the performance evaluation for our solution 

for PPC based on dimensionality reduction. We show that the DRBT maintains the use­

fulness of the data and provides acceptable values in practice to address privacy concerns 

in clustering.
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Chapter 7

R esults and Evaluation

Your true value depends entirely on what you are compared with.

-  Bob Wells

In this section, we empirically validate our privacy-preserving d a ta  transform ation (PPDT) 

m ethods for privacy-preserving association rule mining (PPARM ) and privacy-preserving 

clustering (PPC). We s ta rt by describing the real datasets used in our experiments in Sec­

tion  7.1. In Section 7.2, we present the results for the performance evaluation of our data 

sharing-based algorithms. We conduct two series of experiments, one to  study the effective­

ness of our sanitizing algorithms and the other to evaluate their scalability. In Section 7.3, we 

validate our pattern  sharing-based algorithm, the Downright Sanitizing algorithm (DSA). 

To do so, we also conduct two series of experiments to  study the effectiveness and the 

scalability of the  DSA. For both categories of algorithms (data sharing-based and pattern 

sharing-based), the performance evaluation offers guidance on under which conditions one 

can use a specific sanitizing algorithm to balance privacy and knowledge discovery. In Sec­

tion 7.4, we evaluate the dimensionality reduction-based transform ation (DRBT) proposed 

to  address PPC . Our experiments demonstrate th a t the DRBT protects individuals’ privacy 

by disguising the underlying attribu te  values of a dataset while providing useful da ta  for 

clustering. Finally, in Section 7.5 we report the main results observed and the conclusions 

draw n from our experiments.

7.1 Datasets

We validated our methods for privacy-preserving clustering and privacy-preserving associa­

tion rule mining using nine real datasets. These datasets are described as follows:

1. B M S -W eb -V iew -1  (B M S -1 ): This dataset contains click-stream da ta  from the web 

site of a (now defunct) legwear and legcare retailer. The dataset contains 59,602 

transactions with 497 distinct items, and each customer purchasing has 2.51 items on
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average. BMS-Web-View-1 [155] has been placed in the public domain of the company 

Blue M artini Software.

2. R e ta il:  This dataset contains the (anonymized) retail market basket da ta  from an

anonymous Belgian retail supermarket store [19]. The data  were collected over three 

non-consecutive periods. The first period ran from mid December 1999 to  mid Jan­

uary 2000. The second period ran from 2000 to the beginning of June 2000. The 

th ird  period ran from the end of August 2000 to the end of November 2000. The total 

num ber of receipts collected was 88,162 with 16,470 distinct items, and each customer 

purchasing has 10.3 items on average.

3. A cc id en ts : This dataset concerning traffic accidents was obtained from the National

Institu te  of S tatistics (NIS) for the region of Flanders in Belgium. The transactions 

are traffic accident forms filled out by police officers for each traffic accident that 

occurred involving injures or deaths on a public road in Belgium. There are 340,183 

traffic accident records included in the dataset, with 468 distinct items, and each 

record has 33.81 a ttr ib u te  values (items) on average.

4. K o sa ra k : This da tase t contains (anonymized) click-stream da ta  from a H ungarian on­

line news portal. K osarak1 has 990,007 transactions with 41,270 distinct items, and 

each customer purchasing has 8.1 items on average.

5. R e u te r s :  The Reuters-21578 text collection is composed of 7,774 transactions with

26,639 distinct item s and 46.81 items on average per transaction. The R euters dataset 

is available a t the  UCI Repository of Machine Learning Databases [17].

6. M u sh ro o m : This dataset is available at the UCI Repository of Machine Learning

Databases [17]. Mushroom contains records drawn from The Audubon Society Field 

Guide to  North American Mushrooms. There are 8,124 records w ith 119 distinct items 

(data values) and 23 numerical attributes.

7. C hess: The form at for instances in this database is a  sequence of 37 a ttrib u te  values.

Each instance is a  board-descriptions of a chess endgame. The first 36 attributes 

describe the board. The last (37th) attribute is the classification: ’’win” or ’’nowin” . 

Chess is available a t the UCI Repository of Machine Learning D atabases [17] and 

contains 3,196 records. There is no missing value in this dataset.

8. C o n n e c t: This database contains all legal 8-ply positions in the game of connect-4 in

which neither player has won yet, and in which the next move is not forced. Connect

'T h is  dataset was provided to  us by Ferenc Bodon. A copy o f  the dataset is placed in the Frequent 
Item set M ining Im plem entations Repository: h ttp ://fim i.cs.helsink i.fi/data/
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is composed of 67,557 records and 43 a ttribu tes w ithout missing values. This dataset 

is also available at the UCI Repository of Machine Learning Databases [17].

9. P u rn sb : The Pinnsb dataset contains census data  for population and housing. This 

dataset is available at http://w w w .ahnaden.ibm .com /softw are/quest. There are 49,046 

records w ith 2,113 different data  values (distinct items), and 74 a ttribu te  values w ith­

out missing values.

Table 7.1 shows the summary of the datasets used in our experiments. The columns 

represent, respectively, the database name, the to ta l number of records, the num ber of 

distinct items, the average number of items per record (transaction), the size of the shortest 

record, and the size of largest record.

D ataset #records #  items Avg. Length Shortest
Record

Largest
Record

BMS-Web-View-1 59,602 497 2.51 1 145
Retail 88,162 16,470 10.30 1 76
Accidents 340,183 468 33.81 18 51
Kosarak 990,573 41,270 8.10 1 1065
Reuters 7,774 26,639 46.81 1 427
M ushroom 8,124 119 23 23 23
Chess 3,196 75 37 37 37
Connect 67,557 129 43 43 43
Pum bs 49,046 2,113 74 74 74

Table 7.1: A summary of the datasets used in our experiments

7.2 Evaluation of the Data Sharing-Based Algorithms

In this section, we present the results of our performance evaluation. We study th e  effec­

tiveness and scalability of our data sharing-based algorithm s and the similar counterpart in 

the literature.

7.2.1 Sanitizing Algorithms

The sanitizing algorithms, under analysis in this section, are those that rely on the Heuristics 

1 and 2 described in Section 5.3. These algorithm s are described as follows:

•  The Item  Grouping Algorithm (IG A) groups sensitive association rules in clusters of 

rules sharing the same itemsets. If two or more sensitive rules intersect, by sanitizing 

the shared item of these sensitive rules, one would take care of hiding such sensitive 

rules in one step;
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• The Round Robin Algorithm (R.RA) selects different victim items in turns starting  

from the first item, then the second, and so over the set of sensitive transactions. The 

process starts again at the first item of the sensitive rule as a victim item each time 

the last item is reached.

•  The Random Algorithm. (R A )  selects a victim item for a given sensitive rule s u  ran­

domly. For each sensitive transaction associated with .sr,;, RA randomly selects a 

victim item.

• The Sliding Window Algorithm (SW A) scans one group of K  transactions at a time 

and sanitizes the sensitive rules present in such transactions based on a set of disclosure 

thresholds defined by a database owner. There is a disclosure threshold assigned to 

each sensitive association rule.

•  Algo2a is a similar counterpart sanitizing algorithm which hides sensitive rules by 

reducing support [37]. The algorithm GIH, designed by Saygin et al. [126], is similar 

to Algo2a. The basic difference is th a t in Algo2a, some items are removed from 

sensitive transactions, while in GIH a mark “?” (unknowns) is placed instead of item 

deletions. To our best knowledge there is no other similar sanitizing algorithm in 

the literature. The algorithms published in [142] are an extension of the algorithms 

published in [37, 126].

A different line of sanitizing algorithms was introduced in [142] in which the sensitive 

rules are hidden by reducing their confidence below a  privacy threshold. Our sanitization 

process focuses prim arily on hiding rules by reducing their support. The main reason is 

th a t most of the interestingness measures (e.g., confidence, lift, coverage, conviction, etc.) 

for association rules rely on support [135], as discussed in Section 2.3.2.

7.2.2 M ethodology

We performed two series of experiments. The first series was performed to  evaluate the 

effectiveness of our sanitizing algorithms, and the second to measure their efficiency and 

scalability. One question th a t we wanted to answer was:

Under which conditions can one use a specific sanitizing algorithm to balance 

privacy and knowledge discovery?

We purposely selected the sensitive rules to be sanitized based on four different scenarios, 

as follows:

•  S i :  The sensitive rules selected contain only items th a t are mutually exclusive. In 

other words, there is no intersection of items over all the sensitive rules. The purpose of
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this scenario is to unfavor the algorithm s IGA and SWA, both of which take advantage 

of rule overlaps.

• S2: In this scenario, the sensitive rules were selected randomly.

• S3: Only sensitive rules with very high support were selected. Sanitizing such rules 

would maximize the differential between an original dataset and its corresponding 

sanitized dataset.

•  S4: Only sensitive rules w ith low support were selected. Sanitizing such rules would 

minimize the differential between an  original dataset and its corresponding sanitized 

dataset.

Our comparison study was carried out through the following steps:

•  Step 1: we selected the datasets BMS-1, Retail, Kosarak, and Reuters. The first 

three datasets are specific for association rule mining, and the last one contains long 

transactions, on average, with high frequency items.

•  Step 2: we ran an association rule mining algorithm with a low minimum support 

threshold cr to capture as many association rules as possible. Subsequently, we selected 

the sensitive rules to be sanitized based on the four scenarios described above.

•  Step 3: we compared the sanitizing algorithm s described in Section 7.2.1 against each 

o ther and with respect to  the following benchmark: the results of association rules 

mined in the original (D) and sanitized (D ') datasets. We used our metrics described 

in Section 5.2.3 to  measure inform ation loss (misses cost, and the difference between D  

and D '), disclosure of private inform ation (hiding failure), and fraction of artifactual 

rules created by the sanitization process.

All the experiments were conducted on a  PC  (AMD 3200/2200) with 1.2 GB of RAM 

running a Linux operating system. In our experiments, we selected four sets of sensitive 

rules for each dataset based on the scenarios described above (SI - S4). These rules, for 

each individual dataset, can be found in A ppendix B .l. Table 7.2 shows the param eters we 

used to  mine the datasets before the selection of the sensitive rules.

D ataset Support (%) Confidence (%) No. Rules Max. Size
BMS-1 0.1 60 25,391 7 items
Retail 0.1 60 7,319 6 items
Reuters 5.5 60 16,559 10 items
Kosarak 0.2 60 349,554 13 items

Table 7.2: Param eters used for mining the four datasets
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7.2.3 Evaluating the Window Size for SWA

We evaluated the effect of the window size, for the SWA algorithm, with respect to the 

difference between an original dataset D  and its corresponding sanitized dataset D', misses 

cost, and hiding failure. To do so, we varied the K  (window size) from 500 to  100,000 

transactions with the disclosure threshold ip =  25%. Table B.17 in Appendix B.2 shows 

th a t for up to 5,000 transactions, the difference between D  and D ' and misses cost improve 

slightly for the Reuters dataset. Similarly, these metrics improve after 40,000 transactions for 

the datasets Kosarak, Retail, and BMS-1. The results reveal th a t a window size representing 

64.31% of the size of the Reuters dataset suffices to stabilize the misses cost and hiding 

failure, while a window size representing 4.04%, 45.37%, and 67.11%  is necessary to stabilize 

the same measures in the datasets Kosarak, Retail, and BMS-1, respectively.

In this example, we intentionally selected a set of 6 sensitive association rules with 

high support (scenario S3) to  accentuate the differential between the sizes of the original 

database and the sanitized database and thus to better illustrate the effect of window size 

on the difference between D  and D ', misses cost, and hiding failure.

Note th a t the distribution of the data affects the values for misses cost and hiding failure. 

To obtain the best results for misses cost and hiding failure, hereafter we set the window 

size K  to  50,000 in our experiments.

7.2.4 Measuring Effectiveness

The effectiveness of the sanitizing algorithms is measured in term s of the number of sen­

sitive association rules effectively hidden, as well as the proportion of non-sensitive rules 

accidentally hidden due to the  sanitization process.

We studied the effectiveness of the sanitizing algorithms based on three major conditions, 

as follows:

•  Cl: we set the disclosure threshold ip to 0% and fixed the  minimum support threshold 

cr, the minimum confidence threshold <p, and the num ber of sensitive rules to hide.

•  C2: we fixed the param eters as we did in condition C l but varied the number of 

sensitive rules to  hide.

•  C3: we set the disclosure threshold ip to 0%, fixed the minimum confidence threshold 

ip and the number of sensitive rules to hide, and varied the  minimum support threshold 

a  for each dataset.

Note tha t in all the three conditions above, we purposely set the disclosure threshold ip 

to 0%. In this particular case, no sensitive rule is allowed to  be mined from the sanitized 

dataset. Later (in special cases section), we will show th a t a database owner could also
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slide the disclosure threshold (V-1 > 0) to allow a balance between knowledge discovery and 

privacy protection in the sanitized database.

Table 7.3 shows a summary of the best sanitizing algorithms, in terms of misses cost, 

under condition C l. For further information 011 the values of misses cost (the lower the 

better) under condition C l, we refer the reader to  Appendix 13.3.1. The algorithm 1GA 

yielded the best results in almost all the cases. The exceptions are the scenarios S2, S3, and 

S4 of the datase t Retail th a t contains sensitive rules w ith high support items. In this case, 

the algorithms SWA and RA benefit from the selection of the victim  items, a choice which 

varies in each sensitive transaction, alleviating the im pact on the sanitized dataset. As a 

result, the values for misses cost are slightly minimized.

Dataset ip =  0%, 6 sensitive rules
SI S2 S3 S4

Kosarak IGA IGA IGA IGA
Retail IGA SWA RA RA
Reuters IGA IGA IGA IGA
BMS-1 IGA IGA IGA IGA

Table 7.3: Sum m ary of the best algorithms in term s of misses cost under condition Cl.

We also observed the same behaviour of the sanitizing algorithms when analyzing misses 

cost under conditions C2 and C3. Table 7.4 provides a  sum m ary of the best sanitizing 

algorithms in term s of misses cost under condition C2. The results confirm the same finding 

we reported previously for the algorithms SWA and RA for the dataset Retail. The only 

exceptions here are the scenario S2 for the datasets Retail and BMS-1. In the dataset Retail, 

IGA yielded the best results of misses cost with up to  2 sensitive rules being sanitized. As 

the number of sensitive rules increased, the SWA yielded the best values of misses cost. 

The same behavior can be observed in the dataset BMS-1, i.e., Algo2a yielded the best 

values for misses cost with up to  3 rules being sanitized. W hen the  number of rules to be 

sanitized increases, IGA yields the best results for misses cost. The values for misses cost 

under condition C2 can be found in Appendix B.3.2.

D ataset ip =  0%, varying the no. of rules
SI S2 S3 S4

Kosarak IGA IGA IGA IGA
Retail IGA IGA/SWA RA RA
Reuters IGA IGA IGA IGA
BMS-1 IGA Algo2a/IGA IGA IGA

Table 7.4: Summary of the best algorithms for misses cost under condition C2.

Table 7.5 shows the results of misses cost under condition C3. As we can see, the same 

trends were observed, except in scenario S4 for the dataset Retail in which the algorithm
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RRA yielded better results than  those in the RA. However, the results for misses cost in 

the RRA are slightly better, as can be seen in Appendix B.3.3.

D ataset i> =  0%, varying the values of a
SI S2 S3 S4

Kosarak IGA IGA IGA IGA
Retail IGA SWA RA RRA
Reuters IGA IGA IGA IGA
BMS-1 IGA IGA IGA IGA

Table 7.5: Sum m ary of the best algorithms for misses cost under condition C3.

We also investigated the  differential between the initial size of the four datasets and the 

size of the sanitized datasets under the three conditions described above. Under condition C l 

and C3, the algorithm  SWA yielded results slightly better th an  those in the  other algorithms, 

as can be seen in Table 7.6. Details about these results can be found in Appendix B.4.1 and 

Appendix B.4.3.

D ataset ip =  0%, 6 sensitive rules
SI S2 S3 S4

K osarak SWA SWA SWA SWA
Retail SWA SWA SWA SWA
R euters SWA SWA SWA SWA
BMS-1 SWA SWA SWA SWA

Table 7.6: Sum m ary of th e  best algorithms for dif(D, D ')  under conditions C l and C3.

Under condition C2, when we increased the number of rules to be sanitized, the algo­

rithm s RA, RRA, and SWA yielded the best results for the differential between the original 

and the sanitized datasets, i.e., dif(D ,D '). These results are available a t Appendix B.4.2.

Based on the results for dif(D ,D ’), a natural question arises: how can SW A, R A , and 

R R A  get the best results fo r  dif(D, D ’)  and not for misses cost? The main reason is th a t the 

victim  items in these three algorithms are dynamic, i.e., a  new victim item  is selected for 

each sensitive transaction  to  be sanitized. This approach reduces support of every item in 

a  sensitive rule (one item is selected for each sensitive transaction) regardless of whether an 

item  has high or low support. Reducing items with high support would prune the candidate 

generation of discovered rules in the sanitized dataset, compromising the values of misses 

cost. On the contrary, the victim  item selected by the IGA, for a sensitive rule, is fixed for 

all sensitive transactions. Moreover, the IGA always selects the item with lower support for 

each rule, which greatly improves the values of misses cost.

Regarding the th ird  performance measure, artifactual patterns, one may claim that 

when we decrease the frequencies of some items, the relative frequencies in the database 

may be modified by the sanitization process, and new rules may emerge. However, in

107

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



our experiments, the problem artifactual pa ttern  A P  was always 0% with all algorithms 

regardless of the values of ip. Our sanitization, indeed, does not remove any transaction. 

The same results could be observed for the algorithm  Algo2a. On the other hand, some of 

the sanitizing algorithms introduced in [142] present the case in which artifactual patterns 

appear (i.e., A P  > 0), since the sensitive rules are hidden by reducing their confidence below 

a privacy threshold. To do so, some items are added to  transactions tha t participate in the 

generation of the antecedent part X ,  but not the consequent part Y  of a rule, where the 

rule is the form X  —> Y . Adding items to some transactions results in the generation of 

new association rules th a t are not supposed to  exist in the original database.

7.2.5 Special Cases of D ata Sanitization

There are two special cases of data  sanitization regarding the data sharing-based algorithms 

validated in the previous section. The first case occurs only for the algorithm SWA, i.e., 

this algorithm has an advantage over the counterpart algorithms. The advantage is th a t 

SWA allows a database owner to  set a specific disclosure threshold for each sensitive rule. 

In our previous examples, we set the disclosure thresholds of all the sensitive rules with a 

unique value (ip =  0%). This specific disclosure threshold works as a weight. In m any cases, 

some rules are more im portant than  others. Thus, giving different disclosure thresholds to 

different rules is reasonable and may reflect real-world needs. For instance, let us consider 

the set of sensitive rules in scenario S3. Now we set the window size of SWA to  100,000 

transactions (K  =  100,000) and give different disclosure thresholds for each set of 6 rules 

in the four datasets, as follows: {[rule 1, 30%], [rule 2, 25%], [rule 3, 15%], [rule 4, 45%], 

[rule 5, 15%], and [rule 6, 20%]}, where for each ordered pair [rule i, i/'i], rule i represents 

a sensitive rule in each dataset, and ipi is the corresponding disclosure threshold. In this 

example, we obtained the following results for misses cost, hiding failure, and dif(£>, D ') as 

shown in Table 7.7.

Metric Kosarak Retail Reuters BMS-1
MC 37.22 31.07 46.48 8.68
HF 5.57 7.45 0.01 21.84
Dif(I?, D ') 1.68 1.24 0.63 0.70

Table 7.7: An example of different thresholds for the sensitive rules in scenario S3.

The second special case of data  sanitization occurs when data  owners slide the disclosure 

threshold (ip > 0) to allow miners to find a balance between knowledge discovery and 

privacy. This scenario is reasonable because here we are not disclosing personal information 

but special association rules th a t are strategic in decision making. Therefore, making a 

trade-off between privacy and data  for mining can be done as long as an application perm its 

it.
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While the algorithm Algo2a hides rules by reducing their absolute support below a 

privacy threshold controlled by the database owner, our proposed algorithms hide rules 

based on a disclosure threshold ip. Table 7.8 shows the effect of ip on misses cost and hiding 

failure for the set of sensitive rules (scenario S3) in the Kosarak dataset. We varied ip from 

0 to 25%. The results for the other datasets can be found in Appendix B.4.4. Since Algo2a 

does not allow the input of a disclosure threshold, it is not compared with our algorithms.

Algorithm

sso11-9- ip =  5% ip =  10% ip =  15% ip =  25%
MC HF MC HF MC HF MC HF MC HF

IGA 62.11 0.00 61.85 0.00 61.66 0.08 61.38 0.08 60.33 0.24
R. Robin 74.42 0.00 73.42 0.00 72.32 0.00 70.94 0.00 67,70 0.12
Random 74.37 0.00 73.32 0.00 72.36 0.00 70.87 0.00 67.73 0.00
SWA 72.70 0.00 67.03 0.00 59.56 0.75 53.06 3.81 39.87 17.83

Table 7.8: Effect of ip on misses cost (MC) and hiding failure (HF).

An im portant observation drawn from our special cases of data sanitization is tha t the 

values of misses cost can be improved. In the case of the algorithm SWA, having different 

disclosure thresholds reduces the values of misses cost. Similarly, sliding the disclosure 

threshold ip improves the values of misses cost. On the other hand, the values of hiding 

failure increase since misses cost and hiding failure are typically contradictory measures, 

i.e., improving one usually incurs a cost in the other.

7.2.6 CPU Time for the Sanitization Process

We tested the scalability of the sanitization algorithms vis-a-vis the size of the database as 

well as the number of rules to  hide. To do so, we selected the Kosarak dataset since it is 

the largest one used in our experiments. Our comparison study also includes the  algorithm 

Algo2a.

We varied the size of the original database D  from 150K transactions to 900K transac­

tions, while fixing the disclosure threshold ip =  0% and keeping the set of sensitive rules 

constant (6 original sensitive rules th a t are mutually exclusive). Figure 7.1(a) shows th a t 

our algorithms scale well w ith the database size. The algorithms IGA, RRA and RA yielded 

lower CPU tim e than th a t for SWA and Algo2a. In particular, Algo2a requires six scans 

over the original database (one to  hide each sensitive rule), while the algorithms IGA, RRA 

and RA require only two.

Although the algorithm SWA requires only one scan, it performs many operations in 

memory (e.g., sorting transactions in ascending order of size for each window), which de­

mands more CPU time as the dataset increases. Even though IGA, RRA, and RA require 

two scans, they are faster than  SWA. The main reason is tha t these algorithms perform a 

sort in memory only once.
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Figure 7.1: Results of CPU tim e for the sanitization process.

As can be observed, the algorithm s IGA, RRA, and RA increase CPU linearly, even 

though their complexity in main memory is not linear. If we increase the number of sensitive 

rules or even if we select a group of sensitive rules with very high support, these algorithms 

may not scale linearly. However, there  is no compelling need for sanitization to be a fast 

operation since it can be done offline.

The I/O  time (scans over the dataset) is also considered in these figures. This demon­

strates good scalability w ith the cardinality of the transactional database.

We also varied the number of sensitive rules to  hide from approximately 20 to 100 selected 

randomly, while fixing the  size of the  datase t Kosarak and fixing the support and disclosure 

thresholds to ip = 0%. Figure 7.1(b) shows th a t our algorithms scale well with the number 

of rules to hide. The values are plotted in logarithmic scale because the algorithm  AIgo2a 

requires one scan for each rule to  hide.

Although IGA requires 2 scans, it was faster than SWA in all the cases. The main 

reason is th a t the SWA performs a num ber of operations in main memory to  fully sanitize 

a database. The IGA requires one scan to build an inverted index where the vocabulary 

contains the sensitive rules and the occurrences contain the transaction IDs. In the second 

scan, IGA sanitizes only the transactions marked in the occurrences. Another interesting 

result observed was th a t over 40 rules, the SWA performed better than  the algorithm s RRA 

and RA. The reason is th a t the heuristic behind the SWA is optimized especially when 

there are rules with the intersection of items. Note tha t when the number of sensitive rules 

increases, the intersection of items among the rules tends to  increase as well. In this case, 

the SWA touches fewer transactions than  RRA and RA. As a result, SWA improves the 

performance as the number of rules to  hide increases since the number of sorts in memory 

is the same (one by window size) for the  dataset.

We should point out th a t the scalability of our sanitizing algorithms is mainly due to
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the inverted files we use in our approaches for indexing the sensitive transaction IDs per 

sensitive rule. There is no need to scan the database again whenever we want to access a 

transaction for sanitization purposes. The inverted file gives direct access with pointers to 

the relevant transactions. On the other hand, the CPU time for Algo2a is more expensive 

due to the number of scans over the database.

7.2.7 Discussion on the D ata Sharing-Based Algorithms

We have evaluated our da ta  sharing-based algorithms by performing a broad set of exper­

iments using real datasets. This evaluation was carried out to suggest guidance on which 

algorithms perform best under different conditions.

Our experiments dem onstrated th a t sanitization is not a trivial task. It can render the 

released database almost useless when not done properly. For this reason, we investigated 

different conditions under which a data  owner can tune the parameters of the sanitizing 

algorithms to get the m ost out of the sanitization process.

We have learned several lessons from the  experiments with our data  sharing-based algo­

rithms. In particular,

•  Large datasets are our friends: our results typically show th a t the best results of misses 

cost and hiding failure can be obtained as the dataset increases. The Kosarak dataset 

is a typical example.

•  Our algorithms scale well: in the worst case, we scan a  transactional dataset twice, 

one to  build the indexes and the other to sanitize the dataset. The SWA algorithm 

requires only one scan.

• The algorithm IGA performs very well: our experiments have demonstrated its out­

standing performance. In  almost all the cases, IGA yielded the best results in term s of 

misses cost and hiding failure. Exceptions occur in scenarios in which sensitive rules 

contain items w ith very high support. In this particular case, the algorithms SWA, 

RA, and RRA may present better results for misses cost.

• The data  sanitization paradox is real: minimizing the impact on the sanitized datasets 

does not guarantee the best results in terms of misses cost. We showed th a t even 

though the SWA has yielded the best results for the differential between the original 

and the sanitized datasets, it has not achieved the best results for misses cost.

7.3 Evaluation of the Pattern Sharing-Based Algorithms

After evaluating our d a ta  sharing-based algorithms, we now move on to evaluate our pattern  

sharing-based algorithm, called the Downright Sanitizing Algorithm (DSA), which is based
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on our Heuristic 3 (Section 5.4.1).

7.3.1 Sanitizing Algorithms

Recall tha t our sanitizing algorithms are classified into two m ajor groups: Data-Sharing 

approach and Pattern-Sharing approach. In the former, the sanitization acts on the d ata  to 

hide the group of sensitive association rules tha t contain sensitive knowledge. In the latter, 

the sanitizing algorithm acts on the rules mined from a database instead of the data itself. 

In this section, we focus on our algorithm DSA, which relies on the la tter category. The 

DSA removes sensitive rules before the pattern-sharing process. This sanitization process 

blocks possibilities of inferring sensitive rules tha t we call inference channels.

To our best knowledge, there are no known pattern  sharing-based algorithms for rule 

sanitization in the literature. However, data sharing-based algorithms can be used for this 

purpose. Indeed, in order to  sanitize a set of sensitive rules S r  (before sharing the patterns), 

one could use data sanitization to transform a database D  into D ' and then mine D ' to 

get the patterns to share. We used this idea to  compare our algorithm  to existing data 

sanitization approaches. In particular, we compare our algorithm  DSA with IGA since 

the latter has yielded the best results for data sanitization, as we reported in the previous 

section.

7.3.2 M ethodology

We performed two series of experiments: the first to evaluate the effectiveness of DSA, and 

the second to measure its efficiency and scalability.

We considered the same datasets used in the performance evaluation for our data sharing- 

based algorithms. In addition, we used the same sensitive rules selected for the validations 

of our data  sharing-based algorithms. Recall tha t such sensitive rules were selected based 

on four different scenarios (S1-S4).

Our comparison study was carried out through the following steps:

S te p s  fo r IG A  :

• Step 1: We used the algorithm IGA to  sanitize the sets of sensitive rules in the 

four initial datasets.

•  Step 2: We applied an association rule mining algorithm  on the sanitized datasets 

to extract the ru les/patterns to share.

S te p s  fo r D S A  :

• Step 1: We applied an association rule mining algorithm  to  extract rules from 

the four initial datasets.
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• Step 2: We used DSA to sanitize these rules before sharing the rules/patterns.

The goal of our experiments here is to answer the same question raised in the previous 

section: under which conditions can one use IGA or DSA to protect sensitive knowledge 

mined from transactional databases?

7.3.3 M easuring Effectiveness

The effectiveness is measured in terms of sensitive associations rules th a t can be recovered 

by an adversary, as well as the proportion of non-sensitive rules hidden inadvertently due 

to the sanitization.

In order to  com pare the sanitizing algorithms IGA and DSA under the same conditions, 

we set the disclosure thresholds 0  of the algorithm IGA to 0%. In this case, all sensitive 

rules are completely sanitized. We purposely set these thresholds to zero because DSA 

always sanitizes all the  sensitive rules.

Table 7.9 provides a summary of the best sanitizing algorithms in term s of misses cost 

when fixing th e  num ber of sensitive rules to be sanitized (6 rules). Further information 

on the values of misses cost can be found in Appendix B.3.1. The algorithm DSA yielded 

the best results in almost all the cases. The exceptions are the scenarios SI (the dataset 

Kosarak) and S4 (the datasets Retail and Reuters) in which the values of misses cost for 

IGA are slightly b e tte r than  those in DSA. In particular, we observed th a t IGA yielded the 

best results only when the sensitive rules had items with low support. This is the typical 

case in Scenario S4. The same case occurred in Scenario S i for the dataset Kosarak in which 

the rules selected were composed of items with low support. On the other hand, we can 

note th a t in Scenarios S2 (rules selected randomly) and S3 (rules with high support items), 

the algorithm DSA yielded the best results in all the cases, as expected.

Dataset 0  =  0%, 6 sensitive rules
SI S2 S3 S4

Kosarak IGA DSA DSA DSA
Retail DSA DSA DSA IGA
Reuters DSA DSA DSA IGA
BMS-1 DSA DSA DSA DSA

Table 7.9: Summary of the best algorithm s in terms of misses.

We also observed the  same behaviour of the sanitizing algorithms IGA and DSA in term s 

of misses cost when varying the number of rules to  be hidden. Table 7.10 shows a summary 

of the effect of misses cost on the four datasets. The results confirm the same finding we 

reported previously for the algorithms IGA and DSA. The only exceptions are the scenarios 

SI, S3, and S4 for the datasets Reuters, Retail and Kosarak, respectively. In these cases, 

IGA yielded the best results in terms of misses cost up to 3 sensitive rules being sanitized.
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As the number of sensitive rules increases, DSA yielded the best values in term s of misses 

cost.

D ataset ip = 0%, varying the no. of rules
SI S2 S3 S4

K osarak IGA DSA DSA IGA/DSA
Retail DSA DSA IGA/DSA IGA
Reuters IGA/DSA DSA DSA IGA
BMS-1 DSA DSA DSA DSA

Table 7.10: Sum m ary of IGA and DSA in term s of misses cost varying the number of rules.

We did not com pare the algorithms IGA and DSA when varying the minimum support 

threshold a  because DSA does not work on this condition. Once a  dataset is sanitized by 

DSA and the rem ain ru les/patterns are shared for mining, a d a ta  analyst can no longer 

change the param eter cr to  mine new ru les/patterns. In addition, we did not compare the 

algorithms IGA and  DSA in term s of dif(£>, D ') because this metric does not apply to DSA.

After com paring the algorithms IGA and DSA in term s of misses cost, we compared 

them in term s of th e  side effect factor. Table 7.11 summarizes the  results we observed in 

terms of the side effect factor. The details concerning the values of side effect factor for IGA 

and DSA can be found in Appendix B.C.

Note th a t the values in Table 7.11 are exactly the same as those in Table 7.9. These 

results were expected since misses cost and side effect factor are very similar measures.

D ataset ip =  0%, 6 sensitive rules
SI S2 S3 S4

Kosarak IGA DSA DSA DSA
Retail DSA DSA DSA IGA
Reuters DSA DSA DSA IGA
BMS-1 DSA DSA DSA DSA

Table 7.11: Summary of the best algorithms in term s of side effect factor.

After identifying the  side effect factor, we evaluated the recovery factor for DSA. This 

measure is not applied to  IGA since this algorithm  relies on d a ta  sanitization instead of 

pattern  sanitization. Thus, once the data are shared for mining, there is no restriction 

about the rules discovered from a sanitized database.

In the case of p a tte rn  sanitization, some inference channels can occur, as discussed in 

Section 5.4.2. We ran  a checklist procedure to evaluate the effectiveness of the sanitization 

performed by DSA. We then  checked for the existence of any subset of the sensitive rules 

removed in order to  identify the recovery factor. If all subsets of a rule were found, we 

assumed the rule could be recovered. As expected, DSA blocked both forward-inference and 

the backward-inference attacks. The results suggested th a t an adversary is highly unlikely
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Figure 7.2: Results of CPU  tim e for the sanitization process.

to be able to  reconstruct the sensitive rules after the sanitization performed by DSA.

7.3.4 C PU  Time for the Sanitization Process

We tested the scalability of the sanitization algorithms vis-a-vis the size of the database 

as well as the number of rules to hide. Again, we used the Kosarak dataset since it is the 

largest one used in our experiments.

We varied the size of the original database D  from 150K transactions to 900I< trans­

actions (150K, 300K, 450K, 600K, 750K, and 900K), while fixing the disclosure threshold 

ip =  0% for IGA and keeping the set of sensitive rules constant (6 original sensitive rules 

th a t were m utually exclusive). The transactions in the six sub-datasets were selected ran­

domly from the Kosarak dataset. Figure 7.2(a) shows tha t our algorithms scale well with 

the database size. In particular, the CPU tim e for the DSA decreases significantly as the 

size of the datasets increased. Note th a t the CPU time for the DSA strongly changed. The 

main reason is th a t the number of rules in these datasets did not increase linearly for the 

same value of ip. For instance, the datase t w ith 150k had many more rules than the dataset 

with 600K, resulting in this unexpected behaviour of the DSA. In contrast, the CPU time 

for the IGA increased linearly, as can be seen in Figure 7.2(a). Note th a t the IGA sanitizes 

transactions which increase linearly in our example, while the DSA sanitizes rules generated 

from the sub-datasets.

We also varied the number of sensitive rules to  hide from approximately 20 to  100 

selected randomly, while fixing the size of the dataset Kosarak and fixing the support and 

disclosure thresholds to  ip =  0%. Figure 7.2(b) shows th a t our algorithms scale well with 

the number of rules to hide. The values are plotted in logarithmic scale because of the 

significant difference between the CPU tim e for both algorithms. The absolute values of 

CPU tim e for the algorithms IGA and DSA can be found in Appendix B.5.
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The I/O  time (scans over the dataset) is also considered in these figures. This demon­

strates the good scalability of both algorithms with the cardinality of the transactional 

database and of the number of sensitive rules to be sanitized.

7.3.5 Discussion on the Pattern Sharing-Based Algorithms

We have evaluated our d a ta  pattern-based algorithms by performing a  broad set of experi­

ments using real datasets. O ur experiments demonstrated the evidence of attacks (inference 

channels) in sanitized databases. The figures revealed th a t DSA is a promising solution to 

protect sensitive knowledge before sharing association rules.

DSA has a  low value for side effect factor (and misses cost) and a  very low recovery 

factor. We have identified some advantages of DSA over the previous d ata  sharing-based 

sanitizing algorithms in the literature as follows:

• Using DSA, a database owner would share patterns (results) instead of the data itself.

• By sanitizing rules, one drastically reduces the possibility of inference channels since 

the support threshold and the mining algorithm are previously selected by the database 

owner.

•  Sanitizing rules instead of d a ta  results in no alteration in the support and confidence of 

the non-sensitive rules, i.e., the released rules have the original support and confidence. 

As a result, the released rules seem more interesting for practical applications. Note 

th a t the other approaches reduce the support and the confidence of the rules as a  side 

effect of the sanitization process.

On the other hand, DSA reduces the flexibility of information sharing since each time a 

th ird  party wants to try  a different set of support and confidence levels, it has to request 

the ru les/patterns from the d a ta  owner.

7.4 Evaluation of the Dimensionality Reduction-Based 
Transformation

We evaluate the dimensionality reduction-based transformation (DRBT) in this section. 

This data  transformation m ethod was proposed to address PPC. Our goal here is to show 

th a t by using DRBT, a d a ta  owner can achieve the dual-goal: protecting the underlying 

data  values subjected to  clustering and obtaining acceptable clustering results.

We do not evaluate the OSBR because this solution requires a simple computation of a 

dissimilarity matrix and the suppression of identifiers before the release of d a ta  for clustering. 

Most importantly, in Section 6.4 we showed analytically the security and accuracy of the 

OSBR. In addition, we analyzed the space requirements and communication costs for the
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OSBR. We concluded tha t section describing the advantages and disadvantages of using the 

OSBR for PPC. In particular, we showed th a t the OSBR is feasible to address PPC  over 

centralized data only. In the context of PPC  over vertically centralized data , the OSBR 

presents some limitations in terms of communication costs and security.

7.4.1 Methodology

We performed two series of experiments to evaluate the effectiveness of DRBT when address­

ing PPC  over centralized d ata  and PP C  over vertically partitioned data. O ur evaluation 

approach focused on the overall quality of generated clusters after dimensionality reduction. 

One question tha t we wanted to answer was:

What is the quality of the clustering results mined from  the transformed data 

when the data are both sparse and dense?

Our performance evaluation was carried out through the following steps:

•  Step 1: we selected the datasets Chess, Mushroom, Pum sb, Connect, and Accidents 

for our performance evaluation. These datasets are described in Section 7.1.

• Step 2: we normalized the a ttrib u te  values of the five real datasets mentioned in the 

previous step. To do so, we used the z-score normalization given in Equation (2.3). 

The results presented in the next sections were obtained after normalization.

•  Step 3: we considered random  projection based on two different approaches. First, the 

traditional way to  compute random  projection, by setting each entry of the random 

matrix R \ to a value drawn from an i.i.d. Af (0,1) distribution and then normalizing the 

columns to unit length. Second, we used the random m atrix R^ where each element 

rij is computed using Equation (2.12). We refer to the former random  projection as 

R P \ and the latter as RP%. We repeated each experiment (for random  projection) 5 

times. In the next section, we present results by showing only the average value.

• Step 4- we computed the relative error th a t the distances in d-k space suffer from, on 

the average, by using the stress function given in Equation (2.9). The stress function 

was computed for each dataset.

• Step 5: we selected K-means to find the clusters in our performance evaluation. Our 

selection was influenced by the following aspects: (a) K-means is one of the most 

known clustering algorithm and is scalable; (b) W hen using random projection, a 

perfect reproduction of the Euclidean distances may not be the best possible result. 

However, the rank order of the distances between the vectors is meaningful. Thus, 

when running K-means over the transformed data, one can find the clusters th a t would 

be mined from the original datasets with a reasonable accuracy.
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•  Step 6 : we compared how closely each cluster in the transform ed dataset matches 

its corresponding cluster in the original dataset. We expressed the quality of the 

generated clusters by computing the F-measure given in Equation (6.6). Considering 

th a t K-means is not deterministic (due to  its use of random  seed selection), we repeated 

each experiment 10 times. We then computed the minimum, average, maximum, and 

standard deviation for each measured value of F-measure.

We should point out that the steps described above were performed to  evaluate the 

effectiveness of the D RBT when addressing PP C  over centralized and vertically partitioned 

data.

7.4.2 Measuring the Effectiveness of the D R B T over Centralized 
Data

To measure the effectiveness of DRBT in PP C  over centralized data, we started  by com­

puting the relative error tha t the distances in d-k space suffer from, on the average. To do 

so, we used the two random  projection approaches (R P i and R P 2 ) mentioned in Step 3 of 

Section 7.4.1.

A word of notation: hereafter we denote the original dimension of a dataset as da and 

reduced dimension of the transformed dataset as dr . This notation is to  avoid confusion 

between the reduced dimension of a dataset (k ) and the num ber of clusters used as input of 

the algorithm K-means.

An im portant feature of the DRBT is its versatility to  trade privacy, accuracy, and 

communication cost. The privacy preservation is assured because random projection is a 

non-invertible transform ation, as discussed in Section 6.5.4. We here study the trade-off 

between accuracy and communication cost. The accuracy is represented by the error th a t 

the distances in da-dr space suffer from, while the communication cost is represented by the 

number of dimensions th a t we reduce in the datasets. We selected two datasets: Pum sb 

and Chess w ith 74 and 37 dimensions, respectively. We reduced the dimensions of these 

datasets and computed the  error. Figure 7.3(a) shows the error produced by R P\ and R P 2  

on the dataset Pum sb and Figure 7.3(b) shows the error produced by RP\ and RP 2  011 the 

dataset Chess. These results represent the average value of five trials. The error produced 

by R P\ and RP 2  on the other datasets are available a t  Appendix C .l.

We observed th a t, in general, RP 2  yielded the best results in term s of the error produced 

on the datasets (the lower the better). In the dataset Chess the  difference between R P 2  

and R P \ was not significant. These results confirm the same findings in [16] and backup 

the theory of random projection (the choice of the random  m atrix) proposed in [1], We 

noticed from the figures that the DRBT trades well accuracy (error) and communication 

cost (number of reduced dimensions) when the d a ta  are reduced up to 50% of the dimensions.
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Figure 7.3: (a) The error produced on the dataset Pum,sb (da — 74); (b) The error produced 
on the dataset Chess (d0  =  37).

In this case, the trade-off between the error and the communication cost is linear. However, 

reducing more than  50% of the dimensions, the communication cost is improved but the 

accuracy is compromised since the error produced on the datasets grows faster. Therefore, a 

da ta  owner should consider carefully this trade-off before releasing some data  for clustering.

After evaluating the error produced on the datasets, we used the algorithm K-means to 

find the clusters in the original and transformed datasets. We varied the number of clusters 

from 2 to 5 in the five datasets. Subsequently, we compared how closely each cluster in the 

transformed dataset matches its corresponding cluster in the original dataset by computing 

F-measure given in Equation (6.6).

Table 7.12 shows the results of F-measure for the Accidents dataset. We reduced the 

original 18 dimensions to  12. We repeated each experiment 10 tim es and computed the 

minimum, average, maximum, and standard deviation for each measured value of F-measure. 

We simplify the results by showing only one dataset (Accidents). T he values of F-measure 

for the other datasets can be found in Appendix C.2. Note th a t we computed the values 

of F-measure only for the random projection RP 2  since its results were slightly better than 

those yielded by R P i.

D ata k = 2 k =  3
Transformation Min M ax Avg Std Min Max Avg Std

r p 2 0.931 0.952 0.941 0.014 0.903 0.921 0.912 0.009

D ata
Transformation

k =  4 k =  5
Min Max Avg Std Min Max Avg Std

R P i 0.870 0.891 0.881 0.010 0.878 0.898 0.885 0.006
Table 7.12: Average of F-measure (10 trials) for the Accidents dataset (da =  18, dr =  12).

We noticed th a t the values of F-measure for the Chess and Connect datasets (see Ap-
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pendix C.2) were relatively low when compared with the results of F-measure lor the other 

datasets. The main reason is th a t the data points in these datasets are densely distributed. 

Thus, applying a partitioning clustering algorithm (e.g., K-means) to datasets of this nature 

increases the number of misclassilied d a ta  points. On the other hand, when the attribu te  val­

ues of the objects are sparsely distributed, the clustering results are much better. Consider, 

for example, the Iris dataset available at the UCI Repository of Machine Learning Databases

[17]. Iris is perhaps the best known database to be found in the pattern  recognition litera­

ture. This dataset has two clusters well defined and the data  are sparsely distributed. We 

reduced the original 5 dimensions to 3. Then we applied random projection RP 2  to the Iris 

dataset and computed the minimum, average, maximum, and standard  deviation for each 

measured value of F-measure. We repeated each experiment 10 times. Table 7.13 shows 

th a t the standard  deviation for two clusters (k =  2) was zero and the average of F-measure 

was one.

D ata k = 2 k = 3
Transform ation Min Max Avg Std Min Max Avg Std

r p 2 1.000 1.000 1.000 0.000 0.094 0.096 0.948 0.010

D ata
Transform ation

k =  4 k =  5
Min Max Avg Std Min Max Avg Std

r p 2 0.773 0.973 0.858 0.089 0.711 0.960 0.833 0.072

Table 7.13: Average of F-measure (10 trials) for the Iris dataset (da — 5, dr =  3).

7.4.3 Measuring the Effectiveness of the DRBT over Vertically Par­
titioned Data

Now we move on to  measure the effectiveness of DRBT to address PPC  over vertically par­

titioned data . To do so, we split the Pumsb dataset (74 dimensions) from 1 up to  4 parties 

(partitions) and fixed the number of dimensions to  be reduced (38 dimensions). Table 7.14 

shows the number of parties, the number of a ttribu tes per party, and the number of a t­

tributes in the  merged dataset which is subjected to  clustering. Recall th a t in a vertically 

partitioned d a ta  approach, one of the parties will centralize the d ata  before mining.

No. of parties No. of attributes per party No. of attributes 
in the merged dataset

1 1 partition  w ith 74 attributes 38
2 2 partitions with 37 attributes 38
3 2 partitions with 25 and 1 with 24 attributes 38
4 2 partitions w ith 18 and 2 with 19 attributes 38

Table 7.14: An example of partitioning for the Pum sb dataset.

In this example, each partition with 37, 25, 24, 19, and 18 attributes was reduced to  19,
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Figure 7.4: The error produced on the dataset Pumsb over vertically partitioned data.

13, 12, 10, and 9 attributes, respectively. We applied the random projections R P \ and RP 2  

to  each partition and then merged the  partitions in one central repository. Subsequently, 

we computed the stress error on the  merged dataset and compared the error w ith tha t 

one produced on the original dataset (without partitioning). Figure 7.4 shows the error 

produced on the Pum sb dataset in th e  vertically partitioned data approach. As we can see, 

the results yielded by R P 2  were again slightly better than those yielded by R P \.

Note th a t we reduced approxim ately 50% of the dimensions of the dataset Pum sb and the 

trade-off between accuracy and communication cost is still efficient for P P C  over vertically 

partitioned data.

We also evaluated the  quality of clusters generated by mining the merged dataset and 

comparing the clustering results w ith those mined from the original dataset. To do so, we 

computed F-measure for the merged dataset in each scenario, i.e., from 1 up to 4 parties. We 

varied the number of clusters from 2 to  5. Table 7.15 shows values of F-measure (average and 

standard  deviation) for the Pum sb datase t over vertically partitioned data. These values 

represent the average of 10 trials considering the random projection i? /V

No. of 
parties

k =  2 k =  3 k =  4 k =  5
Avg Std Avg Std Avg Std Avg Std

1 0.909 0.140 0.965 0.081 0.891 0.028 0.838 0.041
2 0.904 0.117 0.931 0.101 0.894 0.059 0.840 0.047
3 0.874 0.168 0.887 0.095 0.873 0.081 0.801 0.073
4 0.802 0.155 0.812 0.117 0.866 0.088 0.831 0.078

Table 7.15: Average of F-measure (10 trials) for the Pumsb dataset over vertically parti­
tioned data.

We notice from Table 7.15 th a t the  results of F-measure slightly decrease when we 

increase the number of parties in the scenario of PPC  over vertically partitioned data. 

Despite this fact, the DRBT is still effective to address PPC  over vertically partitioned data
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in preserving the quality of the clustering results as measured by F-measure.

7.4.4 Discussion on the DR BT W hen Addressing PPC

The evaluation of the DRBT involves three im portant issues: security, communication cost, 

and quality of the clustering results. We discussed the issues of security in Section 6.5.4, 

based on Lemma 4, and the issues of communication cost and space requirements in Sec­

tion 6.5.6. In this Section, we have focused on the quality of the clustering results.

We have evaluated our proposed d a ta  transform ation method (DRBT) to address PPC. 

We have learned some lessons from this evaluation, as follows:

• The application domain o f the DRBT: we observed th a t the DRBT does not present 

acceptable clustering results in term s of accuracy when the data subjected to clustering 

are dense. Slightly changing the  distances between d ata  points by random  projection 

results in misclassification, i.e., points will migrate from one cluster to another in 

the transformed dataset. This problem  is somehow understandable since partitioning 

clustering methods are not effective to find clusters in dense data. The Connect dataset 

is one example which confirms this finding. On the other hand, our experiments 

dem onstrated tha t the quality of the clustering results obtained from sparse data  is 

promising.

• The versatility of the DRBT: using the  DRBT, a da ta  owner can tune the number of 

dimensions to  be reduced in a dataset trading privacy, accuracy, and communication 

costs before sharing the dataset for clustering. Most importantly, the D RBT can be 

used to  address P P C  over centralized and vertically partitioned data.

• The choice of the random matrix: from the performance evaluation of the DRBT we 

noticed th a t the random  projection RP^ yielded the best results for the error produced 

on the datasets and the values of F-measure, in general. The random projection RP 2  

is based on the random m atrix proposed in Equation (2.12).

7.5 Summary

In this chapter, we have empirically evaluated our proposed privacy-preserving d a ta  trans­

formation (PPD T ) methods for privacy-preserving association rule mining (PPARM ) and 

privacy-preserving clustering (PPC).

In the context of PPARM, we noticed th a t sanitization is a  challenging task. It can render 

a  released database almost useless when not done properly. To alleviate the difficulties of 

sanitizing a database, we investigated different conditions under which a d a ta  owner can 

tune the param eters of our sanitizing algorithms to get the most of the sanitization process.
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We evaluated our data  sharing-based and pattern  sharing-based algorithms by perform­

ing a broad set of experiments against real datasets. This evaluation was carried out to 

suggest guidance on which algorithms perform best under different conditions. In particular, 

we observed th a t the algorithm IGA (Item Grouping Algorithm) presented an outstanding 

performance in our experiments. In almost all the cases, IGA yielded the best results in 

term s of misses cost and hiding failure. Another interesting point observed from our exper­

iments was the fact th a t the best results of misses cost and hiding failure were obtained as 

we increased the size of the datasets.

Regarding our proposed pattern  sharing-based algorithm (DSA), we noticed that this 

algorithm  has a  low value for side effect factor (and misses cost) and a very low recovery fac­

tor. O ur experiments dem onstrated the evidence of attacks (inference channels) in database 

sanitized by DSA. We discussed the advantages and disadvantages of DSA and showed in 

which scenarios a data  owner could use this algorithm.

In the context of PPC , we did not evaluate the Object Similarity-Based Representation 

(OSBR) because this solution requires a simple computation of a  dissimilarity matrix and 

the  suppression of identifiers before the release of data  for clustering. Rather, we analytically 

showed in Section 6.4 the aspects of security and accuracy of the OSBR and analyzed the 

space requirements and communication costs required by the OSBR. The key finding of our 

investigation was th a t the OSBR is feasible to address P P C  over centralized data  only since 

the  OSBR presents some limitations in terms of communication costs and security when 

addressing P P C  over vertically partitioned data.

On the  other hand, we dedicated special attention to evaluate the dimensionality reduction- 

based transform ation (DRBT). We empirically evaluated this data transform ation method 

to  address PPC . We showed th a t using the DRBT a d ata  owner can not only protect the 

underlying data  values subjected to clustering but also obtain valid clustering results.

The evaluation of the DRBT was based on three im portant issues: security, commu­

nication cost, and quality of the clustering results. We discussed the issues of security in 

Section 6.5.4 and the issues of communication cost and space requirements were discussed 

in Section 6.5.6. We then dedicated this section to  study the effectiveness of the DRBT in 

terms of the quality of the clustering results. From the performance evaluation, we suggested 

guidance on which scenario a d a ta  owner can achieve the best quality of the  clustering when 

using the DRBT. We also suggested guidance on the choice of the random m atrix to obtain 

the best results in term s of the error produced on the datasets and the values of F-measure.

The highlights of the DRBT are as follows: a) it is independent of distance-based clus­

tering algorithms; b) it has a sound mathematical foundation; c) it does not require CPU­

intensive operations; and d) it can be applied to address PPC  over centralized data  and 

P P C  over vertically partitioned data.
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Chapter 8

Conclusions and Future Work

There are two kinds of people, 

those who finish what they start and so on.

-  Robert Byrne

The end is the crown o f any work.

-  Russian Proverb

8.1 Summary

Privacy-preserving data  mining (PPDM ) is one of the newest trends in privacy and security 

research. It is driven by one of the m ajor policy issues of the  information era - the right to 

privacy. Although this research field is very new, we have already seen great interests in it: 

a) the recent proliferation in PPD M  techniques is evident; b) the  interest from academia 

and industry has grown quickly; and c) separate workshops and conferences devoted to  this 

topic have emerged in the last few years.

Privacy issues have posed new challenges for novel uses of da ta  mining technology. These 

technical challenges cannot simply be addressed by restricting d a ta  collection or even by 

restricting the secondary use of information technology. An approxim ate solution could 

be sufficient, depending on the application since the appropriate level of privacy can be 

interpreted in different contexts. In some applications (e.g., association rules, classification, 

or clustering), an appropriate balance between a need for privacy and knowledge discovery 

should be found.

In this thesis, we addressed the  problem of transforming a database into a new one that 

conceals sensitive information while preserving the general patterns and trends from the 

original database. The sensitive information is not limited to  personal data , but may reflect 

customers’ purchasing behaviour, financial, medical, and insurance liability information and 

sensitive patterns, considered sensitive patterns for strategic or competitive reasons by the 

caretaker or owner of the data.
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The transformation applied to the database occurs before the sharing of d a ta  for mining. 

We focused primarily on PPDM , notably in the context of the mining tasks: a) association, 

■rules which describe interesting relationships among items grouped together in a sufficient 

number of examples; and b) clustering which is concerned with grouping objects into classes 

of similar objects.

We investigated the feasibility of achieving PPDM  by data transformation. Our thesis 

was th a t privacy preservation in data mining, by data transformation, is to some extent 

possible. We dem onstrated empirically and theoretically the practicality and feasibility of 

achieving PPDM . In particular, we showed th a t a trade-off between privacy preservation 

and knowledge discovery can be accomplished when addressing privacy preservation in as­

sociation rule mining and clustering.

Four major issues were addressed to support the central thesis statem ent of this research, 

as follows:

1. It is possible to  transform  a database by protecting the attribute values of objects 

subjected to  clustering and get valid clustering results, i.e., the clusters generated in 

the transformed database are very similar to those mined from the original database.

2. I t is possible to  protect sensitive knowledge discovered from databases w ithout losing 

the benefit of mining the transform ed database.

3. I t is possible to  quantify the disclosure of sensitive knowledge discovered from a trans­

formed database.

4. I t is possible to  measure the information loss in a transformed database available for 

association rule mining.

8.2 Contributions

We now summarize the main contributions accomplished in this research. These contribu­

tions are parts of a  novel framework for privacy preservation in data mining:

1. T ow ard  fo u n d a tio n s  o f  P P D M : We have laid down the foundations for further 

research in the area of PPDM  in Chapter 3. In particular, we described the problems 

we face in defining what information is private in data  mining, and discuss how privacy 

can be violated in data mining. We described the basis of PPDM  including the his­

torical roots, the definition of privacy preservation in data  mining, and models of d a ta  

miners in PPDM . We then analyzed the implications of standard privacy principles 

in knowledge discovery and suggested some policies for PPDM  based on these privacy 

principles. Subsequently, we suggested some desirable privacy requirements th a t are
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related to  industrial initiatives. These requirements are essential for the development 

and deployment of technical solutions and will allow vendors and developers to make 

solid advances in the future of PPDM .

2. A  ta x o n o m y  o f P P D M  te c h n iq u e s : We surveyed the existing PPDM  techniques in 

the  literature and proposed a taxonomy including such techniques, which is described 

in C hapter 4.

3. A  fa m ily  o f  p r iv a c y -p re se rv in g  m e th o d s : Addressing privacy preservation in 

d a ta  mining requires different kinds of d a ta  transform ation since the mining tasks are 

versatile. We proposed a family of privacy-preserving data transform ation (PPD T) 

m ethods for protecting privacy before da ta  are shared for association rule mining and 

clustering. These methods are described in C hapter 5 and Chapter 6, respectively. 

A lthough our framework has been designed to  address privacy issues in association 

rules and clustering, it can be extended to  encompass data  transform ation for privacy- 

preserving classification.

4. A  l ib r a r y  o f  a lg o rith m s: To a tta in  privacy preservation in association rule mining 

and clustering, we proposed a library of algorithms. Such algorithms were designed 

taking into account heuristics for our P P D T  m ethods presented in C hapter 5.

5. R e tr ie v a l  fac ilities: These retrieval facilities were specifically designed for our san­

itizing algorithm s described in Chapter 5. These algorithms are applied to  protect 

sensitive knowledge in association rule mining. As mentioned in Section 2.1.2, pattern  

discovery may require various scans over a transactional database. To speed the pro­

cess of hiding sensitive knowledge in transactional databases, our framework is built on 

an  index. As a  consequence, our algorithms require only two scans to  protect sensitive 

knowledge regardless the number of association rules to be hidden: one scan to  build 

an inverted index, and the other scan to  hide the sensitive rules. O ther techniques in 

the literature  require multiple scans [12, 37, 126].

6. A  s e t  o f  m e tric s : Since there is no exact solution to  address privacy preservation in 

d a ta  mining, we need to be able to measure how much sensitive information is disclosed 

and verify the usefulness of the data after the transform ation process. To evaluate our 

m ethod for association rule mining, we proposed a set of metrics to measure not only 

how much sensitive knowledge has been disclosed, but also to measure the effectiveness 

of the proposed algorithms in term s of information loss and in term s of non-sensitive 

rules removed as a side effect of the transform ation process. In the context of privacy- 

preserving clustering, we used standard measures to  evaluate information loss (e.g.,
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stress function) and the sim ilarity between the clusters generated before and after 

dimensionality reduction (e.g., F-measure).

8.3 Future Research

Several directions can be exploited as a  continuation of this research. We discuss a few 

technical challenges in this section and categorize them into two major groups: Challenges 

left to explore and Future research trends. In the former, we describe some issues and open 

questions left to explore in the context of our framework. In the latter, we point to some 

technical challenges as future research trends in PPDM.

8.3.1 Challenges Left to Explore

We describe some challenges and open questions left to explore in the domain of our frame­

work, as follows:

•  P r iv a c y  defin ition : The concept of privacy is often more complex than  realized. 

In data  mining, the definition of privacy preservation is still unclear and there is 

no consensus about this topic. There is very little literature related to  this topic. 

A notable exception are the contributions presented in [29] and in [108]. Although 

our work described in [108] is preliminary and conceptual in nature, it is a vital 

prerequisite for the development and deployment of new techniques. Issues of privacy 

in d ata  mining will certainly play a  significant role in the future of this new area.

• C o m b in in g  sa n itiz a tio n  a n d  ra n d o m iz a tio n : The optimal sanitization is an NP- 

hard problem [12]. We have showed th a t sanitization is a challenging problem and it 

is sometimes restrictive. To reduce the side effect of the sanitization process one could 

combine sanitization and random ization under the same framework. On the one hand, 

randomization does not remove item s from a dataset. On the other hand, random­

ization in general introduce false drops to  the data, i.e., some patterns th a t are not 

supposed to exist in the original database. A hybrid approach balancing sanitization 

and randomization would be interesting to expand our framework with probabilistic 

analysis to supplement the empirical and theoretical results. The technical question 

raised by this approach is: how much can this hybrid approach improve the trade-off 

between privacy preservation and knowledge discovery? This problem deserves further 

exploration.

• N e w  m e th o d  fo r P P C : Is it possible to combine data perturbation m ethods or even 

the /c-anonymity model with isometries to address PPC? The essential characteristic 

of an isometry is that distances between objects are preserved in the process of moving
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them in a rl-dimensional Euclidean space (e.g., rotation, translation). The challenge 

here is due to the fact that, in general, isometries are invertible [3-5, 96). Although one 

approach based on isometries maintains the distances between data points, such an 

approach cannot offer formal proofs of security. Regarding fc-anonymity, this model 

ensures th a t a release provides k-anonymity protection if the information for each 

person contained in the  release cannot be distinguished from a t least k — 1 individuals 

whose information also appears in the release [134], One drawback of this approach 

is tha t a data owner would have to greatly reduce a  released database to achieve fc- 

anonymity. Regarding d ata  perturbation methods, such m ethods modify the similarity 

between objects to preserve privacy. We believe th a t combining the strength of data 

perturbation, isometries, and fc-anonymity is to  some extent possible to address PPC 

trading privacy preservation and knowledge discovery. This investigation requires 

further examination.

8.3.2 Future Research Trends

Here we discuss some future research trends in PPDM , as follows:

•  P r iv a c y  p re s e rv a tio n  in  sp o k e n  lan g u ag e  d a ta b a se s : Goal-oriented spoken di­

alog systems aim a t identifying intents of humans expressed in natural language and 

taking actions accordingly [136]. In general, spoken dialog systems are trained using 

large amounts of task d ata  which are usually transcribed and then labeled by humans. 

In the customer care domain, “labeling” means assigning one or more of the defined 

intents to each utterance. As an  example, consider the u tterance I  would like to pay 

m y bill, in a customer care application. Assuming th a t the utterance is recognized 

correctly, the corresponding intent would be Pay (Bill) and the action would be learn­

ing the caller’s account number and credit card number. The transcribed and labeled 

d ata  are then used to  train  autom atic speech recognition. Clearly, the sharing and 

reusing of such d a ta  is extremely im portant for research and development in spoken 

language processing. However, the sharing of such d a ta  requires privacy safeguards 

since the data  may include personal information such as social security numbers and 

credit card numbers, th a t must be sanitized and /o r anonymized. In this scenario, 

the sanitization process should act on the text databases to hide personal information 

meeting some privacy requirements. On the other hand, the quality of the data must 

be preserved after the sanitization. How can one hide task-dependent named entities 

to preserve the privacy of speakers and maintain the text databases useful for training 

spoken dialog systems?

• S a n itiz a tio n  o f d o c u m e n t re p o s ito rie s : A more challenging scenario is to sanitize 

document repositories on the Web to  protect private information against sophisticated
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tools to browse and analyze data. Preserving privacy on the Web has an important 

impact on many Web activities and Web applications. In particular, mining Web 

activities while preserving privacy is a complex problem. The ease access to infor­

mation on the Web, coupled with the ready availability of personal data, also made 

it easier and more tem pting for interested parties (e.g., businesses and governments) 

to willingly or inadvertently intrude on individuals’ privacy in unprecedented ways. 

Undoubtedly, public d a ta  are very im portant in the context of machine learning, data 

mining, information retrieval, and natural language processing research. However, 

before the sharing of such data for research purposes, sanitization could be used to 

protect the privacy of individuals. One im portant example is th e  sharing of medical 

reports of patients which facilitates the medical research significantly [122]. The pri­

mary goal in this context is how to sanitize document repositories to  protect private 

information th a t exists as a result of availability of document repositories.

•  P P D M  o n  th e  W eb: Privacy issues on the Web have a ttrac ted  a lot of attention 

due to the growth of e-commerce and e-business. These issues are further complicated 

by the global and self-regulatory nature of the Web.

Clearly, privacy issues on Web data  is an umbrella th a t encompasses many Web appli­

cations such as e-commerce, stream data  mining, m ultim edia mining, among others. 

In particular, a  common framework for PPDM  should be conceived, notably in terms 

of definitions, principles, policies, and requirements. The advantages of a framework of 

tha t nature are as follows: (a) a  common framework will avoid confusing developers, 

practitioners, and many others interested in PPD M  on the Web; (b) adoption of a 

common framework will inhibit inconsistent efforts in different ways, and will enable 

vendors and developers to  make solid advances in the future of research in PPDM on 

the Web.

The success of a framework of this nature can only be guaranteed if it is backed up by a 

legal framework, such as the Platform for Privacy Preferences (P3P) Project [79, 115]. 

This project is emerging as an industry standard providing a simple, autom ated way 

for users to gain more control over the use of personal information on Web sites they 

visit.

The European Union has taken a lead in setting up a  regulatory framework for Internet 

Privacy and has issued a  directive which sets guidelines for processing and transfer of 

personal d a ta  [47].
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Appendix A

C om plexity o f the Sanitizing  
Algorithm s

A .l Analysis of the Data Sharing-Based Algorithms

A .l . l  The Running Time of the Round Robin Algorithm
Theorem 1 The running tim e o f the Round Robin algorithm is 0 ( n i  x N  x log N ), in the 
worst case, where n \ is the number o f sensitive rules and N  is the number of transactions 
in the database.

Proof. Let D  be a transactional database, N  the number of transactions in D, n \ the 
number of sensitive rules in D, n 2  the maximum number of items in a  sensitive rule, and 
let n ,3 the maximum number of items in one transaction.

In Step 1 , first the item s in each transaction are sorted in alphabetic order. So line 4 
takes n 3  log n 3. Then, for each association rule sr* S S r ,  the algorithm  verifies if such rule 
is present in the current transaction  t. To do so, in line 6  the algorithm  binary searches, 
in the worst case, all item s of the rule srj in the transaction t to  make sure tha t this 
rule is present in t. This entire process encompasses n 2  binary searches over a transaction 
with at most 723 items, so th a t line 6  takes x log n 3. Line 7 contains a straightforward 
computation 0 (1 ). Because the loop from line 5 to 9 is executed n \  times, this whole loop 
takes n \ x ?r2 x log 723 +  7 1 1 . Now the outer loop from line 3 to  10 is performed N  times. So 
the running tim e for Step 1 takes 0 ( N  x n 3  log n 3 + N  x n \  x n 2  x  log n 3 + N  x n i). When 
N  and m  are large, N  x  m  x  no x  log 11,3 grows faster than  N  x  723 log 723 and N  x  n \. 
Therefore, Step 1 takes 0 ( N  x n \ x n 2 x  log n 3).

In Step 2 , line 13, in the  worst case all transactions in D  are sensitive. Thus, the sort 
of sensitive transactions takes N lo g N . Line 14 is a straightforward computation and takes 
0 (1 ). The entire loop from line 12 to  16 takes 0 (n i  x N lo q N  +  n i)  th a t can be simplified 
to 0 (t2 i x N logN ).

In step 3, the inner loop from line 19 to 23 is performed N  times, i.e., in the worst case 
all transactions are marked to  be sanitized. Lines 20 and 22 encompass straightforward 
computations. So the inner loop in step 3 takes O (N ). The loop from line 18 to  24 is 
performed n i times. Thus, the running time for step 3 takes 0 ( n i  x N ).

In step 4, line 26, the algorithm  sorts the vector V ic tim s  in alphabetic order of tjo -  
This sort takes N logN  considering th a t all transactions are marked to  be sanitized. The 
loop from line 28 to 33 is performed N  times (second scan). In line 30, considering th a t 
the items in all transactions in D  were sorted in step 1 (line 4), the process of sanitizing 
the items in line 30 encompasses a t most 723 binary searches in case of all items are victim 
items. So line 30 takes n 3  log n 3  and the loop from line 28 to  33 takes N  x  n 3 log n 3. Thus, 
the running time for step 4 takes 0 (N lo g N  + N  x  n 3  log 7 2 3). W hen N  is large, N lo g N  
grows faster than  N  x n 3  log n 3. Thus, step 4 takes O (N logN ).

The running time of the Round Robin algorithm is the sum of running times for each 
step executed, i.e., 0 ( N  x  n \ x  n 2 x  log n 3  +  ni x  N lo g N  +  72i x JV +  NlogN ). When N  
and 77,1 are large, ni x N lo g N  grows faster than  N  x  n \ x n 2  x log n 3, m  x N , and N logN . 
Hence, the running time of the Round Robin algorithm takes 0 ( n \  x N x l o g  N).  □
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A. 1.2 The Running Time of the Item Grouping Algorithm
Theorem 2 The running time of the Item  Grouping algorithm is 0 (n \  x N  x log N ), in the 
worst case, where ?Xi is the number o f sensitive rules and N  is the number o f transactions 
in  the database.

Proof. Let D  be the source database, N  the number of transactions in D, n \ the number 
of sensitive rules in D, a? the maximum number of items in a sensitive rule, and ;x3 the 
maximum number of items in one transaction.

The only difference in step 1, between the Item  Grouping algorithm (IGA) and the 
Round Robin algorithm (RRA), is in lines 4 and 5 of IGA. In these lines, IGA keeps the 
frequencies of all the items in the database D. This computation is simple and takes 
0 (7x3  x N ) since it is performed N  times. However, the loop from line 7 to  11 is still the 
most expensive computation in step 1. From Theorem 1, we know th a t this computation 
takes 0 ( N  x « ] X  7x2 x log 7 1 3).

From Theorem 1, we also know th a t step 2 takes 0 (n \  x Nl ogN)  and step 4 takes 
O(Nl ogN) .

Now we move on to analyzing step 3. From step 3.1 to 3.3, the following computations 
are performed: (a) group the sensitive rules in groups sharing the same items. To optimize 
this step, IGA verifies which rules share the item with highest frequency in all sensitive 
rules S r . IGA then clusters the next sensitive rules sharing the second highest frequency 
in all sensitive rules S r , and this process continues until the clusters w ith one sensitive 
rule are formed; (b) If two or more clusters share more than one item and these clusters 
have the same size, IGA favors the cluster whose rules share the lowest frequency item. 
T he rationale behind this selection is th a t this item will be the victim item  of these rules 
(for all sensitive transactions), and removing this item results in less combinations of rules 
affected in the sanitized database. In each cluster formed, IGA eliminates directly the rules 
already clustered which greatly optimizes the step 3.3. For instance, if ru l e  1, rul e2 ,  and 
ru l e3  share the highest frequent item in all sensitive rules S r , these rules are automatically 
elim inated from the other clusters w ith rules sharing item(s) with lower frequencies. Before 
clustering the rules in step 3.1, IGA scans all items in the sensitive rules to  compute their 
frequencies. This procedure takes 0 ( n i  x 712). IGA then sorts the items in descending order 
of frequencies which takes 0 ( n i  x 7x2  x log n \  x 7 22). Steps 3.2 and 3.3 are computed as 
follows: IGA scans the sensitive rules again and checks whether the highest frequent item 
is one of the items in the current rule. If so, th a t rule is marked, i.e., it is grouped in the 
cluster sharing the item with highest frequency and this rule will no longer be scanned again. 
This process continues until the clusters with one sensitive rule are formed. Thus, steps 3.2 
and 3.3 takes 0 (n i  x 712) since IGA scans all items (7 1 2) in all rules (7x1 ), in the  worst case. 
In doing so, the rules will be grouped (in case some of them  share one or more items) in 
one scan. Therefore, steps 3.1 to  3.3 takes 0 { n \  x ?i2 x log n \ x 71 2). Now, we know from 
Theorem 1 th a t step 3.4 (lines 33-38) takes 0 (n i  x N ). When N  and ?xi are large, 711 x N  
grows faster than 7x1 x 7x2  x log n \  x rx2. Thus, the running time for step 3 is 0(?xi x Ar).

T he running time of the Item  Grouping Algorithm is the sum of the running times for 
each step executed, i.e., 0 { N  x 7x1 x 712 x log tx3 +?xi x N logN  +  7x1 x N  + Nl ogN) .  When N  
and 7x1 are large, x N lo g N  grows faster than  N  x m  x 7x2  x log tx3 , 7X] x N , and NlogN.  
Hence, the running time of the Item  Grouping algorithm takes 0 (7x1 x N  x  log N) .  □

A. 1.3 The Running Time of the Sliding Window Algorithm
Theorem 3 The running tim e o f the SW A is 0 (n t  x N x l o g  K )  when ip ^  0 and 0 { n \ix N  x K )  
when ip = 0, where rzj is the initial number of sensitive rules in the database D, K  is the 
window size chosen, and N  is the number of transactions in D.

Proof. Let D  be the source database, N  the number of transactions in D , 7x1 the initial 
number of sensitive association rules selected in D, 7x2 the maximum number of items in a 
sensitive association rule, 7x3  the  maximum number of items in a transaction t 6  D , K  the 
num ber of transactions in a sliding window, and M p  a set of mining permissions in which 
each permission is defined as m p = < sri,ipi > , where Vi sr, is a sensitive rule and ipi is the 
corresponding disclosure threshold.

In line 5 of Step 1, first the items in each transaction are sorted in alphabetic order. So 
line 5 takes 7x3 log t x 3 . Then, for each sensitive association rule sr, € S r , the algorithm 
verifies if such rule is present in the current transaction t. To do so, the algorithm  performs, 
in the worst case, 7x2 (items in s r ,)  binary searches in the transaction t to  make sure tha t the 
items in s?-,; are present in t. If the transaction t is sensitive (generates a t least one sensitive
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rule), its ID is added to the list of transaction IDs of the corresponding s i j .  In addition, the 
size of the transaction is added to  the list of transaction size, and the frequency of itenij € s u  
and itenij £ £ is updated. Line 7 encompasses ?r2 binary searches over a transaction with 
at most n 3  items. Lines 8, 9, 10, and 11 are straightforward com putations, so that the loop 
from line 6 to 13 takes 0 ( n l  x (n2 x log n 3 +  c)), where c is a  constant. Because step 1 is 
performed 1< times, the running time of step 1 takes 0 { K  x (n3 log n 3+ n i x n 2 x log n 3 +c)).  
When n i is large, step 1 takes 0 ( K  x m  x ?z2 x log n 3).

In line 16 of Step 2, the vector of frequencies computed in the  previous step contains 
a t most ?7,i x i i 2  items, when all items in the sensitive rules are present in the transaction 
I. The running time to  sort this vector takes 0 {n \  x ?72 x log (?ii x n 2)). The selection 
of the victim item in line 21 and line 23 are straightforward com putations tha t takes 0 (1 ) 
per sensitive rule since the  vector of frequencies is already sorted. Thus, the loop from line 
17 to 25 takes 0 (? ii) since it is executed m  times. Considering th a t step 2 is executed K  
times, the running tim e in step 2 takes 0 ( K  x (nj x n 2 x log (ni x n 2)) +  ?ii), which can 
be simplified to 0 ( K  x i i \  x ?i2 x log (?zi x n 2)).

Line 31 of Step 3 contains a straightforward com putation th a t takes 0 (1 ) per sensitive 
rule. In line 32, SWA sorts the vector T  in ascending order of size, which takes K  logK  if 
all the AT transactions are sensitive. Because step 3 is performed n \  times, the running time 
for this step takes 0 (n \  x K  logK).

In line 37 of Step 4, SWA needs one access to  find the victim  item in the sensitive 
transaction, and one more com putation to remove it. Recall th a t  the sensitive transactions 
are sorted in step 1 and are implemented in an array fashion. If all the K  transactions are 
sensitive, line 37 takes 0 { K ) .

First, let us consider the case where ip ^  0. In this case, Step 4 takes 0 (n \  x K ).  The 
running time of the Sliding W indow algorithm is the sum of running times for each step, 
i.e., 0 { K  x n i x n 2 x log n 3  + 1( x n \  x n 2 x log (n\ x n 2) +  n \  x K  logK  + n \ x K ). When 
m  are K  large, the running tim e can be simplified to  0 ( n i  x K  logK).  Considering tha t 
the whole database contains N  transactions, and there exists N / K  windows, the running 
time of the Sliding W indow Algorithm takes 0 (n i  x TV x log K ) ,  when ip ^  0.

When ip =  0, SWA perform s the look ahead procedure. In the worst case, all K  trans­
actions are marked to  be sanitized in all sensitive rules. We know th a t line 37 takes n\  x K . 
Now we need to analyze the loop from line 38 to  40. In this loop, SWA checks if the current 
victim item sanitized is present in the  next sensitive rules. This procedure takes (n\ — 1) x K  
for the first sensitive rule, (tii — 2) x K  for the second rule, and it repeats until the last 
sensitive rule. So the num ber of times th a t the look ahead procedure is performed is the sum 
of the term s of an arithm etic progression, i.e., ((rrj — 1) x ( ( m  — 1) x  K  + K) ) / 2 .  However, 
this loop is performed K  times (the size of the window). In th is case, Step 4 is the sum 
of running times for each step and takes 0 ( m  x K  + n \  x  AT2), which can be simplified to 
0 { n \  x K 2). Considering th a t the  whole database contains N  transactions, and there exists 
N / K  windows, the running tim e of the Sliding Window Algorithm takes 0 ( n 2  x N  x AT), 
when ip — 0. □

A .2 Analysis of the Pattern Sharing-Based Algorithm

A .2.1 The Running Tim e of the Downright Sanitizing Algorithm
Theorem 4 The running time o f the Downright Sanitizing Algorithm is 0 ( n  x (k2 +  m  x 
log k)),  where n  is the number o f sensitive rules to be sanitized, m  is the number of itemsets 
in a frequent itemsets graph G, and k the maximum number o f item s in a frequent itemset 
in G.

Proof. Let G be a frequent item set graph corresponding to  a  transactional database D  
mined with a minimum support threshold o, n  the initial num ber of sensitive association 
rules to be sanitized, k the  maximum number of items in a frequent itemset Cj € G, m  the 
number of frequent item sets in G, and S r  a set of sensitive rule.

In line 4 of step 1, the  algorithm  converts each sensitive rule s ij  £ S r into a frequent 
itemset c,;. For each sensitive rule, the DSA scans a t most k items, since k  is the maximum 
number of items in an  item set/ru le  Cj £ G. The entire loop from line 3 to  5 is performed n  
times. Thus, step 1 takes 0 ( n  x k).

In line 8 of step 2, th e  algorithm  computes the item pairs of each sensitive itemset c,. 
This computation takes C k ,2  =  {k x ( k —1))/2 for each sensitive item set Cj. In line 9, to make 
sure that at least one item  pair is marked in the list M arkedP a ir, the  DSA scans in the
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worst case all the pairs of a sensitive itemset Cj. This operation is performed (k x  ( k — l) ) /2  
times. If none of the item pairs is marked in the list M arkedP air, the algorithm selects 
one pair randomly. This selection in line 10 is straightforw ard and takes 0(1). The update 
of the list M a.rkedPair  in line 11 also takes 0(1). Thus, in the worse case, the loop from 
line 7 to 13 takes 0 (n  x (k x (k — l) ) /2  + n  x (k x (k — l) ) /2 ) . When n  and k are large, the 
running tim e of the DSA takes 0 {n  x k 2).

In Step 3, in our implementation first the items in each itemset Cj S G are sorted in 
ascending order. Thus line 17 takes k log k. Considering th a t there are m  frequent itemsets 
in G,  the loop from line 16 to 18 takes 0 ( m  x k log k).  The loop from line 19 to 23 is 
performed m  times. In line 20 of step 3, for all marked pairs in the list M arkedP air, the 
algorithm verifies if at least one pair p  is a subset of the current frequent itemset Cj. To do 
so, the algorithm  binary searches, in the worst case, all the items in each pair p  of the list 
M a rked P a ir  to  make sure tha t p  is a subset of Cj. In the  worst case, there are n  marked 
pairs in the list M arkedP air, one corresponding to  each sensitive itemset c;. Thus, this 
entire process encompasses n  binary searches over a frequent itemset Cj € G, so th a t line 20 
is performed n  x log k. Thus step 3 takes 0 (m  x k  log k + m x n x  log k). W hen m  and n  
are large, m x n x  log k  grows faster than m x  k log k. Thus step 3 takes 0(rn  x n x  log k).

The running tim e of the Downright Sanitizing Algorithm  is the sum of running times for 
each step. Thus, the running time of DSA takes 0 ( n x k + n x k 2+ n x m x l o g  k). Considering 
th a t n x k 2 grows faster th a t n x k, the running tim e of the  Downright Sanitizing Algorithm 
takes 0 (n x k 2 + n x m x  log k),  which can be simplified to  0 {n x  (k 2 + m x  log k)).  □
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Appendix B

R esults o f the Sanitization in 
Real D atasets
B .l Sensitive Rules

B . l . l  The BMS-Web-View-1 Dataset

No. Sensitive Rules Support (%) Confidence (%)
1 310,306,311,314,308 = >  307 0.1 96.8
2 345,348 = >  347 0.1 90.3
3 25 = >  27 0.2 63.3
4 113,108,107 = >  111 0.1 83.3
5 7,5,6,2,120 = >  122 0.1 79.7
6 41,64 = >  63 0.1 70.5

Table B .l: A set of 6 sensitive rules m utually exclusive

No. Sensitive Rules Support (%) Confidence (%)
1 311,307,308 = >  315 0.1 72.6
2 319,305,304 = >  307 0.1 62.1
3 315,6,122 = >  301 0.1 60.3
4 306,311,308,312 = >  345 0.1 62.9
5 310,311,307,314 = >  319 0.1 64.3
6 168,6,2,3 = >  7 0.1 64.2

Table B.2: A set of 6 sensitive rules selected randomly

No. Sensitive Rules Support (%) Confidence (%)
1 5,3 = >  2 0.8 64.6
2 73,301 = >  122 0.8 62.3
3 6,72 = >  73 0.8 66.1
4 310,306 = >  315 0.7 67.0
5 168,2 = >  5 0.7 61.8
6 73,318 = >  122 0.6 64.1

Table B.3: A set of 6 sensitive rules with high support
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No. Sensitive Rules Support (%) Confidence (%)
1 342,343 = >  328 0.1 60.0
2 317,23 = >  21 0.1 60.0
3 347,348 = >  306 0.1 60.0
4 207 = >  201 0.1 60.0
5 57,63 = >  41 0.1 61.1
6 251 = >  176 0.1 62.7

Table B.4: A set of 6 sensitive rules with low support

B.1.2 The Retail Dataset

No. Sensitive Rules Support (%) Confidence (%)
1 41,43,172 = >  40 0.7 98.6
2 4032 = >  50 0.1 82.6
3 1086 = >  1078 0.1 69.9
4 4741 = >  6175 0.1 70.7
5 7990 = >  1386 0.1 69.7
6 1820 = >  797 0.3 66.4
Table B.5: A set of 6 sensitive rules mutually exclusive

No. Sensitive Rules Support (%) Confidence (%)

1 50,792 = >  40 0.4 97.5
2 43,2201 = >  50 0.2 71.4
3 311,1381,1382 = >  1380 0.1 77.2
4 3898 = >  41 0.2 61.1
5 589 = >  50 0.3 62.5
6 833 = >  41 0.5 69.2

Table B.6: A set of 6 sensitive rules selected randomly

No. Sensitive Rules Support (%) Confidence (%)

1 50,34 = >  41 9.1 67.2
2 67 = >  41 5.1 62.3
3 40,43 = >  50 4.4 60.9
4 91 = >  41 4.4 71.6
5 38 = >  40 3.3 95.0
6 16013 = >  16012 0.8 97.3

Table B.7: A set of 6 sensitive rules with high support
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No. Sensitive Rules Support (%) Confidence (%)
1 41,3163 = >  50 0.1 66.7
2 41,40,34,43,112 = >  50 0.1 78.7
3 43,178 = >  41 0.1 63.4
4 3879 = >  6084 0.1 68.1
5 1386 = >  1387 0.1 67.9
6 1381,1271 = >  311 0.1 75.S

Table B.8: A set of 6 sensitive rules with low support

B .l .3 The Reuters D ataset

No. Sensitive Rules Support (%) Confidence (%)
1 8916 = >  17586 5.5 65.3
2 593 = >  2 5.8 85.7
3 11820,20447 = >  19096 6.3 76.8
4 7563 = >  4977 5.9 63.0
5 14061,15273,30,5927,25727,21822,13981 = >  7136 6.2 67.6
6 7086 = >  19094 6.5 70.9

Table B.9: A set of 6 sensitive rules mutually exclusive

No. Sensitive Rules Support (%) Confidence (%)
1 14061,7136,5927,25727 = >  20447 7.9 69.4
2 11838 = >  25727 5.9 78.5
3 14061,18657 = >  7086 7.0 61.5
4 5927,7086 = >  17535 5.6 82.6
5 7563 = >  4977 5.9 63.0
6 14061,15273,30,21822,19096 = >  5927 6.0 94.0

Table B.10: A set of 6 sensitive rules selected randomly

No. Sensitive Rules Support (%) Confidence (%)
1 21636 = >  7136 15.9 68.1
2 30,11820 = >  5927 15.1 80.9
3 14061,15273,25727 = >  19096 14.9 71.0
4 15273,30,21822,16400 = >  25727 9.2 98.7
5 5927,21288,13981 = >  15273 8.7 73.4
6 15273,18735 = >  30 8.3 94.0

Table B .l l :  A set of 6 sensitive rules with high support
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No. Sensitive Rules Support (%) Confidence (%)
1 41,3163 = >  50 0.1 66.7
2 41,40,34,43,112 = >  50 0.1 78.7
3 43,178 = >  41 0.1 63.4
4 3879 = >  6084 0.1 68.1
5 1386 = >  1387 0.1 67.9
6 1381,1271 = >  311 0.1 75.8

Table B.12: A set of 6 sensitive rules with low support

B.1.4 The Kosarak Dataset

No. Sensitive Rules Support (%) Confidence (%)
1 6,11,324,338,339,331,332 = >  327 0.3 68.6
2 1519 = >  530 0.3 62.3
3 529 = >  528 0.4 62.0
4 218 = >  371 0.3 69.3
5 1529 = >  27 0.3 80.2
6 1518 = >  2284 0.3 64.0

Table B.13: A set of 6 sensitive rules m utually exclusive

No. Sensitive Rules Support (%) Confidence (%)
1 148,491 = >  1 0.4 62.4
2 77,737 = >  11 0.4 86.5
3 338,339,330 = >  332 0.3 89.2
4 6,87,32 = >  27 0.4 85.8
5 6,11,205,1956 = >  7 0.4 78.0
6 6,11,1,514 = >  218 0.3 70.9

Table B.14: A set of 6 sensitive rules selected randomly

No. Sensitive Rules Support (%) Confidence (%)
1 1,3 = >  6 8.6 78.6
2 6,218 = >  11 7.8 78.1
3 6,148 = >  11 6.5 85.3
4 6,7,27 = >  11 3.8 81.7
5 1,218 = >  148 3.2 78.6
6 205 = >  27 2.2 67.9

Table B.15: A set of 6 sensitive rules with high support
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No. Sensitive Rules Support (%) Confidence (%)
1 6,11,324,338,339,331,332 = >  335 0.3 73.5
2 1519 = >  530 0.3 62.3
3 11,25,747 = >  1 0.3 66.2
4 6,11,27,148,83 = >  218 0.3 92.1
5 6,11,27,148,205 = >  7 0.3 81.3
6 334 = >  325 0.3 68.8

Table B.16: A set of 6 sensitive rules with low support

B.2 Evaluation of Window Size for SWA

K o sa ra k W in d o w  Size
500 1000 5000 10000 20000 40000 60000 80000 100000

Dif. 1.69 1.67 1.66 1.65 1.65 1.65 1.65 1.65 1.65
MC 44.90 42.81 40.47 40.09 39.92 39.87 39.87 39.87 39.87
HF 12.01 14.96 17.24 17.71 17.71 17.83 17.83 17.83 17.83

R e u te rs W in d o w  S ize
500 1000 5000 10000J 20000 40000 60000 80000 100000

Dif. 0.65 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64
MC 66.91 66.87 66.62 66.62 66.62 66.62 66.62 66.62 66.62
HF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R e ta il W in d o w  Size
500 1000 5000 10000 20000 40000 60000 80000 100000

Dif. 1.09 1.08 1.07 1.07 1.07 1.07 1.07 1.07 1.07
MC 30.52 30.17 28.75 28.13 28.07 27.74 27.74 27.74 27.74
HF 14.56 15.06 15.56 16.05 15.89 15.89 15.89 15.89 15.89

B M S-1 W in d o w  Size
500 1000 5000 10000 20000 40000 60000 80000 100000

Dif. 0.79 0.74 0.70 0.70 0.70 0.69 0.69 - -
MC 44.94 39.20 27.24 25.27 22.96 10.30 10.30 - -
HF 0.00 0.00 2.18 2.49 5.92 11.54 11.54 - -

Table B.17: Effect of window size on the difference between D  and D ', misses cost and 
hiding failure.
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B.3 Results of Misses Cost on the Datasets 

B.3.1 Condition C l (A set of 6 Sensitive Rules)

Kosarak $  =  0%, a  =  0.2%, <p =  60%
SI S2 S3 S4

IGA 2.06 28.56 62.11 29.88
RRA 28.98 42.22 74.42 37.92
RA 28.80 42.62 74.37 38.02
SWA 29.15 42.49 72.70 37.97
Algo2a 26.03 45.14 62.58 36.53
DSA 5.41 19.34 24.02 8.05

Table B.18: Results of misses cost 011 the dataset Kosarak for condition C l.

Retail ^  =  0%, a  =  0.1%, ip =  60%
SI S2 S3 j S4

IGA 1.03 9.16 66.31 3.11
RRA 2.66 5.87 64.021 3.25
RA 2.48 5.77 63.86 3.10
SWA 2.77 5.64 65.29 3.15
Algo2a 5.05 10.04 82.43 3.97
DSA 0.19 0.47 46.03 9.31

Table B.19: Results of misses cost on the dataset Retail for condition Cl.

Reuters =  0%, a  =  5.5%, ^  =  60%
SI S2 S3 S4

IGA 45.67 46.96 67.10 45.00
RRA 64.36 67.47 89.00 49.06
RA 64.47 66.45 89.03 50.15
SWA 64.50 64.46 75.22 47.32
Algo2a 47.35 66.81 77.32 45.60
DSA 32.85 37.34 35.85 51.81

Table B.20: Results of misses cost on the dataset Reuters for condition Cl.

BMS-1 i/, = 0%, <7 =  0.1%, ip =  60%
SI S2 S3 S4

IGA 21.73 15.36 28.01 15.36
RRA 39.79 41.30 53.13 41.30
RA 37.77 43.05 50.35 43.05
SWA 40.77 32.84 49.80 32.84
Algo2a 24.67 42.25 46.57 42.25
DSA 7.06 5.68 8.17 0.15

Table B.21: Results of misses cost on the dataset BMS-1 for condition Cl.
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B.3.2 Condition C2 (Varying the Number of Sensitive Rules)

Algorithm V; =  0%, cr =  0.2%, ip =  60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 1.73 1.73 1.80 1.87 1.89 2.06
R. Robin 22.95 23.18 24.09 28.17 27.88 28.07
Random 22.74 22.96 23.86 28.25 28.01 28.25
SWA 22.85 22.92 23.94 28.16 29.05 29.14
Algo2a 15.38 15.65 16.65 24.51 25.87 26.02
DSA 5.40 5.40 5.41 5.41 5.41 5.42

Table B.22: Results of misses cost on the Kosarark dataset for condition C2 (Si)

Algorithm $  =  0%, a  =  0.1%, ip =  60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 0.57 0.58 0.59 0.64 0.65 1.03
R. Robin 1.65 1.98 1.99 2.10 1.91 2.38
Random 1.71 2.08 2.09 2.20 2.04 2.53
SWA 1.65 1.76 2.16 1.97 2.20 2.76
Algo2a 3.85 4.33 4.35 4.46 4.50 5.04
DSA 0.19 0.19 0.19 0.19 0.20 0.20

Table B.23: Results of misses cost on the Retail dataset for condition C2 (S i)

Algorithm ip =  0%, a = 5.5%, <p =  60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 0.02 23.73 23.75 45.40 45.44 45.66
R. Robin 0.07 44.35 44.50 63.48 60.46 61.49
Random 0.04 44.16 44.54 63.49 59.68 60.87
SWA 0.06 44.72 44.93 62.97 63.86 64.50
Algo2a 0.10 39.54 40.08 45.99 46.44 47.34
DSA 0.02 25.67 25.68 32.82 32.83 32.85

Table B.24: Results of misses cost on the Reuters dataset for condition C2 (SI)

Algorithm

ooII9-
goIIbSSoII

1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules
IGA 6.86 21.27 21.31 21.45 21.46 21.72
R. Robin 32.39 40.86 40.41 40.71 38.99 40.24
Random 31.21 40.78 39.75 40.46 37.51 39.34
SWA 32.05 39.54 39.48 40.33 41.42 40.76
Algo2a 21.08 23.21 23.28 24.01 24.02 24.66
DSA 5.13 6.93 6.99 7.03 7.04 7.05

Table B.25: Results of misses cost on the BMS-1 dataset for condition C2 (S i)
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Algorithm </, =  0%, a = 0.2%, ip = 60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 0.02 0.03 40.71 40.94 53.61 57.29
R. Robin 1.28 8.36 79.74 80.62 80.78 83.13
Random 1.31 8.90 79.65 80.16 81.03 83.56
SWA 1.26 9.02 79.58 80.42 81.68 84.03
Algo2a 1.70 19.85 72.27 75.42 77.69 81.73
DSA 0.01 0.02 17.66 17.85 17.87 19.34

Table B.26: Results of misses cost on the Kosarark dataset for condition C2 (S2)

Algorithm tp =  0%, cr =  0.1%, tp =  60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 0.79 1.00 5.16 5.16 6.29 9.16
R. Robin 1.78 2.98 3.72 4.05 4.34 5.27
Random 1.85 3.18 3.92 4.27 4.40 5.43
SWA 1.80 3.02 3.70 4.11 4.75 5.64
Algo2a 1.71 4.69 6.08 6.64 7.81 10.04
DSA 0.29 0.40 0.47 0.47 0.47 0.47

Table B.27: Results of misses cost on the Retail dataset for condition C2 (S2)

Algorithm $  =  0%, a  =  5.5%, ip =  60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 29.18 48.05 65.92 48.18 48.21 46.96
R. Robin 48.32 56.24 65.34 67.11 64.24 64.10
Random 48.19 55.37 63.65 64.75 62.62 62.95
SWA 48.58 51.38 63.10 64.52 65.13 64.46
Algo2a 43.97 62.20 64.50 65.72 66.27 66.81
DSA 27.02 27.02 36.99 37.11 37.12 37.34

Table B.28: Results of misses cost on the Reuters dataset for condition C2 (S2)

Algorithm i> =  0%, a  =  0.1%, p  =  60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 6.95 11.12 12.02 15.61 12.50 15.36
R. Robin 20.33 28.43 31.92 34.50 37.62 40.27
Random 20.82 29.31 31.30 32.25 37.81 40.57
SWA 19.86 20.52 20.93 25.09 26.38 32.84
Algo2a 4.20 8.13 8.26 20.47 32.02 42.25
DSA 1.09 1.39 1.60 3.41 3.67 5.68

Table B.29: Results of misses cost on the BMS-1 dataset for condition C2 (S2)
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Algorithm $  =  0%, a  =  0.2%, p  =  60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 15.94 48.69 47.51 51.29 61.36 62.11
R. Robin 25.65 56.13 60.81 71.69 70.56 72.34
Random 25.67 56.21 60.79 71.63 70.59 72.36
SWA 25.49 53.16 46.51 65.39 71.77 72.70
Algo2a 33.36 48.69 47.53 51.29 58.44 62.58
DSA 4.87 11.56 18.58 24.06 24.55 24.02

Table B.30: Results of misses cost on the Kosarak dataset for condition C2 (S3)

Algorithm V- =  0%, a  =  0.1%, p  =  60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 6.66 56.16 51.68 66.87 66.18 66.31
R. Robin 34.03 43.84 55.04 63.54 58.37 58.81
Random 33.66 43.15 55.04 63.68 58.23 58.27
SWA 33.22 44.30 55.57 64.82 65.42 65.29
Algo2a 44.66 56.16 77.06 81.99 82.30 82.43
DSA 41.37 41.70 45.81 45.79 45.97 46.03

Table B.31: Results of misses cost on the Retail dataset for condition C2 (S3)

Algorithm i/j =  0%, cr =  5.5%, p  =  60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 0.41 45.61 65.28 71.36 67.15 67.10
R. Robin 14.56 48.21 78.92 85.07 85.91 87.07
Random 12.38 47.98 78.69 85.34 86.19 S7.30
SWA 12.38 46.09 78.48 75.11 75.55 75.22
Algo2a 23.43 53.77 75.71 77.39 77.29 77.32
DSA 0.02 2.83 21.69 20.13 30.72 35.85

Table B.32: Results of misses cost on the Reuters dataset for condition C2 (S3)

Algorithm =  0%, cr =  0.1%, p  =  60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 1.44 2.90 11.19 25.15 27.93 28.01
R. Robin 9.52 14.54 17.89 45.84 42.39 53.81
Random 10.18 14.04 18.62 43.24 42.18 53.39
SWA 10.04 13.40 17.53 41.91 38.71 49.80
Algo2a 9.27 12.82 13.61 34.72 40.03 46.57
DSA 0.41 2.84 5.32 6.88 6.39 8.17

Table B.33: Results of misses cost 011 the BMS-1 dataset for condition C2 (S3)
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Algorithm tP =  0%, cr =  0.2%, ip = 60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 1.77 1.77 20.91 26.65 28.91 29.88
R. Robin 23.32 23.62 29.82 35.15 36.05 36.54
Random 23.14 23.43 29.55 35.08 35.91 36.52
SWA 22.98 23.48 29.33 34.74 37.35 37.97
Algo2a 15.53 15.80 26.47 32.53 34.98 36.53
DSA 3.88 3.88 4.49 6.30 8.04 8.05

Table B.34: Results of misses cost on the Kosarak dataset for condition C2 (S4)

Algorithm rfr =  0%, a  =  0.1%, ip =  60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 0.01 2.18 2.20 2.21 2.24 3.11
R. Robin 0.39 1.05 1.46 1.51 1.27 2.96
Random 0.30 0.82 1.25 1.32 1.32 2.91
SWA 0.46 1.03 1.21 1.24 1.29 3.15
Algo2a 0.47 1.40 2.20 2.24 2.28 3.97
DSA 0.01 8.93 8.95 8.95 8.95 9.30

Table B.35: Results of misses cost on the Retail dataset for condition C2 (S4)

Algorithm $  =  0%, a  =  5.5%, ip =  60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 0.01 0.99 1.00 41.92 39.47 45.00
R. Robin 0.44 3.19 3.49 46.09 42.13 44.72
Random 0.49 3.14 3.32 46.83 42.20 44.91
SWA 0.35 3.10 3.35 44.53 44.32 47.32
Algo2a 0.61 4.12 4.50 42.64 43.08 45.59
DSA 0.01 27.68 27.69 39.30 39.69 51.81

Table B.36: Results of misses cost on the Reuters dataset for condition C2 (S4)

Algorithm

ooII9-

oIIbi£oII

1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules
IGA 0.01 0.05 0.20 0.20 0.47 0.47
R. Robin 0.27 8.93 18.33 18.38 19.39 19.37
Random 0.19 8.81 20.01 19.90 21.12 21.04
SWA 0.23 9.33 18.01 19.48 18.58 20.63
Algo2a 0.35 9.82 21.97 21.98 22.57 22.58
DSA 0.01 0.01 0.07 0.07 0.15 0.15

Table B.37: Results of misses cost on the BMS-1 dataset for condition C2 (S4)
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B.3.3 Condition C3 (Varying the Minimum Support Threshold)

Algorithm ip =  0%, p  =  60%, 6 sensitive rules
cr =  0.1% a  =  0.15% a  =  0.2% cr =  0.25% cr =  0.3%

IGA 31.27 50.12 18.95 5.85 2.06
R. Robin 61.34 88.36 87.74 54.44 29.00
Random 61.64 88.43 87.79 54.47 29.19
SWA 61.30 88.30 87.72 54.14 29.15
Algo2a 53.25 51.54 48.91 38.07 25.86

Table B.38: Effect of cr on misses cost in the K osarak dataset for condition C3 (SI)

Algorithm ip =  0%, p  =  60%, 6 sensitive rules
cr =  0.08% (7 =  0.09%

2£i-HoIIb (7 =  0.11% cr =  0.12%
IGA 0.84 0.91 1.03 1.12 1.09
R. Robin 2.73 2.43 2.66 2.93 2.93
Random 3.04 2.71 2.72 2.99 3.28
SWA 2.81 2.58 2.77 2.80 3.00
Algo2a 4.87 4.96 4.94 4.83 5.24

Table B.39: Effect of a  on misses cost in the Retail dataset for condition C3 (SI)

Algorithm ip =  0%, p  =  60%, 6 sensitive rules
cr =  4.5% a  =  5.0% a  =  5.5% a  =  6.0% (7 =  6.5%

IGA 51.77 48.33 45.67 43.51 41.60
R. Robin 67.46 65.38 64.54 67.62 67.75
Random 66.95 64.91 64.59 67.28 67.64
SWA 66.54 64.72 64.50 67.26 67.75
Algo2a 48.29 47.19 47.33 46.91 44.48

Table B.40: Effect of cr on misses cost in the R euters da tase t for condition C3 (SI)

Algorithm ip =  0%, ip =  60%, 6 sensitive rules
cr =  0.08% cr =  0.09% a  =  0.1% a  =  0.11% a  =  0.12%

IGA 30.49 22.30 21.73 18.94 18.50
R. Robin 57.73 47.26 41.21 39.47 37.79
Random 59.36 48.78 43.24 40.31 37.49
SWA 56.90 88.05 40.77 38.94 37.85
Algo2a 30.69 26.75 24.67 25.25 23.83

Table B.41: Effect of a  on misses cost in the BMS-1 datase t for condition C3 (SI)
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Algorithm ip =  0%, ip = 60%, 6 sensitive rules
a  =  0.1% cr =  0.15% C7 =  2.0% cr =  2.5% cr =  3.0%

IGA 45.50 53.11 57.29 42.37 28.56
R. Robin 61.48 84.07 83.62 61.91 42.21
Random 61.84 84.61 84.16 62.04 42.78
SWA 62.08 84.49 84.03 61.90 42.49
Algo2a 66.86 78.99 81.59 60.27 44.83

Table B.42: Effect of cr on misses cost in the Kosarak dataset for condition C3 (S2)

Algorithm ip =  0%, ip =  60%, 6 sensitive rules
a  =  0.08% cr =  0.09% II o f—

»
ss

S5rHf“4oilb cr =  0.12%
IGA 9.15 9.19 9.16 8.78 8.89
R. Robin 6.14 6.22 5.83 5.26 5.23
Random 6.33 6.09 5.98 5.23 5.32
SWA 6.03 6.06 5.64 5.10 4.87
Algo2a 10.07 10.20 10.04 9.45 9.31

Table B.43: Effect of a  on misses cost in the Retail da tase t for condition C3 (S2)

Algorithm
Algorithm

ip = 0%, ip =  60%, 6 sensitive rules
cr =  4.5% a  =  5.0% a =  5.5% CT =  6.0% cr =  6.5%

IGA 46.04 45.17 46.16 46.09 45.08
R. Robin 70.89 68.38 67.48 70.20 70.76
Random 69.15 67.16 66.05 68.63 69.39
SWA 65.69 64.06 64.46 66.28 66.21
Algo2a 66.49 65.73 66.69 67.65 67.44

Table B.44: Effect of a  on misses cost in the Reuters da tase t for condition C3 (S2)

Algorithm
Algorithm

ip =  0%, ip =  60%, 6 sensitive rules
cr =  0.08% cr =  0.09%

6KoIIb cr =  0.11% cr =  0.12%
IGA 22.53 17.44 15.36 14.70 15.73
R. Robin 58.64 48.15 41.64 40.01 39.61
Random 58.89 48.22 42.79 40.93 38.50
SWA 45.94 85.76 32.84 31.73 31.86
Algo2a 52.11 45.84 42.25 41.80 39.19

Table B.45: Effect of a  on misses cost in the BMS-1 dataset for condition C3 (S2)
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Algorithm ip —  0%, p  = 60%, 6 sensitive rules
CT =  0.1% cr =  0.15% cr =  2.0% cr =  2.5% cr =  3.0%

IGA 55.71 52.39 52.04 57.37 62.11
R. Robin 65.04 63.81 63.00 73.31 74.41
Random 65.07 63.89 63.02 73.32 74.37
SWA 64.38 62.06 65.55 71.85 72.69
Algo2a 51.28 52.29 51.97 58.06 62.49

Table B.46: Effect of a  on misses cost in the Kosarak dataset for condition C3 (S3)

Algorithm ip =  0%, p  =  60%, 6 sensitive rules
cr =  0.08% cr =  0.09%

T—1OIIb
CT =  0.11% cr =  0.12%

IGA 65.65 66.20 66.31 67.10 67.51
R. Robin 62.70 63.43 64.03 64.60 65.04
Random 63.09 63.86 64.27 64.67 65.04
SWA 63.43 64.39 65.28 65.41 65.76
Algo2a 80.60 81.48 81.96 82.73 83.13

Table B.47: Effect of a  on misses cost in the Retail dataset for condition C3 (S3)

Algorithm
Algorithm

ip =  0%, ip =  60%, 6 sensitive rules
cr =  4.5% cr =  5.0% cr =  5.5% CT =  6.0% cr =  6.5%

IGA 62.63 63.14 67.10 66.33 66.05
R. Robin 88.68 88.50 88.94 90.41 90.35
Random 88.74 88.45 89.03 90.69 90.41
SWA 75.04 74.06 75.22 77.43 78.73
Algo2a 75.14 76.52 77.11 78.78 77.48

Table B.48: Effect of cr on misses cost in the Reuters dataset for condition C3 (S3)

Algorithm
Algorithm

ip = 0%, ip =  60%, 6 sensitive rules
cr =  0.08% cr =  0.09% II o CT =  0.11% cr =  0.12%

IGA 31.52 28.67 28.00 30.05 32.34
R. Robin 57.64 53.67 54.10 57.77 58.46
Random 56.58 52.51 51.81 56.28 57.20
SWA 54.67 88.85 49.80 53.02 54.01
Algo2a 45.97 45.02 47.21 50.60 51.11

Table B.49: Effect of cr on misses cost in the BMS-1 dataset for condition C3 (S3)
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Algorithm ip =  0%, f  =  60%, 6 sensitive rules
a  =  0.1% a- =  0.15% o- =  2.0% a  =  2.5% a  =  3.0%

IGA 46.64 62.38 53.32 39.24 29.88
R. Robin 67.42 92.81 89.27 61.23 37.93
Random 67.68 92.79 89.24 61.11 37.71
SWA 68.07 92.59 89.28 60.62 37.97
Algo2a 65.27 82.32 79.31 55.27 36.30

Table B.50: Effect of cr on misses cost in the Kosarak dataset for condition C3 (S4)

Algorithm ip — 0%, f  = 60%, 6 sensitive rules
cr =  0.08% a  =  0.09%

t—H
oIIb CT =  0.11% cr =  0.12%

IGA 3.34 3.29 3.11 2.90 3.16
R. Robin 3.76 3.69 3.24 2.88 2.77
Random 3.59 3.40 3.07 2.68 2.63
SWA 3.77 3.59 3.15 2.78 2.72
Algo2a 4.34 4.25 3.97 3.63 3.82

Table B.51: Effect of cr on misses cost in the Retail dataset for condition C3 (S4)

Algorithm
Algorithm

ip =  0%, f  =  60%, 6 sensitive rules
<7 =  4.5% cr =  5.0% a  = 5.5% cr =  6.0% cr =  6.5%

IGA 45.59 43.98 45.00 45.19 43.46
R. Robin 55.14 50.63 49.13 53.79 54.82
Random 55.62 51.36 49.62 53.92 55.03
SWA 53.37 48.60 47.32 52.43 53.08
Algo2a 46.85 45.11 45.45 45.96 44.86

Table B.52: Effect of cr on misses cost in the  Reuters dataset for condition C3 (S4)

Algorithm
Algorithm

ip =  0%, f  =  60%, 6 sensitive rules
cr =  0.08% cr =  0.09% cr =  0.1% cr =  0.11% cr =  0.12%

IGA 2.27 0.94 0.47 0.63 0.30
R. Robin 39.00 25.85 19.58 16.88 13.91
Random 40.05 27.11 21.21 18.14 14.65
SWA 39.67 83.50 20.63 17.56 14.43
Algo2a 37.80 26.96 22.58 19.39 17.28

Table B.53: Effect of a  on misses cost in the BMS-1 dataset for condition C3 (S4)
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B.4 Results of the Difference Between the Original and 
the Sanitized Datasets

B.4.1 Condition C l (A set of 6 Sensitive Rules)

Kosarak rf, =  0%, (j  =  0.2%, p  =  60%
SI S2 S3 S4

IGA 0.16 0.21 2.13 0.15
RRA 0.16 0.21 2.33 0.16
RA 0.16 0.21 2.33 0.16
SWA 0.16 0.20 2.05 0.15
AIgo2a 0.16 0.21 2.13 0.16

Table B.54: Difference(D, D ') for condition C l.

Retail $  =  0%, cr =  0.1%, ip =  60%
SI S2 S3 S4

IGA 0.12 0.12 1.69 0.05
RRA 0.12 0.12 1.77 0.05
RA 0.12 0.12 1.78 0.05
SWA 0.12 0.12 1.66 0.05
Algo2a 0.12 0.12 1.74 0.05

Table B.55: Difference(D, D ') for condition C l.

Reuters ■0 =  0%, a  =  5.5%, ip =  60%
SI S2 S3 S4

IGA 0.56 0.52 0.85 0.54
RRA 0.55 0.52 1.00 0.53
RA 0.55 0.52 1.01 0.53
SWA 0.55 0.44 0.84 0.46
Algo2a 0.56 0.52 0.90 0.54

Table B.56: Difference(D, D')  for condition C l.

BMS-1 $  = 0%, a = 0.1%, <p =  60%
SI S2 S3 S4

IGA 0.22 0.13 0.88 0.13
RRA 0.22 0.14 0.99 0.14
RA 0.22 0.14 0.98 0.14
SWA 0.22 0.12 0.88 0.12
Algo2a 0.22 0.17 0.89 0.17

Table B.57: Difference(D, D')  for condition C l.
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B.4.2 Condition C2 (Varying the Number of Sensitive Rules)

Algorithm if, = 0%, <7 =  0.2%, p  =  60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 0.03 0.05 0.08 0.11 0.14 0.16
R. Robin 0.03 0.05 0.08 0.11 0.12 0.14
Random 0.03 0.05 0.08 0.11 0.12 0.14
SWA 0.03 0.05 0.08 0.11 0.14 0.16
Algo2a 0.03 0.05 0.08 0.11 0.14 0.16

Table B.58: DifTerence(D, D')  on the Kosarark dataset for condition C2 (SI)

Algorithm if, =  0%, a  =  0.1%, p  = 60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 0.07 0.08 0.08 0.09 0.10 0.12
R. Robin 0.07 0.08 0.08 0.09 0.09 0.10
Random 0.07 0.08 0.08 0.09 0.09 0.10
SWA 0.07 0.08 0.08 0.09 0.10 0.12
Algo2a 0.07 0.08 0.08 0.09 0.10 0.12

Table B.59: Difference(T), D')  on the Retail dataset for condition C2 (Si)

Algorithm if, =  0%, a  =  5-5%, ip = 60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 0.08 0.17 0.27 0.38 0.46 0.56
R. Robin 0.08 0.17 0.27 0.38 0.41 0.50
Random 0.08 0.17 0.27 0.38 0.41 0.50
SWA 0.08 0.17 0.27 0.38 0.46 0.56
Algo2a 0.08 0.17 0.27 0.38 0.46 0.56

Table B.60: Difference(Z), D')  on the Reuters dataset for condition C2 (SI)

Algorithm if, =  0%, a  =  0.1%, <p = 60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 0.04 0.07 0.11 0.15 0.19 0.22
R. Robin 0.04 0.08 0.11 0.15 0.17 0.20
Random 0.04 0.08 0.11 0.15 0.17 0.20
SWA 0.04 0.07 0.11 0.15 0.19 0.22
Algo2a 0.04 0.07 0.11 0.15 0.19 0.22

Table B.61: Difference(D, D')  on the BMS-1 dataset for condition C2 (Si)
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Algorithm y, =  0%, a  =  0.2%, p  = 60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 0.03 0.07 0.11 0.15 0.19 0.21
R. Robin 0.03 0.07 0.11 0.15 0.17 0.19
Random 0.03 0.07 0.11 0.15 0.17 0.19
SWA 0.03 0.07 0.11 0.15 0.18 0.20
Algo2a 0.03 0.07 0.11 0.15 0.18 0.21

Table B.62: Difference(Z?, D')  on the Kosarark dataset for condition C2 (S2)

Algorithm y, =  0%, cr =  0.1%, p  =  60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 0.01 0.04 0.05 0.07 0.08 0.12
R. Robin 0.01 0.04 0.05 0.07 0.08 0.11
Random 0.01 0.04 0.05 0.07 0.08 0.11
SWA 0.01 0.04 0.05 0.07 0.08 0.12
Algo2a 0.01 0.04 0.05 0.07 0.08 0.12

Table B.63: Difference(£>, D')  on the Retail dataset for condition C2 (S2)

Algorithm y, =  0%, O- =  5.5%, p  =  60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 0.12 0.17 0.29 0.34 0.42 0.52
R. Robin 0.12 0.21 0.28 0.37 0.40 0.46
Random 0.12 0.21 0.28 0.37 0.40 0.46
SWA 0.12 0.17 0.24 0.33 0.41 0.44
Algo2a 0.12 0.22 0.26 0.34 0.42 0.52

Table B.64: Difference(Z), D')  on the Reuters dataset for condition C2 (S2)

Algorithm y, =  0%, cr =  0.1%, p  =  60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 0.04 0.05 0.07 0.09 0.10 0.13
R. Robin 0.04 0.06 0.09 0.10 0.10 0.13
Random 0.04 0.06 0.09 0.10 0.10 0.13
SWA 0.04 0.05 0.07 0.09 0.09 0.12
Algo2a 0.04 0.06 0.09 0.11 0.14 0.17

Table B.65: Difference(.D, D')  on the BMS-1 dataset for condition C2 (S2)
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Algorithm iP =  0%, a = 0.2%, ip = 60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 0.72 1.34 1.40 1.63 1.95 2.13
R. Robin 0.72 1.43 1.69 1.96 1.88 2.03
Random 0.72 1.43 1.69 1.96 1.88 2.03
SWA 0.72 1.34 1.40 1.63 1.94 2.05
Algo2a 0.72 1.34 1.40 1.63 1.95 2.13

Table B.G6: DifFerence(-D, D ') 01 1  the Kosarak dataset for condition C2 (S3)

Algorithm 0  =  0%, a  =  0.1%, <p = 60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 0.59 0.86 1.11 1.36 1.62 1.69
R. Robin 0.59 0.89 1.13 1.41 1.53 1.59
Random 0.59 0.89 1.13 1.41 1.53 1.59
SWA 0.59 0.86 1.08 1.31 1.59 1.66
Algo2a 0.59 0.86 1.12 1.36 1.66 1.74

Table B.67: Difference(Z), D')  on the Retail dataset for condition C2 (S3)

Algorithm -0 =  0%, <7 =  5.5%, ip =  60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 0.23 0.49 0.72 0.77 0.78 0.85
R. Robin 0.23 0.49 0.72 0.82 0.79 0.89
Random 0.23 0.49 0.72 0.82 0.79 0.89
SWA 0.23 0.49 0.72 0.75 0.77 0.84
Algo2a 0.23 0.49 0.72 0.78 0.83 0.90

Table B.68: D iffe ren ce^ , D')  on the Reuters dataset for condition C2 (S3)

Algorithm 0  =  0%, <7 =  0.1%, ip =  60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 0.21 0.41 0.55 0.74 0.84 0.88
R. Robin 0.21 0.41 0.60 0.79 0.81 0.88
Random 0.21 0.41 0.59 0.78 0.81 0.87
SWA 0.21 0.41 0.55 0.74 0.84 0.88
Algo2a 0.21 0.41 0.55 0.74 0.84 0.89

Table B.69: Difference(£), D ') on the BMS-1 dataset for condition C2 (S3)
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Algorithm ip =  0%, a  =  0.2%, <p = 60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 0.03 0.05 0.07 0.11 0.13 0.15
R. Robin 0.03 0.05 0.08 0.11 0.12 0.15
Random 0.03 0.05 0.08 0.11 0.12 0.15
SWA 0.03 0.05 0.07 0.11 0.13 0.15
Algo2a 0.03 0.05 0.08 0.11 0.13 0.16

Table B.70: Difference(D, D')  on the Kosarak dataset for condition C2 (S4)

Algorithm rp =  0%, a  =  0.1%, ip =  60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 0.01 0.02 0.02 0.03 0.04 0.05
R. Robin 0.01 0.02 0.02 0.03 0.04 0.05
Random 0.01 0.02 0.02 0.03 0.04 0.05
SWA 0.01 0.02 0.02 0.03 0.04 0.05
Algo2a 0.01 0.02 0.02 0.03 0.04 0.05
Table B.71: Difference(D, D')  on the Retail dataset for condition C2 (S4)

Algorithm ip =  0%, a  =  5.5%, ip =  60%o
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 0.08 0.20 0.29 0.38 0.38 0.54
R. Robin 0.08 0.20 0.29 0.38 0.40 0.48
Random 0.08 0.20 0.29 0.38 0.40 0.47
SWA 0.08 0.20 0.29 0.38 0.38 0.46
Algo2a 0.0.8 0.20 0.29 0.38 0.46 0.54

Table B.72: Difference(D, D')  on the Reuters dataset for condition C2 (S4)

Algorithm ,p =  0%, <r =  0.1%, ip =  60%
1 Rule 2 Rules 3 Rules 4 Rules 5 Rules 6 Rules

IGA 0.02 0.05 0.07 0.10 0.13 0.16
R. Robin 0.02 0.05 0.07 0.10 0.12 0.15
Random 0.02 0.05 0.07 0.10 0.12 0.15
SWA 0.02 0.05 0.07 0.10 0.13 0.16
Algo2a 0.02 0.05 0.07 0.10 0.13 0.16

Table B.73: Difference(JD, D')  on the BMS-1 dataset for condition C2 (S4)
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B.4.3 Condition C3 (Varying the Minimum Support Threshold)

Algorithm =  0%, (T =  {0.1 - 0.31, V =  60%
SI S2 S3 S4

IGA 0.16 0.21 2.13 0.15
R. Robin 0.16 0.21 2.33 0.16
Random 0.16 0.21 2.33 0.16
SWA 0.16 0.20 2.05 0.15
Algo2a 0.16 0.21 2.12 0.16

Table B.74: Difference(£), D') on the Kosarak dataset for condition C3

Algorithm =  0%, a  =  [0.0S - 0.12], p  = 60%
SI S2 S3 S4

IGA 0.12 0.12 1.69 0.05
R. Robin 0.12 0.12 1.77 0.05
Random 0.12 0.12 1.77 0.05
SWA 0.12 0.12 1.66 0.05
Algo2a 0.12 0.12 1.73 0.05

Table B.75: Difference(D, D') on the Retail dataset for condition C3

Algorithm y, =  0%, cr = [4.5 - 6.5], ip =  60%
SI S2 S3 S4

IGA 0.56 0.52 0.85 0.54
R. Robin 0.56 0.52 1.01 0.53
Random 0.56 0.52 1.01 0.53
SWA 0.56 0.44 0.84 0.46
Algo2a 0.56 0.52 0.89 0.54

Table B.76: Difference^, D ') on the Reuters dataset for condition C3

Algorithm y, =  0%, a =  [0.08 - 0.12], ip =  60%
SI S2 S3 S4

IGA 0.22 0.13 0.88 0.16
R. Robin 0.22 0.14 0.99 0.16
Random 0.22 0.14 0.98 0.16
SWA 0.22 0.12 0.88 0.16
Algo2a 0.22 0.17 0.89 0.16

Table B.77: Difference(ZP, D ') on the BMS-1 dataset for condition C3
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B.4.4 Effect of ip on MC and HF (Rules in Scenario S3)

Algorithm ip =  0% ip =  5% ■€
- II ■ o 1 "

'8 o'* ,-s
- II 1—
1 

i C
71

1 iP =  25%
MC HF MC HF MC HF MC HF MC HF

IGA 62.11 0.00 61.85 0.00 61.66 0.08 61.38 0.08 60.33 0.24
R. Robin 74.42 0.00 73.42 0.00 72.32 0.00 70.94 0.00 67,70 0.12
Random 74.37 0.00 73.32 0.00 72.36 0.00 70.87 0.00 67.73 0.00
SWA 72.70 0.00 67.03 0.00 59.56 0.75 53.06 3.81 39.87 17.83

Table B.78: Effect of ip on misses cost and hiding failure in the Kosarak dataset

Algorithm ip = 0% ip =  5% ip =  10% V; =  15% ip =  25%
MC HF MC HF MC HF MC HF MC HF

IGA 66.31 0.00 64.77 0.66 63.23 0.83 60.94 1.32 56.26 1.99
R. Robin 64.02 0.00 61.18 7.28 58.15 6.46 55.12 7.62 46.46 15.73
Random 63.86 0.00 60.12 7.12 56.72 7.62 54.39 7.95 46.48 16.39
SWA 65.29 0.00 55.58 1.16 48.31 1.82 42.67 3.31 27.74 15.89

Table B.79: Effect of ip on misses cost and hiding failure in the Retail dataset

Algorithm ■e
t- II o ss ip =  5% '«
• II M o 53 ip =  15% ip =  25%

MC HF MC HF MC HF MC HF MC HF
IGA 67.10 0.00 67.04 0.00 66.03 0.00 66.00 0.00 65.70 0.00
R. Robin 89.00 0.00 87.85 0.00 86.13 0.00 83.95 0.00 78.65 0.00
Random 89.03 0.00 87.30 0.00 85.89 0.00 83.12 0.00 78.86 0.00
SWA 75.22 0.00 75.05 0.00 73.67 0.00 71.34 0.00 66.62 0.00

Table B.80: Effect of ip on misses cost and hiding failure in the Reuters dataset

Algorithm

53oII II cn Ip = 10% ip = 15% ip =  25%
MC HF MC HF MC HF MC HF MC HF

IGA 28.01 0.00 28.00 0.00 28.01 0.00 28.01 0.00 27.95 0.16
R. Robin 53.13 0.00 48.69 0.00 47.29 0.00 43.52 0.00 32.15 9.67
Random 50.35 0.00 47.30 0.00 46.63 0.00 42.63 0.00 33.21 10.45
SWA 49.80 0.00 44.60 0.00 39.34 0.00 34.05 0.00 10.30 11.54

Table B.81: Effect of ip on misses cost and hiding failure in the BMS-1 dataset
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B.5 CPU Time - The Kosarak Dataset

Algorithm 20 Rules 40 Rules 60 Rules 80 Rules 100 Rules
IGA 16.752 25.383 34.810 42.269 49.361
R. Robin 41.840 106.081 248.589 392.972 585.821
Random 41.784 105.979 248.555 391.882 593.128
SWA 75.875 118.013 181.294 227.537 279.167
Algo2a 137.652 276.974 501.834 792.876 1.164.714
DSA 0.246 0.296 0.372 0.543 0.579

Table B.82: CPU time for sanitization varying the number of sensitive rules (msec.)

Algorithm 150K 300K 450K 600K 750K 900K
IGA 0.436 1.229 2.074 2.861 2.698 3875
R. Robin 0.547 1.136 2.544 3.323 4.437 5.664
Random 0.549 1.347 2.698 3.125 4.428 5.627
SWA 4.976 9.955 14.645 19.986 24.271 30.046
Algo2a 5.801 11.671 17.481 23.569 28.649 35.894
DSA 0.170 0.151 0.132 0.137 0.156 0.173

Table B.83: CPU time for sanitization varying the dataset size (msec.)
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B.6 Results of Side Effect Factor on the Datasets

Kosarak ■4> =  0%, a  =  0.2%, ip =  60%
SI S2 S3 S4

IGA 2.17 28.94 69.16 29.93
DSA 5.52 17.32 38.15 8.11

Table B.84: Results of side effect factor on the dataset Kosarak.

Retail ^  =  0%, c  =  0.1%, ip =  60%
SI j S2 S3 S4

IGA 1.64 9.40 69.05 3.33
DSA 0.82 0.79 50.44 9.51

Table B.85: Results of side effect factor on the dataset Retail.

Reuters tfj =  0%, cr =  5.5%, ip =  60%
SI S2 S3 S4

IGA 45.26 47.63 71.10 45.12
DSA 33.59 37.91 43.64 51.91

Table B.86: Results of side effect factor on the dataset Reuters.

BMS-1 0  =  0%, a  =  0.1%, ip =  60%
SI S2 S3 S4

IGA 21.85 15.43 29.80 15.94
DSA 7.20 5.75 10.46 0.16

Table B.87: Results of side effect factor on the dataset BMS-1.
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Appendix C

R esults of the Effectiveness o f 
the D R B T

C .l Results of the Stress Function Applied to the Datasets

Chess dr =  37 II CO dr =  31 £• II to CO dr = 25 dr =  22 dT =  16
RPi 0.000 0.015 0.024 0.033 0.045 0.072 0.141
r p 2 0.000 0.014 0.019 0.032 0.041 0.067 0.131

Table C .l: The error produced on the Chess dataset (d0  =  37).

M ushroom ■P
- II to CO dr — 21

oII dr =  17 dr =  15 dr =  13 dr — 9
RPi 0.000 0.020 0.031 0.035 0.048 0.078 0.155
r p 2 0.000 0.017 0.028 0.029 0.040 0.079 0.137

Table C.2: The error produced on the Mushroom dataset (d0  =  23).

Pum sb dr =  74 dr =  69 II dr =  59 dr = 49 dr =  39 dr =  29
RPi 0.000 0.006 0.022 0.029 0.049 0.078 0.157
r p 2 0.000 0.007 0.030 0.030 0.032 0.060 0.108

Table C.3: The error produced on the Pumsb dataset (d0  =  74).

Connect dr =  43 dr =  37 dr =  31

LOIII.
*■« dr =  19 dr = 16 C

l
*5 II C

O

RPx 0.000 0.016 0.037 0.063 0.141 0.159 0.219
r p 2 0 . 0 0 0 0.016 0.028 0.062 0.122 0.149 0.212

Table C.4: The error produced on the Connect dataset (dQ =  43).

Accidents

00II dr =  16 II CNII dr =  10

00II dr = 6
R P i 0.000 0.033 0.034 0.044 0.094 0.144 0.273
r p 2 0.000 0.018 0.023 0.036 0.057 0.108 0.209

Table C.5: The error produced on the Accidents dataset (dQ — 18).
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C.2 Results of F-measure for the Clusters Mined from 
the Transformed Datasets

D ata
Transform ation

k =  2 II C
O

Min Max Avg Std Min Max Avg Std
r p 2 0.529 0.873 0.805 0.143 0.592 0.752 0.735 0.050

D ata
Transform ation

k =  4 k =  5
Min Max Avg Std Min Max Avg Std

r p 2 0.597 0.770 0.695 0.063 0.569 0.761 0.665 0.060

Table C.6: Average of F-measure (10 trials) for the Chess dataset (d0  =  37, dr =  25).

D ata
Transform ation

k =  2 II C
O

Min Max Avg Std Min Max Avg Std

r p 2 0.972 0.975 0.974 0.001 0.689 0.960 0.781 0.105

D ata
Transform ation

k =  4 k =  5
Min Max Avg Std Min Max Avg Std

r p 2 0.727 0.864 0.811 0.058 0.747 0.884 0.824 0.051

Table C.7: Average of F-measure (10 trials) for the Mushroom dataset (d 0  =  23, dr =  15).

D ata
Transform ation

k =  2 i 1

9? II C
O

Min Max Avg Std Min Max Avg Std
r p 2 0.611 0.994 0.909 0.140 0.735 0.991 0.965 0.081

D ata k == 4 k == 5
Transform ation Min Max Avg Std Min Max Avg Std

r p 2 0.846 0.925 0.891 0.028 0.765 0.992 0.838 0.041

Table C.8: Average of F-measure (10 trials) for the Pum sb dataset (da =  74, dr = 38).

D ata
Transform ation

k =  2 k =  3
Min Max Avg Std Min Max Avg Std

r p 2 0.596 0.863 0.734 0.066 0.486 0.863 0.623 0.103

D ata
Transform ation

k =  4 k =  5
Min Max Avg Std Min Max Avg Std

r p 2 0.618 0.819 0.687 0.069 0.572 0.763 0.669 0.069

Table C.9: Average of F-measure (10 trials) for the Connect dataset (d0  =  43, d,r =  28).
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