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Abstract 

Single-cell metabolomics (SCM) strives to identify, quantify and characterize all 

metabolites in a single-cell. The study of the metabolome enhances our understanding of the 

cellular interactions within and in response to environmental influences on a molecular level. As 

cells are being analyzed individually, this leads to a more accurate representation of cell-to-cell 

variations that would otherwise be masked by bulk population measurements. In this respect, SCM 

is important for illuminating cellular diversity and heterogeneity, and its development has the 

potential to shed light on, for example, improving the diagnosis and treatment of cancer, which has 

been recognized as a heterogeneous disease. 

The most prevalent limit of SCM is the comprehensive analysis of the metabolome in a 

single-cell. Given that metabolites can have very different chemical and physical properties, high 

coverage metabolic profiling with only one analytical platform is difficult to achieve. It is also 

worth noting that metabolites amount in a single-cell is extremely limited, and additionally, 

metabolites cannot be amplified. Therefore, a highly sensitive detection method is necessary. 

Chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS) provides a 

way for comprehensive metabolic profiling of single-cell with one platform – positive ion mode 

reversed phase liquid chromatography mass spectrometry (RPLC-MS). In brief, the metabolome 

is first being divided into four different groups based on their chemical properties and 

hydrophobicity. CIL is followed to attach an isotope-mass-encoded tag to metabolites, which has 

been proved to improve their separation and mitigate ion suppression in RPLC. Moreover, CIL 

enables quantification metabolomics in which absolute and relative quantification can be 

performed. 

In this work, the integration of efficient single-cell preparation and CIL LC-MS method 

were developed for single-cell metabolomics. Xenopus laevis oocyte is used as a model system. A 
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sample preparation and processing protocol involving cells extraction from the Xenopus laevis and 

cell lysis to extract the metabolites was developed. Dansylation labeling was first used to profile 

the amines and phenols containing metabolites in cells. We were able to determine the amine and 

phenol submetabolome of cells comprehensively and quantitatively. At the same time, the behavior 

of each single-cell was revealed. 

 One of the goals in metabolomics is to quantify metabolomics changes induced by one or 

more effectors, so as to study the perturbations of metabolic networks. Hence, the metabolic 

responses of cells to heat stress was also studied by applying CIL LC-MS. The short-term and long-

term effect of heat stress, as well as the recovery from heat stress were investigated and determined. 

 CIL LC-MS was also used to study cells at different locations of the Xenopus laevis ovary 

comprehensively by applying four labeling chemistries with proper design of sample collection. 

Cellular amine and phenol, hydroxyl, carbonyl and carboxylic acid submetabolome were studied. 

And by comparing the metabolome of cells at different locations, I was able to show that some 

submetabolome of cells have large variations at different points of the ovary, which demonstrates 

the importance of applying four labeling chemistries to elucidate the metabolome of cells 

comprehensively and systematically. This study can provide improvements in experimental design 

using Xenopus oocytes. 

 When performing metabolic profiling of single-cell, I understood and realized the 

importance of expanding the library for metabolite identification. Therefore, I constructed two 

MS/MS-retention time (RT) libraries including the molecular mass, MS/MS spectrum and RT 

information. RT calibrants were generated and the multipoint RT calibration method was used to 

transfer RTs from the instrumental setup in one laboratory to the same setup in another laboratory. 

Moreover, metabolite identification in human urine samples using the two libraries were 

demonstrated. 
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Chapter 1 Introduction 

1.1 The “Omics” Science 

 “Omics” is a branch of study in biological sciences aimed at identifying, characterizing 

and quantifying all the biological molecules in a cell, tissue, or organism holistically. It is a high-

dimensional biology including four levels of “omics”, genomics, transcriptomics, proteomics and 

metabolomics1, 2. 

Genomics was first coined by Thomas Huston Roderick, an American geneticist in 1986. 

It is a field of biology which involves the characterization and quantification of the entire set of 

genetic material, i.e., genomes, in an organism. Genome is the full DNA set, including all the genes 

in an organism. DNA microarrays is one of the most common methods used in genomics, it is 

capable of measuring the expression of thousands of genes simultaneously. The principle of 

microarrays is the binding of the cDNA or cRNA sample, i.e., the target, to the probe, which can 

be a specific DNA sequence or a short section of a gene, on the array. Incorporation of 

fluorescently labeled nucleotides in the cDNA or cRNA is usually involved so that the relative 

concentration of nucleic acid species in the sample solution can be determined by detecting the 

fluorescence signal at each spot. Thus, the signal intensity on each spot of microarrays is used as 

a measure of the expression level of the corresponding gene. This technology has been used to 

reveal the effects of certain treatment on gene expression. The microarray gene expression 

profiling can be used to spot out genes whose expression level changed significantly in response 

to drugs by comparing the gene expression of cells in treatment group to that in the control group. 

There are several limitations of DNA microarrays, for example, it is hard to design arrays that can 

detect only a particular gene in the genome if related genes are present. Moreover, it is an indirect 
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way to measure the relative concentration of genes so the signal is linear only for a limited 

concentration range3. 

Transcriptomics is the study of the complete complement of mRNA molecules, i.e., 

transcriptome, generated by a cell type or an organism. It was first proposed by European scientist 

Charles Auffray in 1996. In this field, scientists focus on the profiling of transcriptomes in different 

biological systems. Various technologies are involved, from Serial Analysis of Gene Expression 

(SAGE) and microarrays at early stage to more recent revolution, RNA-seq4. RNA-seq is a 

technique for revealing the sequences and quantity of RNA in a sample using next generation 

sequencing (NGS), it enables the analysis of the transcriptome of gene expression patterns encoded 

within the RNA. An example of the application of RNA-seq is alternative splicing. Alternative 

splicing is a process that occurs during gene expression, which allows one gene to code for multiple 

proteins, thus it is essential to increase the diversity and functional capacity of a gene at the post-

transcriptional level5. However, in some situations, mutations would occur and disrupt the 

regulation of alternative splicing, and this can lead to human disease such as cancer6. Therefore, 

the progress of RNA-seq to target alternative splicing has led to the development of novel 

therapeutic, which is beneficial to human health. The major limitation of the technique is the 

difficulty in quantifying and controlling artifacts and biases in certain situations. 

Proteomics was coined by an Australian scientist, Marc R. Wilkins in 1994. It aims to 

characterize and quantify all sets of proteins, i.e., proteome, in a biological system. There are 

various methods to study proteins, an example is immunoassays, which use antibodies for protein 

detection. Mass spectrometry has become the most common technology for current large-scale and 

high-throughput proteomics. For the practical application, it can be used in the discovery of novel 

drugs. By identifying proteins associated with a disease, drugs can be designed to interfere their 
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functions based on the structure information of these proteins. It can also be used in protein 

biomarkers discovery for disease diagnosis7. However, the limitation of proteomics is the 

complexity in analysis owing to the highly dynamic nature of the proteome. The separation of 

proteins as well as the characterization of post-translational modifications can also increase the 

difficulties of proteomics study. 

Metabolomics was first proposed by Steven Oliver in 1998, and it is the endpoint in the 

omics cascade. It is the comprehensive study of endogenous and exogenous low-molecular-weight 

(< 1500 Da) small molecules, i.e., metabolome, in a biological system. Metabolome as the 

downstream products of transcriptome and proteome, is highly associated with the phenotype of 

the biological system being studied. Because the changes and interactions of gene and protein 

expression with the environment are reflected in the metabolome directly, metabolomics is more 

complex and time sensitive compare to other “omics” approaches. This put metabolomics at a 

distinct advantage of being the best representative of the molecular phenotype of health and disease 

over other approaches. Since it can monitor the real-time biochemical activity and dynamics of a 

biological system, the number of metabolic works has grown considerably in recent years. More 

details about metabolomics will be provided in Section 1.2. 

To summarize, the beauty of the “omics” science is that each “omic” technology provides 

unique information at different levels, which together gives a complex and comprehensive 

biological picture of the cell, tissue, or organism. Therefore, we can have a better understanding 

about how individual cells or different types of tissue are organized and controlled through a 

holistic multi-omics study. 
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1.2 Metabolomics 

1.2.1 Importance of Metabolomics 

Metabolite measurements are increasing in importance because it has made notable 

progresses in different areas of life sciences, such as biomarker discovery and biological study. 

In biomarker discovery, the objectives are to detect and quantify metabolites in order to 

discover metabolite biomarkers for potential applications in, for example, clinical diagnosis, 

disease treatment and therapy. Given that pathological conditions can change various metabolic 

pathways, metabolic profiles of biofluids are different in disease and control groups. Therefore, 

metabolomics study always involves the investigation of metabolites in these two groups, and aims 

to find and identify specific biomarkers for disease diagnosis and even prediction. For instance, 

work presented by Qihui and colleagues identified five salivary biomarkers with high accuracy, 

sensitivity and specificity for early diagnosis of oral squamous cell carcinoma (OSCC), which is 

the most common oral cancer8. Another study by Guozhu and colleagues discovered that five 

metabolites are favorable to the prediction of early recurrence of hepatocellular carcinoma (HCC), 

one of the common types of primary liver cancer, with urinary metabolic profiling using GC-TOF 

MS9. 

In biological study, the main purpose is to quantify metabolomics changes induced by one 

or more effectors, so to study the perturbations of metabolic networks. The change and interaction 

of gene and protein expression with the environment are also reflected in the metabolome 

pathways. For instance, a study performed by Hong and colleagues investigated the metabolites 

and biological pathways that can distinguish children with anorexia nervosa from healthy children 

with the use of ultra-performance mass spectrometry (UPLC-MS) together with multivariate data 

analysis and pathway analysis10. In this study, rat model is used. Rats in the healthy group, which 
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is regarded as the control group were fed conventional food for 28 days, while rats in the model 

group were fed with a special feed to achieve the anorexia nervosa condition. With the perturbation 

induced in the model group, which is the change in normal diet, blood samples in two groups of 

rats were then collected and used in metabolomics analysis. The results of their study show that 

there are 26 metabolites changed significantly in the model rats compared to the control rats. 

Further analysis with the use of MetaboAnalyst platform indicated those differentiated biomarkers 

were involved in different metabolic networks such as D-glutamine and D-glutamate metabolism, 

alanine, aspartate and glutamine metabolism and the TCA cycle. And the study of metabolic 

pathways is also an important way to elucidate pathogenic mechanisms of anorexia nervosa. 

Taken all the above together, it is obvious that metabolomics plays an important role in the 

understanding of diseases. It could provide insights into the underlying causes of diseases, and if 

these can be controlled, it could lead to disease prevention eventually. Thus, metabolomics is 

important to improve the quality of life. 

 

1.2.2 Challenges of Metabolomics  

Metabolomics is an increasingly important area in ‘omics” sciences. However, the study 

of metabolites has six major challenges which are noteworthy11. First of all, fast dynamics of 

metabolites. Metabolites can interact with the environment on a very short time scale of seconds 

or even less. Thus, it is challenging to measure the metabolome in a biological system accurately. 

Secondly, wide diversity of metabolites. In contrast to genes and proteins, metabolites have very 

different chemical and physical structures, which make them difficult to study in one single 

analysis. Usually, more than one method has to be employed for comprehensive study of the 

metabolome as no one method can detect different classes of metabolites in once. Therefore, only 
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limited metabolome coverage can be achieved with most of the current technologies. Thirdly, 

metabolites cannot be amplified. Unlike gene or DNA which can be amplified by polymerase chain 

reaction (PCR), we cannot make copies of metabolites with low concentrations. This makes the 

analysis of metabolites, particularly those with low abundance challenging. Fourthly, large 

dynamic range of metabolites. They can range from a couple molecules to 1010 molecules per cell. 

It would be hard to use a method which can cover a wide range. Fifthly, it is not desirable to give 

metabolites fluorescent tags in order to make them detectable, as this could alter the activity of 

metabolites. Last but not least, it is difficult to identify unknown metabolites. The metabolites in 

the current library only represents part of the metabolites in the biological system, so continuous 

works to expand the library is necessary in order to achieve high coverage in metabolomics study. 

 

1.2.3 Platforms for Metabolomics 

Currently, major technologies for metabolomics, including single-cell metabolomics, the 

major work presented in this thesis, are nuclear magnetic resonance (NMR) spectroscopy and mass 

spectrometry (MS).  

NMR spectrometry is an analytical tool widely used in chemistry for identifying and 

quantifying the chemical composition of a sample and for structural elucidation on the basis of 

monitoring local magnetic fields around the atomic nuclei. MS is a technique mainly applied in 

the identification and quantification of molecules in a sample based on measuring the mass-to-

charge ratio of ions. Both technologies aim to detect, identify and quantify the metabolites in a 

given biological system of interest. For NMR-based metabolomics, NMR spectroscopy is a 

nondestructive technique with high reproducibility, so sample can be recovered and stored for a 

longer period of time. It requires minimal sample preparation such as sample derivatization and 
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separation before analysis, which is more efficient, compared to MS-based works in general12, 13. 

However, the sensitivity of NMR has limited its applications in metabolomics owning to the fact 

that metabolites cannot be amplified and methods with low detection limit is very important in 

analysis. Thus, researches attempting to improve the sensitivity of NMR have become more 

popular in order to address the challenges14, 15. 

MS-based metabolomics provides a powerful platform for different metabolomics studies. 

MS offers a number of benefits compared to NMR spectrometry, with the most advantage being 

its high sensitivity and selectivity. Detection limit of MS can reach nanomolars which is 

particularly good with samples of limited size and volume, such as single cells. Moreover, MS can 

be used for both selective (targeted analysis) and nonselective (non-targeted analysis) works. 

Furthermore, there are different MS technologies available, with different combination of 

ionization and detection methods, which can potentially increase the coverage of detected 

metabolites. In short, MS is a powerful tool for studying metabolomics, especially when combined 

with different separation techniques such as liquid chromatography (LC) and gas chromatography 

(GC)16-18, to separate the complex and diverse metabolite mixtures before MS analysis. 

 

1.2.4 Workflow for Metabolomics 

Generally, metabolomics workflow involves a biological or clinical study design, sample 

preparation, metabolomic analysis, data processing and analysis, metabolite identification and 

quantification, and finally, interpretation of results. 

For example, a workflow on fecal metabolomics was conducted by Wei and colleagues in 

201419. Human fecal samples contain many endogenous human metabolites, gut microbiota 

metabolites together with other compounds. The profiling of the fecal metabolome can produce 
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metabolic information that would be useful not only in disease biomarker discovery, but also could 

provide insights about the relationship between the gut microbiome and human health. The design 

of this study was to apply the differential chemical isotope labeling liquid chromatography mass 

spectrometry (LC-MS) to profile the amine and phenol metabolome of human fecal samples. For 

sample preparation, fecal samples were collected from three families, and each family in this study 

is made up of one male and one female in their late 20s, and an infant of 1-2 months. Water (H2O), 

methanol (MeOH) and acetonitrile (ACN) were used to extract metabolites. Dansylation labeling20, 

21 was performed followed by LC-UV for sample quantification22, and finally sample was injected 

to electrospray ionization (ESI) time-of-flight mass spectrometer. In data processing and analysis, 

IsoMS was used to process the raw data generated from LC-MS runs and peak-pair intensity ratio 

calculation was performed for quantitative metabolomics23. In metabolites identification, a total of 

6200 peak pairs were detected from 243 LC-MS runs of all the fecal samples, and 67 of them were 

positively identified based on the mass and retention time match to an expandable dansyl standard 

library. In addition to this, 582 and 3197 peak pairs were putatively identified based on mass match 

using MyCompoundID against a Human Metabolome Database and an Evidence-based 

Metabolome Library, respectively. At the end, for the results interpretation, the conclusion of this 

study is that diet might affect the metabolome. However, the variations among families or even 

individuals exerted greater effects than day-to-day variations. 

The workflow of all metabolomics studies always follows the routine described above with 

different methods and platforms being used depending on the sample properties and availabilities 

of the instrumentation. 

The workflow for single-cell metabolomics, the main work presented in this thesis, will be 

discussed in detail in Section 1.3.5. 
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1.2.5 Mass Spectrometry for Metabolomics 

As mentioned in Section 1.2.3, NMR and MS are two common analytical platforms for 

metabolomics. Here, the discussion will be focused on the details of MS, which is the technique 

employed in all the work presented in this thesis. 

 MS is an analytical technique that provides excellent sensitivity, specificity and speed for 

qualitative and quantitative analysis of metabolites. Mass spectrometer is an instrument used for 

measuring the mass of an ion. Basically, it is composed of five different components, which are 

sample introduction, ionization, mass analyzer, ion detector and finally a data system. A vacuum 

system operating at < 10-5 torr is required in the ionization chamber, mass analyzer and ion detector 

in order to minimize the chance of collisions between ions and sample molecules. Moreover, 

operating in high vacuum can reduce background spectra, and ions generated in the ionization 

chamber can have a long free path without hitting air molecules. The measurement is shown in a 

mass spectrum, which is a plot of detector response, i.e., the signal intensity, as a function of mass-

to-charge ratio (m/z). The peak area in the plot is related to the abundance of the ions. In general, 

a mass spectrum of a pure compound consists of two peaks types, which are the molecular ion 

peak, providing the molecular mass of the compound, and fragment ion peaks used for structural 

analysis of the compound.  

Depending on the sample state (solid, liquid, gas) and properties (non-volatile or volatile), 

there are different ways to introduce the sample into the mass spectrometer. For volatile sample, 

which is referring to chemicals that can evaporate at room temperature or below to form vapour, 

Gas Chromatography (GC) is commonly used to vaporize and inject the sample to a 

chromatographic column, where separation of compounds in the mixture occurs in the presence of 

inert carrier gas mobile phase, such as helium. When coupled with MS, the GC-MS instrument 
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can separate the chemical mixtures (by the GC component) and identify the components (by the 

MS component). On the other hand, for non-volatile sample, if it is thermally stable, GC/MS 

involving high temperature can be used. However, if the sample is thermally instable, other 

approaches will need to be considered. For example, Liquid Chromatography (LC) can be used for 

the analysis of thermally unstable compounds. In LC, liquid sample would be injected into a stream 

of mobile phase flowing through a column packed with stationary phase, sample components are 

then separated from one another by differential migration as they pass through the column. And 

when coupled with MS, LC-MS, samples can be introduced, separated and analyzed by the MS. 

Ionization is the next important stage, as ions must be formed and transferred into gas phase 

before they can be analyzed by MS. Ionization occurs in the ion source, and depending on the 

properties of samples and applications of the study, different ion sources can be used. Here, 

ionization source is discussed in two forms: hard ionization and soft ionization. For hard ionization, 

it is a process in which high energy is given to the molecule, resulting in extensive fragmentation. 

The most common example is the Electron Ionization (EI). In EI, the ionization source is made of 

a filament and an electron receiving plate. Current is applied to the filament so that its temperature 

rises and gives off electrons. A small voltage is then applied across the filament and the receiving 

plate, so that the electrons are accelerated to the receiving plate. And when neutral molecules are 

introduced into the ionization sources region, electrons will collide with the molecules and some 

of the molecules will absorb enough energy from the electrons to be ionized. These ions can be 

moved to the mass analyzer by applying a suitable voltage. Because of the high excitation energy, 

the EI spectrum is composed of many fragment ions peaks and sometimes, no molecular ion 

information is generated. The fragment ions are particularly useful for chemical identification as 

the spectrum serves as a fingerprint of a molecule. It can be easily done by comparing the EI 
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spectrum of the unknown compound with the known compounds in a library. On an entirely 

different ground, soft ionization is a process which imparts little energy to the molecule, resulting 

in limited fragmentation. Examples of this include Chemical Ionization (CI), and Electrospray 

Ionization (ESI). CI and EI are always complementary to each other and thus commonly used 

together for analyzing a compound. EI generates many fragment ions which are useful for 

structural analysis and compound identification, whereas CI generates the protonated molecule 

which is useful for determining the molecular mass of the compound. The principle of CI is that 

current is applied so that electrons are given off from the filament and are accelerated to the 

receiving plate. However, different from EI, electrons will collide mainly with the reagent gas here, 

ions are thus produced from the electron ionization of the reagent gas molecules. Some form of 

the reagent ions can then react with the neutral analyte molecules to form analyte ions, and this 

reaction does not transfer as much excess energy to the analyte ions as in EI. Another soft 

ionization method to be discussed in detail here is ESI since it is used in the studies presented in 

this thesis. ESI was first described by Zeleny in 1917, and the coupling of it to MS was performed 

in 1984 by Yamashita and Fenn24. The mechanism of ESI, in particular the positive ionization 

mode, as described by Kebarle and Tang25, involves four major processes. These are 1) the 

production of charged droplets at the ESI capillary tip by applying a high voltage, 2) shrinkage of 

charged ESI droplet by flowing a dry nitrogen gas, 3) repeated droplet disintegrations which 

happened because the repulsion force on the droplet surface is larger than the surface tension force 

and 4) generation of gas phase ions, in which two mechanisms, single ion in droplet theory26 and 

ion evaporation theory27 have been proposed. ESI is a great ionization method for LC-MS owing 

to the fact that it converts the neutral molecules in the solution into gas phase ions without applying 

any heat to the molecules. In this way, molecular ions generated are usually free of thermal-
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induced decomposition. In other words, the molecular ions are stable and usually do not undergo 

dissociation to give fragment ions. Because of this, ESI is particularly popular for thermally-labile 

samples. 

 After ionization, mass analyzer is used to separate the ions according to their mass-to-

charge ratio. It maximizes the resolved ion intensities and outputs them to the detector where they 

can be detected and later converted to a digital output. There are various types of mass 

spectrometers and they are usually different only in mass analyzers while the other parts are very 

similar. When deciding which analyzer is suitable for a study, a number of factors would be taken 

into consideration. First of all, mass range, which is the maximum and minimum m/z a particular 

mass analyzer can detect. Second, resolution, which is the ability of an analyzer to separate ions 

of two adjacent mass peaks. Depending on the samples, mass analyzer of different resolutions 

could be needed. Third, mass measurement accuracy. This depends on the use of a proper mass 

scale for calibration, i.e., internal or external calibration method. Fourth, ion transmission, which 

is related to the sensitivity of ion detection. Fifth, spectral recording speed. This is the rate at which 

a mass spectrum can be acquired and is generally given in mass units per unit time. In general, the 

higher the speed, the lower the resultant resolution and sensitivity. Lastly, versatility. This is how 

easy it is to interface the mass analyzer to different separation methods such as GC, LC and CE. 

Examples of the mass analyzer are quadrupole, time-of-flight (TOF), ion trap, fourier transfer ion 

cyclotron resonance (FTICR), linear ion trap and orbitrap. As the studies presented in this study 

mainly involved the use of TOF mass spectrometer, thus it will be discussed in detail in the 

following. The principle of TOF analyzer is ions which are accelerated by electric field are adjusted 

in different ways in which they all have the same initial kinetic energy if they have the same charge. 

Their velocities are thus depending on the m/z, i.e., ions of the same charge which are heavier 
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would reach the detector later than those with smaller m/z. The time taken for the ions to reach the 

detector at a known distance is then measured and become a measure of the ions m/z provided that 

standards are used to calibrate the mass and time scale in prior. There are two ways to increase the 

resolution of TOF, they are used to correct for the initial velocity and energy spread in the ions 

respectively. In this way, ions of same m/z can arrive at the detector simultaneously and thus 

improve the resolution of the peak in the mass spectrum. The first one is known as the time-lag 

focusing (TLF) TOF28, which is very effective to focus the axial velocity distribution of ions. To 

be more specific, amplitude of the pulse can be adjusted so that the initially less energetic ions can 

catch up to the initially more energetic ions when they both arrive at the detector. The second one 

is the reflectron TOF29 in which ion reflectors are used to compensate for the initial energy 

distribution and focus ions having the same m/z value to the detector. This can be achieved because 

the faster ions will penetrate deeper into the field created by the reflector and thus take a longer 

time to return than the slower ions. As a result, the fast and slow ions are focused in time at the 

detector. The resolution of TOF can be very high with the use of reflectron TOF. Moreover, good 

mass accuracy can be achieved with good calibration. Furthermore, it can be readily combined 

with LC and a pulsed ionization method such as laser ionization which broadens its applications. 

Taken together, it has become one of the most popular analyzers in MS. 

 For ion detection, there are several types of ion detectors available for mass spectrometer. 

The electron multiplier (EM) detector is very commonly used, examples of EM are the discrete 

dynode multiplier and the continuous dynode multiplier. The principle of these multiplier depends 

on the production of secondary electrons when ions impact onto the surface of dynode, the 

electrons gain amplifies the signals generated from incident ions of analytes, and the detector 

output after amplification is traced on a recorder. Many improvements have been made on the EM, 
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the development of microchannel plate (MCP) multiplier is an example. Since MCP multiplier has 

many separate channels and each channel is a channel electron multiplier, it has the added 

advantage of providing spatial resolution. Another type of ion detector is the scintillation detector. 

In this detector, ions or electrons are first converted to photons at a scintillator such as phosphor. 

The photons released are then detected by an electron light sensor such as the photomultiplier tube 

(PMT). 

 The last component of a mass spectrometer is the data system. A wide range of data systems 

have been used, ranging from microcomputers and programmable desk calculators to powerful 

computers. Here, data is shown as mass spectra, and depending on the purpose of study, 

qualification and quantitation can be done. For example, in full scan mode, total ion chromatogram 

(TIC) is produced by adding ion intensities of all m/z’s in each spectrum recorded at a specific 

retention time. It is shown as the total ion intensity as a function of retention time, and is 

particularly useful in qualitative study. While in selected ion monitoring (SIM) mode in which one 

or more selected m/z peaks are monitored, the signal-to-noise ratio (S/N) is generally 10-100 times 

higher than full scan mode as more time is allowed for the integration of the chromatographic peak 

specified. Owing to the higher sensitivity on the selected m/z peaks, it is particularly useful for 

quantitative purpose.  

 

1.2.6 High-Performance Chemical Isotope Labeling (CIL) LC-MS for Quantitative 

Metabolomics 

1.2.6.1 Quantitative Metabolomics 

Quantitative MS in metabolite measurements has received considerable critical attention. 

People not only care about the identity of the metabolites, but also the concentrations. In 
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quantitative MS, selected-ion monitoring (SIM) and selected-reaction monitoring (SRM) are 

extensively used during data acquisition. For SIM, only one or a few selected ions are monitored, 

thus it provides better sensitivity when compared to full scan. In general, the molecular ion is 

selected for higher sensitivity in quantitation as it is the most abundant ion in most cases. It is 

important to note that a separation technique such as HPLC is always used to reduce interfering 

species. SRM involves the use of tandem MS. Firstly, MS 1 is used to mass-select the analyte ion 

of interest, and here, a lot of interfering ions having the same m/z may be selected at the same time. 

Secondly, collision-induced dissociation (CID) of this ion will generate different fragment ions. 

Finally, in MS 2, a m/z value corresponding to the mass of a specific fragment ion from CID of 

the analyte ion is selected and this fragment ion is detected. SRM is very specific for monitoring 

an analyte of interest with very little interference from interfering ions since the coincidence of 

any fragment ions from the interfering ions at the same m/z value as the analyte fragment is very 

rare. 

 The accuracy of mass measurements in quantitative MS depends on the use of a proper 

mass scale for calibration. Calibration is to find out the correlation between a known concentration 

of the analyte and the resulting MS signal. There are three common methods for calibration, which 

are the external standard method, standard addition method and internal standard method. In 

external standard method, standard solutions with known concentrations are first prepared and 

analyzed by MS, signal intensity is then plotted against the concentrations to establish a calibration 

curve. Least square analysis is used to figure out the relation between the MS response and 

standard concentrations. Concentration of the unknown can thus be determined by using this 

equation. However, this method has low accuracy and precision as the matrix of the calibration 

standards is difficult to match with the sample matrix. Also, as the standards and samples are run 
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at two different times, the MS response may be different. In standard addition, known 

concentrations of standard solution of the analyte are added to the unknown sample and the signals 

are measured. Calibration curve is plotted and the unknown concentration can be determined by 

extrapolating the linear equation to y=0. This method can overcome the matrix effect and 

instrumental signal response fluctuations but is very time consuming and tedious. In internal 

standard method, a constant amount of internal standard (IS) solution with known concentration 

is added to all calibration solutions of known concentrations of the analyte, in this way, the IS and 

the analyte are detected by the MS at the same time. The ratio of their signals is plotted against the 

analyte concentration to establish a calibration curve and this can be used to find the analyte 

concentration in the unknown. This method provides high accuracy and precision as the internal 

standard can compensate for any fluctuations in the MS response and the samples losses during 

sample preparation and chromatographic steps. In other words, the standards are affected to the 

same extent as the analyte. Therefore, it is good to use IS method for metabolite quantification. 

There are two types of internal standards: structural homologous and stable isotope-labeled analog 

(SILA). In the next section, a CIL LC-MS method for quantitative metabolomics will be discussed 

in detail. 

 

1.2.6.2 CIL in Large-Scale Metabolite Quantification  

In the last section, we mentioned that SIL analog is an ideal internal standard. Yet, it may 

not be feasible for large-scale and comprehensive metabolome quantification. The reason for this 

is that synthesizing SIL analogues of all metabolites is not practical. Chemical Isotope Labeling 

(CIL) method has emerged as a good alternative to acquire data related to large number, wide and 
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diverse range of metabolites. In this section, the use of CIL LC-MS in quantitative metabolomics 

will be discussed thoroughly. 

CIL can be considered as a chemical derivation reaction, in which a chemical reaction is 

used to attach an isotope-mass-encoded tag to metabolites. CIL could mitigate the ion suppression 

effect on the premise that the isotope is properly chosen. For example, when deuterium is used as 

the isotope tag, isotopic effect is often found. To be more specific, in RP LC-MS, the deuterium-

tagged standard elutes at different retention time from the analyte. This is due to the fact that the 

IR oscillation frequency of the C-D bond (2334 cm-1) is lower than that of the C-H bond (3300 

cm-1), and this could induce less attraction forces between the C-D bond and the stationary phase 

and thus the deuterium-tagged standard always elute before the nondeuterated one30, 31. The 

problem of this is that as they elute at different retention time, they experience different extent of 

ion suppression effect compared to other co-eluting compounds. As a result, these two peaks would 

have different signal response and thus lead to inaccurate quantification. On the contrary, when 

13C-tagged labeling reagent is used, the 12C-tagged analyte and the 13C-tagged standard would 

coelute perfectly, i.e., resulting in no isotopic effect and more accurate metabolite quantification. 

 Quantification is one of the important works in metabolomics which provides information 

on metabolite concentrations. It opens up the door for subsequent statistical analysis of the samples 

being studied which is essential for biological interpretation. The quantification workflow with 

CIL is that analytes in individual samples are labeled with 12C-labeling reagent, while another 

mass-difference isotope tag, i.e., 13C-labeling reagent is added to the same analyte in another 

comparative sample (for relative quantification) or standard (for absolute quantification). In most 

of the studies, the comparative sample is usually a pooled sample, which is produced by mixing 

equal aliquots of all individual samples in the study. The two labeled samples are then mixed for 



 

 18 

mass spectrometric analysis. The peak pair ratio of the isotope labeled analyte pair represents the 

relative or absolute concentration of metabolites in the sample. 

 The first development of CIL in large-scale metabolite quantification is the dansylation 

chemistry for labeling the amine and phenol containing metabolites. As amines and phenols are 

highly polar and hydrophilic in nature, they have serious ion suppression issues in ESI-MS, 

commonly originated from matrix molecules or co-eluting compounds in LC-MS runs20. It has 

been demonstrated that with CIL dansylation reactions by attaching 12C- and 13C-dansyl chloride 

to individual samples and pooled sample respectively, ion suppression issues are reduced, leading 

to increased coverage when compared with methods without labeling. Apart from reducing ion 

suppression, CIL dansylation has several more benefits. Firstly, dansylation labeling changes the 

chromatographic behavior of polar metabolites such that they can now be retained and separated 

by RPLC. Secondly, dansylation labeling can enhance the ESI signal compared with the 

underivatized metabolites. Thirdly, it can enhance the ESI response since the labeling tag gives 

metabolites stronger chargeability and increases hydrophobicity, making the metabolites elute in 

higher percentage of organic solvent. It is desirable for metabolites to elute later in the gradient 

run because the sensitivity of ESI-MS detection near the initial void may be significantly reduced 

as a result of inadequate ESI desolvation. Taken together, CIL gives improved separation and 

enhanced MS detection which is critical for increasing the coverage.  

 

1.2.6.3 Divide-and-Conquer Approach 

 The rationale of CIL is the divide-and-conquer approach, which is also known as the 

chemical-group-based submetabolome profiling. The idea is to divide the whole metabolome of a 

biological system into four different groups based on their properties such as chemical structures 
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and hydrophobicity. These four different groups, or more precisely, four different submetabolome 

are the amine/phenol, carboxylic acid, carbonyl and alcoholic hydroxyl. A specific CIL method, 

each tailored to a group of metabolites is then applied, followed by the optimized LC-MS methods, 

in attempting to systematically describe the complete set of all metabolites in a biological sample. 

Apart from the dansylation for the amine/phenol submetabolome, the other three CIL reactions are: 

base-activated dansylation for hydroxyl submetabolome32, p-dimethylaminophenacyl (DmPA) 

bromide labeling for carboxylic acid submetabolome33 and dansylhydrazine labeling for carbonyl 

submetabolome34. 

 Owing to the fact that metabolites has great diversity in their chemical and physical 

properties, and in order to achieve comprehensive metabolic profiling, conventional targeted or 

untargeted LC-MS workflows always involve multiple experimental conditions to increase the 

coverage. In addition, the detection of various type of metabolites, i.e., polar, non-polar and ionic 

depend on the use of ionization mode in the MS, so for the sake of increasing the coverage, 

different ionization modes are used independently. For example, to target the polar metabolites, 

Hydrophilic Interaction Liquid Chromatography (HILIC) coupled to MS is needed, so HILIC LC, 

positive ion mode MS and HILIC LC, negative ion mode MS are required. Whereas nonpolar 

metabolites need Reversed Phase Liquid Chromatography (RPLC) – MS, therefore, RPLC, 

positive ion mode MS and RPLC, negative ion mode MS are required. Thus, conventional LC-MS 

approach would require four experimental conditions and LC-MS runs. Obviously, the whole 

process is inconvenient and cumbersome in practice. One more point is that not all laboratories 

have access to all these analytical platforms. On an entirely different ground, if we divide the 

metabolites into groups and perform CIL chemical derivation to alter the chemical properties of 

the metabolites in a way that they can all be separated with high efficiency in one mode of 
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separation such as RPLC, which is commonly interfaced to a mass spectrometer, or one ionization 

mode, such as positive ion mode in electrospray ionization (ESI), this problem can be 

circumvented. In other words, CIL LC-MS approach allows comprehensive, metabolic profiling 

in a biological system, with the use of four labeling chemistry and LC-MS runs under one 

experimental condition, i.e., RPLC-MS, positive ion mode.  

 To sum up, high-performance CIL LC-MS is a relatively simple platform for quantitative 

metabolomics with high metabolome coverage. It has four major features summarized in the 

following. First of all, the chemical derivation reaction, for example, dansylation mentioned above, 

is simple and robust to perform. It is applicable to a range of amines and phenols with very limited 

or even no side reaction products. Secondly, CIL is universally applicable to all kinds of samples. 

Thirdly, it is useful for MS-based metabolome quantification, either relative or absolute depending 

on the needs with high accuracy and precision. Last but not least, the chemical-group based sub-

metabolome profiling which fractionates the metabolome into different groups followed by 

thorough analysis of each, serves as an important tier in efforts to achieve comprehensive, great 

depth of chemical coverage in metabolic profiling. 

 

 

1.2.6.4 Sample Normalization 

 In quantitative metabolomics, the main purpose is to determine the concentration 

differences of individual metabolites in two or more comparative samples. In order to generate 

reliable metabolome profiles for comparison, it is of utmost importance that the amount of starting 

materials in each sample is comparable. In reality, the concentration of metabolites can be very 

different from one biological sample to another. For example, total concentration of metabolites 
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in urine samples can differ by more than 14-fold35. Therefore, it is crucial to eliminate the effect 

of total sample amount variation on quantification of individual metabolites, especially in urinary 

metabolome profiling. 

 Sample normalization is a way to account for variations of the overall sample 

concentrations, or in other words, it can eliminate the effect on metabolome data caused by 

concentration differences in the samples. In CIL LC-MS, a fast step-gradient LC-UV method has 

been developed and optimized for quantification of dansyl labeled metabolites, and is readily 

applicable to many biological samples22. The principle of LC-UV quantification is that in 

dansylation, amines and phenols containing metabolites are labeled with dansyl groups. And since 

the dansyl group is a good chromophore, LC-UV can be use in quantifying the total labeled 

metabolites in a biological sample. The detection is optimally performed at the detection 

wavelength of 338 nm as it has the least absorption compared to other wavelengths, which means 

338 nm can provide the least interference from other chromophores. In this fast LC-UV gradient, 

the labeled metabolites are eluted out together, with the quenching reagent separated in the 

chromatogram. The UV absorbance is proportional to the sample concentration. 

 The sample normalization described above, in which the total concentration of metabolites 

is first measured and the volume of the biological samples to be injected to LC-MS for analysis is 

adjusted accordingly so that the total sample concentration of all samples is equalized, is known 

as the pre-acquisition normalization. Another method of normalization is named post-acquisition 

normalization36. In this approach, the sample amounts being injected for metabolomic profiling 

are different. The individual metabolite signals are then normalized using the total ion signal 

intensity. Each of this method has its pros and cons, for example, in pre-acquisition normalization, 

the instrumental responses obtained for all samples are very similar. The results can be used to 
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facilitate an optimal sample injection amount for metabolomic profiling. On the other hand, post-

acquisition normalization is more convenient without using additional experimental steps such as 

LC-UV. Therefore, depending on the study needs, applications and conditions, different methods 

can be selected. 

 

1.2.6.5 Optimization of Injection Amount or Volume  

 It is very important to achieve optimal detectability along with avoiding the sample 

carryover problem, therefore, optimizing the injection amount or volume is essential in the CIL 

LC-MS workflow. The optimization workflow is straight forward, after the mixing of 12C- and 

13C-labeled samples, different injection amounts and volumes are used in LC-MS runs. The peak 

pair number is plotted as a function of the injection amount/volume, and the amount/volume that 

gives the largest peak pair number would be the optimal injection amount/volume37. 

 

1.2.6.6 Data Processing and Analysis 

Metabolomics data processing and analysis are essential to convert data into knowledge, 

and is a significant part of the metabolomics workflow. In CIL, there is a standard way to process 

the data. 

To begin, all the raw LC-MS data are exported to a CSV file by Bruker Daltonics Data 

Analysis. Here, total ion chromatogram (TIC) and extracted ion chromatogram (EIC) are extracted 

from the raw data, de-noised and baseline corrected. Then, a software tool, IsoMS Pro, developed 

by Nova Medical Testing Inc. (Edmonton, Alberta) is used for the rest of the data analysis, 

including data quality check, data processing, data cleansing, metabolite identification and 

statistical analysis. The first step in IsoMS Pro is data quality check, in which mass accuracy check 
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and retention time check are performed. Mass accuracy check is an indicator of MS performance. 

To be more specific, a background m/z value is continuously detected in the entire LC-MS run, 

i.e., the background m/z is checked every second. Measured values of this background peak will 

be extracted from the whole dataset and if the MS performance is stable throughout the period of 

data acquisition, the distribution of the detected m/z should be within a narrow range. Similarly, 

for retention time check, a mixture of retention time calibrants is intermittently injected throughout 

the LC-MS runs, and the data containing the calibrant peaks are then collected. With stable LC 

performance, the detected retention time of each calibrant should be within a narrow range.  

The second step is data processing. Here, peak-pair picking, peak alignment and zero-

filling are carried out. In peak-pair picking, peak pairs resulted from CIL are extracted from the 

CSV raw files. The filter of the peak pairs is done by removing reductant peaks like adduct ions 

and dimers, thus retaining only the [M + H]+ pairs. One peak pair detected is corresponding to one 

individual labeled metabolite. The peak-pair intensity ratios of these are then calculated here. In 

peak alignment, all the LC-MS runs are aligned together into an integrated matrix of peak pair 

ratio values (in row) across samples analyzed (in column). And at the end, in zero-filling, missing 

values in the aligned files are filled from the raw LC-MS data using algorithm. 

The third step is data cleansing, which comprises of blank subtraction, missing value 

treatment and sample-wise normalization. For blank subtraction, it is only after blank filter wherein 

peak pairs that exist only in method blanks or have a large portion of signal originating from the 

blank are being excluded. Usually, blank subtraction is not recommended because it can enhance 

the effects of random variations and also exaggerate the statistical differences between study 

groups, especially when the blank signal is very strong. For missing value treatment, peak pairs 

with too many missing values are filtered. As a general rule of thumb, the algorithm used here 
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requires the peak pairs to be retained have larger than 50% existence among all samples (not 

including QC) or larger than 80% existence in at least one study group. After this, the remaining 

missing values are estimated by a ratio-based imputation algorithm, which is specifically designed 

for the CIL LC-MS data, providing putative values with high accuracy and confidence. Afterward, 

sample-wise normalization, which is also regarded as post-acquisition normalization is performed. 

Here, all peak pair ratios in samples are divided by the sample’s ratio of total useful signal36.  

The steps mentioned above are important to prepare a complete dataset of the samples 

being analyzed in a study for the next stage – metabolite identification.  

 

1.2.6.7 Metabolite Identification 

IsoMS Pro uses a three-tier metabolite identification approach to identify the metabolites. 

For Tier 1, it is high-confidence positive identifications matched by retention time and accurate 

mass to an expandable library of labeled authentic standards. The default retention time window 

is given for each experimental setting, and the default m/z window is 10 ppm. For Tier 2, it is high-

confidence putative identifications based on retention time and m/z matching to a LI library, which 

consists of various metabolites covering all common metabolism pathways. The default retention 

time window for the LI library search is given for each experimental setting, and the default m/z 

window is 10 ppm. And for Tier 3, it is a putative identification based on m/z match against a more 

comprehensive and complete metabolite database. To be more specific, zero-reaction mode 

searches is against a library of 8021 known human endogenous metabolites; one-reaction mode 

searches is against a library involves over 375,000 predicted human metabolites with one 

biological reaction; and two-reaction mode searches is against a library of over 10,580,000 
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predicted human metabolites with two biological reactions. The default m/z window for this mass-

based database search is 10 ppm. 

Information about the CIL LC-MS library is available on the MyCompoundID website: 

http://www.mycompoundid.org/mycompoundid_IsoMS/index.jsp . 

 

1.2.6.8 Statistical Analysis 

There are a lot of statistical tools available for the analysis of data. Broadly speaking, 

univariate and multivariate statistics are the common methods to extract useful information from 

the complex metabolomics datasets38. Univariate analysis involves only one variable for statistical 

analysis. Theoretically, in metabolomics, univariate analysis compares the statistic values such as 

the mean values, between two groups of samples. An example of univariate statistical tool for 

metabolomics data is volcano plot. Volcano plot is a type of scatterplot that displays significance 

level (y-axis) versus fold change (x-axis), and each dot in the plot represents a metabolite. It is 

used for binary comparison, that is to compare data in two populations. For the significance level, 

both p-value and q-value would be considered. Statistically, p-value can be understood as the 

probability that the pattern of data in the sample could be produced by randomness, which means 

there is no real difference between the two tested study groups. In other words, the smaller the p-

value, the higher the significance, that is the likelihood that there is a real difference. And in general, 

a commonly used cut-off of the statistical significance is 0.05. Actually, p-value is calculated from 

a two samples t-test, which is used in statistic to check if the two means are reliably different from 

each other or is due to chance. Each t-value has a p-value and t-value would tell if there is a 

difference and p-value would tell if it is reliable. However, one of the main limitations of p-value, 

in particular in metabolomics datasets, is the large number of hypothesis tests due to multiple 

http://www.mycompoundid.org/mycompoundid_IsoMS/index.jsp
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measured metabolites, and this would result in high possibility of getting false positive results. A 

way to mitigate it is to consider the q-value, that is the FDR adjusted p-value. IsoMS Pro provides 

two FDR-based adjustment methods to convert original p-value to q-value, they are the Storey39 

and Benjamin and Hochberg approach40, 41. In IsoMS Pro, when the FDR adjustment is enabled 

and the significance level is set at 0.05, the false discovery rate of the output list of significant 

metabolites generated would be below 5%. For the fold change, it is the ratio of average values of 

two groups and the default value is 1.5. This value may need to be adjusted according to the 

expected extent of metabolic changes in a specific study. The distinct advantage of univariate 

analysis is it is a simple and robust way which allows the discovery of those metabolites that varies 

between two populations. Because it visualizes and analyzes each valuable separately, it is a good 

tool for preliminary screening of significantly altered metabolites. However, the down side of it is 

it cannot illustrate a statistically significant difference between two groups if there are more than 

one variable. Moreover, it requires prior knowledge of the measured variable.  

Multivariate analysis, on the other hand, involves the study and visualization of multiple 

variables together. It provides a way to reduce the dimensionality and uncover the coexistent 

relationship between the variables of metabolomics datasets. It is particularly useful in untargeted 

metabolomics, in which the number of metabolites is far more than the number of samples. The 

main advantage of multivariate analysis is it gives a straightforward interpretation of the large-

scale complex datasets. Examples of the commonly used multivariate methods in metabolomics 

studies are the principal component analysis (PCA) and partial least square discriminant analysis 

(PLS-DA). PCA is an unsupervised method which gives a simple and graphical overview of data 

without referring to prior knowledge or assumption about if the samples are come from different 

groups or not. Each group in PCA is bounded by an ellipse, namely the 95% confidence interval 
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ellipse. This ellipse is the defined region for predicting a new observation in the population. 

Another point to mention about PCA is principal components (PC), particularly PC1 and PC2, 

which represents the x and y-axis of PCA respectively. PCA is built based on the principle that the 

redundancy within the complex datasets can be decomposed in an orthogonal way, into a few linear 

weighed variables presented as PC38. The values of PC are in percentage which indicates the 

overall variance it can explain. For example, PC1 usually has a largest percentage value, and is the 

axis that explain the greatest variability among the samples in the analysis. Likewise, PC2 is the 

second axes explaining more variability and so on. It is worth noting that there are as many PCs 

as there are characteristics. Leaving out PCs would lead to lose of some information. Though, if 

the first two or three PCs have capture most of the variance, we can leave the other PCs without 

losing important information. In contrast, PLS-DA is a supervised method that take the group 

assignment of the samples into consideration. The key of PLS-DA lies in the PLS. It is used to 

find the fundamental relations between two matrices. In metabolomics work, matrix 1 is the 

metabolite information, to be more specific, the peak pairs ratio in CIL LC-MS. While matrix 2 is 

the categorical variables, for example, disease vs healthy control group. PLS finds the variations 

in common and then constructs a model which look up the covariance between these two matrices. 

Covariance is a measure of the common variability of these two matrices, it shows if there is a 

linear relationship between two variables. A positive covariance is deemed if the increase in one 

variable agree with the increase of the other variable. Indeed, PLS-DA is used to sharpen the 

separation between groups and to understand which variables bear the class separating information. 

However, by virtue of the supervised feature of PLS-DA, which leads to separations between 

variables including even the variations not related to the categorical variables, overfitting is thus a 

major challenge. To overcome this problem, cross-validation and permutation test are essential 
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when performing PLS-DA. In cross-validation, two values, R2 and Q2 which indicated the 

goodness of fitting and goodness of prediction respectively are obtained. In general, a high R2 and 

Q2 indicate the model can better describe the set of explanatory variables and also predict the 

response ones. That is to say, more desirable is the PLS-DA model. In IsoMS Pro, when building 

the PLS-DA model, five PCs are set to be checked in default. After cross-validation, operating 

from one PC to five PC, the number of PCs that gives the highest Q2 value is used for building the 

final PLS-DA model. And for permutation test, the default number of tests performed in IsoMS 

Pro is 100. It is used to examine the chance of over-fitting especially when the number of variables 

is much larger than the number of observations. The result of the test shows the original Q2 value 

and the distribution of the Q2 values from the permutations. Meanwhile, an empirical p-value is 

calculated to evaluate whether the original Q2 value is significantly different from the null 

distribution. 

The above are only some examples of the statistical analysis in metabolomics. Depending 

on the purpose of studies and the results that researchers want to emphasize, different methods can 

be chosen and used. 

 

1.2.6.9 Applications 

High-performance CIL LC-MS has been emerging as a fresh quantitative metabolome 

profiling technique in different areas of biological, biomedical and clinical research. This 

technique has been applied in blood metabolomics42, urine43 and fecal19 metabolomics. It is also 

being employed in studying the metabolome in human sweat44, breast milk45 and even cells46-48.  
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Development of CIL LC-MS has now led to the application of standardized four isotope 

labeling methods to study the metabolome of biological samples comprehensively. In the future, 

more rapid analysis is needed to enable high-throughput study in metabolomics. 

 

1.3 Single-Cell Metabolomics 

1.3.1 Cell-to-Cell Heterogeneity 

Single-cell metabolomics is the study of a complete set of cellular metabolites in single 

cells, in a non-targeted and non-biased manner. It is an increasingly important area in life science. 

Cell is the fundamental unit of life, which makes up all living organisms on Earth, ranging from 

unicellular organism such as bacteria to multicellular organism, for instance, human beings. Cells 

are very dynamic. More importantly, they divide, adapt, communicate and react to their 

surroundings non-synchronously49. The meaning of single-cell analysis stems from better 

understanding of reasons behind the high variability of cells in the same population, and this is 

known as the cell-to-cell heterogeneity. 

Cellular heterogeneity can be attributed to four main sources in general50. First, genetic 

factor. Acquired genetic change occurs in single cells. For example, De novo mutations (DNMs) 

in the DNA sequence usually originate during cell division. This can be considered as an evolution 

by random mutations and resulted in phenotypic change. There is also pre-existing genetic change 

in single cells, which could also contribute to heterogeneity. When cells undergo rapid divisions, 

chances of replication errors exist and this can be the potential for prior genetic mutations. Second, 

epigenetic factor, which arises from nongenetic influences on gene expression. Differential DNA 

demethylation and differential chromatin modification are examples of epigenetic determinants of 

heterogeneity. These modifications play important roles in cellular development and 
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differentiation. Moreover, it can also control the gene expression. However, the differences 

between cells in these modifications such as the timing of these epigenetic reprogramming could 

lead to heterogeneity. Third, non-genetic factor, which is also known as stochastic. Heterogeneities 

related to this factor can be ascribed to the interaction of stochastic fluctuations in molecules within 

the cell. Temporal noise is an example of it. To be more specific, the protein levels within a cell 

can actually fluctuate over a short period of time. This change is not permanent in which the 

daughter cells may not be affected. However, this still can cause variability in the cells. Therefore, 

stochasticity can be considered as the induced phenotypic heterogeneity through gene and protein 

expression. Finally, extrinsic sources of heterogeneity. External environment factors may also 

contribute to cell-to-cell differences. A specific environment condition is necessary and crucial for 

the proper development of cells, therefore change in the environmental variables, such as 

temperature, pH and even exposure to toxins can also alter the cells behavior. 

 

1.3.2 Advantage and Importance of Single-Cell Metabolomics 

The distinct advantage of single-cell analysis, in particular, when compared to population-

level studies is that it gives a more accurate depiction of the cell-to-cell variations. Population-

level studies could overlook important differences among individual cells. On account of the fact 

that cell populations are not homogeneous and thus behave non-synchronously, single cell 

metabolomics is therefore important for the purpose of getting a more accurate, unbiased metabolic 

profile of individual cells being studied. 

Single cell metabolomics is capable of providing a more immediate and dynamic indicator 

of the phenotypic diversity of single cells and a picture of how cells react to and interact with 

environmental influences at a molecular level. It also provides a window into the cell-to-cell 
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heterogeneity, and allows the measurements of the extent of variation in resulting phenotypes of 

single cells. This opens up possibilities for better understanding of the biological system. For 

example, cellular heterogeneity explains the exist of variant subpopulations that could withstand 

the perturbations such as chemical or environmental stress better and survive51. It could provide 

insights on the mechanisms behind cells coping with stress. Another potential application of 

single-cell metabolomics that should deserve our attention is oncology – the study of cancer. 

According to World Health Organization (WHO), cancer is a leading cause of death globally, 

accounting for nearly 10 million deaths in 2020. It is a group of diseases which can initiate in 

almost any organ or tissue of the body when abnormal cells grow uncontrollably and has the 

potential to metastasize, i.e., to invade and spread to other parts of the body. It is worth noting that 

our body contains 30 trillion cells and only one abnormal cell is enough to cause cancer49. Research 

into understanding and characterizing what and how the cells are different can ultimately shed 

light on the contribution of cellular heterogeneity in cancer diagnosis and treatment52. In cancer 

diagnosis, studying single-cell heterogeneity can help the selection and use of suitable disease 

biomarkers. Particularly, in metabolomics work, by detecting, identifying and quantifying the 

metabolites in two different groups, the cancer cells and normal cells, it is possible to reveal the 

differences between these two group of cells. And the cancer related metabolites could be used as 

biomarkers in the diagnosis of specific cancer types. In cancer treatment, understanding single-

cell heterogeneity can facilitate the choice of proper drugs which could definitely improve the 

efficiency of treatment. To elaborate more here, some cells in a tumor can develop drug resistance 

to a treatment because cells can have heterogeneity in their growth rate and treatment response. 

The point is treatment aiming only at part of the cells in a tumor will lead to cancer relapse readily. 

For example, in human epidermal growth factor receptor (HER) family-dependent epithelial 
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tumors, scientists found that when handling it, it would be more effective to target three receptors 

of HER family, which are the EGFR, HER2 and HER3 simultaneously owing to single-cell 

heterogeneity52.  

Altogether, single-cell metabolomics is important as it provides a way to highlight cellular 

heterogeneity. It holds a great potential to elevate our understanding of the cellular physiology and 

give biological insights in health and diseases that is not accessible from population-level 

metabolomics data. 

 

1.3.3 Challenges of Single-Cell Metabolomics 

In Section 1.2.2, challenges of metabolomics are mentioned. In single-cell metabolomics, 

apart from the challenges listed before, there are some distinctive challenges. The first one is the 

limited sample volume and low abundance of metabolites. Depending on the size of single cells, 

sample volume can be as small as femtoliters or less. This greatly increases the difficulty of cell 

collection, preparation and analysis. As mentioned before, metabolites signals cannot be amplified, 

therefore, the sensitivity of the analytical platform plays a very important role in single cell 

metabolomics. And because of this, MS-based methods are dominant in the field of single-cell 

metabolomics. 

 Another worth noting challenge is it is hard to perform replicate analysis53, especially in 

MS-based single-cell metabolomics. MS is a destructive technique, i.e., in order to detect the 

sample, it has to be ionized and cannot be recovered. Hence, when the sample volume is low, as 

in single cell, it is very difficult to do replicate analysis. Thus, each single cell analysis cannot be 

technical repeated. 
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 MS plays a very important role in single-cell metabolomics, and there are many MS-based 

techniques to study the single-cell metabolome. Apart from the commonly used LC-MS and GC-

MS, continuous advancement in developing devices and techniques has been made. For example, 

the single-probe, which is a miniaturized multifunctional sampling and ionization device directly 

coupled to the mass spectrometer, enabling live single-cell MS analysis in real time54. Laser 

ablation electrospray ionization mass spectrometry (LAESI-MS), in which the integration of laser 

ablation from a mid-infrared laser with a secondary electrospray ionization process is used55, 56. 

Nanospray desorption electrospray ionization (nano-DESI) MS, in which the entire cell contents 

are desorbed into the liquid in a few seconds for subsequent ionization53. These are the ambient 

ionization of single cells and allowing in situ metabolomics. The challenge here is that high 

vacuum condition is not compatible with living cells analysis and mass spectrometers need to 

operate at high vacuum in order to minimize the collision of ions with other molecules in the mass 

analyzer.  

 To summarize this part, no technique is flawless in all regards. Each single-cell 

metabolomics method has its own challenges and these are the research goals peoples in the field 

targeting.  

 

1.3.4 Xenopus laevis in Single-Cell Metabolomics 

When it comes to single cell study, egg is one of the popular single cells used in research. 

Embryos of Xenopus laevis have been studied to understand embryonic development through 

single-cell metabolomics57. Xenopus laevis is an African clawed frog, and is a desirable animal 

model widely used in cell, molecular and developmental biology research. The major reason for 

this is because Xenopus has conserved important cellular and developmental processes as well as 
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significant extent of genomic synteny with mammals58. This makes it a powerful model to 

understand human development and disease. One of the ultimate goals of scientific research is to 

improve the quality of human lives, so with the use of tools which has close evolutionary 

relationships with humans, this could provide insights into human diseases, which is definitely 

beneficial to human beings.  

In the works presented in this thesis, single cells employed are the Xenopus laevis oocytes. 

The main reason highlighted the use of Xenopus oocyte is its large size, with an average diameter 

of 1.3 mm59. In single-cell metabolomics, it is of utmost importance that sample volumes and 

analyte concentrations are large and high enough for analysis. Sensitivity in smaller cell is always 

the main limiting factor in analysis so the large size of Xenopus oocytes can potentially provide 

enough, abundant source of material for metabolic analysis.  

 

1.3.5 Workflow for Single-Cell Metabolomics 

The general workflow for single-cell metabolomics carried out in the studies presented in 

this thesis includes the following: single cells isolation from Xenopus laevis, cell lysis and 

metabolite extraction, CIL LC-MS and finally data processing and analysis. Basically, data 

processing and analysis are the same as metabolomics, as discussed in Section 1.2.6.6 to 1.2.6.8. 

Thus, only sample collection and metabolite extraction, together with CIL LC-MS will be covered 

in this section. 

1.3.5.1 Sample Collection and Metabolite Extraction 

 Sample preparation includes the extraction of target cells from the animal and cell lysis to 

extract the metabolites. It is vital to isolate the target cell without affecting its metabolism and thus 

the metabolome, in a high-throughput manner.  



 

 35 

Single-cell isolation is the first step in sample preparation. Owing to the fact that cellular 

metabolome is very sensitive to external perturbations such as temperature changes, enzymes 

treatments and mechanical damages, it is very crucial to minimize the intracellular biochemical 

activities along with analyte loss in this step. Low temperature is a common approach to reduce 

metabolic activity and is used in the related studies presented in this thesis. Moreover, the integrity 

of cell membrane is preserved during cells isolation to reduce metabolite leakage. In the works 

presented in Chapter 2 to 4 of this thesis, single cells were isolated from the ovary of Xenopus 

laevis. Amphibian skin acts as a semipermeable membrane that allows for respiration and 

absorption of substance through the skin. Therefore, the frog was first anesthetized by immersion 

in an anesthetic solution, a mixture of ethyl 3-aminobenzoate methanesulfonate and sodium 

bicarbonate, for about 1 hour. Ethyl 3-aminobenzoate methanesulfonate is a chemical which can 

suppress the sensory system of the frog, and sodium bicarbonate is used to adjust the pH of the 

solution so as to protect the skin of the frog. It should be noted that depending on the weight and 

the age of frogs, the time needed for anesthesia varies. The next step is dissection to collect the 

frog oocytes. The spinal cord of the frog was broken using a knife and the abdomen was opened 

up to extract the whole ovary tissue out of the frog. The ovary is a large piece tissue in the abdomen 

and it was being torn into smaller pieces in a petri dish. After that, collagenase was added to digest 

the follicle cell layer that encloses the oocytes. At the same time, blood capillaries surrounded the 

cells were also removed. The time for collagenase digestion depends on the age of the frog, as 

older frog would have thicker connective tissue and thus more time would be needed to remove 

all the follicle cell layer. Sandpaper rolling was then used to make sure all the follicle cells and 

blood capillaries were removed before oocyte selection. In oocyte selection, stage V oocytes were 

picked under the microscope. Stage V oocytes appear as distinct hemispheres and the pigment half 
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fades to brown. Finally, the oocytes were being washed with growth medium OR-2 twice before 

cell lysis. 

After isolation, metabolites need to be extracted from cells for metabolic studies. A method 

of high efficiency to extract the analytes of interest is an important factor to increase the 

measurement accuracy. In the meantime, the enzymatic activity of the cells has to be quenched to 

stop further changes of the metabolome during metabolite extraction. In the context of these, cell 

lysis, when carried out carefully, can achieve highly efficient extraction and as a result, contribute 

to accurate, precise and reliable measurements of metabolites in single cells. Cell lysis is a process 

to break or destroy the cell membrane of the cells in order to release the inter-cellular biomolecules 

from the cells. In general, cell lysis methods can be divided into physical disruption and chemical 

cell lysis60. Examples of physical lysis includes freeze-thaw cycles, osmotic shock, grinding and 

sonication. The advantages of physical method are that it can be used with a wide range of 

materials and the amount of force can be easily adjusted according to a particular type of cells. 

However, the major shortcoming is that since the cells are being disrupt at different times, the 

released molecules may be subject to disruptive forces repeatedly. Moreover, it might not be 

compatible when working with small volumes and high-throughput. For chemical-based methods, 

such as enzymatic digestion, chemical agent is used to make cellular membranes permeable to 

analytes. It is a gentle and efficient way to extract the analytes, but high concentrations of chemical 

could interfere downstream analysis, e.g., the ionization of analyte for MS detection. For this 

reason, the condition in chemical lysis has to be carefully optimized and controlled. For cell lysis 

in single-cell metabolomics works presented in this thesis, we employed a well-established method 

for metabolite extraction from Marc Kirschner’s group in the Department of Systems Biology at 

Harvard Medical School61. The lysis solution for metabolite extraction is ACN:MeOH:H2O in 
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ratio of 2:2:1. Each cell was deposited onto the side of an Eppendorf tube, ready on an ice bucket. 

Then each of them was lysed by vortexing on a high speed vortexer for 5 seconds, in a 4 ℃ cold 

room. It is important to lyse the cell and extract the metabolites at low temperature as this can 

minimize the hydrolysis and degradation of metabolites.  

 
 

1.3.5.2 CIL LC-MS 

 In CIL of single-cell samples, the well-established methods mentioned in Section 1.2.6.3 

were applied. The only thing is the starting sample volume is much less compared to other 

biological samples, such as urine and serum. The labeling protocol has to be scaled down and there 

is an extra need to exercise great care in performing CIL of single-cell samples, since the labeling 

reagent added can be as low as 2 𝜇L. 

 Another point is the reference sample in single-cell metabolomics is not the pooled sample, 

as in urine and serum metabolomics. The reason for this is single cell sample has very limited 

volume and is not enough to generate the pooled sample. Hence, universal internal standard (UIS) 

was used. UIS was made by collecting and lysing a large number of oocytes from the same type 

of Xenopus laevis. The idea is that as the metabolites in the UIS are the same as those in individual 

single cell samples, the performance of it is similar to the pooled sample. Therefore, for CIL in 

single-cell metabolomics, UIS is labeled with a 13C-lableing reagent, while individual single cell 

sample is labeled with 12C-lableing reagent. 
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1.4 Scope of the Thesis 

The research objective is to develop and apply CIL LC-MS techniques for single-cell 

metabolomics. 

In chapter 2, CIL LC-MS is used to study the amine and phenol submetabolome of 

individual Xenopus laevis oocytes.  

In chapter 3, CIL LC-MS is used to study the metabolic responses of single cells to heat 

stress. Short-term and long-term responses of cells, along with recovery from heat stress are 

investigated. 

In chapter 4, CIL LC-MS is used to study the cell-to-cell variations from different locations 

of the Xenopus laevis ovary. Four labeling chemistries are applied to study the complete set of 

metabolites in single cells. 

Finally, in chapter 5, construction of two MS/MS retention time libraries are presented. 
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Chapter 2 – High-Coverage Quantitative Single-Cell Metabolomics: Chemical Isotope 

Labeling LC-MS Metabolome Analysis of Individual Xenopus laevis Oocytes 

2.1 Introduction 

Cell is the fundamental structural and functional unit of life, which makes up all living 

organisms on Earth, ranging from unicellular organism such as bacteria to multicellular organism, 

for instance, human beings. Cells are highly dynamic themselves. More importantly, they divide, 

adapt, communicate and react to their surrounding non-synchronously. The meaning of single-cell 

analysis stems from better understanding of the reasons for the variability between genetically 

identical cells. To be more specific, individual cells can differ widely in responsiveness to uniform 

physiological stimuli, even within a homogeneous population, and this is known as the cell-to-cell 

heterogeneity1, 2. The distinct advantage of single-cell analysis, in particular, when compared to 

population-based study is that it gives a more accurate depiction of cell-to-cell variations. 

Population-based study involves bulk measurements of cells and thus result in stochastic average 

of the cell population in the study. For example, RNA-seq experiment provides information about 

the average gene expression in a cell population. In other words, the mRNA level is estimated 

across all cells in each subpopulation. The problem of this is that it could miss important biology 

of individual cells, since an individual cell could have mRNA expression patterns that vary a lot 

from the average expression of the cell population3. Therefore, single-cell analysis is crucial to 

illustrate cellular diversity and heterogeneity.  

In single-cell metabolomics, the complete set of single-cell metabolome is studied in a non-

targeted and non-biased manner. It provides a more immediate and dynamic indicator of the 

phenotypic diversity of single cells. By detecting, identifying and quantifying the metabolome in 

a single-cell, it provides a window into the cell-to-cell heterogeneity and can open up possibilities 
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for better understanding of life science. For example, cellular heterogeneity explains the exist of 

variant subpopulations that could withstand the perturbation such as chemical or environmental 

stress better and survive4. It can also shed light on the contribution of phenotypic heterogeneity in 

cancer genesis, progression and therapies4, 5. 

Individual oocytes of the African clawed frog Xenopus laevis were used in this study. 

Xenopus laevis has been widely used as a model organism in cell biology. This animal is used 

because it has a good combination of experimental tractability and close evolutionary relationship 

with humans. One of the reasons for its popularity is the large size of the cell, it has an average 

diameter of 1.3 mm6. Therefore, each single oocyte can potentially provide enough material for 

metabolite analysis with high coverage. The groups of Marc Kirschner and Joshua Rabinowitz 

have developed a metabolite extraction procedure for Xenopus eggs that is expected to be suitable 

for oocytes7. 

Recent advances in high-performance chemical isotope labeling (CIL) liquid 

chromatography-mass spectrometry (LC-MS) have opened the possibility of carrying out high-

coverage quantitative metabolomics research at the single-cell level. CIL LC-MS uses a strategy 

of divide-and-conquer to perform in-depth analyses of several chemical-group-based 

submetabolomes and then combine the data sets to represent the near-complete set of the 

metabolome in a biological system. Using a rationally designed labeling chemistry, metabolite 

detectability is significantly improved, allowing the analysis of thousands of metabolites from a 

submetabolome. For example, dansylation labeling LC-MS can be used to analyze amines and 

phenols containing metabolites with high coverage8.  In addition, using differential isotope 

labeling of individual samples and a reference sample (e.g., a pooled sample), accurate 

quantification of concentration differences of individual metabolites in comparative samples can 
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be readily performed9. The objectives of this study are to develop a robust workflow for optimized 

detection of cellular metabolites and apply the workflow to study cells with different culture 

periods.  

2.2 Experimental 

2.2.1 Chemical and Reagents 

In single-cell collection, tricaine methanesulfonate (MS-222) and Collagenase Type IA 

were purchased from Sigma-Aldrich Canada. OR-2 was prepared in the lab using 5 mM Hepes-

NaOH (pH 7.8), 82.5 mM NaCl, 2.5 mM KCl, 1 mM MgCl2, 1 mM CaCl2, 1 mM Na2HPO410. 

Lysis solution was prepared from ACN, H2O and MeOH, all purchased from Sigma-Aldrich 

Canada. 

All the chemicals and reagents used in CIL LC-MS, unless otherwise stated, were 

purchased from Sigma-Aldrich Canada. For dansylation labeling, the 12C-labeling reagent, i.e., 

dansyl chloride, was purchased from Sigma-Aldrich and the 13C-labeling reagent was synthesized 

according to the previously published method8. 

 

2.2.2 Sample Collection and Processing 

All the single-cell samples were collected and prepared in Dr. Michael C. Schultz lab 

(Department of Biochemistry, University of Alberta) and the animal experiments were done 

according to protocols approved by the Biosciences Animal Care and Use Committee of the 

University of Alberta. 
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The general workflow of single-cell metabolomics performed in this study is depicted in  

Figure 2.1. In detail, oocytes, after being collected from Xenopus laevis, were defolliculated and 

washed. Stage V oocytes were selected under the microscope. They were then being lysed to 

extract the metabolites either immediately or cultured for different periods of time (2, 4, 8, 16 and 

24 hours). 

 

 

 

 

 

 

 

 

 

 

Figure 2. 1 General workflow of CIL LC-MS for single-cell metabolomics. 

 
For cell lysis, 80 𝜇L of lysis solution (ACN: MeOH: H2O in ratio of 2:2:1) was dispensed 

into the bottom of 0.6 mL centrifuge tube ready in an ice bucket. This is to prevent evaporation of 

lysis solution. Each cell was deposited onto the side of the tube at the 0.3 mL mark, this can be 

done by holding the tube with its long axis about 45 degrees to the horizontal. Single-cell at this 

stage should be refrained from lysis solution, otherwise, proteins will precipitate immediately. The 

cells were then carried into the 4 ℃ cold room for cell lysis as low temperature can help minimize 
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hydrolysis and degradation of the metabolites. The cell was lysed by putting the tube on a high 

speed vortexer for 5 s, and then incubated on ice for 10 min. After that, the cell was vortexed at 

full speed for 2 s using a standard laboratory vortexer and incubated on ice for another 10 min. 

Lastly, the cell was centrifuged under 4℃ at RCF 20,000 for 5 min and the supernatant (about 80 

𝜇L) was transferred into a 0.6 mL eppendorf. The lysate was frozen in liquid nitrogen immediately  

and then stored in -80℃ freezer before CIL. 

In differential CIL, cell samples were dried down, resuspended in Na2CO3/NaHCO3 buffer 

and labeled with 12C-dansyl chloride. Universal internal standard (UIS), which is considered as the 

pooled sample in this study was labeled with 13C-dansyl chloride. 12C- and 13C-labeled samples 

were mixed in 1:1 ratio prior to injection to LC-MS for analysis. Finally, data analysis was 

performed to study the metabolome of Xenopus oocytes. 

 

2.2.3 Method Optimization 

In order to apply CIL LC-MS in single-cell analysis, the dansylation workflow was 

optimized to profile the amine and phenol submetabolome in single cells. Three labeling protocols 

denoted as M1, M2 and M3 shown in Figure 2.2 were compared in order to develop an optimized 

workflow of labeling the small amounts of metabolites present in a single-cell. In M1, 425 mM 

FA was prepared in 50% ACN. 12 𝜇L of 1:1 mix 12C-labeled single-cell and 13C-labled UIS was 

injected to LC-MS for analysis. In M2, 425 mM FA was prepared in 100% H2O, whereas in M3, 

sample after mixing was diluted with mobile phase A (0.1% (v/v) formic acid in 5% (v/v) 

acetonitrile). 
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Figure 2. 2 M1, M2 and M3 workflows of labeling small amounts of metabolites in the single-

cell. 

 
Figure 2.3A compares the base peak chromatograms (BPCs) of M1 (shown in blue) and 

M2 (shown in red). In comparison to M1, M2 resulted in less peak broadening and splitting for the 

early peaks owning to the lower organic percentage. To be more specific, for the quenched DnsCl 

peak, there were less tailing in M2 and thus less ion suppression of the co-eluting peaks. In 

addition, M2 gives better peak shape, higher peak intensity and the peaks have less splitting due 

to reduce peak broadening. In the mid-region, the peak distribution of M1 and M2 is similar. 

However, for M2, the later peaks have lower intensity than M1. The possible reason here is that 

for these compounds which eluted out at higher organic phase, the solubility is limited when the 

aqueous percentage is increased. 

Figure 2.3B shows the BPCs for M1 (blue) and M3 (orange). It can be seen that M3 and 

M2 are similar, with less tailing of the quenched DnsCl peak, higher peak intensity for front peaks, 

and lower peak intensity for later peaks compared to M1.  
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Figure 2. 3 BPCs (A) of M1 and M2 and (B) BPCs of M1 and M3. 

 

(A) 

(B) 
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Figure 2.4 shows a heatmap comparing the absolute peak intensity of the three methods, 

each with three replicates. Red color represents higher peak intensity, and the columns are aligned 

according to increasing retention time. The data here again suggested that for M2 and M3, the 

early peaks have higher intensity, while for M1, later peaks have greater intensity.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 4 Heatmap comparing the absolute peak intensity of M1, M2 and M3 (n=3). 

 

M2 and M3 provide a distinct advantage in addressing the ion suppression effects when 

compared to M1 as illustrated in Figure 2.5. From the extracted ion chromatogram (EIC) of a 

selected peak pair in the three methods, it can be observed that the intensity of the selected peak 

pair in M1 is significantly lower than that in M3 because of the serious tailing of the quenched 
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Dns peak. This is because the Dns peak tails to about 5 minutes in M1 and most of the peaks before 

this time were suppressed by the tailed peak. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 5 EIC of a selected peak in M1, M2 and M3. 

 

For the number of detected metabolites, M1, M2 and M3 are very close, with an average 

of 2700 peak pairs being detected after zero-filing as shown in Figure 2.6A. Moreover, 94% of the 

peak pairs can be commonly detected in these three methods, which means the peak pair 

distribution of the three methods is comparable as illustrated in Figure 2.6B. 
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Figure 2. 6 (A) Number of detected metabolites in M1, M2 and M3 and their (B) peak pair 

distribution. 

 

2.2.4 Chemical Isotope Labeling for Amine and Phenol Metabolomics 

To analyze the amine and phenol submetabolome of a single-cell, a CIL LC-MS method 

reported previously was applied8. However, because of the limited sample volume of single-cell, 

the labeling protocol was being scaled down accordingly here. 80 𝜇L of a single-cell sample 

obtained after cell lysis was first dried down using SpeedVac. The dried sample was then re-

suspended in 10 𝜇L of water and mixed with 5 𝜇L of 250 mM sodium bicarbonate buffer  

(A) 

(B) 
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followed by 5 𝜇L acetonitrile and 10 𝜇L of freshly prepared 18 mg/mL 12C-dansyl chloride 

solution. After vortexing and spinning down, the reaction mixture was incubated at 40 ℃ for 1 hr. 

2 𝜇L of 250mM NaOH solution was then added to quench the reaction by reacting with excess 

dansyl chloride. The mixture was vortexed, spun down and incubated at 40 ℃ for another 10 min. 

After incubation, 10 𝜇L of 425mM formic acid solution was added to the reaction mixture to 

acidify the sample followed by dilution with aqueous mobile phase. At the end, the sample solution 

was vortexed and centrifuged at 10,000 rpm under 4 ℃ for 5 min. When analyzing biofluids, for 

example urine, a pooled sample is usually generated from all the individual samples being analyzed 

in the study and is labeled with 13C-dansyl chloride. However, in single-cell analysis, because of 

the limited sample volume of each individual cell, it would be hard to generate a pooled sample. 

Therefore, universal internal standard (UIS) was used here. To be more specific, a total of 780 

cells were collected from two Xenopus laevis and were then being lysed and combined together to 

generate the UIS. This sample was divided into 0.5 mL aliquots in cold room and were stored in -

80 ℃ freezer before use. To label the UIS, 80 𝜇L of UIS was transferred to a 0.6 mL eppendorf, 

which is the starting volume of the individual single-cell sample. Then, the same procedures used 

to label individual cell described above were followed, with 13C-dansyl chloride being used instead 

of 12C-dansyl chloride. 

 

2.2.5 LC-MS 

Analysis of single cells was performed on Bruker Impact HD Quadrupole Time-of-Flight 

(Q-TOF) mass spectrometer (Bruker, Billerica, MA) coupled to Agilent 1100 series binary HPLC 

system (Agilent, Palo Alto, CA). Sample was injected to Agilent reversed phase Eclipse Plus C18 

column (2.1 mm × 10 cm, 1.8 𝜇m particle size, 95 Å pore size) for separation. Mobile phase for 
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the gradient elution was solvent A: 0.1% (v/v) formic acid in 5% (v/v) acetonitrile and solvent B: 

0.1% (v/v) formic acid in acetonitrile. The gradient elution profile was (i) 0-3.5 min, A+B (20-

35% gradient); (ii) 3.5-18 min, A+B (35-65% gradient); (iii) 18-21 min, A+B (65-95% gradient); 

(iv) 21-37min, A+B (95% isocratic) with flow rate 180 𝜇L/min and injection volume of 12 𝜇L. 

Mass spectra were recorded from 220 to 1000 m/z with a spectra rate of 1.0 Hz for positive 

ionization mode. The nebulizer was set to 1.0 bar, and the dry temperature was 230 ℃, with 8 

L/min of drying gas. The capillary and end plate offset voltage were set as 4500 V and 500 V 

respectively. 

 

2.2.6 Data Processing and Statistical Analysis 

The raw LC-MS data was exported in Compass DataAnalysis to CSV file. Data in CSV 

format was ready to process in the following way using IsoMS Pro software developed by Nova 

MEDICAL TESTING Inc. (Edmonton Alberta): (i) data quality check including mass accuracy 

and retention time check. (ii) data processing in which peak-pair picking from raw files, peak-pair 

filtering, peak alignment, peak-pair intensity ratio calculation and zero-filling are performed. (iii) 

data cleansing which is comprised of missing value treatment and sample-wise normalization. (iv) 

metabolite identification with a three-tiered metabolite identification system (v) statistical analysis. 

For univariate analysis, volcano plot was generated using Origin 9.0. MetaboAnalyst website 

(www.metaboanalyst.ca) was used for multivariate statistical analysis, such as principal 

component analysis (PCA). 

 

 

 

http://www.metaboanalyst.ca)/
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2.2.7 Metabolite Identification  
 

We profiled the amine and phenol submetabolome of 124 single cells scattered in 6 

different periods of culture times. LC-MS analysis of 124 samples resulted in the detection of 1531 

peak pairs. We positively identified 80 metabolites by retention time and m/z search against CIL 

standard libraries, putatively identified 146 metabolites with high confidence by retention time and 

m/z match against the LI library and putatively identified 1173 metabolites by m/z match against 

the mass-based database.  

 

2.3 Results and Discussion 

In this experiment, two animals were used. Animal 1 oocytes were used for optimizing the 

CIL LC-MS method in single-cell metabolomics. Animal 2 oocytes were cultured for different 

periods of times, and the amine and phenol submetabolome of cells were studied. 

We analyzed metabolite abundance in isolated oocytes at stage V of their development. 24 

animal 1 oocytes were individually extracted immediately after isolation. 124 animal 2 oocytes 

were divided into groups and processed immediately, or after culture for 2 to 24 hours in medium 

without growth-promoting blood components. The amine and phenol submetabolome were 

profiled because stage V oocytes rely on protein catabolism to generate amino acids for energy 

production11. Since healthy oocytes were used and there are no cell subtypes in the oocyte lineage, 

low cell-to-cell variability of the metabolome was expected. However, for freshly extracted cells, 

i.e. t = 0, the content variability of amino acids between cells is substantially higher than the 

variability of signal between matched quality control replicates as shown in Figure 2.7. An oocyte 

can rank near the top of the content range for one amino acid and near the bottom for another, 

which is clearly shown with the arrow in Figure 2.8. Therefore, single cell variability of the 
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metabolome is not related to cell size. The existence of oocytes that are metabolic outliers was 

further evident in single cell analysis of the metabolome during primary culture in animal 2. Cell-

to-cell spread of abundance of some metabolites is the same at the start and end of the culture, for 

example, uridine and pantothenic acid shown in Figure 2.9A and 2.9B respectively. Figure 2.10 

shows the PCA score plot of single cells with different culture times. High dispersion of whole 

metabolome PCA scores compared to the QC replicates also persists during culture. Thus, single 

cell variability of the amine and phenol submetabolome is not erased by in vitro maintenance of 

oocytes. Remarkably the persistence of single cell variability does not reflect stasis of overall 

metabolism; the amine and phenol submetabolome is globally remodeled during culture. 

Specifically, oocytes harvested at 0 and 2 hr cluster together and away from those harvested at 8, 

16 and 24 hr; and 4 hr oocytes group lie between the 0/2 and 8/16/24 hr batches. We conclude that 

the oocyte amine and phenol submetabolome evolves during culture to reach a state of modest 

stability at 8 hours. 

 

 
 
 

 

 

 

 

 

 

Figure 2. 7 Content variability of amino acids between cells and variability of signal between  

matched quality control replicates in animal 1 and 2. 
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Figure 2. 8 Correlation of cystine and asparagine in cellular peak pair ratio. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. 9 Examples of metabolites with comparable cell-to-cell variation at the beginning and 

the end of the culture (A) uridine, (B) pantothenic acid. 

 
 
                                                                                                                                                                                                                                                       

 

 

 

(A) (B) 
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Figure 2. 10 PCA score plot of single cells with different culture times with the QC samples. 

 
Figure 2.11 shows the volcano plot comparing the 0 h and 24 h cell population with the 

criterion of FC ≥ 1.5 and FC ≤ 0.67, q-value < 0.03. 228 metabolites (red dots) were up-regulated 

and 218 metabolites (blue dots) were down-regulated in response to 24 hours of culture. This 

reconfiguration includes induction of some amino acids and repression of others. For example, up-

regulation of proline and methionine, down-regulation of alanine were found, as indicated in the 

plot. 

For cell cohorts, the temporal pattern of abundance change is not always monotonic. For 

instance, the median abundance of leucine increases during the first 16 hours of culture and then 

decreases in 24 h as revealed in Figure 2.12A. In addition to this, the amount of cell-to-cell 

variability of abundance of individual amino acids, like the variability of median amino acid 

abundance for cell cohorts, can fluctuate over time shown in Figure 2.12A-E. Oscillatory 

fluctuation is evident for aspartate. Specifically, Figure 2.12E shows the cell-to-cell variability of 
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aspartate content increases between 0 and 4 hours, declines between 4 and 8 hours and increases 

again after 8 hours This oscillation is not associated with cell growth rate fluctuation, since 

maintenance medium does not support growth or substantial changes in the average amount of 

aspartate per oocyte. What is worth noting is that CIL LC-MS has revealed temporal oscillation in 

single-cell variability of metabolite abundance for the first time. The literature on such topics as 

circadian control of metabolism, oscillation of cell growth rate, fluctuation of cell to cell variability 

of RNA expression during a somatic cell developmental program12 and stochasticity of 

biochemical reactions is expected to inform future work on the mechanistic underpinning of this 

new phenomenon. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 2. 11 Volcano plot for comparison of cells in 0 h and 24 h of culture.  
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Figure 2. 12 Box plots showing the cell-to-cell variability of (A) leucine, (B) glycine, (C) serine, 

(D) alanine, (E) aspartate with RSD values indicated at the bottom of each group. 

  

(A) 

(B) 

(C) 

(D) 

(E) 
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CIL LC-MS suggested the presence of the drug benzocaine in freshly isolated oocytes, as 

well as a biotransformation product, 3-aminobenzoic acid of the closely related anesthetic tricaine 

methanesulfonate (TMS)13 used in this study.  Subsequent comparison to a dansylation standard 

revealed that the peak pair tentatively assigned to benzocaine in fact corresponds to TMS. 

Therefore, CIL LC-MS has revealed uptake and metabolism of TMS, consistent with expression 

of the biotransforming enzyme cytochrome P450 2E1 (CYP2E1)14 in oocytes15. Cell-to-cell 

variability of TMS and 3-aminobenzoic acid content is similarly high for freshly isolated oocytes 

from animals 1 and 2, even though they differ in the average starting amount of TMS/oocyte as 

shown in the t = 0 h group in Figure 2.13A. At the population level, the average concentration of 

TMS and 3-aminobenzoic acid declines during culture as can be seen in Figure 2.13A and 2.13B 

respectively.  Nonetheless, cell-to-cell variability of TMS and 3-aminobenzoic acid content is high 

at all time points. These findings suggest that cell-to-cell variability of the capacity to transform 

drugs should be taken into account when assessing their effects on cells.  Overall, our results 

encourage refinement of CIL LC-MS for metabolomics of single somatic cells in order to support 

drug development16 and research on fundamental mechanisms of metabolic regulation in 

metazoans. 
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Figure 2. 13 Box plots showing the cell-to-cell variability of (A) TMS and (B) 3-aminobenzoic 

acid. 
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2.4 Conclusions and Future Work 

In summary, we have developed a CIL LC-MS workflow to profile the amine and phenol 

submetabolome of single cells comprehensively and quantitatively. This involves cells extraction 

from Xenopus laevis, cell lysis to extract the metabolites, chemical isotope labeling of amines and 

phenols containing metabolites and subsequent LC-MS analysis. By applying CIL LC-MS, the 

amine and phenol submetabolome of cells can be analyzed with deep coverage in this work.  We 

believe this is a big leap in single-cell metabolomics profiling and it has the potential to improve 

the understanding of cell heterogeneity and programming of cell metabolism. The work presented 

here may not have immediate biomedical applications, but it does illuminate a fundamental way 

in which cells work. 

In the future, application of this workflow in other biological study of single cells, for 

example, the perturbation of cells is expected. Moreover, the use of other labeling chemistries to 

study different submetabolome of cells would also be performed in order to elevate our 

understanding of single-cell metabolome. 
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Chapter 3 – Chemical Isotope Labeling LC-MS for Studying the Metabolic Response of 

Single Cells to Heat Stress 

3.1 Introduction 

Stress in cellular network can be defined as any sudden and unpredictable change to cells. 

There are many different types of cellular stress, including intrinsic and extrinsic stressors. 

Intrinsic means it is originating within a cell, such as genetic and endoplasmic reticulum stress. 

On the other hand, extrinsic is driven by external or environmental perturbations such as 

temperature change, exposure to toxin, and mechanical damages. Depending on the type, duration 

and severity of stress, cells response mainly in two ways: activation of pathways to protect cells 

against the stress and induction of programmed cell death to remove damaged cells1. More 

precisely, when the stress induced is reversible, protective responses would be initiated, which can 

help defend a cell against damage.  In contrast, if it is irreversible, the damaged cell would be 

removed from the organism through different mechanisms leading to cell death, such as apoptosis 

and necrosis.  

Temperature plays an important role in the survival of living organisms on Earth. It is 

because it can disturb, for example, the encoding of DNA and the structure of proteins in cells. 

Moreover, it can also affect all physical features of the environment, such as pH, gas solubility and 

viscosity2. Although the thermal limit of three major domains of life: bacteria, archaea and 

eukaryotes have a wide range, it should be noted that temperatures fairly beyond the optimal 

growth temperature of a particular living organism could have adverse effects on their survival. A 

sudden temperature increases off the optimal growth temperature of an organism is referring to 

heat stress here. It is well-known that heat stress can resulted in denaturation of protein, protein 

entanglement and non-specific protein aggregation, which can therefore lead to destruction of 
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cellular structures and thus interfere with essential functions3. One example of the damaging effect 

of elevated temperature to cell, eukaryotes particularly, is the cytoskeleton defect. Cytoskeleton is 

a system of filaments or fibers that helps the cell to maintain its shape and internal organization. 

In addition to this, it also provides mechanical support that enables the cell to conduct essential 

functions. Heat stress can cause disruption of the cytoplasmic actin, a family of globular multi-

functional proteins that form microfilaments of the cytoskeleton, which has crucial role in many 

cellular processes, ranging from maintenance of cellular shape and motility, cytokinesis and to 

signal transduction4, 5. Besides, heat stress can affect cellular organelle. For example, structural 

changes within the mitochondria, disruption and fragmentation of the Golgi complex6.  

Many studies have reported that heat stress response is associated with an increased 

production of heat shock proteins, also well-known as molecular chaperone, in order to maintain 

protein homeostasis and thus normal cellular functions in almost all eukaryotic cells3, 7. Briefly, in 

response to elevated temperature, heat stress proteins can prevent undesirable protein aggregation 

by controlling the binding and liberate of nonnative proteins. They also manage the refolding to 

repair damaged proteins or degradation of damaged cellular proteins. If we consider the heat stress-

induced change in different cellular networks8, comprising of gene transcription9, 10, protein 

interaction11, organelle12, cytoskeleton13, signaling14, 15 and the metabolic, we know that heat stress 

response in transcriptomic and proteomics have been extensively explored. Metabolomic analysis 

of heat stress response has been considered in detail in plant cells16-19. However, the study on the 

metabolomics side in animal cells, at the single-cell level specifically, is relatively lagging behind 

due mainly to limited sample volume, structural diversity and broad concentration range of 

metabolites. Furthermore, very few studies have made attempts to consider the cell-to-cell 
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variation in responding to heat stress, which is hard to achieve in classic cell averaging 

measurements.  

In metabolic profiling, Mass Spectrometry (MS) provides a technology platform for highly 

sensitive, accurate and reproducible measurements of cellular metabolites. It thus has a distinct 

advantage compared to Nuclear Magnetic Resonance (NMR) spectrometry, with a main drawback 

of low sensitivity. One of the major challenges in metabolomics is the great diversity in chemical 

and physical properties of metabolites, owing to this fact, multiple analytical platforms are always 

needed in order to account for the complete metabolome in a biological system. For example, to 

target the polar metabolites, Hydrophilic Interaction Liquid Chromatography (HILIC) coupled to 

MS is needed, whereas nonpolar metabolites require Reversed Phase Liquid Chromatography 

(RPLC) – MS. These would greatly lengthen the overall analysis time. In consideration of this, 

CIL provides a way to address the challenge, in which the metabolome is grouped into 

submetabolomes based on their functional groups, and a labeling method is tailored to the analysis 

of a specific group of metabolites. In this way, the chromatographic behavior of metabolites would 

be altered and can be retained and separated on a reverse phase column. With CIL, differentially 

isotope tagged chemical reagent; i.e.,12C and 13C is used to react with a particular group of 

metabolites. To be more specific, samples are labeled with 12C-reagent and a reference sample is 

labeled with 13C-reagent. They are then mixed and used in LC-MS analysis, peak pairs differing 

by the mass between two isotope tags can be identified. There are numerous advantages of CIL, 

for instance, improved retention and thus separation of polar metabolites on a RP column and 

better ionization efficiency on MS20. Additionally, it also enables high precision and accuracy 

quantitative metabolome analysis. As can be easily understood, the ratio of peak pairs; i.e., the 

light and heavy peak, can be used for relative or absolute quantification of metabolites21. 
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The study here was designed to determine the effect of heat stress on cellular amine and 

phenol metabolome by CIL LC-MS. Cells were extracted from Xenopus laevis, the large size of 

oocytes can potentially provide enough material for metabolomics study. A labeling technique, 

dansylation, is used to elucidate the amine and phenol containing metabolites20. We shifted cells 

from 18℃, their optimal temperature to 34℃, and studied the short-term and long-term effects 

after the induction of heat stress. We also looked into the recovery of cells after stress by bringing 

them to 18℃. The significantly changed metabolites upon heat stress can be revealed in this study, 

and at the same time, the cell-to-cell variation in the same population can also be seen. 

Elucidating the metabolome changes induced by heat stress in individual cells holds a great 

potential to elevate our understanding of the cellular physiology that regulates temperature 

perturbations in their environment. Macroscopically, heat stress responses in liver have been 

broadly studied, as liver is a crucial regulator of metabolism which controls many physiological 

processes affected by prolonged heat stress. Many of these studies focused on the molecular 

mechanism in response to heat stress in different animal livers, such as sheep, cow and chicken22-

24. It is because heat stress can adversely affect the productivity and reproducibility of different 

animal breeds. Therefore, understanding the mechanism can help those animals to develop 

resistance to elevated temperature. In the study here, we look into the effect of heat stress 

microscopically; i.e., at the single-cell level. This is important as we can see how individual cells 

react to heat stress, how they are different in regulating an increased temperature. When 

considering a clinical application, liver transplantation is a good example. In human liver 

transplant, after cold perfusion to preserve the liver to be transplanted, a period of rewarming when 

vascular anastomoses are being constructed is usually followed, this can be considered as a heat 

stress and many metabolic activities can happen during this period of elevated temperature25. That 
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is to say, our study has the potential to make a leap from the proof of concept on bench to answering 

important biological questions in bedside. 

 

3.2 Experimental 

3.2.1 Chemical and Reagents 

In single-cell collection, tricaine methanesulfonate (MS-222) and Collagenase Type IA 

were purchased from Sigma-Aldrich Canada. OR-2 was prepared in the lab using 5 mM Hepes-

NaOH (pH 7.8), 82.5 mM NaCl, 2.5 mM KCl, 1 mM MgCl2, 1 mM CaCl2, 1 mM Na2HPO426. 

Lysis solution was prepared with ACN, H2O and MeOH purchased from Sigma-Aldrich Canada. 

All chemicals and reagents used in CIL LC-MS, unless otherwise stated, were purchased 

from Sigma-Aldrich Canada. For dansylation labeling, the 12C-labeling reagent, dansyl chloride, 

was purchased from Sigma-Aldrich and the 13C-labeling reagent was synthesized according to the 

previously published method27. 

 

3.2.2 Sample Collection and Preparation 

Cells were recruited from Xenopus laevis, and the animal experimental procedures are 

according to protocols approved by the Biosciences Animal Care and Use Committee of the 

University of Alberta. Figure 3.1 illustrates the cell collection workflow. Concisely, a group of 

cells were placed on a cell culture plate, and being cultured overnight at 18℃ water bath. Cells 

were first collected and labeled “18℃ overnight”. The plate of cells was then being moved to a 

34℃ chamber for 15 minutes, and the second batch of cell samples was collected and labeled “34℃ 

15min”. 105 minutes later, we collected the third batch of cell samples and labeled “34℃ 2h”. 
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Lastly, we brought cells back to 18℃ water bath and collected them after 2 hours, labeled them 

“18℃ 2h”. 

After cell collection, each of them was then being dispensed onto the side of an individual 

tube containing 80 𝜇L of lysis solution; 2:2:1 acetonitrile:methanol:water mixture 28, ready on an 

ice bucket. Lysis solution is necessary for quenching the cellular metabolism, in others words, it 

stops the enzymatic activity of cells. After that, the cell was being lysed to extract metabolites by 

putting the tube on a high speed vortexer for 5 s in 4℃ cold room. Finally, we froze the lysed cell 

in liquid nitrogen immediately. 

 

 
 
Figure 3. 1 Cell collection workflow for the investigation of heat stress effects on the cellular 

metabolome. 

 

3.2.3 Chemical Isotope Labeling for Amine and Phenol Metabolomics 

Lysates were thawed, dried down using a SpeedVac and resuspended in 80 uL of water. 

Individual cell sample was labeled with 12C-DnsCl, using the approach we reported previously27. 

For the control sample, we employed universal internal standard (UIS), which is prepared by 

collecting and lysing a large number of cells from Xenopus laevis. The control sample was labeled 
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with 13C-DnsCl. Individual sample was then mixed with the control sample in 1:1 volume ratio to 

generate 12C/13C-labeled mixture for LC-MS analysis.  

 

3.2.4 LC-MS 

Sample mixtures were analyzed by Bruker Impact HD Quadrupole Time-of-Flight (Q-TOF) 

mass spectrometer (Bruker, Billerica, MA) coupled to Agilent 1100 series binary HPLC system 

(Agilent, Palo Alto, CA). Sample was injected to Agilent reversed phase Eclipse Plus C18 column 

(2.1 mm × 10 cm, 1.8 𝜇m particle size, 95 Å pore size) for separation. Mobile phase for the 

gradient elution was solvent A: 0.1% (v/v) formic acid in 5% (v/v) acetonitrile and solvent B: 0.1% 

(v/v) formic acid in acetonitrile. The gradient elution profile was (i) 0-3.5 min, A+B (20-35% 

gradient); (ii) 3.5-18 min, A+B (35-65% gradient); (iii) 18-21 min, A+B (65-95% gradient); (iv) 

21-37min, A+B (95% isocratic) with flow rate 180 𝜇L/min and injection volume 12 𝜇L. Mass 

spectra were recorded from 220 to 1000 m/z with a spectra rate of 1.0 Hz for positive ionization 

mode. The nebulizer was set to 1.0 bar, and the dry temperature was 230 ℃, with 8 L/min of drying 

gas. The capillary and end plate offset voltage were set as 4500 V and 500 V respectively. 12C- 

and 13C- labeled metabolites appeared as peak pairs and coeluted perfectly because there are only 

two isotope-labeled carbon atoms different between them. This differential CIL approach has been 

previously evaluated to be desirable for relative quantification of metabolites27. 

 

3.2.5 Data Processing 

MS spectral peaks data generated from LC-MS was extracted using Bruker DataAnalysis 

software 4.4. The metabolomics data was then being processed with IsoMS Pro, which is a 

software platform for the interpretation of data obtained from CIL LC-MS based metabolomics 
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studies. The main steps in metabolomics data analysis here included data quality check, data 

processing, data cleansing, metabolite identification and statistical analysis. Data quality check 

ensures high quality data by performing mass accuracy and retention time check. Data processing 

involves peak pair picking from raw files, alignment and calculation of peak pair ratios among all 

samples and zero-filling29, 30, which retrieves missing values by searching through the raw data. 

Data cleansing involves blank treatment, missing value treatment and sample wise normalization31 

so as to make sure the data is complete for metabolite identification and statistical analysis. 

Metabolite identification was performed using a three-tier metabolite identification approach. 

Definitive identification depends on Tier 1 - CIL library search, which is based on RT and m/z by 

searching against CIL standard libraries on the basis of m/z tolerance window 10 ppm and retention 

time window of 30 s. High-confidence putative identification is based on retention time and m/z 

searches against the Tier 2 - LI library, which covers all common metabolism pathways containing 

endogenous metabolites and their derivatives. The m/z window is 10 ppm, while the experimental 

retention time window is 30 s. Finally, putative identification is based on m/z matching against 

Tier 3 - mass-based database with monoisotopic mass window of 10 ppm. This library is composed 

of human endogeneous metabolites and their predicted metabolic products after one or two 

common metabolic reactions. Statistical analysis, including univariate analysis such as volcano 

plot and multivariate analysis, for instance, PCA and PLS-DA, were also completed in the IsoMS 

Pro software. 
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3.3 Results and Discussion 

3.3.1 Amine and phenol metabolomics  

The profiling of 64 single-cell samples resulted in the detection of 2876 peak pairs. Among 

them, 2486 peak pairs were identified with the three-tier metabolite identification approach, which 

means we identified 86% of detected features. Herein, 122 metabolites were positively identified 

by retention time and m/z search against the CIL standard libraries. 233 metabolites were 

putatively identified with high confidence by retention time and m/z match against the LI library, 

and 2131 metabolites were putatively identified by m/z match against the mass-based database. 

Figure 3.2 shows the principal component analysis (PCA) plot of the metabolome data 

generated from samples analyzed. There is a close clustering of the quality control (QC) samples, 

indicating that CIL LC-MS did not introduce instrument bias in sample analysis. The 18℃ 

overnight population cannot be separated from the 34℃ 2h and 18℃ 2h population. However, 

there is an apparent visual separation between the 18℃ overnight group and the 34℃ 15min group 

on the principal component 1 (PC1). In a 2-dimensional PCA plot, PC1 represents the direction 

that contains the most amount of variation between metabolites, while principal component 2 (PC2) 

describes the direction that contains the second most variation. Figure 3.3 displays the partial least 

square discriminant analysis (PLS-DA) plot of the data, there are separations between the 18℃ 

overnight group and the 34℃ 2h and 18℃ 2h group on PC2. The separation of 18℃ overnight 

group and 34℃ 15min group on PC1 can also be observed. The plot had a R2 (goodness of fit) and 

Q2 (predictability) value of 0.9347 and 0.8396, respectively. Using a 100-permutation test, the 

model passed the validation with original Q2 much larger than the permutated data as shown in 

Appendix Figure A3.1 which means there is no issue of over-fitting. Overall, the pattern and 

directionality of these plots show that the amine and phenol metabolome of cells does change after 
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the onset of heat stress, particularly during the first 15 minutes after cells being shifted from 18℃ 

to 34℃. 

 

Figure 3. 2 PCA score plot of single-cell samples in different groups with QC data.  

 
 

 

Figure 3. 3 PLS-DA score plot of single-cell samples in different groups. 
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3.3.2 Heat stress response of cells 

We first cultured the cells at their optimal temperature (18℃), overnight. We then induced 

a heat stress of 34℃ to the cells. Cellular responses at two stages after the induction of heat stress 

were investigated, which are heat exposure of 15 minutes and 2 hours. We use volcano plots to 

analyze the metabolome data in this study. Volcano plot allows the visualization of multiple 

univariate analyses comprehensively, it is for binary comparison between two groups which is 

presented as a scatter plot with statistical significance (p-value) verses fold change (FC). 

Metabolites with significant concentration changes can be observed very clearly from the plot. The 

significant changed metabolites between two groups were identified and plotted on volcano plots, 

with the following criteria: p-value < 0.05, FC ≥ 1.5 for significantly increased metabolites and 

FC ≤ 0.67 for significantly decreased metabolites. Figure 3.4A shows the volcano plot of 18℃ 

overnight vs. 18℃ to 34℃ 15min, with a q-value of 0.007. 737 metabolites were significantly 

increased and 660 metabolites were significantly decreased after cultured at 34℃ for 15 minutes. 

While Figure 3.4B displays the volcano plot of 18℃ overnight vs. 18℃ to 34℃ 2h with a q-value 

of 0.02, there were 250 increases and 374 decreases. For those significant metabolites, 151 

increases and 335 decreases were in common at 15 minutes and 2 hours of heat stress. And from 

the number of metabolites that significantly changed their concentration, we can again conclude 

that short-term heat stress showed a greater impact on the cellular amine and phenol metabolome. 

We think that a possible reason for this is after 2 hours at 34℃, cells may have adjusted steady-

state metabolite pools back to a similar composition as cells at 18℃. In other words, the enzymes 

system of cells may have adapted to high temperature in response to long-term heat stress. When 

we looked into amino acids at different stages of heat stress, we observed that at 15 minutes after 

shifting cells to 34℃, expression of proline and leucine were significantly higher, while expression 
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of arginine, asparagine, glutamine, serine, aspartic acid and glutamic acid were significantly lower, 

as summarized in Figure 3.5A-H. And at 2 hours after cultured at 34℃ , tyrosine, leucine, 

isoleucine, proline, valine, lysine, glycine, histidine and phenylalanine expression were much 

higher, whereas no essential amino acid expression was dramatically declined, as illustrated in 

Figure 3.6A-I. 
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Figure 3. 4 Volcano plot comparing cells in (A) 18℃  overnight and 18℃  to 34℃  15min 

population. (B) 18℃ overnight and 18℃ to 34℃ 2h population and (C) 18℃ overnight and 18℃ 

2h population. The criteria for determination of significant metabolites were as follows: p-value < 

0.05 (corresponding to q = 0.007 for (A), q = 0.02 for (B) and q = 0.05 for (C)), FC ≥ 1.5 was 

determined as increase (red points) and FC ≤ 0.67 as decreased (blue point). 
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Figure 3. 5 Box plots of (A) proline (B) leucine (C) arginine (D) asparagine (E) glutamine (F) 

serine (G) aspartic acid (H) glutamic acid with RSD values indicated.  
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Figure 3. 6 Box plots of (A) tyrosine (B) leucine (C) isoleucine (D) proline (E) valine (F) lysine 

(G) glycine (H) histidine (I) phenylalanine with RSD values indicated. 
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3.3.3 Recovery of cells after heat stress 

After the induction of heat stress at 34℃ for 2 hours, we brought cells back to 18℃ for 

another 2 hours to investigate if recovery from heat stress is accompanied by changes in metabolite 

abundance. Figure 3.4C reveals the volcano plot of 18℃ overnight vs. 18℃ 2h group with a q-

value of 0.05. 403 metabolites were significantly increased while 177 metabolites were 

significantly decreased. Asparagine, arginine, isoleucine, proline and phenylalanine were 

significantly increased, while alanine and glutamic acid were significantly decreased, as shown in 

Figure 3.7A-G. These results suggest the cellular amine, phenol metabolome changed after heat 

stress, even they were in their optimal temperature again. 
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Figure 3. 7 Box plots of (A) asparagine (B) arginine (C) isoleucine (D) proline (E) phenylalanine 

(F) alanine (G) glutamic acid. 

 

3.3.4 Cellular GSH levels under heat stress 

Glutathione (GSH) is an antioxidant in eukaryotic cells, it involves in protecting the cells 

from harmful effects of excess oxidant stress, for example, free radicals, peroxides and heavy 

metals32, 33. Our results indicated at 15 minutes after the onset of heat stress, GSH level in cells 

was significantly decreased. And at 2 hours, there was no significant change in GSH concentration. 

These suggested that heat stress is associated with oxidative stress in some extent, short-term heat 

stress can greatly decrease the GSH level in cells and thus adversely affect important cellular 

functions in cells. However, for long-term heat stress, as mentioned before, cell adaptation may 

occur so that GSH level was not being significantly affected in the 342H population. For the 

recovery of cells after heat stress, when we shifted cells from 34℃ to 18℃ for 2 hours, GSH level 

in cells was significantly increased, to a much higher level compared to undisturbed cells. The 

level of GSH in different cell populations were summarized in Figure 3.8A-C. 
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Figure 3. 8 Box plots of glutathione in (A), (B) and (C).  

 

3.3.5 Cell-to-cell metabolite variation in response to heat stress 

The most advantageous point of single-cell analysis is differences between single cells 

response to heat stress, which have not been technological discernable by cell averaging 

measurement thus far, has now become possible. In this work, we also reveal the cell-to-cell 

variation of some significantly changed amino acids upon heat stress. From Figure 3.5 to 3.8, the 

number under each group represents the percentage relative standard deviation (%RSD) of all cells 

within a group of a specific amino acid expression. For example, we can see at 15 minutes after 

the induction of heat stress, all the significantly changed amino acids have RSD of ≤20%, with 

the exception of asparagine, in which RSD is slightly higher, 27% and 23% in 18ON and 3415MIN 

population respectively. However, in 18℃ 2h group, cellular expression of some amino acids has 

relatively high RSDs. For instance, asparagine, arginine, isoleucine and glutamic acid, with RSDs 

ranging from 42% to 56% in 18℃ 2h group. These suggest that cellular expression of some 

metabolites can be very different even in the same population, after cells were recovered from heat 

stress. 

(A) (B) (C) 
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3.4 Conclusions  

We have developed and applied a CIL LC-MS method to study the metabolic responses of 

cells to heat stress. Dansylation was used to elucidate and quantify the change of amine and phenol 

submetabolome in cells. Short-term heat stress has great effects on the cellular metabolome and 

the enzymes system of cells may have adapted to high temperature in response to long-term heat 

stress. Recovery from heat stress was accompanied by changes in metabolite abundance, 

suggesting that the cellular amine, phenol metabolome changed after heat stress. With CIL LC-

MS, the behavior of each single-cell can also be revealed, and we can see that the cellular response 

to the same environment was heterogeneous in certain situations. 
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Chapter 4 – High-Coverage Single-Cell Metabolomics for Studying Cell-to-Cell Variations 

from Different Locations of the Xenopus laevis Ovary 

4.1 Introduction 

The ovary is regarded as the largest organ in the adult female African clawed frog Xenopus 

laevis, which occupied a large portion of its abdominal cavity. During dissection, if we get the 

ovary out in one piece and spread it out, it appears as a large piece of leave with finger-like 

structure, known as lobes, pointing outward. In general, every lobe is made up of hundreds of 

follicles, each contains an oocyte at any developmental stage, i.e., stage I to stage VI1. Xenopus 

oocytes have been widely used for studies of oogenesis and steroidogenesis2-4 owing to their large 

size and high abundance. Moreover, its conserved cellular, developmental and genomic 

organization with mammals also make it amenable to be used in research ranging from the 

understanding of human development and diseases5-8 to drug discovery9.  

We know that metabolomics is a good representation of the molecular phenotype, as the 

metabolites, or more precisely the level or concentration changes of metabolites can directly reflect 

the underlying biochemical activity and the state of cells or tissues. Given that Xenopus oocytes 

provide an abundant source of material, the use of them in single-cell metabolomics studies has 

been growing exponentially in recent years10-13. 

It is a well-known fact that metabolites have wide and diverse range of chemical and 

physical properties. As a result, multiple LC and MS types are always required to increase the 

coverage of metabolic analysis. For example, hydrophilic interaction liquid chromatography 

(HILIC) column is needed for the separation of polar and hydrophilic metabolites, whereas reverse 

phase liquid chromatography (RPLC) column is necessary for separating non-polar, hydrophobic 

metabolites. In addition to this, samples have to be run in both positive and negative ion modes so 
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as to detect various types of metabolites. The downside of these is it greatly increases the overall 

analysis time, which is not desirable in high-throughput analysis, especially in clinical, forensic 

and doping laboratories where high speed analysis is important. Furthermore, low throughput for 

quantitative metabolome analysis with high coverage is another major problem in metabolomics. 

Because of the high sensitivity and specificity of MS, it is extensively used in quantitative 

metabolomics. In order to quantify metabolites accurately, calibration is of utmost importance. 

Among the three common calibration methods, external standard method, standard addition 

method and internal standard (IS) method, IS method provides two distinct advantages. First, it 

can overcome the matrix effect and the instrumental signal response fluctuations. Second, it 

compensates for sample losses which is possible during sample preparation and processing, and in 

various chromatographic steps. Because of these, a technique that could provide high-throughput 

qualitative and quantitative analysis, with a great depth of chemical coverage is imperative in 

metabolic research. 

CIL LC-MS is an emerging field of metabolomics in attempting to describe the 

metabolome systematically. The rationale is centered on the chemical-group-based 

submetabolome profiling, i.e., the whole metabolome in a biological system is divided into four 

different chemical groups, amine and phenol submetabolome, hydroxyl submetabolome, 

carboxylic acid submetabolome and carbonyl submetabolome. Each group of metabolites is then 

labeled with a reagent before LC-MS analysis. The CIL is designed to enhance separation and 

increase MS sensitivity, thus the metabolites detectability. Therefore, it ultimately leads to higher 

metabolome coverage14. For quantification, the concept of differential isotope labeling allows 

accurate relative quantification of all detected labeled metabolites. To be more specific, individual 

samples are labeled with 12C-reagent, they are then spiked with a 13C-reagent labeled pooled 
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sample. After that, they are mixed together and the mixture was used for LC-MS analysis. The 

ratio of the light- (12C) and heavy-labeled (13C) metabolite peak area is used to represent the 

relative concentration difference in two comparative samples15. 

It this work, we report the application of CIL LC-MS to study cells taken from different 

regions of the ovary. The region is the tips of the ovary lobe, since they are very distinct anatomical 

parts and are easy to cut away from the rest of the organ. We hypothesized that CIL LC-MS can 

be used to analyze the cell-to-cell variability of the metabolome based on cell locations in the 

organ. This study makes attempt to consider the whole metabolome of single cells by analyzing 

the samples in four-channels CIL LC-MS separately16, these are dansylation for amine and phenol 

submetabolome14, base-activated dansylation for hydroxyl submetabolome17, p-

dimethylaminophenacyl (DmPA) bromide labeling for carboxylic acid submetabolome18 and 

dansylhydrazine labeling for carbonyl submetabolome19. The workflow of the study is shown in 

Figure 4.1. We then combine the result which would represent the whole metabolome of single 

cells, and evaluate the cell-to-cell differences from different locations of the ovary, which allows 

a holistic understanding of metabolic differences of cells in an organ. 
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Figure 4. 1 Workflow of organ zonation study. 

 

4.2 Experimental 

4.2.1 Chemical and Reagents 

In single-cell collection, tricaine methanesulfonate (MS-222) and Collagenase Type IA 

were purchased from Sigma-Aldrich Canada. OR-2 was prepared in the lab using 5 mM Hepes-

NaOH (pH 7.8), 82.5 mM NaCl, 2.5 mM KCl, 1 mM MgCl2, 1 mM CaCl2, 1 mM Na2HPO420. 

Lysis solution was prepared with ACN, H2O and MeOH purchased from Sigma-Aldrich Canada. 

All chemicals and reagents used in CIL LC-MS, unless otherwise stated, were purchased 

from Sigma-Aldrich Canada. For dansylation labeling in amine and phenol metabolome profiling 

and base-activated dansylation in hydroxyl metabolome profiling, the 12C-labeling reagent, dansyl 

chloride, was purchased from Sigma-Aldrich and the 13C-labeling reagent was synthesized 

according to the published method previously14. For DmPA bromide labeling in carboxylic acid  
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metabolome profiling, the 12C- and 13C-labeling reagent, DmPA-Br, were synthesized according 

to the method published previously18. For DnsHz labeling in carbonyl metabolome profiling, the 

12C- and 13C-labeling reagent were synthesized according to the method published previously19.  

 

4.2.2 Sample Collection and Preparation 

We collected cells from two animals in this experiment. Ovary was first dissected out of 

the animal and arranged, so that anatomy is clear; i.e., all lobes are evident. Cells were taken from 

the tip of the ovary lobe and from random locations in each animal. To be more specific, we first 

took photo of the ovary and then labeled locations we were going to collect cells as illustrated in 

Figure 4.2. We chose three lobes on each of the ovary and collected cells at the tip of the lobe 

using a Biopunch (core diameter: 7 mm, Agar Scientific, Essex, UK). Cells were taken from the 

tip of the ovary lobe because they are very distinct anatomical parts and easy to cut away from the 

rest of the organ. Two tips were cut from each lobe. For random sample, cells were collected from 

all locations; i.e., cells from lobe tips, center of lobes and regions near the organ trunk. The random 

tissue pieces collected were pooled and processed together. Punches of tips and random tissue 

samples went into different tubes for collagenase digestion. Then, they were transferred to different 

tissue culture dishes for the sandpaper rolling. These two steps can help remove follicle cells. For 

each animal, 108 cells were collected. In order to make sure all cells were being lysed and 

homogenized at about the same time; we have four individuals involved in preparing cells. More 

specifically, three people were responsible for collecting and processing cells from three different 

lobes, one person was responsible for the random sample as depicted in Figure 4.3. This is 

necessary for minimizing the delay between processing the first cell and the last cell in this study. 

10 cells were selected from each tip and 24 cells were selected for the random sample population 
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under the microscope. The cells were then being washed with OR-2.  Each group of cells was 

photographed, using a camera set up on the dissecting microscope so the diameter of individual 

cell can be measured if needed later. Every single-cell was then being dispensed onto the side of 

an individual tube containing 80 μL of lysis solution; i.e., 2:2:1 acetonitrile:methanol:water, ready 

on an ice bucket. After that, the cell was being lysed to extract metabolites by putting the tube on 

a high speed vortexer for 5 s in 4 ℃ cold room. Finally, we froze the lysed cell in liquid nitrogen 

immediately. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 2 Photography of the ovaries with punch locations indicated. 
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Figure 4. 3 Workflow of single cells collection in organ zonation study. 

 
 

4.2.3 Chemical Isotope Labeling 

Lysates were thawed and divided into four equal portions, 18 μL aliquots in each tube. 

Each aliquot was used for one submetabolome profiling. For the control sample, we employed 

universal internal standard (UIS), which was prepared by collecting and lysing a large number of 

cells from Xenopus laevis. Details of CIL in each submetabolome profiling are as follows: 

For amine and phenol submetabolome profiling, sample was first dried down and 

resuspended in 5 μL of water. 2.5 μL of Na2CO3/NaHCO3 buffer (250 mM in H2O) and 2.5 μL of 

ACN were then added. The solution mixture was vortexed, spun down and mixed with 5 μL of 

freshly prepared 12C-DnsCl (18 mg/mL in ACN). After being vortexed and spun down, the mixture 

was incubated at 40 ℃ for 1 h. 1 μL of NaOH (250 mM in H2O) was then added and reacted at 40 

℃ for another 10 min to quench the excess DnsCl. Finally, 5 μL of formic acid (425 mM in 50/50 
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ACN/water) was added to consume the excess NaOH. For the labeling of UIS sample, the 

procedures described above was applied, with 13C-DnsCl (18 mg/mL dissolve in ACN) being used 

instead. 

For hydroxyl submetabolome profiling, sample was first dried down and resuspended in 5 

μL of 3:1 ACN:H2O. 5 μL of 4-dimethylaminopyridine (DMAP) (24.5 mg/mL in ACN) and 8 μL 

of 12C-DnsCl (18 mg/mL in ACN) were then added. The solution mixture was vortexed, spun 

down and allowed to react at 60 ℃ for 1 h. 1 μL of NaOH (250 mM in H2O) was then added and 

reacted at 60 ℃ for another 10 min to quench the excess DnsCl. Finally, 5 μL of formic acid (425 

mM in 50/50 ACN/ H2O) was added to consume the excess NaOH. 13C-DnsCl (18 mg/mL dissolve 

in ACN) was used for the labeling of UIS sample. 

For carbonyl submetabolome profiling, sample was first dried down and resuspended in 5 

μL of water. 5 μL of HCl (144 mM in MeOH) and 5 μL of 12C-DnsHz (20 mM dissolved in MeOH) 

were added, and the reaction mixture was vortexed and spun down before reacted at 40 ℃ for 1 h. 

The sample mixture was then being put in -80 ℃ freezer for 10 min to stop the labeling reaction. 

Finally, the mixture was dried down and re-dissolved in 16.7 μL of 50/50 ACN/ H2O. 13C-DnsHz 

(20 mM dissolved in MeOH) was used for the labeling of UIS sample. 

For carboxylic acid submetabolome profiling, sample was first dried down and 

resuspended in 5 μL of 3:1 ACN:H2O. 2 μL of TEOA (100 mM in ACN) and 5 μL of 12C- DmPA-

Br (10 mg/mL in ACN) were added. The mixture was vortexed, spun down and allowed to react 

at 80℃ for 1 h. 8 μL of triglycine (100 mM in H2O) was added and reacted at 80℃ for 30 min, in 

order to quench the excessive labeling reagent. 13C- DmPA-Br (10 mg/mL in ACN) was used to 

label the UIS sample. 
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The individual sample was mixed with the UIS sample in 1:1 volume ratio to generate the 

12C/13C-labeled mixture for LC-MS analysis. The final mixture was centrifuged for 10 min at 

10,000 rpm under 4 ℃, before injecting to LC-MS. 

 

4.2.4 LC-MS 

LC-MS analysis was carried out on an Agilent 1100 series binary HPLC system (Agilent, 

Palo Alto, CA) coupled to Bruker Impact HD Quadrupole Time-of-Flight (Q-TOF) mass 

spectrometer (Bruker, Billerica, MA). Samples were injected to Agilent reversed phase Eclipse 

Plus C18 column (2.1 mm × 10 cm, 1.8 μm particle size, 95 Å pore size) for separation. Mobile 

phase for the gradient elution was solvent A: 0.1% (v/v) formic acid in 5% (v/v) acetonitrile and 

solvent B: 0.1% (v/v) formic acid in acetonitrile. 

For amine and phenol submetabolome profiling, the gradient elution profile was: t = 0 min, 

20 % B; t = 3.5 min, 35 % B; t = 18 min, 65 % B; t = 21 min, 98 % B; t = 34 min, 98 % B.  

For hydroxyl submetabolome profiling, the gradient elution profile was: t = 0 min, 20 % 

B; t = 3.5 min, 35 % B; t = 9 min, 65 % B; t = 21 min, 98 % B; t = 34 min, 98 % B.  

For carbonyl submetabolome profiling, the gradient elution profile was: t = 0 min, 1 % B; 

t = 3 min, 25 % B; t = 23 min, 98 % B; t = 34 min, 98 % B.  

For carboxylic acid submetabolome profiling, the gradient elution profile was: t = 0 min, 

20 % B; t = 9 min, 50 % B; t = 22 min, 65 % B; t = 26 min, 80 % B; t = 29 min, 98 % B, t = 42 

min, 98 % B.  

The flow rate in these four channels was 180 μL/min. All mass spectra were collected in 

positive ion mode and were recorded from 220 to 1000 m/z with a spectra acquisition rate of 1.0 
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Hz. The nebulizer was set to 1.0 bar, and the dry temperature was 230 ℃, with 8 L/min of drying 

gas. The capillary and end plate offset voltage were set as 4500 V and 500 V respectively. 

12C- and 13C- labeled metabolites appeared as peak pairs and coeluted perfectly because 

there are only two isotope-labeled carbon atoms different between them. This differential chemical 

isotope labeling approach has been previously evaluated to be desirable for relative quantification 

of metabolites15. 

 

4.2.5 Data Processing and Metabolite Identification 

All the raw LC-MS data was exported to a CSV file by Bruker Daltonics DataAnalysis 

software 4.3. Here, total ion chromatogram (TIC) and extracted ion chromatogram (EIC) were 

extracted from the raw data, de-noised and baseline corrected. The metabolomics data was then 

processed with IsoMS Pro, which is a software platform for interpretation of data obtained from 

CIL LC-MS based metabolomics studies. Data quality check ensures high quality data by 

performing mass accuracy and retention time check. Data processing involves peak pair picking 

from raw files, alignment of peak pair ratios among all samples and zero-filling, which retrieves 

missing values by searching through the raw data. Data cleansing involves blank treatment, 

missing value treatment and sample wise normalization so as to make sure the data is complete for 

metabolite identification and statistical analysis. Metabolite identification was performed using a 

three-tier metabolite identification approach. Definitive identification depends on Tier 1 - CIL 

library search. This is based on retention time and m/z by searching against CIL standard libraries 

on the basis of m/z tolerance window 10 ppm and retention time window of 30 s. High-confidence 

putative identification is based on retention time and m/z searches against the Tier 2 - LI library, 

which covers all common metabolism pathways containing endogenous metabolites and their 
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derivatives. The m/z window is 10 ppm, while the experimental retention time window is 30 s. 

Finally, putative identification is based on m/z matching against Tier 3 - mass-based database with 

monoisotopic mass window of 10 ppm. This library is composed of human endogeneous 

metabolites and their predicted metabolic products after one or two common metabolic reactions. 

Statistical analysis including univariate and multivariate analysis were also performed in IsoMS 

Pro.  

 

4.3 Results and Discussion 

4.3.1 Amine and phenol metabolomics 

The chemical isotope labeling of amines and phenols containing metabolites resulted in the 

detection of 3227 and 4472 peak pairs in animal 1 and 2, respectively. We positively identified 

132 metabolites by retention time and m/z search against CIL standard libraries, putatively 

identified 200 metabolites with high confidence by retention time and m/z match against the LI 

library and putatively identified 2359 metabolites by m/z match against the mass-based database 

in animal 1. While in animal 2, we positively identified 120 metabolites, putatively identified 240 

metabolites with high confidence and putatively identified 3228 metabolites. Taken together, we 

identified 83% of detected metabolites in animal 1, 80% in animal 2.  

For animal 1, the principal component analysis (PCA) score plot in Figure 4.4A shows 

very close clustering of quality control (QC) samples, this indicates high stability of the mass 

spectrometer during data acquisition and thus reliability and reproducibility of the measured data. 

PCA here shows lobe A and B group overlay on both first principal component (PC1) and second 

principal component (PC2). There is a slight separation between the lobe C and lobe A, B groups, 

also on both PC1 and PC2. In 2-dimensional PCA plot, PC1 represents the direction that contains 
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the most amount of variation between the metabolites, while PC2 describes the direction that 

contains the next most variation. The random group is overlay with lobe A, B and C groups in 

PCA. Figure 4.5A displays the partial least square-discriminant analysis (PLS-DA) plot generated 

from the amine and phenol metabolome data set of cells in animal 1. There are some overlaps 

between three lobe groups and a small separation between lobe groups and the random group, with 

R2 (goodness of fit) and Q2 values (predictability value) of 0.8314 and 0.6535 respectively. Using 

a 100-permuation test, the PLS-DA model generated here passed the validation test with the 

original Q2 significantly larger than permuted values as shown in Appendix Figure A4.1, which 

indicates there is no issue of over-fitting. These findings indicate similarities between cells of 

different lobes, and small differences between cells of lobes and from random locations of the 

ovary. Binary comparisons between cells of the lobe and random locations; i.e., A/Random, 

B/Random and C/Random are presented in volcano plots shown in Figure 4.6A-C. With the 

criterion of p-value < 0.05 (corresponding to q-value < 0.04 for both A/Random, B/Random and 

< 0.06 for C/Random), FC ≥ 1.5 and FC ≤ 0.67, the number of significantly increased (shown in 

red dots) and decreased (shown in blue dots) metabolites are indicated in the plots. The common 

significantly increased and decreased metabolites in the comparison of A/Random, B/Random and 

C/Random are listed in Supplemental Table 1 and 2, respectively. And in order to find the unique 

metabolites of each lobe, Venn diagram was used to reveal the details. Figure 4.7A shows the 

Venn diagram of animal 1, the numbers in bold indicate the unique metabolites of each lobe, that 

is, there are 110 metabolites uniquely found in lobe A (Supplemental Table 3), 116 in lobe B 

(Supplemental Table 4) and 147 in lobe C (Supplemental Table 5). 36 metabolites were commonly 

found in three lobes. To further investigate the relationships of cells in three lobes, nonparametric 

analysis of variance (ANOVA) was applied. Figure 4.8A illustrates the ANOVA for amine and 
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phenol metabolomics of single cells in lobe A (group A); in lobe B (group B); and in lobe C (group 

C). 1369 significant altered metabolites (p < 0.05) of three lobes are shown in red, while 1857 non-

significant metabolites (p >0.05) are shown in green. Ten of the most significant metabolites, i.e., 

with the lowest p-values found by ANOVA are summarized in box plots shown in Appendix 

Figure A4.2. 

For animal 2, the PCA score plot in Figure 4.4B indicates close clustering of QC samples. 

Lobe A, B, and C groups overlap each other and are slightly separated from the random group on 

PC2. In the PLS-DA plot presented in Figure 4.5B, there is a separation between lobe groups and 

the random group on PC1, with R2 and Q2 values of 0.8895 and 0.7778, respectively. Using a 100-

permuation test, the PLS-DA model generated here passed the validation test as presented in 

Appendix Figure A4.3. These results again suggest the likeness of cellular amine and phenol 

metabolome of different lobes and their small differences from random cells in animal 2. Binary 

comparisons between cells of the lobe and random locations; i.e., A/Random, B/Random and 

C/Random are presented in volcano plots shown in Figure 4.6D-F. With the criterion of p-value < 

0.05 (corresponding to q-value < 0.03 for both A/Random and B/Random < 0.04 for C/Random), 

FC ≥ 1.5 and FC ≤ 0.67, the number of significantly increased (shown in red dots) and decreased 

(shown in blue dots) metabolites are indicated in the plots. The common significantly increased 

and decreased metabolites in the comparison of A/Random, B/Random and C/Random are listed 

in Supplemental Table 6 and 7 respectively. Figure 4.7B shows the Venn diagram of animal 2, 

there are 254 metabolites uniquely found in lobe A (Supplemental Table 8), 60 in lobe B 

(Supplemental Table 9) and 155 in lobe C (Supplemental Table 10). 163 metabolites were 

commonly found in three lobes, these metabolites were compared with those in animal 1, and the 

shared features are shown in Supplemental Table 11. Figure 4.8B illustrates the ANOVA for amine 
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and phenol metabolomics of single cells in lobe A (group A); in lobe B (group B); and in lobe C 

(group C). 1131 significant altered metabolites (p < 0.05) of three lobes are shown in red, while 

3340 non-significant metabolites (p >0.05) are shown in green. Ten of the most significant 

metabolites, i.e., with the lowest p-values found by ANOVA are summarized in box plots shown 

in Appendix Figure A4.4. The highlighted metabolite is the one also found to be most significant 

of three lobes in animal 1. 

 

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. 4 PCA score plots of amine and phenol submetabolome of cells in (A) animal 1 and 

(B) animal 2. 

(A) 

(B) 
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Figure 4. 5 PLS-DA score plots of amine and phenol submetabolome of cells in (A) animal 1 and 

(B) animal 2. 

  

(B) 

(A) 
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Figure 4. 6 Volcano plots comparing cells in (A) lobe A (B) lobe B and (C) lobe C with the random 

cell population in amine and phenol metabolome of animal 1, (D) lobe A (E) lobe B and (F) lobe 

C with the random cell population in amine and phenol metabolome of animal 2. The criteria for 

determination of significant metabolites were as follows: p-value < 0.05 (corresponding to q < 

0.04 for (A) and (B) and q < 0.06 for (C)).  FC ≥ 1.5 was determined as increase (red points) and 

FC ≤ 0.67 as decreased (blue point).  
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Figure 4.6 The criteria for determination of significant metabolites were as follows: p-value < 

0.05 (corresponding to q < 0.03 for (D) and (E) and q < 0.04 for (F)), FC ≥ 1.5 was determined as 

increase (red points) and FC ≤ 0.67 as decreased (blue point). 
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Figure 4.7 Venn diagrams showing significantly altered amines and phenols containing 

metabolites in lobe A verses random cell population (A/R), in lobe B verses random cell population 

(B/R) and in lobe C verses random cell population (C/R) of (A) animal 1 and (B) animal 2. 
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Figure 4. 8 ANOVA for amine and phenol metabolomics of single cells in lobe A (group A); in 

lobe B (group B); and in lobe C (group C). (A) In animal 1, the 1369 significant metabolites (p 

<0.05) are shown in red, while 1857 non-significant metabolites (p >0.05) are shown in green. (B) 

In animal 2, the 1131 significant metabolites (p <0.05) are shown in red, while 3340 non-

significant metabolites (p >0.05) are shown in green.  

(A) 

(B) 
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4.3.2 Hydroxyl metabolomics 

The chemical isotope labeling of hydroxyl containing metabolites resulted in the detection 

of 6538 and 5725 peak pairs in animal 1 and 2 respectively. We positively identified 21 and 23 

metabolites, putatively identified 418 and 390 metabolites with high confidence and putatively 

identified 5058 and 4148 metabolites in animal 1 and 2 respectively. Taken together, we identified 

84% of detected metabolites in animal 1, 80% in animal 2.  

For animal 1, the PCA score plot in Figure 4.9A indicates very close clustering of QC 

samples. Lobe groups are overlay and there is an apparent visual separation between them and the 

random group on PC1. The PLS-DA plot in Figure 4.10A also shows a clear separation with R2 

and Q2 values of 0.9162 and 0.8100, respectively. Moreover, there is also a separation between the 

lobe C group and A, B groups. With a 100-permutation test, the PLS-DA model passed the 

validation test with the original data much larger than the permutated data as displayed in 

Appendix Figure A4.5. The important finding here is that the cellular hydroxyl metabolome of 

different lobes is similar, however, they are very different from those cells collected at different 

points of the ovary. Binary comparisons between cells of the lobe and random locations; i.e., 

A/Random, B/Random and C/Random are presented in volcano plots shown in Figure 4.11A-C. 

With the criterion of p-value < 0.05 (corresponding to q-value < 0.02 for A/Random, B/Random 

and C/Random), FC ≥ 1.5 and FC ≤ 0.67, the number of significantly increased (shown in red 

dots) and decreased (shown in blue dots) metabolites are indicated in the plots. The common 

significantly increased and decreased metabolites in the comparison of A/Random, B/Random and 

C/Random are listed in Supplemental Table 12 and 13 respectively. Figure 4.12A shows the Venn 

diagram of animal 1, the numbers in bold indicate the unique metabolites of each lobe. There are 

295 metabolites uniquely found in lobe A (Supplemental Table 14), 262 in lobe B (Supplemental 
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Table 15) and 187 in lobe C (Supplemental Table 16). 753 metabolites were in common in three 

lobes. Figure 4.13A illustrates the ANOVA for hydroxyl metabolomics of single cells in lobe A 

(group A); in lobe B (group B); and in lobe C (group C). 3609 significant altered metabolites (p < 

0.05) of the three lobes are shown in red, while 2928 non-significant metabolites (p > 0.05) are 

shown in green. Ten of the most significant metabolites, i.e., with the lowest p-values found by 

ANOVA are summarized in box plots shown in Appendix Figure A4.6. 

For animal 2, the PCA score plot in Figure 4.9B indicates clustering of QC samples. There 

is an overlap between lobe A and B groups and a separation between them and the lobe C group 

on the PC1. The random group is sitting in the middle of A, B and C. The PLS-DA in Figure 4.10B 

shows a similar trend but with a separation between the random group and lobe groups. The plot 

had a R2 and Q2 values of 0.8997 and 0.7977, respectively. The model generated passed the 

validation test as indicated in Appendix Figure A4.7, with a 100-permutation. These results mainly 

reveal variances of cellular hydroxyl metabolome of lobe A, B with C in animal 2. Binary 

comparisons between cells of the lobe and random locations; i.e., A/Random, B/Random and 

C/Random are presented in volcano plots shown in Figure 4.11D-F, with the criterion of p-value 

< 0.05 (corresponding to q-value < 0.04 for both A/Random and C/Random < 0.03 for B/Random), 

FC ≥ 1.5 and FC ≤ 0.67, the number of significantly increased (shown in red dots) and decreased 

(shown in blue dots) metabolites are indicated in the plots. The common significantly increased 

and decreased metabolites in the comparison of A/Random, B/Random and C/Random are listed 

in Supplemental Table 17 and 18 respectively. Figure 4.12B shows the Venn diagram of animal 2, 

there are 140 metabolites uniquely found in lobe A (Supplemental Table 19), 305 in lobe B 

(Supplemental Table 20) and 262 in lobe C (Supplemental Table 21). 102 metabolites are in 

common among three lobes, and these metabolites were compared with the those in animal 1, with 
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the shared feature summarized in Supplemental Table 22. Figure 4.13B illustrates the ANOVA for 

hydroxyl metabolomics of single cells in lobe A (group A); in lobe B (group B); and in lobe C 

(group C). 3328 significant altered metabolites (p < 0.05) of the three lobes are shown in red, while 

2396 non-significant metabolites (p >0.05) are shown in green. Ten of the most significant 

metabolites, i.e., with the lowest p-values found by ANOVA are summarized in box plots shown 

in Appendix Figure A4.8. The highlighted metabolite is the one also found to be most significant 

of three lobes in animal 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. 9 PCA score plots of hydroxyl submetabolome of cells in (A) animal 1 and (B) animal 

2. 

(A) 

(B) 
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Figure 4. 10 PLS-DA score plots of hydroxyl submetabolome of cells in (A) animal 1 and (B) 

animal 2. 

  

(A) 

(B) 



 

 110 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. 11 Volcano plots comparing cells in (A) lobe A (B) lobe B and (C) lobe C with the 

random cell population in hydroxyl metabolome of animal 1, (D) lobe A (E) lobe B and (F) lobe 

C with the random cell population in hydroxyl metabolome of animal 2. The criteria for 

determination of significant metabolites were as follows: p-value < 0.05 (corresponding to q < 

0.02 for (A), (B) (C)), FC ≥  1.5 was determined as increase (red points) and FC ≤  0.67 as 

decreased (blue point). 
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Figure 4.11 The criteria for determination of significant metabolites were as follows: p-value < 

0.05 (corresponding to q < 0.04 for (D) and (F) and q < 0.03 for (E)), FC ≥ 1.5 was determined as 

increase (red points) and FC ≤ 0.67 as decreased (blue point). 
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Figure 4. 12 Venn diagrams showing significantly altered hydroxyl containing metabolites in lobe 

A verses random cell population (A/R), in lobe B verses random cell population (B/R) and in lobe 

C verses random cell population (C/R) of (A) animal 1 and (B) animal 2. 
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Figure 4. 13 ANOVA for hydroxyl metabolomics of single cells in lobe A (group A); in lobe B 

(group B); and in lobe C (group C). (A) In animal 1, the 3609 significant metabolites (p <0.05) are 

shown in red, while 2928 non-significant metabolites (p >0.05) are shown in green. (B) In animal 

2, the 3328 significant metabolites (p <0.05) are shown in red, while 2396 non-significant 

metabolites (p >0.05) are shown in green.  

(A) 

(B) 
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4.3.3 Carbonyl metabolomics 

The chemical isotope labeling of carbonyl containing metabolites resulted in the detection 

of 4417 and 5027 peak pairs in animal 1 and 2, respectively. We positively identified 53 and 55 

metabolites, putatively identified 298 and 304 metabolites with high confidence and putatively 

identified 3311 and 3629 metabolites in animal 1 and 2, respectively. Taken together, we identified 

83% of detected metabolites in animal 1, 80% in animal 2.  

For animal 1, the PCA score plot in Figure 4.14A shows very close clustering of QC 

samples. There are overlaps of three lobe groups, with a clear separation between them and the 

random group on the PC1. The PLS-DA plot in Figure 4.15A also displays a clear separation with 

R2 and Q2 values of 0.9173 and 0.8053 respectively. Furthermore, there is also a separation 

between the lobe C group and A, B group. With a 100-permutation test, the PLS-DA model passed 

the validation test as shown in Appendix Figure A4.9. It is interesting to note that these results 

reveal similar findings observed in hydroxyl metabolomics in animal 1, in which the carbonyl 

metabolome of cells of lobe A, B and C are also similar and different greatly from the random 

population. Binary comparisons between cells of the lobe and random locations; i.e., A/Random, 

B/Random and C/Random are presented in volcano plots shown in Figure 4.16A-C. With the 

criterion of p-value < 0.05 (corresponding to q-value < 0.03, for both A/Random and C/Random 

< 0.05 for B/Random), FC ≥ 1.5 and FC ≤ 0.67, the number of significantly increased (shown in 

red dots) and decreased (shown in blue dots) metabolites are indicated in the plots. The common 

significantly increased and decreased metabolites in the comparison of A/Random, B/Random and 

C/Random are listed in Supplemental Table 23 and 24, respectively. Figure 4.17A shows the Venn 

diagram of animal 1, the numbers in bold indicate the unique metabolites at each lobe. There are 

183 metabolites uniquely found in lobe A (Supplemental Table 25), 88 in lobe B (Supplemental 
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Table 26) and 204 in lobe C (Supplemental Table 27). 235 metabolites were commonly found in 

three lobes. Figure 4.18A illustrates the ANOVA for carbonyl metabolomics of single cells in lobe 

A (group A); in lobe B (group B); and in lobe C (group C). 2006 significant altered metabolites (p 

< 0.05) of three lobes are shown in red, while 2410 non-significant metabolites (p >0.05) are shown 

in green. Ten of the most significant metabolites, i.e., with the lowest p-values found by ANOVA 

are summarized in box plots shown in Appendix Figure A4.10. 

For animal 2, the PCA score plot in Figure 4.14B indicates clustering of QC samples. There 

is overlap between lobe A and B and a separation between them with the lobe C group. The PLS-

DA in Figure 4.15B shows a similar trend but with a separation between the random group and 

lobe groups. The plot had a R2 and Q2 values of 0.8926 and 0.6875, respectively. The model here 

passed the validation test as presented in Appendix Figure A4.11, with a 100-permutation. These 

results here reveal variances of cellular carbonyl metabolome between lobe A, B with C, similar 

to the observation of hydroxyl metabolome in animal 2.  Binary comparisons between cells of the 

lobe and random locations; i.e., A/Random, B/Random and C/Random are presented in volcano 

plots shown in Figure 4.16D-F, with the criterion of p-value < 0.05 (corresponding to q-value < 

0.05 for A/Random and < 0.03 for B/Random and C/Random), the number of significantly 

increased (shown in red dots) and decreased (shown in blue dots) metabolites are indicated in the 

plots. The common significantly increased and decreased metabolites in the comparison of 

A/Random, B/Random and C/Random are listed in Supplemental Table 28 and 29, respectively. 

Figure 4.17B shows the Venn diagram of animal 2, there are 129 metabolites uniquely found in 

lobe A (Supplemental Table 30), 158 in lobe B (Supplemental Table 31) and 347 in lobe C 

(Supplemental Table 32). 49 metabolites were commonly found in these lobes. These common 

metabolites were compared with those in animal 1, and the shared features in both animals are 
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summarized in Supplemental Table 33. Figure 4.18B illustrates the ANOVA for carbonyl 

metabolomics of single cells in lobe A (group A); in lobe B (group B); and in lobe C (group C). 

2891 significant altered metabolites (p < 0.05) of three lobes are shown in red, while 2067 non-

significant metabolites (p >0.05) are shown in green. Ten of the most significant metabolites, i.e., 

with the lowest p-values found by ANOVA here are summarized in box plots shown in Appendix 

Figure A4.12. The highlighted metabolites are those also found to be most significant of three 

lobes in animal 1. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. 14 PCA score plots of carbonyl submetabolome of cells in (A) animal 1 and (B) animal 

2. 

(A) 

(B) 
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Figure 4. 15 PLS-DA score plots of carbonyl submetabolome of cells in (A) animal 1 and (B) 

animal 2. 

  

(B) 

(A) 
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Figure 4. 16 Volcano plots comparing cells in (A) lobe A (B) lobe B and (C) lobe C with the 

random cell population in carbonyl metabolome of animal 1, (D) lobe A (E) lobe B and (F) lobe 

C with the random cell population in hydroxyl metabolome of animal 2.  The criteria for 

determination of significant metabolites were as follows: p-value < 0.05 (corresponding to q < 

0.03 for (A) and (C), q < 0.05 for (B)), FC ≥ 1.5 was determined as increase (red points) and FC 

≤ 0.67 as decreased (blue point). 

(A) 

(B) 

(C) 
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Figure 4.16 The criteria for determination of significant metabolites were as follows: p-value < 

0.05 (corresponding to q < 0.05 for (D), q < 0.03 for (E) and (F)), FC ≥ 1.5 was determined as 

increase (red points) and FC ≤ 0.67 as decreased (blue point). 
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Figure 4. 17 Venn diagrams showing significantly altered carbonyl containing metabolites in lobe 

A verses random cell population (A/R), in lobe B verses random cell population (B/R) and in lobe 

C verses random cell population (C/R) of (A) animal 1 and (B) animal 2. 

  

(A) 

(B) 
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Figure 4. 18 ANOVA for carbonyl metabolomics of single cells in lobe A (group A); in lobe B 

(group B); and in lobe C (group C). (A) In animal 1, the 2006 significant metabolites (p <0.05) are 

shown in red, while 2410 non-significant metabolites (p >0.05) are shown in green. (B) In animal 

2, the 2891 significant metabolites (p <0.05) are shown in red, while 2067 non-significant 

metabolites (p >0.05) are shown in green.  

(A) 

(B) 
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4.3.4 Carboxylic acid metabolomics 

The chemical isotope labeling of carboxylic acid containing metabolites resulted in the 

detection of 3672 and 3223 peak pairs in animal 1 and 2, respectively. We positively identified 72 

and 74 metabolites, putatively identified 95 and 123 metabolites with high confidence and 

putatively identified 2775 and 2349 metabolites in animal 1 and 2, respectively. Taken together, 

we identified 80% of detected metabolites in animal 1, 79% in animal 2.  

For animal 1, the PCA score plot in Figure 4.19A shows very close clustering of QC 

samples. There are overlaps of three lobe groups, and there are no separations between them with 

the random group. The PLS-DA plot in Figure 4.20A displays stacking of lobe groups and limited 

separation of them from the random population with R2 and Q2 values of 0.7387 and 0.5898 

respectively. With a 100-permutation test, the PLS-DA model passed the validation test as shown 

in Appendix Figure A4.13. Binary comparisons between cells of the lobe and random locations; 

i.e., A/Random, B/Random and C/Random are presented in volcano plots shown in Figure 4.21A-

C. With the criterion of p-value < 0.05 (corresponding to q-value < 0.03 for A/Random , q-value 

< 0.05 for B/Random and q-value < 0.07 for C/Random), FC ≥ 1.5 and FC ≤ 0.67, the number of 

significantly increased (shown in red dots) and decreased (shown in blue dots) metabolites are 

indicated in the plots. The common significantly increased and decreased metabolites in the 

comparison of A/Random, B/Random and C/Random are listed in Supplemental Table 34 and 35, 

respectively. Figure 4.22A shows the Venn diagram of animal 1, the numbers in bold indicate the 

unique metabolites at each lobe. There are 454 metabolites uniquely found in lobe A 

(Supplemental Table 36), 121 in lobe B (Supplemental Table 37) and 192 in lobe C (Supplemental 

Table 38). 340 metabolites were commonly found in three lobes. Figure 4.23A illustrates the 

ANOVA for carbonyl metabolomics of single cells in lobe A (group A); in lobe B (group B); and 
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in lobe C (group C). 442 significant altered metabolites (p < 0.05) of three lobes are shown in red, 

while 3189 non-significant metabolites (p >0.05) are shown in green. Ten of the most significant 

metabolites, i.e., with the lowest p-values found by ANOVA are summarized in box plots shown 

in Appendix Figure A4.14. 

For animal 2, the PCA score plot in Figure 4.19B indicates clustering of QC samples. There 

are overlaps of three lobe groups and a slight separation between them with the random group on 

the PC2. The PLS-DA in Figure 4.20B shows a similar trend with the separation between the 

random group and lobe groups being more obvious. The plot had a R2 and Q2 values of 0.7944 and 

0.5928, respectively. The model here passed the validation test as presented in Appendix Figure 

A4.15, with a 100-permutation. Binary comparisons between cells of the lobe and random 

locations; i.e., A/Random, B/Random and C/Random are presented in volcano plots shown in 

Figure 4.21D-F, with the criterion of p-value < 0.05 (corresponding to q-value < 0.04 for both 

A/Random and B/Random < 0.03 for C/Random), the number of significantly increased (shown 

in red dots) and decreased (shown in blue dots) metabolites are indicated in the plots. The common 

significantly increased and decreased metabolites in the comparison of A/Random, B/Random and 

C/Random are listed in Supplemental Table 39 and 40, respectively. Figure 4.22B shows the Venn 

diagram of animal 2, there are 65 metabolites uniquely found in lobe A (Supplemental Table 41), 

180 in lobe B (Supplemental Table 42) and 371 in lobe C (Supplemental Table 43). 511 

metabolites were commonly found in these lobes. These common metabolites were compared with 

those in animal 1, and the shared features in both animals are summarized in Supplemental Table 

44. Figure 4.23B illustrates the ANOVA for carbonyl metabolomics of single cells in lobe A 

(group A); in lobe B (group B); and in lobe C (group C). 228 significant altered metabolites (p < 

0.05) of three lobes are shown in red, while 3041 non-significant metabolites (p >0.05) are shown 
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in green. Ten of the most significant metabolites, i.e., with the lowest p-values found by ANOVA 

here are summarized in box plots shown in Appendix Figure A4.16. The highlighted metabolite is 

the one also found to be most significant of three lobes in animal 1. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. 19 PCA score plots of carboxylic submetabolome of cells in (A) animal 1 and (B) 

animal 2. 
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Figure 4. 20 PLS-DA score plots of carboxylic submetabolome of cells in (A) animal 1 and (B) 

animal 2. 
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Figure 4. 21 Volcano plots comparing cells in (A) lobe A (B) lobe B and (C) lobe C with the 

random cell population in carboxylic metabolome of animal 1, (D) lobe A (E) lobe B and (F) lobe 

C with the random cell population in hydroxyl metabolome of animal 2. The criteria for 

determination of significant metabolites were as follows: p-value < 0.05 (corresponding to q < 

0.03 for (A), q < 0.05 for (B) and q < 0.07 for (C)), FC ≥ 1.5 was determined as increase (red 

points) and FC ≤ 0.67 as decreased (blue point) 

(A) 

(B) 

(C) 
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Figure 4.21 The criteria for determination of significant metabolites were as follows: p-value < 

0.05 (corresponding to q < 0.04 for (D) and (E), q < 0.03 for (F)), FC ≥ 1.5 was determined as 

increase (red points) and FC ≤ 0.67 as decreased (blue point). 
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Figure 4. 22 Venn diagrams showing significantly altered carboxylic containing metabolites in 

lobe A verses random cell population (A/R), in lobe B verses random cell population (B/R) and in 

lobe C verses random cell population (C/R) of (A) animal 1 and (B) animal 2. 

  

(A) 

(B) 
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Figure 4. 23 ANOVA for carboxylic acid metabolomics of single cells in lobe A (group A); in 

lobe B (group B); and in lobe C (group C). (A) In animal 1, the 442 significant metabolites (p 

<0.05) are shown in red, while 3189 non-significant metabolites (p >0.05) are shown in green. (B) 

In animal 2, the 228 significant metabolites (p <0.05) are shown in red, while 3041 non-significant 

metabolites (p >0.05) are shown in green.  

(A) 

(B) 
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4.3.5 Cell-to-Cell Variability of Metabolite in Different Metabolic Pathway 

As being emphasized before, the beauty of single-cell metabolomics is that the individual 

cell behavior can be revealed. Here, we looked into some important metabolic pathway and 

presented the variations of individual cells in some of the related metabolites. First of all, for 

glycolysis (https://www.genome.jp/pathway/map00010+C00031), two related metabolites 

including glucose and pyruvate are shown in Figure 4.24. The box plot illustrated the cell-to-cell 

variability of cells in each lobe and the random population, and the number below each group 

represents the percent relative standard deviation (%RSD). The starting metabolite of the 

glycolytic pathway, glucose, has RSD of 18% to 37% in animal 1 in the lobes and 9%-16% in 

animal 2. However, cell-to-cell variability of its downstream product, pyruvate, become very low, 

all below 10%. This can be very important, because this may provide insights on what is happening 

during glycolysis so that the cell-to-cell variability of the downstream metabolite become very low. 

It is also worth noting that the two subpopulations of cells in lobe A of animal 1 is originated from 

two tips of the lobe, but moving to pyruvate, these subpopulations does not exist. 

Secondly, cell-to-cell variation of some related metabolites in pentose phosphate pathway 

( https://www.genome.jp/pathway/map00030+C00577) is displayed in Figure 4.25. The results 

showed that glyceraldehyde and D-arabino-hex-3-ulose 6-phosphate have large extent of variation 

between cells at different lobes and random locations, but one of the metabolites, sedoheptulose 

7-phosphate is much less compared to the other two identified metabolites.  

Lastly, the TCA cycle (https://www.genome.jp/pathway/map00020+C00036) shown in 

Figure 4.26, the cell-to-cell variation of all the identified metabolites is high. Although these 

insights do not have immediate biomedical applications, it does illuminate a fundamental way in 

which cell works. The purpose of presenting the cell-to-cell variation of metabolites in different 

https://www.genome.jp/pathway/map00010+C00031
https://www.genome.jp/pathway/map00030+C00577
https://www.genome.jp/pathway/map00020+C00036
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metabolic pathways here is not intended to highlight the fact the well-known fact that 

heterogeneity exists in cells of the same population; rather it focuses on the themes that CIL LC-

MS is capable and important for revealing the single-cell differences in metabolomics.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. 24 Box plots of showing cell-to-cell variability of (A) glucose and (B) pyruvate in 

different cell populations of animal 1 and 2.  

(A1) (A2) 

(B1) (B2) 
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Figure 4. 25 Box plots showing cell-to-cell variability of (A) glyceraldehyde, (B) D-arabino-hex-

3-ulose 6-phosphate and (C) sedoheptulose 7-phosphate in different cell populations of animal 1 

and 2.  

(A1) (A2) 

(B1) (B2) 

(C1) (C2) 
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Figure 4. 26 Box plots showing cell-to-cell variability of (A) oxaloacetate and (B) succinic acid 

in different cell populations of animal 1 and 2. 

  

(A1) (A2) 

(B1) (B2) 
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Figure 4.26 Box plots showing cell-to-cell variability of (C) fumaric acid and (D) malic acid in 

different cell populations of animal 1 and 2. 

 
  

(C1) (C2) 

(D1) (D2) 



 

 135 

4.3.6 Importance of 4-Channel Profiling 

The results of this study indicate that the cellular metabolite composition depends on their 

locations in the ovary. The amine and phenol, carboxylic acid containing metabolites of cells look 

very similar in cells collected at lobes and at random locations. However, it is interesting to note 

that the hydroxyl and carbonyl containing metabolites in cells are very different, depend on the 

locations in the organ we collected. This demonstrates the importance and need to apply four 

labeling chemistries to elucidate the metabolome of cells comprehensively and systematically.  

 

4.4 Conclusions  

To summarize, an analytical workflow for comprehensive and quantitative metabolomic 

analysis of cells at different locations of the Xenopus laevis ovary has been developed. The 

application of CIL LC-MS in this work demonstrates its general applicability for single-cell 

metabolomics. Moreover, with a holistic understanding of the oocytes in the ovary, we believe our 

findings can ultimately shed light on the use of Xenopus oocytes in research and herald novel 

investigative possibilities in cell biology.  
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Chapter 5 – Construction and Application of MS/MS Retention Time Library in 

Metabolomics 

5.1 Introduction 

Metabolomics is the systematic study of small molecules, < 1500 Da in a biological system. 

The goal of this work is to convert raw data into biological knowledge, and chemical identification 

of metabolites plays a very significant role in this process. There are two major platforms in 

metabolomics, which are nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry 

(MS). No matter which platform is applied in metabolic studies, it is of utmost importance for us 

to know the identity of the detected features. By identifying metabolites in a biological sample, it 

is possible for us to give insights and answer questions of biological significance. Herein, we focus 

on the metabolite identification using a sensitive detection tool – MS. 

In metabolite profiling, particularly in untargeted metabolomics, that is the analysis of all 

detectable metabolites in a sample. Metabolite identification is a significant bottleneck in drawing 

biological conclusions from metabolomics data. The reason is that in untargeted profiling, 

thousands of metabolites are usually detected with limited or even no prior knowledge of the 

metabolite makeup of samples. And owing to the fact that identification is generally based on 

database searches, it is challenging to identify the unknown or unreported metabolites1. It is also 

worth noting that the identification process should be able to differentiate metabolites of same 

nominal mass but different molecular structure and monoisotopic mass; and metabolites with the 

same nominal and monoisotopic masses but different chemical structures. In addition, correct 

assignment of the detected metabolite to the “parent” metabolite is difficult since a single 

metabolite is often detected as multiple different derived species, for example adducts, which are 
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related species of the metabolite2. As a result, immense, unambiguous and universal metabolite 

identification in high-throughput large scale metabolomics still remained challenging. 

The Chemical Analysis Working Group (CAWG) as part of the Metabolomics Standards 

Initiative (MSI) has defined four different levels of metabolite identification confidence2, 3. These 

are definitive identification (level 1), putative identification (level 2 and 3), and unknown (level 

4). Level 1 is based on comparing two or more orthogonal properties, such as m/z and 

fragmentation pattern, with an authentic chemical standard analyzed under the same analytical 

conditions. Level 2 and 3 are based on comparing one or two properties, but not with an authentic 

chemical standard. Instead, it usually compares data collected in different laboratories or even 

acquired with different analytical methods. Level 4 is based on using the spectral data, such as 

accurate mass. The identification confidence of the unidentified and unclassified metabolites is the 

lowest. Figure 5.1 illustrates the four-level of metabolite identification confidence. 

Obviously, the expansion of the library, that is adding more information to it, is one of the 

major works in metabolite identification. In this work, the construction and application of two 

MS/MS retention time (RT) libraries are reported. Liquid chromatography-mass spectrometry 

(LC-MS) has been widely used in metabolomics mainly due to its high metabolite detectability 

and accurate quantification ability. First, we construct an endogenous metabolite library of over 

800 compounds containing molecular mass, experimental fragment ion spectrum (MS/MS) and 

additional RT information. We then use this library to demonstrate a rapid and universal metabolite 

identification in human biofluid samples. Second, we expand the MS/MS-RT library by 

introducing HILIC based RTs for more comprehensive and high-confidence metabolite 

identification. We optimize the parameters for HILIC-MS acquisition and also demonstrate the 

metabolite identification using the HILIC MS/MS-RT library. 
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Figure 5. 1 Four-level of metabolite identification confidence. 

 
 
  

Accurate Mass (m/z)

m/z + MS/MS Match or

m/z+ Retention Time

m/z + MS/MS 
Match + Retention 

Time

Spiked 
Standard

 



 

 141 

5.2 Experimental 

5.2.1 Construction and Application of MS/MS-RT Library for Endogenous Metabolite  

 Identification  

5.2.1.1 Method 

831 endogenous metabolite standards were obtained from the Human Metabolome 

Database (HMDB). Each standard was injected into an Intensity Solo 2 C18 reversed phase column 

via an Elute UHPLC system and detected by an Impact QTOF-MS (all from Bruker Daltonics). 

High-resolution MS and MS/MS spectra in both positive and negative ion modes were acquired 

for each metabolite. The RT of each standard was determined using defined experimental LC 

conditions and inspected manually. A rapid identification method of real samples was developed 

in the MetaboScape software by matching of multiple parameters which include precursor mass 

accuracy, precursor isotopic pattern, RT, and MS/MS spectrum quality. By using RT calibrants 

and multipoint RT calibration, RTs of metabolites in the library can be corrected for different 

instrument setups. 

 
 
5.2.1.2 LC-MS 

Mobile phase for the gradient elution was solvent A: H2O + 0.1% formic acid (FA) and 

solvent B: acetonitrile (ACN) + 0.1% FA. 

The gradient elution profile was: t = 0 min, 1 % B; t = 2 min, 1 % B; t = 17 min, 99 % B; t 

= 20 min, 99 % B. 

The flow rate was 0.25 mL/min. All mass spectra were collected in both positive and 

negative ion modes and were recorded from 20 to 1000 m/z with a spectra acquisition rate of 8 Hz. 

The nebulizer was set to 1.0 bar, and the dry temperature was 200 ℃, with 8 L/min of drying gas.  
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5.2.1.3 Library Data Acquisition and Data Processing 

 The MS/MS-RT library contains multiple layers of information for metabolite 

identification, including accurate masses, high-resolution MS/MS spectra in both positive and 

negative ion modes and normalized retention time in RPLC separation. 

 Accurate mass data was acquired on a high-resolution Impact QTOF-MS mass 

spectrometer (Bruker Daltonics) with flow injection analysis. High-resolution MS/MS spectra 

were collected using five different collision energy levels, which are 10, 20, 30, 40 and 20-50 eV. 

For RT, metabolite standards were pooled into several mixtures. Each standard mixture was spiked 

with a RT calibrant and separated on a RPLC column using a 20-minute linear gradient. RTs of 

standards were extracted from calibrated LC-MS data using TargetAnalysis (Bruker). After 

manual inspection, the RTs were entered into the existing Bruker HMDB MS/MS Library. Taken 

together, different layers of information were integrated together to the Bruker HMDB library.  

 Human biofluids such as urine samples were analyzed and data were collected by RP-

UHPLC-MS/MS. The raw data from LC-MS were uploaded to the MetaboScape software and 

searched against the library. There is no need to transform data into different formats, such as a 

csv file containing mass list. In data processing, feature was first extracted and the reductant 

spectral features such as adduct ions and multimers were removed. The spectral library search was 

performed using the Bruker HMDB Metabolite Library in MetaboScape. 
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5.2.2 Construction and Application of HILIC MS/MS-RT Library for Metabolite 

Identification 

5.2.2.1 Method 

829 human endogenous metabolite standards from the Human Metabolome Database 

(HMDB) were used to construct the HILIC MS/MS-RT library. Standards and samples were 

separated on an YMC-Triart Diol-HILIC column (1.9 µm, 100×2.1 mm) in an Elute UHPLC 

system and detected by Impact II HD QTOF-MS system (all from Bruker Daltonics). An optimized 

20-minute linear gradient was used to separate metabolite standards and samples. Five types of 

additives were screened to find the best mobile phase buffer for data collection. High-resolution 

MS and MS/MS spectra in both positive and negative ion modes were acquired for each metabolite. 

RTs were determined using optimized LC conditions and inspected manually.  A multipoint RT 

calibration strategy was used for transferring RTs from the instrumental setup in one laboratory to 

the same setup in a different laboratory. 

 

5.2.2.2 LC-MS 

Mobile phase for the gradient elution was solvent A: 10mM ammonium acetate (NH4Ac) 

+ 0.1% FA and solvent B: ACN + 5% H2O. 

The gradient elution profile was: t = 0 min, 100 % B; t = 2 min, 100 % B; t = 17 min, 50 

% B; t = 20 min, 50 % B. 

The flow rate was 0.25 mL/min. All mass spectra were collected in both positive and 

negative ion mode and were recorded from 20 to 1000 m/z with a spectra acquisition rate of 8 Hz. 

The nebulizer was set to 1.0 bar, and the dry temperature was 200 ℃, with 8 L/min of drying gas.  
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5.2.2.3 Library Data Acquisition and Data Processing 

 Library data acquisition and data processing in HILIC MS/MS-RT library is the same as 

described in Section 5.2.1.3. 

 

5.3 Results and Discussion 

5.3.1 MS/MS-RT Library 

5.3.1.1 Overview  

Metabolite standards were analyzed in triplicates.  High-resolution MS/MS spectra of 635 

compounds were generated in positive ion mode and those of 474 metabolites were acquired in 

negative ion mode. Quality control (QC) sample was injected and analyzed intermittently for the 

duration of this library construction work to assess the variance observed in the data throughout 

the sample preparation and data acquisition steps. Up to 5 collision energy levels were applied for 

each standard. For each metabolite, manual interpretation of the fragmentation was performed and 

fragments were labeled with structure in the library, which is very useful in chemical structure 

identification and interpretation. 

 

5.3.1.2 Multiple point RT Normalization 

To achieve unambiguous identification, RT information for each standard was added, 

which significantly improved the identification confidence, especially for low intensity or isobaric 

compounds and isomers. However, RT can be easily affected by variations in experimental 

conditions such as instrument brands, LC columns and gradients. To address this issue, RT 

calibrants and RT normalization method were used to correct RT shift in an effective and universal 
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manner. RT calibrant, which is a mixture containing 28 metabolites, was first generated. The 

majority of the components are dansyl cholride labeled metabolites, since dansyl-labeled 

compounds are more stable than unlabeled metabolites. Moreover, they also have better peak shape 

in reverse phase liquid chromatography. The RTs of metabolites in the RT calibrant spread out 

through the 20-minutes gradient and the interval between two metabolites is less than 1 or 2 

minutes as shown in Figure 5.2. The list of metabolites in the RT calibrants is summarized in Table 

5.1. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. 2 Extracted ion chromatograms of RT calibrants. 

  



 

 146 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5. 1 List of 28 metabolites in RT calibrants. 

 

5.3.1.3 Validation in Human Urine Sample 

The MS/MS-RT Library constructed has been applied in metabolite identification of 

human urine samples. Figure 5.3A and 5.3B shows the base peak chromatograms of urine sample 

with triplicate injection in positive and negative ion modes, respectively. The identification detail 

is shown in Table 5.2. 
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The portability of this library for different instrumental conditions and for different 

laboratories was also assessed using human urine samples. That is to say, the urine samples were 

analyzed in two independent laboratories, one in Canada, another in Germany. The comparative 

results of metabolite identification were shown in Table 5.3. 

 

 

 

  

 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 5. 3 Base peak chromatograms of urine sample with triplicate injection in (A) positive ion 

mode and (B) negative ion mode. 

 

  

(A) 

(B) 
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Table 5. 2 Identification result of human urine samples using the MS/MS-RT library. 

 

 
 
Table 5. 3 Comparative results of metabolite identification of human urine sample in two different 

laboratories.  
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5.3.2 HILIC MS/MS-RT Library 

5.3.2.1 Overview 
 

829 human endogenous metabolites from HMDB were used as metabolite standards in 

constructing the HILIC MS/MS-RT library. These metabolite standards were analyzed in 

triplicates in both positive and negative ion modes. Quality control (QC) sample was injected and 

analyzed intermittently for the duration of this library construction to assess the variance observed 

in the data throughout the sample preparation and data acquisition steps. Retention times of 

metabolites, with standard deviation less than 6 seconds were determined. The retention time 

distribution of metabolites in HILIC MS/MS-RT library is shown in Figure 5.4. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. 4 RTs distribution in HILIC MS/MS-RT Library. 
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5.3.2.2 Parameter Optimization for HILIC MS/MS-RT library 

For mobile phase buffer optimization, it is important to consider that the performance of 

HILIC may not be as stable as RPLC separation. For example, it has poorer retention and 

reproducibility, therefore, the mobile phase buffer has to be optimized for optimal elution of 

polar/ionic metabolites. Five types of additives were screened to find the best mobile phase buffer, 

these are (i) 0.1% FA; (ii) 10mM NH4Ac; (iii) 10mM NH4FA; (iv) 10mM NH4Ac with 0.1% FA; 

and (v) 10mM NH4FA with 0.1% FA. After analyzing 24 amino acids, aromatic compounds and 

carbohydrates, 10 mM NH4Ac+0.1% FA was found to be the optimal buffer for mobile phase, in 

which most of the metabolites were detected as a reproducible peak with good peak shape. The 

standard deviation (SD) of retention time and the relative standard deviation (RSD) of peak width 

were being considered as shown in Table 5.4. 

 

 

 

 

 

 

 

 

 

Table 5. 4 HILIC mobile phase buffer optimization. 
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For gradient elution profile optimization, two gradients were compared. Both of them are 

20-minutes linear gradient. Gradient I ends at 50% of mobile phase B, while gradient II ends at 

60% mobile phase B as depicted in Figure 5.5A. The RTs distribution of 270 compounds using 

the two gradients were compared and shown in Figure 5.5B. Gradient I is used for eluting the 

polar/ionic metabolites. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 5 (A) Gradient elution profile of gradient I and II (B) RTs distribution of 270 compounds 

using two gradients. 

(A) 

(B) 
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5.3.2.3 Multiple point RT Normalization 

Since the RT of HILIC separation can be easily affected by minor variations in 

experimental conditions, a multipoint RT calibration strategy was used to transfer RTs from the 

instrumental setup in one laboratory to the same setup in a different laboratory. In other words, 

that is the portability of the library for different laboratories. This step is important and essential 

to ensure unambiguous and confident metabolite identification, as well as to verify the general 

applicability of the library. 

Two instrument systems are involved here, HILIC-QTOF system 1 is located in Alberta, 

Canada, while HILIC-QTOF system 2 is located in Bremen, Germany. A RT calibrant contains a 

list of metabolites that can be separated and distributed on the chromatogram evenly as shown in 

Figure 5.6. The list of metabolites in the RT calibrants is summarized in Table 5.5. HILIC-QTOF 

system 1 was used to generate the RT calibrants here. The RT calibrants was then sent to Germany 

and the RTs for the RT calibrants were determined experimentally using HILIC-QTOF system 2. 

The RTs in the HILIC MS/MS-RT Library for system 2 were then corrected using a multipoint 

RT calibration algorithm. In this way, correction of RTs for local version of HILIC MS/MS-RT 

Library is achieved. Figure 5.7 shows the multipoint linear regression of RT calibrants in HILIC-

QTOF systems 1 and 2. This demonstrates that the multipoint RT calibration method with the use 

of RT calibrants can be used to correct RT shift between the library RTs and the experimental RTs. 

This is effective to overcome various experimental variations, such as running samples in different 

LC-MS systems.  
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Figure 5. 6 Extracted ion chromatograms of RT calibrants. 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5. 5 List of 14 metabolites in RT calibrants.  
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Figure 5. 7 Multi-point linear regression of calibrants RT for both systems. 

 
 

5.3.2.4 Validation in Human Urine Sample 

 In order to illustrate the utility of the library in analyzing real-world samples, human urine 

samples were analyzed by LC-MS and subsequent metabolite identification was done by using the 

HILIC MS/MS-RT library constructed. 

 Urine samples were prepared by diluting the filtered urine with threefold of acetonitrile so 

that the sample composition is close to the initial mobile phase. HILIC-MS/MS data was acquired 

on system 2 (in Bremen, Germany), in both positive and negative ion modes, followed by 

metabolite identification. Highly reproducible LC-MS data across replicates were generated as 

shown in Figure 5.8.  
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 To determine the number of identified features, the RT correction workflow described in 

Section 5.3.2.3 was applied. The annotation was conducted using the MetaboScape software 

(Bruker Daltonics) by automatically matching precursor mass, precursor isotopic pattern (mSigma 

value), corrected retention time, as well as fragment spectrum information. The results show that 

130 metabolites were identified in positive ion mode and 98 metabolites were identified in negative 

ion mode.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 8 Base peak chromatograms of urine sample with triplicate injection in (A) positive ion 

mode and (B) negative ion mode. 

 

 

(A) (B) 
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5.4 Conclusions  
 
 Two MS/MS-RT libraries were constructed. Both of them contain over 800 endogenous 

metabolites, with the second library being HILIC based. The applicability of these libraries in real 

sample analysis was demonstrated using human urine sample. For both libraries, RT calibrants 

were generated and RT normalization method was used to correct RT shift in different instrument 

setups. In this way, inter-lab portability of the libraries and workflow for metabolite identification 

can be demonstrated. 
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Chapter 6 - Conclusions and Future Work 

6.1 Thesis Summary 

Studies of single-cell metabolomics using Xenopus oocytes as a model system with 

chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS) platform 

were performed. The studies revealed the cell-to-cell heterogeneity, which holds a great potential 

to elevate our understanding of the cellular physiology and give biological insights in health and 

diseases. 

In chapter 2, preparation of Xenopus oocytes and CIL LC-MS workflow were developed 

to profile the amine and phenol submetabolome of single cells comprehensively and quantitatively. 

These involve cells extraction from the Xenopus laevis, cell lysis to extract the metabolites, CIL 

of amines and phenols containing metabolites and subsequent LC-MS analysis. In the metabolomic 

analysis of 124 single cells with 6 different periods of culture times, 1531 peak pairs were detected. 

Among them, 80 metabolites were positively identified by retention time and m/z search against 

CIL standard libraries, 146 metabolites were putatively identified with high confidence by 

retention time and m/z match against the LI library and 1173 metabolites were putatively identified 

by m/z match against the mass-based database. In other words, 89% of detected features are 

identified. We believe this is a big leap in single-cell metabolomics profiling and it has the potential 

to improve the understanding of cell heterogeneity and programming of cell metabolism. The work 

presented in this chapter may not have immediate biomedical applications, but it does illuminate 

a fundamental way in which cells work. 

In chapter 3, cellular response to perturbation was investigated with the purpose of studying 

the behavior and molecular mechanisms underlying cellular systems. A study plan was developed 

and CIL LC-MS method was applied to study the metabolic responses of cells to heat stress. 
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Dansylation was used to elucidate and quantify the change of amine and phenol submetabolome 

in cells. The results suggest that short-term heat stress has great effects on the cellular metabolome 

and the enzymes system of cells may have adapted to high temperature in response to long-term 

heat stress. Recovery from heat stress was accompanied by changes in metabolite abundance, 

which indicates that the cellular amine, phenol metabolome changed after heat stress. Again, the 

behavior of each single-cell is revealed. 

In chapter 4, an analytical workflow for comprehensive and quantitative metabolomic 

analysis of cells at different locations of the Xenopus laevis ovary has been developed, with the 

use of four labeling chemistries. The results indicate that the cellular metabolite composition 

depends on their locations in the ovary. The amine and phenol, carboxylic acid containing 

metabolites of cells look very similar in cells collected at lobes and at random locations. However, 

the hydroxyl and carbonyl containing metabolites in cells are very different, depending on 

locations in the organ being collected. This study demonstrates the importance to apply four 

labeling chemistries to elucidate the metabolome of cells comprehensively and systematically. We 

believe the findings here can ultimately shed light on the use of Xenopus oocytes in medical 

research. 

Finally, in chapter 5, two MS/MS-RT libraries were constructed for metabolite 

identification. Molecular mass, MS/MS spectrum and RT information were collected. RT 

calibrants and multipoint RT calibration were used to transfer RTs from the instrumental setup in 

one laboratory to the same setup in another laboratory. Moreover, metabolite identification in 

human urine samples was demonstrated using the two libraries. 
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6.2 Future Work 

For chapter 2 and 3, I hope to expand the coverage by using other three chemical isotope 

labeling methods. In this way, a better understanding of the single-cell metabolome can be 

achieved. 

For chapter 5, I hope to include more metabolites and provide more information to the 

library for high-confidence metabolite identification. 
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Appendix 

Chapter 3 – Chemical Isotope Labeling LC-MS for Studying the Metabolic Response of Single 

Cells to Heat Stress 

 
 

Appendix Figure 3. 1 PLS-DA model validation result of the single-cell metabolome data set in 

heat stress study with 100 permutations. 
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Chapter 4 – Comprehensive Metabolomic Analysis for Studying Cell-to-Cell Variations from 

Different Locations of the Xenopus laevis Ovary 

    

Appendix Figure A4. 1 PLS-DA model validation result of the amine and phenol metabolome of 

single cells in animal 1 with 100 permutations. 
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Appendix Figure A4. 2 Box plots for ten of the most significant metabolites (lowest p-values) 

found by ANOVA for amine and phenol metabolomics of cells of group A, B and C in animal 1.   
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Appendix Figure A4. 3 PLS-DA model validation result of the amine and phenol metabolome of 

single cells in animal 2 with 100 permutations. 
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Appendix Figure A4. 4 Box plots for ten of the most significant metabolites (lowest p-values) 

found by ANOVA for amine and phenol metabolomics of cells of group A, B and C in animal 2.   
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Appendix Figure A4. 5 PLS-DA model validation result of the hydroxyl metabolome of single 

cells in animal 1 with 100 permutations. 
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Appendix Figure A4. 6 Box plots for ten of the most significant metabolites (lowest p-values) 

found by ANOVA for hydroxyl metabolomics of cells of group A, B and C in animal 1.   
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Appendix Figure A4. 7 PLS-DA model validation result of the hydroxyl metabolome of single 

cells in animal 2 with 100 permutations. 
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Appendix Figure A4. 8 Box plots for ten of the most significant metabolites (lowest p-values) 

found by ANOVA for hydroxyl metabolomics of cells of group A, B and C in animal 2. 
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Appendix Figure A4. 9 PLS-DA model validation result of the carbonyl metabolome of single 

cells in animal 1 with 100 permutations. 
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Appendix Figure A4. 10 Box plots for ten of the most significant metabolites (lowest p-values) 

found by ANOVA for carbonyl metabolomics of cells of group A, B and C in animal 1. 
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Appendix Figure A4. 11 PLS-DA model validation result of the carbonyl metabolome of single 

cells in animal 2 with 100 permutations. 
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Appendix Figure A4. 12 Box plots for ten of the most significant metabolites (lowest p-values) 

found by ANOVA for carbonyl metabolomics of cells of group A, B and C in animal 2. 

 



 

 181 

   

Appendix Figure A4. 13 PLS-DA model validation result of the carboxylic acid metabolome of 

single cells in animal 1 with 100 permutations. 
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Appendix Figure A4. 14 Box plots for ten of the most significant metabolites (lowest p-values) 

found by ANOVA for carboxylic acid metabolomics of cells of group A, B and C in animal 1. 
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Appendix Figure A4. 15 PLS-DA model validation result of the carboxylic acid metabolome of 

single cells in animal 2 with 100 permutations. 
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Appendix Figure A4. 16 Box plots for ten of the most significant metabolites (lowest p-values) 

found by ANOVA for carboxylic acid metabolomics of cells of group A, B and C in animal 2. 
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