
University of Alberta

MINING STATISTICALLY SIGNIFICANT TEMPORAL
ASSOCIATIONS IN MULTIPLE EVENT SEQUENCES

by

Han Liang

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Han Liang
Spring 2013

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only. Where the thesis is converted to, or otherwise made available in
digital form, the University of Alberta will advise potential users of the thesis of these

terms.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as herein before provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever

without the author’s prior written permission.



Abstract

We propose a two-phase method, called Multivariate Association Discovery (MAD),

to mine temporal associations in multiple event sequences. It is assumed that a set

of event sequences has been collected from an application, where each event has

an id and an occurrence time. The goal is to detect temporal associations of events

whose frequencies in the data are statistically significant. The motivation of our

work is the observation that in practice many associated events in multiple tempo-

ral sequences do not occur concurrently but sequentially. In an empirical study, we

apply MAD to tackle two problems originating from different application domains.

The experimental results show that our method performed better than other related

methods in these domains.
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Chapter 1

Introduction

With the advance of technology and science, more and more organizations have

begun to use information systems to assist their business processes and a lot of tem-

poral data in the form of event sequences have been generated. Our work assumes

that a set of event sequences has been collected, where each event occurrence has an

event id and an occurrence time. Detecting associated events in multiple event se-

quences has become an issue that attracted more and more attention in the past few

years. Our work is motivated by the observation that in practice many associated

events in multiple event sequences do not occur concurrently but with a temporal

lag. There exist many practical applications that require mining such temporal re-

lations. For example, in network monitoring, where people are interested in the

analysis of packet and router logs, different types of events occurring sequentially

can be recorded in a log file. The goal is to discover the temporal associations of

these events, which indicate the performance of the network. In human-computer

interaction modeling, an event sequence represents actions taken by users during

a period of time and the goal is to capture aspects such as user intent and interac-

tion strategy by understanding causative chains of connections between actions. A

further example is from neuroscience, where analyzing multi-neuron spike data is

a challenging problem. With the availability of large amounts of data representing

the simultaneous activity of hundreds of neurons, discovering significant patterns

of coordinated spiking activity among neurons helps in interpreting the underly-

ing connectivity structure in the neural tissue and relating it to the function of the

nervous system.
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In this thesis, we design a general, statistical method to detect temporal asso-

ciations from multiple event sequences. The proposed method can be applied to

a large range of application domains and the detected temporal associations can

help people in interpreting the behaviors or making predictions for an information

system.

1.1 Problem Description

The problem we address in this thesis is to find temporal associations from multiple

event sequences. This is not a trivial problem. Assume, for example, we have three

sensors, each attached to one of three motors controlling the movements (meaning

hoist power, crowd power and swing power) of a shovel dipper. Each sensor con-

tinuously records the power consumed by a motor in some time interval, generating

a time series of measurements. Such data can be used to analyze the activities, such

as the dig-cycles, of a shovel. A typical dig-cycle of a shovel is characterized as one

complete cycle of digging the surface, lifting the dirt and loading it on a truck. It is

likely in such a data set that events (e.g., defined as subsequences of measurements

with certain characteristics) are temporally associated with each other. Ideally, if

events in two different sequences are generated by repeating the same coordinated

activity, they should occur each time sequentially with a similar temporal lag, when-

ever the activity occurs. However, things become more complicated in reality: two

associated events can occur simultaneously (e.g., lifting, swinging and dumping

contents of shovel into a truck); the event, which is supposed to occur later, occurs

first (e.g., lifting a shovel full of dirt and then digging the surface again). Further-

more, there may be additional independent occurrences of events on each sequence

(e.g., a lifting of the shovel without a following swing, e.g., when re-positioning the

shovel). For an associated pair of event occurrences, it is reasonable to assume that

the temporal distance of these two occurrences falls within a range around a mean

temporal distance, following a distribution, e.g., uniform or Gaussian. However, we

may obtain different sets of pairs of event occurrences from two event sequences by

assuming that the temporal distance between two associated events follows distinct
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Figure 1.1: (a) Obtaining a set of associated pairs of event occurrences assuming the
temporal distance of two associated events follows a uniform distribution with mean
= 5 time units and range = 2.5 time units. (b) Obtaining another set of associated
pairs assuming the temporal distance follows a uniform distribution with mean =
10 time units and range = 2.5 time units.

distributions. For example, Figure 1.1 shows that we can have two unique sets of

associated pairs of event occurrences, given that the temporal distance between two

associated events follows different uniform distributions. In the figure, the events

marked by crosses denote the associated pairs. A method should be developed to

verify that the events in each pair are really temporally associated caused by the

same coordinated activity, not just randomly occurring one after the other with a

similar time lag. This problem can be solved by employing the methodology of sta-

tistical hypothesis testing, where an alternative hypothesis that sample observations

are influenced by some non-random mechanism, is compared to a null hypothesis

that sample observations result purely from chance.

1.2 Contributions of the Thesis

In this thesis, we propose a two-phase method, called Multivariate Association Dis-

covery (MAD). In the first phase, we search for bivariate associations from pairs of

3



event sequences by comparing the observed distribution of the temporal distances

of their event occurrences with a theoretically derived null distribution. A bivari-

ate association will be reported if there exists in the observed distribution a region

that has a statistically significant higher count of temporal distances than expected.

Two approaches have been designed in this thesis to detect a statistically significant

region. In the first approach, we estimate the observed distribution by using the

histogram of forward distances and applying a state-of-the-art binning technique to

learn a proper bin size for this histogram. A statistically significant region will be

retrieved if there exists a bin whose frequency is statistically significant assuming

the expected null distribution. In the second approach, given that the temporal dis-

tance between two associated events follows a Gaussian distribution, we estimate

the observed distribution by using an effective kernel density estimation technique.

A theoretical distribution function is derived from the analysis of individual dis-

tributions of three categories of temporal distances generated by events of distinct

sequences. We treat bivariate association discovery as a least squares curve-fitting

problem, where we adjust the parameters of the Gaussian components in the theo-

retical function to optimally fit the curve of the observed distribution. A statistically

significant region will be identified if there exists a bell-shaped portion in the ob-

served distribution showing a statistically significant deviation from the expected

null distribution. In the second phase, based on a bivariate association graph, we

search each path in the graph for a multivariate association with the requirement

that its frequency must be statistically significant in the data set.

To evaluate the usability of our method, we applied it to two application do-

mains. Firstly, we applied MAD to detecting multivariate motifs from multivariate

time series data. Existing methods of multivariate motif discovery are all limited

by assuming explicitly or implicitly that the univariate elements of a multivariate

motif occur completely or approximately synchronously. This assumption does not

hold in many real-world applications. We compared MAD with the currently most

effective related work on both synthetic and real-world data sets. The experimental

results indicate that our method can not only discover synchronous motifs as the

other method does, but also successfully find non-synchronous multivariate motifs.
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Secondly, we applied our method to detect frequent episodes from event streams.

An episode can be understood as a temporally ordered set of event types. Current

methods on frequent episode discovery are all limited by requiring users to either

provide possible lengths of frequent episodes or specify an inter-event time con-

straint for every pair of successive event types in an episode. We compared MAD

with the most recent work on frequent episode discovery by using simulation data

generated by a mathematical model of spiking neurons. The empirical results show

that our method is very effective in detecting episodes with variable lengths auto-

matically.

1.3 Thesis Outline

The rest of the thesis is organized as follows: Chapter 2 outlines current work

about multivariate motif discovery and provides an overview of methods on fre-

quent episode discovery. Chapter 3 gives basic definitions. Chapter 4 presents an

overview of our method. Chapter 5 describes the first stage of our method - detect-

ing bivariate associations from two event sequences. Chapter 6 depicts the second

stage of our method - discovering multivariate associations based on a bivariate as-

sociation graph. Chapter 7 gives an empirical study on our bivariate association

mining approaches. Chapter 8 presents an experimental evaluation of the proposed

method for multivariate motif discovery. Chapter 9 describes the experimental set-

tings and results of our method on frequent episode discovery. Finally, we summa-

rize our work and outline future research directions in Chapter 10.
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Chapter 2

Related Work

2.1 Multivariate Motif Discovery

In this research work, since we aim at mining temporal associations between events,

which are represented by their occurrence times, of different sequences, our method

is related to the work in multivariate motif discovery. In a univariate time series, a

motif is a set of time series subsequences that exhibit high similarity and occur fre-

quently (according to some measure, e.g., frequency above a threshold) in the whole

time series [10]. Typically, the occurrence of a motif corresponds to some meaning-

ful aspect of the data, such as a characteristic action in on-body sensor data. Figure

2.1 shows a motif retrieved from a time series of some industrial process measure-

ments. Considering each motif occurrence as an event, the set of motif occurrences,

which are retrieved from the same univariate time series, can be transformed into

an event sequence.

In recent years, multivariate time series data are collected widely in many sci-

entific fields, ranging from meteorology to health science. For example, in an

environmental monitoring system, the data are often gathered over time at differ-

ent locations, leading to a geographically indexed multivariate time series. In a

d-dimensional multivariate time series containing d univariate time series with cor-

responding time points, a n-dimensional multivariate motif (n ≤ d) is a set of

n-dimensional tuples of univariate elements, where the univariate elements from

different dimensions have a temporal association, i.e., they occur concurrently as

a synchronous multivariate motif (e.g., motif 1 in Figure 2.2) or sequentially as a

6



Figure 2.1: A segment of a complex and noisy industrial data set where a motif
occurs seven times. The subsequences with pink color indicate the positions of
these motif occurrences. A zoomed-in view reveals how similar two examples of
these occurrences are to each other.

Figure 2.2: Illustration of three multivariate motifs. An ellipse represents a multi-
variate motif occurrence, and a rectangle denotes a univariate element.

non-synchronous multivariate motif (e.g., motif 2 and motif 3 in Figure 2.2). A

multivariate time series can be transformed into multiple event sequences by trans-

forming motifs of univariate time series. A multivariate motif is a special case of a

multivariate association.

Based on their approaches of handling multivariate time series data, existing

methods of multivariate motif discovery can be classified into three categories.

7



(1) Representing a multivariate time series as a set of multi-dimensional points.

The mining algorithms in this group treat each univariate time series as a dimension

and retrieve a set of d-dimensional points from d equal-length univariate time series.

Minnen et al. proposed a method to detect multivariate motifs that are sparsely dis-

tributed in activity data [23]. This method represents the data points symbolically

based on a vector quantization, and the result strings are processed by a suffix tree

to locate motif seeds (two strings that are most similar to each other). Based on

these motif seeds, hidden markov models (HMMs) are used to retrieve other motif

occurrences. In their later work, another method, which treats the motif discovery

problem as locating regions of high density in the space of multivariate time se-

ries subsequences, was designed [22]. Dense regions are found by using k-nearest

neighbor search (combined with a dual-tree algorithm to reduce the computational

complexity). Subsequences representing local density maxima in the space, are de-

termined as motif seeds. An HMM is then learned from each motif seed and its

k nearest neighbors. Based on these motif seeds and their trained HMMs, greedy

mixture learning is used to discover other motif occurrences. Wang et al. proposed

another method, which first scans the entire multivariate data to construct a list of

candidate motifs using a modified suffix tree that can handle raw data directly, then

the list is used to populate a sparse self-similarity matrix for further processing to

generate the final selections [36]. Although the methods described in this category

handle the original data directly and work well in several example data sets, the high

computational complexity and parameter setting make these methods not applicable

in many situations. Furthermore, the resulting multivariate motifs must span all of

the dimensions and the univariate elements in a multivariate motif must be equally

sized.

(2) Transforming a multivariate time series into a univariate time series. Tanaka

et al. presented a method of detecting synchronous multivariate motifs [33]. In this

method, the authors first used principal component analysis (PCA) to transform

a multivariate time series into a univariate time series, and a set of equal-length

univariate time series subsequences were formed by sliding a fixed-length window

over the projected time series. Each subsequence is further symbolized by using

8



symbolic aggregate approximation (SAX) [16] - a local quantization method that

divides the subsequence into several equal-sized segments, computes the average

for each segment and replaces the segment with a symbol. The SAX algorithm as-

signs a symbol to each segment by consulting a table of pre-computed breakpoints

that divide the data range into equiprobable regions assuming an underlying Gaus-

sian distribution. Since every SAX symbol subsequence represents a part of the

behavior of the projected time series, the authors further replaced the subsequence

by a single unique symbol, called “behavior symbol”. For example, let ‘bcba’ de-

note a SAX symbol subsequence, where ‘c’ means the range of high values, ‘b’

means the range of middle values and ‘a’ represents the range of low values. This

subsequence can be assigned to letter ‘B’ that conceptually means “the time series

starts in the middle range, reaches one high peak and then decreases”. The result-

ing sequence of behavior symbols is called “behavior symbol sequence”. Finally,

a minimum description length (MDL) principle was applied to extract motifs from

a set of equal-length behavior symbol subsequences, which were obtained by slid-

ing a fixed-length window over the behavior symbol sequence. In order to detect

motifs with different lengths, the authors iteratively increased the length of a slid-

ing window and generated different sets of behavior symbol subsequences. This

method shows high efficiency compared to other related work for several data sets

and successfully finds multivariate motifs that are intuitive. This method, however,

explicitly assumes that all of the univariate elements in a multivariate motif occur

completely synchronously. Furthermore, since it is possible that some important

information gets lost in the process of dimensionality reduction, the resulting mul-

tivariate motifs may not be meaningful in some of the original dimensions. Other

related work in this category extend Chiu’s algorithm to handle multivariate time

series data. Chiu’s algorithm was proposed as one of the most efficient methods

to detect motifs from univariate time series [10]. In this algorithm, a set of equal-

length subsequences are formed by sliding a fixed-sized window over the time se-

ries. SAX is applied on each subsequence to reduce its dimensionality and the gen-

erated SAX symbol sequence is called “string”. Motif seeds are identified by using

a random projections algorithm [8], which builds a collision matrix via a number
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of iterations of random projections. Each iteration involves selecting two strings

randomly, choosing a subset of string positions at random and building a hash table

with the corresponding SAX symbols in the strings. After all strings are hashed,

collisions (i.e., equivalent projections from different strings) are taken as evidence

of similarity and the corresponding places in the collision matrix are incremented.

Minnen et al. developed a method that automatically determines the neighborhood

radius for each multivariate motif [24]. The method applies SAX on each of the

univariate time series independently and concatenates strings from each dimension

occurring together within a sliding window into longer single strings. Each single

string actually corresponds to a multivariate time series subsequence. A random

projections algorithm is applied on these single strings to search for multivariate

motif seeds. Once a pair of multivariate motif seeds is found, for every single string

the method computes the Euclidean distance from this string to the closer of the two

seeds using the original, real-valued data, and assigns a score to the string using the

distance value. After that, all single strings are sorted incrementally in terms of

their scores. Estimating the neighborhood radius of a multivariate motif is equiv-

alent to searching for an inflection point in the distribution of these scores. The

resulting multivariate motifs still have to span all of the dimensions and the univari-

ate elements of a multivariate motif still have to be equally sized. The most recent

work from the same authors deals with the problem of sub-dimensional multivari-

ate motif discovery [21], i.e., detection of multivariate motifs that do not necessarily

span all dimensions. Similar to their previous work [24], the authors symbolize a

multivariate time series by applying SAX on each of its univariate time series and

concatenating strings from each dimension in the same sliding window. Multivari-

ate motif seeds can be identified by using a random projections algorithm. Given

a pair of multivariate motif seeds, two different methods were proposed to solve

the problem of dimension relevance for this multivariate motif. In the first method,

given that multivariate motifs are defined by a fixed, user-specified neighborhood

radius, the method determines the dimensions of relevance for a multivariate motif

by simply identifying those dimensions that do not cause the Euclidean distance be-

tween the seeds of this multivariate motif to exceed the given radius. Specially, this
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method sorts the dimensions by increasing distance and then incrementally adds

dimensions until the seed distance grows too large. The second method is designed

for the case when the neighborhood radius have to be estimated automatically. In

this method, the authors first estimate the distribution over distances between ran-

dom subsequences for each dimension by sampling from the data set. Then, given

the distribution and a pair of multivariate motif seeds to analyze, the authors eval-

uate the probability that a value smaller than the seed distance will arise randomly

by calculating the corresponding value of the cumulative distribution function. If

this value is large, the dimension is believed to be irrelevant because it is likely

to arise at random, otherwise, it likely indicates a relevant dimension. However,

the univariate elements in different dimensions of a multivariate motif still must be

completely synchronous.

(3) Combining a set of univariate motifs into a multivariate motif. The algo-

rithms of this category apply a univariate motif discovery method on each univariate

time series and combine some of the discovered univariate motifs into a multivari-

ate motif by detecting their temporal associations. Vahdatpour et al. constructs a

coincidence graph based on the temporal relations of discovered univariate motifs

[34]. A graph is initially built, where a vertex represents a univariate motif and

the weight of an edge between two vertices indicates the frequency that the occur-

rences of the two univariate motifs, which are denoted by these vertices, temporally

overlap. Starting from the motif with the highest occurrences, a graph clustering al-

gorithm iteratively detects “normal activities” as multivariate motifs by comparing

the weights of edges connected to this motif in the graph to a user-defined thresh-

old. Two univariate motifs are believed to be involved in an activity together if

the weight of their connecting edge is greater than the threshold. After all occur-

rences of an activity have been identified, the graph is updated by eliminating the

univariate motif occurrences that are associated to this activity. Another method

was developed by the same authors to detect “abnormal activity occurrences”, as

multivariate subsequences with at least one univariate element missing compared

to their normal activity occurrences [35]. The authors first used Chiu’s algorithm

to extract univariate motifs from each dimension independently and applied their
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previous work on these univariate motifs to detect normal activities. Given a nor-

mal activity, a new algorithm was proposed to find the abnormal occurrences of this

activity. The input to the algorithm is the list of all univariate motifs discovered

from the data and one normal activity. The algorithm first removes the univariate

motifs that do not participate in the normal activity from the list. By scanning the

remaining univariate motifs in the list, the algorithm then identifies the abnormal

occurrences of this activity with the consideration of the fact that a univariate motif

occurrence participates in two occurrences of this activity, while only one of them

being a legal activity occurrence. Although the methods in this category still as-

sume that the univariate elements of a multivariate motif should temporally overlap

with each other, compared with previous methods, they allow the univariate motifs

to have different lengths and frequencies, and provide the flexibility that discovered

multivariate motifs can span any subsets of dimensions.

Although existing methods on multivariate motif discovery can successfully re-

trieve synchronous multivariate motifs from some data sets with particular proper-

ties (e.g, ECG data), they are all limited by assuming explicitly or implicitly that

the univariate elements of a multivariate motif occur completely or approximately

synchronously, which results in their poor performances in applications where non-

synchronous multivariate motifs exist. In Section 8, we compare MAD with the

currently most effective related work on multivariate motif discovery using both

synthetic and real-world data.

2.2 Frequent Episode Discovery

Our method is also related to the work in frequent episode discovery. Frequent

episode discovery [17] is a popular framework for detecting temporal patterns in

symbolic temporal data, with applications in many domains, such as manufac-

turing [15], telecommunication [18], biology [7], finance [26] etc. In this frame-

work, the input data is typically a sequence of event occurrences with each event

occurrence characterized by an event type and an occurrence time. For exam-

ple, an event sequence with five occurrences can be represented as follows: <
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(A, 1.6),(E, 4.9),(B, 5.1),(D, 6.6), (C, 10.5) >. The temporal patterns detected

from the data, referred to as episodes, are essentially small, temporally ordered sets

of event types. For example, (A −→ B −→ C) stands for an episode, where event

type A is followed (some time later) by a B and a C, in that order. When event

occurrences of appropriate types appear in the sequence, in the same order as in an

episode, these event occurrences are said to constitute an occurrence of the episode.

For instance, in the example event sequence, (A −→ B −→ C) occurs once. De-

pending on different types of temporal orders over their event types, episodes can

be classified into two categories: serial episodes and parallel episodes. A serial

episode requires its event types to occur in a sequential order, e.g., (A −→ B −→ C).

In contrast, a parallel episode is similar to an unordered set of event types and does

not require any specific ordering of the event types, e.g., (DE), where event type

D can happen before or after a E. An episode is considered interesting if it occurs

more often than a threshold in the data.

Based on their different learning goals, current methods of frequent episode

discovery can be classified into two categories.

(1) Mining serial and parallel episodes using an Apriori-style procedure. In this

category, the methods use an Apriori-style procedure to detect serial and/or parallel

episodes. The discovery process consists of two stages: candidate generation and

counting frequencies of candidate episodes. In candidate generation, two episodes

of size n can be merged to generate a candidate episode of size (n+ 1) if they share

(n − 1) event types and the temporal orders among these (n − 1) event types in

these two episodes are identical. The frequency of an episode is computed as the

number of fixed-sized sliding windows in which the episode occurs. Mannila et

al. first introduced the framework of frequent episode discovery [17]. Two obvious

drawbacks of the proposed framework are that: a) the window size has to be fixed

by the user and it remains unchanged throughout the whole mining process, which

limits the lengths of discovered episodes; b) an occurrence of an episode may be

contained in several successive windows if the window size is larger than the length

of the episode, which will fraudulently increase the frequency of this episode. Fur-

thermore, it is hard to set an appropriate window size in some applications and
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different episodes may vary in length. To solve these issues, Casas-Garriga intro-

duced a method that requires each consecutive pair of event types (e.g., given an

episode A −→ B −→ C, the pair A −→ B and the pair B −→ C are consecutive)

in an episode have a user-defined maximum gap max gap of time delay [9]. Ev-

ery episode that is candidate to be frequent, will be searched in sliding windows

whose sizes are dynamically adjusted according to the number of event types in the

episode, e.g., a candidate episode with m event types is searched in all windows of

size (m− 1)×max gap time units. For each episode, the authors still counted the

number of sliding windows containing the episode as its frequency. Laxman et al.

proposed another work to discover serial and parallel episodes by using a new fre-

quency measurement, which counts the number of non-overlapped occurrences for

an episode [14]. Two occurrences of an episode are said to be non-overlapped if no

event in one occurrence appears in between events in the other occurrence. Based

on the new frequency definition, the proposed algorithms are better in terms of both

time and space complexities compared with previous methods. The same authors

presented two more algorithms in their extension work to detect serial and paral-

lel episodes, with consideration of time durations of event types [13]. The authors

defined their so-called “generalized episode”, which associates each event type in

the episode with a set of time intervals. The so-called “principal episode” was also

introduced in this work. An episode is said to be principal if every time interval of

an event type in the episode has a positive contribution to the episode’s frequency.

The new algorithms adopted an Apriori-style mining process, except that detected

frequent episodes need to be verified as principal episodes. A unified view of all

the Apriori-based discovery methods for serial episodes under different definitions

of frequencies were proposed in [4]. This unified view allows one to gain insights

into different frequencies by exploring their quantitative relationships. Note that

all of the methods in this category detect frequent episodes based on a user-defined

frequency threshold, which is hard for a user to determine without much guidance

on how to do it.

(2) Mining statistically significant episodes. Achar et al. proposed a method

to discover “injective episodes”, in each of which the event types are unique and
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the temporal order over these event types can be serial or parallel [3]. The method

also adopted an Apriori-style procedure to search for frequent episodes. The pro-

posed method computes the frequency of an injective episode by counting its non-

overlapped occurrences. Other than the user-defined frequency threshold, an ad-

ditional measurement, called “bidirectional evidence”, was proposed to select in-

teresting injective episodes, based on the principle that any pair of event types in

an injective episode, which are not constrained by the episode’s temporal orders,

should appear in either order sufficiently often. An injective episode is believed to

be interesting if its frequency and its result on the new measurement are respectively

above the user-defined thresholds. Sastry et al. described a method to mine statis-

tically significant serial episodes by using a set of user-defined inter-event time de-

lays [29]. After using an Apriori-style mining scheme to detect frequent episodes,

the authors designed a statistical test to determine the significance level of these

detected episodes, based on the intuition that the interaction between two event se-

quences can be captured by the conditional probability of observing an event from

one sequence after a time delay given that an event has occurred on another se-

quence. The major drawback of this work is that the proposed method needs us to

specify an inter-event time delay for any of two event sequences in order to con-

duct the statistical test. Without understanding the mechanism of data generation,

these parameters are not intuitive for people to determine. Patnaik et al. presented

a different approach to find temporal associations between events by learning an

optimal dynamic bayesian network (DBN) structure from event sequences [27]. In

their work, a specialized class of DBNs, called “excitatory network”, was proposed.

In an excitatory network, nodes denote event types and edges represent excitatory

influences among nodes, i.e., a set of nodes in the network exert excitatory influ-

ences on node A, if occurrence of events corresponding to the nodes in the set

increases the probability of occurrence of A. The authors also defined their so-

called “fixed-delay episode”, where the time delays between event types are fixed.

For example, if (A 5−→ B
10−→ C) denotes a fixed-delay episode, every of its occur-

rences must comprise an A, followed by a B exactly after 5 time units later, which

in turn is followed by a C exactly 10 time units later. To obtain the marginal proba-
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bilities in an excitatory network, the frequencies of fixed-delay episodes, which are

computed by counting their non-overlapped occurrences, are used to compute the

joint probabilities and the inclusion-exclusion formula is used to compute the con-

ditional probabilities for each node given different assignments to its parent nodes.

Although this work presented a novel approach to mine temporal associations by

using DBNs, due to the strong limitation on the time delays between event types in

a fixed-delay episode, the proposed method can only be applied on some particular

applications. Gwadera et al. proposed another method to find statistically signifi-

cant serial episodes [12]. In this work, an episode is regarded as a subsequence of

the input event stream within a window of a given fixed size. A set of candidate fre-

quent episodes is first discovered by using an Apriori-style procedure. To determine

the significance of a candidate, a reference model is created either by using a mem-

oryless Bernoulli model or a markov model. The authors used Ω∃(n,w,m), which

represents the number of windows of length w containing at least one occurrence

of episode S of length m when sliding the window along n consecutive events

of the input event stream. The authors proved that the normalized Ω∃(n,w,m)

approximately follows a Gaussian distribution. Given the reference model and a

significance level, the proposed method computes an expected frequency for each

candidate frequent episode. If the observed frequency of the candidate is statisti-

cally significantly larger than its expected frequency, it indicates that this candidate

is highly unlikely generated by the reference model and can be regarded as a sta-

tistically significant episode. Note that our approach is different from the work in

this category, as we use statistical tests to guide the discovery process and the re-

sulting temporal patterns must be statistically significant, but all of the methods in

this category just use their designed statistical tests to verify the significance level

of temporal patterns.

Although current methods on frequent episode discovery perform well in some

data sets, they are all limited by requiring users to either provide possible lengths

of frequent episodes or specify an inter-event time constraint for every pair of suc-

cessive event types in an episode, which results in poor performance in applica-

tions where people have little knowledge about the data. Furthermore, the result
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of these methods is not well founded in statistics, as most of them evaluate the

“significance” of discovered episodes by simply comparing their frequencies to a

user-defined frequency threshold. In Section 9, we compare our method with the

most recent method on frequent episode discovery using simulated spike train data.
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Chapter 3

Background and Definitions

3.1 Event Sequence

An event sequence ξ =< e1, e2, . . . , em > is an ordered set of events. Each ei in ξ

denotes a tuple (e id, ti), where e id represents the event id and ti is the occurrence

time of the event. All event occurrences in ξ are assumed to be of the same type and

the events are ordered by their occurrence time. For example, the event sequence in

Figure 3.1 can be represented as follows: ξ =< (1, 2.3), (2, 5.0), (3, 10.4),

(4, 19.8), (5, 24.9) >.

3.2 Bivariate Associations

We introduce a bivariate association Adab (a 6= b), between two event sequences ξa

and ξb, as a subset of the Cartesian product of ξa and ξb, as following:

Definition 1 Let ξa and ξb be two event sequences. A set Adab ⊆ ξa × ξb is called

a bivariate association in (ξa, ξb) with mean temporal distance d if for all (e, e′) ∈

Adab : t ≤ t′∧t′−t ∼ Φ(·)∧E(t′−t) = d, and there is a one-to-one correspondence

between the sets {e|∃e′ : (e, e′) ∈ (Adab)} and {e′|∃e : (e, e′) ∈ (Adab)}, where

t (resp. t′) is the occurrence time of event e (resp. e′), Φ(·) denotes a a known

Figure 3.1: Event Sequence
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distribution (e.g., uniform or Gaussian) that the temporal distance between two

associated events follows, and E(t′ − t) = d is the expected temporal difference

between associated events in Adab.

3.3 Multivariate Associations

A multivariate association MA
d1...dk−1

1...k between k event sequences ξ1, . . . , ξk is de-

fined as:

Definition 2 Let ξ1, . . . , ξk be k different event sequences. A setMA
d1...dk−1

1...k ⊆ ξ1×

. . . × ξk is called a multivariate association in (ξ1, . . . , ξk) if for all (e1, . . . , ek) ∈

MA
d1...dk−1

1...k : (ei, ei+1) is an instance of a bivariate association in (ξi, ξi+1) with

mean temporal distance di for all 1 ≤ i ≤ k − 1.

Because of the one-to-one correspondence of associated events in a bivariate

association, a multivariate association has this property between any pair of its as-

sociated events.

3.4 The Poisson Process and its Properties

In many real-world applications, especially in applications where the event se-

quences are the result of the superimposition of many low intensity arbitrary (i.e.,

non-Poisson) point processes [20], the collected event sequences can be modeled

as Poisson processes. One example is from neuronal spike train analysis, where a

spike train can be viewed as a stochastic point process and is usually assumed to

be a Poisson process [11]. For our approach, we assume that the event sequences

collected from an application can be modeled as Poisson processes. We define a

Poisson process by adopting the approach from [5]:

Definition 3 A Poisson process, with uniform intensity λ > 0, is a point process

such that:

• for every bounded interval (j, k], the count N(j,k] has a Poisson distribution

with mean θ = λ(k − j);
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Figure 3.2: Two Properties of a Poisson Process

• if (j1, k1], . . . , (jm, km] are disjoint bounded intervals, the countsN(j1,k1], . . . , N(jm,km]

are independent random variables.

Properties of a Poisson process include:

• the inter-arrival times Ti between consecutive event occurrences are inde-

pendent and follow an exponential distribution with rate µ = 1/λ:

P (Ti) = λe−λTi , (3.1)

F (Ti ≤ x) = 1− e−λx, x > 0; (3.2)

• the ith arrival times Si, i.e., the time until the ith event occurrence from the

starting point of the process, have a Gamma distribution with shape parameter

α = i and scale parameter β = λ:

P (Si) = λe−λSi
(λSi)

i−1

(i− 1)!
, (3.3)

F (Si ≤ x) = 1−
i−1∑
j=0

e−λx
(λx)j

j!
. (3.4)

P (·) denotes probability density functions and F (·) denotes cumulative distribu-

tion functions. Figure 3.2 illustrates these notions, where e5 denotes the fifth event

occurrence of sequence ξ and S5 represents its arrival time. Based on the two prop-

erties, S5 follows a Gamma distribution with shape parameter α = 5 and scale

parameter β = λ. T5 is the inter-arrival time between the events e4 and e5, follow-

ing an exponential distribution with mean µ = 1/λ.

20



Chapter 4

Our Methodology

We propose a two-phase method to detect multivariate associations from multiple

event sequences. In the first phase, we detect bivariate associations from two event

sequences by comparing the observed distribution of the temporal distances of their

event occurrences with an expected null distribution theoretically derived from the

properties of a Poisson process assuming that the event occurrences are randomly

and independently positioned. A bivariate association is reported if there exists in

the observed distribution a region that has a statistically significant higher count

of temporal distances than expected. Two approaches are proposed in this thesis

to search for a statistically significant region. In the first approach, we estimate

the observed distribution by using the histogram of forward distances and utilizing

the state-of-the-art binning technique to learn a proper bin size for this histogram.

A statistically significant region is retrieved if there exists a bin in the histogram

whose frequency is statistically significant assuming the expected null distribution.

In the second approach, given that the temporal distance between two associated

events follows a Gaussian distribution, we estimate the observed distribution by

using an effective kernel density estimation technique. A theoretical distribution

function is derived from the analysis of individual distributions of three categories

of temporal distances generated by events of distinct sequences. We treat bivariate

association discovery as a least squares curve-fitting problem, where we adjust the

parameters of the Gaussian components in the theoretical function to optimally fit

the curve of the observed distribution. A statistically significant region is identified

if there exists a bell-shaped portion in the observed distribution showing a statisti-
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cally significant deviation from the expected null distribution. In the second phase,

we use a bivariate association graph to search for multivariate associations with the

requirement that their frequencies should also be significant in a statistical sense.
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Chapter 5

Detecting Bivariate Associations

5.1 Forward Distances

To determine whether two event sequences ξa and ξb are temporally associated, we

analyze what we define as forward distances. A forward distance can be understood

as the difference in time between an event e ∈ ξa and one of the events e′ ∈ ξb

occurring after e. The set of forward distances between events of sequence ξa and

sequence ξb is defined as following:

Definition 4 Let ξa and ξb be two event sequences. FDij = {dist|∃e ∈ ξa∃e′ ∈

ξb, t ≤ t′ ∧ dist = t′ − t}, where t (resp. t′) denotes the occurrence time of e (resp.

e′).

5.2 The Expected Null Distribution of Forward Dis-
tances

We can describe the forward distances between two event sequences ξa and ξb in

the following way: to compute the forward distances for an event on sequence ξa,

we can think of projecting the event onto sequence ξb and denoting the projected

position as h. The forward distance from h to its right nearest event on sequence ξb

can be denoted as Z1. Since we compute Z1 for each event of sequence ξa, Z1 can

be treated as a random variable and we can derive the distribution of this random

variable from the properties of a Poisson process. The distribution is characterized
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Figure 5.1: Waiting Time Paradox

by the so-called Waiting Time Paradox for Poisson processes.1

Theorem 1 Waiting Time Paradox: Suppose that h is a time stamp randomly se-

lected from an event sequence following a Poisson process with intensity λ. Let the

arrival time of the event right after h be denoted as Si+1. Let Z1 = Si+1 − h, and

each inter-arrival time after h be denoted as Ti+j, j = 2, 3, . . . ,m. Then the ran-

dom variables Z1, Ti+2, . . . , Ti+m are independent and identically distributed, with

an exponential distribution with rate µ = 1/λ.

Figure 5.1 illustrates the theorem. In the figure, we select an event at random

from sequence ξa with intensity λa and project it onto sequence ξb with intensity

λb. Ti+1 represents the inter-arrival time that contains the projected event (i.e., the

dashed circle). m denotes the number of events that occur after time h. Si+j denotes

the arrival time of the jth event after time h. The theorem tells us that Z1 follows

the same exponential distribution as Ti, the inter-arrival time on sequence ξb, with

mean µ = 1/λb. If we use Zj to denote the forward distance from time h to the jth

event after h, based on the properties of a Poisson process, Zj is exactly the arrival

time of the jth event in the Poisson process starting at time h and follows a Gamma

distribution with shape parameter α = j and scale parameter β = λb.

Knowing the distribution of the forward distances to the first right neighbor, to

the second right neighbor, and so on, we can express the distribution of all forward

distances from all events on a finite sequence ξa to all events on a finite sequence ξb

as a mixture (weighted sum) of these individual distributions:

fn(x) =
N∑
j=1

Wj × g(x, j, λb), (5.1)

1Meester gives a mathematical proof for this theorem [20]
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where fn(x) is the expected null distribution of forward distances, i.e., the distri-

bution under the assumption that there is no temporal association in the data. N

is the number of individual distribution components, which equals the number of

forward distances the first event on sequence ξa has. The term g(x, j, λb) is the

Gamma distribution that Zj follows. Wj represents the weight of the jth Gamma

distribution component. Note that these Gamma distribution components have dif-

ferent frequencies. Because of its temporal position, an event e on sequence ξa may

not have a forward distance to its jth right neighbor if there are fewer than j events

on ξb to the right of the projected position of e. The weight for each component

density can be estimated from the properties of the involved Poisson processes, as

described next. If we use Fg(j,λb)(x) to denote the cumulative distribution function

of Zj , the cumulative distribution function of fn(x) can be written as:

Fn(X ≤ x) =
N∑
j=1

Wj × Fg(j,λb)(x). (5.2)

Figure 5.2 illustrates how the expected values of the weights Wj(1 ≤ j ≤ N)

can be determined. In the figure, Sn is the arrival time of the last event on sequence

ξb and there are k events on sequence ξa that occur before Sn. Sn−j+1 denotes the

arrival time of the jth last event on sequence ξb. Every event on ξa that occurs

before Sn−j+1 will have all forward distances to events on ξb up to and including

their jth right neighbor, i.e., they contribute a distance to Zj . However, every event

on ξa after Sn−j+1 will not have a distance to their jth right neighbor and will not

contribute a distance to Zj . If Tj denotes the time interval between Sn−j+1 and Sn,

its expected lengthE(Tj) is (j−1)/λb. The expected number of events on sequence

ξb that are in time interval E(Tj), i.e., the expected number of events that do not

contribute to distances in Zj , can be estimated by (j − 1)λa/λb. Let Nj represent

the number of distances in Zj; its expected number E(Nj) can be estimated as

k−[(j−1)λa/λb]. Hence, we can estimate each weightWj byE(Nj)/
∑N

i=1E(Ni).
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Figure 5.2: Determining the Weights of Individual Gamma Distribution Compo-
nents

5.3 Limiting the Search Scope

To make our approach more efficient, we can consider only a limited number m

of events on sequence ξb when computing forward distances for an event on ξa.

While we may not know in many applications how many forward distances we

should consider for an event in order to capture the temporal association of two

event sequences, it is often possible to indicate a range of time (e.g., 10 minutes)

after which we do not expect an associated event to occur on sequence ξb. To exploit

this information and save computations, we suggest a practical method to estimate

m: for each event on sequence ξa, we use the given maximum time to determine

the number of forward distances that occur within this time after the event and set

m as the maximum observed number of such forward distances.

5.4 A General Approach to Discover Statistically Sig-
nificant Regions in the Observed Distribution of
Forward Distances

In this section, we present a general approach to detect statistically significant re-

gions from the distribution of forward distances generated by events of different

sequences. In the proposed approach, we estimate the observed distribution of

forward distances by creating a histogram of these distances and apply the state-

of-the-art binning technique to learning a proper histogram bin size. A statistically

significant region will be reported if there exists a bin in the histogram whose fre-
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quency is statistically significant assuming the expected null distribution.

5.4.1 Using Histograms to Estimate the Observed Distribution

In order to detect whether events from two event sequences are temporally associ-

ated, we estimate the actual, observed distribution of forward distances. A simple

approach is to compute the forward distance for each pair of event occurrences from

different event sequences and generate a histogram of these distances. Determining

a proper histogram bin size, however, is not trivial. A simple solution is to use one

of the existing heuristic binning techniques to determine the bin size automatically.

However, some binning techniques (e.g., Sturge’s rule [32]) tend to generate a large

bin size, resulting in a large variance of forward distances in each bin, which makes

it difficult to detect bins with an unusually high count (compared to the expected

null distribution). In our research work, we use Shimazaki’s method [31], which

selects the bin size that minimizes an estimated L2 risk function. Suppose a set of

forward distances are divided into several bins of width4. The number of distances

in the ith bin is denoted as ki. The risk function is defined as:

C(4) =
2k̄ − v
(4)2

, (5.3)

where k̄ and v represent respectively the mean and variance of ki. The only param-

eter that Shimazaki’s method introduces is the number of iterations for its method.

The larger this parameter becomes, the more candidate bin sizes this method can

try for learning an optimal bin size for a histogram of forward distances.

It is reasonable to assume that the variance of the distances that a bivariate

association follows is not extremely large (otherwise it would be hard to argue even

for the existence of such an association). That means that an event e on sequence

ξa is typically followed by an associated event e′ on sequence ξb within a relatively

small amount of time around the expected mean distance in this association (the

distance itself could be large).
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Figure 5.3: (a) Observed distribution (red curve) versus theoretical distribution
(blue curve) for a bivariate association with 500 instances. (b) A snapshot of the
event sequences used for plotting the left graph. The events linked by the directed
dash lines are the associated events determined by our method.

5.4.2 Detecting Statistically Significant Bins in the Observed Dis-
tribution

Our method is based on the intuition that when two event sequences have a tem-

poral association, the number of forward distances in a bin in the observed distri-

bution should be larger than expected under the null distribution. Figure 5.3 (a)

demonstrates an example of the expected null distribution (the blue curve) and the

observed distribution (the red curve) for a bivariate association with 500 instances

(i.e., associated pairs of event occurrences), showing clearly a spike in the bin con-

taining distances close to the mean temporal distance between associated event oc-

currences. The events linked by the directed dashed lines in Figure 5.3 (b) are the

associated events determined by our approach.

Let B be a bin in a histogram of observed forward distances, and let ON(B)

denote the number of distances in B (ON stands for Observed Number). We use

the methodology of statistical hypothesis testing to determine the probability thatB

containsON(B) distances under the null hypothesis, i.e., under the assumption that

all of the distances are distributed according to the null distribution fn(x). Suppose

n is the total number of observed forward distances and PB is the probability that a
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distance falls into B. Then, the probability that a distance does not fall into this bin

is 1−PB. If we regard the event that a randomly chosen temporal distance falls into

the particular bin B as a Bernoulli experiment, which is repeated independently n

times with a success probability equal to PB, we can use the Binomial distribution

as the null hypothesis to compute the probability that we observe ON(B) in bin

B. More precisely, the distribution of the test statistic, ON(B), under the null

hypothesis is the Binomial distribution with parameters n and PB, i.e., ON(B) ∼

Binominal(n, PB). PB can be derived as:

PB =

∫ u

l

fn(x)dx (5.4)

= Fn(u)− Fn(l)

=
N∑
j=1

Wj × (Fg(j,λ)(u)− Fg(j,λ)(l)),

where l and u stand for the lower respectively upper bound of bin B. PB equals the

cumulative distribution of fn(x) from the bin’s left boundary to its right boundary.

Let α0 be a significance level, and let α be the probability that we observe

ON(B), which is computed from Binomial(n, PB). B is a statistically significant

region at significance level α if α ≤ α0. Typical values of α0 for single statistical

tests are 0.05 and 0.01. However, since we conduct a larger number of tests, we per-

form a Bonferroni adjustment [30] of α0 to avoid a large number of false positives.

We adjust the significance level α0 as α′0 = α0/m, where m denotes the number of

bins being tested.

It is possible that the region where a bivariate association places in the observed

distribution can span several bins. In order to search for an appropriate region

size for this bivariate association, our method merges adjacent bins if they are all

statistically significant and tests the merged bin again. If the merged bin is also

statistically significant, our method will report it instead of the individual bins.

5.4.3 Modeling Bivariate Associations

If two event sequences are temporally associated, we can estimate the mean tem-

poral distance of their associated pairs of event occurrences and the range of these
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Figure 5.4: Making Associated Pairs of Events

distances by retrieving the bins that show statistically significant deviation from the

expected null distribution. We have described in Section 5.4.1 that the temporal dis-

tance between two associated events from different event sequences should follow

a known distribution with a relatively small range around a mean distance for most

meaningful applications. Given a statistically significant bin, the mean temporal

distance of two associated events in a bivariate association can be estimated as the

mean of the distances inside the bin, and the bin size can be used as the range of

the distances in which we will search for a matching event occurrence.

We retrieve the bivariate association Adab from two sequences ξa and ξb by

searching for a set of associated pairs of event occurrences. For an event occur-

rence on ξa, we only consider the event occurrences on ξb that are in the time in-

terval [mean − range/2,mean + range/2]. There may be more than one event

occurrence on ξb that can be paired with an event occurrence on ξa within that time

interval. It is hard to tell in this case which event occurrence is truly associated with

the event occurrence on ξa. In the current implementation, we adopt a simple ap-

proach by selecting the event occurrence on ξb that is closest to the mean temporal

distance in that time interval. Furthermore, it is possible that two event occurrences

on ξa can be paired with an event occurrence on ξb. In this situation, we will select

the event occurrence that happens earlier than the other one on ξa to construct the

associated pair. Although there are some real-world applications where multiple-to-

one correspondence of associated events does exist, in this thesis, we only focus on

investigating one-to-one correspondence of associated events. Figure 5.4 demon-

strates this procedure. In this figure, the events marked by crosses are the associated

pairs determined by our method.
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5.5 Another Approach to Find Statistically Signifi-
cant Regions in the Observed Distribution

Assuming that the temporal distance between two associated events follows a Gaus-

sian distribution, we introduce an approach to look for statistically significant re-

gions in the observed distribution of forward distances. The intuition behind this

approach is based on the observation that the mean and the standard deviation of a

Gaussian distribution can be estimated by using the zero-crossing points of its sec-

ond derivative curve. In this approach, we derive a theoretical distribution function

from the analysis of individual distributions of three categories of forward distances

generated by events from distinct sequences. We treat bivariate association discov-

ery as a least squares curve-fitting problem, where we adjust the means and the

standard deviations of the Gaussian components in the theoretical function to op-

timally fit the curve of the observed distribution. A statistically significant region

will be reported if there exists in the observed distribution a bell-shaped portion

with a statistically significant higher count of forward distances than expected.

5.5.1 The Theoretical Distribution of Forward Distances

Figure 5.5 illustrates a general scenario of two event sequences where embedded

pairs of associated events occur. In this figure, the red points linked by the directed

dashed line represent a pair of truly associated events and the green points stand

for event occurrences that are randomly and independently distributed on one of

the two sequences. There are a total of m event occurrences on sequence ξa and n

event occurrences on sequence ξb. To compute the forward distances for an event

occurrence on sequence ξa, we project it onto sequence ξb and the temporal differ-

ence between the projected position h and any of the event occurrences happening

after h on sequence ξb is the forward distance of the two occurrences.

If there exist some associated pairs of events between two event sequences, only

three categories of forward distances can be generated by events from different se-

quences. The first category of forward distances consists of the distances from an

event occurrence that is randomly and independently distributed on sequence ξa,
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Figure 5.5: Three Categories of Forward Distances Generated From Two Event
Sequences

e.g., the distance d1 between events eik+1 and ejl+2 in Figure 5.5. Since eik+1 is not

temporally associated with any event on sequence ξb, its projected position h will

be randomly and independently distributed regarding all of the events on sequence

ξb. From the Waiting Time Paradox for Poisson processes we learn that the forward

distance between position h and its right nearest event occurrence on sequence ξb

follows an exponential distribution with rate µ = 1/λb, where λb is the intensity of

sequence ξb. Accordingly, we know that the forward distance from h to its jth right

nearest event occurrence on sequence ξb follows a Gamma distribution with shape

parameter α = j and scale parameter β = λb. Therefore, the distribution of the

forward distances computed at eik+1 can be described by a mixture of these Gamma

distribution components, which is exactly the expected null distribution fn(x) de-

rived in Section 5.2. Hence, we can use fn(x) to characterize the distribution of the

forward distances in the first category.

The forward distances in the second category are the temporal distances of as-

sociated event occurrences, e.g., the distance d2 between events eik and ejl in Figure

5.5. We make the assumption that the temporal distance between two associated

events in a bivariate association follows a Gaussian distribution. This assumption

holds in many real-world applications. For example, in the application of neuronal

spike trains, one type of patterns that scientists are interested in is called Ordered

chains, which are ordered firing sequences of neurons where times between firing

of successive neurons fall within a small range around a mean and are assumed to

follow a Gaussian distribution [1]. If there exist more than one bivariate association
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between two event sequences, we can describe the distribution of forward distances

generated from associated pairs of events as a mixture of Gaussian distributions:

fg(x) =
N∑
p=1

Wp ×Gaussian(x, µp, δp), (5.5)

where N stands for the number of Gaussian distribution components, which equals

the number of bivariate associations existing in the data. The termGaussian(x, µp, δp)

denotes the pth Gaussian distribution component with mean µp and standard devia-

tion δp. This term represents the distribution of the temporal distances of associated

pairs of events in the pth bivariate association. Wp denotes the weight of the pth

Gaussian component and can be estimated by kp/
∑N

p=1 kp, where kp represents the

number of forward distances following this Gaussian distribution.

The forward distances in the third category are from associated events on se-

quence ξa to events that are randomly and independently distributed on sequence

ξb, e.g., the distance d3 between events eik and ejl+1 in Figure 5.5. Since eik is only

temporally associated with ejl on sequence ξb, we can consider a new event sequence

ξ′b that contains all of the events on sequence ξb but ejl . Let λ′b denote the intensity of

this new sequence. We estimate λ′b by (n− 1)/L, where L represents the temporal

length of sequence ξb. Since eik has no temporal association with any event on se-

quence ξ′b, its projected position h will be randomly and independently distributed

regarding all of the events on this sequence. Similar as before, we can infer that

the forward distance between position h and its right nearest event occurrence on

sequence ξ′b follows an exponential distribution with rate µ = 1/λ′b and that the

forward distance from h to its jth right nearest event occurrence on sequence ξ′b
follows a Gamma distribution with shape parameter α = j and scale parameter

β = λ′b. Therefore, the distribution of the forward distances computed at event eik
can be described by a mixture of these Gamma distribution components. Hence, we

can express the distribution of the forward distances in the third category as:

f ′n(x) =
M∑
j=1

Wj × g(x, j, λ′b), (5.6)

where M means the number of individual Gamma distribution components, which

equals the number of forward distances the first associated event on sequence ξa
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has. The term g(x, j, λ′b) stands for the Gamma distribution that the distance to the

jth right neighbor follows. Wj is the weight of the jth Gamma component. We can

estimate the weights for these Gamma components in the same way as we did for

the weights of the Gamma components in the expected null distribution. There are,

however, approximately the same amount of forward distances contributing to each

Gamma component, if we compute only a limited number c of forward distances

at each event on sequence ξa. Consequently, we can estimate each weight Wj by

1/(c− 1).

Based on the previous analysis, we can derive a distribution of all forward dis-

tances from all of the events on a finite sequence ξa to all of the events on a finite

sequence ξb as:

ft(x) = (
T − c×

∑N
p=1 kp

T
)fn(x)+(

∑N
p=1 kp

T
)fg(x)+(

(c− 1)×
∑N

p=1 kp

T
)f ′n(x),

(5.7)

where T denotes the total number of forward distances computed between the two

sequences, N represents the number of bivariate associations and c denotes the

number of distances computed at each event occurrence. If kp denotes the number of

temporal distances in the pth bivariate association, we can calculate c×
∑N

p=1 kp dis-

tances from the associated events on sequence ξa, so approximately T−c×
∑N

p=1 kp

distances will follow the expected null distribution fn(x). Furthermore, there are

around
∑N

p=1 kp distances generated by the associated pairs of events between the

two sequences and we can use fg(x) to express the distribution of these distances.

Finally, f ′n(x) stands for the distribution of the rest of the distances. We determine

the normalized weight for each of the distribution components in the theoretical

function by dividing the number of distances following this component by the total

of distances computed between the two sequences.

5.5.2 Using Kernel Density Estimation to Approximate the Ob-
served Distribution

After computing the forward distance for every pair of event occurrences from dif-

ferent sequences, we approximate the observed distribution of these forward dis-

tances by using a kernel density estimation technique. Kernel density estimation is

34



commonly used as a process for smoothing data, which is accomplished by replac-

ing each data point with a kernel density estimator, such as Gaussian. To compute

the density for a data point, a Gaussian kernel estimator takes the observed value of

the data point as its mean and assigns its standard deviation to a fixed value. These

densities of Gaussian kernel estimators are then summed over all data points, pro-

viding a continuous probability density distribution. As compared to data binning

techniques, kernel density estimation creates a smoother distribution curve than

histograms, which prevents loss of information from a large number of observed

values being placed into one bin.

In our research work, we adopt Botev’s method [6], which is the state-of-the-art

adaptive kernel density estimation method. The key idea of this method is to view

the kernel from which the estimator is constructed as the transition density of a

linear diffusion process that has a given limiting and stationary probability density.

In addition, the method also includes a plug-in non-parametric bandwidth (i.e., the

standard deviation of Gaussian kernel estimators) selection algorithm that does not

require a preliminary normal model for the data. Experimental results show that

this method results in a simple and intuitive kernel estimator with substantially

reduced asymptotic bias and mean square error compared to other related work.

The input variables of this method are the data set and the number of data points

over each of which the density estimate is computed. In our work, we set the

second variable of this method to the number of forward distances, which means

that the method constructs a Gaussian kernel estimator and computes a density for

each forward distance. We use fo(x) to denote the generated density curve of the

observed distribution.

5.5.3 Zero-crossing Points on the Second Derivative Curve of a
Gaussian Distribution

The proposed approach for bivariate association detection is based on the obser-

vation that: if we use µ and σ to represent respectively the mean and the standard

deviation of a Gaussian distribution, the inflection points on the first derivative curve

of this Gaussian are at µ ± σ, causing the two zero-crossing points on its second
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Figure 5.6: A Gaussian Distribution with its First and Second Derivatives

derivative curve to be at µ ± σ as well [2]. Figure 5.6 presents an example, where

a Gaussian distribution with µ = 0 and σ = 1 is plotted at the top level and its first

and second derivative curves are respectively shown at the middle and bottom level.

This figure illustrates clearly that the two zero-crossing points on the second deriva-

tive curve of this Gaussian are at ±1. Based on the positions of the zero-crossing

points, we can easily estimate the mean and the standard deviation of this Gaussian

distribution.

5.5.4 Regarding Statistically Significant Region Detection as a
Least Squares Curve-fitting Problem

Based on the analysis of the theoretical distribution ft(x), we can treat statistically

significant region detection as a least squares curve-fitting problem, where we ini-

tialize and adjust the parameters of the Gaussian distributions in ft(x) to optimally

fit the curve of the observed distribution fo(x). Algorithm 1 is used to discover

statistically significant regions from the observed distribution. In this algorithm,

we first generate the second derivative curve of the observed distribution and ob-

tain the pairs of zero-crossing points from the resulting curve. For each pair of

zero-crossing points (xl, xr), we use the statistical test described in Section 5.4.2
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to check if the number of forward distances falling into the region [xl, xr] in the

observed distribution is statistically significant, assuming that all the forward dis-

tances are distributed according to the expected null distribution fn(x). Suppose

m pairs are “statistically significant”, each of which indicates a Gaussian distribu-

tion. We can, therefore, approximate ft(x) by using the m Gaussian distributions.

For each statistically significant pair (x′l, x
′
r), we estimate the mean of the Gaussian

distribution by averaging the values of these two points:

µ =
x′l + x′r

2
. (5.8)

Accordingly, we determine the standard deviation of this Gaussian by taking half

of the absolute value of the difference between the two points:

σ =
|x′l − x′r|

2
. (5.9)

In this manner, the means and standard deviations of the m Gaussian distributions

in ft(x) can be initially estimated. Once these parameters have been determined,

we estimate the number of forward distances following each Gaussian distribution

in ft(x) by using the system of linear equations:∑
xj∈U

ft(xj) ≡
∑
xj∈U

fo(xj), (5.10)

where xj stands for a forward distance and U denotes the set of all the forward

distances computed between two event sequences. After assigning initial values to

the Gaussian distributions’ parameters in ft(x), we apply the Levenberg-Marquardt

(LM) algorithm [19] to adjust these parameters. Starting from an initial set of pa-

rameters, the LM algorithm iteratively modifies these parameters until a local min-

imum is reached in the sum-of-squared error between the observed distribution and

the approximating function ft(x). The measurement the LM algorithm minimizes

can be written as:

en ≡
√∑

xj∈U

(ft(xj)− fo(xj))2. (5.11)

Finally, a statistically significant region will be reported if the number of forward

distances following a Gaussian distribution, whose parameters have been heuristi-

cally determined, in ft(x) is also statistically significant, in contrast to the expected

null distribution.
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Algorithm 1 Approximation Algorithm (AA)
Input: fo(x) - the observed distribution of forward distances; fn(x) - the expected
null distribution of forward distances
Output: S - a set of statistically significant regions

1: Generate the second derivative curve of fo(x) and let f ′′o (x) denote the resulting
curve;

2: Obtain the pairs of zero-crossing points on f ′′o (x);
3: for each pair of zero-crossing points (xl, xr) do
4: Check if the number of forward distances falling into the region [xl, xr] in

fo(x) is statistically significant, assuming that all the forward distances are
distributed according to fn(x);

5: Suppose m pairs are “statistically significant”, each of which indicates a Gaus-
sian distribution. Estimate the m Gaussian distributions’ parameters using
Equation 5.8, Equation 5.9 and Equation 5.10;

6: Approximate the theoretical distribution ft(x) using these Gaussian distribu-
tions and their parameters are adjusted by the Levenberg-Marquardt algorithm
as it minimizes Equation 5.11;

7: for each Gaussian distribution Φ(µ, σ) in ft(x) do
8: Verify if the number of forward distances falling into the region [µ−σ, µ+σ]

in fo(x) is statistically significant, assuming that all the forward distances are
distributed according to fn(x);

9: if the region [µ− σ, µ+ σ] is “statistically significant” then
10: Store pair (µ, σ) into S;
11: return S
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Figure 5.7: Making Associated Pairs of Events

Figure 5.8 provides for us an example of the observed probability density curve

(the blue curve) and the theoretical probability density curve (the red curve) for a bi-

variate association with 5000 instances (i.e., associated pairs of event occurrences),

demonstrating how similar the two curves are to each other.

5.5.5 Modeling Bivariate Associations

If two event sequences are temporally associated, we can detect their bivariate asso-

ciations by identifying from the observed distribution the bell-shaped regions that

show statistically significant deviation from the expected null distribution. Each

of the regions corresponds to a bivariate association. We have assumed in Section

5.5.1 that the temporal distance between two associated events from different se-

quences follow a Gaussian distribution with a relatively small standard deviation

around a mean distance. Given a statistically significant region, the mean temporal

distance of associated events in this bivariate association can be estimated as the

mean of the distances inside the region, and the standard deviation of the temporal

distances can be approximated as the standard deviation of the distances within the

region.

We retrieve the bivariate association Adab from two sequences ξa and ξb by look-

ing for a set of associated pairs of event occurrences. For an event occurrence

on ξa, we only think of the event occurrences on ξb that are in the time interval

[mean− 3 ∗ sd,mean+ 3 ∗ sd], where mean and sd denote the mean respectively

the standard deviation of this bivariate association, and three standard deviations ac-

count for 99.7% of associated event occurrences on sequence ξb being contained in

this interval. If there are multiple event occurrences on ξb that can be paired with an
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Figure 5.8: Observed probability density curve (blue curve) versus theoretical prob-
ability density curve (red curve) for a bivariate association with 5000 occurrences
(associated pairs of events). A zoomed-in view reveals how similar the two curves
are to each other in the region bounded by the “statistically significant” pair of
zero-crossing points.

event occurrence on ξa within the time interval, we just select the event occurrence

on ξb that is nearest to the mean temporal distance in that interval. In addition, if

more than one event occurrence on ξa can be paired with an event occurrence on ξb,

we will choose the occurrence on ξa that happens earlier than the rest to construct

the associated pair. Figure 5.7 demonstrates this process. In this figure, the events

marked by crosses are the associated pairs determined by our method.
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Chapter 6

Detecting Multivariate Associations

Given a set of bivariate associations detected from multiple event sequences, we

build a directed graph by using these bivariate associations. In the graph, a vertex

denotes a bivariate association. We add a directed edge to the graph from vertex vi

to vertex vj if the event sequence where the bivariate association associated with vi

ends is the same sequence where the bivariate association associated with vj starts.

Based on the graph, we use Algorithm 2 to discover multivariate associations. In

this algorithm, we first search the graph for a root, i.e., a vertex having no incoming

edges. There can be more than one root in the graph and we randomly select one

to begin our discovery process. In the case where all the vertices in a graph have

incoming edges, we regard each vertex as a root. Given a root ri, we retrieve all of

the paths beginning with ri from the graph and store them in a path set Pi. Starting

from a randomly chosen path p in Pi, we search along p for its maximum sub-path

spmax, which is verified to be a multivariate association by Algorithm 3. If such a

path spmax is found, it will be stored in a temporary set Temp. We start our search

again with another randomly chosen path in the remaining part of Pi and repeat Step

11-13 until all of the paths in Pi are processed. After iterating all of the roots in R,

we copy every detected multivariate association from Temp to a result set S and

delete all the vertices used to constitute this multivariate association as well as their

associated edges from the graph. Finally, since it is possible that some multivariate

associations are actually the sub-paths of others (e.g., va → vb and vb → vc are two

sub-paths of va → vb → vc, but va → vc is regarded as an independent association),

we remove redundant associations from S. We repeat Step 1-18 until the graph is
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empty.

Algorithm 2 Multivariate Association Discovery (MAD)
Input: G(V,E) - bivariate association graph
Output: S - a set of paths, each representing a multivariate association

1: while G is not empty do
2: for each vertex vi ∈ G do
3: if vi has no incoming edges then
4: Store vi in a root set R;
5: if R is empty then
6: for each vertex vi ∈ G do
7: Store vi in R;
8: for each root ri ∈ R do
9: Retrieve all of the paths starting at ri from G and store them in a set Pi;

10: for each path p ∈ Pi do
11: Starting from ri, search along p for its maximum sub-path spmax, which

is verified to be a multivariate association by Algorithm 3;
12: Store spmax in a temporary set Temp;
13: for each path p ∈ Temp do
14: Store p in a result set S;
15: Remove all the vertices on p as well as their associated edges from G;
16: for each path p ∈ S do
17: Remove all the sub-paths of p from S;
18: return S

Algorithm 3 is based on the assumption that the frequency of a multivariate

association should be statistically significant in the data. That means when there

exists a multivariate association on a path, the number of chains of connected asso-

ciated pairs of events traversing this path should be larger than expected under the

assumption that these chains form by chance. Given a path p = v1 . . . vl and a sig-

nificance level α0, we will search for a multivariate association on p in the following

way. Let k be the number of chains of connected associated pairs of events starting

from v1 to vi−1 on p, and let x be the number of chains of connected associated

pairs of events starting from v1 to vi on p. We use m and n to denote the number

of associated pairs of events in vi−1 and vi, respectively. If we randomly select an

associated pair of events from vi−1, the probability δ that this associated pair is on

a chain starting from v1 to vi can be estimated by δ = k/m. If we regard the event

of choosing an associated pair of events from vi to extend one of the chains starting
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from v1 until vi−1 as a Bernoulli experiment, which is repeated independently n

times with the success probability equal to δ, we can use the Binomial distribution

as the null hypothesis to compute the probability α that x chains get extended, i.e.,

x ∼ Binominal(n, δ). Since we conduct multiple hypothesis tests on p, we adjust

the significance level α0 again by using α′0 = α0/l, where l denotes the number of

vertices on p. If α is smaller than α′0, we continue to check for the next vertex on p;

otherwise, we output the sub-path of p from v1 to vi−1 as a multivariate association.

Algorithm 3 Candidate Association Verification (CAV)
Input: p = v1 . . . vl - a path in G; α0 - significance level
Output: spmax - a multivariate association

1: index = 1;
2: for each vertex vi (2 ≤ i ≤ l) on p do
3: k ←− the number of chains of connected associated pairs of events starting

from v1 until vi−1 on p;
4: x←− the number of chains of connected associated pairs of events starting

from v1 until vi on p;
5: m←− the number of associated pairs in vi−1;
6: n←− the number of associated pairs in vi;
7: δ = k/m ←− the probability that an associated pair in vi−1 is on a chain

starting from v1 until vi−1;
8: α = Binomial(x, n, δ) ←− the probability of observing x chains starting

from v1 until vi;
9: if α ≤ α0/l then

10: index = i;
11: else
12: break;
13: return spmax = v1 . . . vindex
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Chapter 7

Evaluating Bivariate Association
Mining Methods on Synthetic Data
Sets

To study the generality and robustness of our proposed methods, we conducted four

groups of experiments. In each group, we generated two event sequences with a

length of 2× 107 time units and implanted varying numbers of occurrences of a bi-

variate association and “noise” event occurrences (i.e., those that do not participate

in the bivariate association) into the two sequences, so that each event sequence had

a total of 1×104 occurrences. The temporal distance between two associated events

in the bivariate association followed a Gaussian distribution. The significance level

for detecting implanted bivariate associations was set to 10−11. The number of for-

ward distances computed at each event occurrence was set to 20. We evaluated the

performance of our methods using the F-measure, which is computed as:

F = 2 · p · r
p+ r

, (7.1)

where p denotes the precision and r represents the recall of a method. In our re-

search study, p stands for the number of retrieved “true” bivariate association oc-

currences divided by the total of returned bivariate association occurrences and r

stands for the number of retrieved “true” bivariate association occurrences divided

by the total of bivariate association occurrences implanted into the two event se-

quences. F-measure reaches its best value at 1 and worst score at 0. In the follow-

ing, we name the method, which uses a histogram of forward distances to search
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Table 7.1: BAM-I: % of Bivariate Association Occurrences vs. Mean Temporal
Distance

PPPPPPPPPPer.
Mean

20 50 100 200 500 1000 3000 5000

10% 0.959 0.958 0.958 0.957 0.960 0.961 0.959 0.958
30% 0.982 0.980 0.982 0.981 0.983 0.982 0.982 0.982
50% 0.991 0.992 0.993 0.992 0.992 0.992 0.993 0.992
70% 0.995 0.996 0.995 0.996 0.996 0.996 0.995 0.995
90% 0.998 0.998 0.996 0.997 0.998 0.998 0.997 0.997

for bivariate associations, BAM-I; we name the method, which treats bivariate as-

sociation discovery as a least squares curve-fitting problem, BAM-II. In BAM-I, to

find a proper bin size for the histogram of forward distances, we set the number of

iterations of Shimazaki’s method to 50000.

In the first group of experiments, we varied both the percentage of occurrences

that belong to the implanted bivariate association from 10% to 90% of the total of

occurrences on the two event sequences, and the mean temporal distance between

two associated events in the range of 20 to 5000 time units. The standard deviation

of the temporal distances in the bivariate association was fixed to 2.5 time units.

Table 7.1 shows the result of BAM-I, Table 7.2 shows the result of BAM-II. We can

see from these tables that our methods constantly performed well, achieving high F-

measure scores in all of the cases, which means that the performance of our methods

is not affected by the mean temporal distance between two associated events. Both

of the methods are also insensitive to noise, as they detected the implanted bivariate

association even in the case where the number of “noise” event occurrences was 9

times larger than the number of bivariate association occurrences.

In the second group of experiments, we changed both the percentage of bivariate

association occurrences from 10% to 90% of the total number of occurrences on

the sequences, and the standard deviation of the temporal distances in the bivariate

association between 2.5 and 50 time units. This time the mean temporal distance

was fixed to 500 time units. Table 7.3 shows the result of BAM-I, Table 7.4 shows
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Table 7.2: BAM-II: % of Bivariate Association Occurrences vs. Mean Temporal
Distance

PPPPPPPPPPer.
Mean

20 50 100 200 500 1000 3000 5000

10% 0.985 0.986 0.985 0.985 0.986 0.985 0.985 0.985
30% 0.988 0.989 0.987 0.986 0.988 0.988 0.987 0.988
50% 0.992 0.993 0.993 0.992 0.993 0.992 0.992 0.991
70% 0.995 0.995 0.996 0.995 0.995 0.996 0.995 0.995
90% 0.996 0.996 0.997 0.997 0.998 0.997 0.996 0.996

Table 7.3: BAM-I: % of Bivariate Association Occurrences vs. Standard Deviation
of Temporal Distances

HHH
HHHPer.

SD
2.5 5 10 20 30 40 50

10% 0.952 0.886 0.832 0.749 0.641 0.213 0.104
30% 0.982 0.968 0.935 0.902 0.859 0.808 0.771
50% 0.991 0.981 0.970 0.944 0.928 0.913 0.903
70% 0.994 0.989 0.980 0.963 0.957 0.937 0.927
90% 0.997 0.993 0.985 0.972 0.962 0.952 0.943

the result of BAM-II. We observed from these tables that our methods obtained

high scores in the cases where the standard deviation of the temporal distances

was relatively small. Although the performance of our methods gradually declines

as the standard deviation of the implanted bivariate association enlarges, in many

real-world applications the standard deviation of a bivariate association will not be

extremely large, otherwise, it would be hard to argue even for the existence of such

a temporal association. Furthermore, from these experimental results we learned

that it was difficult for our methods to detect this implanted bivariate association in

the situations where the number of “noise” event occurrences was much larger than

the number of bivariate association occurrences.

In the third group of experiments, we varied both the percentage of bivariate

association occurrences from 10% to 90% of the total number of occurrences on

the two event sequences, and the number of forward distances computed at each
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Table 7.4: BAM-II: % of Bivariate Association Occurrences vs. Standard Deviation
of Temporal Distances

HHH
HHHPer.

SD
2.5 5 10 20 30 40 50

10% 0.985 0.973 0.932 0.884 0.822 0.541 0.475
30% 0.987 0.980 0.960 0.921 0.887 0.838 0.809
50% 0.992 0.987 0.979 0.953 0.946 0.929 0.910
70% 0.995 0.992 0.985 0.974 0.956 0.948 0.931
90% 0.997 0.995 0.989 0.980 0.971 0.967 0.952

Table 7.5: BAM-I: % of Bivariate Association Occurrences vs. # of Forward Dis-
tances Computed at Each Event Occurrence

HH
HHHHPer.

#
1 4 8 16 32 64 128

10% 0.948 0.952 0.957 0.957 0.958 0.959 0.958
30% 0.953 0.978 0.981 0.982 0.980 0.982 0.981
50% 0.969 0.988 0.991 0.993 0.991 0.992 0.991
70% 0.983 0.990 0.994 0.995 0.996 0.996 0.994
90% 0.984 0.992 0.996 0.996 0.998 0.997 0.996

event occurrence in the range of 1 to 128. We assigned 500 time units to the mean

temporal distance and 2.5 time units to the standard deviation of the implanted

bivariate association. Table 7.5 presents the result of BAM-I, Table 7.6 presents

the result of BAM-II. The experimental results show that our methods consistently

worked well, obtaining high scores in all of the data sets, which indicates that the

performance of our methods are not influenced by the number of forward distances

computed at each event occurrence, as long as the implanted bivariate association

can be completely captured by the generated forward distances.

In the fourth group of experiments, we aim to observe how the performance of

BAM-I is affected by the bin size of a histogram of forward distances. Although we

adopt Shimazaki’s method in the current implementation to learn the optimal bin

size for a histogram, other binning techniques can also be applied in our method.

Based on the nature of each technique, we can have histograms with different bin
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Table 7.6: BAM-II: % of Bivariate Association Occurrences vs. # of Forward
Distances Computed at Each Event Occurrence

HHH
HHHPer.

#
1 4 8 16 32 64 128

10% 0.966 0.975 0.984 0.985 0.985 0.984 0.986
30% 0.973 0.981 0.986 0.988 0.988 0.987 0.989
50% 0.979 0.984 0.993 0.992 0.994 0.993 0.992
70% 0.983 0.989 0.995 0.996 0.996 0.995 0.996
90% 0.988 0.992 0.996 0.998 0.997 0.998 0.997

sizes. For example, Sturge’s rule [32] tends to generate a large bin size, leading to

a histogram with only a few of bins. In this group, we changed both the percentage

of occurrences that belong to the bivariate association from 10% to 90% of the total

number of occurrences on the sequences, and the bin size, which we use to create a

histogram to estimate the observed distribution of forward distances, between 5 and

500 time units. We assigned 500 time units to the mean temporal distance and 2.5

time units to the standard deviation of the implanted bivariate association. Different

from what we did in other groups of experiments where we learn the bin size auto-

matically by using Shimazaki’s method, the bin size is manually determined in this

group. Note that when we assign a small value to the bin size, the region where the

implanted bivariate association exists in the observed distribution may span more

than one bin. To search for an appropriate region size for the bivariate association,

our method merges adjacent bins if they are statistically significant individually,

and reports the merged region if it is also statistically significant. Table 7.7 presents

that BAM-I performed well while we used a bin size close to the standard devia-

tion of the bivariate association, which indicates that most of the temporal distances

between associated events fall into one bin and make this bin statistically signifi-

cant assuming the expected null distribution. When the bin size is much larger than

the standard deviation of the bivariate association, our method becomes ineffective

because a substantial number of forward distances, which do not belong to the im-

planted bivariate association, fall into the bin that contains the temporal distances

of associated events. Furthermore, this table also presents that the performance
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Table 7.7: BAD-I: % of Bivariate Association Occurrences vs. Bin Size

PPPPPPPPPPer.
Bin Size

5 10 20 50 100 300 500

10% 0.952 0.948 0.944 0.810 0.704 0.609 0.355
30% 0.983 0.981 0.976 0.943 0.903 0.859 0.647
50% 0.993 0.991 0.987 0.974 0.957 0.939 0.797
70% 0.995 0.993 0.992 0.987 0.977 0.976 0.900
90% 0.997 0.997 0.996 0.995 0.992 0.992 0.967

of BAM-I gradually declined as more and more “noise” event occurrences were

implanted into the sequences.
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Chapter 8

Empirical Study On Multivariate
Motif Discovery

We apply our methodology to detect multivariate motifs from multiple time series

sequences and compare it with the work of Vahdatpour et. al. [34], which is cur-

rently the most effective work for multivariate motif discovery. This method adopts

an approach that uses the result of a univariate motif discovery algorithm as the

input of the second stage in their method and compose multivariate motifs by using

graph clustering. In the following sections, we call the multivariate association dis-

covery method, which adopts the approach of using histograms of forward distances

to search for bivariate associations, MAD-I; we name the other method, which uses

the approach that regards bivariate association discovery as a least squares curve-

fitting problem, MAD-II. We verify the resulting multivariate motifs by comparing

them with the ground truth if it is available.

8.1 Collecting Event Sequences from Applications

Depending on specific applications, we can adopt different approaches to transform

raw temporal data into event sequences. In the case of multivariate motif discovery,

we can ignore the regions in a univariate time series that are not part of any uni-

variate motif occurrence. We further simplify the time series containing univariate

motif occurrences by representing a motif occurrence using its starting position in

the time series. If we regard each such point as an event, the univariate time series

can be transformed into an event sequence (see Figure 8.1).
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Figure 8.1: Transforming a univariate time series into an event sequence, where a
motif occurs five times, indicated by red color.

In the case that we need to search for univariate motifs from the data set, we

adopt the MK algorithm [25], which is an improved version of Chiu’s algorithm.

This algorithm has two strengths: a) it is currently one of the most effective meth-

ods in the literature; b) it can reduce the effect of noise in the data via random

projections. In our experiments, we generate univariate motifs of variable lengths

by assigning distinct sets of parameter values, e.g., motif length, to Chiu’s algo-

rithm. We then transform each found univariate motif into an event sequence, as

described above. For a fair comparison, we evaluate both our methods and Vahdat-

pour’s method using the same set of event sequences.

8.2 Experiment on Synthetic Multivariate Time Se-
ries Data Sets

To evaluate our methods in terms of generality and robustness, we conducted three

groups of experiments. In each group, we generated a set of univariate time series

with a length of 2× 107 time units. We implanted varying numbers of occurrences

of a multivariate motif and “noise” univariate motif occurrences (i.e., those that do

not participate in the multivariate motif) into these time series, so that each uni-

variate time series had a total of 1 × 104 occurrences. Both the length of “noise”

univariate motif occurrences and the length of univariate elements in the multivari-

ate motif equaled 20 time units. Figure 8.2 shows a small snapshot of one of the

data sets we used for evaluating the performance of a method. In our methods,

51



Figure 8.2: A snapshot of the data set used for evaluating the performance of a
method. A rectangle represents a “noise” univariate motif occurrence and an ellipse
denotes a multivariate motif occurrence.

we set the number of forward distances computed at each univariate motif occur-

rence to 20; to avoid false positives, we set the significance level of statistical tests

to 10−11. In MAD-I, we assigned 50000 to the number of iterations used by Shi-

mazaki’s method. In Vahdatpour’s method, we set the threshold for determining

the minimum correlation of two univariate motifs to 0.05, as done by Vahdatpour et

al. [34]. The performance was evaluated by using the F-measure. In addition, we

call a bivariate association found in two univariate time series a bivariate motif, and

we name a n-variate association detected from n univariate time series a n-variate

motif.

In the first group of experiments, we created synthetic data sets containing

five randomly generated univariate time series, where a 5-variate motif and some

“noise” univariate motif occurrences were implanted. The 5-variate motif consisted

of 4 bivariate motif components, each of which had a fixed standard deviation of

temporal distances equal to 2.5 time units. We varied both the percentage of 5-

variate motif occurrences from 10% to 100% of the total number of occurrences,

and the mean temporal distance between 10 and 5000 time units. Table 8.1 presents

the result of MAD-I, Table 8.2 shows the result of MAD-II. From the experimental

results we learn that our methods not only detected this multivariate motif when
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Table 8.1: MAD-I: % of Multivariate Motif Occurrences vs. Mean Temporal Dis-
tance

PPPPPPPPPPer.
Mean

10 20 200 1000 5000

10% 0.947 0.945 0.941 0.944 0.942
30% 0.952 0.956 0.949 0.953 0.957
50% 0.965 0.960 0.965 0.963 0.967
70% 0.974 0.973 0.977 0.974 0.972
90% 0.987 0.991 0.988 0.985 0.986

Table 8.2: MAD-II: % of Multivariate Motif Occurrences vs. Mean Temporal Dis-
tance

PPPPPPPPPPer.
Mean

10 20 200 1000 5000

10% 0.983 0.984 0.983 0.984 0.985
30% 0.984 0.986 0.985 0.985 0.986
50% 0.985 0.988 0.986 0.988 0.986
70% 0.990 0.989 0.988 0.990 0.988
90% 0.992 0.991 0.992 0.991 0.991

its univariate elements temporally overlap (i.e., the cases when the mean temporal

distance equals 10 or 20 time units) but also found it as its univariate elements had

varying temporal lags. Our methods are also robust, even in the situation where the

number of “noise” univariate motif occurrences was 9 times larger than the number

of multivariate motif occurrences. The result in Table 8.3 indicates that Vahdat-

pour’s method detected nothing when the univariate elements of this multivariate

motif were not synchronous.

In the second group of experiments, we again generated synthetic data sets con-

taining five randomly generated univariate time series, where a 5-variate motif and

some “noise” univariate motif occurrences were implanted. Each bivariate motif

components had now a fixed mean of temporal distances equal to 500 time units,

and we varied both the percentage of 5-variate motif occurrences from 10% to 100%

of the total number of occurrences, and the standard deviation of the bivariate motif

components between 10 and 100 time units. Table 8.4 shows the result of MAD-I,
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Table 8.3: VAH: % of Multivariate Motif Occurrences vs. Mean Temporal Distance

PPPPPPPPPPer.
Mean

10 20 200 1000 5000

10% 0.889 0.496 0.0 0.0 0.0
30% 0.959 0.519 0.0 0.0 0.0
50% 0.974 0.531 0.0 0.0 0.0
70% 0.985 0.553 0.0 0.0 0.0
90% 0.990 0.564 0.0 0.0 0.0

Table 8.4: MAD-I: % of Multivariate Motif Occurrences vs. Standard Deviation of
Temporal Distances

PPPPPPPPPPer.
Vari.

2.5 5 10 20 30

10% 0.946 0.923 0.911 0.751 0.592
30% 0.950 0.947 0.938 0.889 0.747
50% 0.966 0.953 0.941 0.926 0.880
70% 0.972 0.964 0.955 0.943 0.904
90% 0.982 0.973 0.965 0.952 0.922

Table 8.5 presents the result of MAD-II. From these two tables we observe that: the

larger the standard deviation of the bivariate motif components becomes, the more

difficult it is to detect the multivariate motif, since our methods may fail to detect

some of the bivariate motif occurrences, which are used to constitute multivariate

motif occurrences. We also applied Vahdatpour’s method on the same data sets and

the result shows it never found this multivariate motif.

In the third group of experiments, we evaluated the performance of our meth-

ods as the significance level α0 used to detect bivariate motif components and mul-

tivariate motifs changed. We created synthetic data sets containing five randomly

generated univariate time series, where a 5-variate motif and some “noise” univari-

ate motif occurrences were implanted. The mean temporal distance of the bivariate

motif components was set to 500 time units, and their standard deviations were set

to 2.5 time units. We varied both the percentage of 5-variate motif occurrences

from 10% to 100% of the total number of occurrences, and the significance level α0
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Table 8.5: MAD-II: % of Multivariate Motif Occurrences vs. Standard Deviation
of Temporal Distances

PPPPPPPPPPer.
Vari.

2.5 5 10 20 30

10% 0.977 0.964 0.918 0.861 0.795
30% 0.986 0.969 0.951 0.899 0.847
50% 0.986 0.976 0.961 0.916 0.880
70% 0.990 0.983 0.972 0.934 0.904
90% 0.992 0.984 0.974 0.948 0.922

Table 8.6: MAD-I: % of Multivariate Motif Occurrences vs. Significance Level α0

H
HHH

HHPer.
α0 0.01 0.001 10−6 10−9 10−11

10% 0.945 0.942 0.946 0.939 0.943
30% 0.956 0.953 0.952 0.952 0.956
50% 0.962 0.964 0.965 0.967 0.970
70% 0.974 0.972 0.980 0.976 0.971
90% 0.988 0.988 0.989 0.987 0.990

between 0.01 and 10−11. Table 8.6 shows the result of MAD-I, Table 8.7 shows the

result of MAD-II. The experimental results indicate our methods work constantly

well by achieving high F-measure scores using different significance levels.

Finally, we generated a complex synthetic data set of ten randomly generated

univariate time series with a length of 2 × 108 time units, where we implanted

five multivariate motifs. Each multivariate motif had 1000 occurrences. We also

added 5000 “noise” univariate motif occurrences to each dimension in the data set.

Table 8.8 lists the properties of the implanted multivariate motifs, showing that

both synchronous and non-synchronous multivariate motifs were included in this

data set. Table 8.9 illustrates that MAD-I retrieved all of the occurrences of the

bi-variate and the 3-variate motifs from the data, leading to a score of 1.0 for each.

Although it missed several occurrences, MAD-I still obtained a score of 0.959 for

the 5-variate motif, 0.942 for the 8-variate motif and 0.967 for the 10-variate motif.

Similar observations can be made from the results of MAD-II. Both of our methods
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Table 8.7: MAD-II: % of Multivariate Motif Occurrences vs. Significance Level α0

HHH
HHHPer.
α0 0.01 0.001 10−6 10−9 10−11

10% 0.983 0.984 0.982 0.982 0.985
30% 0.983 0.985 0.984 0.984 0.986
50% 0.986 0.988 0.986 0.985 0.986
70% 0.990 0.991 0.990 0.989 0.990
90% 0.991 0.991 0.992 0.990 0.992

Table 8.8: The Properties of Implanted Multivariate Motifs

XXXXXXXXXXXXProperties
Motifs

bi-variate 3-variate 5-variate 8-variate 10-variate

Mean 2 20 800 3000 5000
Standard Deviation 0.5 2.5 10 10 5
Dimensions 1-2 3-5 1-5 1-8 1-10

detected 88 bivariate motifs and 165 n-variate motifs (n≥3) totally from the data.

Vahdatpour’s method performed well on the bi-variate and the 3-variate motifs, but

it did not detect other non-synchronous multivariate motifs, leading to its scores in

these cases being 0.

Figure 8.3 shows how the three methods scale when we increase the dimen-

sionality of a synthetic data set (i.e., the number of univariate time series) with an

embedded multivariate motif spanning all of the dimensions. Each univariate time

series in the data set has a length of 2 × 107 time units. We set the mean and stan-

Table 8.9: The F-measure Performances of MAD-I, MAD-II and Vahdatpour’s
method on a Complex Synthetic Data Set

XXXXXXXXXXXXMethods
Motifs

bi-variate 3-variate 5-variate 8-variate 10-variate

MAD-I 1.0 1.0 0.959 0.942 0.967
MAD-II 1.0 1.0 0.976 0.955 0.980
VAH 0.992 0.853 0.0 0.0 0.0
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Figure 8.3: The scalability of MAD-I, MAD-II and Vahdatpour’s Method with In-
creasing the Dimensionality of a Synthetic Data Set

dard deviation of the bivariate motif components to 10 respectively 2.5 time units,

so both of the methods can find this multivariate motif. We implanted 5000 occur-

rences of the multivariate motif into the data set and added 5000 “noise” univariate

motif occurrences to each of the dimensions. As the graph illustrates, MAD-I is

computationally more expensive, but still feasible. MAD-I takes around 29 min-

utes to detect 266 multivariate motifs from this synthetic data set. Our methods

need to detect associations from any of two univariate motifs, search for the as-

sociated pairs and construct multivariate motifs, while for Vahdatpour’s method,

increasing the dimensionality of the data set just affects the calculations required

for updating the weight of an edge between two univariate motifs in the graph.

8.3 Experiment on Real-world Multivariate Time Se-
ries Data Sets

To explore the utility of our methods in real applications, we applied MAD-I, which

adopts the approach of using histograms of forward distances to detect bivariate as-

sociations, on two real-world data sets. We first tested MAD-I and Vahdatpour’s
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Figure 8.4: The Accuracy of Vahdatpour’s method and MAD-I for Three Smart-
Cane Data Sets

method on the data collected from a wearable system, called SmartCane [37]. This

system is developed as a device to monitor and train senior or impaired people in

their assisted walking behavior. Three data sets are generated by the sensors of the

system and each has eight univariate time series. There exists a synchronous mul-

tivariate motif in these data sets, which corresponds to the normal use of the cane

when walking (i.e., normal activity). We evaluated the performance of MAD-I and

Vahdatpour’s method in terms of accuracy, which is computed by the number of

retrieved normal activity occurrences divided by the number of normal activity oc-

currences observed in the data. The number of forward distances computed at each

univariate motif occurrence was set to 10 and the two significant levels were set

to 10−11. In Vahdatpour’s method, we assigned 0.05 to the threshold of determin-

ing the correlation between univariate motifs, as done by Vahdatpour et. al. [34].

Figure 8.4 summarizes the accuracy of normal activity discovery by use of the two

methods.

We further evaluated MAD-I and Vahdatpour’s method using a data set where

non-synchronous multivariate motifs may exist. The data set consists of recordings

of shovel operations, provided by an oil company. We attempt to detect a variety of

patterns, such as dig-cycles. A typical dig-cycle of a mining shovel is defined as one

complete cycle for digging the surface, lifting the dug oil-sand, and finally loading

it on the truck. Three different motors (i.e., Crowd, Hoist, and Swing) are dedicated
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Figure 8.5: A multivariate motif occurrence retrieved by MAD-I from the shovel
data.

for digging, lifting, and swinging oil-sand, respectively. The electronic power con-

sumed by these motors (i.e., Crowd power, Hoist power, and Swing power) varies

over time and the power profiles of the motors provide information about their ac-

tivities. We ran our method and Vahdatpour’s method using the same parameters

as done for the SmartCane data. Figure 8.5 shows one of the multivariate motifs

detected by our method involving all three motors. The temporal order of this mul-

tivariate motif is: Swing motif → Hoist motif → Crowd motif. Compared to the

result of MAD-I, Vahdatpour’s method detected a multivariate motif that consists

of only the Swing motif and the Crowd motif. We are currently in the process of

characterizing and interpreting the usefulness of such temporal associations found

in this data set.
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Chapter 9

Empirical Study On Frequent
Episode Discovery

In this section, we apply our methods to discover frequent episodes from neural

spike train data and compare them with the work of Patnaik et. al. [27], which is the

currently most effective method for temporal pattern discovery in spike train data.

Patnaik’s work uses a depth-first pattern growth algorithm to search for frequent

episodes whose time delays between event types are fixed, and it encodes temporal

associations between events from different sequences by using a dynamic Bayesian

network, where the conditional probabilities of a network node are learned based

on the frequencies of discovered frequent episodes. We verify the resulting frequent

episodes by comparing them with the ground truth.

We evaluate our methods and Patnaik’s method on synthetic data collected from

a mathematical model of spiking neurons [28], which simulates the interactions

among spiking neurons. In this model, each spike train (a sequence of spikes gen-

erated by a neuron) follows an inhomogeneous Poisson process whose firing rate is

computed by a function of the stimulus received by the neuron in the recent past.

This model allows for temporal associations with variable time delays of associated

spikes, which mimic the situation in conduction pathways of real neurons. We use

this model to assess the performance of a method in discovering several episodes

implanted into a group of synthetic data sets. Figure 9.1 illustrates these episodes,

where nodes denote spike trains and directed arcs represent temporal orders of fir-

ing spikes among trains. For each episode the values above the directed arc indicate
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the range of time delays between associated spikes in this temporal association.

Figure 9.1 (a) presents an example of a serial episode, where spike train 3 excites

two chains {6, 12} and {5, 10, 15}. Figure 9.1 (b) gives an example of a paral-

lel episode, where spike train 36 approximately synchronously excites three chains

{37, 42}, {38, 45} and {39, 40}. In these two episodes, the time delay between

two associated spikes follows a Gaussian distribution. In our experiments, we also

consider a fixed-delay episode, where the time delays between associated spikes of

distinct trains are fixed. Figure 9.1 (c) gives an example of this special episode,

in which spike train 63 excites three chains simultaneously while spike train 69 is

activated by trains 64, 65, and 66 together. Each of the generated synthetic data sets

consists of 100 spike trains (the spike trains, which are not involved in the implanted

episodes, fire independently). Table 9.1 lists the data sets used for our experiments.

The first column shows the name of a data set, the second column shows the length

of a data set (i.e., the number of time slices in the data sequence), the third column

presents the base firing rate λ̂0 of neurons used by the mathematical model for data

generation, the fourth column presents the activation probability ρ of a neuron (i.e.

the conditional probability that the neuron fires given its stimulus received in the

recent past). In order to generate these data sets, we set the parameters of the math-

ematical model to the same values as done by Patnaik et. al. [27]. We arrange these

data sets into three groups. In the A-group (A1 − A4), the data set length is 60000

ms, the activation probability ρ is set to 0.9 and the base firing rate λ̂0 is varied from

0.01 to 0.025. Similarly, in the B-group (B5 − B8), the activation probability ρ is

varied from 0.8 to 0.95 keeping everything else constant. Finally, in the C-group

(C9−C11), the data set length is varied from 60000 ms to 120000 ms. We measure

the performance of a method by using again the F-measure.

First, we summarize the performances of our methods and Patnaik’s method on

the data sets in the A-group. We created these data sets by changing the base firing

rate λ̂0 of neurons in the mathematical model. The larger value we assign to λ̂0, the

more spikes are generated on a train. Table 9.2 presents the result of MAD-I, Table

9.3 shows the result of MAD-II. From the experimental results we learn that our

methods successfully detected both serial and parallel episodes by achieving high
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Figure 9.1: Three Episodes Implanted into Synthetic Data Sets

F-measure scores in all of the data sets. Furthermore, our methods also worked

well in discovering the fixed-delay episode, especially in the cases where the base

firing rate was set to a relatively small value. The result in Table 9.4 indicates that:

although Patnaik’s method was very effective in finding the fixed-delay episode by

retrieving all of its occurrences from the data, this method detected nothing when

the time delay between two associated spikes in an episode follows a Gaussian

distribution. This is because of the following reason: to reduce the computational

complexity, Patnaik’s method only searches for fixed-delay episodes to construct

a dynamic Bayesian network, which can be used to encode temporal associations

among spike trains.

Second, we evaluate the competing methods by using the data sets in the B-

group. This time we created the data sets by varying the activation probability ρ

of a neuron in the mathematical model. The larger value we set to ρ, the more

occurrences of an episode are implanted into the data. Table 9.5 shows the result of

MAD-I, Table 9.6 presents the result of MAD-II. From these two tables we observe

that our methods successfully discovered these implanted episodes from the data.

We also applied Patnaik’s method on the same data sets and the result in Table 9.7

shows that it found neither serial nor parallel episodes.
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Table 9.1: Data Sets

Name Length (ms) Base Firing Rate λ̂0 Activation Probability ρ
A1 60000 0.01 0.9
A2 60000 0.015 0.9
A3 60000 0.02 0.9
A4 60000 0.025 0.9
B5 60000 0.02 0.8
B6 60000 0.02 0.85
B7 60000 0.02 0.9
B8 60000 0.02 0.95
C9 60000 0.02 0.9
C10 90000 0.02 0.9
C11 120000 0.02 0.9

Table 9.2: MAD-I: Implanted Episodes vs. Base Firing Rate λ̂0

XXXXXXXXXXXXXEpisode Types
λ̂0 0.01 0.015 0.02 0.025

Serial Episode 0.999 0.998 0.997 0.996
Parallel Episode 0.999 0.999 0.998 0.996
Fixed-delay Episode 1.0 1.0 0.999 0.998

Table 9.3: MAD-II: Implanted Episodes vs. Base Firing Rate λ̂0

XXXXXXXXXXXXXEpisode Types
λ̂0 0.01 0.015 0.02 0.025

Serial Episode 1.0 0.999 0.998 0.997
Parallel Episode 1.0 0.999 0.999 0.998
Fixed-delay Episode 1.0 1.0 0.999 0.998

Table 9.4: PAT: Implanted Episodes vs. Base Firing Rate λ̂0

XXXXXXXXXXXXXEpisode Types
λ̂0 0.01 0.015 0.02 0.025

Serial Episode 0.0 0.0 0.0 0.0
Parallel Episode 0.0 0.0 0.0 0.0
Fixed-delay Episode 1.0 1.0 1.0 1.0
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Table 9.5: MAD-I: Implanted Episodes vs. Activation Probability ρ

XXXXXXXXXXXXEpisode Types
ρ

0.8 0.85 0.9 0.95

Serial Episode 0.997 0.996 0.997 0.997
Parallel Episode 0.998 0.998 0.998 0.997
Fixed-delay Episode 1.0 1.0 0.999 0.999

Table 9.6: MAD-II: Implanted Episodes vs. Activation Probability ρ

XXXXXXXXXXXXEpisode Types
ρ

0.8 0.85 0.9 0.95

Serial Episode 0.999 0.999 0.998 0.998
Parallel Episode 1.0 1.0 0.999 0.998
Fixed-delay Episode 1.0 0.999 1.0 0.999

Table 9.7: PAT: Implanted Episodes vs. Activation Probability ρ

XXXXXXXXXXXXEpisode Types
ρ

0.8 0.85 0.9 0.95

Serial Episode 0.0 0.0 0.0 0.0
Parallel Episode 0.0 0.0 0.0 0.0
Fixed-delay Episode 1.0 1.0 1.0 1.0
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Table 9.8: MAD-I: Implanted Episodes vs. Data Set Length L

XXXXXXXXXXXXEpisode Types
L

60000 90000 120000

Serial Episode 0.998 0.998 0.997
Parallel Episode 0.999 0.998 0.999
Fixed-delay Episode 0.999 0.999 0.999

Table 9.9: MAD-II: Implanted Episodes vs. Data Set Length L

XXXXXXXXXXXXEpisode Types
L

60000 90000 120000

Serial Episode 0.999 0.998 0.998
Parallel Episode 0.999 0.999 0.999
Fixed-delay Episode 1.0 1.0 0.999

Finally, we evaluate the performances of these methods as the data set length

was varied. Table 9.8 presents the result of MAD-I, Table 9.9 presents the result of

MAD-II. The experimental results show that our methods worked constantly well

by achieving high scores in all of cases, indicating that the performances of our

methods are not affected by the data set length. The result from Table 9.8 shows

that Patnaik’s method still failed to detect either serial or parallel episodes.

Table 9.10: PAT: Implanted Episodes vs. Data Set Length L

XXXXXXXXXXXXEpisode Types
L

60000 90000 120000

Serial Episode 0.0 0.0 0.0
Parallel Episode 0.0 0.0 0.0
Fixed-delay Episode 1.0 1.0 1.0
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Chapter 10

Conclusion

10.1 Summary

In this thesis, we studied the problem of extracting temporal associations of events

from multiple event sequences. We presented a two-phase method, called Mul-

tivariate Association Discovery (MAD). In the first phase, we discover bivariate

associations from two event sequences by comparing the observed distribution of

the forward distances of their event occurrences with a theoretically derived null

distribution. A bivariate association is retrieved if there exists in the observed dis-

tribution a region with a statistically significant higher count of forward distances

than expected. Two approaches are proposed in this thesis to search for a statisti-

cally significant region. In the first approach, we estimate the observed distribution

by using the histogram of forward distances and applying an effective binning tech-

nique to learn a proper bin size for this histogram. A statistically significant region

is identified if there exists a bin whose frequency is statistically significant assum-

ing the expected null distribution. In the second approach, given that the temporal

distance between two associated events follows a Gaussian distribution, we esti-

mate the observed distribution by using a state-of-the-art kernel density estimation

technique. A theoretical distribution function is derived from the analysis of indi-

vidual distributions of three categories of temporal distances generated by events

of distinct sequences. We treat bivariate association discovery as a least squares

curve-fitting problem, where we adjust the parameters of the Gaussian components

in the theoretical function to optimally fit the curve of the observed distribution.
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A statistically significant region is found if there is a bell-shaped portion in the

observed distribution showing a statistically significant deviation from the expected

null distribution. In the second phase, we use a bivariate association graph to search

for multivariate associations with the requirement that their frequencies should also

be significant in a statistical sense.

To validate our method, we applied it to two different application domains.

Firstly, we used MAD to detect multivariate motifs from multivariate time series

data. Existing methods of multivariate motif discovery are all limited by assum-

ing explicitly or implicitly that the univariate elements of a multivariate motif oc-

cur completely or approximately synchronously. This assumption does not hold in

many real-world applications. We empirically compared MAD with the currently

most effective related work on both synthetic and real-world data sets. The exper-

imental results indicate that our method can not only discover synchronous motifs

as the other method does, but also successfully find non-synchronous multivariate

motifs. Secondly, we applied our method to detect frequent episodes from event

streams. An episode can be understood as a temporally partially ordered set of

event types. Current methods on frequent episode discovery are all limited by re-

quiring users to either provide possible lengths of frequent episodes or specify an

inter-event time constraint for every pair of successive event types in an episode,

which results in poor performance when users have little knowledge about the data.

We compared MAD with the most recent work on frequent episode discovery by

using simulated spike train data. The empirical results show that our method can

effectively detect episodes with variable lengths.

10.2 Future Work

Since there exist a substantial number of real applications where individual event

sequences do not follow a Poisson process, we are unable to use the properties of

a Poisson process to derive an expected null distribution of forward distances. In

the future research, we will investigate a general method that can detect bivariate

associations when event sequences do not follow Poisson processes. In addition,
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we can work on reducing the runtime of our method and further evaluating MAD

on real-world spike train data sets.
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