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ABSTRACT
A detailed study of extended structures in quantum ;ystems is
presented. This is first done by using perturbation theory where the

_quantal Hilbert space of such a system is constructed as the direct
product of a quantu; mechanical éea]ization of the quantum coordinate
and its canonicai conjugate, the tota] momentum, in the Schradinger
picyure and the Fock space of the physﬁcal‘particje fields. A
systematic scheme for perturbative_computation and renarmalijzation is
developed. .

' Then more generéi aspects of such systems are invgstigated in
the context of the asyhptotic condition. The algebra of the Poincare
group generators; together with the asymptotic condition, lead to the
form of the Hamiltonian. It is shown that the appearance of the quantum
coordinate, fhe asymptotic condition and the form of the Hamiltonian
are consistent with the requirement that the ?oincaré group generators
generate Poincare group transformations in the asymptotic region,

Finally, an app]icatioﬁ»of the boson method to quantum electro-
dynamics in solids is‘presented. There, the overall macroscopic
propertiés of the extended structure dominate observable phenomena.
Macroscopic equations which govern the macroscopic properties of the

system are derived. The rélation to linear response theory is explored

and the classical Maxwell equations are derived.
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CHAPTER 1

INTRODUCTION
i [}

In the past decade a substantial effort has been devoted to the
extension of the methodology of quantum field theory to the analysis
of systems with extended structure. Systems of this kind possess spa-
tially inhomogeneous ground states and are said to contain extended
'objects. These extended objects are embedded in the quantum system
and interact with the quanta. Their description in the context of
guantum field theory is an important problem in modern physics.

A chief ingredient in the study of extended objects is the fact
that many classical nonlinear field equations possess soliton solu-
tions.77 These Are either dynamically or topologically stable non-
trivial solutions of the non]iﬁear field equations. They are stable
undeF small time-dependent perturbations. It is of considerable in-
terest to study the role of these solutions in the corresponding

quantum fietd theory,’0+78-81

¢

In the study of elementary particles, the development of dual
mode]ssg'70 led to attempts to incorporate extended objects intq quan-
tum field theory. These efforts were fueled by the discovery of the
string,7] moﬁopo]e72 and 1'nstanton73 solutions in classical gauge
theories. However, the role played by extended objects at the level
of elementary particles is as yet not well understoqd.

In the studyjof condensed matter, quantum field theoretic
methods are directed at the analysis of systems consisting of large

numbers of interacting particles. The homogeneous ground states of many

4



of these systems exhibit a high degree of order. In quantum field

e

theory these ordered states find a natural description through the dy;'€4

namical rearrangement of symmetry which accompanies spontaneou§/§ymmetry

breakdown. 74575 Besides the homogeneous phases, m&nyrextend§§~65

may appear.76 Point defects, grain boundar1esdand d1s]€eé£30ns \*
crystals and vortex lines in superconductoré aﬁ;¢EQaMpﬁeS:Wqurther-
more, for given external fields, the macroscdp1;t%]ectroma§g§11c fields
and curregls in a solid may be regarded as extended structures. These

/

are all examples of extended systems which are embedded in and coexist
with quantum systems. The study of syégéﬁs.suéh as these requires
.the development of a consistent methodology for the analysis of extend-
ed objects in quantum field theory.

The mac}oscopfc properties of a quantuﬁ system are governed by
the dynamics of extended structures within the system. In general,
these dynamics involve the details of the interéction between extended
objects and the quanta of the system.

| One significant feature of{these systems is the appearance of
certain quantities of microscopic origin as basic observable. parameters
which govern the behavior of macroscapic extended systems. An example
is the conductivity of a metal which is defined as the ratio of macro-
scopic electric current to macroscopic electric field but is also a
quantity which is determined microscopically, through the current-
current correlation functions. This type of relationship is known in
Tinear response theory.27
On a finer scale, the position and overall shape of an extended
object may actually be quantum mechanieal quantities; that 1s, the fact

that the extended obJect is constructed from a large condensatlon of



quanta and is embedded in a quantum system means that the ob{ect itself
is a quantum mechanica1 quantity. When an extended object is small,
the quantum fluctuatinn of its position may be observat]e.“ When the
extended object is large, to a good approximation, it may behave V-
classically.

In the quantum field theoreticyaqg]ysis of exfended systems,
there are three important steps. The ;irsiris the derivation of
classical field equations which the quantities which characterize the
extended structure must satisfy. Then, there is the solution of\these
équations with given boundary conditions., Finally, itris necessary to
study the interaction between the extended system and the gquanta.

In the secopd step, the term bdundary condition is used in-a
general sense. It may mean the specification of the classical field
configurations at large space-or time-;ike¥distances from extendgd
objects in order to distinguish the topological c]éss of the solution.
In the study of condensed matter, it may also mean that, given Certain'
external fields, the free'energy of the system must be minimized.

Typically, in the case when eTementary boson fields are present,
a classical solution of the classical Eu]er‘equations corresponding to
the Heisenberg field equatio’ - is -2garded as a first approximatian
(the tree approxima;ion)qto the vacuum matrix elements of the boﬁon
fields in an expansion in Planck's constant, f (a 1oop expansion).
Quantum corrections to these quantities are to be acded perturbatively.
However, perturbat{;e ca]cu]atéonbimmediately encounters a technical
prqblém, the so-called "zero mode" problem. The Heisenberg field
equations for the boson fie]ds,'wheh linearized about;the classical

solutions, possess zero frequency eigensolutions, the "zero modes".8

1 2



Since they have zero eigenvalueb, the parts of the Green functions
‘corresponding to thé;é solutions are not well defi;ed and it is there-
fore difficult to integrate the inhOmoéeneous differential equations
of perturbation theory.  This reflects the fact that these zero modes
are not observed as excitation modes. Thé zero modes arise wﬁen the
classical solution is noninvariant under some symmetry traﬁs%ormations

thich leave the Heisenberg.field equations invariant. Though zero
modes are notvobserved as excitations, the quantum fluctuations assoc-
iaté&'with them can be obsérvdb1e. Therefore,’éEEﬁ'ihdépehdeht zero
mode which appears indicétes a qﬁéngdﬁ-mécﬁénicaf degree df freedom
of the extended object.

One method which has been proposed fof dealing with the zero
mode problem is the collective coordinate method.2]‘24182-87 This
method anticipates the appearance of the zero modes by performing.a
canonical transformation which e1gvates the symmetfy parameters which
'give rise to the zero modes to the statdg of qxnamica] variables. Thus,
the quantum mechanical degrees of freedom 6f the extended object appear
explicitly in an effective Lagrangian. The introduction of the para-
meters as dynamical degrees of freedom requires the {mposition of
certain constraints on the field operators. These constraints'can be
arranged in such a way as to eliminate the components of the fields
which are proportional to the:zero mode wavefunctiohs. Perturbati?e
calculation is then possible. This method has been used for the com-

, putation of quantum corrections to the ground state energy an§ soliton-
soliton scattering in some model quantum field theories.g].94
However, the collective coordinate method, while providing a

- useful computational tool, has a major shortcoming in that it leaves



‘Lthe prdperties of the quantum states obscure. TMee are many phenomena,
such as’physical particle-extended object scattering and particle-

particie reactions in the presence of an extended object, whose analysis
' reqUires know]edge of the physical Hilbert space. In order to construct

the physzca] Hilbert space it is necessary to work in the operator

- . ‘forma11sm of quantum field theory.

A systemat1c method for describing extended systems has been
investigated within the orthodox formalism of quantum field theory. 1In
this method (the bostn method), 28,37,88,89 extended objects are created
.by a bqson condensat1on process The Heisenberg equation is first solved
for the case of a, spat1a1]y homogeneous ground state. Then certain

‘

extended obJects are created in this system by means of the boson trans-

’_format1on wh1ch is the mathematical expression of a boson condensation.

¢ u

fIt has . been shown that, in the tree approximation, the boson trans-
format1on 1eads to the correspond1ng classical field equation and their
so;1ton so]ut1ons.7 |

R Consider a quantum field theory consisting of a set of

Heisenberg - f1elds {w } sat1sfy1ng the He1senberg field equat1ons
& ( 3)v; ) i F, el ~ S (1

_ Suppose that th1s quantum f1e1d theory is cons1stent1y rea]1zed in a

“Fbck space of the phys1ca1 f1e1ds {p (x), ‘FK(X)} which sat1sfy the

e

A :
equat1ons . D

A(3)02(x) =0 , 3)P2(x) = (1.2)
7"’_}' ~
and p are boson fields and <p are fermions, Furthermore, it is

assumed thaf the field equatwons 1n (1.1) and (1.2) exhibit space and

time- -translational 1nvar1ance; that is, that this realization

5
j\'

N
S



represents a homogeneous phase of the quantum system. A solution of
" this quantum field theory is given when all matrix elements of the

Heisenberg fields in the Fock space of the physical fields are given.
This information is expressed compactly in an expression known as fhe

dynamical map:

a0 =l eg, 91 L (1.3)

d The boson transformation 'theorem89 states that the Heisenberg

fields

W0 = wilxs 0+ FL 901 o (.a)

satisfies the field equation

A (w00 = FL 0wl (x)] | S (1.5)

when fa(x) are c-number functions satisfying
Aa(a)fa(x) =0 . . (1.6)
The operator translation

0 0
Pu(x) > p (x) + f_(x) (.7
N _
is called the boson transforration. It corresponds to a condensation

of the boson, pg(x). The Heisentery fields, w?(x), describe the
quantum system with extended structure.’

‘The vacuum expectation values of w?(x) in-the‘Fock space of
| fpg(X), Q’g(x)} are called the order parameters. They are sums of all
| possible conhections, through the many-point Green functions, of the
Heisenbeng fields wi(x) with the classical functions, fa(x).  In the .

approximation where only the quantum tree graphs contribute to the

Green functioné, this classical field obeys the classical Euler
5



equation. Thus, different choices of fa(x) lead, in the tree approx-
imation, to different solutions of the c]aséica] field equations.

In general the function fd(x) need not be Fourier transformable
" but may carry certain singu]arities.gO’Q] In fact for a relativistic
theory, if fa(x) are static, they must necessarily have.either topo-
lTogical or divergent sinqularities (for further reference see refer-
ence 91).

The physical fields p and <f are modified by their
interaction with the extended obJects. In the presence of extended
objects, the physicé] fields are, in fact, complicated functionals of
the boson transformatfon functions fa(x). They consist of infinite
summations of the fields pg(x)-and (Pg(x) interacting through the many-
point Gréen functions with the classical fields fa(x). In general,
besides scatfering'states, there appear bound states of the particles
to the extended object aﬁd also quantum mechanical modes associated
with the translation of the system. The latter mode is known as fﬁe
.quantum coordinate. Its appearance is a natura]lresu]t of the_canon-
ical commutation relations of the Heisenberg fields.3 Quantum\coor-
dinates are the quantum mechanica] degrees of freedom corresponding to
the zero modgs, 7

The quanté])Hi]bert space of the system with extended structﬁre
is therefore different from the Fock space of the fields {p (x), ? (x)}
An exploration of the structure of the physical Hilbert space and some
features of the solution of the quantum field theory within this Hilbert
space is the subject of the next three chapters. For simplicity, these

chépters will examine a relativistic one-component boson model in 1+1-~

dimensions. In this model there is only one quantum coordinate, that

J



corresponding to translations.

In chaptéF I1, perturbation theo is used to calculate the
first few terms of the dynamical map in Stree approximation. The
quantum coordinate always appears in the combination x-Q with the
spatial coordinate x. The total momentum acté as the canonical con-
Jugate of the quantum cobrdinate. The dynamica] map is used to cal-
éu]ate the Hamiltonian and total momentum of the system. Then the
canonical commutation relations are used in order to determine the
commutation relations betweeﬁ'the physical partic]e fields and the
quantum coordinate. It is found that the quantum coordinate can be
specified without interference frbm the.physical particles at one pa?t-
icular time. This necessitates the use of the Schradinger picture in
its quantization. The Hilbert space of the system is constructed as
the direct product of the quantum mechanical realization of the quantum
- coordinate and its canonical conjugate, the total momentum, in the
Schrod1nger p1cture and- the Fock-1ike representation of the physical
particle f1e1ds. )

In chapter III, this scheme is generalized to include quantum
corrections.v The cdmputational scheme is outlined and an example of
one-loop renormalization is given.

‘ In chapter IV, an outllne of the formulation of quantum field
theory in terms of the asymptot1c condition is g1ven The existence
of the quantum coordinate is an important ingredient in the definition
of the asymptotic region. The appearance of the total momentum and the
‘quantum coordinate in the generators of the Poincare group is ana]yééd.
This leads to the form of the asymptotic Hémi]tonian. Then it is shown

that the asymptotic condition, the asymptotic Hamiltonian and the

-



Poincare algebra are consistent. This comp]etes.the detailed study of
the dynamics of extended objects.{ Eventually the methods developed
here must be generalized to more complicated and more realistic
systems. |

In chapter V, the boson method is used to study the macroscop1c
e]ectromagnet1c properties of solids. First a detailed picture of non-
relativistic quantum electrodynamics for such systems is presented.
Then macroscopic eq:giions which govern the "classical" behavior of
extended systems and macroscopic Maxwell equations are derived. In
th1s ana]ys1s, 1nteract1ons between extended structures and quanta are

ignored. Various observable paramaters, such as the dielectric con-

stant and electric conductivity are identified.



CHAPTER I1

A PERTURBATIVE LOOK AT EXTENDED OBJECT'DYNAMICS I:

THE TREE_APPROXIMATION

In order to get an intuitivé fee{ing for the structure of a
quantum field theory with an extended object it is useful to explore
the theory by perturbative calculation. Of particular importance is a
careful evaluation of the role of quantum coordinafes. In this chapter,
the consideration is limited to an extended object which is assumed to
be a topological soliton in a 1+1-dimensional space-time._ There, the
only quantum coordinate which appears is Q, correspohdfng to spatia]
t;anslations. The goal of this work is to derfve certain ba§ic general
properties of the quantum system with an extended object which should

I

survive in other more general theories. ‘ : .,

At first, only the tree approximation is considered. The ’
prob]em‘of inserting the quantum corrections will be discussed once the
: strdcture of the tree approximation is well understood.

At the outset, an important question is whether the quantum
coordinate Q(t) and the free physical fields in the presence of an
extended object can be‘choS?n as indebendent dynamical variables at all
times. The quantal Hilbert ;pace of the system must be chosen as a
direct product of the Fock-like space of the physical particles and
some quantum-mechanical rea]izatfon of the quantum coordinate and.its
canonical conjugate, the canonical momentum in a representation where

the two subspaces are independent.

10 o !
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An analysis of the structure of quantum field theory with
extended objects Qsing the Poincaré group2 has indicated that the
quantum coordinate, Q(t), is indeed not independent of the phys1ca]
particle creation and ann1h11at1on operators at all times.

Briefly speaking, the commutation relations and the Heisenberg
equations of the quantum field theory lead to the conservation of the
generators of space-time transformations as well as their algebra. In
the presence of én extended object, Poincaré symmetry is not manifest,

It must be recovered through the presence of the quantum coordinate,

Q, and its time derivatives. This fact provides much information on
the way in which the quantum coordinate must appear in the Heisenberg
fields. In this context, the concept of "c-q transmutation" was intro-
“duced: the dynamics together with the canonical formalism require the
presence of certain combinations of the quantum mechanical operators
and the space-time coordinates.

For the case of a relativistic scalar field in a 1+1-dimensional

space-time, reference 2 arrived at the following form the the Hamiltonian

He =" +/1-¢2 ﬁo+.... (2.1)
/1-Q

where H is the free Ham11ton1an of the physical fields and Q is the

time der1vat1ve of Q:

fa, H] = iQ . (2.2)
This resutlt iﬁdigated that the operator Q(t) was not independent of
the physical fields at all times.

The root of this comp]ication lies in the fact that the wave-

functions of the physical particles take into account the dynamics of.
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the interaction between the physical particles and the extended object
through the self-consistent potentia]3 but the possibility that the
extended object may recoil is not considered (the position of the self-
consistent potential is fixed). However, if the underlying dynamics
have translational symmetry, the recoil of the object under scattering
by a quantum particle must be recovered. The mechanism for this re-
covery of the kinematics is the appearance of fhe quantum coordinate.

The free Hamiltonian of the physical particles, ﬁo,‘generates
the time evolution due to interactions between the particles and the
extended object assuming that the extended object does not recoil. As
the time evo]ution proceeds, howgver, momentum is transferred to the
extended objeét. Thié requires terms in the full Hamiltonian which
mix é and ﬁo. The fact that this effect is kinematical is the reaéonu\‘
er its appearance through an analysis of the Poincare syﬁmetry.

In the following, the method of perturbation theory is used to
explore this structure. Much of what is said here can be. found in
reference 4. |

The coupled differential equations of the perturbative scheme
have been derived in reférence 1. They must be integrated in a way
which respects certain boundary condiEions and then solved by iteration.

However this pruffﬁure immediately encounters a technical com-
p]iéafion known as the "ze - :-de" prob]em.av Because of the overall
translational invariance of = theory the homogeneous equation has a
discrete solution with zero “reciisncy which corresponds to translations
of the extended object. Tris solurt 2n is called the "zéro mode" or

"translation mode" and the quantum méchanical opera-or corresponding

to it is the quantﬁm.coordinate. The part of the Green function

»
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|

corresponding to the translation mode is not well defined and the
pertyrbative equations can only be integrated direct]} for components
orthogonal to this solution. It will be shown that the components of'
the perturbative equations which are proportional to the translation
mode can be determined to within the addition of solutions of fhe homo-
geneous equatian. Any solutions-of the homogeneous equation which may
be added when integrating the perturbative equations must be determined
from tﬁe boundary conditions,

It is, however, not obvious from the outset what boundary con-
ditions are compatible wfth the canonical commutation relations. It
was shown in reference 3 that the presence of tHe quantum coordinate
is required by the commutation relations. It is shown in appendix A
that, if é==0, iteration of the perturbative equations leads to Q
appearfng everywhere in the combination x -Q with the explicit spatial
variable x. . Therefore, it seems reasonable to impose boundary condi-
tions wh1ch Jead to Q always appearing in the combination x - Q even
when fo\ K

“ }h1s spec1f1es the way in which Q and Q must appear. All other

boundary conditions are then determined by requ1r1ng consistency with

the canon1ca1 commutation relation.

1. THE DYNAMICAL MAP

Consider a one-combonent boson field in (1+1)-dimensions

satisfying the Heisenberg field equation ’
a2 2 ) , .
(3% + m™)w(x) = Fly(x)] . - (2.3).

It is assumed that this equation, together with the equal-time

ome

13
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commutation relation

(b0 401 o = 16(x-) : (2.4)
. X“=y
can be realized in the Fock Space of a single free boson field fo (x)

which satisfies the field equation
’)

(32 + )0y (x) = 0 : (2.5)
Then the boson transformation po(x) -+ po(x) + f(x) leads to the field
equation

(3" + m2)f(x) = FLyfix)] : (2.6)

The following is a Study of the solutions of this equation in the tree
approximation,

The vacuum expectation value of wf(x) in the Fock space of
fo (x) is ca]]ed the order parameter. * It is ‘the sum of all connections
through the many-point Green's funct1ons of the Heisenberg field w(x) i)
with the c]ass1ca] function f(x). For purposes which will be clear
later, the order parameter will be denoted by w_ ( ). One can obtaijn
the n-particle term in the dynamical map of ¢ (x) by removing.n of/the
functions f(x) from the order parameter and rep]ac1ng them w1th a normal

 product of n of the physical fields Po (x):
‘Pn_](x) = dfw-]<x) : . ’ ) (2-7)
where

8¢ = fdzyp (y) —6-(- - | | (2.8)

It is useful to consider a power count1ng parameter X\. Then

W)= 7 oan v, SO (2.9)

n—-.
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In the tree approximation, the order parameter satisfies the

equation
2, 2 _ | ’
(3° +m )w_](x) = F[w_](x)] . (2']0)
Equation (2.6) leads to

(6% + )y, (x) = 671 FLy_, (0] (2.11)

or

(52 + n?)

b (x) = § z%—FQ[w_](x>Jwa;(x)...w (x) (2.12)

%

where a]+...+a2 + L =n+1; a],...,a2 2 0 and

9" Fly_ ()]
Folo_q(x)] = = . (2.13) |
3 y_q(x) J | <

The right hand side off;;:;:;;n (2.12) contains a term which is linear
in wn(x). When this term is subtracted from each side of the ‘equation, .
the right hand side contains componeg}s of order strictly less than n.

2

2 e 1 :
GF = Al (00 400 = £ R0y (0, (0.0, (0(2.18)

v. where 222, n=0.  Equation (2.14) fs supplemented by Ehe classical
field equation (2.10), '

It is assumed that w_](k) behaves as x +~ t« in such a way that
'.F1[w_](x)] + 0 and w:](x) + 0 faéter than any po]ynoﬁﬁa]. He also
assume that w_](x) is static.

The quantum field wo(x) satisfies the linear homogeneous

equation . /
. 2 2 _ .
{3° +m® - Frlv 1 ()1l (x) = 0 (2.15)
. % '

possessing the well-known solution N



9 ’

Yolx) = - Q l11_'](x) + ‘;o(") (2.16)

where the prime denotes differentiation by the spatial coordinate.

The dperator Q is the quantum coordinate and wo(x) is written as

~ ( ; ! () -iwit *( ) ‘iw].t ¥
v (x) = {u,(x)e a. + u.{x)e a.}
0 ‘i /2:)-]- k] 1 1 A
-iw, t iw, t
. f dk {uk(x)e k o, + u:(x)e k aI } (2.17)
vyer »/Zwk
v

where ui(x), w; and uk(x), wy are the bound state -and scattering state
wavefunctions and eigenfrequencies respectively of equation (2.15).

. ]
Note that Q depends on time, t. The function w_](x) is commonly re-

ferred to as the zero mode or translation mode wavefunction.

Definition: ;(x) = y(x) when Q = 6'5 0.

The field y(x) obviously satisfies the same fie]d equation as
¥(x). In appendix A, it is shown that when Q and all higher time der-

ivatives are zero,

wix, t) = p(x - AQ, t) | (2.18)

Since the translation mode wavefunction is orthogonal to the

wavefunctions of the quantum states associated with wo(x), it follows

‘that

Fan)
"

- [ 00 w00 (2.19)

where

=
1]

- Jox o100 ' 0 (2.20)

16
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Since w_](x) is time-debendent, equation (2.16) leads to

Q= - g Jax v 00 Gy (x)

wh%ch, combined with equation (2.9) ‘gives
- ' 2 2
Q=-x5 fdx v_y(x){ 2 v )T vy (x)

]

Joxtu ]y 00wt - 67300 v (0}

X|—

Q=0 . . (2.21)

The remaining task is to determine how the presence of Q modi-
fies equation (2.18). A solution of this problem has already been
given in references 1 and 2. There it was shown that the effect of Q

is taken into account by the replacements

toT=A-Ct-8_ (x-q | - ‘
A-F T
- o O (2.22)
x> X = —! (x - Q)

or

W(x, t) = p(x, T) : | (2.23)

Here, X and T are called the generalized coordinates.

The following is devoted to a further exploration of the per-
turbative development of equation (2.23). “

Consider the field eqdations corresponding to the first féw
orders of equation (2.14): |

{f.‘“mz-ﬂ[w_1(x)]} () = Foly_ (0] ¥E(x) /2! (2.24)
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@ + 0 - Fy Ly (D) = Byl (01 8 /31

Rl (0T 00 b0 . (2.25)

The solution of these eqhatiogs\must be consistent with the

replacement x +x - Q. Substitution of equation (2.16) into (2.24) leads

to

{32 + m2

- FyL_ () 13y (x -QT Folu_ (0] v,

"0 Ryl 001 8 (R () + ol (0] 5§<x)/zz

2 ; | ] n “ » ~ I
= Fr v, (01" - Filvs 00T w1601 = U(Fy Tv_; ()] v, (x))

~1

- FLo (0T w03 + 088+ n? - F Ty (013 4y (x)

2 ‘ " ‘ ' ~1

-%T (3% + n” - Frlw_ ()1} w_q(x) - Q (2% + m - Filv_y (x)13 wy(x)

+ (3% 4 m? - #1[w_](x)]} ;](x) e . . p
. | - R

= 0%+ al - Rl 00 (e 00 - el (x) + 4 (0

O R R ) N | - (2.26)

 Using the relations

GF e n? - Bl (01 ) () = - 29 (x) (2.27)

and \

3 : ~ ~

(3% + m? - F][¢_J(x)]}x?o(x) = -2 y,(x) (2.28) '
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: . D
equation (2.26) can be written as ‘
13+ m® - FLu (01 vy(0) = (0% + - F Ly, M{%w

A

éz . ~ . = ~
+ 21 X w_](x) - Q WO(X) - QX lpo(x) + ‘P!(X)}
and therefore

02 & o~ Lo
U (x) = Fr () + w00 - Qv () - Ox v (x)
+ 4, (x) | , - (2.29)

where the possible contribution of a so)]ution of the linear homogeneous
equation is ignored. ’ , .
Now, consider (2.25). A series of manipulations simi]af,to

EY

those used in deriving equation (2.26) leads to

’ l 3w
8+ n® - Flu (01 vy(0) = (0% +nf - Filu (0D 1= 3 ()

.2 i

1] 2 ~n . .. ':l '.2 ~7 . o ‘\..\
- @3 x 300+ Frug(0 + 00x o0 + Fr xv, ()
- : , ’
QU (x) - X () + 0} - W) L. - (2.30)
Usé‘of the identities | i _' <

7+ n® = L (01 2 40 = 8 B0 = 2 9,(x) (2.31)
and |
GE et = Rl 00D a0 = 2 90

leads to



3 m .2 n 2 ~n
) = - Fre 0 - e w0+ $rvt

Z, 2 ., 2,z
*+Q0x v, (x) + -8,— X Y (x) + 8—. x ¥y (x)

¥ %T t ;o(x) - Ox l;](X) SN+l (2.33)

where the contribution from a solution of the']inear homogeneous equa-

tion is ignored. However, equation (2.33) does not satisfy

3% 1100 = - &) . \ (2.34)

as is required by the rep]apement X+X=-AQ. The difference appears

through the.explicit x-dependence of w](x):
b == 2000+ Ly 00 6 v () © (2.35)
2T T Y 21 Yo X o y :
This difference'must be remedied by introducing'into‘wz(x) appropriafe
¢ terms which satisfy the Tinear homogeﬁeou& field equation The first
term on the right- hand side of equat1on (2. 35) can’be compensatedﬂsr
adding < Q Q /2' w ( ) to wz( X).’ The second term can be compensated

by adding - (o-ot)o wo(x).
Then equation (2.33) becomes
" 3 m A "o ) AR
bptx) = - vl 0 - Frx ' 0 - g Brvq(x)

N

Y -
+ %r x Yo (x) - %r U (x) =y (x) - Q v, (x)

+ iz(xl o —_— ?: | (2.36)

" 20



The dynamical map is

8100 = Wy () = Q4 (x) + u () + 9y (x) * py(x) + e (2.37)
The solution determined here is consistent with a power series
expansion of equations (2.22) and (2.23): wf(k, t) = wf(x, T) .

2. THE CANONICAL MOMENTUM

Consider the quantity
i Fooy o f! |
Py = - o ifoowf'0 L (2.38)
The field equation (2.6) leads to the conservation law

PA =0 . ' (2.39)

and the equal-time commutation re]aﬁfon (2.4) leads to

¢

P =19 (2.40)

and

Py i T =) 0 . @

Thus, PA generatéé spatial transl:cions and can be identified with -the
canonical momentum. Since x and Q appear only in tﬁe_combination x -~Q
a conditian which. is sufficient to yield equations (2.40) and (2.41) is
that z

[0, P, = i/2 | | - (2.02)
and

[Wo(x)s PyT = Dyp(x)s T =0 (2.43)
Combining equétions (2.9) and (2.38) leads to -

Py = = [ax 119000 w00} B

-~

21



where k + £ = n; k2 0; 2 2 -1. The first few orders of equat?on (2.44)

are
A fdx R I (2.45)
Ry [z G 0000 + (0w (x)) (2.4
Py e o 000 00 ¢ 00RO iRt L (2.a7)

Direct substitution of equations (2.16), (2.29) and (2.36) into equa-
tions (2.45), (2.46) and (2.47) leads to (see reference 4)

Py=M | : o (2.48)
P, = P, | - S (2.49)
JM3Lay e

Pp=y Qg H P, (2.50)
where

Py =Py With Q=0=0 “ (2.51)
and

%L%fM{&uﬁ(n-i(uEun » . (2.52)

The quant1t1es P are 1nt1mate1y related to the fields w (x)

which obey the field equat1ons

*

@ + 0’ < R0 v cxg

TR (0] wa](x)...iaz(x> 25

where agte.ta, + L =0+ 1, 020, a75...50, 2 0. Becagse the gper-
ator on the left hand side of the equation (2.53) has a zero eigen-

: } |
value corresponding to the eijenfunction w_](x), this equation cannot

be~intégrateg directly. However, if

22



by(x) = @ (D). (x) + $n<x) | (2.54)
where

fax v/ 1) w030 = o . (2.55)
and

a1 (8) = g [0x 41400 9,000 )

equation (2.53) can be integrated for wn(x) using the Green function

~ : f d iu(x%-y°) . us(x)u;(y)

~

g(x, .Y) = ?}'e 2 V]
i (1)1. - W
*
U (x)u (y) '
+ J%%: —jér——J%;—- } . (2.57)
LW - w "

Then, equﬁ%%ons (2.53) and (2.56) lead to

-~ ~

() = [ax 00 T Flu 001 0, 0.y () (2.58)

"
% 2

n-1
-] ’ ] ' ~ S~ . o~
e e T gy P [ (0] Vo (00 (0 (0(2.59)
where &]+...+az + 8 =n+ 1;'a1,..[,ocR > 0; 2 2 2. Usihglequation

(2.12) in equation (2.59) leads to

RO F L RO L (eo)
or
&n_](t) = - ,]4— de-Z Jzk(X)t;,L"(X) + én_] o ‘(2.61)\

where k + £ = g - 1, k, 2 2 0 and

g =0 : | (2.62)

23
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Now, consider the cases n =1 and n = 2 or equation (2.61).

(%)
—
o+
~—

i

o't T - %-fdx wO(X)J;(x) + éo' o (2.63)

Qe
—
—~~ .
-+
~—
it

X 0 w00 s B L (e
Using the identity

(% + 2 - Fly (0T} xp (x) = - 23 (x) ' (2.65)

R LA } Xy, Yo ’ ' "

equation (2.63) can be written as

Go(t) = 5% g [0 LUy 00y 0) = (03,00 + 6. (2.66)

3t
or
ao(t) ; ?L-fdxx {w (x w (x) - io(x);o(x)} * By - (2.67)
S1m11ar]y,.us1nq the identity - - N
Pl Rl (01 x J](x> = x 2p Folu_ ()1 32(x) \
-1 21 0

-2 @{(X)” o (2.68)

"and equation (2.65), eqdation (2.64) can be written as

gt = g [ax{ x _{J» (k)t;](x) - 24 (09, (0)

Y x)w](x)} 3w(x)w1(X)}+81 o (2.69)

The quantities B must be constructed from the operators {a s a+, O s -
) k} defined in equation (2. 17). The choice of Bn depends on the choice \&_,\¥
of boundary conditions. Equation (2.62) leads to

(3% + - Fily (0138, v.,(x) = 0 - (@.70)



\that is, B w (x) is a solution of the homogeneous free field equation.
Therefore, B w (x) appears in w (x) in the same way as any solution
of the homogeneous free field equat1on’WhtCh may‘be added when integra-
ting eouatﬁon (2.53). ‘Ih this way, all ambiguities arising from the
presence of the so-called “zero mode" have been reduced to the choice
of boundary conditions. These boundary conditions must be chosen in a
way which is cons1stent w1th the so]ut1on that we are seek1ng This
solution corresponds to an express1on for the He1senberg field y (x)
in.terms of the physical fields w (x) and ‘the operators Q and P such
that the commutation relations between members of the set {Q, P, w (x),
w (x)} lead to the canon1ca1 comutation re]at1on (2.4).

The on]y commutat1on relations between members of the set . .
{Q, p, wo(x) w (x)} wh1ch have so far been specified are those 1n
equations;(z 42) and (2 43). -Physical considerations dictate one more
requirement. The states of the system corresponding to w (x) should be

partic]e-like That is, it is required that

t1 Tl ' -
| [a,i, ajﬂ\— Gij ; [ak,. az] = 8(k - 2) .. B}

and - o : S (2.71)
[ai,~aj] =0 ' [ak, az] =0 . . ‘ 'y

Equat1ons (2. ), (2. 17) and the comp]eteness of the set of funct1ons

L

'{w (X);'u (x), uk(x)} lead to

0

Iy, (x) w(m =1 G8(x-y) - o, 00 W)Y (2.72)
y S

-and ' ' ' .



[0 W] g = () 51 5 =0 . (273

Using the 1inear homogeneous field equation (2.15) it is possible to

“show that

HO =0 : ‘ (2.74)

~

where H0 is given in equation (2.52). This fact, together with equa-

tions (2.72) and (2.73) leads to

-

D0, H 1= 0 (@)
and
t@o(X), ﬁo] =1 io(x) : : o (2.76)

Thus, H  generates the time translationhs of the fields wo(x) and wo(x).

Equation (2.51) Tleads to .

Po = [0 T B0 900 + 0 () v (0) (2.77)
. m—._n
k,m 0
which, using equatiéns (2.56);and (2.61) feduces to

Pp=-MB e S (2.78)
"This shows that the appearance of Pn is directly related to/;ﬁg\BgUnd-
ary conditions. ‘ |

We have now determined the canonical momentum to first order as

=1 M ; Mod v n - 3 M3 :
P)\-)‘.MQ-MBO+A2-Q,_+AQHO->\MB]+..._. (2:79)

»

26
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3. THE HAMILTONIAN

Now, consider the quantify

H=IM{%@Qxﬁ+%wf%M24%m%fUﬁ

+ v[wf(x)] } , - | | ‘ (2.80)

where V[wf(x)] is‘a Tocal function of wf(x) such that

V][wf(g)] = - F[wf(X)]. - o (2.81)
aed V[@_{(x)] >0 as x >+ o, Using the Heisenberg field equation (5;?)
it is possible to show that ' W
fie o | . (2.82)
Then, using the comutation fe]ation (2;4)-1eags to
[0F00, W1 = 9f 0 . (2.83)
oo (e |

and H is the canonical Hamiltonian.
Hhen the power counting parameter is ineluded, equation (2.80)

becomes ,

fdx {E-wk(x) 2 wx (x) + %sz w{( )2

‘ , . o
: VIae(x)1} . . (2.85) ‘
The 1nteract1on term V[Awf(x)], can be expanded about the

classical f1e1d w ](x) to get

e,
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Hy = o T 0] 9000 + Fup(xunx) + 3 0 g (x4, ()]

ar Rl (0T by (b, () " (2286)

m

where k +m = n in the first summation and a +...ta_+m=n + 1;

Gyseentt 2 0 in second summation. Equation (2.86) together with equa-

S

o

tions (2.10), (2.15), (2.20), (2.24) and (2.25) Tead to

H_'2 =M | ) ' i - (2:8;
Hq =0 ~ ' , (2.88)
o = [0 (3 900000 - Tug g3 (2.89)

i = o L3, 09 00 = g (0 (0

- 2y (x)uy () 29

Hy = [ax Chp000do00) = § ¥yl (x)

]
BHlw

Uy (x50 + % g (x)y (x)

-

w](xyi](x)}.\ : | © (.01

N =~

These quantities may be calculated by direct substitution of equations
(2.16), (2.29) and (2.38) (see reference 4). The result is |
N R R R 2,3 -4
| HA = ;§-+ §-MQ -+ H0 - AQ Bo + A {§-MQ
L S AP C (2.92)
2 0 ]2 LR .. .

When Q and P gre chosen as independent dynamical variables, 6
;e

is a dependent viriable and may be determined from inversion of equation



(2.79).

where P =

29

~

-

o>

5 ~ ' »
+;7Ho_81}+"" : (2.93)

wlw

=X

AP.

Combining equations (2.92) and (2.93) leads to

v

2- 4

M 2 pZ 1 4p 5 1 .2 p2 >
= — {1.+ 2 + = A b+ T - 5 A I H
gt - g B
) .2
+>\2{H -M——é— e (2.94)

By substituting eqdations (2.93) into equations (2.16), (2:29)

and (2.36) equation (2.37) may be wri?ﬁ;n as -

by

() = 39 () + 1= Qw00 + g (x))

’ 2 u 52 1 ~t b ~
PG vl 00 + 2—],'%X ROERRNOELPENEY
3 1, PE 1P
+(p]( )}+>\ {‘3,IIJ (x)'m‘QFX‘p_]<x)'§TQFw_](X)
; T
i By XV_1(X).+ 31w (x) +5 x w, (x) 9 VX
2 52 < 52 2
+%M%x () +-;-x2§gwo(x> --;—tf}z Uo(X) - xB, v ) (0
e xFu ) - Qi (x) ¢ b3 ¥ L  (2.95)
0+ w001 + 0 F ] 0



+ —M%ﬁo bq(x) = By (x) + QB (x) + L 4 (x)

~ M2 0 0
52 5z YRR
e Sy () + By () + 13 7 o(x) .
v "2 2 o
rg Xl w0 - 77 Vo) - 7t ()

(2.96)

Where ni(x) = &I(x).
Equations (2.94), (2.95) and (2.96) together must satisfy

o _
° '

N PR |
im(x) = [¥,(x), H,] (2.97)
Equation (2.97) leads to the conditions
. B, = B = Hy, = 0 (2.98) -
and
(@, H,1 =0 (2.99)

] Combining' equations (2.93) and (2.94) leads to

30



iQ- [O;IH]-“ | ) - Lo (2.100)

The time derivative of Q is generaféd by the full Hamiltopian.

The operators given in equations (2.95) and (2.96) must sat{sfy
“the eqda] time commutation relations. In the next section the commuta-
tioq relations will be ca1cu1a}ed‘perturbétive1y in order to argjve at
some further condi?fons on commutation relations within the operatot

~

set {Q, P, &o(x), wo(x)} and alsd_to determine B and B.

4. THE CANONICAL COMMUTATION RELATIONS
. The canonical equal time commutation relation
f 1 ~ \ . - . J . .
[0 (0, 11, o= 18x=-y) - ' (2.101)
X°=y A . ‘ .
will now be used to deriye more information about the commutation rel-

ations between members of the set {Q, P, wo(x), wo(x)}ﬂ If wf(x) and

nf(x) are written according to equations (2.95) and (2.96) as

u

Wf(x)

.

nf() =m0+ am G0+ AP0 T (2.103)

equation {2.101) leads to.

1t

(0, 1], = 1 8bc-y) (2.0

e

Lo (x)s 1y ()1 * Doy (<), mo(9)]y By (x), 7o)y = 0

(2.105)

Lo (1), 1] + Dy ()0 100y + Do)y 1]y, =

%¢_1(X) + 9, (x) ;'Aw](X) + Azwz(x) + o | (é.102)‘.

31

<t

<3



/ a | e
| o P _

o R , [

U0 O+ (0, 10Ty Bl o0,

=0 o . | . (2.106)

. b .
where all commutators are at equal times.

The subscripts on the cormutators in equations (2.104-106) de-
note the order in A of the commutator which must be considered. Equa- -

tions: (2.42), (2.43), (2.72) and (2.104) lead. to

[Q w,(x)], =0~ o o (2aom)
. ’ » Y ‘ ; N :
Equation (2.105) then requires the conditions (see reference 5) .

' [y (x)s 7w (¥)]y =0 o ~ (2.708)
and‘
~ . < ' 7 “ . .
(855 wy(x)] = [B» wo(x)];= 0. . o (@a09)
Equation (2.109) together with the fact that BB must be con-~ - o
structed from operators of the set {a s aT; ak, a+} means that 8 a. S~

v

c-number which we choose as zero. \Bquat1on (2.108) means that

“A

[y (x)s m (N + Tuq(x), m ()] =0 (2.110)

. : s
- in equation (2.106). The reason for this is that w](x) and n](y) are
constructed from operators of the set {Q, P, u (x)» ¥, (x)} which have
no commutators of order A. Then equation (2.106) leads. to (see ref-

erence 5) .

(8,5 w (x}] = [81. ; x)] = 0 C an). L

" and
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[ 4 5, (071 = 2 ;2 N I T | (2.112)

°

By the same argument as that following equation (2.109), equation

(2.111) implies that
B'l = 0 ! N ) ) ‘ (2.]]3)

Equations (2.75) and (2.93) lead to

.~ 52 L ‘
[0 ¥, (x)] = 1A 7 () o (2.114)

which, together with equation (2.112) and the factethat wo(x) satisfies

E 1
the homogeneous field quation”and is orthogonal to w_](x) leads to

[0, ¥, ()] = i M%JJ() . | (2.118)
From the above results, the set of physical operators {p, Q, w (x),
w (x)} obey the algebra 2
[Q, P = i _ ) T ¢ (2.116)
- N RO
Lo, ()5 ¥ ()] 5 o = 1 {8(x-y) - ==} (2.117)
X =y A ‘
U R S
[Q(t)"wP(X)]t=x° = A%t 7z Vo (x)- + ... (2.n8)
[a(t), J’°("”'t=x° i R O RN R DN

 where afl other equal time commutation relations.vanish.

If the SchrSdinger pictﬁre operator q is defined by
Q) =eMtqetogig . (2.120)

equations (2.114) and (2.118) lead to



[q, ¥ (x)]-[q, (x)] L (2a21)

for ajl times. “Also, since [P, H] = 0;

’ . _
[q, P] =i (2.122)

Thus the opefators of the set {gq, P} commute with those of the set -

{wo(x), wo(x)}. The Hilbert space of the system is now constructed in

the following way: take the direct product of the Schradinger picture

realization of the quantum mechanical operators, {g, P}, with the Fock-
like representation of the particle like excitations, {;O(x), ;o(x)}.'
The vacuum in this representation is denoted by [0F> and satisfies
the condition,ai]0F>'= ak[OF>_= 0. |

It has beee shown here that the position of the extended object
can be ehosen as an independent dynamica]_eariable at‘ohe'particular :
time. Tﬁis necessitates the use of the Schrodinger representation:for
the eperators {q,.P}. wIn the solution chosen, q always apﬁears in the
comBin%%jon X Te'with X and'is’fhe canonica] conjugate of the. total
momentdh, P. , | h

The ﬁémi]tonian hes the form

" w2 b 2

N

LR AR TR R A VI (2.123)
t o am SR SR ‘

It contains the_k?ﬁg%ic term of the” extended object, the free,Hemi1-

\

tonian of the physical particles A“a term which mixes these. It will
ﬁ

belshown in Chapter IV that th

H—.fp (M+H,) / | C(2.124)

el

1 Hamiltonian is given by

S .
In the next chapter, the information gained from the

{
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~computations of this chapter w... be used to calculate some quantum

L

éorrections of the lower order terms in}the dynamical map and the

Hamiltonian.
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CHAPTER III

‘A PERTURBATIVE LOOK AT EXTENDED OBJECT DYNAMICS II:
'RENORMALIZATION AND QUANTUM CORRECTIONS

In the previous chapter,” the dynamical maps of the Heisenberg
fields were ca]cu]ated perturbatively by considering the quantum tree
graphs on]y Contractions of physical f1e1ds_as well as operator order-
ing were ignored. It is now necessary to address the problem of insertu
ing the quantum corrections. |

| For a given quantum field theory, the central role of renormal-
ization theory is the determination of the parameters which appear in
the field equation. Once these parameters are determined in terms of
“some other exper1menta11y determ1nab1e parameters, the quantum field
theory is 1nterna]1y complete and can in pginciple be used to make pre—
dictions about observable phenomena

Conventional renorma]izatidn theorywié heavily dependent on
manifest translation invariance. The comb1nator1cs of perturbat1on
theory are usua]]y formulated in terms of the Feynman rules in momentum

space where they have a s1mp1e form In theories where locality is
_man1fest counterterms arise in a natural way]2 {he dimensions of the
counterterms are restricted by the power counting apparatus of renorm-
alwzatlon theory. In a renorma11zab1e theory the countertenns have the‘
same d1mens1ons as parameters in the c1a551ca1 Lagrang1an and can be
ama]gated w1th them They are then detenn1ned by the compar1son of

~certa1n physical predictions w1th experiment. This const1tutes a def;

inition of the parameters of the theory.
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In the case where an extended object is presént,\trans]ationa]
invariance is not manifest. It is recovered through the appearance of
the quantum coordinate. This fact not only complicates the combinator-
ics 6f perturbation theory, but ik also makes difficult the task of
setting criteria by which the field theory is renonma]ized:

The boson theory provides a vehicle by which the quantum field

theory with an extended object is understood in terms of the same field “

theory'withoutvan extended object. In the latter case; all of the para- .

meters of the theory can be determined by standard renormalization
theory. Consistency_wfth the bosoﬁ tﬁeory requires that the same péra-
meters be use& when an extended object is present. The theory with an
extended object»is then internally complete once the bouﬁdary COnd1— v_
éions are specified and the space-dependent order parameter is ca]tu]-
ated. ’Implicit iﬁ'this notion is the assumption: that both phases can
exist. Which phase qoes appear in a pérticularlcase depends on fhé
boundary conditions and not on the 1oca1>§tructufe of‘the theoryz

This choice of parameters is also motivated by physica] con-
sideratidns. If the exteﬁdéd object is sufficiently localized, then, -
aSymptotica]]y"in some spatia1 direction, the dynamics of the quantum
field theory;become free of ifs influence. This means that the physi- -
cal paftic]e wévefunctioéé are like plane waves which propagate with

the bhysical mass of the pértic]eé., It is reasonable to define the

~ observable particle masses and vertices in this region as those of the

theory with no extended object. The parameters of the theory are det-
ermined'"by this condition as those of the theor;y when no extend‘eck‘ o‘bject
is presént. The theory_With no extended object is called the vacuum,

sector. ;
. N
~
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define its sum. ‘

The bosonvtheOry also provides a strong statement about re-
norma]izabi}ity. It‘the quantum field theory is renorma]izab]e-in,the
vacuum sector, all matrix elements of the renormalized He1senberg fwe]ds
can- be made finite be an appropriate cho1ce of counterterms. The boson
theory leads to expressions for the matrix elements of the renormalized
Heisenberg fields in the presence of an.extended object in terms of
series of matrix e]ements of the vacuum sector Heisenberg fields con-
vo1uted with the boson; functions. This ser1es then conta;ns no ultra-
violet divergences in the sense that 511 ultraviolet divergences should

cancel in perturbative'ca]cu1ations. The series itself may, however,

be asymptotic and may require the canonical commutation relations to
A 3 .

1

| {

. In this chapter it will be seen that the inclusion of quantum
corrections entails two major mpdifications of the procedure of the
previeus chapter where the tree approximation was considered. These

are (i);the careful treatment of operator ordering and (ii) the inclu-

sion df the counterterms The counterterms which are incTuded are those

wh1ch are calcu]ated for the same theory in the vacuum sector withi
these cons1derat1ons, the theory is 1nterna11y comp]ete When the
part1c1e 11ke f1e1ds in the dynamical map are put 1n normal ordered
form, the.contra€t1ons of these phys1ca1 fields comened with. the
counterterms cdnstitute the'quahtum COrrectionS.

In this chapter the dynam1ca1 map‘computed in chapter IT will
be ca1cu1ated including the quantum corrections. The condition that.
the quantum coord1nate, q, appear Ln the combination, X - Q w1th the ex-

plicit spat1a1 coord1nate X eVerywhere in the dynam1ca1 map will be

~retained.. This also means that. the canonical conJugate of q must be
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the canonical momentum, P, when all quantum corrections are considered.

| As an i]]ustrativé example of the computational procedure, the one-
AA:ldop quantum correctfohs of ‘the order pérametef ahd the grddnd state
energy will be explicitly calculated for the A¢4 model in ]fl -

dimensions.

1. THE DYNAMICAL MAP

J Consider the one component boson f1e1d in 1+1-dimensions wh1ch

' ~was con51dered in chapter II. The He1senberg equatxon is

(3% + m?) wf(x> - Lo (0] —_— (3.1)

As in equation (2.12) the fight hand side of equation (3.1) can be

_expanded as

R
4
:

w01 - 7 a

Lhay+. . o -] - . N
) 2 ?%.Flpw_](x)] wa](x)j,.waz(X)(B.Z)

where the fie]ds w (x) are defined in equat1on (2 9). HoWeJér, each
“'funct1on F [w (x)] must contain counterterms These must be of Highér _

‘orders in Az

| ’ ' o , »
F [w ()7 = z A" FY [w 01 - (3.3)

4/

-The quantum correct1ons arise from contract1ons of pairs of phys1ca1
fields. For th1s reason, m must always be even in equat1on (3.3). The
terms w1th m=0 correspond to the tree approx1mat1on Cons1der1ng eqda-

tions (3 2) and (3 3),. equat1on (3. 1) becomes

(az + %) gy (x) = z 2 L (0] U, (014, 0. (3.0

[
\
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‘Where % + m +Aa]+...+ai

-orders of. equation (3.4)_are7

/

=n+1 and Oy seee sl 2 0. The first few

8+ m? - Ly (0] y(x) = 0 | (3.5)

Folv_, (01 + Pl (0 Ja(/2r

(3.6)

o+ mf - Py (0T vy (x)

2 .

(32 +»m -'F$t¢_1(x)]} wz(x) ﬁ%[w_1(X)] wO(X)

+ F3Ly_,(x)] v3(x) /31

# FRLu (01 (5,000 sy (04, (0)) /2!

- (3.])

In chapter II it was shown that the solution of equation (3.5) must be

taken as
N R CR a0y RN S I ¢ R X )

The computational technique can be'summqffZed in the following
steps: (i)- Having computed the dynahica1 map td some given order, use
the field equatidn to Ea]cu]ate the»dynhmica] map to the next Order,

including the -counterterms and paying.carefu1 attention to operator
ordering. - ' : . ) L -

“(ii) Add symmetrized_(Hermitian) solutions of the homogeneous
equation until the following reTation is Safisfied;' |

L ORE TACEEE (.9)

(i11) Add solutions of the homogeneous equation until the



*
canonical momentum calculated using the equation P

Post = - %[O T G0 (0 + b OB (3.10) |
k : i e
satisfies '
Po = p 3 Poo=0 - - - (3.11)

(iv) - Add solutions of thé‘homogeneous equation until the can-

onical commutation relations are satisfied.

(v) Normal order the terms of the dynamical map to find the

‘quantum_corrections. , S

It 1s easy to see that to zeroth order the solution given in
equat1on (3 8) sat1sf1es the cond1t1on (3 9), (3.11) and the equal-time

commutat1on relat1on to zeroth order

.

\

w&m,%uno'o—iMx-w . G
' . =Y : o

“when' the operators {q, P, wo(x), @o(x)}‘obey,the algebra given in equa-
tions (2.117), (2.121) and (2.122). Then, according to chapter II, the’

last term in equation (3.6) has the solution

%u>—74q+ )Z"u)+%- Q()-(q+—ww(n

. le _UN
x

B L RO R R I EREI

. where
taf - FOLu_, (013 () = FaLy_,(x)] + FOLW (#)]5 (x)/2!
. LA RS DS e 271 o S
| (3.14)

ot

* Note that P in equation (3.10) is the same as P in chapter II.



. Equation (3.13)»immediaté1y leads to
] : ’ : ~ , , ,
-3 Up(x) = (x) | | (3.15)

Furthermore, it can be shown that

o
i

L= [ G 00w 00+ 0 0% G0+l (03,(x) + b (30 (x))

“when the condition
Q
. -‘.,’,7_ ] ) . ‘: . _ . ] :' L~ . -~ s
ot =[x 300y (X) = = oy [ax G Gwe(x) + bo 00y ()
(3.17)
is satisfied. Also, as was shown in chapter II (see reference 4), the

commutation relation
(05 8] + [y (x), ()] =0 @ e

» o . | ‘ :
.follows direct]y, Thus the solution for w](x) is the one given in

equation'(3.13). Equation (3.14), can be rewritten as
(0% e - %Ly (0T} by () = FoLu 1 (0] + P00, (1) 1<0. 17 () 2] 0,ov21
B LA AL DAL 2LV X1 <O l¥, Fr/et

| ;'Fg[w;](x)],é%-:éo(x)z; NERT)

o
or

~ ~ ~

%u)=@u)+%£ﬁ@j@y@4w%u)-%wmgw:

+ [y 50x, v) Loy 0)1 92 er2s (3.20)

* Note that g, = 0. = .
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where

OF e ol - FLu_ 003 0y (0 = Py, (0]

+ FOTu_q ()] <0g[u2(x) [0p>/21 (3.21)

and ﬁl(x) is the one-loop quantum correction of the order parameter.
Now consider equation (3.7). According to chapter II (equation

(2.36)) the sb1ution is

x [x v (x) + U (x)]

e L P L 0 e 7= B i (x) - (@42 0 508 +3.(x)
-2—!M7- xwox X.l])ox --M—le] X) - qM llﬁx IPZX ’
(3.22)
where
v(x)

(% #n = FOLy_ (1) wy(x) = F03_y (00T G, (x) * Bl (0] 3

* Rl 007 27 Do (0 00 + 4y (0%, (01 (3.23)

Equation (3.22) satisfies the condition

“Ew s . (3.24)



A straightforward calculation of the canonical momentum

Pp= = [axtly (0dy00) + F e (x) + 4y (0 ()
B AR RO NI  (3.25)
Teads to
S L N o (3.26)
=, + = , .
2 o2 Mo
where DN

~

i - fdx{vgw_1(x)1 140, () - 7 ()} (3.27)

4

where Vg[w;1(x)] arises from the counterterms in the "potential" term
of the Hamiltonian, V[y(x)], defined in equations (2.80) and (2.81).

In order to~satisfy equation (3.11) it is necessary to add the

terms
3 ~
P ' . P 1
—z P 1(x) + = H_ y . (x)

to @Z(x) which means that it is necessary to add
P3 . ) P ~ '
R RO R L ARRRICH

to wZ.(x) .

It is then possible, using the same ‘procedure as that in chapter
11 (see‘reference 4), to show that with no further modifikation.wz(x)

satisfies the canonical commutation relation

[v(x), b+ Tug(x); 4, (NT + Loy (x), by (N1 = 0 .(3.28) -

Thus



byx) < - (aeB 3" ()-—7[< )P2+P(q+—t)]
x (x (x) +‘¢ (x))
3 1 y ~ ~
e AR RIORE LAIRICORE JORRENCY
Tty [la+ 8P+ P+ 10x b () + b, (0]

- (q +% t) u:]'(X) * J»Z(X) : (3.29)

%z

The operator ;2( ) is a SO]Ut]Oﬂ ot equation (3.23). When this
so]ut1on is put in normal ordered form the part which 1s 11near in
~0(x) is the one-loop quantum correct1on of the physical particle wave-
furiction.

k’Notice that in both the fifst and seeond'orders; once, the dy-
namical map 1s adjusted so that the canon1ca1 momentum has the correct
form (step (ii)), the equal-time commutation’ re]at1on is automat1ca11y
satisfied. Whether th15vs1;uat1on persists in higher orders is at pre-
sent unknown. If this‘is»theiéaee, step (iv) of the computation scheme
would be unnecessa?y.

The quantity ﬁo given in equation (3.27), is the free Hamiltonian
of the physical)field m (x). It conta1ns a counterterm the or1g1n of

.wh1ch will be exam1ned in the next section.

w



2. THE HAMILTONIAN

The counterterms ag%earing»in the renormalized Hamiltonian also
_produce additional terms in the "potential” which was defined in equa-

tion (2.81). These are of higher orders in A2

d (3.30).

]

VIV (x)] = T gr Vilo_ (0] by, (K-, (3)

where k + m + apeeeta =0+ 2,

Equation/(2.86) for the nth order Hamiltonian becomes

Hy =[x (T T3 b0 00+ F 00w, (x) + L2 w (0w, (0]

~ '

tl t%-VE[w-1<X>J wa1(x)'°'wak(x) . o (3.31)

=)

The first few orders of equation (3.31) are

H, = M . - L (3.32)
Hq=0 (3.33) ©
Lo pE - G
Ho = 27 * B, (3.34)

where ﬁ is the quantity given in eguation (3. 27) Th1s means that the

term contaiming H in wz(x) is finite when the renorma1ized Ham11ton1an

is finite. The_quant1ty Vo[w_](x)] is def1neq by o L
Ve S (x)] = -.FZ[ ".(x)] o L (3 3'5) \
Ko R | o) lp_] . . . . ’ .‘ .
to within the add1t10n of a constant wh1ch must be adjusted so that the ‘*Qj

Ham11ton1an 1s f1n1te S1nce th1s constant must in general be d1vergent

it is not defined un1que1y by th1s cond1t1on It is usually def1ned-by.

b

physical con51derat1ons‘(see reference 6). as the one-1o0p ground state

/



energy of the vacuum sector.. The vacuum matrix element of the Ham11-

‘tonian when an extended obJect is present is then defined in reference
v s
to the ground state energy of the vacuum sector. Equation (3.34) can

be written as

~ 2
_ P
Hy = o +

B I Bg00u0x) - vy (0e, (0

N — -

+ [ox {%-<0F|Jo(x)io<x) = 40 10p> + i2y_1001. (3.36)

- The last term in equat1on (3.36) is the one- leop correction of the

“ground state energy (the mass of the extended obJect) : ' 2%;?
In the next section, the computat1ona1 scheme out11ned here o

lvw111 be app]1ed to a particular model - the A¢4 model in 1+] d1mens1ons

Th1s mode] is. known to have a topo]og1ca11y nontr1v1a1 so]ut1on of the

c;ass1ca1 field equation. In the quantum field theory, this so]utmon :

i$ the thee approximation of the space-dependent order parameter.

3. THE a¢* MODEL

. Consider now = 1+1-dimensiona1 boson model with Lagrangian -

'deneity
- A0 = Fastodten + 18200 - Fato L @)

1"1%131]Y; the’seiution of interest exhibits a constant non- *
. ) ‘ 5

vanishing vacuum expectation value, The renormalized field, w(x), and'

- the renorma11zed vacuum expectation value, v, are defined by

o) =28y +u(x)) . <Olu(x)fos =0 - (3.38)

where 7 is the waveffunction renormalization factor. The ver®ex and

faca f- ;
2 B B AN
IR .

.

e

‘g
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mass renorma11zat1on factors are defined by .
A %7 A z A . o (3.39)
1 . C (3.40)

-1; (3.41)
A ( p) , p2=m2 0 B
3 -1 (3.42)
a -(p) =1
o lp?=m2 :
’ (3.43) !

F(p, q, Y’) = 3mg
’ pz 2oyl

Here &(p) is the propagator and r(p, q, r) is the three point vertex

function of the y field: . . (

2

. <Olfw(X)w(y)I0> = ?——;Q-fd p a(p)e ip(x-y) . (3;44)

_<0|T;p(x>w(y)w(z)10> - [WJ jd 0 dzq r siprasn

ei(px+qy+rz)A(p)A(q)A(r) r(p, g, 1) ~ (3.45)

The determination of the parameters in the one-loop approxima-~ -
~ tion was presented in detail in reference 6 usihg the standard tech-

niqpes of vacuum sector quantum field theory. The resulting fié]d

equation is _ /

(2% +ml)u(x) = ——9-A + 9—-{35. 7;-}w(x)

4

w

3 4 o
- 95{1%%3__+ 8—9-}4;2()() - i—z- {]—52—/§+ Z%-}w3(x)

e



”{% - 39 42(x) -ﬂﬂ (x)

where

_ 1 1
AO = 'é;r—fdk

2/k" +m
Equation (3.44) leads to
2
FOlu_1 ()] = = 342 (x) -ﬂ (x)

34 -
Fay 1007 = 3 +(-—-—-44—§)w_1(x>-

1 (573
- = (
mz{. ' }w Y

——

3

(3.46)

(3.47)

(3.48)
B354 2 2 (x)

(3.49)

where g has taken the role of the power counting parameter. The tree

approximation to the spate-dependent order parametef is a quantity<

which satf%fies the equation
] _

6% + ) v 400 = #Olo 1 (0]

where FSEW_i(X)] is given in equétion (3.48).

tion is
o) = (5(x) = 1)
g(x) = t;nh g— (x ‘-a)

The self-consistent potential is

(3.50)

A solution of this equa-

‘ (3.5'1)

(3.52)

49



“k
The wave functions given in equations (3.56), (

forp a complete set.

b (4 ()
M

The physica]'field‘;o(x) has the form

Dy (0T = - 3my () - 242 () (3.53)
=3 (1 - 5(x)?) (3.54)
and equation (3.5) becomes
2 . ,/'\J/ .
(7 -2 (1 - 30 bo(x) = 0 (3.55)
Equatibn (3.51) has sofhtions.and eigen-frequencies
00 =20 - ) (3.56)
O =y Mo (- 20) L v =, I (3.57)
b mu) = 1 - 22000 - 200) | 30 -20)° g
, EREYR: a1 +49)
x exp{i §(mu, x) + ikx}’ (3.58)
where |
Cslmiy %) = tan”! (2120008 (g(0) + su0-s0))?
201446%) (1+u2) - 6(1+02) (1-5(x)) + 3(1-202) (12(x) )2
J ) ' (3.59)
~and
= :/k2 + m:

(3.60)

3.57), and (3.59)

+ ul(.x)u]'(y) + f%ﬁ- u(x, K)u'(y, k) = s(x-y) (3.61)

50
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. Jjw, t iw,t
v (x) = u(X)[ ]+Aa]e]]

0" v’2w] /

- -jw t
.4'f dk [u(x, k)ake K™ 4 u*(x, k)a, e

4 4muk

Using the fact that

9 -3¢ 3

aX X 3t ?'(] - C(x) ) 3¢

—

fa, t

t, k' :
K 1 (3.62)

(3.63)

equation (3.21) for the One-]obp_correction to the order parameter can

be written as

w

. . N o |
{9 m 2y 3 (9 2y 3 m 2 1T(7 .3
ek SUTE >r T (=320 oy o) - [éE”‘ﬂJ }
3 9 -13/3 15,3 5
CnE el - g e e S e
where the quantity
<Oplvg (010> = o) + (12 - 2 (122 (3.65)

was computed in reference 6.

(

This equation can be integrated using the bouhdary concition

that w](x) -0 as X > o and assum1ng that the order parameter is stat1c

to get

1

.‘;1(”5 -

which is the same as the result of reference 6.

Equat1on (3. 66) sat1sf1es

(52 + &) (e (348 co0 - o0

(3.66)



¥ (x) > -2 [-—22'%-_ + ] as x » = | (3.67)

where the quantity in square brackets isuthe,one-loop quantum correc-
tion of the order parameter, v, in the vacuum sector.

.~ Now, consider the Hamiltonian. From equation (3.56),
‘l" ] 3 - .
M= f'w _](x)w_](x) dx = 2m”/3 . (3.68)

From equation (3.35) and (3.49),

. ’ 3A .
2 . 3m 2% /3 1.2
Volvoy ()] = =85 v 4 (x) - [T T} z v (X
+ % [ ————]]3? + ggﬂ—} % {pf](x) +C . (3.69)

The constant is to be chosen as the ene~]oop ground state
energy in the vacuum sector., This is calculated in reference 6 as

2 : C
__m _73_ 9 dk - :
6 STy -F-E1-[E. . (3.70)

4

-The relation

3 <Ol (X)h () - ;o(x);o(x)loﬁi_-]f-gnfcz(x") (1 - 2
- %mz 0=+ [&Eo @

is also derived in reference 6. _

-Since the last terms of equation (3. 70) and (3.71) are quad-
ratical]y d1yergent, their sum must be treated-cakefu]]y. To invest-
igate this siteation,'ft is convenient to split the points in the.

Operetor preducts (in the left handﬂside'of_eqUation (3.71)) by a

AT

52"
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~

space-1ike distance €. Then the sum of the last terms in equations

/

(3.70) and (3.71) is

!

£ (x) = fg-f; [w, ot (K#0"(kx))e _, oTke; | (3.72)

The sp]itting has no effect on_thé other terms in equations (3.70)/and
(3.71). The quantity Eo(x) is evaluated by requiring that the energies

be comparéd between states with the same wave numbers for small e. The

result is
£a(x)"= 1im fg%-[mk-(1-+é%<5(k, o s’k wle
Cofdkd o od% (s (k)™
S I4ﬁar[ UZO dk’n. (n+1)! | ] ;
= - z%-wk 6'(k, x)'
aml 2 o | - | |
= - 5= (1 - %(x) - , (3.73) .

Combining equations (3.69), (3.76), (3,7]) and (3.73) Iéads to
T P Y R i P IR B (3.78)
o 27 fwo YolX) = ¥, wq b o5 T :

The'energy of the so]itcp in the one-loop approximation is given by

eqUatioh (3.68) plus the last term in equatidn (3.74) as

2m’ 1 3 - ;
E= T - ——+21n : - (3.75)
[ /3 T ] . -

4. SOME GENERAL CONSIDERATIONS

‘In section 1 it was found that, to the order considered, the‘:

..
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counterterms always appear in the dynamical map 1mp11c1t1y throuqh the
operators H and w (x). Whether. this happens in higher orders is -not
known. This does, however, support the idea that the appearance of q
and P in the dynamical map can be summarized by the'repldcement of the
space time coordinates (t, x) by some génera]ized-coordinates (T, X)
" which are quantum meghanfca] operators.]’z’5 It is evident that the
generalized cdnrdinateé must contain the operator Eo' This means that
thgy do not commute with the fie]ds &n(x). Thus the operatéh ordering
must be carefuﬁ]y specified wheni(t, x) are reh]aced‘by (T, X). This
will be discussed in chapter IV. | o
Consider, now, thé operators E (x) They have so far been det-

erm1n§§.as funct1ona]s of the free phy51ca1 fields w (x); with ordinary

product order1ng 1ead1ng to the dynam1ca1 map
p(x) =] fdy]--.dyn ¢y (xs y],.' Y ol¥y): w (¥, ) [7.76)

'The functions c (x, y]:..,y )‘contain‘COUnterterms.v The proceés of

putt1ng the operator product on the left hand s1de of equat1on (3.76),

into norma] ordered form produces contract1ons wh1ch when combined

-

with the counterterms are the'quantum'correct1pns.
‘ A given operator can be put'in riormal ordered form by using the
- following combinatorial formula |
~ _ °°. 1 T o -~, . - './
00x) = o [drydry 1ol Folyy):

(3.77)

x <O | S R a(x)|0F>
A28 i, (y,)

Equat1on (3 76) can be rewritten as

W) =3 [dyy .. dyy cix, y]; o) ¥ (y]) Gly)  (3.78)
m
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where the functions c(x, y],....ynf can be determined fn terms of

co(x, y],.ﬁ.,yn) by using equation (3.77).

co(x, yl,...,yn) = ngk fdz]...den co(x, Z]"f”zn)

x pg;m §(y; —zii)...a(yk -25 ) <OF|wo(zjk+]). )|o
(3. 79)

’where the sum over permutat1ons 1nc1udes a]] permutations of the values

of the indices (j. J ) over (1,...,n) with .the rema1n1ng variables
(zj res a2y ) inside the vacuum expectation value retaining their
consecut1ve orderlng

- The quant1ty c(x) is the fuli space- dependent order parameter,

, wh11e c(x, y) 15 a kerne] wh1ch changes the ‘tree approximation of ‘the

phy51ca1 part1c1e wavefunct1on 1nto the full wavefunction.

So far, cons1derat1ons hau? been 11m1ted to field theories in

| 1+] d1mens1ons with no 1nterna1 degrees of freedom. The purpose of

thlS sxmp11f1cat1on 1s to focus attent1on on the role of the quantum
coord1nate for p051t1on In higher space-time d1mens1ons and in_more
complicated f1e1d theories there may be many more quantum coord1nates
aSSoe1ated with extended obJects ,

t For example, 1n 1+3- d1mens1onsk a nonspher1ca] obJect wou]d in-

!
o

duceaa nonspherical se]f—cons1stent potent1a1 This nonspher1ca1 se]f—

consistent potent1a1 may lead to anqu]ar momentum transfer when phys1cal

part1c1es scatter from the extended obJect Thus, angu]ar momentum

conservat1on is not manlfest and must be recovered through the appear-

‘ance of a quantum coord1nate which corresponds to the intrinsic sp1n

of the extended obJect ‘This is shown quantitatively in reference 2.

SN



There may also be quantum coordinates corresponding to internal
degrees of freedom representing, say, the infrinsic isospin of an ex-
tended object.]s’]6f17’]8’]9 Since these coordinates may not commute
with each other or with the physical particle fields, the strueture of

~

the Hilbert space for such a theory is very Comp]icated. The theory

for extended objects as developed here is only, so far, applicable whee

the quantum coordinates for translation are the only ones which appear.
There is also some difficu]ty.in treating an extended object
which would arise from an exp1fcit1y t{me dependent order parameter.
Such objects would induce a time-dependent self-consistent potential
andvpﬁysical fields of well-defined frequendy wod]d not exist. Th1s
: prob]em may, however, be on]y a 11m1tat1on of the perturbative methods
deve]oped‘here. Soliton-soliton scattering in the Sine-Gordon theory
has been studied usina the collective coordinate method.zo’m’22 There
quantum corrections of tbe”soiitoh-sp]iton scattering phase shift‘were
calculated. - However, the'struefure of the physical Hilbert space is .
:Unknown | “ |
- In the next chapter an intuitive deve]opment of the forma]1sn
~of quantum f1e1d theory with a statlc extended obJect in terms of the

asymptoi1c cond1t1on will be outllned

k4
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CHAPTER 1V

THE ASYMPTOTIC CONDITION ehD HAMILTONIAN

In the breVious two chapters, the tool of perturbation‘theory
was used to 111um1nate the basic features of a quantum field theory with
an extended object. One s1gn1f1cant feature is the appearance of the
quantum coordinates. ‘It has been shown qu1te genera]]y that the. quan-
tum coordinates appear whenever there is an extended object. 2,3 The
‘ ;ex1stence of q means_that the pos1t1on of the extended object is a
" -quantum meehanica] quantity which can be taken to be q 1tse1f. This

1

means that q appears in the combination x -q in all quantities where

—

referénce is made to the pos{tion of the extended object.
Furthermore, it is reasonable to def1ne the pos1t1ons of all
quant1t1es of the theory with reference to the pos1t1on of the extended

' obJect Then g appears as x -q everywhere that X appears exp11c1t1y

» It is assumed that a solution of this type can be found se]f-con51stent1y. |

The canonical momentum, P must generate spatial translat1ons

A

A minimal cond1t1on wh1ch is suff1c1ent for th1s requ1rement is

[q,‘P]=1‘- | S (a0

and that P commutes wi th the physical part1c1e creat1on and ann1h11at1on
_ opergtors, that is,. that P is the canon1ca1 conJugate of q. “This is
-another condition which it is assumed can be 1mposed on the solution._
The positions of the physical particles are defined w1th respect
- to the position of the extended object., The physical particle wave-

functions are modified by their interaction with the extended object

57



n__/

through the se]f—consistent potential. If the self-consistent poten-
tial is finite and sufficiently Tocalized, the physical particles are
practically free at large distances from the object. This consideration
has a]réady been used in the discussion of renormalization and quantum

corrections in chapter III. In this region, the physical particle wave-

functions obey the translatign invariant field equation

N (82 +‘.m2,,)'x!‘|n (4.2)
where - 'iv 3
<. fjn ) . ,!- ;%“ A
M0 s v il 6 - et 01001 (43)
regfsm TS ' *
to -oo

is the asymptotic fier - Here, <[x-q|> is the average of |x-q| in a
wavepacket State. The Timit in equation (4.3) is to be understood as
~a limit of matrlx e]ements of each side for wavepacket states ‘The 1n-»
finite time 11m1t eliminates the particle- partic]e interactions . The. .
asymptot1c regton must be defined with respect to the position of the
-extended obJect which is the quantum mechanical quant1ty, qg.

."a' It is for this reason that the appearance of q as X=-q.is an.
essent1a1 feature of the formu]atﬁon of quantum field theory with an |
extended object in terms of the asymptot1c condition.

The Heisenbéngvfie1d as expressed by the dynamical map is a _e=
o functibnal of the creation and‘annihilation'operators o and a: as wef]
as the quantum coord1nate and its canontcal conJugate q and P. The
asymptotic field is also a funct1ona1 of these operators. ~
In th1s\chapter the consideration will again be confined ta
;

1+1-dimensional systems. UG

. .



1. THE POINCARE ALGEBRA AND THE POSITION OPERATOR

It is assumed that the operators q and P and the creation and

annihilation operators obey the a]gebra

[a, P = 1 . | (4.0)
[os @i =6k -2)  , (4.5)
'R -

with all other commutators vanishing. Thus, P does not contain aﬁy‘”
creation or annihilation operators. It is appropriate to introduce the
other generators of ‘the Poincarée group, the Hamiltonian, H, and the

boost generator, M01. ,Together with P, they satisfy. the algebra
o

(P, H1=0 ., (4.6)
[P, Mgy = it o N O
[H Mg 1= e L B (4.8)

Considering the problem at hand, it is useful to_introduce the

position operator

= .1 ‘ ‘ '
Q.= - 5 (Mg H '+ W M01) (4.9)

‘This operator represents the center of mass of a quantum system in con-

figuration space. It obeys the commutation relations
[, P1=i = - ~ (s.10)
[, #] ='i PH'] L ~ ‘ (a.11)

Through the dynam1ca1 map, ;he Heisenberg f1e1ds are expressed

/
in terms of the operators {q, P, “k’ ak}

4
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1 (X) =w,(x-q(3 t: P,ai,ak)
Then the operatars Q, P, H, M01 are also expressed in terms of these . e
, o o
operators. From ggugtion (4.6), H cannot contain q. From equation
(4.6) and (4.10), : ( .
P ‘
Q =q + Q(pa aka ak) . (4']2) ‘
and -
, R
[6Q, P] =0 / .
.. , | —
Using equations (4,11) and (4.12) Tleads to . A .
» %§§-+ [0, W] = iR " . e (813 @
It is now necessary to/proceed with the fOrther'assumption that
H contafns the creation and annihilation operators a4y and‘az‘only in
the combihation azak = Npe _Then equation (4.13) leads to the fact that
-QQ also has this.property and, therefore, that )
8Q, H] = | . T 4.14
[50, H] = 0 N (ALY _
‘This means that
H - | - ‘ o
P - PH : , - RS - (4,15) -
Equation (4.7) theﬁ leads to the fact that Mot also contains
o and-az only in,the~cdmbinatioh.a:ak.q Equation (4.15) éan-be inte-

| e
grated to get o TREE

w=/Eew e




’ where M depends only on a:ak. .
< -
2. THE POSITION OPERATOR AND THE QUANTUM COORDINATE
The dynamiga1'maps of all Heisenberg fields are expressed in
terms of the operator set {q, P’,Qz’ qk}. Consider the unitary trans-
formation
o(x) e N px) N L @an
where - ] l ' i Sl |
' : o ) : -
| -'ﬁ_N(P, a'a) = s0(P, o'a) L - (4.18)
Urfder this transformation 1
N iN ' -
a e‘ a e = ak(P, ak) o | (4.199
(4.20)
-q o o (a.21)
=q. . (s.22)
) : ' - ' ' v g
-t, P, ak’. aI) -+ lb(x -q st9 P_a akad: )
v i + .
B =y (X -q, t, P, Gk’ ak) : o . (4.23)
Sq a7 LY (4.24)

. .&-‘_.::" . v -
commites’ with H and P, ¥ (x) satisfies the Heisenberg

I : o

o
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equation. It is thus possible to cquse a representat1on where q = Q

In the fo]]ow1ng it is assumed that this representat1on is chosen.

Then, the operator q obeys the algebra of equations (4 10) and "

(4.11). Equation (4.11) leads to " , - -
0= e a o (a.28) N
’ and - e )
2= 0 ’ (a.26) |

where 'the Heisenberg representation operator Q(t) is defined\ by

Q(t) = oMt g o~1HE Q+Qt . . (4.27)
. N | N . .~ . %\ . N "
“ Equations (4.10), (4.11) and (4.25) lead to ' T
_ oy
. . -2 .--l . - . S ‘ .
[9, Q] = i(1-Q%) H . .o . (4.28) ® i

The Lorentz boost gehgrator Mbﬁ is given by
. A

ToR@em gy
5 wh1ch combined with equat1on (4. 28) 1eads to ’
PR : / S ' S

o 314, M OkJ (1 -4 ) | 30,
4[q, | ]] = 3 (o0 + dg) 2
& : ot \ X
 which means that T .
f A M T = - e L g e qa(t)) . (4.32)
- : - - 01 -2- ST \g
; ;_ . -
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3. THE MASS OPERATOR
 In equation (4.16), the Hamiltonian has the form H = J'PZ + H2

, where M(nk) is the mass operator. It is a Poincare invariant quantity

. which does not conta1n P. ff a state is chosen where <p2> is very close
cot

4

'f, to zero, then, far away from the extended object 1n the infinite past,

the energy of the pﬂysicé] sféte is determ1ned by cdynt1ng the indivi-

l
Sh

dual’ part1c1e energ&es

. e

. tw—,, . ' : .
m_Pk% &k+u-mn) . 4

-

e v)

With this, gonsxderat1on, the states wh1ch are bound to the extended

PPN

ObJECt mu@t be 1nc1uded

wen . t |
" ) ; wy ooy ¥ Idk e L : -(4'34)

[

and u iS~the mass of the extended ohject
) The form of the Ham11ton1an in equat1on (4 16) means that the
observable energy ]eve]s of the quantum systazﬁare those af the- phys1ca1
particles wh1ch are bro&dened by the quantum f]uctuat1on of the moment-
‘um of the extended obJect.g |
This. form of .the H§511t0n1an @grees w1th the equp51on computed
in chapter I1 (equat1on (2. 123)) - o ‘ o

- : ) L.
.

4, THE TRANSFORMATION PROR§¥]IES

. ti“% . f Th1s segtfon w111 dﬂSCUSS how the Lorentz transformet1on of the,

.
~

(4.35) |
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Heisenberg fields is induced through operator transformations of the
physicai opefaiors.

~ Defining 6(6) by

. -iM..6 . M .6 _ ,
Qe) =e Ol qe U | T (4.36)
leads to
3. . _ ) 02 o . ‘.
25 Q(8) = - (1 - Q°(8)) - o (aa3n)
which can be integrated to get
0(6) = tanh (A-g) . e (433)
. ® | .
- - : o
where . . | ) | _ .
6 =_fanh-A ' . ‘ o (4.39)

v 4 * Tihen, Q(e), WhiCh is defined by - “g
. " i ) l’

. -iMge  iMose ¥ o

q(e) =e ' qe - 1 S 1)

‘ can be’ found using eqqation_(4.31) to be (see‘keferencecgy‘

q(e) '=% {B cosh(A-8)"" + cosh(A-8)"! BT} r (4.41)
where -
B=gqcoshA ~ " : o (4.42)

" The mass operator M(nk) and (B+B+)/2 are Tnvariant'under Poin-
care group_transfdgmétiqns; Consider the generalized §patia1 coordinatev

T X(Ss, .ihé%'{‘ T (x-qee)) + (x-0(t)) — 1 . (4.03)

= .,.J]!‘Q ) . | ]_Q

: ‘ Teg o . ' ﬁi&*
L' R . . . L
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Using equations (4.9), (4.11) and (4.27), equation (4.43) can be re-

written in terms of A and B as
X(x, t) = x cosh A - t sinh A - ]7 B+8T) . (4.44)

Then using equations (4.38), (4.39) and (4.42) leads to

. -iM 6 iM,,06
X(x, t, 8) ="e 01 X(x, t) e 01
= x cosh(A-8) - t sinh(A-5) - 5 (8+87) e
R - | \ | ‘;}:‘:’: - 1:‘ ’ ;'.‘ v
— = x' cosh A - t' sinh A - 5 (B+87) (4.45) %o < -
' ' . ‘ y | » o
where :
x' = x coshe + t sinhe . 4
| e & (4.46) -
t' = x coshe + t sinhe{ . _ 5 o
or
CX(x, £, 0) = X(x', t') . o (4.47)

"it can be provén'that-X(x,.t) ié the only functién which is
_ iinear ?n,x and which satisfies the cpndition_(4.47) together with the'
condifion x =X when QE=6 =0. This is cal]ed the "q;c transmutation“' L;
when the coordinates (x, t) appear through the form X(x, t)‘ the tor- "
entz transformation and spacetime trans]at1ons Sf (x t) are induced by
' operator transformat1ons of q and P S1nce H and MO] contain dnly the

operators P and Mo in general they induce a p-dependent change of phase

of the creatlon and annihilation operators Where the exp11c1t space-rv'

time coordinates in the dynam1ca1 map do‘notrappear in the phases.of
. & ¢ - ’ .ot .

e

~ o
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creation and anm'hﬂation operators,,-thew\ﬁoaﬁcare transformatwr‘

" must be induced through the qc transmutation, in part1cu1ar the quan-

tity ®(x, t) defined by

Opfu(x, t)]0p> = P(x, t)

,"k=° (4.48) " ,
- must be a function of (x, t) through ‘X(x,“t).
T ek Y
Pl t) = P, ) %’m )
The Heisenberg field has the form )
vix, t) = QX(x, t)) + ' " (x, t) + - ". (4.50) |

where wm(x, t) is the physical field in the presence of the extended_

object.. It satisfies a linear field equation which contains the self-

' consistent petential ind'uced by the extended object. As in equation

" 1ndu
%

(4 3), in the 1imit as <|x -q[> e, w (x, t) X' "(X, t), when g
X M(x, t) sat1sﬁes the free field ‘equation - B
1 2 2 ) . o .
[_'_.3.7+ lz_- mZJ 1n(\x t) =0 L | (4.51’)

In th1s as.ymptot1c region, the Pomcare generators must still

.’_1

~

the Paincare trénsformatwns The way in wh1ch q and P appear *?
1n thes/g ger‘ferators has already been determmed in equations (4 16) and

(4 29) ﬁ’re asympto >f1e1d n(x -q, t), contains P, q, and n, as
X q k

'v weH as an% ak It must be shown tha,t X contams P and ne in such

(4.51) and the form of, the masswﬁerator in equation (4.34). This was

a way t’hat ‘the Poincaré trans‘fovmat},ons are cons1stent with equation

don'e in reference 5 9
) ,‘ (] . o
There, it was shown, that, when x'"(x, t) s 'expanded as

[

SR g B e e
A "M{"" % :Qé"y"'\'jﬁfg,qu:&p;gr.:',';;.;,;’ Sl



\ 8 . i
S : : 67 .
' ik(x-q)-iw, t -
Mx-a, 1) = =L [ p, a0, aPe K+ cle.] (4.52)
‘the condjtjon
xM(x, t) = et iy, 0) et O (4.53)

together with the form of the Hami]tonién and mass operatdrs in equa-

tions (4.16) and (4.34) and the fact that X " must obey the field equa-
t1bn (4 51),

Wl = k% 4 n? o 0 (4.54)
lead to the form !
Tding. oy ] % i e (e A ,
K" t) = fdz £ pg Lexplikyx-0) - 16y )+ c.c., (4.5 !
“where ’ :
@, =m cosh(e, +A) B v ' (4.56). 79~ -
ko £ , : N
kg = msinh(e,+ A) N -7
- " o " ) ‘
m Cosh by = w, + 22/2m : N (4.58) . ;
' In equat1on (4. 55) the order1ng symbo] P means that q shou]d be put H'. : g'
on the r1ght hand s1de of a11 other operators %
The cbeff1c1eﬁt f 1s¢determ1ned by the cond1t1on : - E
-1M 01° ' , é
"'y 1) e ‘E(x. ge 0 - (4.59)
as . ,?
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M(n,J cosh & — f, . . - (4.60)-.

/M(nk)coshA +m cosh(e + AT Iy - »

Equation (4.55) can be written as

x1n(x, t? = ;%: fdz £ Pq exp{i2X(x, t) - isz(x, t)} a,

/2T
+ c.c. ' , (4.61)

-where
w, = m cosh 62 o o (4.62)
e msim 6, o (4.63)

and X(x, t)fand T(x, t) are the genera11zed coord1nates given in equaf
. 7""{’ o .
tion (2 22) ‘ B _ c

It has thus been shown that the form of the Ham11ton1an g1ven
_ by equat1ons (4 16) and (4.34) 1s conSIStent with the asymptot1c con-

d1f10n of equat1ons (4 3) and (4 51)

S. dSUMWARY

| F‘ In this chapter the intuitive p1cture of a quantum field theory

‘ w1th an extended object which was ga1ned through the perturbat1ve com-
»putat10ns of - the prev1ous two chapters was used to der1ve sﬂme generaT
propert1es of such a system. An important aspect of thlS picture, the .
appearance of the quantum coordinate, has been regarded -as essent1a] |
™ the def1n1t1on of the asymptot1c reglon Furthermore s1nce atl |
'-d1staﬁEes are measured with reference to the pos1t10n of the extended

obJect the total momentum p]ays the role of _the canonical conJugate

of" the quantum coord1nate and is 1ndependent of the phys1ca] part1c1e—

e ST SRR
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1ike'fie]ds. The further reasonablémassumption that the Hamiltonian

iﬁ diagonai ih”the-phyéfcal Hj]bert space.fs §ubstahtfatéd'by(£5é pér;
turbative ca]culqtions of chapters II and III. i

KGiven this framewbrk and the algebra of the generators of the
Poincare group the féct that these géneratoré must generaté Poincare
&ignsformations in the é;ymﬁtoffc region is used td demonstrate the |
"consistency of the derfved form of the Hamiltonian and the appearance
~ of the quantum coordinate with the asymptotic condition. A further .
'resu]t-is'the,form';f the asymptotic fie}d jtsé]f. ~T

A . These considerations have been limited to 1+1¥dimensions. In

referehce's Simi1af cOnsjderations‘were made forv3+1-dimensi0ns where
_thefe appear hofquantmncdordinatesbes1des fhose for position. There,
the results are similar to those outlined here. However, the situation
'Wherefquantum coordinates correspoﬁding tb intefna] degrees of ?reedom
.:or spin appear has not béen éxp1ored in-this formalism. ; TE;J :
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CHAPTER V
~ QUANTUM ELECTRODYNAMICS IN SOLIDS

In this chapter an abp]iéation of the boson method will be des- .
o ;cribedﬁ Most ot the theory deye1oped in the previous chapters is as
yet useful only for simple models. The boson method itself has, how-
ever, been used to study "c1assica1" aspects of extended systems. These
are situations where the size of the extended obJects is very large.
In many exper1menta1 s1tuat1ons observab]e effects are- domingted by
the overall classical shape of the extended structure'and the micre-
scod%c structure mhich must be described byvthe full quantum theory is
re]atfve1y less important. , R |
This is the case in many aspects of the quantum field theoretic
lsana]yS'ls in condensed matter physics. In systems such as crystals,
where the microscopic behavior is descr1bed by phonons, many extended
structures such as d1s]ocat1ons, po1nt defects and gra1n boundaries may ez,
_ be present These are large objects and, to a good approx1mat1on they
can be treated as classical objects. Thevquantum coordinates and-quan-
. tum ¥1uctuat1ons of the obJects shape can, at least at the outset be »
1gnored Many 1nterest1ng phy51ca1 phenomena are w1th1n the range of
this type. of ana]ys1s 43,44 '
The c]ass1ca1 macroscopic behav1or is governed by a “set of equa-
__tidns whjch are obtained from the microscopic Heisenberg‘fie]d equations.
These macﬁ%scdpic equations retain some of the'information contained fh"
the Heisenberg equations. Thus, some mieroscopic quantities'are,of

-

o
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direct relevance to the macroscop1c propert1es of a system. This idea
s fam111ar from ]1near response theory. 27 The classical macroscopic
structure of a system is determ1ned by solving these macroscop1c equa-
tions with g1ven boundary cond1t1ons

This chapter contains a discussion at the fundamenta) level of
" the electromagnetic properties of solids. In quantum e]ectrodynam1cs,

the local. gauge 1nvar1ance 1s an 1mportant symmetry which imposes cer-

tain restrictions on particle 1nteractions. These restrictions appear

in the form df certa1n relations among the Green funct1ons, known as
Ward- Takahash1 relations, 25 26 These re]at1ons a1so provide informa-
tion which helps to determine the quasi-particle structure of the
theory. Once thewphysical particle picture is estab]ished, the boson .
method is used to derive a set of macroscopic equaﬁionS’whféh when
solved. w1th certa1n boundary cond1t1ons determ1ne the macroscoplc
structure of the system. Th1s program has been fo]]owed for the theory
of superconduct1v1ty 28,29,30 * The work rev1ewed here3] concentrates on
the normal phase and is 1ntende¢wto be qgmp]ementary to the prev1ous]y
developed theor1es of superconduct1v1ty A

The e]ectromagnet1c properc es of so]1ds are a w1de1y discussed
subJect in solid state phys1cs 32 33,34 A common’derivation of the
plasma modes consists of ]ook1ng for the co]]ect1ve oscillation due to
the Cou]omb 1nteract10ns in'an e]ectppn gas. 32 From the quantum field
theoret1c point of view this’ osc111at1on appears as -the quas1 photon
or the plasmon which acqu1res a mass through the coulomb interactions.
Therefore, an impot'@at task in the quantum f1e1d theoretic ana]ys1s
is the ca]culat1oﬂ/of the proper se]f-energy of theqphoton

“~In the quantum theoretical treatment of the cok@%ct1ve mode
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which was presented in reference 32, the gauge condition for the vector |

potent;a] is very comp11cated There, certain auxiliary degrees of»

freedom are introduced and are then eliminated by a subsidiary condi-

- tion which serves to recover gauge invariance. . This procedure has be-
come known as the collective field method.45 oInxthis method, however,
the propertfes of the quantum states are obscure.
| An important prerequisite for the applicability of the ooson :
method to a given‘theory is the establishment of the physical partic1e

.p1cturé}\ This means that the theory must have a well defined part1c1e

1nterpretat1on in 1ts homogeneous phase [t 15 well known that the_

Tocal gauge invariance of quantum- e]ectrodynamc~ makes the phys1o
particle p1cture Jaff1cu1t to establish. In relativistic quantum e’ ec—

trodynam1cs, the second quantization of the e]ectromagnetic field re-

qu1res the spec1f1cat1on of the gauge condition. 35, 36, In the Gupta-'

e<,

B1eu]er fonnalnsm the Hilbert space is d1v1ded into phys1ca] and un-
physical spaces and the unphys1cal H11be;t space is composed of part1c1e
-states wh1ch do not interact with phys1ca1 partlcles There, the re-
dundant components of the vector potent1a1 do not appear in the phys1ca]
matrix elements of - observab]e quant1t1es ‘becuase of the Gupta-Bleuler
gauge cond1t1on. .

_ It is also known that the‘choice of.gauge condition in qoantum
electrodynamics is,not arbitrary‘when consistency with the physical

37,38

_particle picture is required. ~~~-The phys1ca1 or quas1 part1c1e

1 p1cture means that the Hilbert space considered is the 11near space of

Cwave-packet states of«phys1ca1 or qua51-part1c1es

~

~~_ The gauge cond1t1on can be formu1ated,so that it becomes one of
i ,3__‘
"3

the field equations which 1s obta1ned from ‘the. Lagrang1an 9. Th1s

3

i
R
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method w11] be used81n the fo]]owlng in order to study quantum e]ectro-
dynamics in solids. In this study, first a part1c1e interpretation
will be derived, then the macroscopic equations will be found. .The
mode]l treéted‘wil1 be that of an e]ectron gas in a uniform positive
background charge. | |

The macroscop1c equatlons determine the "c1ass1ca1" e]ectro~
magnetic fields and the electric current 1n a solid in the presence of
given external fields and currents. These-equations ‘can be 11necr1zed.
In this approximation they become the classical Maxwel® equations.

b2 4

1. THE CANONICAL FORMALISM, DYNAMICAL MAPS AND GAUGE SYMMETRY

In the electroﬁ’gas model, the e]ectrons interact through the
e]ectromagnet1c 1nteract1on as well as other 1nteract1ons The

dynam1cs of the system are governed by a Lagrangian density

[T

Lo =L, w01 (5.1)

where A (x) is'the e1ectromagnet1c vector potential and y(x) is the
eléctron Herenberg f1e1d " The Lagrangian density is invariant under
the local gauge transformatlon |

‘_Au(x) NYORE X(x) S (5.2)

o v,
AT el Y
v

1eA(x)

R N O

Ky

-.([A (x) #3 A(x), "e*("’w(x)]-im (x)29(x)] _l (5‘.1)

In this chapter the metr1c with 51gnature (-,+,+,+) will be used. In
the summat1on convent1on used, Greek 1nd1ces are summed over 0, 1 2243

- -and Roman 1nd1ces over 1,2,3. yThe system of units employed is where



h=c=1 and e2/4ﬂhc = 1/137 (Heaviside-Lorentz ratiénalized units),

The Lagrangian has the form

L) == FF x) PP
- ), (A KNG), B0 (5.5)
where

ot

. R4 ‘ : . .
ENORRYSOERY NS L Tose)

. In the parabolic band model which will be studied in the following

Sgctfons Z o(x) is given by R - . p
%(x = 'np*(x)(a +1eA°(x))w(x) -E[(§-1eA(x )w VHEA(X)N}(X)

o w1 - CengAo () VIS, T L (5.1)

| In the V-term,‘w”and w+ carry no derivatfves. The\consfaht -en,"is the
positive ion bha;ge density."fhe e]ectromagnetic inféﬁattioh in the
first two terms is called the minimal interact1on and the electro-
magnet1c interaction in the V-term js called the magnetic 1nteract10n
. In order to remedy the complication that the Lagrang1an_dens1ty
in equa;i@n’(s.s) does not ;ontain a cénonica] cpnjugaté of Aouft 55_ |
\\‘necessary_to introduce 5 supplémentéry field B(x). This is accomplish-

it

" ed Bywadding’tﬁ the Lagrangian density the terms

KGF B(x)D (a)A“(x) - B(x)a(¥i3)8(x) - (5.8)
vhere. © ”; VA . oA
M) = (&, V- V) L o (5.9) " .
( T ’ ; ; ~ o
: i
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Now, B(x) becomes the .canonical conjugate of Ao(x)

The field equations obtained from the Lagrangian are

v

« §(2° + 1en® (x))w(x) = - o {(V+1eA(x))? - ket w(x) + —2L_ (5.10)
. e ) - 3‘P (x) b
) -3 Fvu(x) = Ju(x) - Du(a)B(x)‘. ~,‘”u“ g# R (5.11) | .~$';
D¥(3)A,(x) = a(-i7)B(x) / P (sa2)”
'Qhere _ SR } R
. : - o . W ! l 4‘
Sy 0 ot oy iie , t _ .
3yx) = g9y ey Cdwkx) - ng)) + g) {5 (0 (x)7,9(x)
R R I - .
- Vv (x)w(x)) —-A §(x)v (x)w(x)} . (5.13)
Equat1on (5 12) is the gauge cond1t1on
*'g;erall charge neutra11ty requires that
'3 o | - . V e ‘ v . :
f a*x7<0]4,(x)]0> = 0 _— R CATS
- ‘ Q ) ) . . ] N - ‘ R ] »
where Q 1s a unit ce]] of the lattice. when the ion charge d1str1bu-
t1on is assumed to be un1form, equation (5 14) 1ead$ to
R I 6 1T L (5.15)
- The current given in equation (5.13) is conserved, ‘
.;a“j (x) = 0 B FE " (5.16)
“This. together with the field equation (5 n) leads to ) b
a"o (a)B(x) =0 L, S sany

, e



L

L.

s
M)

‘that is, B(x) is a free‘field.

act with ‘the other fiel

bl

TR = B
oy - -w*’(,x')'

can be .derived

-of observables between phys1ca11y observable statés -should satisfy the . - «%ﬁef

P

ot

Lo

for the phys1ca1 sté%es

<a|D (a)B(x)lb> 'HOf

2 ’ n
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This‘implies that B(x) does not inter-

ds.” The requirement that all matrix ‘elements

" - usual Maxwe]] equation Jeads to the cond1t1on

4 Space 1nto physical and unphys1cal subspaces.

Since B(x)'does not*interact with the other fields, these two N

subspaces are not mixed

s
(5. 18)
s ‘y
*d'r’“ I A R
|a> and |b> This cond1t1on splits the H11bert
Equatidn (5;]8)'is~ca11ed‘the / _
o ) A

by the dyneh1cs

phys1ca1 state cond1t1on

The . canon1ca1 momenta of the‘*ﬁe]ds are obtaineo from the -

) Lagrang1an as
Y .

.-

.

@

"

.:':3: SR
- ,%\ . R
. ');rw'-"

R
L

. . .
Using these, the fb]low1ng equa] time canon1ca] commutation relations 3

{w(x) w*(y)}

.[Ai(x)s' Ajm-.[ =

G(x - y) /f

[A,(x), A1 = [Aj.(x)_. B(y)]

[A (X), A (y)] [B(X) B(y)]

[A (x). B(y)]

i 8(x - y) s |

o -
N, " . %
2, o e
AT .
A € 5 ) N
N ',‘ o ) ' . .
T TR (8.20).
t _(s 2 L
; O
© (5.22)
(5.23)
" (5.24)
e ©

ERFLES Y EEAD AT IR, o



‘Eduéiioné:(s.:.‘l?),' (5.23) and (5.40) imglyithat

o,

[A, (X). 3°A (V1=1s G(x -y

@3’

?. PR

- "'[A (x) 3°A (;g] 0 o ~ (5.26)
ﬂ - Lo ‘ & . 5' o7
.' o’ J¥ L ‘ '
‘.j‘[B'(x). qu i ay 6(x - y) (5.27)
tis [A (X)s d B(yf] i 3 5(’( - .Y) ‘
‘ &y : v . " ‘
i, (x@w)l i
‘ o -
[B(X), ek B(y)_J _/0 ' :
¢ “‘a("” ! (y)] - [B(x), 2R )] - T s
o . x"_"'é‘m
RO CLOF R aa(“-W Yol »E? o b,&f_.((s.s,z)
L 3 ,.» g “ 3!-3' s
: . sad &
3Ev)guat1on§ (5 17) (5 24) and (5 29) 1ead to’ (see refer‘ence 312342
B ¥ 4
' _f QEQ;('B ) <O|T B(x) A (y)|0> = - ?8 &(43(x-- y)', ',_.15:._83)\‘
43 B “H / X . W ] ey R
T R .”.‘ : : "
o f“*é.‘#“»and O N 4.
- : = - . B , v - .
‘k) “ . 5’3 '.:,)u . £y
" M, (a ) <t 3,00 B(y)I0>f - 0. §(5.30)
. Eqwatmns (5 33) and (5 34) 1ead to | ’ < 5
| <0lT B(x) A (y)I0> = - i3] —(—-)— 6(4)(x - y) (5.35)
o T %(x?'B(m% o (5:36)
where T S
| D) =D () L (5.37)

5 . ‘;

7
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p1asm0n¢m1‘('x) appeaz‘h 1@the dynamwal map-of A Lx)
t1on can.be. put 1n the fo]]gwing fov'm‘?9 30 e :

¥ \‘.7};_;‘"'
-.’l'.;_\‘ )vv,: - ~r1 - S | .
o [B(X), B(.Y)] =0 . o L . ‘ (5.*38)’
& .

for any x and y, that 1; that 8 has Zero norm. Thus, B must be a

combinatmn of pos1t1ve and negative norm part1c1es

. . l%”

500 = 2% ﬁ) (b (5) - x)> L (sa3e)
where b® and x° are Wee.ﬁelds sat1s£ytfvb
: '\"J -“
_D(3) b °(x) = D(a) x (x) (5.40)
& . . - . o
R o 1 e T
[x"xx) 2 xi'ﬁ)a 0= - [b (x)*“‘%“bqw i s(x -¥), fsm
W‘# o x T R -..‘ : é} @

3 R}

It wﬂ] be show%]ater that‘ vector quas1 pﬂﬁ:u;le, the o

i

+a a + m2 )‘( ﬁ)} Ul(x)y ? ” (5;42)

>

-Aﬁ(x) =.‘z’f A(-,1°i7’)u§i(><)‘ . -[%'(-16)3

| + a ( w)v ] Z (-1\7) (b°(x) =X (X))

- B r
. . .

-‘Z;’( 1\7)3 b° (x) + A"'(x'-;, v b -x°, ‘f’ ) (543)

_zm

"""J'u'(’,‘) (- 1V)m2 o(- iv) ue (x)

~

+ (1 +ag (- 1v)v )z"'(-wm (a)(b (x) - x (x)

Its f1e1d equ&-

~{ a 9,
!
Tken equat1onsf§33), (5«34) and (*5 39) lead to the fo'l]owmg d_ynam-
= . = . ) o P I
: mal maps (see reference 3Ny ‘ S Q S

%o

Ho.
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<
=
L
BRSO
4.

P

G t 3 (% U3, b0 -‘x"(g(). ‘f°) poe | (5.44)
v ' N
()"’(1\7 (b(X)-x(x'))‘ (5
o w(x) z;f (v,"iV) ©Ox) + ... Y . (5.46)
where P !
. . |
o oy (d) =a(- v)a * a (- 1v)v , , -
' - o (5.47)
+ : b
, Yu = KQs\V)( B
. T U
T and equation‘(5§12) leads to = § oMy 1&;
. a0 , A o ) ’% N
. - @ Lw; St '
" of- 1v) 2( i) o (-i) V2 . ol  (5.48).
. B . ) N - - », ' . ' L ot = “ s’ E
" In equat1on (5. 49), (Po(x) is the quasrﬁe1ectron “In equations (5.43)
e

o .
and‘(5=44}?,A and J conta1n non11near terms in U , b° -XQ and, ¢°,

k| .
@fousfder the loca1 gauge transformation, 153‘ W

o 10(‘1; N (x ) e»Q,Lt A) L -1e)\(¢x)

[ . (5.09)

1Q(t )\) }\ (X) EIQ(W) = A (x) + 3 )\(x) : ('5'-5.0).

The generator, Q(t, A), is g1ven by K‘;r».

. Q"' . ;} \q i | |
S Q(t. A) Jd 'xé[-n.(‘x)V» )\(x) , (x)a A(x) v e
S - e<¢*(x)w(x) - )*J\(x)] EER (5.51) '

when A(x) is smooth and damps rap1d1y enough as |xl + ., 1ntegrat1on

by pgrts and theff/old equatlon (5 11) 1ead to..

Q(t l) [ X gki) 8 A(x) N

L
s T

c®
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oy’
When )
- _ ! ‘
a“nu(a)x(x) =0 - -, : * (5.53) A
‘@he generator Ts time independent
(.J(t,.‘it)_ =0 h Y
“. | "{@ | : | ‘.l ey
and - ST @ - : - - e
g. . : '\‘l/ . ‘\ , . . ,"
o etTas) () e“_"t A 2 000) - ZHADAR) (5.54)

“Q(t N0 (x) e‘Q(t N0 - T L (5.55)
S+ et r

;l1es that the local gaugp\traNsFOrmat10ns of the He1senberg

.}\ 3 .(}"_
’ ﬁe]dé" 1s mduz:ed tgy the flelﬁ‘translﬁon Of the quasi- partf‘c]e fields ..
x and 5°. Thereforey the dynam1ca1 maps téib theﬁ*orm R T
- TD(X)’ exp[1e25’( 1V)x (x)] ¥(x; U tg) (5.56) '

!

i
i
\ \ .

AR ,
\ 'Then'@#g eqnat1ons (5 56) and. (5 57) fﬁe field trans]at1on in equat1ons“

\

A (x), "- z”( 1v)a b°(x) + A (og U° t£ x ce ): ('5‘."57)

h (5 54) and (5 55) 1nduce the gauge transformat1on of the He1senberg

, f1e1ds even when D(3)A(x) # 0.- The gauge symmetry is rearranged inta
\B\ .

_ the transTataonaT symmetry of x anQ b The dyngm1ca1 rearrangement N
of L . ‘

of the TocaT gauge symmetry here is the same as. that in the super-

éﬁnductggg{gpaset GonSJaer ;he pha;gmiy g ny,

%(x) A ‘%(x) L ewm

The generator is g1ven,by



14

Q;#t— fd3x jo(X) s S (5.59)

- s |
. which 1§ the total charge ,.S1§e the current is conserved Q 1s tlme-
1ndépendent. Therefore ‘the dynamical map of Q must consist of terms ‘fm‘
wh1ch are linear and bﬂinear in the physical f1.e1ds Furthermore, the
linear terms shou]d be gapless bosons S1nce b° » X and U0 Bav;: no

charge, bilinear terms of these f1e1ds do not appear in Q Ther_efore,

v - ' RN

Q must have the form ' S ', e A S S
v @’ 5 ', . . .
}g‘x {C &(b (x) "%(x)) »e <f°+(x) <€ (x)} (5.60)-

a

" Then' Q generates the transformations

. Q._f.,, : el . . L . ) o
8 : S . S5
. "°° CP (x) e"e&r, ? ‘P°(x) S RN
* s ‘ 0?&" o "‘" o
e °(x)o ,~,x G » e - (5.62)
e %0 p° (x) - b%(x) + e . (5.63)
7 Equation «(5 56) shows,that w(x)” carries.ther-operator -fa;tor ’ .

exp[1e215( iv)xo(x)] Thus the transfdrmationﬁ in eqUation (5.62) _creates
the phase factor exp[iCZ;’(O)e] Sinte there is no spontahedus- 'break'— '
down}o{ ‘the phase transformatmn w(x) shou]d be( proportmna] to ‘P (x)
Thus, the totat phase created by the transformatwns of equations (5 61)

81 -

e

o and (5 62)»15 exp[1(CBZ;5(0) - )6} which‘ shou]d 9@31 EXP[ ieg].’ "" ;
herefom - f . L .
o p @I% L " o : J R
- & ‘r o vc!‘".,> *'. R . R ' . " . ’,' ? '. d ‘ Ty |
Ce, v GIi0)L=e L o (584

If I‘-P°> 1s a,state contaming one physwal e]ectron, then from o

equatlon (5 60) ‘ A o ,',gf

~



o »<(P°‘|Q]CP°> - er'srq’ol‘-{”% (5.65)

and e is the renormaﬂizedVCharge. Chen

- 'Ojﬂ." A * l ) ‘
Cg = ’5(0)(2 (o) - 1)e

1 ]
; . i3
, &
. 1;.. o kK
i3 .

- (5.866)
where Z (0) is the charge renqrmalﬂzat1on fac{or (see reference 31,
.‘% append1x B) From equation (5 44)

! -

% P . ' 'u & l'; ‘ ) o LR é N »
Z (p) a (p) e v“ Tl e B (5'.67) R
' S The phase transformétJon here is thu
. i

%

Il

-, o
S 1nduced by a comb1nat1on
"
el trans]at}on of the b and x ’f1e1ds and a phase transform-
“of q7 4

e

Tﬁe quasi-e]ectron fleldutransforms w1th the renormal-

lzed charge and the f1e1d‘trahslgtaop of b and x compens

ates the
difference between tﬂe renorma11zed and bare charges

This is 1n contrast to the theory of supercond0ct1v1ty’where,
because of the s
R a«xw

pontaneous breakdown of phase symmetry,‘fhe ent1re g ;
) pha;e transformat1on is 1nduced by the f1e1d translation of b° and N
- . 28,29,30 ‘tﬁe;; .

B. ‘ :“.

s

. AR .
The phys1ca1 state cond1t1on (5. 18) can. be expressed as
(b°(x) - X (x))‘ ) 4phys> =0 (s.e)
. where the symbol ( ) denotes the parts of b and X conta1n1ng ann1-

. k3
_ h1]at1on operators. Gauge’ 1nyar1ant operators have the form P T :
- ‘ ' s afes 10 00 0 N .
.JoH(x) = 0()1(‘,, Us b7 -x"5 %) o |

_.oorb : !

<, “
) ?‘

82
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L - &, |
e A N . .‘ﬁ'{
: o - v
v 2. THE PHOTON SELF-ENERQ‘
Ao In this section the Heisenberg field equations and the canon-
v ical commutatlon relations -will be used to ana]gﬂi the propert1es of -

“the quasi- photon which is calTed the: plasmon.

Consider the following definitions of the momentum space Green

-~

functions’

~¥{n<0IT AL(X)A(y) 0> = {4 P, e”’(x Y)A MO (5.70)

<0|T §(x)A (¥} [0> = ———nz-fd p elP(x- y? A (k) (571 |

(2m)

A\l u.\)

<OIT 3,004, () 0>

Use of the field edhatfbné (5. 5,5 12) and the eqUa] -time commutat1on

re]at1ons &? 19 - 5 32) (see reference 31) 1eads to the fo]]ow1ng set of

,re1a£1ons | ‘
| _ N | - .
S N D (p)p , -
. 2 A A ey V. v -
| (p 9" -PpP )Aky(p)¢ 9y f-graj—- |
‘ LA Whe o o ~
+ ek . . .
quygp)‘._gﬁ% S (5.73)
‘~ oo v e o
u\,(p)(p 9N PR =) (5.74).
Ny u
D (p)AXv(p) = a(P)Py 5757 I (5.75)
J (p)D (p) =0 (5.76),
guv(p) o . e (5.77)
o L ' ' o '

I =90 - gl k) T e

. ’ - . .iw‘,-, ; . ] LRI . . - » ‘. . ‘ . - . - D i . :
f’,,‘ Yy : ‘. A’_--‘ ! s T & o . Q'-' ) _'..- i i
B T A T G B
.- Vo C » L . RN ‘. - - T i T ks ’

&

ﬁ;ﬁ%?)dlme. | (enﬂff9n



and

R (316 (x-y) - O3 (xR A3 (11[06(° 7).

(5.79)
Thé proper self-energy function of the, on is defined by
A, A ‘ ' -
I(P) = = L %(p) B3P {580}
W1th the definition (5. 80), equat1ons ( “ggb

5.73.-5.77)”can be solved as
©
_(see reference 31) B

Ai . | -. Z.(p) - . 2,> . & P p . | v
A R -_éaumz o0+ 2]
< e L (5) ) * 2
E - ;"?‘; » \:2 + 2 | K "-> : 2 >l p.p
{9 ) [K (p)+—H-—~] + (a(B) - (3 ¥(p)
o (%) -y O
R O2B) + (0% Bz -1y (BN
' , PY(mS(B) + (p% +nd(} p) - » .
'dﬁv(p)_ it e, TP)
: o p +mT(p) . , :
J‘\" '\ ®* | D_(P) "‘mz(P) + Z(D)m (p) ( ‘u(‘ ) - (p) } (5.82)
‘ D(p) + o) S A D(p) X
i (p)( (p) b (p2s <p)>(z"< ) - %)
P +mT(p) o
D(EL-I— m (D) + Z(D)m.‘(D) (p - (p) - PR, ) . (,5..83‘)(
D(p) +m (p) S | :
" where U . )
T.(p) e ol (5.84)
0"61-J-l-p1-pj~/p . =
; o / o LI ;_l'
v ' T ‘\~

"84
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. ““;m:
R
g ,~:r;;
i
L e r_] o .
. Ltp) = . figi o ‘ . (5.8§)
e L p
(-1 0 , ° ?
K. (p) = P:P; ,
A 0 V() Lt . L
e . . . P = S 2.}

- and, where

' \xw

. - v o 2 ’_ N :
Zu(P) = 20T () + B (PP (R) - pyp) (5.87)
o D(p) + n’(p) 1, R | :
1+zo(p) = - 2ELZARL 770 (p) S (5.88) ¢ :
m (p) S ~
2 -1 -’ .
L ZT(p) (p + mT(p))Z (p) pf“' . . (5.89) e
_The quant1t_y a(p) is deterrmned in sﬂch a way that there 1s no double" .
po]e in A (p) in equatwn (5. 8])/ Thus, '
- - ) . ™ . e
»a(E) - Vi) o (5.90) s
[ L " R [ . '@
where v Py D ofg; B ; o
26(3) = 2(p) et o (s
oo ippr=0 e
'. ’ The po'le-terms of the propagators Au\)’ Jﬁv and J can a1so be

‘derfived- from the dynaml% naps of A (x) and J (x) gJyen in equatwns _
(5. 43) and (5.44).  Comdrisons of these with equat1ons (5va1 -5, 83)

~ Teads tor (see reference 31) o e,

o 'as.(ﬁ) - -.‘ZO(B)/E?_» R X
Y 4



I

- -
Aﬁ'
.
L3
(3 VEG) "
2,() - 2a(p) = - 9 4L [PTP
b ’ +2 \mz(s)
- VBIZB)
where
Q .
() - 200)| |
- 1D(p) =0
Z(3) = 2<p), S
(o] D(p) =. 0 . u
where ' : P oo
Z(p) =nZo(El ¥ D(p) Z(pq i 1'5 . hé%ég:?&ﬂ:
@ . _9 -f“ . (1 g A

(5.93)

(5.94)

- equat1ons (5. 88) .and (5 89) can be used to compute aI} of the parameters

" which aﬁpear u;ithe Green functwns in equations (5. 31), (5 82) and

(5. 83) Equatlons (5.90

' '_.terms 1n the dynamical

: the form of the gauge 1nv.r1ant operators (5. 69) the massiess partlcles

> (5.92) and (5.93) can be used t
maps in equattons (5. 43) and §i5. 44)

pute

"The. quant1t1es a p), (p) and v (p) cannot be determ1ned
idb

unlquely However, beca se of the physrca] statqgs?pd1t1on (5.68) anq

b and x are unobservab]

«physical quantit1es. The n]y cond1t1ons requ1red are

.\J

'Zb(E)'fO’ ) 7"0 .

s1nce thexr 1nverses must e well def1ned

- In summary, in th1_

formalism has been used to establish the phy51ca1 part1c1e p1cture for

and Zb(p) and a(p) ‘do not appear in any
(5.97)

and the prev1ous sect1ons, the canon1ca1 ‘

a
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quﬁntumvelectro&&namics in solids. The quasi- partic]es are the plasmon
Uu’ the massless scalar f1e1ds b° and x and the quas1 -electron f1e]d
(90. In the next section, the boson method will be used to derive
equat1ons which the macroscopic ‘é¢lectromagnetic f1e1ds_and electric:

_current must -obey. - ’ o , o

3. THE MACROSCOPIC EQUATIONS o

The dynamical maps of ‘the He1senberg'f1e]ds are given in equa-;

tions (5.43), (5.44) and (5 56). Consider the boson trangformation -
wz*’('.mx°(x z“( i#)x° (x) + £(xg)- % (5.98)
' z;{( ﬁ7’)b (;() > z"i( i9)b° (x) + f(x‘)‘ ’ ﬂ ' "i"s.99)'
- fv*) w2 (x) z‘f( ﬁ) U (x) +u (x) év "*-1‘(&5;1-003 .

The boson transformat1ons of b° and x, in equat1ons (5.98) and (5 99)

@
are requ1red to be the same so that the. phys1ca1 state condition (5. 68) $

s preserved

oy,

It was shown 1n equat1ons (5. 54) and (5. 55) that when'f(x) in j;gf;v"

A
T -

equat1ons (5,98) and (5 99) 1s a regu]ar funct1on wh1ch satfsf1es the

4

free field equat1on

~auo“€a~)"f('x_)- =0 (5 101)
Lo A . L r* i
the boson. transformat1on 1s s1mp1y & §auge transformat1on Therefore,

' ,observgb]e phys1ca1 phenomena can ar1se “from’ f(x) on]y when 1t is 1n ' /'
some way swngu]a? 5"’Tms 51ngu1ar1ty can be a topological singularity .

[def1ned by . ' o /f - e R fvfe I
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[au, 3, If(x) = Gw(x) ;‘ 0 | for some u, v, x . | (5.102)
In this case, when the dyna'mica] maps are constructed, terms which
. arise from the noncorrmutawty of dérivatives must be included.
\ With the notation o .
) = e z 1”V’)x (x) ' | f . . 103)',‘
, N ! p V‘ ‘ -
ey e a (x?‘%z*( i)} u (x) +a :,(2)2 ’?( ﬁ)(b (x). - X (xn
L us:‘:‘h ‘< N
hemo ,Za( 1"v’)a b° x*) o Los (5.»104')
k %@ﬁ: A 3 . . -’ SN . " . " S .
' %‘4 - ® .
‘ the dynamca} maps (5 43) and (5 56) have the fonn e
[ 'f)‘. a'v
0 Fin. . =
e = e ‘f (") {z“( iv’)qp‘&x) + w(x)} ~ (5.106)
.. Since the field.equatwns Cor, Aif(x)'. andjw(-x) ‘are of" the'fbhn
A(3 f.ie@l;)w. = jw[w.» (3, +ieA )Y, Fi] | o (5_-.,107)' ;
- 3F, -J[w. {2, +1eA)w, 13‘]-03 | (51087 |
" f3(x) and a (x) appear 1n the ﬁe]d equatwns through the combmatwns
°(x) -— 3 fo(x) f° (x) (x) (x) and {3(x) 'Therefore,
. after the noncomnutawty of derivatwes 1s consgdered the dynamcal _
- maps are given by : " o R |
— if() o 1" | I
L w(x) % X w[x. gﬁ = auf°, f-° o> Bs <e ] ‘_ (5.109) .
. ‘ _‘\ . . R t.» .
A (x) « -a°(x) +A [x a‘; l‘“’x , B, ‘€°J, - (5.110)
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\

3y = =5 @000 -1 0, 00017 M@0

T 0 1 L ) 0 .
+ JU(X, ay 'E'akf , f“v, B, P
., A

A
4 {
" Here, z(])A(a) is the ph;§bn self-energy which connects to an external
photon 1ine through the minimal interaction and Z( )A(a) is connected
to an external photon 11ne through the magnetic 1nteract1on (see refer-

&

¢ \ .
The boson transformation in equations (5.98), (5.99) and {5.108)

ence 31). , |

~

can be rewritten as

fo(x) » f2(x) + f(x) . (5.112)
aﬁ(-X) +:_a3(><) + au(X) ‘ (5.113)
B(x) +rfS(x) . : ' (5.114)

After the boson transformation, the classical fields

)

A (x) - <OIA x)[0> = a (x) +Eu(x; 2, -+ 5, f,.5 0, 0)  (5.115)
Fux) = <013, 010 = - 2@ (a, (x) - L 5, 50))
- 200,00 45 0 ay - o f £ L0, 0)
(5.116)
satisfy the equations
- a“,;fw(x); ;{v(x) ‘ L (5.117)
D“‘(auu(x) =0 o, © (5.118)

where



Pl = 3,00 - 3k () (5.119)

A UV
The quantitiesé"{u and }ﬂl are the classical macroscopic fields and
currents which ére created by the boson transformatiop. Equations
(5.]1é) and (5.119) must be solved undef given boundary conditions to
determine these f%e]ds. In the next seﬁtion_the 1inegr\approxim$tion
to equatjons (5.118) and (5.119) will* be examined.

v

4. LINEAR RESPONSE THEORY AND THE CLASSICAL MAXWELL EQUATIONS

Consider the equations (assuming no magnetic interactions):

-9 00 = - BNy 00 - Lo fx) v i) L (5.120)
. fo(x) = auqv(ﬁ -8, (x) »o (5.121)

D%(3)a (x) = 0 | , - (5.122)
and

D(3)f(x) = 0 o | (5.193)

Equation (5.120) is obtained by linearizing equation (i5117). The
quantity jﬁxt(x) is an external current which may be supplied to the
system, for example, by an electron beam incident on the sample.

. —->
The magnetic induction, g(x), anc the electric field, E(x), are
given by

1

i(¥) = 7 e5 Fy ) (5.124)

(0w}
—_
B4
~
t

Nt E‘I(x) = foi(x) ' . = (5.125)

Then, equations (5.87), (5.120), (5.124) and (5.125) lead to

90
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2 B(x) - TxE(x) = 0 - (5.126)
VeB(x) =0 (5.127)
VeEG) = - 107 E0) -1z (207 - (g0 ) (x)
+ 3 (x) (5.1
v B(x) - 0% (x) = (z(2) +3%5(2)) =7 (77600
- £4(3)(7xB(x) - 8%E(x)) +1 (2,(3) + 3% (2))
=7 LT P16
- 25,095, FI6(x) + T o (5.129)

. e o
b.:;j these equations, and given boundary conditions, the fields E(x)

and §(x) can be determined from f(x), which contributes only when it

has a topological singu]arify.

When an external field is applied to the system (with jSXt(x)=O),
the state of‘thermal equilibrium of the system is determined by speci—
fying f(x) in such a way that the Gibbs free energy is minimized.

When the function f(x) is§ﬁbt'singu1ar, equations (5.128) and

(5.1%9) lead to the following relations between the test current and

the electrgmagnetic fields:

Ie% ) = (1 + ()7 - () (5.130)
S0 = 7B ) 2 (24(3) - 75, ())7 B0

- zo(a)E(x) - S (5.}31)
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Thé complex dielectric tensor is defined as40’4]’4\2

o .

.ind . ~

Ji (p) = dp (1 - e(p)];E;(p) (5.132)
) > > ' V-» - .

where j(p) and E(p) are the Fourier transforms of j(x) and E(x).

Since the induced current, j;nd(x) is given by

300 = e 0 - i) (5.133)

and B(x) is related to E(x) by equation (5.126), equations (5.131) and

(5.132) lead to —
. . op.ps
M) - 5o (r(P)8;5 - (2r(p) +plz (p) —_;Zi}ﬁjw) (5.134)
. Z
33"0) = 101+ 2 ()3 - Elp) (5.135)

comparing equations (5.134) and (5.132) 1éads to
A _ § -l
e;5(p) = 85 - ? {XT(p)GiJ (z1(p) +p§X —71} (5.136)
' )
ij(P) - v (5.137)

The displacement field D(x), defined by

D(x) =v2(a) E(x) - (5.138)
satisfies
veD(x) = 3€E(x) . o (5.13f)

N

Therefore, the complex dielectric constant s(q),'which is defined by

> >

VeD(x) = e(a)v E(x) is given by



e(q) =1+ £ (q) . | (5.140)
The complex conductivity tensor aij(p) defined by : >

ind, , _ ~ |

J; 7 (p) = 0;35(P) Es(p) .(5.141)

is re]ated to €5 (p)

~

oij(p) =i p,[1- é(p)]ij | L (5.a42)

which, considering equation (5.137), leads to

- = 3 i. . M
o35(p) = P Z;;(p) . (5.143)

Note that in equation (5. 87), the combination ZT(p)-+p X (p) must van-.

ish at p 0 invorder that E (p) be well. def1ned there. Then eij(p)

and 01J(p) become diagonal in the Timit p—+0:

“i3(Pgr 0) = (1% 2.(py, 015, (5.144)

ij 2

et

oij(gof 0) = -3 pozo(pO; 0)s. . (5.145)

The dielectric constant, €, and the conauptivity, g, for the

. A ) ~
static Timit are given by the real parts of e(p) and o(p) at P, = 0s

respectively:
e=1im Re(f + ¢ (p 0)) ' (5.146)
Py>0
o= lim Py Im Eo(po, 0) . , (5.147)
Py0 ) :

Thus, in this section the classical Maxwell equations (5.126 -

5.129) have been found. This led to the linear response functions in

]
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: D
equafions (5.137), (5.140) and (5. 143) and in the1r static limits to the
dielectric constant and conduct1v1ty, € and o, in equations (5.146) and

-

(5.147).,

5. APPLICATIONS

In additidﬁ to the_normé]:phase which has been considered here,
this type of analysis has beeﬁ applied to the superconducting phase.zg’30
The e]ectrdmagnétic interactions ha?e been found to be of considerable
importépce in the'ana]ysjs of the unusual magnetic'and superconducting

.behaviar of some ternary compounds, for example RERh484, REM0658,
. oot N '-5

REMoéSeS, and REthSny; where RE_standsffor a rare earth element. These

compounds exhibitexarious unusual properties; the reentrant phate trans-

ition t6 a ferromagnetic normal state at low temperatures in ErRh4B450

51

and HoMo,.S,” ', the coexistence of superconducting and antiferromagnetic

678
orders 1in GdMoGS8, TbMo658, DyM0658, etc. 52 - 56, a periodic structure '
near the reentrant phase transition temperatures in ErRh4B457 »58 and
H0M06$8 and the anomalous temperature dependence of the upper critical -
field near thgﬁmagnetic'phase transition tempefafure.52’56’59 63
R In these compounds, the electrons which are responsible for
superconductivity aré mainly the 4d-electrons of Rh and Mo. The rare
earth ions have Targe magnetic moments which are coupled to éach other
by a weak exchange_inte;;ction. Thé exchange inteéaction between the
conduction electrons and the rare earth ions has been shown by band
theoretical calculations to be extreme]y weak. 46-49 The conduction

electrons interact with each other through the phonon mediated BCS in-

teraction. Since the exchange interaction between the conduction
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electrons and the rare earth ions is very weak, the electromagnetic in-

teractiop is importanﬁ and the macroscop{é eeUBtions for the electro-

magnetic fie}ds in a magnetjc Superconductor are usefu1.64’65 )
It was once belijeved, however, that no matter how weak this ex-

change interaction, the'singu]arfty in fhe mégﬁetic susceptibility would

destroy the supercondqcting phase.65 A more precise analysis has shown )

thet this is not-the case.67 A careful treatment of the infrared sing- \

ularity shows thet an infrared divergence is avoided. The only effect

of the exchange interaction is to lower the superconducting transition

temperature, Tc’ slight]y., Based on thjs fact the model which iso

.4common1y used in the analysis of magnetic superconducter564’65 ignores

the exchange interaction between the conduction e]ectrens and the rare

earfh ions. The best present day mdde1‘64’65 obtained from these methods

and its success indicates that the neglect of this exchange interaction

is justified. .



CHAPTER VI
DISCUSSION

In the previous chapters some aspects of extended structure in
guantum field theory were discussedjﬁ_The structure of the theory was
first discussed in the context of perturbation theory. Tﬁe tree approx-
imation was used to gain an understanding of the.phyéical Hilbert space
of such a system. It was then shown how qdantum corrections could be |
included. Finally, some general consequences of the preéence of an ex-
tended object were explored with reference to the asymptotic condition.

This work was confined to_thé study of (1+1)-dimensjona] models
with no continuous internal symmetries. oThe purpose of this simplifi-
cation was to isolate the quantum coordinate for position.. In higher
dimensional models with internal symmetries, there may be many more
quantum coordinates. Furthermore, the structure of the generatdrs.bf
thé Poinqaré group and the internal symmetry groups is very cbmp]icated.
It has been shown that, in (3+1)-dimensional models, there may be quan-
tum coordinates corresponding to the "spin" of extended objects which
have a nonspherical shape. There may also be guantum coordinates corr-
esponding to internal symmetries which are broken by the extended object.
A11 of these complications must-be overcome in the study of more real-
istic physical systems. The appearance of the quantum coordinate and
its role in the recovery of Poincaré invariance are features which
should survive in many more general situations.

The work in chapter II led to the construction of the physical

Hilbert space. Knowledge of the structure of the Hilbert space,
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together with a systematic method of including quantum‘corrections,
faéilitate the perturbative calculation of observable physical quanti-
ties such as scattering cross-sections. “
. The calculations in chapter IF did not lead to the gauge condi-
tion used in the collective coordinate method. It is possible that this
choice of gauge condition results from a different %hoice of bounaary‘
gquitions from thdse chosen here. However, this comparisén requires
further study. ‘ _

, Finally; the study of quantum electrodynamics in solids has ‘l
many applications. It would also be interesting to analyze the role of
quantum coordinates and the structure of the Hilbert.space for this

-

system.
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APPENDIX A
THE QUANTUM CGORDINATE

In this appendix, it is proven that the quantum coordinate, Q,
‘appears in the combination x - with the spatial coordinate, x, when

0=0. Consider the field equation
M@y (x) = XDl ()] R

With the power series expansion
f, v _ % .n _ ‘ ‘
U(x) = T Ay (x) (A.2)
n=-1 ,
equation (A.2) can be written as
A2)y,(x) =] i%—FQ[w_](x)]wa](x).,.wal(x) (A.3)

where n+1 = 2 + o +"‘+a2 and Qpaeees0y 2 0. _When n=-1,
M) (x) = FLy_;(x), | Ry
and, wheh n ; 0,
{A(3) - F1[Q_1(x)]}w0(x) =0 (A.5)

which has the solution

Uolx) = - Qew () +y ) L (A.6)

v

Using the definition wn(x) = wn(x) when Q =é =0, and the fact that
equation (A.3) must be satisfied even when Q=0 leads to
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~

M2 (x) = z;}!-FQ[w,](x)JJJa](x)...wkg(x) LA

Theorem: When é =0, the fo11owing relation holds:
b0 = T -0y (0 : - (A.8)

Proof: Assume that equation (A.8) holds for wm(x) where m <n.
It has a]réady been seen that this is the case for wo(x). Equafions

(A.3) and (A.8) lead to

i
"

: ]
) - Flu_ (0T (x) = T g7 Fylv_(x)] y
Ky ky,
Qe ~ Q- V ~
o Q-V) PR CIN £Q-9) ~ b () (A.9)
k]! 17 k£! ¢ R
where‘a]+...+a2 +2=n+1; Gy senesl >0;0 S‘k],...,kl < o + 1,00,
oy + 1. Equation (A;9) can be rearranged as
a]+1

(8(2) - Fy [0 (001 4,00 = T 570y Faltoq (0 %ﬁ%}.—- by (x)

o.+1 k

(... AV, J (- «V j+1 ~
.- p_;(x) _EQ___l. Y (x) ...
Aoy +1)! -1 j+1! aj+]-kj+'l
kﬂ,
y _(‘%_r__‘v) B, () - (A.10)
R A ~ | A

where 0 < j < £. Eqﬁation (A.]O) can be further rearranged as

1400) R 001 9,00 = T ity g P L (0]
. p

S .
x [pr (0= y_; ()T
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[ (20 0)Py - ()] P 1ﬁ9-Liliif1“ N
.. -QeV)Ty (x .- 1 - X
el -] j+1 %5417K547

) . 3

'3

(-Q-9) ™~
X el U (x) ‘ (A.11)
kJL' aSL-kJL : ) .

where 1 -B] + 2. 82 +p B =n+1-2+j< %54 ?1 +Bp =j.

On the right hand s1de of equation (A.11), when j =2, the term 2=1 is
missing. If this term is added and subtracted, the derivatives of

w_](x) can be combined into

<7
() =Ry 001 9,00 = T ggymr (00" Fyilv (0]

. ‘ o

x (-Q -v) 3+ ;L - (x)
Kin! O‘j+1'kj+1 /f/
. kg - .
AR Con™ o, o)

by () = Fyo (c

where n+2 -J'faj+]+...+a£ =n+1; or

/

(0(3) -Fyly_y (0T} 4y (x) = § rhr (-0 -0 Fly_ (0]

=Q -V 1 -~
« { T g ()
K . L'
( v g .
. —8—1——-2- \Ua K, (x) - F [v_ (X)] mT)— w (x) (A.13)

g

where n +£ a]+...+a

g

=n + 1. The right hand side of equation (A.13)
can be further rearranged as ‘



(A(2) - F Lo (01 v, (x) = § gpp (<0 9 oy ()]

]
-0 +V
x v, (x)
1’ %
(-Q-9) Z-; N -0V nﬂ. .
o S by, () = v 00] e Y CONNENTR )
where n +£ + k. +k\z +...+zE =n+l; \k]‘,...,kg > 0; 2]...,'26 > 0;

which leads to

(0(2) - Fy Loy (01} 0,00 = T oy -0+ 00" Fely 4 (0100 - 0)°
. . n+l
ONCREMCERRAON L va0 . (as)
where n+¢g +g + lrh.ﬁ&£= ﬁf,h 0 LP .qlgz O; n+E = 2. A

term on the right'hand side of equation (A.15) with E£=1and n =0 can

- satisfy the firét condition of the summation'but not the fourth, that

£+n 2 2. The fourth condition can be released by adding and subtract-

ing this term on the right hand side (the terms with £ =0, n'= 0, 1

cannot safisfy the first condition):
() - ALy, (01} 0,0 = § gy (09" Flv, (07
| | .
QDT by (00t () = TR (0] L0y, ®

n+l - ' .
- R 01 ST (A.16)
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where 0 < ¢ s n in the second sum. Eddatign (A.16) can be written as
- L] n ~ ~
o (803) =Ry (01 (x) ziﬂn—."l (7D 00Ty, (). ()

-~

n+l | . ;
- 1AL By 60) o
2 |

which, using equation (A.7) leads to

n+1 (- - 7)"
{a(3) - Fly_y(x)I} v, (x) = nzo { = | A(3)

| A
- Fylo 001 BT g () (A.18)

n-n

when it is assumed that the time derivatives of Q are zero, that is,

that (-Q - V) commutes with A(3), equation (A.18) can‘be rewritten as

n(a) -Fyly_{ ()1} v, (x)

n+l (_ 'Vn~ .
= {A(a) -F][w_l(x)]} nzo T Vpon(X) (A.19)
or
n+'|.(_ .vn~ v ) -
¥ (x) = nzo T Vg (XD - o , (A.ZO)

This comp]etesfthe proof of the theprem. It is now easy to prove the
following theorém. ’

Theorem:

| ¥, (x) = n;g] A" (x - AQ, t) By o (A.21)
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Proof: A combination of equations (A.2) and (A.20) leads to

- ©  ntl 1 n
| v, (x) = n=Z_] ngo ar (09T (x) A

<

oo n+1l n .
) n=z_i n-_z-o '):-' (-Q .V)n Kbn_n(X) A"

~

i} [¢ o] [e o] k -
LA caemk g o
A"y (x -0, t)

Thus, the theorem is proved and, when ();0,

I(x ) =9, (- 20, t) L (A.22)



