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ABSTRACT 

Herpes Simplex Virus Type 1 (HSV-1) establishes latent infections in neurons in 

vivo and lytic infections in epithelial cells and fibroblasts. During latent 

infections, HSV-1 transcription is restricted and the genomes are not replicated. 

Latent HSV-1 genomes are chromatinized, such that digestion with micrococcal 

nuclease (MCN) releases DNA fragments with sizes characteristic of nucleosomal 

DNA.  During lytic infections, in contrast, all HSV-1 genes are expressed, the 

genomes are replicated, and their digestion produces primarily heterogeneously 

sized fragments.  However, as evaluated by ChIP assays, HSV-1 DNA interacts 

with histones during lytic infections, although in most cases only a small 

percentage of HSV-1 DNA co-immunoprecipitates with histones (or is cleaved to 

nucleosome sizes following MCN digestion).  Therefore, although current models 

propose that chromatin regulates HSV-1 transcription, it remains unclear how the 

association of histones with only a small percentage of HSV-1 DNA can globally 

regulate viral transcription.  Moreover, the physical properties of the complexes 

containing histones and HSV-1 DNA are unknown. My objective was therefore to 

evaluate the biophysical properties of the HSV-1 DNA-containing complexes 

during lytic infection.  Differing from pervious studies, however, I used classical 

chromatin purification techniques.  I show that most HSV-1 DNA is in unstable 

nucleoprotein complexes and, consequently, more accessible to MCN than DNA 

in cellular chromatin.  This HSV-1 DNA is protected from MCN redigestion only 

after crosslinking, similar to unstable cellular nucleosomes.  HSV-1 DNA is in 

such complexes throughout lytic infection.  Using unrelated small-molecule 



inhibitors, I further show that inhibition of HSV-1 transcription is associated with 

a decrease in MCN accessibility of HSV-1 DNA.  Roscovitine, a cyclin-

dependent kinase inhibitor, prevents activation but not elongation of IE, E, and L 

HSV-1 transcription.  Consistent with a functional association between 

accessibility and transcription, roscovitine only decreases the accessibility of 

DNA templates of which it also inhibits transcription, independent of specific 

promoter sequences.  In summary, I show that most HSV-1 DNA is in unstable 

nucleosome-like complexes during lytic infection and that accessibility to HSV-1 

DNA likely plays a key role in regulating HSV-1 transcription. 
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CHAPTER 1: INTRODUCTION 

1.1. Herpesviridae 

Herpesviridae is a large virus family that includes more than 200 members 

infecting a broad range of hosts, from bivalves to humans.  Herpesviruses are 

classified based on morphological, genomic, and biological criteria.   

Virion morphology is the primary criteria for inclusion in the 

Herpesviridae family.  A typical spherical herpesvirus virion is approximately 

200nm in diameter, and composed of four components, the core, capsid, 

tegument, and envelope. 

The core contains a single copy of the linear double stranded DNA 

genome packaged at high density within the capsid.  The genomes range from 

124,000 to 241,000 base pairs and encode anywhere from 70 to 165 genes, 

depending on the species.  The G+C content is also largely variable, ranging from 

31% to 77% (Honess 1984).  Based on the sequence arrangements of their 

genomes, herpesvirus genomes are classified into six classes (A through F).  Class 

A genomes, exemplified by human herpesvirus 6 (HHV-6), contain one large 

unique sequence with a direct repeat at both ends.  Class B genomes, exemplified 

by herpesvirus saimiri (SaHV-2), contain one large unique sequence flanked by 

multiple direct repeats at the ends.  Class C genomes, exemplified by Epstein-Barr 

virus (EBV), contain multiple terminal repeats (similar to Class B), and unrelated 

internal repeats subdividing the unique sequences.  Class D genomes, exemplified 

by varicella-zoster virus (VZV), contain two unique sequences of which only the 

shorter one is flanked by inverted repeats.  Class E genomes, exemplified by 
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herpes simplex virus type 1 (HSV-1), are discussed in detail in section 1.2.4.  

Class F genomes, like tupaia herpesvirus, are composed of a single unique 

sequence without repeated regions. 

 The capsid is an icosahedron composed of 162 capsomeres (150 hexon 

and 12 pentons) with a triangulation number T=16.   

Surrounding the capsid is an amorphous proteinacious layer called the 

tegument.  Proteomic analysis has identified from 9 to 30 viral proteins in the 

teguments of HSV-1 and herpes simplex virus type 2 (HSV-2), human 

cytomegalovirus (HCMV), murine cytomegalovirus (MCMV), EBV, Kaposi’s 

sarcoma associated herpesvirus (KSHV), rhesus monkey rhadinovirus (RRV), and 

murine gammaherpesvirus 68 (MHV68) (Gibson and Roizman 1971; Cohen, 

Ponce de Leon et al. 1980; Pignatti and Cassai 1980; Hall, Aghili et al. 1982; 

Baldick and Shenk 1996; Bortz, Whitelegge et al. 2003; Johannsen, Luftig et al. 

2004; Kattenhorn, Mills et al. 2004; Varnum, Streblow et al. 2004; Bechtel, 

Winant et al. 2005; Zhu, Chong et al. 2005; O'Connor and Kedes 2006; Loret, 

Guay et al. 2008; Oh and Fraser 2008).  The tegument makes up approximately 

40% of the herpesvirus virion protein mass (Gibson 1996).  

The tegument is enveloped by a lipid bilayer derived from the host 

membranes, which contains cellular and viral glycoproteins.  Herpesviruses 

encode a set of 20 to 80 glycoproteins.  Five glycoproteins (gB, gH, gL, gM, and 

gN) are conserved among all family members.  HSV-1 encodes at least 20 

glycoproteins, of which 11 are found in virions.  HCMV potentially encodes more 

than 75 membrane-associated proteins, of which at least 15 are found in the 
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virion.  Although the exact arrangement of surface glycoproteins in the envelope 

is not known, it appears to be non-random.  For example, glycoproteins gH and 

gL are arranged in a complex on the surface on the virion.  Together with gD and 

gB, they facilitate membrane fusion and viral entry (Campadelli-Fiume, Amasio 

et al. 2007; Subramanian and Geraghty 2007; Heldwein and Krummenacher 

2008).  

All herpesviruses share several biological properties.  They encode a large 

array of enzymes involved in nucleic acid metabolism, DNA synthesis, and 

processing of proteins.  The DNA replication and encapsidation stages of the viral 

life cycle occur in the nuclei of infected cells, whereas the final processing of the 

virion takes place in the cytoplasm.  Productive infection results in the destruction 

of the host cell.  All herpesviruses also establish life-long latent infections within 

their hosts.  These latent genomes retain the capacity to replicate and cause 

disease upon reactivation.  

Based on host range, growth characteristics, and tissue tropism, 

herpesviruses are further classified into three sub-families, Alphaherpesvirinae, 

Betaherpesvirinae, and Gammavirinae.   

Alphaherpesviruses infect a wide range of hosts and are characterized by a 

relatively short reproduction cycle resulting in rapid spread in cultured cells and 

efficient destruction of infected cells.  In vivo, they establish latent infections 

primarily in sensory ganglia.  The alphaherpesvirus subfamily is further 

subdivided into three major genera, the Mardiviruses, the Varicelloviruses, and 

the Simplexviruses.  There is also a fourth alphaherpesvirus genus, the Iltoviruses, 
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which currently has only one member, Gallid herpesvirus 1 (GaHV-1).  

Mardiviruses infect chickens and turkeys and include the chicken pathogen 

Marek’s disease virus (MDV).  Varicelloviruses infect large animals, including 

humans, and include pseudorabies virus (PRV), equine herpesvirus types 1, 2, 3, 

and 4 (EHV-1, EHV-2, EHV-3, and EHV-4), bovine herpesvirus types 1, 2, and 5 

(BHV-1, BHV-2, and BHV-5) and VZV.  Finally, Simplexviruses infect humans 

and non-human primates and include the important human pathogens HSV-1 and 

HSV-2.   

HSV-1 and HSV-2 predominantly cause oral and genital herpetic lesions, 

respectively.  HSV-1 can also infect the skin, resulting in herpetic whitlow or 

more seriously eczema herpeticorum.  HSV-1 infections of the eye can result in 

herpetic stromal keratitis, the leading cause of infectious corneal blindness.  HSV-

1 replication in the brain causes encephalitis, a life-threatening disease of high 

mortality, which also commonly causes permanent neurological damage in 

survivors.  VZV is the causative agent of chickenpox (varicella) and shingles 

(zoster) (Fields 2007). 

Betaherpesviruses are characterized by a very restricted host range and a 

longer reproductive cycle than α-herpesviruses.  In vivo, they establish latent 

infections in progenitor cells of the bone marrow, monocytes, secretory glands, 

and kidneys.  The betaherpesvirus subfamily is further divided into three major 

genera, the Cytomegaloviruses, the Muromegaloviruses, and the Roseolaviruses.  

Cytomegaloviruses infect humans and non-human primates and include the 

important human pathogen, HCMV.  The Muromegaloviruses contains two 
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members, mouse and rat cytomegaloviruses (MCMV and RCMV, respectively).  

The Roseoloviruses also contains only two members, human herpesviruses 6 and 

7 (HHV-6 and HHV-7, respectively) (Fields 2007).    

Finally, gammaherpesviruses infect both small and large mammals 

including humans.  They establish latency in lymphocytes.  Unlike other human 

herpesviruses, the human γ-herpesviruses, EBV and Kaposi’s sarcoma associated 

herpesvirus (KSHV), establish latency in vitro and therefore provide an important 

experimental system that is unavailable for other herpesviruses.  These viruses 

also have the propensity to cause lymphoproliferative diseases.  The 

gammaherpesvirus subfamily is further divided into two genera, the 

Lymphcryptoviruses and the Rhadinoviruses.  Lymphocryptoviruses infect 

humans and non-human primates and includes the important human pathogen, 

EBV.  Rhadinoviruses infect large animals, including humans, and include MHV-

68, herpesvirus saimiri (HVS), and the important human pathogen KSHV (Fields 

2007).    

 

1.2. Herpes simplex virus type 1 (HSV-1) 

HSV-1 is the archetype α-herpesvirus.  HSV-1 has served as an excellent model 

and tool to study host-pathogen interactions as well as general eukaryotic 

processes.  HSV-1 has been instrumental in our understanding of gene regulation, 

synaptic connections in the nervous system, membrane structure, translocation of 

proteins, cancer therapy and gene therapy, among others.  
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1.2.1. HSV-1 Envelope 

HSV-1 virions are on average 186nm in diameter, extending to 225nm with the 

glycoprotein spikes, as evaluated by cryo-electron tomography (Grunewald et al 

2003).  Twelve HSV-1 envelope glycoproteins have been identified gB, gC, gD, 

gE, gG, gH, gI, gK, gJ, gL, gM, and gN.  The soluble glycoprotein gL associates 

with the virion through interactions with gH.  All other HSV-1 glycoproteins are 

anchored to the lipid membrane and protrude as spikes on the surface of the 

envelope.  They mediate viral attachment and entry.  

The lipid envelope is derived from the host cell membrane.  However, the 

precise cellular compartment from which the envelope derives is still 

controversial.  The two alternative models are the single envelopment pathway 

and the double envelopment pathway (also called the de-envelopment-re-

envelopment pathway).  The single envelopment pathway involves the budding of 

capsids into the perinuclear space and the maintenance of that same lipid bilayer 

right through to exocytosis into the extracellular space.  In this pathway, the 

virions acquire the full complement of tegument proteins and envelope 

glycoproteins at the inner nuclear membrane.  The double envelopment or de-

envelopment re-envelopment pathway involves the budding into, and fusion out 

of, the nuclear membrane, resulting in the release of the nucleocapsid into the 

cytoplasm.  The nucleocapsid then acquires the tegument in the cytoplasm before 

budding into the trans-Golgi network or an endosomal compartment to acquire 

the lipid envelope.  Both pathways involve the fusion of a vesicle with the plasma 

membrane releasing the virion.  Although both models have supporting evidence, 
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in recent years the double envelopment pathway has been favored based on better 

supporting evidence.  These include numerous genetic, biochemical, and cell 

biology experiments as well as microscopy data (reviewed in Campadelli-Fiume 

2007) 

 

1.2.2. HSV-1 Tegument 

The tegument of HSV-1 contains more than 20 virus encoded proteins.  In 

addition to their structural roles, tegument proteins are involved in altering the 

host cell environment, likely to promote HSV-1 infection.  For example, the 

tegument proteins VP16 (also known as α-trans inducing factor; α-TIF or 

Vmw65), virion host shutoff (vhs) protein, and VP22 are involved in the 

regulation of HSV-1 gene expression.  Vhs and the IE protein ICP27 coordinate 

the host cell shutoff characteristically observed in during HSV-1 infection.   

ICP27 suppresses host mRNA synthesis through repression of 

transcription (Spencer, Dahmus et al. 1997) and pre-mRNA splicing (Hardy and 

Sandri-Goldin 1994).  Vhs, on the other hand, contributes to host shut off through 

mRNA degradation (Fenwick and McMenamin 1984; Schek and Bachenheimer 

1985; Strom and Frenkel 1987).  Vhs cleaves cellular mRNA upon its entry into 

the cytoplasm.  Vhs shares amino acid sequence homology with a large family of 

human, yeast, bacterial and phage nucleases.  Mutation of the highly conserved 

residues essential for the catalytic activity of cellular nucleases abolishes the 

activity of vhs (Everly and Read 1999; Everly, Feng et al. 2002).  Many efforts 

over the years have investigated whether vhs is a bona fide RNase (Jones, Smibert 
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et al. 1995; Zelus, Stewart et al. 1996; Elgadi, Hayes et al. 1999).  Vhs, expressed 

as GST-fusion protein exhibits endoribonuclease activity in the absence of other 

viral or cellular proteins (Taddeo, Zhang et al. 2006).  At later times, vhs also 

plays a role in regulating the transition from IE to E and L gene expression 

through degradation of IE mRNAs (Read and Frenkel 1983).   

VP16 is present in ~1000 copies per virion and functions to activate IE 

gene expression (see section 1.3.5).  VP22 is one of the most abundant tegument 

proteins, at 2000 copies per virion.  VP22 interacts with VP16 (Elliott, Mouzakitis 

et al. 1995) and has been implicated in the reorganization of microtubules in 

infected and uninfected cells (Elliott and O'Hare 1998; Kotsakis, Pomeranz et al. 

2001).  In addition , VP22 has also been shown to inhibit template activating 

factor 1 (TAF-1)-dependent deposition of histones on DNA templates (van 

Leeuwen, Okuwaki et al. 2003).          

 

1.2.3. HSV-1 Capsid 

The icosahedral HSV-1 capsid is composed of 162 capsomeres.  The major capsid 

component is the major capsid protein VP5 (UL19).  VP5 is present in 960 copies 

per capsid, 6 copies per hexon and 5 copies per penton.  The capsomeres are 

joined by the triplexes composed of one copy of the triplex monomer VP19C 

(UL38) and two copies of the triplex dimer VP23 (UL18).   

Encapsidated HSV-1 DNA appears to be packaged in a liquid crystalline 

state, closely resembling that in bacteriophage T4 and Lambda (Booy, Newcomb 

et al. 1991; Zhou, Chen et al. 1999).  HSV-1 capsids contain the polyamine 
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spermine, which at physiological pH is a polycation that neutralizes 

approximately 40% of the HSV-1 DNA phosphate backbone (Gibson and 

Roizman 1971).  

 

1.2.4. HSV-1 Genome 

Depending on the strain, the HSV-1 genome is approximately 152 kbp long with a 

G+C content of 68%.  It encodes more than 80 proteins.  The HSV-1 genome 

belongs to the class E family of genomes, a class that was actually defined by 

HSV-1.  This is the most complex of all herpesvirus genomes, consisting of two 

covalently joined segments, L (long) and S (short).  Each segment contains a 

unique region, UL (108kbp) and US (13kbp).  These segments are flanked by 

terminal (TR) and internal (IR) repeats TRL and IRL (~9.2kbp each) and TRS and 

IRS (~ 6.6kbp each). 

 

1.3. HSV-1 lifecycle 

1.3.1. Entry 

HSV-1 enters cells by fusing with the plasma membrane.  The first step involves 

reversible attachment of the virion to cell surface through weak affinity binding of 

glycoproteins C and B (gC, gB) to glycosaminoglycans.  These interactions serve 

to bring gD within close proximity to one of its three identified cell surface 

receptors, nectins, herpes virus entry mediator (HVEM), or 3-O-sulfated heparan 

sulfate (3-OS HS).  Following receptor binding, gD undergoes a conformational 

change and together with gB, gH, and gL enables fusion of the envelope with the 
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plasma membrane (Subramanian and Geraghty 2007).  Both gH and gB are 

candidate fusion proteins.  Molecular and biochemical analysis support gH being 

a class 1 fusion glycoprotein, although the structure of gH has yet to be solved.  

On the other hand, the crystal structure of gB has been solved and revealed 

similarities to the vesicular stomatitis G protein (Heldwein, Lou et al. 2006; 

Roche, Bressanelli et al. 2006).  Therefore, both gB and gH/gL may execute 

HSV-1 membrane fusion  (Campadelli-Fiume, Amasio et al. 2007; Heldwein and 

Krummenacher 2008; Gianni, Amasio et al. 2009). 

  

1.3.2. Release of tegument proteins and delivery of genome to the nucleus 

Following fusion with the cell membrane, the capsid and tegument proteins are 

released into the cytoplasm.  The capsid is then transported to the nuclear 

membrane along the host cell microtubular network (Sodeik, Ebersold et al. 

1997).  The capsid docks at the nuclear pore and the viral genome is delivered 

into the nucleus (Miyamoto and Morgan 1971; Knipe, Batterson et al. 1981; 

Batterson, Furlong et al. 1983).   

Inside the nucleus, the viral genome is rapidly circularized (Poffenberger 

and Roizman 1985; Garber, Beverley et al. 1993; Strang and Stow 2005).  

Circularization has been proposed to occur by direct ligation of the termini 

(Davison and Wilkie 1981; Mocarski and Roizman 1982; Strang and Stow 2005), 

homologous recombination (Yao, Matecic et al. 1997; Yao and Elias 2001), and, 

more recently, by the activity of a cellular protein, regulator of chromatin 

condensation 1 (RCC1) (Umene and Nishimoto 1996; Strang and Stow 2007).  
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Following circularization, the HSV-1 genomes are deposited next to PML bodies 

(Ishov and Maul 1996; Maul, Ishov et al. 1996; Everett and Murray 2005).   

Concomitant with the transport of the capsid to the nucleus, the tegument proteins 

are released into the cytoplasm and begin to alter the cell environment to promote 

viral infection, as discussed in section 1.2.2.  

 

1.3.3. Lytic HSV-1 infection 

Lytic HSV-1 infection (also called acute or productive infection) is characterized 

by the expression of the more than 80 proteins encoded by the HSV-1 genome.  

HSV-1 gene expression follows a highly regulated temporal cascade.  HSV-1 

genes are classified as immediate-early (IE), early (E), and late (L) based on the 

requirements for their expression (Honess and Roizman 1973; Honess and 

Roizman 1974).   

The rate of progression of HSV-1 infection is highly variable and depends 

on factors such as cell type, virus strain, and multiplicity of infection (MOI).  IE 

genes are the first to be transcribed.  During infection of African green monkey 

kidney fibroblasts (Vero cells) with a wild type virus (KOS) at an MOI of 3, IE 

transcripts accumulate during the first 2 hours post infection.  IE gene expression 

does not require previous protein synthesis.  As such, IE transcripts accumulate in 

the presence of the translation inhibitor cycloheximide (CHX).  HSV-1 encodes 

five IE genes, infected cell proteins (ICP) 0, 4, 22, 27, and 47.  These proteins are 

involved in transcriptional regulation (ICP0, ICP4, ICP27, possibly ICP22), 

RNAPII modification (ICP22), or immune evasion (ICP47).   
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IE proteins are required for the subsequent expression of E genes, which 

occurs between 5 and 9hpi under the conditions specified above.  E genes encode 

proteins required for viral DNA replication and nucleotide metabolism, such as 

the viral DNA polymerase, ssDNA binding protein (ICP8), thymidine kinase, and 

ribonucleotide reductase, as well as an alkaline nuclease, among others.  

Therefore, HSV-1 DNA replication starts after E genes are expressed.  CHX 

indirectly inhibits E gene transcription because IE proteins are required for the 

activation of E gene expression.    

L genes can be divided into two subclasses, “leaky-late” and “true” late, 

based on their requirement for HSV-1 DNA replication.  Leaky-late genes are 

transcribed at low levels before HSV-1 DNA replication, and peak after the onset 

of DNA replication.  In contrast, true late genes are not transcribed until after 

HSV-1 DNA replication has begun.  The mechanisms that control the temporal 

regulation of L gene expression are still unclear.  Cellular DNA-PK has been 

shown to activate transcription driven by promoter elements from true late genes 

(Petroski and Wagner 1998).  Considering the requirement for HSV-1 DNA 

replication, it also appears that template amplification is at least one of the factors 

required for optimal expression of both leaky-late and true late genes.  In the 

conditions described, L genes are typically transcribed around 6hpi, which 

correspond with the accumulation of replicated HSV-1 DNA.  In general, L genes 

encode the structural proteins required for encapsidation, tegument formation, and 

envelopment of newly synthesized genomes.  Transcription of most late genes 

requires HSV-1 DNA replication.  Therefore, late gene expression is inhibited in 
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the presence of the HSV-1 DNA polymerase inhibitor phosphonoacetic acid 

(PAA).  

 

1.3.4. Regulation of HSV-1 gene expression 

Expression of HSV-1 genes is regulated primarily at the level of transcription.  

However RNA processing, translational, and post-transcriptional regulation also 

play major roles (Honess and Roizman 1974; Johnson and Spear 1984; Harris-

Hamilton and Bachenheimer 1985; Godowski and Knipe 1986; Weinheimer and 

McKnight 1987).   

 

1.3.5. Activation of IE transcription  

The presence of one to several copies of the ATGCTAATGARATTCTTT 

enhancer sequence upstream of the transcription start site of the IE promoters is 

their major difference with E or L promoters (Mackem and Roizman 1982; 

Whitton, Rixon et al. 1983; Whitton and Clements 1984).  This consensus 

sequence nucleates the assembly of the VP16/Oct-1/HCF-1 complex, which is 

responsible for activating IE gene transcription.  IE promoters also contain 

binding sites for other cellular transcription factors, such as Sp1 and GA-binding 

protein.  These transcription factors contribute the level of IE gene transcription 

(Jones and Tjian 1985; Triezenberg, LaMarco et al. 1988; LaMarco and 

McKnight 1989).     

VP16, the virally encoded component of the complex, is a 490 amino acid 

(aa) protein.  It contains two domains which mediate various protein-protein and 
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protein-DNA interactions, the structural core domain (aa 49-403) and the 

transcription activation domain (AD) (aa 412-490).  

The structural core domain is responsible for mediating interactions with 

HCF-1, Oct-1, and DNA, as follows.  VP16 associates with HCF-1 in the 

cytoplasm.  The VP16/HCF-1 complex then translocates to the nucleus (La 

Boissiere, Hughes et al. 1999).  Meanwhile, the cellular transcription factor Oct-1 

recognizes its target sequence (ATGC T/A AAT) within the HSV-1 IE enhancers, 

through a bi-partite POU-homeo domain (Sturm and Herr 1988; Kristie and Sharp 

1990).  Bound to the ATGCTAAT sequence, Oct-1 adopts a slightly different 

conformation than when bound to its consensus octamer sequence (ATGCAAAT) 

in cellular promoters (Walker, Hayes et al. 1994).  This change in conformation, 

in conjunction with the downstream GARAT sequence, enables the binding of the 

VP16/HCF-1 complex to Oct-1 (Stern, Tanaka et al. 1989; Kristie and Sharp 

1990; Stern and Herr 1991). 

HCF-1 is a cellular transcriptional coactivator, which interacts with 

members of numerous transcription factors and other transcription coactivators.  

HCF-1 is also a component of multiple chromatin modification complexes 

(recently reviewed in Kristie 2007; Kristie, Liang et al. 2010).  HCF-1 was 

originally identified and purified as a protein required for the stable formation of 

the VP16/Oct-1/HCF-1 complex (Kristie and Sharp 1993).  It has since been 

shown to be essential for IE gene expression in HSV-1 and VZV (Narayanan, 

Nogueira et al. 2005).  
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Among other functions, HCF-1 acts as an adapter between transcription 

factors and chromatin modifying complexes.  The lysine methyltransferase 

(KMTs), Set1 and MLL, for example, are recruited in a HCF-dependent manner 

to IE promoters (Wysocka, Myers et al. 2003; Narayanan, Ruyechan et al. 2007), 

where they catalyze trimethylation of histone H3 lysine 4 (H3K4me3).  Therefore, 

recruitment of HCF-1 along with Set1 and MLL results in the accumulation of 

active (H3K4me3) chromatin marks, and subsequent loss of repressive ones 

(H3K9me3; histone H3 trimethyl lysine 9) (Huang, Kent et al. 2006; Narayanan, 

Ruyechan et al. 2007).  More recently, HCF-1-dependent recruitment of the lysine 

demethylase (KDM) LSD1 was shown to be required for efficient IE gene 

expression (Liang, Vogel et al. 2009).  Together, these results suggest that the 

VP16/Oct-1/HCF complexes assembled on IE promoters recruit chromatin 

modifying proteins that remove repressive (eg. LSD1) and add activating (eg. 

Set1, MLL) chromatin marks, to promote activation of IE transcription.   

In addition to the structural core domain that interacts with HCF-1, VP16 

contains a highly studied transcriptional activation domain (AD).  This acidic 

carboxy-terminal domain activates transcription through multiple interactions 

with basal transcription factors, such as TBP/TFIID (Stringer, Ingles et al. 1990; 

Ingles, Shales et al. 1991; Klemm, Goodrich et al. 1995; Nishikawa, Kokubo et al. 

1997; Hall and Struhl 2002), TFIIA (Kobayashi, Boyer et al. 1995),  TFIIB (Lin 

and Green 1991; Lin, Ha et al. 1991; Goodrich, Hoey et al. 1993; Hall and Struhl 

2002), and TFIIH (Xiao, Pearson et al. 1994; Gold, Tassan et al. 1996; Herrmann, 

Gold et al. 1996).  The VP16 AD also interacts with the mediator complex 

15



  

(Mittler, Kremmer et al. 2001; Ikeda, Stuehler et al. 2002), histone 

acetyltransferases (for example CBP and p300), and other chromatin remodelers 

(for example Brg-1 and BRM) (Utley, Ikeda et al. 1998; Neely, Hassan et al. 

1999; Vignali, Steger et al. 2000; Hall and Struhl 2002; Memedula and Belmont 

2003; Herrera and Triezenberg 2004).  VP16 promotes decondensation of a large 

(90Mbp) highly compacted heterochromatic chromosome arms, independent of 

transcriptional activation (Tumbar, Sudlow et al. 1999).  VP16 most likely 

activates transcription through the coordinated recruitment of cellular RNAPII 

pre-initiation complexes and chromatin modifying proteins. 

 

1.3.6. HSV-1 IE, E, and L promoters 

IE, E, and L genes differ in their promoter-specific sequences and transcription 

factor requirements.  IE promoters contain one or more TAATGARAT sequences 

along with binding sites for Sp1 and GABP (as discussed in section 1.3.4.1).  E 

promoters are representative of a large class of cellular TATA-box containing 

promoters which contain, in addition to a TATA-box, upstream cellular 

transcription factor binding sites (such as Sp1 and CCAAT).  L gene promoters 

are characterized by the presence of an initiator element (Inr) in addition to a 

functional TATA-box.  Interestingly, leaky-late promoters partially resemble E 

promoters in that they generally contain upstream cellular transcription factor 

binding sites (such as Sp1 and CCAAT).  In contrast, true late promoters lack 

upstream elements and instead contain a downstream activation sequence (DAS).  
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Transcription of HSV-1 IE, E, and L genes share the requirement for the cellular 

RNAPII transcription machinery.   

 

1.3.7. RNA polymerase II (RNAPII) transcription 

Transcription by RNAPII is regulated at the stages of pre-initiation, initiation, 

elongation and termination.   

Pre-initiation involves the binding of promoter specific transcription 

factors to promoter-specific sequences of DNA, found directly upstream from the 

transcriptional start site.  For HSV-1 IE genes, pre-initiation involves the binding 

of the VP16/Oct-1/HCF-1 complex to TAATGARAT sequences within IE 

promoters.   

Once bound to the promoter, the promoter specific transcription factors 

either nucleate the stepwise assembly of pre-initiation complexes (PICs), or 

recruit pre-formed PIC holoenzymes to the transcriptional start site (reviewed by 

(Thomas and Chiang 2006).  The end result of either process is the assembly of a 

transcription-competent complex composed of RNAPII, general transcription 

factors (GTFs), and an ever-growing number of proteins involved in 

transcriptional activation and repression, chromatin remodeling, DNA repair, and 

mRNA processing (Buratowski 2009).   

The GTFs TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH were originally 

identified as accessory factors required for accurate initiation of transcription 

driven by the adenovirus major late promoter in vitro (Sawadogo and Roeder 
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1985; Reinberg and Roeder 1987; Flores, Maldonado et al. 1989; Flores, Lu et al. 

1992; Ge, Martinez et al. 1996). 

Following the establishment of PICs at the promoter, the initiation and 

elongation stages of transcription are controlled primarily by sequential 

phosphorylation of the carboxy-terminal domain (CTD) of the large subunit of 

RNAPII, Rpb1 (described in section 13.4.2.1).  Sequential modification of the 

elongating RNAPII complexes allows for dynamic association of protein 

complexes involved in co-transcriptional processes such as 5’ capping (coupled to 

transcription initiation), splicing (coupled to transcription elongation), and 3’ end 

formation (coupled to transcription termination) (reviewed in Hirose and Ohkuma 

2007).  Throughout the transcription cycle, CTD phosphatases are also recruited 

to the RNAPII complexes and are involved in the recycling of RNAPII 

complexes.  They are also involved in preparing them for reinitiation.  Therefore, 

RNAPII relies on reversible phosphorylation in order to regulate transcription.  

 

1.3.7.1. Regulation of RNAPII transcription by phosphorylation 

RNAPII is a large complex (~0.5 MDa) composed of 12-subunits, named Rpb1-

Rpb12.  The largest subunit, Rpb1, contains a carboxy-terminal domain (CTD) 

composed of multiple repeats of the heptapeptide: Tyr-Ser-Pro-Thr-Ser-Pro-Ser 

(YSPTSPS) (Allison, Moyle et al. 1985; Corden, Cadena et al. 1985). 

Interestingly, the number of CTD heptapeptide repeats increases with 

genome complexity, at least in yeast and animals, varying from 26, 32, 45, and 52 

copies in yeast, nematodes, Drosophila, and mammals, respectively (Egloff and 
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Murphy 2008).  This relationship is lost in plants, Arabidopsis thaliana and the 

soybean (Glycine max), which have 34-39 repeats (Dietrich, Prenger et al. 1990).  

The CTD serves as a scaffold for interactions with numerous RNAPII associated 

complexes.  

Regulation of RNAPII transcription is achieved in part by the reversible 

phosphorylation of the CTD by a subset of cyclin dependent kinases (CDKs).  

CDKs phosphorylate serines 2 (Ser-2) and 5 (Ser-5) of the CTD, which in turn 

modulate the association of RNAPII with other proteins. 

Only PICs containing a hypophosphorylated form of  RNA polymerase II 

(RNAPIIa) bind to promoter DNA (Koleske and Young 1995; Ossipow, Tassan et 

al. 1995).  Initiation of transcription coincides with the phosphorylation of serine 

5 (Ser-5) of the CTD by the cyclin dependent kinase 7 (CDK7) subunit of 

transcription factor IIH (TFIIH) (Lu, Zawel et al. 1992).  This phosphorylation 

decreases the affinity of RNAPII for the GTFs bound to the promoter, therefore 

allowing RNAPII to be released from the promoter.  This event is referred to as 

“promoter release” (Roy, Adamczewski et al. 1994; Akoulitchev, Makela et al. 

1995; Serizawa, Makela et al. 1995; Shiekhattar, Mermelstein et al. 1995).   

RNAPII often stalls shortly after transcription initiates, mainly through the 

inhibitory actions of 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) 

sensitivity-inducing factor (DSIF) and negative elongation factor (NELF) (Wada, 

Takagi et al. 1998; Yamaguchi, Takagi et al. 1999).  The DSIF/NELF complex is 

also responsible for recruiting the proteins involved in catalyzing the addition of 

the m7GpppN cap structure to the 5’ end of the nascent mRNA (Mandal, Chu et 
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al. 2004).  Promoter proximal pausing has therefore been proposed as a 

mechanism to allow enough time for proper capping of nascent mRNAs.   

Transcription pausing is then relieved by the recruitment of positive 

transcriptional elongation factor b (p-TEFb), and subsequent phosphorylation of 

Ser-2 of the CTD by the CDK9 subunit of p-TEFb.  CDK9 activity results in the 

hyperphosphorylation of RNAPII (RNAPIIo) (Wada, Takagi et al. 1998).   

P-TEFb is probably best characterized in its requirement for overcoming 

the stalling caused by the transactivation response element (TAR) RNA encoded 

by human immunodeficiency virus (HIV) (Marshall and Price 1995; Yang, 

Herrmann et al. 1996; Yang, Gold et al. 1997; Gold, Yang et al. 1998; Peng, Zhu 

et al. 1998; Zhou, Halanski et al. 2000; Kim and Sharp 2001). 

CDK2 has also been suggested to be involved in overcoming RNAPII 

stalling (Deng, Ammosova et al. 2002; Nekhai, Zhou et al. 2002; Ammosova, 

Berro et al. 2006).   

In addition to CDK 2, 7, and 9, CDK 8 is also involved in the regulation of 

cellular transcription.  CDK8 associates with the mediator complex (Rickert, 

Seghezzi et al. 1996; Hengartner, Myer et al. 1998).  Like CDK7, CKD8 

phosphorylates Ser-5 of the CTD.  However, CDK8 does so prior to the assembly 

of the PIC and thus appears to prevent transcription (Hengartner, Myer et al. 

1998) 
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1.3.7.2. HSV-1 modulation of cellular RNAPII  

In uninfected cells, the large subunit of RNAPII exist is in two phosphorylation 

states, hypo- (IIa) and hyper- (IIo) phosphorylated.  The IIa and IIo forms can be 

distinguished either by antibodies that specifically recognize the different 

phosphorylation state of the CTD, or by SDS-PAGE in which they resolve at 200 

and 240 kDa, respectively.  Although intermediately migrating forms can be 

generated in vitro, these forms appear to contribute little, if any, to the RNA 

polymerase II detected in vivo.  

During HSV-1 infection, however, the IIa and IIo forms are depleted.  In 

their place, a novel phosphorylated form of RNAPII, IIi is present (Rice, Long et 

al. 1994; Rice, Long et al. 1995).  This form migrates between 215 and 230kDa.   

It is first detected by 3hpi and becomes the predominant form at 5hpi.  RNAPIIi is 

not cell-type dependent or species specific.  It is observed in both monkey (Vero) 

and human (HeLa) cells.  It was proposed that the novel phosphorylated form 

RNAPIIi preferentially transcribes the viral genome over the cellular genome 

(Rice, Long et al. 1994).   

RNAPIIi was shown to be dependent on the IE protein ICP22 and the viral 

protein kinase UL13 (Long, Leong et al. 1999).  However, HSV-1 mutants in 

which the ICP22 or UL13 genes have been deleted show restricted growth in only 

certain cell lines (Rice, Long et al. 1995; Long, Leong et al. 1999). For example, 

ICP22 and UL13 mutant viruses show cell type dependent growth restrictions such 

that they are able to grow relatively efficiently on Vero, but not on BHK or HEL 
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cells (Rice, Long et al. 1995; Long, Leong et al. 1999).  These defects are the 

result of delayed expression of E proteins and decreased level of L proteins, but 

not of mislocalization of RNAPII to viral replication compartments (Rice, Long et 

al. 1994; Spencer, Dahmus et al. 1997; Long, Leong et al. 1999).  Therefore, 

RNAPIIi is not absolutely required for HSV-1 transcription or its proper 

localization to HSV-1 replication sites. 

 

1.3.8. Cyclin-dependent kinases (CDKs) 

The most critical phosphoryations of RNAPII are performed by CDKs.  CDKs are 

a family of highly conserved serine/threonine protein kinases involved in the 

regulation of the cell cycle (CDK1, CDK2, CDK3, CDK4, CDK6, CDK7), 

transcription (CDK7, CDK8, CDK9), or neuronal functions (CDK5).  CDKs are 

heterodimeric complexes composed of a catalytic subunit, the CDK, and a 

regulatory subunit, the cyclin.  CDKs are inactive in the absence of their cyclin 

partners.   

The cyclin partners of the CDKs involved in transcription, CDK7, 8, and 

9, are constitutively expressed.  In the context of transcription, CDKs are 

therefore mostly regulated through their association with different multi-protein 

complexes involved in the different stages of transcription (described in section 

1.3.4.2.1). 

In contrast, the CDKs involved in cell cycle progression are tightly 

regulated by the transient expression of their cyclin subunits, phosphorylation (by 

the CDK7-containing CDK activation kinase (CAK), interaction with protein 
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inhibitors (Cip and INK4 family members), and subcellular localization.  CDKs 

involved in cell cycle regulation can be further classified as interphase (CDK2, 3, 

4, and 6) or mitotic (CDK1) CDKs.    

Interphase CDKs are responsible for driving the cells through G1, S, and 

G2 phases of the cell cycle.  During early G1, CDK4 and CDK6 form complexes 

with the D-type cyclins (D1, D2, and D3) and execute critical regulatory events 

for G1.  CDK2/cyclin E complexes promote S-phase entry by triggering the G1/S 

transition.  CDK2/cyclin A complexes further promote S-phase progression.  

Following DNA replication, the mitotic CDK, CDK1 is activated by cyclins A 

and B to promote progress through the G2/M transition.  Finally, exit from 

mitosis occurs following the degradation of cyclin B and subsequent inactivation 

of CDK1.  CDK3 has been proposed to promote exit from G0 back into the cell 

cycle through its association with cyclin C, which is expressed to high levels 

during G0 (Ren and Rollins 2004). 

The classic model of cell cycle regulation has recently been challenged by 

genetic evidence.  Mice lacking CDK2 (Berthet, Aleem et al. 2003; Ortega, Prieto 

et al. 2003), CDK3 (Ye, Zhu et al. 2001), CDK4 (Rane, Dubus et al. 1999; 

Tsutsui, Hesabi et al. 1999), or CDK6 (Malumbres, Sotillo et al. 2004) survive  

(recently reviewed in Santamaria and Ortega 2006).  In fact, in mice, it appears 

that CDK1 is able to drive the cell cycle alone, in the absence of all interphase 

CDKs (CDK2, 3, 4, and 6) (Santamaria, Barriere et al. 2007).  Santamaria et al.  

recently showed that mouse embryos lacking CDK2, 4, and 6 still undergo 

organogenesis and develop to midgestation (Santamaria, Barriere et al. 2007).  In 
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contrast, CDK1-/- embryos failed to develop beyond the two cell stage.  CDK1 

was likely able to compensate for the loss of the other CDKs through its ability to 

bind D and E type cyclins and phosphorylate pRb (Santamaria, Barriere et al. 

2007).  However, this functional redundancy is not simply a characteristic of all 

CDKs.  Genetic substitution of CDK1 by CDK2 was not able to compensate for 

the loss of CDK1 (Satyanarayana, Berthet et al. 2008).  

One of the best characterized functions of CDKs is the phosphorylation of 

retinoblastoma (pRb) tumor suppressor and the pRb-related pocket proteins p130 

and 107 (reviewed in Sidle, Palaty et al. 1996).  In their hypophosphorylated state, 

these proteins bind and repress the activity of different members of the E2F 

transcription factor family.  Pocket protein-E2F complexes function as active 

repressor complexes.  They occupy E2F binding sites on DNA and recruit 

chromatin modifying proteins such as HDACs (Brehm, Miska et al. 1998; Luo, 

Postigo et al. 1998; Magnaghi-Jaulin, Groisman et al. 1998).  As the cells cycle 

progresses, pocket proteins are phosphorylated, first by CDK4/6 and then by 

CDK2, disrupting the repressor complex.  This results in the release of E2F and 

subsequent activation of target genes, most of which are involved in regulating 

further progression through the cell cycle.   

Much like the idea that individual CDKs are required at specific stages of 

the cell cycle, it was also thought that E2F function was indispensable for 

controlling cell proliferation.  However, similar to the redundancy observed with 

CDKs, mice deficient for individual or combinations of E2F genes were not 
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generally defective in cell proliferation (recently reviewed in Chen, Tsai et al. 

2009).  

Regardless of their functional redundancy, CDKs, pocket proteins and 

E2F transcription factors are involved in regulating cell proliferation.  Not 

surprisingly, many viruses that depend on host cell DNA replication proteins have 

evolved mechanisms to promote host cell proliferation.  One such mechanism is 

the targeting and subsequent inactivation of pRb which results in E2F-directed 

transcriptional activation.  In fact, E2F was originally discovered as a cellular 

factor that bound to the adenovirus E2 promoters (Kovesdi, Reichel et al. 1986; 

Yee, Reichel et al. 1987).  It was later shown that the viral protein E1A sequesters 

pRb thus relieving E2F repression.  This mechanism is also shared by the large T 

antigen of SV40 and E7 protein of human papilloma viruses (Whyte, Buchkovich 

et al. 1988; Dyson, Howley et al. 1989; Hu, Dyson et al. 1990).  Consistent with 

the ability to promote cell proliferation, E1A, large T antigen, and E7 are all 

classified as oncoproteins.  As a result, adeno-, polyma-, and papilloma- viruses 

are all referred to as DNA tumor viruses.  

 

1.3.8.1. Cell cycle regulation during HSV-1 infection 

In contrast to the DNA tumor viruses, HSV-1 encodes its own DNA replication 

proteins and consequently wild type HSV-1 replicates equally well in cells in all 

stages of the cell cycle (Cohen, Vaughan et al. 1971).  However, the role of cell 

cycle during HSV-1 infection has been largely contested.  HSV-1 and HSV-2 
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have been shown to induce events that correlate with progression as well as 

inhibition of the cell cycle.   

Early work showed that HSV-1 infection of cells in G1 prevents 

progression into S-phase, in that the infected cells do not undergo high levels of 

DNA synthesis (de Bruyn Kops and Knipe 1988).  However, cells infected after 

entry into S-phase completed DNA replication (de Bruyn Kops and Knipe 1988).  

Cellular factors present during the G1/S stage of the cell cycle are able to 

compensate for mutations in HSV-1 transcriptional transactivators, ICP0 (Cai and 

Schaffer 1991) or VP16 (Daksis and Preston 1992) which display growth defects 

when infecting cells in G0 or G2, respectively.  

Induction of an “S-phase-like” nuclear environment has been reported by 

two groups.  Hilton et al., reported an induction of the release of E2F and the 

formation of the S-phase form of the p107/E2F complex that contains cyclin A 

during HSV-1 infection (Hilton, Mounghane et al. 1995).  Consistently, Hossain 

et al. showed that there is an increase in hyperphosphorylated pRb as well as 

CDK2 activation during HSV-2 infection (Hossain, Holt et al. 1997).  Our lab has 

also observed that cyclin A levels remain constant for up to 7hpi (Provencher, 

VMI, MSc Thesis).  Interestingly, although these events are characteristic of cell 

cycle progression, the infected cells do not activate CDK4/6 or CDK1 and do not 

progress through the cell cycle (Hossain, Holt et al. 1997).  The inactivation of 

CDK4/6 likely results from the destabilization of D-type cyclins (Ehmann, 

McLean et al. 2000; Song, Liu et al. 2000; Everett 2004). 
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Conversely, pRb has also been reported to be hypophosphorylated during 

HSV-1 infection (Ehmann, McLean et al. 2000; Song, Liu et al. 2000).  In any 

event, pRb likely does not play a significant role in the replication cycle of HSV-

1.  Normal levels of HSV-1 viral protein accumulation, viral DNA replication and 

progeny virus yield were reported in pRb-/-  mouse embryonic fibroblasts 

(Ehmann, Burnett et al. 2001).   

CDK2 activity has been reported to be activated (Hossain, Holt et al. 

1997), unaffected (Song, Liu et al. 2000), or downregulated (Ehmann, McLean et 

al. 2000; Ehmann, Burnett et al. 2001) during HSV-1 or HSV-2 infection. 

However, the group who reported the decrease in CDK2 activity showed that 

cyclin A expression was completely inhibited at 8hpi in the presence of serum. 

Curiously, mock infected cells also failed to express cyclin A after 8h in the 

presence of serum (Ehmann, McLean et al. 2000).  

Therefore, in contrast to other DNA viruses which do not encode their 

own replication proteins and thereby must promote host cell proliferation, HSV-1 

infection does not require host cell cycle progression.  However, the induction of 

an S-phase-like nuclear environment strongly suggests the importance of cellular 

proteins induced during cell cycle progression, for HSV-1 replication.  Perhaps 

the most convincing evidence for the importance of cellular proteins in HSV-1 

replication is that collected using pharmacological CDK inhibitors (PCI).  These 

studies have clearly shown the importance of CDKs during HSV-1 infection 

(discussed below in section 1.3.9.1). 
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1.3.9. Pharmacological cyclin-dependent kinase inhibitors (PCIs) 

PCIs are a heterogeneous group of small molecules that share the ability to 

preferentially inhibit CDKs.  Most PCIs are small (≤600 Da), flat, heterocycles 

that compete with ATP for the binding to the ATP-binding pocket of the target 

CDKs.  PCIs form hydrogen bonds with the target CDKs, mostly with main-chain 

groups or with conserved residues in the ATP binding pocket.  However, most of 

the specificity of PCIs is conferred by their fitting into secondary pockets in the 

ATP-binding domain of the target CDKs (De Azevedo, Leclerc et al. 1997).  

These pockets are not occupied by the ATP co-substrate and consequently are not 

so widely conserved among protein kinases.  

Based on their specificities, PCIs can be classified as non-specific, pan-

specific, oligo-specific, or mono-specific (Appendix 1 and reviewed in Schang, St 

Vincent et al. 2006).  Non-specific PCIs, such as staurosporine, inhibit CDKs and 

a variety of unrelated protein kinases.  Pan-specific PCIs, such as flavopiridol 

(Flavo) and 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) inhibit 

most or all CDKs indiscriminately.  Oligo-specific PCIs, such as roscovitine 

(Rosco) and purvalanol (Purv) have preference for only a subset of CDKs.  These 

PCIs can be further classified accordingly to whether they preferentially inhibit 

CDKs involved in transcription (CDK7, CDK8, and CDK9) (described in section 

1.3.7.1), or CDKs involved in the regulation of the cell-cycle (CDK1, CDK2, 

CDK4, CDK6, and CDK7) (described in section 1.3.8) (Schang, St Vincent et al. 

2006).  Finally, mono-specific PCIs, such as P1446A-05 and PD-0332991 are 

reported to specifically target CDK4/6 cyclin D.  However, there are no published 
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reports characterizing this putatively selective inhibition in any detail.  P1446A-

05 and PD-0332991 are currently in Phase I clinical trials against advanced 

refractory malignancies and non-Hodgkins lymphoma, respectively.  However, 

considering that knockout experiments have clearly shown the CDKs (with the 

exception of CDK1) are functionally redundant, it is unlikely that mono-specific 

PCIs will provide better therapy than oligo-specific ones.    

 

1.3.9.1. The specificity of Rosco 

Rosco, 2-(R)-(1-ethyl-2-hydroxyethylamino)-6-benzylamino-9-isopropylpurine, is 

a tri-substituted purine that potently and selectively inhibits of a subset of CDKs 

(Appendix1) (Meijer, Borgne et al. 1997).  Over the years, the specificity of 

Rosco has been evaluated by many different groups (see references in Appendix 

1).  Rosco specificity has been evaluated by in vitro kinase assays and also by 

techniques more amenable to large scale screening such as phage display (Fabian, 

Biggs et al. 2005; Karaman, Herrgard et al. 2008).  The phage display screens 

involve a competition binding assay that measures the interaction between a “test” 

compound (in this case Rosco) and the kinase domain of tagged kinases (for 

example, Fabian et al. 2005 screened a panel 119 protein kinases).  Briefly, the 

kinase domain is expressed as a fusion with the T7 bacteriophage major capsid 

protein, referred to as “tagged kinases”.  “Bait” ligands, which are small 

molecules that bind the ATP-binding binding pocket of the tagged kinases (Kd < 

1µM) are attached to biotin and immobilized on streptavidin-coated beads.  The 

phages expressing the tagged kinases are then bound to the immobilized probes 
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and competition assays are performed with “test” compounds.  If the free test 

compound binds with higher affinity to the ATP-binding pocket of the tagged 

kinase, fewer phages remain bound to the bait.  The amount of phage still bound 

to the solid support after the competition is then evaluated by either phage plaque 

assays or quantitative PCR (qPCR) of phage DNA.  Both quantitation methods 

enable near single-molecule protein detection, allowing accurate detection of as 

few as 10–100 binding events.  

Rosco has been tested against 57% (295 or 518) of the kinases encoded by 

the human genome (Appendix 1).  Rosco is thus arguably one of the most 

extensively characterized protein kinase inhibitors.  Rosco selectively inhibits 

CDK1, 2, 3, 5, 7, and 9 with IC50 <0.7µM.  At higher concentrations, it also 

inhibits DYRK1A (IC50 3.1µM), PAK4 (IC50 6.9µM), GSK3B (IC50 32µM), Erk1 

(IC50 34µM), Erk2 (IC50 14µM), CK1δ (IC50 17µM), CaMK2α (IC50 32µM).  

Rosco also binds to, and inhibits, one non-protein kinase, pyridoxal kinase.  

However, Rosco did not inhibit the kinase activity of pyridoxal kinase at lower 

than physiological concentrations of ATP (Bach, Knockaert et al. 2005).  

Therefore, Rosco is not likely to inhibit pyridoxal kinase in vivo.  Rosco does not 

inhibit, or bind with high affinity to, 282 other protein kinases, 4 other kinases, 

and 2 viral protein kinases (Appendix 1).       

 

1.3.9.2. Effects of Rosco on HSV-1 replication 

Initial studies revealed that Rosco inhibited the accumulation of HSV-1 IE and  E 

transcripts, as well as HSV-1 DNA replication (Schang, Phillips et al. 1998; 
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Schang, Rosenberg et al. 1999; Schang, Rosenberg et al. 2000).  Although Rosco 

inhibited the VP16-dependent activation of IE gene expression, it did not change 

the affinity of the VP16/Oct-1/HCF complex for TAATGARAT-containing DNA 

in vitro (Jordan, Schang et al. 1999).  As a caveat of these experiments, Oct-1 was 

expressed in bacteria and then added to the binding reactions.  Any potential 

effects of Rosco on Oct-1 would not have been detected by these assays.  Rosco 

also inhibits the posttranslational modifications of the transcriptional activators 

ICP0 and ICP4 (Advani, Hagglund et al. 2001; Davido, Leib et al. 2002).  

Consistent with targeting cellular proteins required for multiple HSV-1 functions, 

Rosco inhibited the replication of both wild-type strains as well as strains of 

HSV-1 that were resistant to conventional antivirals.  Furthermore, Rosco-

resistant HSV-1 mutants could not be isolated even after 11 passages in selective 

media.  PAA, in contrast, which inhibits the HSV-1 DNA polymerase, quickly 

selected for drug-resistant mutants.  Titres had already reached 50% of wild-type 

after 11 passages (Schang, Phillips et al. 1998).              

 

1.3.9.3. Effects of Rosco on other human pathogenic viruses 

The effects of PCIs have since been found to inhibit replication of a variety of 

other human pathogenic viruses, including HCMV, VZV, EBV, HIV-1, KSHV, 

human T-lymphotropic virus (HTLV), adenovirus, and several animal retroviruses 

(reviewed in Schang, St Vincent et al. 2006). 

For example, Rosco inhibited HCMV IE and E functions such as the 

expression of viral transcriptional regulators and viral DNA synthesis (Sanchez, 
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McElroy et al. 2004).  Rosco also inhibited HCMV DNA replication when added 

at both early (Bresnahan, Boldogh et al. 1997) and late (Sanchez, McElroy et al. 

2004) times post infection.  Furthermore, the effects of Rosco on late viral 

functions and replication occurred even in the presence of viral regulators of 

transcription (Sanchez, McElroy et al. 2004).  Interestingly, Rosco had differential 

effects on expression of different HCMV genes.  For example, Rosco inhibited 

the expression of IE1-72 while activating that of IE2-86, an alternatively spiced 

transcript from the same transcriptional unit.  Similar differential effects were 

observed on another transcriptional unit encoding the alternatively spiced proteins 

UL31x1 (inhibited) and UL37 (induced).  Therefore, Rosco appears to 

differentially inhibit expression of alternatively spiced HCMV gene products 

(Sanchez, McElroy et al. 2004). 

VZV replication was also inhibited in the presence of Rosco, likely by 

inhibition of expression and subcellular localization of several VZV IE proteins 

such as IE62 (Taylor, Kinchington et al. 2004; Habran, Bontems et al. 2005). 

Similarly, Kudoh et al. showed that Rosco inhibited EBV replication.  

Rosco inhibited accumulation of the IE and E EBV proteins, even in the presence 

of the required transactivators of gene expression (Kudoh, Daikoku et al. 2004). 

The effects of Rosco were shown to extend beyond the herpesviruses.  

Rosco was shown to inhibit HIV replication in primary or immortalized human 

cells, and HIV reactivation from latency in cultured cells (Nelson, Gelman et al. 

2001; Wang, de la Fuente et al. 2001; Schang, Bantly et al. 2002; Agbottah, de La 

Fuente et al. 2005).  Rosco inhibited transcription from a HIV LTR promoter in 
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the presence or absence of Tat.  It also inhibited transcription of HIV mutants that 

are not known to require CDK9 (Wang, de la Fuente et al. 2001).  Consistent with 

targeting cellular proteins required for viral functions, Rosco inhibited equally 

well the replication of multidrug-resistant and wild-type HIV strains (Schang, 

Bantly et al. 2002). 

As expected, viruses that are not known to require CDKs such as vaccinia 

or lymphocytic choriomeningitis virus were not inhibited by Rosco (Schang, 

Bantly et al. 2002). 

Therefore, Rosco inhibits the replication and transcription of many 

unrelated viruses.  Furthermore, Rosco often inhibits multiple functions within the 

replicative lifecycle of individual viruses.  One of the potential mechanisms 

whereby PCIs such as Rosco may inhibit multiple functions of many otherwise 

unrelated nuclear DNA viruses is through epigenetic modulation of chromatin 

structure.   

 

1.4. Chromatin 

1.4.1. Histone octamer and the nucleosome core particle 

Nuclear DNA is typically packaged in a nucleoprotein complex called chromatin.  

The basic repeating unit of chromatin is the nucleosome core particle or 

nucleosome, which consists of 146bp of DNA making 1.75 superhelical turns 

around an octamer containing the four core histones, H2A, H2B, H3, and H4 

(Kornberg 1974).  Histones are highly basic proteins that bind to DNA and 

neutralize the negative charge of the phosphate backbone.  This extensive charge 
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neutralization allows for the packaging of DNA into the nucleus.  The level of 

compaction can reach up to 10,000-fold during the condensation of mitotic 

chromosomes.   

The histone octamer is composed of stable H3-H4 tetramers flanked by 

two H2A-H2B dimers.  Each of the core histones consist of a structured C-

terminal histone fold domain (HFD) and an N-terminal tail domain (Arents, 

Burlingame et al. 1991).  The HFD is comprised of three α-helices (α1, α2, and 

α3) separated by two loops (L1 and L2) (Arents and Moudrianakis 1995).  H2A 

also contains a C-terminal tail domain.      

In vitro, nucleosomes can be assembled using purified histones and DNA 

(Luger, Rechsteiner et al. 1999).  H2A/H2B and H3/H4 heterodimers initially 

form through interactions between their respective HFDs.  The H3/H4 tetramers 

then form through a four helix bundle between neighboring H3 molecules 

resulting in the dimerization of the H3/H4 dimers.  Histone octamers are formed 

when H2A/H2B dimers associate on opposite sides of the H3/H4 tetramer through 

four helix bundles that form between H2B and H4 (Luger, Mader et al. 1997).  

The nucleosome contains two-fold symmetry along the dyad axis which passes 

through the two neighboring H3 molecules and the entry and exit points of DNA 

(Luger, Mader et al. 1997).  The intranucleosomal interactions within the 

canonical histone octamer are very stable.  These interactions are established in 

the absence of DNA.  Addition of DNA does not result in any significant 

alteration of these interactions (Luger, Mader et al. 1997). 
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 In vivo, the situation is certainly more complex.  H2A/H2B dimers and 

H3/H4 tetramers do not exist free in the nucleus but are instead assembled into 

nucleosomes through their interactions with chaperone proteins (see recent 

reviews Eitoku, Sato et al. 2008; Park and Luger 2008). 

The crystal structures of canonical and variant histone-containing 

nucleosomes have provided a wealth of information about the structural role of 

chromatin and nucleosome stability (Chakravarthy, Bao et al. 2004; Zlatanova, 

Bishop et al. 2009).  However, they provide only static pictures.  Furthermore, 

they provide only details on the protein interior of the nucleosome core, whereas 

the core histone tails are not observed in the crystal structures (Arents, 

Burlingame et al. 1991; Luger, Mader et al. 1997; Suto, Clarkson et al. 2000).   

Chromatin is a highly dynamic macromolecular complex, even at the level 

of the individual nucleosome.  For example, nucleosomal DNA is thought to 

consistently undergo partial unfolding presumably from short-lived dissociations 

of histone-DNA interactions (reviewed in Zlatanova, Seebart et al. 2008).  

Depending on the distances in which histone-DNA interactions are transiently 

disrupted, this is referred to as either “breathing” (typically 10-30bp from the 

DNA ends) or “opening” (70-80bp) (Marky and Manning 1995; Tomschik, Zheng 

et al. 2005).  In both cases, nucleosomal DNA would become more accessible to 

cleavage by nucleases.  
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1.4.2. Micrococcal nuclease as a tool to study chromatin 

Nucleases have been instrumental in the characterization of chromatin structure 

(Noll 1974).  Restriction enzymes and endonucleases such as DNases and 

micrococcal nuclease (MCN) have all been used to study and describe 

characteristics of chromatin such as DNA accessibility, nucleosome positioning 

and remodeling, as well as linker histone incorporation, among many other 

aspects.   

MCN was used to demonstrate the regular repeating structure of chromatin 

through its preferential cleavage of exposed linker DNA between nucleosomes 

(Axel, Melchior et al. 1974; Greil, Igo-Kemenes et al. 1976).  MCN has since 

been used extensively to study and characterize unique forms of chromatin, 

including chromatin found at the centromeres, telomeres, or packaged into sperm.  

Since DNA digestion obviously requires access to the DNA template, MCN also 

provides important information about the accessibility of the nucleosome DNA.   

MCN randomly cleaves protein-free DNA.  In the context of chromatin, 

however, MCN digestions first cleave linker DNA sparsely, releasing 

polynucleosome chains.  Longer digestions eventually cleave the 

polynucleosomes to mononucleosomes.  As a result of the partial unfolding of the 

DNA ends of the nucleosome, either by “breathing” or “opening”, prolonged 

exposure to stringent MCN digestion conditions eventually results in the 

degradation of DNA in mononucleosomes. 

Standard MCN digestions of regularly chromatinized DNA therefore 

result in protection of poly- and mono- nucleosome-sized DNA fragments.  
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Purification and subsequent resolution of the resulting DNA fragments by gel 

electrophoresis result in the appearance of a nucleosome “ladder”.  Each “rung” 

corresponds to a multiple of nucleosome-sized DNA, with the mononucleosome 

sized fragments migrating as the fastest band.  Furthermore, the width of each 

band or “rung” represents both the relative stability of the nucleosome occupying 

that DNA and the position in which the nucleosome is found.  The latter is 

referred to as nucleosome “phasing”.  “Phased” nucleosomes are positioned 

within a small range of a genomic locus and thus result in the protection of 

homogeneously sized fragments of DNA following MCN digestion.  These 

resolve as a thin defined band, or “rung”, on the nucleosome ladder.  In contrast, 

nucleosomes with a continuous distribution throughout an array result in the 

protection of heterogeneously size DNA which resolve as wider undefined bands.  

Nucleosome arrays assembled on DNA containing nucleosome 

positioning sequences result in “phased” nucleosomes.  This occurs, for example, 

when nucleosome arrays are assembled on templates containing tandem repeats of 

sequences such as 5S ribosomal DNA (Simpson and Stafford 1983; Hayes, 

Tullius et al. 1990) or the artificial “pentamer-TG” (Shrader and Crothers 1989; 

Shrader and Crothers 1990) sequences.  These sequences contain “positioning 

power”, such that nucleosomes assembled on tandem arrays of these sequences 

occupy preferred positions.  Therefore, MCN cleaves at relatively the same site 

within each repeat resulting in a nucleosome ladder with well defined bands 

(Young and Carroll 1983).  This was further demonstrated by Widom et al., who 

isolated a DNA representing the strongest nucleosome positioning sequence 
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identified to date using SELEX (systematic evolution of ligands by exponential 

enrichment) (Lowary and Widom 1998).  MCN digestion of nucleosome arrays 

assembled on DNA containing 12 tandem copies of this sequence resulted in the 

release of nucleosome ladders containing 12, thin, easily identifiable “rungs”.  

These results are consistent with nucleosomes stably occupying essentially the 

exact same position on each repeat.  Dorigo et al. have since used base-pair 

resolution mapping with site-directed hydroxyradicals to show that histone 

octamers assembled on these arrays occupy a single nucleosome position (Dorigo, 

Schalch et al. 2003).   

In addition to providing information about ordered nucleosomes, MCN 

has also been used to characterize specialized chromatin structures and 

intrinsically unstable nucleosomes.  Centromeres, for example, are specialized 

chromatin structures that are responsible for equal segregation of chromosomes at 

mitosis.  They contain specialized nucleosomes with the centromere-specific 

histone H3 variant, CENP-A (called CenH3 in Drosophila).  Dalal et al. have 

shown that in Drosophila, CenH3-containing centromeric nucleosomes protect 

only 120bp of DNA from MCN digestion (Dalal, Wang et al. 2007).  Such 

atypical protection was shown to be the result of forming of unique nucleosome 

structures called “hemisomes”  (Dalal, Furuyama et al. 2007; Dalal, Wang et al. 

2007).  Hemisomes contain only one copy of CenH3, H2A, H2B, and H4 

assembled in a tetrameric structure.  Dalal et al. further showed that these 

hemisomes show a typical "beads-on-a-string" appearance by electron 

microscopy.  However, they resist condensation under physiological conditions.  
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Hemisomes are only half the height of canonical octameric nucleosomes, as 

determined by atomic force microscopy.  This particular structure provides a 

potential explanation for the protection of only 120bp  (Dalal, Wang et al. 2007).   

In addition to specialized chromatin structures, MCN has also been used in 

the characterization of particularly unstable cellular nucleosomes (Jin and 

Felsenfeld 2007; Jin, Zang et al. 2009).  Jin et al. have recently reported hybrid 

nucleosomes containing the histone variants H2A.Z and H3.3 that have the 

properties of highly unstable nucleosomes (Jin and Felsenfeld 2007).  

Nucleosomes prepared from MCN digested nuclei readily detected (by chromatin 

immunoprecipitation assays-ChIP) hybrid nucleosomes containing either H2A.Z 

or H3.3 along with the remaining canonical core histones (H2B, H3, and H4 or 

H2A, H2B, H4, respectively).  However, nucleosomes containing both H2A.Z 

and H3.3 were not detected under standard conditions (Jin and Felsenfeld 2007).  

In fact, H2A.Z/H3.3-containing hybrid nucleosomes could only be detected when 

cells were crosslinked with formaldehyde prior to MCN digestion (Jin, Zang et al. 

2009).  More recently, Jin et al. have shown that these H3.3/H2A.Z-containing 

hybrid nucleosomes mark “nucleosome-free regions” of active promoters and 

other regulatory regions (Jin, Zang et al. 2009). 

 

1.4.3. Linker histone (H1)  

The accessibility of chromatin to nuclease is also modulated by the binding of 

linker histones.  Although linker histones are generically referred to as H1, they 

represent a large group of variants that include seven somatic variants (H1.0-
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H1.5, and H1.X), three testes-specific variants (H1t, H1T2, and HILS1), and an 

oocyte-specific variant (H1oo) (recently reviewed in Godde and Ura 2008). 

Linker histones consist of a globular “winged helix” central domain 

flanked by basic N- and C- terminal tail domains (Ramakrishnan, Finch et al. 

1993).  The globular domain of H1 typically binds at the entry and exit point of 

nucleosomes thereby minimizing the “breathing” or “opening”.  H1 binding 

closes off two full turns of DNA protecting an extra 20bp of DNA from MCN 

digestion.  The resulting particle therefore contains 168bp of DNA, the histone 

octamer, and one molecule of linker histone and is called the chromatosome.  

Early evaluations of electron micrographs of H1-containing chromatin found that 

DNA enters and exits the nucleosome on the same side, whereas in H1-depleted 

chromatin, the entrance and exit points are far more random and more or less on 

opposite side of the nucleosome (Thoma, Koller et al. 1979).  Studies using a 

series of crosslinking experiments with photoactive dNTPs later showed that 

linker histones simultaneously bind the central portion of the nucleosomal DNA 

(near the entry and exit point) and one of either the outgoing or incoming strands.  

Therefore histone H1 associates asymmetrically to one side of the nucleosome 

core particle (Pruss, Bartholomew et al. 1996). 

The C-terminal tail of H1 interacts with linker DNA regions between 

nucleosomes, thereby promoting higher order chromatin folding (Finch and Klug 

1976; Thoma and Koller 1977; Thoma, Koller et al. 1979; Hamiche, Schultz et al. 

1996; Hendzel, Lever et al. 2004; Lu and Hansen 2004; Lu, Hamkalo et al. 2009).   
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In contrast to the relatively stable association of the core histones, linker 

histones bind to chromatin in a far more dynamic manner (Lever, Th'ng et al. 

2000; Misteli, Gunjan et al. 2000).  Based on their highly dynamic interaction 

with chromatin, linker histones have been proposed to control access to 

nucleosomal DNA, thereby acting as “gates” (reviewed in Zlatanova, Seebart et 

al. 2008; Happel and Doenecke 2009).  Therefore, presence of linker proteins at 

the entry and exits points of the nucleus would regulate “breathing” and thus 

access to nucleosomal DNA.  By extension, H1 would therefore regulate 

processes such as transcription and DNA repair (Zlatanova, Seebart et al. 2008).  

For example, linker histone H5 is a chicken erythrocyte-specific H1 variant that 

contains several lysine to arginine substitutions.  These differences result in 

tighter binding to chromatin than canonical H1.  In the context of the “gating” 

model proposed by Zlatanova et al., therefore, H5 would “lock” the gate through 

its high affinity binding leading to the repression of transcription and replication 

observed in chicken erythrocytes.  Zlatanova et al. also propose that the concept 

of “gating” may be extended to proteins that do not directly bind DNA, like 

heterochromatin protein 1 (HP1).  Such protein may cooperate with linker 

histones to form “double locks” (Zlatanova, Seebart et al. 2008).   

The importance of H1 in vivo was demonstrated by Fan et al., who 

showed that mice lacking three of the seven somatic variants died by mid-

gestation (Fan, Nikitina et al. 2003).  The cells from these mice, however, were 

still viable.  Although development may require a certain threshold of H1, 

therefore, an appreciable loss of H1 is tolerated by individual cells.  More 
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recently, Hashimoto et al., created a chicken cell line in which all 12 alleles of the 

six H1 variant were knocked out (Hashimoto, Takami et al. 2010).  These cells 

were also viable and did not display any morphological changes in chromatin 

spreads.  They also showed no defects in mitotic chromosome condensation and 

segregation.  Surprisingly, the only visible effect on chromatin structure in either 

study was a slight decrease in nucleosome spacing  (Fan, Nikitina et al. 2003; 

Hashimoto, Takami et al. 2010).  Taken together, these results suggest that cells 

have evolved redundant mechanisms to compact chromatin within the nucleus.  

Alternatively, the level of chromatin compaction within the nucleus is not critical.   

 

1.4.4. Higher order chromatin folding 

Chromatin fibers are composed of stretches of DNA bound to multiple core 

histones octamers at ~160-210bp intervals, often referred to as nucleosome arrays.  

Such arrays were classically described as the 10nm fiber, which has the 

appearance of “beads on string” under the electron microscope (Olins and Olins 

1974).  However, it is now clear that this structure most likely does not exist in 

vivo.  Instead, internucleosomal interactions and linker histones promote further 

compaction of chromatin into higher order structures (Hendzel, Lever et al. 2004; 

Lu and Hansen 2004; Lu, Hamkalo et al. 2009).   

In vivo, chromatin is more likely compacted into a 30nm fiber.  However, 

the exact arrangement of nucleosomes within this structure is still under debate. 

The two debated models are the one-start solenoid helix and the two-start zig-zag 

ribbon.  In the one-start solenoid helical model, a linear array of nucleosomes 
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forms a coiled fiber (Finch and Klug 1976).  In contrast, the two-start zig-zag 

model, nucleosomes are assembled in a zig-zag  ribbon that twists or supercoils 

(Woodcock, Frado et al. 1984; Williams, Athey et al. 1986).  Recently, the crystal 

structure of a tetranucleosome has been solved by Schalch et al. and supports 

earlier studies using disulfide crosslinking (Dorigo, Schalch et al. 2004) of a two-

start zig-zag model (Schalch, Duda et al. 2005).  It should be noted, however, that 

H1 was not present in these studies.   

Recent work by Eltsov et al. revealed no evidence for the 30nm fiber.  

Human metaphase chromosomes were examined in vivo using cryo-electron 

microscopy of vitreous sections, a technique proposed to enable direct high-

resolution examination of cell structures in a close to native state.  Instead of the 

30nm fiber, a compact uniform chromatin mass was observed (Eltsov, Maclellan 

et al. 2008).  The authors propose a “melt” model of chromatin folding to explain 

the absence of any underlying structure.  This model predicts that nucleosomes of 

adjacent fibers interdigitate and intermix at increased chromatin concentrations, 

resulting in the “melting” of the 30nm fiber into a uniform mass.  This model 

requires intrafiber and interfiber nucleosome affinities to be identical.  The 

authors do point out, however, that there may be situations in which the 30nm 

fiber is required.  For example, the condensation of genomic DNA in starfish 

spermatozoids requires the 30nm fiber (Woodcock 1994).  Moreover, the 

transition of the homogeneous melt into 30nm fibers would likely be mediated by 

an increase in intrafiber nucleosome affinities, potentially by histone 

modifications or by binding of specific proteins. 
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Intra- and inter- chromatin fiber interactions and their roles in higher-order 

chromatin structure and dynamics have been an active area of research for the 

past 40 years (recently reviewed in Woodcock and Ghosh 2010).  Because of the 

heterogeneity of chromatin within the cells, much of what we know about 

chromatin folding has been learned through the use of nucleosomes arrays 

assembled in vitro.  These arrays contain strong nucleosome positioning 

sequences (see section 1.4.1) and thus have allowed for the study of homogeneous 

chromatin fibers under conditions in which individual parameters can be 

evaluated.  The role of, for example, ionic concentration, linker histone binding, 

core histone tails, and post translational modifications on chromatin folding were 

all first characterized using these systems. 

Early work established that chromatin folding is highly dependent on ionic 

concentration.  The presence of monovalent cations led to a moderate induction of 

chromatin folding at relatively high concentrations.  In contrast, divalent cations 

(most notably Mg2+) were far more effective at inducing chromatin folding and 

could be used at much lower concentrations (~100-fold).  The effects of divalent 

cations were presumably the result of direct binding and neutralization of the 

residual charge of the phosphate backbone.  Such neutralization would promote 

intranucleosomal interactions within the nucleosome array.  The effect was still 

observed when arrays were assembled using histones in which the tails had been 

proteolytically removed, indicating that intranucleosomal interactions occurs 

independently of the presence of the histone tails (Ausio, Dong et al. 1989; Hayes, 

Clark et al. 1991; Polach, Lowary et al. 2000).  Interestingly, oligomerization of 
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nucleosome array could not be compensated for by divalent cations and was 

dependent on the presence of the histone tails (Garcia-Ramirez, Dong et al. 1992; 

Fletcher and Hansen 1995; Tse and Hansen 1997).  Taken together, these findings 

revealed that although charge neutralization likely plays a role, higher order 

chromatin folding is most likely mediated by internucleosomal interactions 

involving histone tails (Fletcher and Hansen 1995; Zheng and Hayes 2003).   

 

1.4.5. Histone post-translational modifications (PTMs) 

Histone tails (as well as globular domains) of both linker and core histone are 

subject of to a vast array of post-translational modifications (PTMs) (recently 

reviewed in Kouzarides 2007; Campos and Reinberg 2009).  These modifications 

include methylation of arginine (R) residues; methylation, acetylation, 

ubiquitination, ADP-ribosylation, and sumoylation of lysine (K) residues; and 

phosphorylation of serine (S) and threonine (T) residues.  Histone PTMs affect 

higher order chromatin folding and regulate processes such as DNA repair 

(recently reviewed in Venkitaraman 2010) and transcription (recently reviewed in 

Li, Carey et al. 2007).  In the context of transcription, histone PTMs regulate the 

balance between transcriptionally active euchromatin and transcriptionally 

repressed heterochromatin.  Euchromatic marks are modifications typically 

associated with active transcription, such as the acetylation (ac) of lysine residues 

in H3 (K4, 9, 14, 18, 23, 27, or 56) or H4 (K5, 8, 12, or 16), as well as di- and tri- 

methylation (me) of H3 (K4, 36, or 79).  In contrast, heterochromatin marks are 
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modifications that typically localize to inactive genes or silenced regions, such as 

tri-methylation of H3 (K9 and K27) and H4K20.     

   

1.4.5.1. Histone acetylation 

Histone acetylation is a reversible modification catalyzed by K-acetyltransferases 

(KATs; formerly HATs) and histone deacetylases (HDACs).  KATs transfer the 

acetyl group from acetyl-coenzyme A to lysine residues within the N-terminal 

tails or core domain of histones, whereas HDACs catalyze the removal of the 

acetyl group from the lysine residues. 

Acetylation is primarily associated with active transcription.  This 

association is thought to occur at least in part by decreasing the net charge of the 

nucleosome thereby loosening intranucleosomal and internucleosomal 

interactions (Garcia-Ramirez, Rocchini et al. 1995).  The model is supported by 

the observation that acetylated histones are easier to displace from DNA both in 

vivo (Reinke and Horz 2003; Zhao, Herrera-Diaz et al. 2005) and in vitro (Ito, 

Ikehara et al. 2000; Chandy, Gutierrez et al. 2006; Hassan, Awad et al. 2006).  

However, acetylated lysine residues also serve as binding sites for effector 

complexes (reviewed in Seet, Dikic et al. 2006).  For example, bromo-domain 

containing proteins specifically recognize acetylated residues.  In addition, 

modifications such as the acetylation of lysine 16 of histone H4 directly influence 

higher order chromatin structure.  Shogren-Knaak et al. recently demonstrated 

that acetylation of lysine 16 of the N-terminal tail of H4 (H4K16ac) alone could 
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disrupt internucleosomal interactions thus preventing formation of 30nm-like 

fibers (Shogren-Knaak, Ishii et al. 2006).     

 

1.4.5.2. Methylation 

Histone methylation is a reversible modification catalyzed by K-

methyltransferases (KMTs, formerly histone methyltransferases) and K-

Demethylases (KDMs, formerly lysine demethylases).  Histone methylation is 

associated with both active and repressed chromatin.  Rather than affecting the 

overall charge of the histone tail, methylation serves to recruit various effector 

proteins to the DNA template.  These recruited proteins carry out a variety of 

cellular processes, such as, transcriptional activation and gene silencing.  The 

combinatorial regulation mediated by multiple/sequential modifications as well as 

the interdependence of other modifications is thought to act as an epigenetic code, 

called the “histone code” (Strahl and Allis 2000; Jenuwein and Allis 2001).  

 

1.4.6. Histone variants 

In addition to PTMs and their wide variety of biological outcomes, incorporation 

of histone variants is also used to modulate chromatin structure and function.  

Histone variants are often encoded by single copy genes that are spliced, 

polyadenylated, and expressed outside of S-phase.  In contrast, the genes 

encoding canonical core histones are typically clustered in repeat arrays and their 

transcription is tightly coupled to DNA replication.  The genes for canonical 
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histones are also not spliced or polyadenylated, and are expressed only during S-

phase.   

Histones variants have been identified for H1, H2A, H2B and H3.  The H1 

family of linker histone is the most divergent class of class of histone proteins and 

encodes, somatic, oocyte-, and testes- specific variants (see section 1.4.3) 

(recently reviewed in Happel and Doenecke 2009).  There are five H3 variants, 

H3.1, H3.2, H3.3, CENP-A, and the testis specific H3T.  H3.1 and H3.2 are 

canonical H3 assembled into chromatin in a replication-coupled manner (behind 

the replication fork during DNA replication).  H3.3, CENP-A, and H3T are 

specialized H3 variants involved in marking active transcription, in centromere 

maintenance, or in spermatogenesis, respectively (recently reviewed in Elsaesser, 

Goldberg et al. 2010).  Only one H2B variant has been identified, hTSH2B.  It is a 

testes-specific form that may have non-chromatin roles.  Only 20% of hTSH2B 

localizes to the nucleus in mature sperm (Zalensky, Siino et al. 2002).  Finally, 

there are four H2A variants, H2A.Z, H2A.X, H2A Barr body-deficient (Bbd), and 

macro H2A (mH2A).  The H2A variants are involved primarily in transcription 

regulation, ranging from activation (H2ABbd) to silencing (mH2A).  H2A.Z is 

also involved in transcription regulation and has been implicated in both gene 

activation as well as heterochromatin silencing.  In contrast, H2A.X is involved in 

DNA damage responses.  Following double stranded DNA breaks, H2A.X 

becomes phosphorylated.  Phosphorylated H2A.X is referred to as γH2A.X.  It 

acts to recruit or retain DNA repair proteins, histone modifying complexes, and 

chromatin remodeling complexes at the sites of DNA damage.  

48



  

 

1.5. Viruses and chromatin 

1.5.1. Chromatinization of polyoma and papilloma viruses 

The genomes of many nuclear replicating DNA viruses persist in the nucleus of 

the host cells for considerable periods.  Normally, nuclear DNA is chromatinized.  

Therefore, it is not surprising that the genomes of most nuclear replicating DNA 

viruses are also chromatinized.  

The genomes of the small DNA-tumor viruses of the polyoma and 

papilloma virus families are assembled into nucleosomal minichromosomes 

during their DNA replication.  These viruses depend on the host cell DNA 

replication enzymes.  They therefore activate cellular DNA synthesis (Dulbecco, 

Hartwell et al. 1965; Weil, Michel et al. 1965; Hancock and Weil 1969).  It is 

therefore not surprising that the assembly of nucleosomes on these viral 

minichromosomes occurs via the same mechanisms as for the host cell (reviewed 

in Waga and Stillman 1998).  The association between histones and the viral 

DNA is maintained throughout the replicative cycle, even in the encapsidated 

virions (Griffith 1975; Meinke, Hall et al. 1975; Christiansen, Landers et al. 

1977).  As a result, MCN digestions of polyoma or papilloma virus DNA from 

infected cells or disrupted capsids releases viral DNA fragments characteristic of 

nucleosome DNA (Cremisi, Pignatti et al. 1975; Germond, Hirt et al. 1975; 

Griffith 1975; Bellard, Oudet et al. 1976; Favre, Breitburd et al. 1977). As a 

notable exception, the SV40 origin of replication, which is bound by the large T 

antigen, is free of nucleosomes (Jakobovits, Bratosin et al. 1980).   
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1.5.2. Chromatinization of adenovirus 

In the nuclei of infected cells, the genomes of adenoviruses are chromatinized at 

early times during infection (Sergeant, Tigges et al. 1979; Tate and Philipson 

1979; Daniell, Groff et al. 1981; Dery, Toth et al. 1985).  Unlike polyoma- and 

papilloma- viruses, however, adenoviruses are packaged in chromatin-like 

structures with viral core proteins, not histones.  These viral proteins include an 

histone H3-related protein VII (Brown, Westphal et al. 1975; Corden, Engelking 

et al. 1976; Mirza and Weber 1981; Mirza and Weber 1982)  

 

1.5.3. Chromatinization of herpesviruses 

The role of chromatinization in the lifecycle of HSV-1 is far more complex and 

not yet fully understood.  As such, chromatinization of HSV-1 DNA is an area of 

active research (recently reviewed in Lieberman 2008; Placek, Huang et al. 2009; 

Bloom, Giordani et al. 2010; Kristie, Liang et al. 2010; Paulus, Nitzsche et al. 

2010; Sinclair 2010).   

 

1.5.3.1. Encapsidated HSV-1 DNA 

The genomes of polyoma-, papilloma- , and adeno- viruses are organized in 

chromatin, or chromatin-like structures, by cellular histones or virally encoded 

histone-like proteins, respectively.  In contrast, none of the many groups that have 

evaluated the proteins in the virions of various herpesviruses (including HSV-1, 

HSV-2, HCMV, EBV, KSHV, RRV, and MHV68) have found all core histones 
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(Gibson and Roizman 1971; Cohen, Ponce de Leon et al. 1980; Pignatti and 

Cassai 1980; Hall, Aghili et al. 1982; Baldick and Shenk 1996; Bortz, Whitelegge 

et al. 2003; Johannsen, Luftig et al. 2004; Kattenhorn, Mills et al. 2004; Varnum, 

Streblow et al. 2004; Bechtel, Winant et al. 2005; Zhu, Chong et al. 2005; 

O'Connor and Kedes 2006; Loret, Guay et al. 2008; Oh and Fraser 2008).  As the 

single exception, mass spectrometry performed on MCMV virions identified 

H2A.  However, not one of the other core histones was detected in these 

experiments (Kattenhorn, Mills et al. 2004) 

Consistent with HSV-1 DNA being free of nucleosome-like structures 

within the capsid, disruption of HSV-1 nucleocapsids by treatment with alkaline  

buffer (pH 9.3), pyridine, Sarkosyl, or NaCl/urea and subsequent MCN digestion 

revealed no indication of nucleosome sized fragments (Leinbach and Summers 

1980).  

 

1.5.3.2. HSV-1 DNA during latency 

In humans, HSV-1 typically infects, and replicates in, the basal epithelial cells of 

the vermillion border of the lip.  Following lytic replication in these cells, HSV-1 

infects the sensory neurons that innervate the site of the primary infection.  The 

virus enters the neuron by fusion at the axonal termini.  Nucleocapsids then travel 

via retrograde axonal transport to the cell bodies of the neurons, located within the 

trigeminal ganglia (TG) (Lycke, Kristensson et al. 1984; Penfold, Armati et al. 

1994).  Once inside the nuclei, the viral genomes persist as chromatinized circular 
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episomes (Rock and Fraser 1983; Rock and Fraser 1985; Mellerick and Fraser 

1987; Deshmane and Fraser 1989).   

In the TG, a period of acute infection typically precedes the establishment 

of latency.  In the mouse model, this acute period lasts approximately 7 days.  

During this time, all HSV-1 genes are expressed and viral DNA replication occurs 

(Spivack and Fraser 1988; Valyi-Nagy, Deshmane et al. 1991; Kramer, Chen et 

al. 1998).  Following the acute phase, the HSV-1 genomes become 

transcriptionally silent, with the exception of the loci encoding the latency 

associated transcript (LAT).  Characteristics of the latent state include the absence 

of viral replication, the absence of detectable viral proteins, and the presence of 

LAT.  Other studies have indicated that limited amounts of ICP4 and thymidine 

kinase (TK) transcripts can be detected during latency by sensitive, quantitative 

polymerase chain reaction (PCR) (Kramer and Coen 1995; Feldman, Ellison et al. 

2002). 

Following the establishment of latency, the HSV-1 genomes are 

maintained as transcriptionally silent episomes, with the exception of the LAT 

locus.  Latency is proposed to be, at least in part, maintained through the 

assembly of transcriptionally silent heterochromatin on latent HSV-1 genomes 

(Kubat, Amelio et al. 2004; Kubat, Tran et al. 2004; Neumann, Bhattacharjee et 

al. 2007; Cliffe, Garber et al. 2009; Kwiatkowski, Thompson et al. 2009).   

Periodically, the latent genome is induced to reenter the lytic replication 

cycle, in an event referred to as reactivation.  Reactivation occurs following a 

variety of poorly defined stimuli such as physical or emotional stress, fever, UV 
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irradiation, heat shock, tissue damage, neuronal explant and hormonal alterations.  

These stimuli trigger HSV-1 to re-enter into the lytic replication cycle.  

Reactivation is characterized by HSV-1 lytic gene transcription, expression of 

viral proteins, DNA replication, packaging of the viral DNA, and anterograde 

axonal transport of the new virus to the sites of primary infection.  The molecular 

mechanism of HSV-1 reactivation from latency, however, remains one of the least 

understood, yet most clinically relevant, aspects of HSV-1 infection.   

Much of what we understand about latency and reactivation comes from 

animals models.  In the mouse, infection of the footpad, flank, ear, or eye leads to 

lytic replication at the site of infection, followed by the establishment of latency at 

the innervating sensory ganglia.  Mice, however, do not experience spontaneous 

true clinical reactivation.  Infectious virus cannot be spontaneously isolated from 

the site of infection once the primary infection has been cleared.  However, 

reactivation can be induced through the exposure of latently infected mice to 

hyperthermia (Sawtell and Thompson 1992).  Furthermore, mouse ganglia 

undergo explant-induced reactivation following excision. Therefore, reactivation 

studies in mice are performed mostly ex vivo and techniques such as in situ 

hybridization (ISH) or RT-PCR to detect viral transcripts or DNA.     

Infection of the eyes in rabbits and the vagina in guinea pigs, serve as in 

vivo models to study HSV-1 and HSV-2 infections, respectively.  The rabbit eye 

model is particularly advantageous.  Reactivation can be efficiently induced by 

the iontophoresis of epinephrine into the eye.  Reactivation is not reliably induced 

in the guinea pig model.  However, HSV-2 reactivates more frequently in the 
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guinea pig model than HSV-1, similar to the situation observed in humans.  

Therefore, guinea pigs serve as attractive systems in comparative analysis of the 

factors responsible for the differences in the reactivation frequency of HSV-1 and 

HSV-2.   

Although no one model truly recapitulates all aspects of human infection, 

mice, rabbits, and guinea pigs have all greatly contributed to our current 

understanding of latency and reactivation.  Unfortunately, however, no 

encompassing model has yet been derived by analyzing the data from the different 

animal models. 

One attractive model for the regulation of reactivation involves HCF-1.  

HCF-1 is sequestered out of the nucleus in TG neurons (Kolb and Kristie 2008).  

HCF-1 is possibly localized in unstimulated sensory neurons at the Golgi.  

However, the potential mechanisms for Golgi retention are unclear.  Regardless of 

the specific cellular localization, extranuclear HCF-1 would not be able to interact 

with its proposed partners and therefore unable to activate HSV-1 IE 

transcription.  

Following a reactivation stimulus, HCF-1 relocalizes to the nucleus.  Once 

in the nucleus, HCF-1 presumably interacts with some yet unidentified cellular 

proteins to bind HSV-1 IE promoters.  Then, IE transcription is activated through 

an LSD-1-dependent mechanism.  This proposed role for HCF-1 and recruitment 

of the KDM LSD-1 supports a model in which reactivation from latency is 

regulated, at least in part, by epigenetic modulation of the chromatin structure 

assembled on latent HSV-1 genomes (Liang, Vogel et al. 2009).   
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1.5.3.3. HSV-1 DNA during lytic infection 

In contrast to latent HSV-1 DNA, HSV-1 DNA was classically considered to be 

mostly nucleosome-free during lytic infections (Mouttet, Guetard et al. 1979; 

Leinbach and Summers 1980; Sinden, Pettijohn et al. 1982; Muggeridge and 

Fraser 1986; Deshmane and Fraser 1989).  Such conclusions were reached 

following a series of reports, dating back over 30 years, in which MCN digestion 

was used to probe the intranuclear structure of HSV-1 DNA.   

In the first report, Mouttet et al. examined newly synthesized, progeny, 

HSV-1 DNA.  HSV-1 infected cells were labeled with 3H-thymidine from 6 to 

7hpi and nuclei were isolated and digested with MCN.  As expected for DNA in 

regularly spaced nucleosomes, cellular chromatin was protected to nucleosome-

sized fragments.  In contrast, HSV-1 DNA was cleaved to heterogeneous sized 

fragments.  No repeating nucleosome-sized fragments were observed.  It was 

therefore concluded that during lytic infection, the intranuclear state of HSV-1 

DNA is different than that of the DNA in cellular chromatin (Mouttet, Guetard et 

al. 1979).   

Concomitantly, another report compared the structure of parental and 

progeny HSV-1 DNA also using MCN (Leinbach and Summers 1980).  Using 

dual labeling, these authors first evaluated the accessibility of infecting (parental) 

HSV-1 DNA and DNA in cellular chromatin in the same nucleus.  Briefly, HSV-1 

virus stocks were grown in the presence of 32P-orthophopsphate, such that the 

genomes of the isolated virus were labeled with 32P.  Meanwhile, the cells to be 
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infected were labeled with 3H-tymidine prior to infection, such that cellular DNA 

was labeled with 3H.  Parental HSV-1 DNA was much more resistant to MCN 

digestion than DNA in cellular chromatin.  For example, only 10% of the parental 

HSV-1 DNA was released as soluble chromatin after 20 minutes of MCN 

digestion, compared to 60% of cellular DNA.  As expected, cellular DNA was 

protected to tri-, di, mono- nucleosome-size fragments the course of digestion.  In 

contrast, HSV-1 DNA was present as two populations.  The first and most 

prominent population was poorly accessible to MCN and migrated as large DNA 

fragments (>14,850bp) at the top of the gels (Leinbach and Summers 1980).  The 

authors concluded that this HSV-1 DNA most likely represented intact genomes, 

and attributed the presence of these intact genomes to HSV-1 DNA that had 

entered the nucleus but was not yet uncoated.  However, the resolution of even 

0.7% agarose gels is insufficient to resolve fragments larger than 20,000bp 

(significantly shorter than the 152,000bp of an intact HSV-1 genome).  

Furthermore, the high molecular weight HSV-1 DNA was degraded over the 

course of digestion, albeit with much slower kinetics than cellular DNA. 

The second and relatively minor population of HSV-1 DNA was a 

heterogeneously sized population ranging from <75 to ~300bp, which was mostly 

degraded over the course of digestion.  Further examination of these low 

molecular weight fragments revealed that they were both nucleosome- and sub-

nucleosome sized (Leinbach and Summers 1980).  Taken together, Leinbach et al. 

concluded that only a minor percentage of parental HSV-1 DNA in the nucleus 

was uncoated and used as templates for transcription and replication. 
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In contrast to parental HSV-1 DNA, Leinbach et al. showed that progeny 

HSV-1 DNA (from nuclei labeled between 16 and 17hpi as well as 12 and 13hpi) 

was far more accessible to MCN than DNA in cellular chromatin.  Digestion for 

40min resulted in the release of 85% of the progeny HSV-1 DNA as soluble 

chromatin, compared to only 55% cellular DNA (Leinbach and Summers 1980).  

The digestion kinetics of the progeny HSV-1 DNA resembled more closely those 

of protein-free HSV-1 DNA than those of chromatinized cellular DNA.  The 

examination of low molecular weight DNA fragments revealed that cellular DNA 

was protected to tri-, di-, and mono- nucleosome-size fragments, as expected, 

whereas the majority of HSV-1 DNA was digested to heterogeneous sized 

fragments (Leinbach and Summers 1980).  Leinbach et al. did, however, also 

observe a minor percentage of HSV-1 DNA protected to nucleosome sized 

fragments (Leinbach and Summers 1980).  These results suggested that the 

majority of progeny HSV-1 DNA was not in the same structures as DNA in 

cellular chromatin.  However, in contrast to Mouttet et al., Leinbach et al. also 

detected a small percentage of HSV-1 DNA protected to nucleosome size, a 

difference that was attributed to labeling at 12 to13hpi (Leinbach and Summers 

1980) rather that 6 to7hpi (Mouttet, Guetard et al. 1979).     

The intranuclear state of HSV-1 DNA was also probed using the DNA  

photoaffinity probe 4, 5', 8-trimethylpsoralen (Me3psoralen) (Sinden, Pettijohn et 

al. 1982).  The rate of binding of Me3psoralen to DNA is dependent on both the 

accessibility of the DNA and the amount of torsional tension in the helical 

winding of the DNA (Sinden, Carlson et al. 1980).  The authors proposed that, 
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rather than being complexed with nucleosomes, HSV-1 DNA may contain 

unrestrained superhelical turns (such as negative supercoils) much like DNA in 

bacterial chromosomes.  As a result, HSV-1 DNA would be maintained in a state 

of torsional strain and thus bind more Me3psoralen.  The authors found that prior 

to HSV-1 DNA replication, HSV-1 DNA was ~1.3-fold less accessible than DNA 

in cellular chromatin.  Following HSV-1 DNA replication, HSV-1 DNA 

accessibility increase by 5-fold, such that it became ~2-fold more accessible than 

DNA in cellular chromatin.  In addition, the introduction of single-stranded DNA 

breaks using γ-irradiation showed that HSV-1 DNA does not contain unrestrained 

torsional tension, either in the capsid or during the replicative cycle.  However, it 

is now known that both replicating HSV-1 DNA and HSV-1 DNA packaged into 

capsids have a large number of single-stranded breaks without any inducing 

agent.  These results suggest that intranuclear HSV-1 DNA has different 

properties than regular nucleosomal DNA. 

The in vivo structure of HSV-1 DNA was also evaluated in trigeminal 

ganglia of acutely infected mice (Muggeridge and Fraser 1986).  Nuclei were 

purified from brainstems of mice infected with HSV-1 for 7 days.  As expected, 

MCN digestion of the β-globin locus within the cellular genome resulted in the 

typical nucleosome ladder with regularly spaced nucleosomes, characteristic of 

chromatinized DNA.  In contrast, HSV-1 DNA from the brain acutely infected 

with HSV-1 was digested to heterogeneous sized fragments, along with a minor 

percentage of nucleosome-sized ones.  There was also a percentage of HSV-1 

DNA that was poorly accessible to MCN, such that it was mostly resistant to even 
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the harshest MCN conditions used.  In contrast to DNA in cellular chromatin, the 

population of HSV-1 DNA protected to nucleosome size represented only a 

minority of the total HSV-1 DNA.  Similar digestion patterns were observed for 

HSV-1 DNA in an infected neuroblastoma cell line.  The authors provided the 

following suggestions to explain their results, i) a small number of the HSV-1 

genomes may be chromatinized, ii) parts of each of the HSV-1 genomes may be 

chromatinized, or iii) HSV-1 DNA may be complexed with non-histone proteins 

that are not as tightly associated with DNA as canonical histones are, and thus 

provide less protection than typical nucleosomes (Muggeridge and Fraser 1986).  

Muller et al. provided evidence for the coexistence of a mixture of HSV-1 

DNA in different structures within the nuclei of infected cells (Muller, Schroder 

et al. 1980).  Nuclear spreads prepared at late stages during infection were 

examined by electron microscopy.  The authors noted four forms of chromatin in 

the nuclei of HSV-1 cells.  In addition to the typical 10nm “beads on string” 

nucleosomal arrangement, three forms were unique to infected cells.  The first 

was thin filaments, indistinguishable from protein-free plasmid DNA. Another 

contained protein-free stretches but was sparsely and irregularly associated with 

10-22nm granules different from nucleosomes.  The last form was a densely 

stained uniformly thick (~17nm) strand.  All forms were clearly identified on 

HSV-1 DNA, as determined by their association with newly assembled capsid 

structures.  Furthermore, all the forms identified could be observed on the same 

DNA strand (Muller, Schroder et al. 1980).  Taken together, their results 
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suggested that nucleosomal and non-nucleosomal stretches of DNA can exist on 

the same HSV-1 DNA molecule.   

The co-existence of nucleosome and nucleosome-free stretches of DNA 

on the same molecule of DNA had previously been reported for SV-40.  For this 

virus, ~350bp surrounding the origin of replication/large T antigen binding site 

was nucleosome-free, whereas the rest of the genome contained regularly spaced 

nucleosomes (Jakobovits, Bratosin et al. 1980).  In contrast, there is no nuclease 

evidence to support regular spacing of nucleosomes on HSV-1 DNA.   

The lack of a role for chromatin during HSV-1 lytic infection was further 

supported by several reports showing that infecting HSV-1 genomes localized to 

nuclear domains adjacent to ND10s, domains which are devoid of cellular 

chromatin or histones (Ascoli and Maul 1991; Ishov and Maul 1996; Maul, Ishov 

et al. 1996).  Moreover, HSV-1 replication compartments at late times post 

infection are also partially depleted of histones (K.L. Conn PhD Thesis, Monier, 

Armas et al. 2000; Simpson-Holley, Colgrove et al. 2005).   

For the 25 years following its initial characterization, HSV-1 DNA was 

therefore widely accepted to be nucleosome-free during lytic infections.  More 

recently, however, ChIP assays have demonstrated that histones associate with 

HSV-1 DNA during lytic infections (Herrera and Triezenberg 2004; Kent, Zeng et 

al. 2004; Huang, Kent et al. 2006; Narayanan, Ruyechan et al. 2007; Knipe and 

Cliffe 2008; Oh and Fraser 2008; Ferenczy and Deluca 2009; Kutluay, DeVos et 

al. 2009; Kutluay and Triezenberg 2009; Liang, Vogel et al. 2009; Placek, Huang 
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et al. 2009).  These results have thus prompted a re-evaluation of the classic 

model. 

In one of the initial ChIP studies, Herrera et al. found that the VP16 

activation domain (AD) was required for recruiting TBP and the large subunit of 

RNAPII, but not Oct-1, to IE promoters.  Furthermore, the AD was also involved 

in the recruitment of the KAT3A (formerly CBP) and KAT3B (formerly p300) to 

IE promoters.  The role of the AD in the recruitment of the ATP-dependent 

chromatin remodelers Brg-1 and Brm to IE promoters was more complex.  

Whereas the AD was required for the recruitment of both Brg-1 and Brm to the 

ICP0 promoter, it was required for the recruitment of either Brm or Brg-1 on 

ICP4 or ICP27 promoters, respectively (Herrera and Triezenberg 2004).   

Herrera et al. also evaluated the presence of H3 and H3 acetylated on 

residues 9 or 14 (AcH3) at various loci throughout the HSV-1 genome.  They 

showed that H3 and AcH3 were depleted from IE promoters at 2hpi in the 

presence of a functional AD.  In contrast, both H3 and AcH3 were present on the 

ICP27 coding sequence, or on selected E (TK) and late (gC and VP16) promoters.  

H3 was found on all HSV-1 loci tested in the absence of the VP16 AD, whereas 

AcH3 was absent (Herrera and Triezenberg 2004).   

From these results, these authors proposed that the VP16 AD is required 

either to exclude histones from IE promoters or to remove them, perhaps through 

the recruitment of KATs or other chromatin remodelers. 

However, subsequent studies from the same group have shown that neither 

the recruitment of KATs or chromatin remodelers to, nor the removal of histones 
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from, HSV-1 DNA is required for HSV-1 gene expression (Kutluay, DeVos et al. 

2009; Kutluay and Triezenberg 2009).   

Using small interfering RNAs targeting KAT2A (formerly GCN5), 

KAT2B (formerly PCAF), KAT3A, KAT3B, or ATP-dependent chromatin 

remodelers (Brg-1 and BRM), or cell lines which lack functional KAT3B, Brg-1, 

or Brm, the authors showed that neither recruitment of the KATs nor the 

chromatin remodelers were required for IE gene expression (Kutluay, DeVos et 

al. 2009).   

The authors then evaluated whether histone occupancy played a role in 

regulating HSV-1 transcription.  Consistent with a model in which histone 

occupancy inhibits HSV-1 transcription, both the removal of the VP16 AD or the 

inhibition of RNAPII transcription resulted in an increase in the occupancy of all 

core histones (H2A, H2B, H3 and H4) on HSV-1 loci (Kutluay and Triezenberg 

2009).  However, activation of IE transcription by providing HSV-2 VP16 in 

trans did not result in the removal of these histones.  Thus, eviction of histones 

from HSV-1 DNA appears not to be required for HSV-1 gene expression 

(Kutluay and Triezenberg 2009).  

Together, the results from the Triezenberg group show that although the 

proper activation of IE gene transcription requires the VP16 AD, it does not 

require the recruitment of HATs or chromatin remodelers to, or the eviction of 

histones from, HSV-1 DNA. 

    In the second of the two initial ChIP studies, Kent et al. first showed 

that HSV-1 infection does not alter global H3 levels, as evaluated by Western 
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blot.  Histones bearing the modifications normally associated with transcription 

activation, H3K9ac and H3K14ac were globally increased in the nuclei of cells 

lytically infected with HSV-1.  The levels of the histone modification H3K9me2, 

which is normally associated with transcriptional repression, were globally 

decreased in the same nuclei (Kent, Zeng et al. 2004). 

In a later report, the same group showed that the protein methylation 

inhibitor 5’-deoxy-5’methylthioadenosine (MTA) reduced the level of H3K4me3 

associated with IE, E, and L promoters.  MTA also inhibited transcription driven 

by these promoters, and consequently HSV-1 DNA replication (Huang, Kent et al. 

2006).  These results suggest a role for H3K4 methylation in the regulation of 

HSV-1 transcription.  However, subsequent knock down of Set-1 (the KMT 

responsible for H3K4 methylation) resulted in only a modest effect on HSV-1 

transcription or HSV-1 DNA replication (Huang, Kent et al. 2006).  These results 

suggest that Set-1 is not solely responsible for the methylation events required for 

optimal activation of HSV-1 IE transcription.    

 

1.6. Rationale and hypothesis 

Infecting HSV-1 genomes localize to nuclear domains which are devoid of 

cellular chromatin and histones, and micrococcal nuclease (MCN) digestions of 

lytically infected cells release HSV-1 DNA primarily in heterogeneously sized 

fragments. It was therefore classically concluded that most HSV-1 DNA was not 

associated with histones during lytic infections. More recent ChIP assays, in 

contrast, indicate that histones do interact with HSV-1 DNA during lytic 
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infections. Although only a minority of HSV-1 DNA co-immunoprecipitates with 

histones in the vast majority of these studies, histone modifications were proposed 

to regulate HSV-1 transcription. However, it remained unclear how the 

association of histones with a minority of HSV-1 DNA could regulate viral 

transcription globally. Moreover, the biophysical properties of intranuclear HSV-

1 DNA nucleoprotein complexes during lytic infection were unclear.   

The goal of my PhD studies was therefore to investigate the biophysical 

properties of the intranuclear HSV-1 DNA complexes during lytic infections. 

Differing from all previous work, however, I used classical chromatin purification 

techniques.  This approach led to data supporting the association of HSV-1 DNA 

in unstable nucleosomes, a most unexpected finding.  
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CHAPTER 2: MATERIALS AND METHODS 

2.1. Centrifugation 

Three centrifuges were used throughout these studies:  

1. Eppendorf 5810 R 

a. Rotors: 

i. Swinging bucket rotor (SBR); A-4-62 

ii. Fixed angle rotor (FAR); F34-6-38 

iii. Eppendorf rotor (ER); FA45-30-11 

2. Beckman Avanti J-E 

a. Rotor: 

i. JA-14   

3. Beckman XL-90 ultracentrifuge 

a. Rotor: 

i. SW40 Ti 

For simplicity, all centrifugations are described in parentheses in the following 

order; speed, time, temp, rotor.  For centrifugations using the Eppendorf 5810 R 

centrifuge, the rotor is named using the abbreviations SBR, FAR or ER (described 

above). 

    

2.2. Cells and viruses 

Vero CCL-81 cells (African green monkey kidney fibroblasts), and human foreskin 

fibroblasts (HFF) were maintained in complete media, Dulbecco’s modified 

Minimum Eagle’s Medium (DMEM) supplemented with 5% fetal bovine serum 
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(FBS), 50mU/ml penicillin, and 50ng/ml streptomycin. A low passage (p10) HSV-

1 strain KOS (Smith, 1964) was used throughout this study (gift from the late Dr. 

P.A. Schaffer, UPenn, PA, USA). 

 

2.3. Drugs 

Cyclohexamide (CHX) stock (5mg/ml) was prepared in serum free media (SFM) 

and diluted to a concentration of 50µg/ml in SFM, phosphate buffered saline (PBS 

- 1mM KH2PO4, 154mM NaCl, 3 mM Na2HPO4, pH 7.4), or complete media 

immediately before use.  Cells were pre-treated with complete media supplemented 

with 50µg/ml CHX for 1 h prior to infection and maintained in CHX throughout 

the infection procedure (i.e. inoculum, PBS washes, and complete media after 

rinses).   

Phosphonoacetic acid (PAA) stock (100mM) was prepared in serum free 

DMEM and brought to pH 7.0 using 10N NaOH.  Aliquots were stored at -20°C 

and thawed prior to use.  The stock was diluted to a concentration of 400µM in 

complete media and added to cells after adsorption.   

Actinomycin D (ActD) stock (1mg/ml) was prepared in ethanol and used at 

a concentration of 10µg/ml.   

Roscovitine (Rosco) stock (100mM) was prepared in dimethyl sulfoxide 

(DMSO).  Aliquots were stored at -20°C and thawed prior to use.  The stock was 

diluted to a concentration of 100µM in complete media pre-warmed to 37°C and 

typically added to cells after adsorption.  Rosco was used in the concentration 

range of 25-100µM.  
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Purvalanol (Purv) and Flavopiridol (Flavo) were prepared in DMSO as 

10mM stocks, and used in the concentration ranges of 5-30µM (Purv) or 31.25-

500nM (Flavo).   

α-Amanitin (α-Ama) stock (1mg/ml) was prepared in distilled water and 

used at a concentration of 50µg/ml in complete medium or 2µg/ml in run-on 

transcription buffer (described in section 2.13).  

 

2.4. Viral stock preparation  

Viral stocks of HSV-1, strain KOS, were prepared by infecting T-150 flasks seeded 

12h before with approximately 5x106 Vero cells (50-60% confluency).  

Immediately prior to infection, one flask was trypsinized and the cells were 

counted.  Cells were infected with a multiplicity of infection (MOI) of 0.01 plaque 

forming units (PFU) per cell in a final volume of 3ml SFM per flask.  Adsorption 

was typically performed for 1h at 37°C.  To prevent drying of cells, flasks were 

rocked and rotated every 10min.  After adsorption, viral inoculum was removed 

and cells were washed twice with 10ml of 4°C PBS followed by addition of 10ml 

complete medium pre-warmed to 33°C.  Flasks were then transferred to a 33°C 

incubator and virus was harvested when HSV-1-specific cytopathic effect (CPE) 

was evident in 100% of cells, approximately 4-5 days post infection.  Briefly, 

infected cells were scraped from T-150 flasks.  Cells and media were pooled in 

50ml conicals, and pelleted by centrifugation (3200xg, 30min, 4°C, SBR).  The 

virus in the supernatants was pelleted by high speed centrifugation (10,000xg, 

90min, 4°C, JA-14).  Meanwhile, the cell pellet was resuspended in a minimal 
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volume of SFM (0.5ml per 6 flasks) and transferred to 14ml screw-cap conical 

tubes.  Then, it was subjected to three freeze-thaw cycles (cycling between 

ethanol/dry ice and 37°C water baths), and sonicated using a 550W Sonicator 

Ultrasonic Processor XL (Heat System, Ultrasonics, Inc.; New York, NY, USA) in 

an ice-water bath for 3 cycles of 30s at 20% (110W), at 15s intervals. 

Subsequently, the cellular debris from the sonicated sample was pelleted (3200xg, 

30min, 4°C, SBR). Supernatants were used to resuspend the viral pellet from the 

higher speed centrifugation, to prepare the final viral stock.  Viral stocks were 

titrated by standard plaque assays (see section 2.6).    

 

2.5. HSV-1 infection 

Cells were infected with MOI from 5 to 50 PFU (as described for each experiment).  

Infections were typically performed in 100mm diameter tissue culture dishes 

seeded 12h prior to infection with approximately 1x107 cells.  Dishes were infected 

with 1ml of viral inocula in SFM.  Adsorption was typically performed for 1h at 

37°C.  To prevent drying of cells, dishes were rocked and rotated every 10min.  

After adsorption, the viral inoculum was removed and the cells were washed twice 

with 4°C PBS.  Complete medium pre-warmed to 37°C was then added and the 

cells were incubated at 37°C.  Complete medium was supplemented as required 

with Rosco, Purv, Flavo, CHX, ActD or α-Ama. Infected cells were harvested by 

trypsinization at the times indicated in each experiment. 
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2.6. Standard Plaque Assay 

Approximately 2x105 Vero cells were seeded in 6-well plates (50-60% confluency) 

12h prior to infection.  Final volumes of 500µl containing serial 10-fold dilutions in 

SFM (10-1 to 10-8) of viral stocks or samples were prepared in 14ml snap cap tubes.  

Typically, dilutions 10-3 through 10-8 were titrated.  Briefly, 200µl of the 

corresponding dilutions were used to infect seeded cells (see section 2.5).  

Following the PBS rinses, cells were overlayed with 2ml of methyl cellulose (2% 

w/v in complete medium) pre-warmed to 37°C and incubated at 33°C in 5% CO2 

until plaques were well defined (3-4 days).  Cells were then fixed and stained with 

2ml of crystal violet in methanol (1% crystal violet, 17% methanol in H2O).  

Twenty four hours later, plates were washed and dried, and individual plaques were 

counted.   

  

2.7. UV inactivation of HSV-1 

HSV-1 stocks to be irradiated were pelleted by centrifugation (10,000xg, 90min, 

4°C, JA14).  The HSV-1 pellet was resuspended in 4°C PBS and kept on ice.  One 

hundred microliter aliquots were placed in uncovered 35mm diameter tissue culture 

dishes and subjected to UV irradiation at 3000 mJoules (UV Stratalinker 2400, 

Stratagene; La Jolla, CA, USA) for 30s to 5min. The original and the UV-

inactivated virus suspensions were then titrated by standard plaque assays. Viral 

stocks inactivated by four orders of magnitude were used in all experiments. 
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2.8. Phages 

Recombinant bacteriophage M13 harboring the 5’ end of selected HSV-1 genes 

were a generous gift from Dr. C. Spencer (University of Alberta, Edmonton, AB, 

Canada). These phages contain single-stranded DNA sense or anti-sense to HSV-1 

transcripts ICP4 (IE), ICP27 (IE), ICP8 (E), UL36 (E), gC (L), and VP16 (L). 

Single-stranded phage DNA was isolated and transferred to positively charged 

membranes (Gene Screen Plus, NEN Life Science; Boston, MA, USA) by vacuum 

slot blotting.  

 

2.8.1. High M13 phage stock preparation titer  

Stab cultures of F’ plasmid-containing bacteria (SURE cells, Stratagene; La Jolla, 

CA, USA) were grown overnight (~16h) at 37°C with shaking (220rpm) in an 

orbital shaking incubator (Weiss Gallenkamp; Loughborough, UK) in 3ml of LB 

supplemented with tetracycline (12µg/ml).  Four hundred microliters of the 

overnight culture was then diluted 10-fold in LB supplemented with tetracycline 

and grown at 37°C until the optical density at 600nm (OD600) of the cell suspension 

reached 0.6 (~1.5-2h).  This culture was used to either make high titre M13 stocks 

or for large scale preparations of single stranded phage DNA  

In a 14ml snap cap tube, 20µl of the SURE cells were infected with 100µl 

of bacteriophage suspension from a single M13 plug (see Section 2.8.2). Bacteria 

were incubated at room temperature for 5min.  Then, 2ml of 37°C LB media was 

added.  The infected culture was grown at 37°C with shaking (220rpm) for 5-6 hrs.  

Bacteria from the cultures were pelleted by centrifugation (3200xg, 10min, 4°C, 
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SBR) and the supernatant containing high titer M13 stock (~1012 PFU/ml) was 

aliquoted and stored at -20°C.    

 

2.8.2. Plating bacteriophage M13 

SURE cells were streaked on LB agar plates (15g/L) supplemented with 12µg/ml 

tetracycline.  Following incubation at 37°C for 24-36 hrs, a single, well isolated, 

colony was picked with a sterile loop.   Five milliliters of LB were inoculated with 

this culture and grown at 37°C with shaking (220rpm) for 6-8 hrs, to prepare 

plating bacteria.   Meanwhile, 6-well plates containing 3ml LB agar (15g/L) 

supplemented with 5mM MgCl2 and 12µg/ml tetracycline were warmed to 37°C, 

and 350µl of melted LB top agar (7g/L) supplemented with 5mM MgCl2 was added 

to sterile 1.5ml eppendorf tubes and equilibrated at 47°C.  Serial 10-fold dilutions 

(10-1 to 10-8) of high titer phage stocks were prepared in sterile 96-well plates in 

final volumes of 100µl.  Typically, dilutions 10-3 through 10-8 were titrated.  

Briefly, 12µl of the corresponding phage dilutions was added to the eppendorf 

tubes containing the LB top agar at 47°C and vortexed gently.  Twenty four 

microliters of plating bacteria was then added to the mixture, vortexed gently, and 

poured onto the corresponding well in the pre-warmed 6-well plates.  Plates were 

stored at room temperature for 5min to allow the soft agar to harden and then 

transferred to 37°C incubator.  Eight to twelve hours later, using a P200 pipette tip 

bacteriophage plugs were collected from dilutions containing well-isolated plaques.  

Multiple plaques were isolated for each phage. Each individual M13 plug was 

expelled into 1ml of LB and incubated at room temperature for 1-2 hrs, allowing 
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the bacteriophage to diffuse away from the agar (each plaque contains ~106-108 

PFU).  Both the residual agar plug and bacteriophage suspension were then stored 

at -20°C.                     

 

2.8.3. Large scale preparation of single-stranded phage DNA 

One milliliter of a SURE cell culture grown to OD600 of 0.6 was infected with 1ml 

of high titre M13 stock and incubated at room temperature for 5 min.  The mixture 

was subsequently added to 100ml of room temperature LB in a 500ml Erlenmeyer 

flask.  The infected culture was grown at 37°C with shaking (220rpm) for 5-6 hrs.  

The 100ml of infected culture was then divided into 2-50ml conicals and 

centrifuged (2600xg, 20min, 4°C, FAR).  The supernatant from each tube was 

transferred to fresh 50ml conicals containing 1.5g of NaCl and 2.0g of polyethylene 

glycol 8000 (PEG 8000).  Conicals were agitated on a horizontal rocker for 1h at 

room temperature and centrifuged (8200xg, 20min, 4°C, FAR).  The pellet from 

both 50ml conicals was resuspended in 2.5ml of tris EDTA buffer (TE - 10 mM 

Tris pH 7.5, 1mM EDTA), and the DNA was isolated by phenol extraction.   

 

2.9. Isolation of HSV-1 and Cellular DNA for probes 

HSV-1 and Vero cell DNA was isolated from purified HSV-1 virions or uninfected 

Vero cells, respectively, by proteinase K digestion and phenol extraction (described 

in section 2.10).  Viral (5µg) or cellular (10µg) DNA were digested separately with 

Hind III (1U/µg of DNA) overnight at 37°C.  Fragments were resolved by agarose 

gel electrophoresis and transferred to positively-charged membranes (Gene Screen 
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Plus, NEN Life Science; Boston, MA, USA) for subsequent Southern blot 

hybridizations. 

 

2.10. DNA Isolation by Proteinase K and phenol extraction  

Samples were digested for 3 to 12h at 65°C with 100µg/ml proteinase K in the 

presence of 0.5% sodium dodecyl sulphate (SDS).  One volume of 

phenol:chloroform:isoamyl alcohol (25:24:1) was then added and mixed by 

vortexing.  The resulting emulsion was centrifuged (3200xg, 10min, 4°C, SBR).  

The aqueous phase (top) was removed to a new conical and the organic phase 

(bottom) was back extracted with an equal volume of TE.  Following 

centrifugation, the aqueous phase of the back extraction was pooled with the 

aqueous phase from the original extraction.  Samples were then extracted with one 

volume of chloroform:isoamyl alcohol.  The aqueous phase of this extraction was 

precipitated with either 3 volumes of 95% ethanol, or 1 volume of 100% 

isopropanol, by incubation at -20°C for a minimum of 1h.  DNA was then pelleted 

by centrifugation (12,000xg or 21,000xg, 20min, 4°C, FAR or ER, respectively).  

DNA pellet was rinsed briefly with 70% ethanol.  Ethanol was removed from the 

tube and the DNA pellet was typically resuspended in TE.  Concentration of DNA 

was determined by reading absorbance at 260nm (A260).  1A260 was considered to 

correspond to 38µg/ml for ssDNA or 50µg/ml for dsDNA.  Alternatively, DNA 

concentration was determined by ethidium bromide stained agarose gel 

electrophoresis.       
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2.11. DNA transfer to membranes by vacuum slot blot 

Slot blots were prepared using a BIO-DOT SF apparatus (Bio-Rad, Hercules, CA, 

USA).  Briefly, 4µg of DNA per well in a final volume 100µl was denatured by 

adding 1 volume (100µl) of denaturation solution (0.5N NaOH, 0.5M NaCl) and 

incubating for 10min at 65°C.  Tubes were then chilled in an ice-water bath for 5-

10min.  Samples were then diluted with 800µl of neutralization buffer (0.125N 

NaOH, 0.1X SSC) and chilled on ice until the slot blot apparatus was assembled.  

The slot blot apparatus was assembled using 4 pieces of filter paper and one 

positively-charged nylon membrane cut to size and presoaked in 0.4M Tris pH 7.5.  

Each well was washed twice under vacuum with 1ml of neutralization solution.  At 

the end of the second wash, the vacuum was stopped and the DNA samples (1ml) 

were loaded into the corresponding wells.  Vacuum was resumed and wells were 

rinsed twice with 1ml of neutralization solution.  Following the final rinse, the slot 

blot apparatus was disassembled (with vacuum still on to prevent back flow) and 

the membrane was labeled, soaked briefly in 0.5M Tris pH 7.5, 0.5M NaCl, and air 

dried.  

 

2.12. Isolation of nuclei 

Cells were rinsed with PBS at 4oC, trypsinized, and resuspended in 20 ml of 

complete media. Resuspended cells were then pelleted by centrifugation (3200xg, 

10min, 4°C, SBR), and resuspended in 20ml of hypotonic cell swelling buffer 

(CSB - 10 mM Tris pH 7.5, 10 mM NaCl, 5 mM MgCl2).  Cells were pelleted 

again (3200xg, 10min, 4°C, SBR) and resuspended and lysed in CSB buffer with 
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0.5% (v/v) Nonidet P-40 at 4°C. Lysis was verified by periodically removing a 

sample of the nuclei suspension and checking for intact cells by light microscopy.  

When lysis was deemed complete (<5% intact cells), typically 8min, nuclei were 

isolated by differential centrifugation (1800xg, 10min, 4°C, SBR). 

 

2.13. Run-on analyses 

For each treatment, two 100 mm diameter dishes (each containing approximately 

6x106 Vero cells) were mock infected or infected at an MOI of 20 PFU/cell.  

Infected cells were treated with complete media supplemented or not with 100 μM 

Rosco for 5h (starting at 1hpi), and harvested at 6 hpi.  

Run-on assays were performed as described by Spencer, Rice et al.(Rice, 

Long et al. 1995; Spencer, Dahmus et al. 1997), with several modifications. 

Briefly, isolated nuclei were resuspended in 150 µl nuclear freezing buffer (NFB - 

50 mM Tris pH 8.0, 5 mM MgCl2, 40% glycerol, 0.5 mM DTT), and immediately 

snap-frozen in liquid nitrogen and stored at -80°C. Afterwards, 150 µl of thawed 

nuclei suspension was mixed with 150 µl of transcription run-on buffer (20 mM 

Tris pH 8.0, 20 mM MgCl2, 3 mM DTT, 0.5mM of each ATP, CTP and UTP, and 

10 µCi of [α-32P] GTP).  Final buffer concentrations were, 30 mM Tris pH 8.0, 1 

mM DTT, 7.5 mM MgCl2, 20% glycerol, 140 mM KCl. Transcription reactions 

proceeded at 30oC for 30 minutes, and were then stopped by incubation with 50 µg 

(434 Worthington U) of DNase I (Invitrogen, Carlsbad, CA, USA) for 15 minutes 

at 30oC.  Proteins were digested in proteinase K buffer (PKB - 100 mM Tris pH 

7.5, 50 mM EDTA, 10% SDS) containing 100µg/ml of proteinase K, for 1h at 
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37oC. RNA was extracted with one volume of acid phenol:chloroform:isoamyl 

alcohol (25:24:1), precipitated with 1 volume of isopropanol and stored at -20°C.  

RNA was pelleted by centrifugation (21,000xg, 30min, 4°C, ER) and resuspended 

in 200 µl of TE buffer.   

The RNA was denatured at 100oC for 5 min and diluted in 5ml of Rapid 

Hybrid Buffer (Amersham Biosciences, Piscataway, NJ, USA) pre-warmed to 60 

or 37oC (for analyses of HSV-1 or cellular transcription, respectively).  

Meanwhile, hybridization bottles with membranes containing phage or genomic 

DNA were pre-hybridized in 10 ml Rapid Hybrid Buffer at 60 or 37oC (for 

analyses of HSV-1 or cellular transcription, respectively). Hybridizations were 

started by discarding pre-hybridization buffer and adding the denatured RNA in 

Rapid Hybrid Buffer.  Hybridizations were performed at 60 or 37oC for 48 or 72 

h, for analyses of HSV-1 or cellular transcription, respectively. Membranes were 

washed twice in wash 1 buffer (2 X SSC, 0.1% SDS) for 20 minutes at room 

temperature. For analyses of HSV-1 transcription, membranes were further 

washed in wash 2 buffer (0.5 X SSC, 0.5% SDS) for 15 minutes at 50˚C. 

Membranes were exposed to Kodak PhosphorImager screens. The membranes 

were imaged and the signal hybridized to HSV-1 or Vero genomic fragments was 

quantitated using Bio-Rad molecular imager FX (Bio-Rad, Hercules, CA, USA). 

Counts hybridized to the genomic fragments under each treatment were 

normalized to counts hybridized to the respective genomic fragments in the 

absence of any drug (control), and are presented as percentage.  

Nucleic acids were precipitated after the proteinase K digestion in 10% 
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trichloroacetic acid (TCA) at 4°C. Precipitates were then washed three times by 

resuspension in 10% TCA at 4°C and centrifugation (14,000xg, 20min, 4°C, ER).  

Nucleic acid pellets were finally resuspended in 0.5% SDS. Radioactivity 

incorporated into TCA-precipitable material was expressed as percentage of the 

radioactivity used as substrate in the run-on reactions (as [α-32P] GTP).  RNAPII-

specific incorporation was then calculated by subtracting the percentage 

radioactivity incorporated into TCA-precipitable material in the presence of 

10µg/ml ActD (background), and is presented as percentage of control (no drug 

present in the run-on transcription reactions). 

 

2.14. Random-primed DNA labeling  

DNA was radiolabeled with [α-32P] dCTP using the Rediprime II Random Prime 

Labelling System from Amersham Biosciences according to the manufacturer’s 

instructions (Amersham Biosciences, Piscataway, NJ, USA).  Briefly, 50ng of 

probe was denatured for 10 min at 100°C and immediately transferred to ice for 5 

min.  The denatured DNA and 5 µl (50µCi) of [α-32P] dCTP were added to the 

random-prime reaction tubes, thoroughly mixed, and incubated for 1h at 37°C.  

After 1h, the contents of the labeling reaction were denatured for 10min at 100°C 

and immediately cooled in ice for 5 minutes before adding to Rapid Hybrid 

Buffer prewarmed to the hybridization temperature. 

 

2.15. Nuclease digestion 

Nuclei were digested with either BamHI or micrococcal nuclease (MCN). For 

98



  

BamHI digestions, nuclei were rinsed twice with React 3 buffer (50mM Tris 

pH7.5, 10mM MgCl2, 100mM NaCl), the first time with 10ml and the second 

with 1ml.  Nuclei were pelleted by centrifugation after each rinse (1,800xg, 

20min, 4°C, SBR; or 5000xg, 15min, 4°C, ER, respectively).  Nuclei were then 

resuspended to a final volume of 100µl in React 3 buffer containing 10U of 

BamHI per 1x106 nuclei.  Digestions were carried out at 37°C for 4h.  

For standard MCN digestions, nuclei were resuspended in MCN buffer 

(1x107 nuclei per 100µl) containing 0.005, 0.05, 0.5, or 5U of MCN per 1x107 

nuclei, as indicated.  Digestions were performed at 39°C and stopped at the 

indicated times with the addition of 5µl of 0.5M ethylene glycol tetra-acetic acid 

(EGTA).  Samples were digested with proteinase K and DNA was isolated by 

phenol extraction. 

 

2.16. Chromatin Fractionation 

MCN-digested nuclei were lysed by adding one volume of chromatin extraction 

buffer (CEB - 2mM Tris pH 8.0, 3mM MgCl2, 1mM EGTA, 2% Triton X-100) 

and incubated with rotation for 10min at 4°C. Then, so-called “soluble” and 

“insoluble” chromatin fractions were separated by differential centrifugation 

(8,000xg, 20min, 4°C, ER). 

 

2.17. Isolation of unstable nucleosomes by serial MCN digestion 

Undigested nuclei were lysed by adding one volume of CEB and incubating for 

10min at 4°C with rotation. The undigested chromatin was then pelleted by 
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centrifugation (8,000xg, 20min, 4°C, ER).  Resuspension of the pelleted 

chromatin for subsequent washes and digestion was facilitated by mechanical 

disruption, by sliding the tube along the eppendorf rack and pipetting up and 

down.  Pelleted chromatin was washed once by resuspension in 80µl of MCN 

buffer (10mM Tris pH 8.0, 1mM CaCl2), without MCN.  The washed chromatin 

pellet was then subjected to serial MCN digestion (Lacasse et al 2010).  Briefly, 

the chromatin pellet was resuspended in 80µl of MCN buffer (containing 0.625U 

MCN/ml) and digested for 5min during differential centrifugation (8,000xg, 5min, 

23°C, ER).  Following the centrifugation, the supernatant (soluble chromatin) was 

removed and quenched with 5µl of 0.5M EGTA to prevent further degradation of 

unstable nucleosomes.  Meanwhile, the pellet (insoluble chromatin) was 

resuspended with fresh MCN digestion buffer (containing 0.625U MCN/ml) and 

the entire procedure was repeated 6 or 9 times.  For a cartoon representation of the 

serial digestion protocol, see Fig 3.7.   

Soluble chromatin fractions from the serial MCN digestions were either 

pooled and resolved together in sucrose gradients or individually analyzed by 

Southern blot hybridization.  For sucrose gradient analysis, 40µl of each soluble 

chromatin fraction was pooled resulting in either 240 or 360µl (6 or 9 serial 

digestion repeats, respectively) to be resolved on sucrose gradients.  For analysis 

of the DNA in the individual soluble chromatin fractions, 40µl of the soluble 

chromatin fraction was taken to a final volume of 200µl with STE and digested 

overnight with proteinase K.  DNA was then isolated by phenol-chloroform 

extraction.  
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2.18. Sucrose gradient ultracentrifugation 

Continuous 0 to 10% sucrose gradients were prepared using a Gradient Master 

(Biocomp, Fredericton NB, Canada), with sucrose gradient buffer (SGB - 10mM 

Tris pH8.0, 1.5mM MgCl2, 0.5M EGTA) containing 0, 80, 225, or 450mM NaCl. 

Soluble chromatin was loaded on top of pre-formed gradients and centrifuged 

(284,000xg, 180min, 4°C, SW-40 Ti). Twelve 1ml fractions were collected from 

the bottom of the tube. After the removal of the final fraction, the pellet was 

recovered in 1ml of STE (as fraction 13).  Fractions were digested with proteinase 

K overnight and DNA was isolated by phenol-chloroform extraction. 

  

2.19. Size exclusion chromatography 

Size exclusion chromatography (SEC) was performed in Econo-Pac Disposable 

Chromatography Columns (Biorad, Hercules, CA, USA) packed with Sephadex 

G-100 (GE Healthcare, Piscataway, NJ, USA).  Prior to chromatography, columns 

were prepared using a Sephadex G-100 slurry that was packed by gravity to a 

final packed column volume of 10ml and rinsed three times with 20ml gel 

filtration buffer (GFB - 10mM Tris pH8.0, 150mM NaCl, 1.5mM MgCl2, 0.5mM 

EGTA).  Fractions 11 and 12 (2ml final volume) from the sucrose gradients were 

pooled and loaded onto 2 identical columns.  Multiple columns were used for 

each sample to maximize resolution by minimizing sample volume (1ml).  

Columns were washed with GFB, twice with one volume (1ml) and once with 

five volumes (5ml).  Fractions (1ml) were collected from duplicate columns and 
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pooled.  DNA was either isolated from the individual column fractions or pooled 

and subsequently crosslinked with formaldehyde for MCN redigestion 

experiments 

 

2.20. Formaldehyde crosslinking of purified nucleosomes and MCN 

redigestion 

SEC fractions 4-6 from duplicate columns were pooled (8ml total) and split into 

two 4ml aliquots.  Samples were then crosslinked or not with 0.1% formaldehyde 

(by adding 10.4µl of 37% buffered formalin) for 1h at 4°C with inversion.  

Crosslinking was quenched by the addition of 480µl of 1M glycine to a final 

concentration of 125mM glycine, incubating the samples for 10min at 4°C with 

inversion.  Crosslinked samples were then subjected to MCN redigestion.  Briefly, 

MCN (0.05U/ml) was added to the crosslinked samples. One milliliter aliquots 

were removed at 0, 5, 15, 30, 60min and quenched with 0.5M EGTA.  Samples 

were then digested with proteinase K, and DNA was isolated by phenol-

chloroform extraction. 

 

2.21. Southern Blot Hybridization 

2.21.1. Upward capillary transfer 

DNA fragments were resolved by agarose gel electrophoresis.  Gels were then 

rocked in 0.2M HCl for 45 min, to depurinate larger DNA fragments and facilitate 

their transfer out of the gel and onto the membrane.  Following depurination, the 

double stranded DNA (dsDNA) in the gels was denatured by rocking the gels in 
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alkaline transfer buffer (ATB - 0.4N NaOH, 1M NaCl) twice for 15min.  The gel 

was then rocked in neutralization buffer (NB - 0.5M Tris pH 7.5, 1.5M NaCl) twice 

for 15min.  Meanwhile, the paper towels, filter paper, and membrane (Gene Screen 

Plus, NEN Life Science; Boston, MA, USA) were cut to size.  Cut membranes 

were presoaked in 10X SSC (1X SSC - 150 mM NaCl, 15 mM sodium citrate) for 

at least 15min.  Meanwhile, the capillary transfer apparatus was assembled.  Gels 

were blotted for 24-48 hrs, ensuring constant excess 10X SSC buffer.  After 

blotting, membranes were labeled and soaked briefly (1 min) in 0.4N NaOH and 

then 0.2M Tris pH7.5, 2X SSC.  Membranes were then air dried.   

 

2.21.2 Hybridization 

Membranes were pre-hybridized with 10ml rapid hybrid buffer (Amersham 

Biosciences, Piscataway, NJ, USA) at 75°C or 60°C for HSV-1 or cellular DNA, 

respectively, for a minimum of 1h. The probes were selected fragments from the 

HSV-1 EcoRI library (JK for the probe enriched in immediate early (IE) loci, G 

and L for the probe enriched in late (L) loci) or Vero cell DNA. Plasmid DNA 

from the HSV-1 EcoRI library (a generous gift from the late Dr. P.A. Schaffer, 

UPenn, PA, USA) was isolated using GeneElute HP Plasmid Maxiprep Kit 

(Sigma, St. Louis, MO, USA).  Vero cell DNA was isolated from uninfected Vero 

cells by proteinase K digestion and phenol-chloroform extraction. Probes were 

labeled following random-primer labeling.  Hybridizations were performed for 3h 

at 75°C or 60°C for HSV-1 or cellular DNA, respectively. Membranes were 

washed twice for 15min at room temperature with wash 1 buffer. If needed, 
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membranes were further washed for 10min at 60°C or 50°C, for HSV-1 or celluar 

DNA, respectively, with wash 2 buffer. Membranes were exposed to Kodak 

PhosphorImager screens and quantitated using Bio-Rad molecular imager FX 

(Bio-Rad). 

  

2.22. The following procedures were performed by Dr. Prerna Diwan 

2.22.1 Construction of the ICP0-RFP plasmid 

Plasmid vector pA1-pICP0-LacZ (11051bp) containing the HSV-1 IE promoter 

ICP0 driving the expression of LacZ was a generous gift of Dr. A. Epstein 

(Université Claude Bernard Lyon, France). Using this plasmid as the starting 

vector, an expression vector with the ICP0 promoter driving expression of red 

fluorescent protein (RFP) was constructed. The RFP gene was derived from 

pDsRed1-N1 vector (Clontech, Palo Alto, CA, USA), and the ICP0 promoter from 

pA1-pICP0-LacZ. The 720 bp Sal I –Not I RFP fragment was excised from 

pDsRed1-N1 vector and subcloned following removal of 3489 bp Sal1-Not1 

fragment containing the LacZ cassette. The resulting 8282 bp construct was named 

pICP0-RFP5, and was used for transient transfection of Vero cells and for the 

creation of stably-transfected cell lines. 

 

2.22.2 Stable transfection of Clone 57 cell line 

Vero cells were transfected using lipofectamine (Gibco BRL, Rockville, MD, 

USA) according to the manufacturer’s instructions. Briefly, Vero cells were seeded 

at 60-70% confluence in six-well plates. The following day, cells were transfected 

104



  

with 4 µg pICP0-RFP5 and 0.6 µg pcDNA plasmids. The latter contains the gene 

for G-418 resistance. Cells were incubated with DNA-lipofectamine at 37°C for 4 h 

followed by addition of 1 volume of DMEM supplemented with 10% FBS. After 

24 h of incubation, media was replaced with fresh complete media. For transient 

transfection experiments, transfected cells were then trypsinized and seeded in 

replicate wells.  For the construction of the stably transfected Vero cell lines, 

confluent cells were passed 1:2 in media supplemented with 800 µg/ml of G418. 

After 10-15 days, when only the G418 resistant transfected cells survived, cells 

were expanded and the concentration of G418 was lowered to 400µg/ml for 

maintenance of transfected cells. Transfected cells were cloned by limiting dilution 

in 96 well plates. Individual clones were screened for expression of RFP. 

 

2.22.3 Northern blot analyses  

Approximately 2x106 Vero cells in 100 mm diameter tissue culture dishes were 

pre-treated with 50µg/ml CHX for 1 h before infection with HSV-1 KOS at a MOI 

of 5 PFU/cell. Cells were washed with PBS containing 50µg/ml CHX. Then, 

complete media supplemented with CHX and different concentrations of Rosco, 

Purv or Flavo was added. Total cellular RNA was extracted from mock and HSV-1 

infected cells at 3, 6 and 9 hpi using the guanidinium isothiocyanate method. RNA 

concentrations were estimated spectrophotometrically at 260 nm. RNA samples 

were stored in isopropanol at -70°C. The RNA samples were centrifuged, 

resuspended, size fractionated on agarose-formaldehyde denaturing gels (30 µg 
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RNA/sample) and transferred to GeneScreen Plus nylon membranes for Northern 

blot hybridizations.  

Hybridizations were performed in Rapid Hybrid Buffer for 4 h using RFP 

or ICP0 probes. Briefly, the RFP probe was prepared by digesting the pDsRed1-N1 

plasmid with Sal1 and Not1 and purifying the 720 bp fragment. ICP0 probe was 

prepared by digesting the pRP0 plasmid with XhoI and HindIII and purifying the 

888bp fragment. Probes were labeled by random-priming.  

Hybridization with RFP was performed at 65°C, and for ICP0 at 80°C. 

Hybridized membranes were washed twice with wash buffer 1 at room temperature 

for 15 minutes and with wash buffer 2 at 65°C for 10 minutes. Membranes were 

exposed to Kodak PhosphorImager screens, and imaged using Bio-Rad molecular 

imager FX.  For hybridization with subsequent probes, specific signal was first 

removed by washing the membranes with stripping solution for 2 hours and then 

wash buffer 2 for 10 minutes at 68°C.  Stripped membranes were exposed and then 

used for re-hybridization with a different probe. 
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CHAPTER 3: DURING LYTIC INFECTIONS, HERPES SIMPLEX VIRUS 

TYPE 1 DNA IS IN COMPLEXES WITH THE PROPERTIES OF 

UNSTABLE NUCLEOSOMES 

 

A version of this chapter has been published.  Lacasse, JJ. and L.M. Schang. 

Journal of Virology 2010; 84(4):1920-33 

 

3.1. Introduction 

At the time when these experiments were performed, the existence or structure of 

any intranuclear HSV-1 DNA nucleoprotein complexes during lytic infection was 

unclear.  Primarily, the results obtained from classical studies (MCN digestions, 

trimethylsporalen photocrosslinking, and electron micrography), and those 

obtained from more recent ChIP assays, were most difficult to reconcile.  

Whereas classical evidence suggested HSV-1 DNA was primarily nucleosome-

free (Mouttet, Guetard et al. 1979; Leinbach and Summers 1980; Sinden, 

Pettijohn et al. 1982; Muggeridge and Fraser 1986; Deshmane and Fraser 1989), 

ChIP assays reported association of HSV-1 DNA with histones, and proposed that 

chromatin regulates HSV-1 transcription (Herrera and Triezenberg 2004; Kent, 

Zeng et al. 2004; Huang, Kent et al. 2006; Narayanan, Ruyechan et al. 2007; 

Knipe and Cliffe 2008; Oh and Fraser 2008; Ferenczy and Deluca 2009; Kutluay, 

DeVos et al. 2009; Kutluay and Triezenberg 2009; Liang, Vogel et al. 2009; 

Placek, Huang et al. 2009).   
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Considering this association of histones and chromatin modifying proteins 

with HSV-1 DNA, most current models therefore propose that chromatin 

regulates HSV-1 transcription in lytically infected cells.  However, only a small 

percentage of HSV-1 DNA was found to consistently co-immunoprecipitate with 

histones in all (Herrera and Triezenberg 2004; Kent, Zeng et al. 2004; Huang, 

Kent et al. 2006; Kutluay, Doroghazi et al. 2008; Kutluay, DeVos et al. 2009; 

Kutluay and Triezenberg 2009; Placek, Huang et al. 2009) except one (Cliffe and 

Knipe 2008) published papers, or to be protected from MCN in sizes 

corresponding to nucleosomal DNA (Leinbach and Summers 1980; Muggeridge 

and Fraser 1986; Deshmane and Fraser 1989).  It therefore remained unclear how 

histone association of only a small percentage of HSV-1 DNA could regulate 

HSV-1 transcription globally.  Furthermore, the biophysical properties of the 

complexes containing histones and HSV-1 DNA also remained unclear.  

Therefore, using classical chromatin purification techniques, I systematically 

analyzed the biophysical properties of the complexes formed with HSV-1 DNA at 

5 hours during lytic infections. 

 

3.2. Results 

3.2.1. At 5h after infection, HSV-1 DNA is in complexes that do not fractionate 

as protein-free DNA. 

As a first step in characterizing the biophysical properties of nuclear HSV-1 DNA 

in lytically infected cells, I used standard biochemical fractionation techniques to 

test whether nuclear HSV-1 DNA had the biophysical properties of protein-free 
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DNA. Briefly, nuclei from HSV- or mock- infected cells were harvested at 5hpi 

and protein-free DNA was resolved from DNA in larger complexes by differential 

centrifugation. However, replicating HSV-1 genomes form long branched 

concatemers (Severini, Scraba et al. 1996). Nuclei were therefore first digested 

with BamHI, to cleave these long branched concatemers into subgenomic linear 

fragments (ranging from 50 to 5,000 bps), and thus minimize mechanical trapping 

during fractionation. Nuclei were then lysed and DNA-protein complexes were 

resolved by differential centrifugation into so-called “soluble” and “insoluble” 

fractions. The “soluble” fraction contains soluble proteins, protein-free DNA and 

small complexes, including mono-, di-, and some short poly-nucleosomes. The 

“insoluble” fraction contains larger complexes including large poly-nucleosome 

chains and nuclear matrix. As a control, protein-free HSV-1 DNA was added to 

nuclei of mock-infected cells before BamHI digestion. 

As expected, 83% of the detected protein-free HSV-1 DNA added to 

mock-infected nuclei fractionated to the “soluble” fraction (Fig 3.1A, HSV 

Protein-free; Table 3.1). In contrast, and also as expected, only 19% of the 

detected chromatinized cellular DNA fractionated to the “soluble” fraction (Fig 

3.1A, Cellular Nuclear; Table 3.1). Likewise, only 27% of the detected HSV-1 

DNA from the nuclei of infected cells fractionated to the “soluble” fraction, 

whereas 73% fractionated to the insoluble fraction (Fig 3.1A, HSV Nuclear; 

Table 3.1). The majority of nuclear HSV-1 DNA and chromatinized cellular DNA 

therefore fractionated to the insoluble fraction during the first differential 

centrifugation (73% and 81%, respectively - Table 3.1). This HSV-1 DNA, 
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however, was still digested to heterogeneously sized fragments and is therefore 

accessible to BamHI (Fig 3.1A, HSV Nuclear-Insoluble). 

The DNA and DNA-protein complexes that fractionated in the “soluble” 

fraction were then further resolved by sucrose gradient fractionation. As expected, 

the detected protein-free HSV-1 DNA fractionated to the lowest density fractions 

(Fig 3.1A and B, HSV Protein-free, fractions 9-12). In contrast, the detected 

HSV-1 DNA from nuclei of infected cells fractionated to heavier fractions (Fig 

3.1A and B, HSV Nuclear, fractions 6-10). These were mostly the same fractions 

to which the detectable “soluble” cellular DNA in mono-, di-, and short poly-

nucleosomes resolved (Fig 3.1A, Cellular Nuclear). 

In summary, the majority of the nuclear HSV-1 DNA detected at 5 hpi in 

lytically infected cells does not fractionate as protein-free DNA. Instead, it 

resolves to the same fractions as chromatinized cellular DNA (Fig 3.1B). 

 

3.2.2. MCN digestion releases HSV-1 DNA in complexes that fractionate as 

cellular nucleosomes. 

HSV-1 DNA released as “soluble” complexes fractionated as chromatinized 

cellular DNA. We then tested whether this nuclear HSV-1 DNA was in 

complexes with properties similar to those of nucleosomes. 

Nuclei from infected cells were harvested at 5hpi and digested with MCN. 

Digested nuclei were then lysed and resolved into “soluble” and “insoluble” 

fractions. The soluble fraction is often referred to as “soluble chromatin” and 

contains mono-, di- and relatively short poly-nucleosomes complexes. Complexes 
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released as soluble chromatin were then further resolved by sucrose gradient 

centrifugation (Fig 3.2A). Poly-nucleosomes resolve to heavier fractions, mono- 

and di- nucleosomes to lighter fractions, and protein-free DNA to the lightest 

ones. As expected, the cellular DNA released as soluble chromatin resolved as 

various sizes of poly-nucleosomes in fractions 2 to 9, and as mono-, di-, and tri-

nucleosomes in fractions 10 and 11 (Fig 3.2A, Cellular). In contrast, all the HSV-

1 DNA released under these conditions as soluble chromatin was in complexes 

that resolved to the same fractions as cellular mono- to tri-nucleosomes, and most 

of it was in the fractions containing mostly mono- to di-nucleosomes (Fig 3.2A 

and B, HSV fractions 10, 11). No HSV-1 DNA released with the soluble 

chromatin fractionated as poly-nucleosomes or to the lightest fraction. 

The complexes in fractions 10 and 11 were then subjected to size 

exclusion chromatography. Fractions were collected and analyzed by Southern 

blot (Fig 3.2C). For this experiment, I performed slightly more stringent MCN 

digestions, such that fractions 10 and 11 were more enriched for mono- and di- 

over tri- nucleosomes. The HSV-1 DNA-containing complexes continued to 

fractionate as cellular mono- and di- nucleosomes after chromatography (Fig 

3.2C, Fraction 4). Therefore, MCN digestion releases HSV-1 DNA in small 

complexes that fractionate as cellular mono- to di- nucleosomes following 

differential centrifugation followed by sucrose gradient centrifugation and size 

exclusion chromatography. Unlike the DNA in cellular nucleosomes, which is 

protected to homogenous sizes corresponding to mono- and di- nucleosomes (146 

and 292bps, respectively), however, the HSV-1 DNA in such complexes was 
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protected to a range of heterogeneous fragments from mono- to di- nucleosome 

size (146 to 292bps - Fig 3.2A, compare Fraction 11, HSV and Cellular). 

 

3.2.3. Nuclear HSV-1 DNA is more accessible to MCN than DNA in most 

cellular chromatin. 

Mostly all HSV-1 DNA released as soluble chromatin by 150s MCN digestion 

(Fig 3.2) was in small fragments in complexes that fractionated as mono- to di- 

nucleosomes, whereas the DNA in cellular chromatin was primarily in large 

fragments in poly-nucleosome complexes. I next tested whether these differences 

reflected differences in MCN accessibility. 

Nuclei of infected cells were harvested at 5hpi and digested with different 

concentrations of MCN for increasing times, to reach from very little to almost 

total DNA digestion. Nuclear DNA was purified, resolved by agarose gel 

electrophoresis and analyzed by ethidium bromide staining and Southern blot. 

Cellular and HSV-1 hybridizations are shown in standard exposures to compare 

total DNA levels, and also in over exposures, to analyze the similarities and 

differences between the smaller cellular and HSV-1 DNA fragments (Fig 3.3A, 

standard and over exposure). 

As expected for chromatinized cellular DNA, low MCN concentrations 

digested cellular DNA to a typical nucleosome ladder of sizes corresponding to 

multiples of 160 bp (Fig 3.3A, 0.005U, lanes 4-6). In contrast, and as previously 

reported (Leinbach and Summers 1980; Muggeridge and Fraser 1986; Lentine and 

Bachenheimer 1990; Kent, Zeng et al. 2004), HSV-1 DNA was digested primarily 
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to a smear presumably reflecting heterogeneously sized fragments (Fig 3.3A, 

most apparent at 0.005U, lane 5). Also consistent with previous reports (Leinbach 

and Summers 1980; Muggeridge and Fraser 1986; Lentine and Bachenheimer 

1990; Kent, Zeng et al. 2004), a minor population of HSV-1 DNA was protected 

to sizes consistent with mono- or di- nucleosomes (most apparent at 0.05U, lanes 

4 and 5 - over exposure). 

As the concentration of MCN increased, eventually most (98%) cellular 

DNA was completely degraded (Fig 3.3B, compare 0.005 and 5U). Also 

consistent with previous reports (Leinbach and Summers 1980; Muggeridge and 

Fraser 1986; Lentine and Bachenheimer 1990; Kent, Zeng et al. 2004), a minor 

percentage (approximately 10%) of HSV-1 DNA was poorly accessible to even 

high MCN concentrations (Fig 3.3C, 0.5U). However, even this poorly accessible 

population was almost completely digested (up to 98%) when the concentration of 

MCN was increased by 100-fold (Fig 3.3C, HSV 5U). 

In addition to differences in the size distribution of DNA fragments 

released, the kinetics of MCN digestion were also different between HSV-1 DNA 

and DNA in cellular chromatin. HSV-1 DNA was digested approximately 3-fold 

more rapidly than DNA in cellular chromatin (Table 3.2). For example, 50% of 

HSV-1 or cellular DNA (T50) was digested by 0.05U MCN in 6.74 or 19.5min, 

respectively (Fig 3.3, B, C; Table 3.2). Most HSV-1 DNA is therefore more 

accessible to MCN than most DNA in cellular chromatin. However, the 10% of 

HSV-1 DNA that was poorly accessible was 5.3-fold more resistant to MCN 

digestion than DNA in cellular chromatin (Table 3.2, 0.5U). For example, 0.5U 
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MCN digested 90% of HSV-1 or cellular DNA (T90) in 27.4 or 5.2min, 

respectively (Fig 3.3, B, C; Table 3.2). 

In summary, most HSV-1 DNA was far more accessible to MCN at 5 hpi 

than DNA in cellular chromatin. However, a small percentage of HSV-1 DNA 

was far less accessible to MCN than DNA in cellular chromatin. Further 

contrasting with DNA in most cellular chromatin, most HSV-1 DNA was cleaved 

primarily to heterogeneous sizes, whereas the least accessible fraction was 

protected from digestion as long fragments. 

 

3.2.4. HSV-1 DNA released as soluble chromatin is mostly in complexes that 

fractionate as mono- to di- nucleosomes. 

HSV-1 DNA is far more accessible to MCN than DNA in cellular chromatin, and 

is digested in 150s primarily to heterogeneously sized fragments (Fig 3.3). 

Nevertheless, only a small percentage of this digested HSV-1 DNA is released as 

soluble chromatin in complexes that fractionate as cellular mono- to di- 

nucleosomes in sucrose gradients (Fig 3.2). Instead, the vast majority is in 

heterogeneously sized complexes that fractionate as insoluble chromatin. 

Different MCN digestion times release cellular chromatin as progressively shorter 

poly-nucleosome complexes. I therefore tested whether different times of MCN 

digestion could also release HSV-1 DNA in differently sized nucleosome-like 

complexes. I selected conditions that result in digestions ranging from either most 

HSV-1 DNA not digested (equivalent to Fig 3.3, HSV-0.005, lanes 2 and 3), to 
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most HSV-1 DNA digested to heterogeneous sizes (equivalent to Fig 3.3, HSV-

0.05, lanes 2 and 3). 

Briefly, nuclei of infected cells were harvested at 5hpi and digested with 

MCN for 15, 30, 150, or 300s, before being lysed and resolved into “soluble” and 

“insoluble” chromatin. Soluble chromatin was further resolved by sucrose 

gradient centrifugation and analyzed by Southern blot. As expected, brief 

digestions (15 or 30s) released only large poly-nucleosomes from cellular 

chromatin (Fig 3.4, Cellular-fractions 1-8). Cellular mono- and di- nucleosomes 

fractionating to fractions 10 and 11 were released only after 150s. At 300s, mono- 

and di- nucleosomes accounted for 55% of the cellular DNA released as soluble 

chromatin (Fig 3.4, Cellular). In contrast, HSV-1 DNA was released already at 

15s only in complexes that resolved to fractions 10 and 11 (Fig 3.4, HSV-15s). In 

fact, mostly all HSV-1 DNA released into the soluble fraction at any MCN 

digestion time was in complexes that fractionate as mono- to di- nucleosomes (Fig 

3.4, HSV), even at the mildest MCN digestions (which release >97% of cellular 

DNA in large poly-nucleosomes - Fig 3.4, compare HSV and Cellular - 15s, 

fractions 10 and 11). Consistent with the results presented in Fig 3.2, the HSV-1 

DNA in the released complexes was protected to heterogeneous sizes ranging 

from mono- to di- nucleosome-sized DNA. 
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3.2.5. Complexes containing HSV-1 or cellular DNA resolve to different 

fractions at low salt concentrations 

HSV-1 DNA is in complexes that fractionate as cellular mono- to di- nucleosomes 

even after extensive fractionation. However, the HSV-1 DNA within these 

complexes is more accessible to MCN than the DNA in cellular nucleosomes (Fig 

3.2). The increased accessibility may result from instability of the HSV-1 DNA-

protein interactions. Alternatively, HSV-1 DNA may non-specifically interact 

with cellular nucleosomes, thereby leading to co-fractionation and partial 

protection from MCN. I therefore evaluated the stability of the interactions. If 

HSV-1 DNA interacts with cellular chromatin non-specifically, then it should co-

fractionate better in the absence of salt, whereas disruption of such interactions 

with salt should result in less co-fractionation. Neither inter- nor intra-nucleosome 

interactions are disrupted at NaCl concentrations below 225mM NaCl 

(Christiansen and Griffith 1977; Ausio, Dong et al. 1989), whereas 450mM NaCl 

disrupts inter- but not intra-nucleosome interactions (Christiansen and Griffith 

1977; Ausio, Dong et al. 1989). 

Nuclei from infected cells were harvested at 5hpi and digested with MCN 

for 150s. The soluble chromatin was resolved on sucrose gradients containing 

various NaCl concentrations. The fractions were collected and analyzed by 

Southern blot. Consistent with the experiments presented in Fig 3.4, cellular DNA 

was released primarily as large poly-nucleosomes. The pattern of fractionation of 

cellular DNA did not change much as the concentration of NaCl was increased 

from 0 to 225mM, as expected (Christiansen and Griffith 1977; Ausio, Dong et al. 
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1989). Only ~15% of the DNA in soluble cellular chromatin was released as 

mono- or di- nucleosomes (Fig 3.5, Cellular-0, 80mM, fractions 10-11; 225mM, 

fractions 11-12). When the concentration of salt was increased to 450mM, 

however, the cellular DNA that fractionated as mono- and di- nucleosomes 

increased from 15% to 24% (Fig 3.5, Cellular-450, fractions 11-12), as expected 

from disruption of internucleosome interactions. Without such disruption, some 

mono-nucleosomes fractionate in the pellet by interacting with larger 

polynucleosomes. Therefore, ~9% of the cellular DNA released by 150s MCN 

digestion was in mono- or di- nucleosomes tightly bound to larger poly-

nucleosomes. In contrast, the HSV-1 DNA released as soluble chromatin was 

primarily in complexes that fractionated as mono- to di- nucleosomes even in the 

absence of NaCl (Fig 3.5, HSV, 0mM, fractions 9-11), when most cellular DNA 

fractionated as polynucleosomes (Fig 3.5, Cellular, 0mM, fractions-9).  

Although all the HSV-1 DNA that was released into the soluble chromatin 

at any NaCl concentration always migrated as mono- to di-nucleosomes, the 

absolute amounts released into the soluble chromatin as mono-to-di nucleosomes 

increased as the salt concentration increased. Therefore, a percentage of the HSV-

1 DNA released as mono- to di-nucleosomes still fractionated to the pellet, with 

the largest cellular and viral poly-nucleosomes, at salt concentrations that do not 

disrupt inter-nucleosome interactions, but was released into the soluble chromatin 

at concentrations that disrupt them. These results suggest that HSV-1 DNA is in 

nucleosome-like complexes that interact with nucleosome-like affinities with the 

longer cellular (or viral) poly-nucleosomes. 
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At 5 hpi, therefore, HSV-1 DNA does not co-fractionate with cellular 

nucleosomes through non-specific interactions. Instead, it is in complexes with 

similar biophysical properties to cellular nucleosomes. 

 

3.2.6. Nuclear HSV-1 DNA is in unstable nucleoprotein complexes 

Different MCN digestions released as little as 2% (15s) or as much as 23% (150s) 

of detectable HSV-1 DNA as soluble chromatin. Curiously, all this HSV-1 DNA 

was in complexes that fractionate as cellular mono- to di- nucleosomes (Fig 3.4). 

Therefore, only a small percentage of nuclear HSV-1 DNA may be in 

nucleosome-like complexes, whereas most may not be associated with proteins, 

and therefore quickly degraded by MCN (Fig 3.6A or B). Alternatively, HSV-1 

DNA may be in unstable nucleosome-like complexes, which because of their 

instability still allow MCN access to their DNA. Unstable HSV-1 DNA-

containing complexes are expected to be rapidly released by MCN but then also 

rapidly degraded, resulting in only a small percentage of nucleosome-like 

complexes detected at any given digestion time (Fig 3.6C). To differentiate 

between these possibilities, I modified the MCN digestions to “trap” the potential 

digestion intermediates, preventing their degradation (Fig 3.7). 

Briefly, cells were infected and nuclei were harvested at 5hpi. So-called 

soluble and insoluble chromatin were fractionated without MCN digestion. The 

insoluble chromatin was then digested with MCN and the released soluble 

chromatin was periodically removed. To do so, insoluble chromatin was 

resuspended in MCN digestion buffer (0.05U MCN/ml) and digested during the 
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differential centrifugation. The insoluble chromatin is thus pelleted whereas the 

soluble chromatin released by MCN digestion remains in the supernatant. The 

supernatant was removed after 5min and the MCN in it was immediately 

quenched to prevent further digestion of the released soluble chromatin. The 

insoluble chromatin pellet was resuspended with fresh MCN digestion buffer and 

the entire procedure was repeated nine times. The soluble fractions were pooled, 

resolved together by sucrose gradients and analyzed by Southern blot (Fig 3.8). 

Under these conditions, the cellular DNA released as soluble chromatin 

fractionated as mono-, di- (Fig 3.8, fractions 10 and 11), and larger poly-

nucleosomes complexes (Fig 3.8, fractions 5-9), as expected from regularly 

chromatinized DNA. Unlike the standard continuous MCN digestion, however, 

the HSV-1 DNA released by our modified digestion was also in complexes that 

resolved to the same fractions as cellular poly-nucleosomes (Fig 3.8, HSV-

fractions 5-9), as well as in complexes fractionating as mono- to di- nucleosomes 

(Fig 3.8, HSV-fractions 10 and 11). Moreover, the HSV-1 DNA was protected to 

more discrete sizes under these conditions than under continuous MCN digestions 

(Fig 3.2A and Fig 3.8, compare fractions 10, 11). Therefore, HSV-1 DNA 

fractionates as cellular poly-nucleosomes when MCN digestion of the soluble 

fraction is restricted (Fig 3.8). Standardized by the recovery of cellular DNA, 

78% of the total nuclear HSV-1 DNA fractionated as soluble chromatin, leaving 

only 22% in the insoluble chromatin pellet (Table 3.3), very much like the DNA 

in cellular chromatin (Table 3.3). These results indicate that the majority of 
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nuclear HSV-1 DNA is in unstable complexes that fractionate as cellular 

nucleosomes and protect their DNA to similar sizes as cellular nucleosomes do. 

In summary, HSV-1 DNA can be isolated in complexes that fractionate as 

cellular poly-nucleosomes, as long as MCN activity is rapidly quenched after the 

release of the complexes containing HSV-1 DNA into the soluble chromatin. 

These results suggest that the majority of nuclear HSV-1 DNA is in complexes 

that are highly unstable and as such are rapidly degraded by standard MCN 

digestions. 

 

3.2.7. HSV-1 nucleosome-like complexes are stabilized by crosslinking. 

Particularly unstable cellular nucleosomes are digested by MCN unless stabilized 

by crosslinking (Jin and Felsenfeld 2007; Jin, Zang et al. 2009). I therefore 

evaluated the stability of the HSV-1 DNA containing complexes by subjecting 

them to MCN redigestion. 

I first evaluated the stability of the complexes released by moderate (150s) 

MCN digestions. These digestions release mostly mono-nucleosomes with a small 

percentage of di-nucleosomes (Fig 3.9A, Total). Crosslinking resulted in 

essentially complete protection from MCN redigestion (T50; >60min) (Table 3.4 

and Fig 3.9A, C - Crosslink). Consistent with the stability of most cellular 

nucleosomes, moreover, even the non-crosslinked cellular nucleosomes were still 

resistant to MCN redigestion. More than 50% of cellular DNA in non-crosslinked 

nucleosomes was still protected from 60min MCN redigestion (T50; >60min) 

(Table 3.4, Fig 3.9A, C - No Crosslink). Crosslinking also stabilized the HSV-1 
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nucleosome-like complexes, resulting in a 6-fold increase in the time required to 

digest 50% of the HSV-1 DNA (T50, 9 and 54min, respectively) (Table 3.4 and 

Fig 3.9A, C compare HSV-Crosslink and No Crosslink). Consistent with the 

proposed instability of the HSV-1 nucleosome-like complexes, however, HSV-1 

DNA in the non-crosslinked samples was digested >6-fold more rapidly than 

cellular DNA (T50, 9 and >60min, respectively; T90, 54min and non determinable, 

respectively - Table 3.4 and Fig 3.9A, C). As in the experiments presented in Fig 

3.3, 3.4, and 3.8, therefore, HSV-1 DNA in non-crosslinked (or crosslinked) 

nucleosome-like complexes is far more accessible to MCN than DNA in cellular 

nucleosomes. 

I next evaluated the stability of the complexes released by very mild (15s) 

MCN digestions (Fig 3.9B and D), which by definition release only the most 

accessible complexes. Under the proposed model, these complexes should be the 

most unstable. As expected, very little DNA was released as mononucleosomes 

by such mild digestions, as observed by ethidium bromide staining (Fig 3.9B, 

Total DNA). Nonetheless, both cellular and HSV-1 DNA were detected by 

Southern blot. 

Consistent with the release of the most unstable nucleosomes, the cellular 

nucleosomes in this soluble chromatin were >15-fold more sensitive to MCN 

digestion than those released by the moderate (150s) MCN digestions (T50, 3.8 

and >60, respectively) (Table 3.4 and Fig 3.9A, C). The nucleosomes released by 

15s digestions were in fact so unstable that crosslinking only modestly (1.7-fold) 

stabilized them (T50; 3.8 and 6.5min for non-crosslinked and crosslinked ones, 
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respectively) (Table 3.4 and Fig 3.9B, D). Approximately 75% of the DNA in the 

highly accessible cellular nucleosomes was in these unstable nucleosomes and 

therefore digested during the first 15min (Fig 3.9D). In addition to these unstable 

nucleosomes, however, there was also a population of more stable ones. The 

DNA in these nucleosomes was much less accessible to MCN and it was thus 

digested at a much slower rate. Only approximately 10% of the DNA in these 

latter complexes was digested between 15 and 60min (Fig 3.9B, D). 

The HSV-1 DNA in the unstable nucleosomes released by the very brief 

MCN digestion was also rapidly degraded by MCN redigestion, resulting in a 

very similar T50 to the DNA in the most unstable cellular nucleosomes (3 and 

3.8min, respectively, Table 3.4 and Fig 3.9). Also like the most unstable cellular 

nucleosomes, crosslinking resulted in only a slight (1.5-fold) protection from 

redigestion (T50, 3.4 and 3min, respectively) (Table 3.4 and Fig 3.9). Crosslinking 

also resulted in a modest increase (3-fold) in the time required to digest 90% of 

DNA (T90) (Table 3.4 and Fig 3.9). In contrast to the DNA in the most accessible 

cellular nucleosomes, however, there was no significant population of HSV-1 

DNA resistant to MCN re-digestion, even after crosslinking (Table 3.4 and Fig 

3.9). These results indicate that most of the complexes released by brief MCN 

digestion from cellular and HSV-1 genomes are similarly unstable. However, 

whereas the unstable cellular nucleosomes are only a minority, essentially all the 

HSV-1 DNA-containing complexes are unstable. In summary, HSV-1 DNA is in 

unstable complexes that are as accessible as the most unstable cellular 

nucleosomes. 
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Table 3.1.  HSV-1 DNA in nuclei of lytically infected cells does not 

fractionate as protein-free DNA. Percentages of DNA from nuclei digested with 

BamHI that fractionate to the soluble or insoluble fractions. 

DNA Insoluble Soluble 

HSV Protein-Free 17% 83% 

HSV Nuclear 73% 27% 

Cellular Nuclear 81% 19% 
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Table 3.2.  Nuclear HSV-1 DNA is more accessible to MCN than DNA in 

most cellular chromatin. Digestion times required to degrade 50% (T50) or 90% 

(T90) of HSV-1 or Cellular DNA, graphically calculated from the average 

digestion curves (n=3).

 T50 T90 

[MCN] Cellular HSV Cellular  HSV 

0.005 >60min 51.1min >60min >60min 

0.05 19.5min 6.7min >60min  32.6min 

0.5 0.7min 0.4min  5.2min 27.4min 

5 0.3min 0.3min 2.5min 0.2min 
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Table 3.3.  HSV-1 DNA is quantitatively recovered as poly-nucleosomes after 

the modified MCN digestion. Percentage of HSV-1 or cellular DNA 

fractionating in the soluble and insoluble fractions after being digested as per the 

modified MCN digestion protocol, standardized by recovery of cellular DNA. 

DNA Insoluble Soluble 

Cellular 26% 74% 

HSV 22% 78% 
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Table 3.4.  Unstable HSV-1 nucleosomes are partially stabilized by 

crosslinking. Digestion times required to degrade 50% (T50) and 90% (T90) of 

total DNA from nucleosome fractions previously crosslinked with formaldehyde. 

Nucleosomes in Moderately Accessible Chromatin 

  Cell HSV 

  No crosslink Crosslink No crosslink Crosslink 

T50 >60min >60min 9min 54min 

T90 >60min >60min >60min >60min 

Nucleosomes in Most Accessible Chromatin 

  Cell HSV 

  No crosslink Crosslink No crosslink Crosslink 

T50 3.8min 6.5min 3min 4.4min 

T90 >60min >60min 10min 30min 
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Figure 3.1. HSV-1 DNA in nuclei of lytically infected cells does not fractionate as 
protein-free DNA. Vero cells were mock-infected or infected with HSV-1 (HSV-
Nuclear), and harvested 5 hours later. Half of the mock-infected nuclei were then 
reconstituted with protein-free HSV-1 DNA (HSV-Protein free). Infected, mock-
infected, and reconstituted mock-infected nuclei were digested with BamHI and lysed. 
Soluble and insoluble nucleoprotein complexes were separated by differential 
centrifugation. The soluble DNA-protein complexes were then further resolved on 
sucrose gradients (Fraction). DNA in the pellet and each gradient fraction was 
analyzed by Southern blot with HSV-1 or cellular probes. A. Images of the 
hybridizations. Bottom fractions loaded to the left; different exposures shown for each 
condition. Exposures optimized for soluble fractions are also shown for insoluble 
fractions, which are therefore overexposed (Equal exposure). Lower exposures 
optimized for the insoluble fractions are also shown (Short exposure). B. Line graph 
presenting HSV-1 and cellular DNA in each fraction as percent of DNA in the gradient. 
The panels on the top are the same hybridizations shown in A, shown as reference for 
the graph below and resized to fit in the figure.
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Figure 3.2. MCN digestion releases HSV-1 DNA in complexes that fractionate as 
cellular mono- to di- nucleosomes. Nuclei of infected cells were digested for 150s 
with 0.05U of MCN per 1x107 nuclei and the soluble DNA-protein complexes were 
resolved on sucrose gradients (A, B). Following a similar experiment, fractions 10 and 
11 from the gradients were further fractionated by size exclusion chromatography (C). 
DNA from each fraction was analyzed by Southern blot with HSV-1 or cellular probes. 
A. Images of the membrane hybridized with cellular (Cellular)  HSV-1 (HSV) probes. 
Bottom fractions to the left. B. Line graphs presenting HSV-1 and cellular DNA in each 
fraction as percent of DNA in the gradient. The panels on the top are the same shown 
in A, shown as reference for the graph below and resized to fit in the figure. C. Images 
of the membranes hybridized with cellular (Cellular) or HSV-1 (HSV) specific probes. 
Arrowheads indicate migration of mono- or di- nucleosomes.
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(Cellular) or HSV-1 (HSV) specific probes. M, molecular weight marker. Normal and 
overexposures (bottom panels), in which the nucleosome-sized and MCN-resistant 
HSV-1 DNA are more clearly visible, are shown. To achieve comparable signal 
intensities, only 50% of sample was loaded for 0.5min, 0.005 to 5U. 
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B and C, Line graphs of the quantitated Southern blots from Figure 3.3 A presenting 
normalized levels of cellular (B) and HSV-1 (C) DNA against digestion time 
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A.

C.

B.

Figure 3.6. Potential types of HSV-1 nucleoprotein complexes. Cartoons 
representing three potential models of HSV-1 DNA nucleoprotein complexes in lytically 
infected cells. A, B, A small percentage of HSV-1 genomes are either regularly 
chromatinized (A) or irregularly chromatinized with randomly positioned nucleosomes 
(B). Protein-free genomes are represented as straight lines without histones. Sites of 
MCN digestion are indicated by arrows. MCN first cleaves randomly the protein-free 
genomes and the linker region between nucleosomes. Protein-free genomes are 
completely digested by longer digestions, whereas chromatinized genomes are 
protected to mononucleosome sizes. As a result, only a small percentage of HSV-1 
DNA is protected to nucleosome size fragments, or co-immunoprecipitates with 
histones. C. Most HSV-1 DNA is in unstable nucleosome-like complexes. Unstable 
nucleosomes are represented with dotted lines. MCN first cleaves the DNA within the 
unstable nucleosomes and the linker DNA. DNA within the unstable nucleosomes is 
then promptly degraded. As a result, only a minor fraction of HSV-1 is protected to 
nucleosome-sized fragments at any given time, or co-immunoprecipitates with 
histones.
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Figure 3.8. HSV-1 DNA fractionates as poly-nucleosomes after the modified 
MCN digestion. Nuclei of infected cells were lysed and soluble and insoluble 
chromatin were fractionated. Insoluble chromatin was resuspended in MCN digestion 
buffer (0.05U MCN/ml), and subjected to modified MCN digestions. Supernatants were 
periodically removed and quenched, and the insoluble pellets were resuspended with 
fresh MCN. Soluble DNA-protein complexes were pooled and further resolved on 
sucrose gradients. DNA from each fraction was analyzed by Southern blot with HSV-1 
or cellular specific probes. Images of the membranes hybridized with cellular 
(Cellular) or HSV-1 (HSV) specific probes. Arrowheads indicate migration of mono-, 
di-, tri-, or tetra- nucleosomes. 
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Figure 3.9. Unstable HSV-1 nucleosome-like complexes are partially stabilized 
by crosslinking. Nuclei of infected cells were digested with 0.05U MCN per 1x107

nuclei for 150s or 15s and lysed. Soluble DNA-protein complexes were resolved on 
sucrose gradients, and the relevant fractions from the sucrose gradients were then 
further fractionated by size exclusion chromatography. Relevant fractions from the size 
exclusion columns were either crosslinked (Crosslink) or not (No Crosslink) for 1h at 
4ºC, quenched with 125mM glycine for 10min and redigested with 0.05U/ml MCN for 
0, 5, 15, 30, 60min (                    ). DNA was analyzed by Southern blot with HSV-1 or 
cellular probes. A, B. Images of the ethidium bromide stained gels (Total) and 
membranes hybridized with cellular (Cellular) or HSV-1 (HSV) specific probes. 
Different exposures are shown for each hybridization. Arrowheads indicate migration 
of mono- or di- nucleosomes. 
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Figure 3.9. (continued) Unstable HSV-1 nucleosome-like complexes are partially 
stabilized by crosslinking. 
C, D. Line graphs of the quantitated Southern blots from Figure 4.9 A and B
presenting cellular and HSV-1 DNA against digestion time, expressed as percent of 
DNA prior to digestion. 
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CHAPTER 4: THE ACCESSIBLILITY OF LYTIC HSV-1 GENOMES 

DEPENDS ON THE TRANSCRIPTIONAL ACTIVATION STATE 

 

This chapter contains unpublished data 

 

4.1. Introduction 

Using classical chromatin characterization techniques, I have shown that most 

HSV-1 DNA is at 5hpi in unstable nucleoprotein complexes and, consequently, 

more accessible to MCN than most DNA in cellular chromatin (Chapter 3, and 

Lacasse and Schang 2010).  HSV-1 DNA was protected from MCN redigestion 

only after crosslinking, like the most unstable cellular nucleosomes.  Moreover, 

the HSV-1 DNA was quantitatively recovered in complexes with the biophysical 

properties of mono- to poly-nucleosomes following a modified “serial” MCN 

digestion protocol that I developed to “trap” unstable digestion intermediates.  I 

proposed that HSV-1 DNA exists mainly in unstable nucleosome-like complexes 

during lytic infections.  However, the previous study had only analyzed a single 

time post infection, 5 hours.  It therefore remained unknown whether HSV-1 

DNA was in unstable nucleosomes at other times.  Herein, I tested whether such 

unstable nucleosomes are present at other times during lytic infection. 
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4.2 Results 

4.2.1. The accessibility of HSV-1 DNA changes throughout the lytic infection 

cycle 

Standard MCN digestion of HSV-1 DNA during lytic infection releases HSV-1 

DNA in unique patterns of fragments, different from those patterns released from 

cellular chromatin.  The unique pattern results from HSV-1 DNA being in 

unstable nucleoprotein complexes, like most unstable cellular nucleosomes 

(Lacasse and Schang 2010).  

Our initial characterization of the HSV-1 nucleoprotein complexes was 

performed at 5hpi.  At this time, all classes of HSV-1 genes are transcribed, HSV-

1 DNA is replicated, and histones interact with HSV-1 DNA (Herrera and 

Triezenberg 2004; Kent, Zeng et al. 2004; Cliffe and Knipe 2008; Kutluay, 

DeVos et al. 2009; Kutluay and Triezenberg 2009; Placek, Huang et al. 2009).  

However, it still remained unclear whether HSV-1 DNA was in unstable 

nucleosomes at other times during infection.  As a first step in evaluating the 

biophysical properties of the potential HSV-1 nucleoprotein complexes present 

throughout the lytic infection cycle, I performed a time course evaluation of the 

accessibility of HSV-1 DNA to MCN. 

Vero cells were infected with 5 PFU of HSV-1 per cell.  Nuclei of infected 

cells were isolated at 2, 5, 7, and 9 hpi and digested with MCN (0.05U/1x107 

cells) for 0.5, 2.5, 5, 15, 30 and 60 minutes.  DNA was purified, resolved by 

agarose gel electrophoresis, and analyzed by ethidium bromide staining and 

Southern blot hybridization.  Hybridizations with cellular probes are shown in 
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standard exposures.  Hybridizations with HSV-1 probes are also shown 

overexposed, to highlight the changes in the accessibility of HSV-1 DNA during 

lytic infection (Fig. 4.1A). 

As expected for chromatinized cellular DNA, and consistent with our 

previous report (Lacasse and Schang 2010), standard MCN digestion resulted in 

the digestion of cellular DNA to sizes of typical nucleosome ladders 

(corresponding to multiples of 160bp-Fig. 4.1A, Cellular).  As evaluated by the 

time required to digest 50% of cellular DNA (T50), the accessibility of cellular 

chromatin remained relatively constant throughout the course of infection (Fig 

4.1B).  T50 varied by only less than 1.4-fold, ranging from >60, 50.1, to 41.1min 

for 2, 5, and 9hpi, respectively (Fig 4.1B and Table 4.1).  Consistently, the T50 for 

MCN digestion was 60.8min in a separate experiment in which nuclei were 

harvested at 7hpi (Fig 4.1B and Table 4.1).   

Whereas cellular DNA levels remained constant throughout the time 

course, the levels of HSV-1 DNA increased.  At 2hpi, only unreplicated infecting 

HSV-1 DNA was detected.  At 5hpi, HSV-1 DNA replication had begun and the 

amount of HSV-1 DNA had increased and continued to do so until 9hpi, the last 

time point evaluated (Fig 4.1A, HSV - standard exposure).   

In contrast to cellular DNA, the accessibility of HSV-1 DNA containing 

IE or L loci changed as the infection progressed.  At 2hpi, most HSV-1 IE or L 

DNA was poorly accessible to MCN (Fig 4.1A, 2hpi – HSV IE and L).  These 

results are consistent with a previous report, which found the infecting HSV-1 

DNA to be more resistant to MCN digestion than the replicated HSV-1 DNA 
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(Leinbach and Summers 1980).  At 5hpi, the percentage of HSV-1 IE or L loci 

DNA that was poorly accessible to MCN had decreased to 14.5%, whereas the 

remaining 85.5% of HSV-1 DNA was digested mostly to heterogeneously sized 

fragments with a minor population of nucleosome-sized fragments (Fig 4.1A-5hpi 

and 4.1D).  These results are also consistent with previous results (Chapter 3 and 

Lacasse and Schang 2010).  MCN digestions of nuclei harvested at 5, 7 (from a 

different experiment), or 9 hpi gave almost identical digestion patterns of HSV-1 

DNA digestion (Fig 4.1A compare 5hpi to 7 and 9hpi).  However, the percentage 

of poorly accessible DNA, DNA not digested by the harshest digestion conditions 

used, increased from 14.5% at 5hpi to 25.4% at 9hpi (Fig 4.1D and E).  

Consistently, 28.4% of HSV-1 DNA was found to be poorly accessible in a 

separate experiment evaluating the accessibility of HSV-1 DNA at 7hpi (Fig 

4.1E).   

  With the exception of the minor percentage of poorly accessible HSV-1 

DNA, the majority of HSV-1 DNA had increased accessibility over the course of 

infection.  This was reflected in a 3.6 and 3.2-fold decrease in T50 at 5 and 9hpi, 

respectively, in comparison to 2hpi (Table 4.1).  Consistently, a 2.8-fold decrease 

in accessibility was observed at 7hpi (in comparison to 2hpi) in a separate 

experiment (Table 4.1).  At any time after infection, however, HSV-1 DNA was 

digested more rapidly than DNA in most cellular chromatin (Table 4.1).  

Consistent with our previous report, HSV-1 DNA was more accessible to MCN 

than DNA in most cellular chromatin (Table 4.1).  Even at 2hpi, when HSV-1 

DNA was poorly accessible to MCN, HSV-1 DNA was still 1.5 fold more 
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accessible than most DNA in cellular chromatin.  This difference increased to 3.5-

fold at 5hpi, consistent with the previously reported 3-fold increased accessibility 

of HSV-1 DNA over DNA in cellular chromatin (Lacasse and Schang 2010).   

Preliminary analyses at 5hpi had shown no major differences between 

probes enriched in IE or L loci.  As expected from these preliminary experiments, 

the probe enriched in L loci detected very similar patterns of HSV-1 DNA 

fragments as the IE loci-enriched probe (Fig 4.1A and Table 4.1, T50; 11.4 and 

11.6min, IE and L probe, respectively).  Likewise, no major differences were 

observed when membranes containing the DNA of nuclei digested at 2, 5, 7 (from 

a different experiment), or 9hpi were hybridized using probes enriched in HSV-1 

IE or L loci (Fig 4.1A, C-F).  Taken together, these results indicate that HSV-1 

DNA becomes more accessible to MCN digestion at later times during infection.  

 

4.2.2. HSV-1 IE and L DNA is in nucleosome-like complexes throughout the 

lytic infection cycle 

Standard MCN digestions revealed differences in the accessibility of HSV-1 DNA 

throughout the course of infection.  However, it remained unclear whether HSV-1 

DNA was also in unstable nucleosomes at all times.  We therefore subjected 

nuclei isolated at 2, 5, or 9hpi to our modified “serial” MCN digestion designed to 

“trap” unstable nucleosome-like complexes.  The soluble chromatin fractions 

were pooled and resolved together by sucrose gradients and analyzed by Southern 

blot hybridization.  In the previous experiments (Chapter 3 and Lacasse and 

Schang 2010), the serial digestion was repeated nine times.  However, the vast 
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majority of cellular and HSV-1 DNA is released during the first three cycles.  We 

therefore reduced the number of cycles from 9 to 6 for the ensuing experiments.       

 The cellular DNA released as soluble chromatin by the serial MCN 

digestions fractionated as mono-, di- (fractions 10 to 12), and poly- (fractions 4 to 

9) nucleosomes complexes, as expected for regularly chromatinized DNA (Fig 

4.2A).  HSV-1 infection did not affect to any obvious extent the cellular DNA 

complexes released as soluble chromatin (Fig 4.2A, C).  However, the percentage 

of cellular DNA released as soluble chromatin increased from 79.7 to 90.1% 

between 2 and 9hpi (Fig 4.2B).  There was an apparent linear relationship 

between the progression of HSV-1 infection and the percentage of cellular DNA 

released as soluble chromatin.  Least squares analysis was performed, indicating 

an R2 value of 0.88. Progression of HSV-1 infection therefore correlates with an 

increase in the accessibility of bulk cellular chromatin to MCN.         

Similarly to cellular DNA, the HSV-1 IE DNA released as soluble 

chromatin was also in complexes that fractionate as mono-, di-, and poly- 

nucleosomes throughout the course of infection.  The DNA in the soluble 

chromatin fraction accounted for 85.6, 96.3, and 93.4% of nuclear HSV-1 IE 

DNA at 2, 5 and 9hpi, respectively, indicating that the majority of HSV-1 DNA is 

in nucleosome-like complexes throughout the course of infection.  Therefore, 

serial MCN digestion recovers HSV-1 IE DNA in nucleosome-like complexes, 

which were presumably rapidly degraded during the standard continuous MCN 

digestion.  
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As observed following standard MCN digestions, however, HSV-1 IE 

DNA was less accessible to MCN at 2hpi compared to 5 or 9hpi.  For example, 

96.3 and 93.4% of HSV-1 IE DNA was released as soluble chromatin at 5 and 

9hpi, respectively, compared to 85.6% at 2hpi (Fig 4.2D and Table 4.3).  At 2hpi, 

moreover, the HSV-1 IE DNA released as soluble chromatin was in larger, 

heavier, polynucleosomes-like complexes that resolved to fractions 9 to 12, 

whereas those released at 5 and 9hpi resolved primarily to fractions 11 to 13 (Fig 

4.2A, E).  These results indicate that HSV-1 IE DNA is less accessible to MCN at 

early times post infection (2hpi).   

We next hybridized the same membranes with the probe enriched in L 

loci.  Interestingly, no L loci DNA was detected in the HSV-1 DNA released into 

the soluble fraction at 2 hpi.  In contrast, L loci DNA was easily detected in the 

soluble chromatin at 5 and 9hpi (Fig 4.2A and F).  These results indicate that 

HSV-1 IE and L loci are differentially accessible at 2hpi.   

Taken together, these results show that most HSV-1 DNA is in 

nucleosome-like complexes throughout the course of HSV-1 infection.  These 

results also show the accessibility of HSV-1 DNA to MCN to change over the 

course of infection.  At early times (2hpi), HSV-1 DNA is poorly accessible to 

MCN, but it becomes more accessible later (5 and 9hpi).  Moreover, the 

accessibility of specific HSV-1 loci also appears to change throughout the course 

of infection.  IE, but not L, loci are released as soluble chromatin at 2hpi.  

However, this difference in accessibility between IE and L loci is minimized as 

the infection progresses (5, 7, and 9hpi) (Fig 4.1C, D and Table 4.1), and IE and L 
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loci become detected to similar levels in the complexes released as soluble 

chromatin (Fig 4.2).    

 

4.2.3. Inhibition of HSV-1 replication at different stages changes the 

accessibility of HSV-1 DNA to MCN digestion 

The change in the accessibility of HSV-1 DNA between 2 and 5hpi coincides 

with the transition from transcription of IE, E, but not L genes (2hpi), to 

transcription of IE, E, and L genes and ongoing DNA replication (5hpi).  Both 

transcription and DNA replication affect accessibility of DNA to MCN (Palen and 

Cech 1983).  We therefore evaluated the effects, if any, that inhibition of different 

stages of the HSV-1 replication cycle had on the accessibility of HSV-1 DNA to 

MCN.  To this end, we used small-molecule inhibitors. PAA inhibits the HSV-1 

DNA polymerase and, consequently, inhibits DNA replication and L gene 

transcription, without affecting IE or E gene transcription. CHX inhibits protein 

synthesis and thereby inhibits E and L gene transcription without affecting IE 

transcription.  Rosco inhibits the accumulation of IE, E and L transcripts.  

Cells were infected with 10 PFU of HSV-1 per cell and treated with no 

drug, PAA, CHX, or Rosco.  The nuclei were isolated at 7hpi, when HSV-1 IE, E, 

and L transcription, as well as DNA replication is ongoing, and subjected to 

standard MCN digestions.  Nuclear DNA was purified, resolved by agarose gel 

electrophoresis, and analyzed by ethidium bromide staining and Southern blot 

hybridization.  Hybridizations with cellular probes are shown in standard 

exposures.  Hybridizations with HSV-1 probes are shown in overexposures, to 
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highlight the differences between HSV-1 and cellular DNA, and the changes in 

the accessibility of HSV-1 DNA in the presences of inhibitors (Fig. 4.3A). 

As previously shown, standard MCN digestion resulted in the digestion of 

cellular DNA to a typical nucleosome ladder corresponding to multiples of 160bp 

(Fig. 4.3A).  None of the drugs had any major effects on the accessibility of DNA 

in cellular chromatin, as evaluated by the DNA fragments released (Fig 4.3A) or 

digestion kinetics (Fig 4.3B).  Only Rosco mildly increased the accessibility of 

DNA in cellular chromatin (Fig 4.3B, Rosco-30 and 60min).   

In contrast, all inhibitors decreased the accessibility of HSV-1 IE DNA.  

MCN digestion of nuclei from untreated cells yielded the previously observed 

patterns (Fig 4.1A, 7hpi and Lacasse and Schang 2010).  In contrast, neither the 

nucleosome nor the heterogeneously sized HSV-1 IE DNA fragments were 

detected in the nuclei of cells treated with PAA, CHX, or Rosco (Fig 4.3A). The 

pattern of digestion of HSV-1 IE DNA in nuclei of cells treated with any of the 

drugs was in fact very similar to that of HSV-1 IE DNA at 2hpi in the absence of 

any drug (Fig 4.1A).  As expected, the decrease in accessibility in the presence of 

drugs was reflected in increases in T50.  Treatment with PAA increased the T50 of 

HSV-1 IE loci DNA by 2.8-fold (14.3 to 40.0min, from ND to PAA), whereas 

CHX and Rosco increased the T50 by more than 4-fold (to >60min - Table 4.2).   

To evaluate whether the drugs differentially affected the accessibility of 

different HSV-1 loci, we next hybridized the membranes with the probe enriched 

in L loci.  As previously observed (Fig 4.1), HSV-1 IE and L loci are equally 

accessible at 7hpi in the absence of any drug (Fig 4.3A and C).  Similarly, no 
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major differences were observed in the pattern or kinetics of digestion between IE 

and L loci in nuclei from cells treated with CHX or Rosco (Fig 4.3A, E, and F).  

In the presence of PAA, however, L loci DNA was 1.5-fold less accessible than 

IE loci DNA (T50; 60 and 40min, repectively) (Table 4.2 and Fig 4.3D).  These 

results suggest that HSV-1 IE or L loci are differentially accessible in the 

presence of PAA.  All the drugs decreased the accessibility of MCN to HSV-1 IE 

or L DNA, thereby increasing the T50 (Table 4.2).  Therefore, inhibiting HSV-1 

replication at different stages decreases the accessibility of HSV-1 DNA to MCN.  

Furthermore, HSV-1 IE or L loci DNA may become differentially accessible to 

MCN if the block on HSV-1 replication is such that the transcription of one gene 

class, but not the other, is inhibited. 

 

4.2.4. HSV-1 DNA is in nucleosome-like complexes when the HSV-1 replication 

cycle is inhibited at different stages 

Accessibility of HSV-1 DNA increases during lytic infection (Fig 4.1 and 4.2).  

Furthermore, the accessibility of HSV-1 DNA also changes with transcription.  

For example, at 2hpi, when transcription is limited to IE and E genes, HSV-1 IE 

but not L loci are released as soluble chromatin. 

Therefore, we next evaluate whether drugs that inhibit various stages of 

the HSV-1 replicative cycle also differentially affect the accessibility of HSV-1 

IE or L DNA.  To this end, we performed serial MCN digestions on nuclei from 

cells infected and treated with no drug, PAA, CHX, or Rosco.  Nuclei were 

harvested at 7hpi and serial MCN digestions were performed.  The soluble 
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chromatin fractions were pooled and resolved together by sucrose gradients and 

analyzed by Southern blot hybridization with probes enriched in IE or L HSV-1 

loci. 

Consistent with previous experiments, the soluble chromatin released by 

serial digestion of nuclei from untreated cells released cellular DNA in complexes 

that fractionated as mono-, di- (fractions 10 to 12), and poly- (fractions 1 to 9) 

nucleosomes complexes (Fig 4.4A).  Interestingly, there was an apparent increase 

in the percentage of cellular DNA released as soluble chromatin from 80.5% in 

the absence of drug to 92.8, 88.4 and 88.0% in the presence of PAA, CHX, and 

Rosco, respectively (Fig 4.4B).  However, the least squares regression calculated 

from the data presented in Fig 4.1 predicts that 88% of the cellular DNA should 

have been released as soluble chromatin at 7hpi in the absence of any drug.  

Further repeats would have to be performed to evaluate whether the drugs indeed 

increase the accessibility of bulk cellular chromatin to MCN.  In any event, none 

of the drugs decreased the accessibility of bulk cellular chromatin to MCN.   

In contrast to cellular DNA, PAA, CHX and Rosco decreased the 

accessibility of HSV-1 DNA.  As previously observed (Fig 4.2), serial MCN 

digestion of nuclei from untreated cells released HSV-1 IE loci in nucleoprotein 

complexes that fractionated as cellular polynucleosomes (fractions 2 to 9) and 

mono- to dinucleosomes (fractions 10 to 12) (Fig. 4.4A-No Drug, and 4.4C).  

Similarly, digestion of nuclei from cells treated with PAA, CHX, and Rosco also 

released HSV-1 IE loci in nucleoprotein complexes that fractionate as cellular 

polynucleosomes (fractions 6 to 9) and mono- to dinucleosomes (fractions 10 to 
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11) (Fig. 4.4A-PAA, CHX, and Rosco, and 4.4E and G).  Consistent with the 

results of the standard MCN digestion, PAA, CHX, and Rosco all decreased the 

percentage of HSV-1 DNA released as soluble chromatin, albeit to varying 

degrees.  The percentage of HSV-1 DNA released into the soluble chromatin 

decreased from 86.9% in the absence of any drug (Fig 4.4B and Table 4.2) to 

74.5, 44.8, and 29.5% in the presence of PAA, CHX, and Rosco, respectively (Fig 

4.4D and Table 4.2).  Therefore, the inhibitors decrease the percentage of HSV-1 

IE DNA that that is accessible to MCN and thus released as soluble chromatin.   

Serial MCN digestion of nuclei from cells infected for 2 hours in the 

absence of any drug revealed differences in the accessibility of HSV-1 IE and L 

loci.  Considering the similarities in the transcription status of the HSV-1 DNA 

from those nuclei or those from cells treated with PAA, CHX, or Rosco, we next 

hybridized the membranes with the L loci enriched probe.  As expected, for 7hpi 

no differences were observed when membranes with DNA from untreated nuclei 

were hybridized with the probe enriched in L loci.  In both cases, HSV-1 DNA 

was in nucleoprotein complexes that fractionated as cellular polynucleosomes and 

mono- to di- nucleosomes (Fig 4.4A).  The percentage of DNA released in soluble 

chromatin was also the same, 86.9 and 87.0% for IE and L loci, respectively 

(Table 4.4).  These results are consistent with IE and L loci being equally 

accessible at 7hpi in the absence of any drug (Fig 4.2).  In contrast, PAA, CHX, 

or Rosco, all decreased the percentage of DNA containing HSV-1 L loci released 

in soluble chromatin, from 87% in untreated cells to 56.1, 32.3, and 14.0% in 

PAA, CHX, and Rosco treated cells, respectively (Fig 4.4F).   
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Next, I evaluated whether the drugs differentially affected the accessibility 

of HSV-1 IE and L loci DNA.  To this end, I calculated the ratio of the 

percentages of IE and L HSV-1 DNA released in soluble chromatin.  This 

analysis revealed that treatment with PAA, CHX, or Rosco resulted in a 1.3, 1.4, 

or 2.1-fold, respectively, decrease in the accessibility of HSV-1 DNA L loci DNA 

in comparison to IE loci DNA.  Taken together, these results indicate that the 

accessibility of HSV-1 DNA to MCN is decreased when HSV-1 transcription is 

inhibited.   
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Table 4.1. The accessibility of HSV-1 DNA changes during lytic infection. 

Digestion times required to degrade 50% (T50) of HSV-1 or Cellular DNA, 

graphically calculated from the digestion curves. 

* Data for 7hpi is from a separate experiment (see Fig 4.3A) 

T50 (min) 

HSV Time post  
infection (h) Cellular 

IE L 
2 >60 40.6 59.5 
5 50.1 11.4 11.6 

7 * 60.8 * 14.3 * 12.4 * 
9 41.1 12.7 11.9 
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Table 4.2. Inhibition of HSV-1 transcription changes the accessibility of 

HSV-1 IE or L DNA to MCN digestion. Digestion times required to degrade 

50% (T50) of HSV-1 or Cellular DNA in nuclei isolated at 7hpi, graphically 

calculated from the digestion curves. 

T50 (min) 

HSV Treatment 
Cellular 

IE L 
ND >60 14.3 12.4 

PAA >60 40.0 >60 
CHX >60 >60 >60 

R 35.7 >60 >60 
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Table 4.3. HSV-1 IE and L DNA is in nucleosome-like complexes throughout 

the lytic infection cycle. Percentages of cellular, HSV-1 IE, of HSV-1 L DNA 

fractionating as Insoluble or Soluble chromatin following serial MCN digestions 

of HSV-1 infected nuclei harvested at 2, 5, or 9hpi. 

DNA, %  Time post 
infection (h) Insoluble Soluble 

Cellular 
2 
5 
9 

20.3 
12.5 
9.9 

79.7 
87.5 
90.1 

IE 
2 
5 
9 

14.4 
3.7 
6.6 

85.6 
96.3 
93.4 

L 
2 
5 
9 

99.5 
3.5 
5.7 

0.5 
96.5 
94.3 
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Table 4.4. HSV-1 DNA fractionates as nucleosome-like complexes when 

HSV-1 replication is inhibited. Percentages of cellular, HSV-1 IE, of HSV-1 L 

DNA fractionating in Insoluble or Soluble chromatin following serial MCN 

digestions of nuclei infected with HSV-1 for 7h in the presence of No Drug, 

PAA, CHX, or Rosco. 

DNA, %  
Treatment Insoluble Soluble 

Cellular 

No Drug 
PAA 
CHX 
Rosco 

19.5 
7.2 
11.6 
12.0 

80.5 
92.8 
88.4 
88.0 

IE 

No Drug 
PAA 
CHX 
Rosco 

13.1 
25.5 
55.2 
70.5 

86.9 
74.5 
44.8 
29.5 

L 

No Drug 
PAA 
CHX 
Rosco 

13.0 
43.9 
67.7 
86.0 

87.0 
56.1 
32.3 
14.0 
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Figure 4.1. The accessibility of HSV-1 DNA changes during  lytic infection. 
Nuclei of infected cells isolated at 2, 5, 7, and 9 hours post infection were digested 
for 0.5, 2.5, 5, 15, 30, and 60min (                     ) with 0.05U MCN per 1x107 nuclei.  
The DNA was analyzed by Southern blot with HSV-1 or cellular probes. A. Images of 
the ethidium bromide stained gels (Total) or membranes hybridized with cellular 
(Cellular) or HSV-1 (HSV) specific probes.  The HSV-1 probes were specific for 
either immediate-early (IE) or late (L) genes.  M, molecular weight marker. Normal 
and overexposures (bottom panels), in which the MCN-resistant and absence of 
nucleosome-sized HSV-1 DNA is more clearly visible, are shown.  To achieve 
comparable signal intensities, only 67% of sample was loaded for 0.5min.
Data for 7hpi is from a separate experiment (see Fig 4.3A).
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Figure 4.1. (continued) The accessibility of HSV-1 DNA changes during lytic 
infection. 
B-F, Line graphs of the quantitated Southern blots from Figure 4.1 A presenting 
normalized levels of cellular (B), HSV-1 IE and L DNA at 2 (C), 5 (D), 7 (E), and 9 (F) 
hpi against digestion time.
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Figure 4.2. HSV-1 IE and L DNA is in nucleosome-like complexes throughout the 
lytic infection cycle. At 2, 5, and 9hpi, nuclei of infected cells were lysed and soluble 
and insoluble chromatin were fractionated. Insoluble chromatin was resuspended in 
MCN digestion buffer (0.05U MCN/ml), and subjected to serial MCN digestions. 
Supernatants were periodically removed and quenched, and the insoluble pellets were 
resuspended with fresh MCN. Soluble DNA-protein complexes were pooled and 
further resolved on sucrose gradients. DNA from each fraction was analyzed by 
Southern blot with HSV-1 or cellular specific probes. Images of the membranes 
hybridized with cellular (Cellular) or HSV-1 (HSV) specific probes.  The HSV-1 probes 
were specific for either immediate-early (IE) or late (L) genes. A. Images of the 
ethidium bromide stained gels (Total) and membranes hybridized with cellular 
(Cellular) or HSV-1 (HSV) specific probes. HSV-1 probes were specific for either 
immediate-early (IE) or late (L) genes. To achieve comparable signal intensities, only 
50% of the soluble fractions were loaded.
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Figure 4.2. (continued) HSV-1 IE and L DNA is in nucleosome-like complexes 
throughout the lytic infection cycle.
B, D, and F.  Bar graphs of the quantification of the Southern blots presenting the 
percentage of cellular (B), HSV-1 IE (D), or HSV-1 L (F) DNA fractionating in the 
pellet (Insoluble) or supernatant (Soluble) following serial MCN digestions.  C, E, 
and G. Line graphs presenting cellular (C), HSV-1 IE (E), and L (G) DNA in each 
fraction as percent of DNA in the gradient. There was no detectable signal when 
probing the 2hpi gradient with the L gene specific HSV-1 probe.
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Figure 4.3. Inhibition of HSV-1 replication at different stages changes the 
accessibility of HSV-1 DNA to MCN digestion. Purified nuclei of infected cells 
treated with no drug (ND), PAA, CHX, or Rosco (R) were digested for 0.5, 2.5, 5, 15, 
30, and 60min (                      ) with 0.05 U MCN per 1x107 nuclei. DNA was 
analyzed by Southern blot with HSV-1 or cellular probes. A. Images of the ethidium 
bromide stained gels (Total) and membranes hybridized with cellular (Cellular) or 
HSV-1 (HSV) specific probes.  HSV-1 probes were specific for either immediate-
early (IE) or late (L) genes.  M, molecular weight marker. Exposures in which the 
nucleosome-sized and MCN-resistant HSV-1 DNA are most clearly visible, are 
shown. To achieve comparable signal intensities, only 67% of sample was loaded for 
0.5min.  
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Figure 4.3. (continued) Inhibition of HSV-1 replication at different stages 
changes the accessibility of HSV-1 DNA to MCN digestion.
B-F, Line graphs of the quantitated Southern blots from Figure 4.3 A presenting 
normalized levels of cellular (B), HSV-1 IE and L DNA in the presence of no drug 
(C), PAA (D), CHX (E), and Rosco (F) against digestion time.
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Figure 4.4. HSV-1 DNA is in nucleosome-like complexes when HSV-1 
replication is inhibited at different stages. Infected cells were treated with no drug 
(ND), PAA, CHX or Rosco (R) and nuclei were harvested at 7hpi.  Nuclei were then 
lysed and soluble and insoluble chromatin were fractionated. Insoluble chromatin 
was resuspended in MCN digestion buffer (0.05U MCN/ml), and subjected to serial 
MCN digestions. Supernatants were periodically removed and quenched, and the 
insoluble pellets were resuspended with fresh MCN. Soluble DNA-protein complexes 
were pooled and further resolved on sucrose gradients. DNA from each fraction was 
analyzed by Southern blot with HSV-1 or cellular specific probes. Images of the 
membranes hybridized with cellular (Cellular) or HSV-1 (HSV) specific probes. A.
Images of the ethidium bromide stained gels (Total) and membranes hybridized with 
cellular (Cellular) or HSV-1 (HSV) specific probes. HSV-1 probes were specific for 
either immediate-early (IE) or late (L) genes. To achieve comparable signal 
intensities, only 50% of the soluble fractions were loaded.
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Figure 4.4. (continued) HSV-1 DNA is in nucleosome-like complexes when 
HSV-1 replication is inhibited at different stages.
B, D, and F.  Bar graphs of the quantitated Southern blots presenting the percentage 
of cellular (B), HSV-1 IE (D), and HSV-1 L (F) DNA fractionating as the pellet 
(Insoluble) or supernatant (Soluble) following serial MCN digestions. C, E, and G.
Line graphs presenting cellular (C), HSV-1 IE (E), and L (G) DNA in each fraction as 
percent of DNA in the gradient.
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CHAPTER 5: ROSCOVITINE INHIBITS ACTIVATION OF 

PROMOTERS IN HERPES SIMPLEX VIRUS TYPE 1 GENOMES 

INDEPENDENTLY OF PROMOTER-SPECIFIC FACTORS 

 

This chapter contains unpublished results and published work.  Diwan P.*, JJ. 

Lacasse*, and LM. Schang  *Both of these authors contributed equally to the 

published work. 

Journal of Virology 2004; 78(17): 9352-65 

 

5.1. Introduction 

In the previous chapter, I showed that most HSV-1 DNA is in nucleosome-like 

complexes throughout the HSV-1 replication cycle.  However, the accessibility of 

HSV-1 DNA to MCN digestion changed over the course of infection, increasing 

by 3.6-fold between 2 and 5hpi.  Interestingly, this period coincides with the 

transition from transcription of IE and E (2hpi), to the start of DNA replication 

and L gene expression (5hpi).   

Three small-molecule inhibitors that blocked different stages of HSV-1 

transcription also decreased the accessibility of HSV-1 DNA to MCN to varying 

degrees.  Furthermore, the extent to which they inhibited accessibility of HSV-1 

DNA to MCN appeared to correlate with the extent to which the drugs inhibited 

HSV-1 transcription.  For example, HSV-1 IE DNA was 2.5- and 1.5-fold less 

accessible in the presence of Rosco than in the presence of CHX or PAA, 

respectively.  When evaluating HSV-1 L DNA, the decrease in accessibility 
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increased to 4- and 2.5-fold, respectively.  Consistently, Rosco also has the 

greatest effect of the three drugs on HSV-1 transcription.  It inhibits the 

accumulation of HSV-1 IE, E, and L transcripts, as well as DNA replication 

(Schang, Rosenberg et al. 1999; Schang, Rosenberg et al. 2000).  Taken together, 

these results suggest that accessibility of HSV-1 DNA may regulate transcription.  

Alternatively, changes in HSV-1 DNA accessibility may be a consequence of 

transcription (Weisbrod 1982; Reeves 1984). 

I propose that HSV-1 DNA becomes less accessible in the presence of 

Rosco, thus preventing access of MCN and transcription proteins to HSV-1 DNA.  

Rosco should therefore inhibit initiation, but not affect ongoing HSV-1 

transcription.  I also propose that these effects should be specific to HSV-1 DNA, 

since Rosco does not affect global cellular RNAPII transcription (Lam, Pickeral et 

al. 2001), or the accessibility of bulk cellular chromatin to MCN digestion (Fig 

4.3, 4.4, 5.2, and 5.5).  To test these hypotheses I performed “run-on” 

transcription assays on nuclei isolated from both mock and HSV-1 infected cells 

in the absence or presence of Rosco.   

 

5.2. Results 

5.2.1. Rosco prevents initiation, but does not inhibit ongoing, HSV-1 

transcription. 

Run-on transcription assays were performed as a first step in evaluating the 

relationship between the accessibility of HSV-1 DNA and HSV-1 transcription.  
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In order to maximize the detection of low levels of transcription, the MOI was 

increased from 5 to 20 PFU per cell.   

Briefly, Vero cells were infected with 20 PFU of HSV-1 per cell and 

treated or not with Rosco at one hour after infection. Cells were harvested 5 h 

later and their nuclei were isolated.  Run-on transcription assays were performed 

as described by Spencer, Rice et al. (Rice, Long et al. 1995; Spencer, Dahmus et 

al. 1997), with several modifications (Diwan, Lacasse et al. 2004).  The effects of 

Rosco were tested on promoter specific (i.e., sense) and “non-promoter-specific” 

(i.e., antisense) HSV-1 transcription, by probing the run-on RNAs with single-

stranded DNA sense or antisense to selected viral genes. The phages containing 

the probes were a generous gift of Dr. C. Spencer (Cross Cancer Institute, 

Edmonton, Alberta, Canada). 

Run-on transcription assays performed with nuclei of mock infected cells 

(negative controls) resulted in only low background levels of hybridization to 

viral genes, as expected. Run-on transcription assays performed with nuclei of 

HSV-1 infected cells (positive controls) resulted in abundant viral transcription, 

also as expected (Fig. 5.1A). Transcription occurred from both sense (“promoter-

specific”) and antisense (“non-promoter-specific”) strands, which is characteristic 

of HSV-1 (Rice, Long et al. 1995; Spencer, Dahmus et al. 1997). Run-on assays 

performed with nuclei of cells infected in the presence of Rosco resulted in 

inhibition of transcription of all viral genes analyzed (Fig. 5.1A) - even though no 

Rosco was present during the transcription reactions. Under these conditions, 

Rosco prevented transcription from both sense (i.e., “promoter-specific”) and 

169



  

anti-sense (i.e., “non-promoter-specific”) DNA strands. In contrast, run-on 

transcription assays performed in the presence of Rosco, but using nuclei of cells 

infected in the absence of the drug, resulted in no inhibition of either sense or 

anti-sense transcription (Fig. 5.1A).  

Transcription of HSV-1 E and L genes depends on previous expression of 

IE proteins, which is inhibited by Rosco (Fig 5.1A and Schang, Rosenberg et al. 

1999). Therefore, the experiments presented in Fig. 5.1A tested the direct effects 

of Rosco on transcription of IE genes but not on transcription of E or L genes. 

Moreover, IE proteins were present during transcription only when Rosco was 

added to the transcription reactions, but not when Rosco was added to the infected 

cells (because Rosco prevents transcription of IE genes – Fig 5.1A and Schang, 

Rosenberg et al. 2000). To test the effects of Rosco on HSV-1 transcription in the 

presence of IE proteins, I followed a cyclohexamide (CHX) release experimental 

design. Briefly, cells were infected with HSV-1 in the presence of CHX for 5h. At 

this time, CHX was removed and control or Rosco-containing media was added.  

Following this procedure, high levels of all HSV-1 IE proteins are synthesized 

after removal of CHX, translated from the IE transcripts over-accumulated during 

the 5h in the presence of CHX (Schang, Rosenberg et al. 1999). 

Rosco prevented initiation of transcription of IE, E, and L genes after a 

CHX release (Fig. 5.1B), which is consistent with its inhibitory effects on 

accumulation of IE, E, and L transcripts in the presence of IE proteins (Schang, 

Rosenberg et al. 1999). Rosco also prevented initiation of both sense and anti-

sense transcription in the presence of IE proteins, as it did in their absence. 
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Moreover, Rosco had no effect on ongoing transcription (Fig. 5.1B), as it had no 

effect on ongoing transcription in the absence of IE proteins (Fig. 5.1A). These 

results reveal that Rosco inhibits the activation of HSV-1 promoters independent 

of specific activators.  Therefore, the functions targeted by Rosco participate in 

activation of IE gene transcription by cellular proteins and HSV-1 structural 

proteins, as well as in regulation of E gene transcription by HSV-1 IE proteins. 

 

5.2.2. Rosco prevents initiation of HSV-1, but not cellular, transcription 

Rosco prevents initiation of HSV-1 transcription but does not inhibit ongoing 

transcription. These effects could be specific for HSV-1 transcription, or general 

to HSV-1 and cellular transcription.  Therefore, I next analyzed the effects of 

Rosco on global viral and cellular transcription.  HSV- or mock- infected cells 

were treated with Rosco or control medium for 5h, nuclei were then isolated and 

run-on transcriptions were performed.  The RNAs purified from the transcription 

reactions were hybridized to membranes containing the entire genome of HSV-1 

or Vero cells, and the hybridized signal was quantitated to assess the effects of 

Rosco on global HSV-1 or cellular transcription, respectively. Mock infected cells 

were selected to analyze the effects of Rosco on cellular transcription because 

several HSV-1 proteins inhibit cellular transcription. Therefore, the inhibitory 

effects of Rosco on HSV-1 transcription in infected cells would complicate the 

analyses of its potential effects on cellular transcription. 

When cells were infected in the presence of Rosco, global HSV-1 

transcription was inhibited, even though no drug was present in the transcription 
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reactions (Fig. 5.2A, B). When mock infected cells were treated with Rosco, 

however, no major effects on global cellular transcription were detected (Fig. 

5.2C). Furthermore, and consistent with the results shown in Fig. 5.1A, Rosco 

added to the run-on transcription had no effect on global HSV-1 or cellular 

transcription (Fig. 5.2), indicating again that Rosco does not inhibit ongoing 

transcription. These experiments further suggested that Rosco prevents initiation 

of transcription of all HSV-1 genes, since no significant levels of transcription of 

any HSV-1 genome fragment could be detected in nuclei of cells infected in the 

presence of Rosco (Fig. 5.2B). 

 

5.2.3. Cellular transcription in the presence of Rosco is performed by RNA Pol II  

The reaction conditions used in our experiments are designed to favor transcription 

by RNA Pol II over RNA Pol I or III.  However, either of these last two 

polymerases could have synthesized the cellular transcripts observed in the 

experiments presented in Fig. 5.2C (only RNA Pol II synthesizes HSV-1 

transcripts). Therefore, I tested next whether cellular transcription in the presence 

of Rosco was indeed performed by RNA Pol II.   

Briefly, nuclei were purified from mock infected cells treated or not with 

Rosco.  Run-on reactions were then performed in the presence of no drug, α-

amanitin, or Rosco, and RNA was precipitated with trichloroacetic acid (TCA).  

Global cellular transcription was then calculated using the percentage of 

radioactivity incorporated into RNA.   
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Run-on transcription in nuclei of cells treated or not with Rosco in vivo was 

equally inhibited by α-amanitin (by 60 and 58% relative to control, respectively) 

(Fig. 5.3). In contrast, Rosco added to the run-on transcription reactions failed to 

significantly inhibit transcription in nuclei of even cells treated with Rosco in vivo 

(Fig. 5.3). The highest level of inhibition by Rosco added in vitro (to nuclei of cells 

treated with Rosco in vivo) was that observed in the experiment presented in Fig. 

5.3 (25% inhibition). Since α-amanitin inhibited cellular transcription by 

approximately 60% and most cellular transcription is performed by RNA Pol I or 

Pol III, these experiments also prove that, as expected, the run-on conditions used 

in our assays strongly favor transcription by RNA Pol II over Pol I or Pol III. 

 

5.2.4. Inhibition of transcription by Rosco is specific for the HSV-1 genome 

The experiments presented in the previous sections show that Rosco prevents 

initiation of transcription of HSV-1 genes but not of cellular genes.  Preventing 

initiation of transcription of IE genes was especially surprising because Rosco does 

not inhibit formation of the Oct1/HCF/VP16 transactivating complex, or the 

affinity of this complex for its cognate TAATGARAT sequences in vitro (Jordan, 

Schang et al. 1999), at least with bacterially expressed Oct-1.  Preventing initiation 

of all classes of HSV-1 genes was therefore consistent with Rosco having genome-, 

rather than promoter-, specific effects.  Beyond specific promoters, however, the 

HSV-1 genome itself may play a major role in transcription regulation.  I have 

shown that the majority of nuclear HSV-1 DNA is in unstable nucleosome-like 

complexes that have different biophysical properties than the majority of DNA in 
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cellular chromatin (Chapter 3 and Lacasse and Schang 2010).  Also, a variety of 

non-HSV-1 promoters recombined into the HSV-1 genome are regulated as HSV-1 

E promoters (Smiley, Smibert et al. 1987; Panning and Smiley 1989; Smibert and 

Smiley 1990). Furthermore, transcription driven by the HSV-1 ICP0 promoter is 

inhibited by α-interferon (α-IFN) when the promoter is in the HSV-1 genome, but 

not when it is recombined into the cellular genome (Nicholl and Preston 1996).  In 

addition, I have shown that Rosco inhibits the accessibility of HSV-1 DNA, but not 

bulk cellular chromatin, to MCN (Fig 4.3).  These results are consistent with the 

HSV-1 specific effects of Rosco on transcription.  Therefore, I next evaluated the 

effects of Rosco on the transcription of a RFP reporter gene driven by an HSV-1 

ICP0 promoter recombined into the cellular genome. 

To this end, Dr. Diwan created a recombinant plasmid in which the 

promoter of ICP0, including all its known regulatory elements, drives the 

expression of a reporter red fluorescent protein (RFP) (Fig 5.4A).  In transient 

transfection, Rosco inhibited the activation of this ICP0 promoter by UV-

inactivated HSV-1 (Fig 5.4B).  This was consistent with a previous report in which 

Rosco inhibited the activation of another ICP0 reporter construct under similar 

circumstances (Jordan, Schang et al. 1999). 

The ICP0 reporter construct was transfected into Vero cells, and stably 

transfected cells were selected and cloned.  The stably-transfected ICP0 promoter 

did not direct expression of RFP in non-infected cells, but it was activated by HSV-

1 in 13 of 110 clones tested.  Two of these clones were selected for further 

analyses, clones 57 and 32.  The ICP0 reporter construct was integrated into the 
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cellular genome in each of these two clones as multiple copies per cell (Diwan, 

Lacasse et al. 2004), and was activated by virion proteins (Fig. 5.4C).   

The inhibitory concentration of Rosco is cell-type dependent.  We therefore 

tested the potency of Rosco toward HSV-1 replication in Vero clones 57 and 32.  

Replication of HSV-1 in both clones, and parental Vero cells, was more sensitive to 

Rosco than in other Vero cells used in previous publications.  Seventy-five 

micromolar Rosco inhibited HSV replication by four orders of magnitude in the 

two clones and the parental cells (Fig. 5.4D). Vero cells clone 57 and 32 displayed 

similar phenotypes throughout the experiments; results from clone 57 are presented 

herein. 

We next evaluated the effects of Rosco on the activation of ICP0 promoters 

recombined in the cellular genome. Clone 57 cells were infected in the presence of 

CHX and 0, 25, 50, 75, or 100 µM Rosco. In the presence of CHX, the ICP0 

promoter is activated only by cellular proteins and structural HSV-1 proteins such 

as VP16.  Infected cells were harvested at 3, 6 and 9hpi, and RNA was analyzed by 

Northern blot hybridization. 

Consistent with its effects on HSV-1 transcription (Fig 5.1, 5.2, and Schang, 

Phillips et al. 1998; Schang, Rosenberg et al. 1999; Schang, Rosenberg et al. 2000), 

Rosco inhibited transcription regulated by the ICP0 promoters in the viral genome 

(Fig. 5.5A, ICP0).  Surprisingly, however, Rosco did not efficiently inhibit 

transcription regulated by the ICP0 promoters recombined in the cellular genome 

(Fig. 5.5A, RFP).  This differential sensitivity to Rosco could be because RNA 

polymerase I or III, rather than RNAPII (which transcribes all HSV-1 genes), 
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transcribed RFP from the cellular genome. However, α-amanitin inhibited 

transcription of ICP0 and RFP as efficiently as actinomycin D (ActD; Fig. 5.5B). 

Therefore, both ICP0 and RFP were transcribed by RNA Pol II.  Taken together, 

these results indicate that Rosco inhibits transcription driven by a promoter when in 

the context of the extrachromosomal HSV-1 genome, but not the same promoter in 

the context of the cellular genome.  Such effects are consistent with a model in 

which Rosco specifically decreases the accessibility of HSV-1 genomes thereby 

preventing their transcription.  Therefore, the effects of Rosco appear to be 

promoter-independent and genome-dependent.   

 

5.2.5. Inhibition of transcription by Rosco depends on genome but not on 

promoter specific factors. 

In the experiments presented in Fig. 5.1, Rosco inhibited initiation of transcription 

of IE genes under conditions in which their promoters were regulated by cellular 

and virion proteins acting alone (Fig 5.1A), or acting in combination with IE 

proteins (Fig 5.1B). In the experiments presented in Fig. 5.5A, we evaluated the 

effects of Rosco on transcription from IE promoters recombined in the cellular 

genome only under conditions in which no IE proteins were present. At least two 

IE proteins regulate the activities of IE promoters in the viral genome, ICP0 and 

ICP4.  Therefore, we next evaluated the effects of Rosco on the expression of 

RFP driven by the ICP0 promoter in the context of the cellular genome (Fig 5.6A) 

or an extrachromosomal plasmid (Fig 5.6B), in the presence of IE proteins. To 

this end, we use the CHX release experimental design used in the experiments 
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presented in Fig. 5.1B.  Parental Vero cells were transiently transfected with the 

ICP0-RFP construct (Fig 5.6B).  Twenty-four hours later, transiently transfected 

Vero cells (Fig 5.6B) and Vero clone 57 cells (Fig 5.6A) were independently 

seeded into individual wells.  Seeded cells were infected in the presence of CHX 

for five hours, when CHX-containing medium was removed and replaced with 

medium containing 0, 25, 50, 75, or 100 µM Rosco.  Sixteen hours later, the 

expression of RFP was examined by fluorescent microscopy, because the 

efficiency of transfection of Vero cells is too low to permit examination of RNA 

levels by Northern blotting. 

As in all other experiments, Rosco did not inhibit HSV-induced 

expression of RFP driven by the ICP0 promoter in the context of the cellular 

genome (Fig. 5.6A and C).  The percentage of cells expressing RFP decreased 

only marginally when Rosco was increased from 0 to 100 µM (from 95% of cells 

expressing RFP to 75% - Fig. 5.6A), this decrease is consistent with the effects of 

Rosco on the activity of the same reporter gene when it is regulated by structural 

and cellular proteins acting alone (Fig 5.4A).  In contrast, Rosco efficiently 

inhibited HSV-induced expression of RFP when driven by the ICP0 promoter in 

the context of an extrachromosomal plasmid (from 100% of transfected cells 

expressing RFP to less than 15 % - Fig 5.6B and D).  This was consistent with the 

effects of Rosco on the same reporter gene when it is regulated by HSV-1 

structural and cellular proteins alone (Fig 5.4B).  Rosco, however, did not inhibit 

the basal activity of ICP0 promoters from extrachromosomal plasmids (Fig 5.4B 
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and 5.6D, bottom panels), consistent with a previous report using a similar 

construct (Jordan, Schang et al. 1999). 

 

5.2.6. The effects of Rosco on MCN accessibility have the same genome and 

promoter dependence as its effects on transcription  

Rosco prevents initiation, but does not inhibit ongoing HSV-1 transcription.  This 

effect is specific to HSV-1 genomes.  Rosco does not inhibit global cellular 

transcription, nor does it inhibit the HSV-induced expression of RFP driven by the 

ICP0 promoter in the context of the cellular genome.  Therefore, the effects of 

Rosco are specific to the extrachromosomal HSV-1 genome and not the ICP0 

promoter.  These results are consistent with a model in which Rosco decreases 

access of transcription proteins to HSV-1 genomes, thereby preventing activation 

of HSV-1 transcription.  This specificity would thus explain why Rosco prevents 

the activation of transcription from otherwise unrelated IE and E promoters in the 

same extrachromosomal HSV-1 genomes.  Therefore, I next evaluated whether the 

effects of Rosco on accessibility were also genome-specific.  To this end, I tested 

effects of Rosco on the accessibility of the genes driven by the ICP0 promoter in 

the context of the extrachromosomal HSV-1 genome, or the RFP gene in the 

context of the cellular genome (the ICP0 or RFP genes, respectively).   

Clone 57 cells were infected with 10 PFU of HSV-1 per cell and treated or 

not with 100µM Rosco at one hour after infection.  Nuclei were isolated at 5hpi and 

then digested with MCN (0.05U/1x107) for 0.5, 2.5, 5, 15, 30, 60 minutes.  DNA 

was purified, resolved by agarose gel electrophoresis, and analyzed by ethidium 
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bromide staining and Southern blot hybridization.  The probes used were specific 

for the gene driven by the ICP0 promoter recombined into the cellular genome 

(RFP) or in extrachromosomal HSV-1 genome (ICP0).  RFP and ICP0 

hybridizations are shown in standard exposures to compare total DNA levels, and 

overexposures of ICP0 are also shown to analyze the differences in accessibility in 

the presence of Rosco (Figure 5.7A). 

I have previously shown that Rosco does not largely affect the MCN 

accessibility of DNA in most cellular chromatin (Fig 4.3, 4.4, 5.2, and 5.5).  

Consistently, RFP was digested in untreated or Rosco-treated nuclei with similar 

kinetics and to similar patterns of digestion products (Fig 5.7A, B).  Therefore, 

Rosco does not inhibit the accessibility of a reporter gene driven by the ICP0 

promoter in the context of the cellular genome (or its transcription).  However, the 

pattern of RFP hybridization was distinct from the pattern typically observed for 

bulk cellular DNA probes (compare Fig 5.7A-RFP to Fig 4.3A-Cellular).  Most 

notably, neither the typical nucleosome ladder nor the typical mononucleosomal 

DNA were observed.  The latter was highly unexpected.  The ongoing transcription 

of the ICP0-driven RFP gene (which is activated by HSV-1 structural and cellular 

proteins but not inhibited by Rosco under these conditions) may destabilize the 

nucleosomes.  RFP DNA would then become highly accessible to MCN and thus 

rapidly degraded.  Consistent with this hypothesis, the majority of RFP DNA was 

detected in polynucleosome-like complexes following serial MCN digestion (91.2 

and 84.4% in absence and presence of Rosco, respectively) (Fig 5.8).  

Alternatively, the ICP0 promoter sequence itself (or the recruitment of HSV-1 
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structural and cellular proteins) may destabilize the surrounding chromatin 

environment, such that the DNA in the nearby nucleosomes becomes highly 

accessible to MCN.   

The same membranes were then re-hybridized with a probe specific for the 

ICP0 gene driven by the ICP0 promoter in the HSV-1 genome (ICP0 itself).  MCN 

digestion of the nuclei of the infected but otherwise untreated cells resulted in the 

typical HSV-1 DNA hybridization pattern.  Mainly, the majority of ICP0 DNA was 

in fragments protected to heterogeneous or nucleosome sizes (compare ND in Fig 

5.7 and Fig.4.3).  In contrast, all detectable ICP0 DNA in nuclei from Rosco treated 

cells was poorly accessible to MCN (Fig 5.7A), consistent with the results 

presented in Fig 4.3.  Standard MCN digestion of nuclei from cells treated with 

Rosco had resulted in such a pattern of fragments when hybridized with probes 

enriched with HSV-1 IE loci (Fig 4.3).  Therefore, Rosco selectively decreases the 

accessibility (and transcription) of genes driven by the ICP0 promoter in the 

context of the extrachromosomal HSV-1 genome.  Rosco exhibits the same 

selectivity towards inhibition of transcription driven by the ICP0 promoter in the 

two different contexts.  The MCN accessibility of a gene driven by the same 

promoter in the context of the cellular genome, in which transcription is not 

affected by Rosco, was unaffected.  Taken together, these results indicate that 

Rosco has similar genome-dependent and promoter-independent effects on 

transcription and DNA accessibility. 
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5.2.7. The effects of Rosco on accessibility are specific for the HSV-1 genome 

Standard MCN digestions showed that Rosco decreases the accessibility of an 

ICP0 promoter-driven gene in the context of the extrachromosomal HSV-1 DNA, 

but not in the context of the cellular genome.  I have previously shown that serial 

MCN digestions have higher resolution and provide additional information about 

the nucleoprotein complexes released by MCN.  Therefore, I next evaluated 

whether the DNA released as soluble chromatin following serial MCN digestion 

also supported a model requiring differences in accessibility. 

Briefly, clone 57 cells were infected and their nuclei were harvested at 

5hpi, to be subjected to serial MCN digestion.  The soluble fractions were pooled 

and resolved together by sucrose gradients and analyzed by Southern blot 

hybridization. 

The DNA released as soluble chromatin from the locus driven by the ICP0 

promoter in the context of the cellular genome in cells infected with HSV-1 and 

left untreated or treated with Rosco was in mono-, di- (fractions 10 and 11), and 

poly- (fractions 5 to 9) nucleosomes complexes (Fig 5.8A and B).  The complexes 

containing RFP DNA released as soluble chromatin from cells infected and 

treated with Rosco was in slightly heavier complexes fractionating primarily as 

cellular polynucleosomes (fractions 6 to 10) (Fig 5.8B).  As evaluated by standard 

MCN digestions in Fig 5.7, however, Rosco did not have any major effects on 

RFP DNA in the context of the cellular genome.  Therefore, Rosco may or may 

not affect the polynucleosome-like complexes released as soluble chromatin by 
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serial MCN digestion.  The percentage of RFP DNA released as soluble 

chromatin apparently decreased from 91.2 to 84.4% in untreated or Rosco treated 

cells, respectively (Fig 5.8C).  Consistent with the lack of effects of Rosco on 

transcription of genes driven by HSV-1 promoters in the context of the cellular 

genome, Rosco does not have any major effects either on the accessibility of such 

genes.     

The effects of Rosco on the accessibility of ICP0 loci in the context of the 

extrachromosomal HSV-1 genome, in contrast, were more obvious.  In untreated 

cells, 91.5% of the DNA of the gene driven by the ICP0 promoter in the context 

of the viral genome (ICP0 itself) was released as soluble chromatin, and 

fractionated as short polynucleosomes (fraction 9), or mono- to di- nucleosomes 

(fractions 10 and 11) (Fig 5.8A, B, and D).  In contrast, less than 1% of the DNA 

of the gene driven by the ICP0 promoter in the context of the viral genome (ICP0 

itself) was released as soluble chromatin in the nuclei of cells treated with Rosco 

(Fig 5.8A, D).  Instead, more than 99% of the DNA of the gene driven by the 

ICP0 promoter in the context of the viral genome (ICP0 itself) resolved to the 

insoluble chromatin fraction (Fig 5.8A, R; ICP0-Insoluble).  In fact, even 

following a gross overexposure, no DNA of the gene driven by the ICP0 promoter 

in the context of the viral genome (ICP0 itself) could be detected fractionating as 

soluble chromatin (Fig 5.8A, R-overexposure)  Therefore, the effects of Rosco on 

the accessibility of HSV-1 DNA are genome-dependent but promoter-

independent, very much like its effects on transcription.  Taken together, these 
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results are consistent with a model in which Rosco prevents activation of HSV-1 

transcription by decreasing the accessibility of genomic HSV-1 DNA. 
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Table 5.5. Rosco specifically inhibits the accessibility of HSV-1 loci in the 

viral genome, but HSV-1 loci recombined into the cellular genome. 

Percentages of DNA containing RFP and ICP0 loci fractionating in Insoluble or 

Soluble chromatin following serial MCN digestions of clone 57 nuclei infected 

with HSV-1 for 5h in the presence of No Drug or Rosco. 

DNA, %  
Treatment Insoluble Soluble 

RFP No Drug 
Rosco 

8.8 
15.6 

91.2 
84.4 

ICP0 No Drug 
Rosco 

8.5 
99.5 

91.5 
0.5 
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Figure 5.1. Rosco prevents initiation, but does not inhibit ongoing, HSV-1 
transcription. Four membranes slot-blotted with single-stranded DNA complementary 
to (+), or same sense as (-), two IE (ICP4, ICP27), two E (ICP8, UL36) and two L (gC, 
VP16) HSV-1 genes and probed with RNA isolated from “run-on” transcription 
reactions. 
A. Cells were mock infected (Mock), or infected with HSV-1 (HSV) in the presence of 
(In vivo) vehicle (No Drug) or Rosco (Rosco). Nuclei were isolated at 6 hpi, and run-
on transcription reactions were performed in the presence of (Run on) vehicle (No 
Drug) or 100 µM Rosco (Rosco). The higher background in the ICP4 sense probe is 
consistently observed, and most likely due to cross-hybridization with cellular RNAs.
B. Cells were mock infected (Mock), or infected with HSV-1 (HSV) in the presence of 
CHX. Six hours later, CHX-containing medium was removed and replaced with 
medium containing (In vivo) vehicle (No Drug), or Rosco (Rosco). Nuclei were 
isolated at 3 hours after changing the media, and run-on transcription reactions were 
performed in the presence of (Run on) vehicle (No Drug) or 100 µM Rosco (Rosco). 
Transcription of ICP4 could not be evaluated in these experiments because the cross-
hybridizing cellular RNAs are too strongly induced by CHX.
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Figure 5.2. Rosco prevents initiation of HSV-1, but not cellular, transcription.
A. Bar graph showing the percentage of HSV-1 run-on transcription in the presence or 
absence of Rosco.  Cells were infected with HSV-1 in the presence of (In vivo) vehicle 
(No Drug) or 100 µM Rosco (Rosco). Nuclei were isolated at 6 hpi, and run-on 
transcription reactions were performed in the presence of (Run on) vehicle (No Drug) 
or 100 µM Rosco (Rosco). RNA was purified and probed with membranes containing 
the entire HSV-1 genome as Hind III fragments. Radioactivity hybridized to the HSV-1 
genome fragments was quantitated using a Bio-Rad molecular imager and FX 
software package, and expressed as percentage of transcription in the absence of 
Rosco in vivo or in vitro (first bar).
B. Four membranes Southern-blotted with Hind III HSV-1 DNA fragments and probed 
with RNA isolated from “run-on” transcription reactions. A picture of a gel stained with 
ethidium bromide is presented on the left to show the positions of the HSV-1 genome 
fragments (Genome). Cells were mock infected (Mock) or infected with HSV-1 (HSV-
1) in the presence of (In vivo) vehicle (No Drug) or Rosco (Rosco). Nuclei were 
isolated at 6 hpi, and run-on transcription reactions were performed in the presence of 
(Run on) vehicle (No Drug) or 100 µM Rosco (Rosco). RNA was purified and probed 
with membranes containing the entire HSV-1 genome as Hind III fragments. 
C.  Bar graph showing the percentage of global cellular run-on transcription in the 
presence or absence of Rosco. Cells were mock infected in the presence of (In vivo) 
vehicle (No Drug) or 100 µM Rosco (Rosco). Nuclei were isolated 6 hours later, and 
run-on transcription reactions were performed in the presence of (Run on) vehicle (No 
Drug) or 100 µM Rosco (Rosco). RNA was purified and probed with membranes 
containing the entire Vero cell genome as Hind III fragments. Radioactivity hybridized 
to the Vero cell genomic fragments was quantitated using a Bio-Rad molecular imager 
and FX software package, and expressed as percentage of transcription in the 
absence of Rosco in vivo or in vitro (first bar).
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Figure 5.3. Cellular transcription in the presence of Rosco is performed by RNA 
Pol II.
A.  Bar graph showing the percentage of global cellular run-on transcription in the 
presence or absence of Rosco.  Cells were mock infected in the presence of (In vivo) 
vehicle (No Drug). Nuclei were isolated 6 h later, and run-on transcription reactions 
were performed in the presence of (Run on) vehicle (No Drug), α-amanitin (αAma), 
or 100 µM Rosco (Rosco). RNA was then precipitated with TCA and the percentage 
of radioactivity incorporated into RNA was calculated. Background incorporation was 
subtracted, and transcription is presented as the percentage of radioactivity 
incorporated into RNA in run on reactions performed in the absence of any drug.
B. Bar graph showing the percentage of global cellular run-on transcription in the 
presence or absence of Rosco.  Cells were mock infected in the presence of (In vivo) 
100 µM Rosco (Rosco). Nuclei were isolated 6 h later, and run-on transcription 
reactions were performed in the presence of (Run on) vehicle (No Drug), α-amanitin 
(αAma), or 100 µM Rosco (Rosco). RNA was then precipitated with TCA and the 
percentage of radioactivity incorporated into RNA was calculated. Background 
incorporation was subtracted, and transcription is presented as the percentage of 
radioactivity incorporated into RNA in run on reactions performed in the absence of 
any drug. The actual levels of transcription for all run on conditions (no drug, α-Ama, 
Rosco) were approximately 30% higher in nuclei of cells treated with Rosco in vivo 
than in nuclei of control cells, consistent with the data shown in Fig. 5.2 C.
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Figure 5.4. Characterization of Vero clones stably transfected with ICP0-driven 
RFP (pICP0-RFP). 
A.  A diagram of the ICP0-RFP construct that was stably transfected into Vero cells. 
The major regulatory elements in the promoter are indicated. “TAATGARAT”, 
TAATGARAT sequences (one or two nucleotides deviate from the consensus 
TAATGARAT motif)
B and C. Two stably transfected clones, named clone 57 and 32 were infected with 
the equivalent of 0.5 PFU/cell of UV-inactivated HSV-1 KOS. Twenty-four hours later, 
cells were evaluated by optic and fluorescence microscopy. No plaques were visible, 
but a large fraction of Vero clone 57 or 32 cells expressed RFP. Representative UV 
micrographs are presented (original magnification, 400 A).
D. Dose-response analysis of the sensitivity of HSV replication to Rosco in parental 
Vero and clones 57 and 32 cells. Cells were infected with 2.5 PFU/cell of HSV-1 KOS 
and treated with 0, 25, 50, 75, or 100 µM Rosco.  Twenty-four hours later, cells were 
harvested, virus was isolated and titrated by standard plaque assays. Log of PFU/ 
million cells are plotted against drug concentration.  This experiment was performed by 
Dr. Diwan
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Figure 5.5. Inhibition of transcription by Rosco is specific for the HSV-1 
genome.
A.  Northern blot analyses of expression of ICP0 (ICP0 - top panels) and RFP (RFP -
bottom panels) in Vero clone 57 cells infected with HSV-1 in the presence of CHX.  
Cells were infected with 5 PFU/cell (HSV) and treated with CHX and 0, 25, 50, 75, or 
100 µM (0,    ) Rosco. Mock infected cells (Mock), treated with CHX and 0 or 
100 µM Rosco were included as negative control.  Cells were harvested at 3, 6, and 9 
hpi (3, 6, 9), RNA was extracted, resolved by gel electrophoresis, and blotted to Nylon 
membranes. Membranes were then hybridized with RFP probe, stripped, and re-
hybridized with ICP0 probe. The decrease in signal in both RFP and ICP0 in the 75 µM 
Rosco 3 hpi line is an artifact due to experimental error and is not reproducible.
B. Northern blot analyses of expression of ICP0 (ICP0 - top panels) and RFP (RFP -
bottom panels) in Vero clone 57 cells infected with HSV-1 in the presence of CHX.  
Cells were infected with 5 PFU/cell and treated with CHX and 50 µg/ml α-amanitin 
(αAma) or 10 µg/ml actinomycin D (ActD). Cells were harvested at 3, 6, and 9 hpi (3, 
6, 9), RNA was extracted, resolved by gel electrophoresis, and blotted to Nylon 
membranes. Membranes were then hybridized with RFP probe, stripped, and re-
hybridized with ICP0 probe.  This experiment was performed by Dr. Diwan. 
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Figure 5.6. Inhibition of transcription by Rosco depends on genome but not 
promoter specific factors.
A. Vero cells clone 57 (stably transfected with pICP0-RFP) were seeded in individual 
wells and mock infected or infected with 2.5 PFU/cell of HSV-1 KOS in the presence of 
CHX. Six hours later, CHX containing medium was replaced by fresh medium 
containing 0, 25, 50, 75, or 100 µM Rosco. Twenty-four hours after infection, cells 
were fixed and number of RFP+ cells was evaluated under UV microscopy. 
Percentage of RFP+ cells is presented as averages of two independent experiments 
(plus minus range) plotted against Rosco concentration.
B. Vero cells were transiently transfected with pICP0-RFP. Transfected cells were 
seeded in 5 individual wells and mock infected or infected with 2.5 PFU/cell of HSV-1 
KOS in the presence of CHX. Six hours later, CHX containing medium was replaced 
by fresh medium containing 0, 25, 50, 75, or 100 µM Rosco. Twenty-four hours after 
infection, cells were fixed and number of RFP+ cells was evaluated under UV 
microscopy. Percentage of RFP+ cells in the presence of the different concentrations 
of Rosco (where the number of RFP+ cells in the absence of Rosco is set at 100%), 
and corrected by efficiency of transfection, is presented as averages of two 
independent experiments (plus minus range) and plotted against Rosco concentration.  
This experiment was performed by Dr. Diwan. 
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Figure 5.6. (continued) Inhibition of transcription by Rosco depends on genome 
but not promoter specific factors. 
C. Vero cells clone 57 (stably transfected with pICP0-RFP5) were seeded in individual 
wells and infected with 2.5 PFU/cell of HSV-1 KOS in the presence of CHX (HSV). Six 
hours later, CHX containing medium was replaced by fresh medium containing 0, 25, 
50, 75, or 100 µM Rosco (0, 25, 50, 75). Twenty-four hours after infection, cells were 
fixed and RFP+ cells were photographed under UV microscopy. Representative 
micrographs are presented. Original magnification, 200 A.
D. Vero cells were transiently transfected with pICP0-RFP5. Transfected cells were 
seeded in individual wells and mock infected (Mock) or infected with 2.5 PFU/cell of 
HSV-1 KOS in the presence of CHX (HSV). Six hours later, CHX containing medium 
was replaced by fresh medium containing 0, 25, 50, 75, or 100 µM Rosco (0, 25, 50, 
75, 100). Twenty-four hours after infection, cells were fixed and RFP+ cells were
photographed under UV microscopy. Representative micrographs are presented. 
Original magnification, 100 A.  This experiment was performed by Dr. Diwan
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Figure 5.7. The effects of Rosco on MCN accessibility correlate with its effects 
on transcription. Infected cells were treated with no drug (ND) or Rosco (R). Nuclei 
of infected cells were isolated at 5 hours post infection and were digested for 0 (INP), 
0.5, 2.5, 5, 15, 30, and 60min (                ) with 0.05U MCN per 1x107 nuclei.  The 
DNA was analyzed by Southern blot with probes specific for genes driven by the 
ICP0 promoter recombined into the cellular genome (RFP) or in the native viral 
genome (ICP0). A. Images of the ethidium bromide stained gels (Total) and 
membranes hybridized with RFP or ICP0 probes. To achieve comparable signal 
intensities, only 67% of sample was loaded for 0.5min.  Normal and over-exposures 
(bottom panels) are shown for ICP0. B. Line graphs of the quantitated Southern blots 
presenting normalized levels of DNA against digestion time.
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Figure 5.8. The effects of Rosco on accessibility are specific for the HSV-1 
genome. Clone 57 cells were infected and treated with no drug (ND) or Rosco (R) and 
nuclei were harvested at 5hpi. Nuclei were then lysed and soluble and insoluble 
chromatin were fractionated. Insoluble chromatin was resuspended in MCN digestion 
buffer (0.05U MCN/ml), and subjected to serial MCN digestions. Supernatants were 
periodically removed and quenched, and the insoluble pellets were resuspended with 
fresh MCN. Soluble DNA-protein complexes were either pooled and further resolved 
on sucrose gradients. DNA from each fraction was analyzed by Southern blot with 
probes specific for genes driven by the ICP0 promoter recombined into the cellular 
genome (RFP) or in the native viral genome (ICP0). A. Images of the ethidium 
bromide stained gels (Total) and membranes hybridized with RFP or ICP0 probes. To 
achieve comparable signal intensities, only 50% of the soluble fractions were loaded. 
Normal and over-exposures (bottom panels) are shown. B. Line graph presenting DNA 
in each fraction as percent of DNA in the gradient. There was no detectable signal 
when probing the gradient from Rosco-treated cells with the ICP0 gene specific HSV-1 
probe.
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Figure 5.8. (continued) The effects of Rosco on accessibility are specific for the 
HSV-1 genome. 
C and D. Bar graphs of the quantitated Southern blots from Fig 5.8A presenting the 
percentage of RFP (C) or ICP0 (D) DNA fractionating as the pellet (Insoluble) or 
supernatant (Soluble) following the serial MCN digestion
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CHAPTER 6: PURINE AND NONPURINE PHARMACOLOGICAL 

CYCLIN-DEPENDENT KINASE INHIBITORS PREVENT INITIATION 

OF HSV-1 TRANSCRIPTION 

 

This chapter contains published data from both 

 Diwan P.*, JJ. Lacasse*, and LM. Schang  *Both of these authors contributed 

equally to the published work. 

Journal of Virology 2004; 78(17): 9352-65 

Lacasse, JJ*., VMI. Provencher*, MD. Urbanowski, and LM Schang.  *Both of 

these authors contributed equally to the published work. 

Therapy  2005; 2(1): 77-90 

 

6.1 Introduction 

In the presvious chapter, I showed that Rosco inhibits the activation, but not 

elongation, of HSV-1 transcription.  This effect was specific to extrachromosomal 

DNA, in that transcription was inhibited from loci in HSV-1 genomes and 

transiently transfected plasmid DNA, but not the cellular genome.  These results 

are consistent with a model in which Rosco inhibits a target required for 

maintaining extrachromosomal DNA in an accessible state whereby transcription 

proteins are able to activate HSV-1 transcription.  Rosco is a highly specific 

inhibitor that selectively inhibits CDK 1, 2, 3, 5, 7, and 9, but not 295 other 

protein kinases (Appendix 1).  I therefore next tested whether genome-specific 
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inhibition of transcription initiation from extrachromosomal HSV-1 genomes was 

common to other less selective PCIs. 

 

6.2. Results 

6.2.1. Less specific PCIs inhibit transcription directed by the ICP0 promoter in 

either HSV-1 or cellular genomes. 

The specificity for HSV-1 genomes could be common to all PCIs or could be 

unique to Rosco, the PCI most specific for CDK1, CDK2, CDK5 and CDK7 

(Vesely, Havlicek et al. 1994; Meijer, Borgne et al. 1997; Gray, Wodicka et al. 

1998; Schang, Knockaert et al. 2002; Bain, McLauchlan et al. 2003). Thus, I 

compared the effects of Rosco with those of Purv (a purine PCI that is less 

specific for CDK1, CDK2, CDK5, and CDK7 than Rosco), and Flavo, (a 

flavonoid PCI that preferentially inhibits CDK9, but further inhibits all other 

tested CDKs, and many other protein kinases with comparable potencies). 

Cells were infected in the presence of CHX and 0, 5, 10, 20, or 30 µM Purv, 

or 0, 31.25, 62.5, 125, 250, or 500 nM Flavo. Thirty micromolar Purv inhibits HSV-

1 replication in Vero cells completely (Schang, Knockaert et al. 2002), and 125 to 

500 nM Flavo completely inhibit transcription of a variety of cellular and viral genes 

in vivo (Chao and Price 2001; Lam, Pickeral et al. 2001). Purv, which is less 

selective than Rosco, completely prevented transcription of ICP0 at 20 µM, whereas 

it did not completely prevent transcription of RFP at 30 µM. However, Purv 

prevented transcription of RFP more efficiently than Rosco (compare Fig. 6.1A with 

Fig 5.5A). Flavo, the least specific PCI tested, inhibited transcription of ICP0-driven 
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RFP at all concentrations tested (Fig. 6.1B). Interestingly, Flavo appears to prevent 

transcription of ICP0 promoter-regulated RFP from the cellular as, or perhaps even 

more, efficiently than transcription of ICP0 promoter-regulated ICP0 from the HSV-

1 genome. No ICP0 or RFP transcripts were detected in the presence of any 

concentration of Flavo at 3hpi, and only low levels were detected in the presence of 

31.25 or 62.5 nM at 9hpi in the experiments presented in Fig. 6.1B. However, very 

low levels of ICP0, but not of RFP, transcripts are occasionally detected at 3hpi in 

repeats of this experiment. In contrast, RFP mRNAs were detected at 3hpi at all 

concentrations of Rosco in all experiments, whereas almost no ICP0 transcripts were 

detected at 3, 6, or 9hpi in the presence of any concentration of Rosco in any 

experiment (Fig. 5.5A, top panels).  Therefore, as the molecular specificity of the 

PCI decreases so does the specificity for inhibiting HSV-1 transcription.      

 

6.2.2. Unrelated PCIs inhibit initiation of HSV-1 transcription 

I have previously shown that Rosco prevents the intiation of, but does not inhibit 

ongoing, HSV-1 transcription.  Therefore, I next evaluated whether this was a 

common mechanism for two PCIs that preferentially target CDKs involved in 

either transcription initiation (DRB) or elongation (Flavo).  The effects on HSV-1 

transcription were evaulated in the presence or absence of IE proteins, using a 

previously described CHX-release experimental design.  

Briefly, Vero cells were infected in the presence of CHX with 20 PFU of 

HSV-1 per cell. After 5 h, cells were transferred to complete medium containing 

vehicle (DMSO), 50μg/ml CHX, 100μM Rosco, 150μM DRB, or 100nM Flavo.  
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Nuclei were isolated at 10hpi, and run-on assays were performed as described. As 

in Fig 5.1, I analyzed promoter specific (i.e., sense) and non-promoter specific 

(i.e., antisense) transcription by probing with single stranded DNA sense or 

antisense to selected HSV-1 genes.  

Run-on transcription assays performed with nuclei of mock-infected cells 

(negative controls) resulted in only background levels of hybridization to HSV-1 

genes. Run-on transcription assays performed with the nuclei of cells infected 

with HSV-1 in the absence of any drug (positive controls) resulted in abundant 

transcription of all HSV-1 genes, as expected (Fig. 6.2). As previously observed 

(Fig 5.1) most of the transcription was from the sense strand (promoter specific) 

but a small proportion was from the antisense strand (non-promoter-specific).  

Run-on assays performed with nuclei of cells infected with HSV-1 and 

maintained in CHX resulted in transcription of the IE genes ICP4 and ICP27, 

albeit to varying levels (Fig. 6.2).  However, since the concentrations of CHX 

required to efficiently reverse the effect of the drug do not completely inhibit 

protein synthesis, transcription of some E and L genes are therefore also observed 

under these conditions. Run-on assays performed with the nuclei of cells infected 

with HSV-1 for 5h in the presence of CHX and then further incubated for 5h with 

100μM Rosco, 150μM DRB or 100nM Flavo resulted in almost complete 

inhibition of transcription of all tested HSV-1 genes (Fig. 6.2).  All PCIs 

prevented promoter-specific and non-promoter-specific transcription. Flavo, 

which inhibits transcription elongation, also moderately inhibited transcription 

when it was present during the run-on transcription (Fig. 6.2). In contrast, DRB, 
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which acts primarily on transcription initiation, or Rosco, which acts primarily 

before transcription initiation, did not inhibit HSV-1 transcription when either of 

them was present during the run-on transcription (Fig. 6.2). These findings are 

consistent with the lack of effects of DRB on cellular run-on transcription, and of 

Rosco on HSV-1 run-on transcription, under similar circumstances. Therefore, the 

inhibition of initiation of HSV-1 gene transcription in the presence of IE proteins 

is common to at least three different PCIs. 
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Figure 6.1. Less-specific PCIs, inhibit transcription directed by the ICP0 
promoter in either the HSV-1 or cellular genomes.
A. Northern blot analyses of expression of ICP0 (ICP0 - top panels) and RFP (RFP -
bottom panels) in Vero clone 57 cells infected with HSV-1 in the presence of CHX.  
Cells were infected with 5 PFU/cell and treated with CHX and 0, 5, 10, 20 or 30 µM    
(0, ) Purv. Cells were harvested at 3, 6, and 9 hpi (3, 6, 9), RNA was 
extracted, resolved by gel electrophoresis, and blotted to Nylon membranes. 
Membranes were then hybridized with RFP probe, stripped and re-hybridized with 
ICP0 probe. A composite picture is presented (the 10 and 20 µM samples at 9 hpi
were switched in the original gel).
B. Northern blot analyses of expression of ICP0 (ICP0 - top panels) and RFP (RFP -
bottom panels) in Vero clone 57 cells infected with HSV-1 in the presence of CHX.  
Cells were infected with 5 PFU/cell and treated with CHX and 0, 31.25, 62.5, 125, 250, 
or 500 nM (0,                     ) Flavo. Cells were harvested at 3 or 9 hpi (3, 9), RNA was 
extracted, resolved by gel electrophoresis, and blotted to Nylon membranes. 
Membranes were then hybridized with RFP probe, stripped and re-hybridized with 
ICP0 probe.
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CHAPTER 7: DISCUSSION 

The results presented in this thesis represent the first systematic characterization 

of the biophysical properties of HSV-1 DNA-containing complexes during lytic 

infection.   

Prior to the results presented herein, the existence or properties of any 

intranuclear HSV-1 DNA nucleoprotein complexes during lytic infection was 

unclear.  Primarily, the results obtained from classical studies (MCN digestions, 

trimethylsporalen photocrosslinking, and electron micrography), and those 

obtained from more recent ChIP assays, were most difficult to reconcile.  

Whereas classical evidence suggested HSV-1 DNA was primarily nucleosome-

free, ChIP assays reported association of HSV-1 DNA with histones, and 

furthermore proposed that chromatin regulates HSV-1 transcription. 

 

7.1. HSV-1 DNA during lytic infection 

Classic studies concluded that HSV-1 DNA during lytic infection is mostly not in 

nucleosomes (Mouttet, Guetard et al. 1979; Leinbach and Summers 1980; Sinden, 

Pettijohn et al. 1982; Muggeridge and Fraser 1986).  The conclusion was based 

primarily on using standard MCN digestions to probe the structure of intranuclear 

HSV-1 DNA.  These reports showed that in contrast to DNA in cellular chromatin 

or in other nuclear DNA viruses such as polyoma-, papilloma-, and adeno- 

viruses, which are digested to the typical nucleosome ladder, the majority of 

HSV-1 DNA was rapidly digested to heterogeneously sized fragments (Mouttet, 

Guetard et al. 1979; Leinbach and Summers 1980; Muggeridge and Fraser 1986; 
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Deshmane and Fraser 1989).  Such a pattern is more reminiscent of protein-free 

DNA.  In addition to the heterogeneously sized fragments, however, most groups 

also observed a minor percentage of HSV-1 DNA protected to nucleosome sizes 

(Leinbach and Summers 1980; Muggeridge and Fraser 1986; Deshmane and 

Fraser 1989).  Muggeridge et al. therefore proposed that the minor percentage of 

HSV-1 DNA protected to nucleosome size may represent, i) a small number of 

chromatinized HSV-1 genomes, ii) the chromatinization of only parts of each of 

the HSV-1 genomes, or iii) the formation of complexes between HSV-1 DNA and 

non-histone proteins that are not as tightly associated as canonical nucleosomes 

and thus provide less protection than typical nucleosomes (Muggeridge and Fraser 

1986).  Evidence for coexistence of all three of the proposed arrangements of 

intranuclear HSV-1 DNA was supported by a previous study by Muller et al. in 

which nuclear spreads from HSV-1 infected cells were evaluated under the 

electron microscope (Muller, Schroder et al. 1980). 

The structure of intranuclear HSV-1 DNA during lytic infection was also 

evaluated using trimethylpsoralen photocrosslinking (Sinden, Pettijohn et al. 

1982).  This study revealed that the accessibility of HSV-1 DNA increased 

following HSV-1 DNA replication, such that HSV-1 DNA became more 

accessible than DNA in most cellular chromatin.  Furthermore, the accessibility of 

HSV-1 DNA resembled more that of non-nucleosomal DNA rather than that of 

standard chromatinized DNA, again suggesting that intranuclear HSV-1 DNA 

was mostly non-nucleosomal. 
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The lack of a role for chromatin in the regulation of HSV-1 gene 

expression during lytic infection was further supported by several reports showing 

that infecting HSV-1 genomes localized to nuclear domains adjacent to ND10s, 

domains which are devoid of cellular chromatin or histones (Ascoli and Maul 

1991; Ishov and Maul 1996; Maul, Ishov et al. 1996).  Also, HSV-1 replication 

compartments at late times post infection are partially depleted of histones (K.L. 

Conn PhD Thesis, University of Alberta 2010, Monier, Armas et al. 2000; 

Simpson-Holley, Colgrove et al. 2005).   

For the 25 years following its initial characterization, HSV-1 DNA was 

therefore widely accepted to be nucleosome-free during lytic infections.  More 

recently, however, ChIP assays have demonstrated that histones associate with 

HSV-1 DNA during lytic infections.  These results have thus prompted a re-

evaluation of the classic model (Herrera and Triezenberg 2004; Kent, Zeng et al. 

2004; Huang, Kent et al. 2006; Narayanan, Ruyechan et al. 2007; Knipe and 

Cliffe 2008; Oh and Fraser 2008; Ferenczy and Deluca 2009; Kutluay, DeVos et 

al. 2009; Kutluay and Triezenberg 2009; Liang, Vogel et al. 2009; Placek, Huang 

et al. 2009).     

Such ChIP assays have shown that histone H3 (Herrera and Triezenberg 

2004; Kent, Zeng et al. 2004; Huang, Kent et al. 2006; Cliffe and Knipe 2008), as 

well as the other core histones H2A, H2B, and H4 (Kutluay and Triezenberg 

2009), associate with HSV-1 DNA during lytic infections.  These results are 

consistent with the presence of nucleosomes on the genomes of other 

herpesviruses, such as HCMV, EBV, and KSHV (Radkov, Touitou et al. 1999; 
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Chang and Liu 2000; Jenkins, Binne et al. 2000; Alazard, Gruffat et al. 2003; 

Deng, Chen et al. 2003; Knight, Lan et al. 2003; Lu, Zhou et al. 2003; Chau, 

Zhang et al. 2006; Day, Chau et al. 2007; Nitzsche, Paulus et al. 2008).   

The activation domain of VP16 acts to recruit chromatin modifying 

proteins such as histone acetyl transferases, CBP (KAT3A) and P300 (KAT3B), 

as well as the ATP-dependent chromatin remodelers, Brg-1 and BRM, to HSV-1 

IE promoters.  However, all of these proteins were later shown to be dispensable 

for HSV-1 gene expression (Herrera and Triezenberg 2004; Kutluay, DeVos et al. 

2009).   

HCF-1 also acts to recruit both KMTs (Set1 and MLL) and KDM (LSD1) 

to IE promoters (Wysocka, Myers et al. 2003; Narayanan, Ruyechan et al. 2007; 

Liang, Vogel et al. 2009).  This recruitment results in the accumulation of active 

(H3K4me3) chromatin marks and subsequent loss of repressive ones (H3K9me3) 

(Huang, Kent et al. 2006; Narayanan, Ruyechan et al. 2007).  More recently, 

HCF-1-dependent recruitment of the KDM LSD1 was shown to be required for 

efficient IE gene expression (Liang, Vogel et al. 2009).  

Considering these associations of histones and chromatin modifying 

proteins with HSV-1 DNA, most current models propose that chromatin regulates 

HSV-1 transcription in lytically infected cells.  However, only a small percentage 

of HSV-1 DNA was found to consistently co-immunoprecipitate with histones in 

all (Herrera and Triezenberg 2004; Kent, Zeng et al. 2004; Huang, Kent et al. 

2006; Kutluay, Doroghazi et al. 2008; Kutluay, DeVos et al. 2009; Kutluay and 

Triezenberg 2009; Placek, Huang et al. 2009) except one (Cliffe and Knipe 2008) 
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published paper, or to be protected from MCN in sizes corresponding to 

nucleosome DNA (Leinbach and Summers 1980; Muggeridge and Fraser 1986; 

Deshmane and Fraser 1989).  It therefore remained unclear how histone 

association of only a small percentage of HSV-1 DNA could regulate HSV-1 

transcription globally.  Furthermore, the complexes containing histones and HSV-

1 DNA remained uncharacterized.  The objective of my doctoral thesis was 

therefore to evaluate the HSV-1 DNA containing complexes in lytically infected 

cells.  Differing from all previous work, however, I used classical chromatin 

purification techniques.  This approach led to most unexpected findings. 

 

7.2. HSV-1 DNA is in complexes with the properties of unstable nucleosomes 

For the initial characterization, I selected a single time point in the lytic cycle, 

5hpi.  At this time, all kinetic classes of HSV-1 genes are transcribed, HSV-1 

DNA is replicated, and histones interact with HSV-1 DNA (Herrera and 

Triezenberg 2004; Kent, Zeng et al. 2004; Cliffe and Knipe 2008; Kutluay, 

DeVos et al. 2009; Kutluay and Triezenberg 2009; Placek, Huang et al. 2009). 

Most current models propose that only a minor percentage of HSV-1 DNA 

is associated with histones.  Therefore, they also predict that most HSV-1 DNA 

should fractionate as protein-free DNA.  However, only 28% of detected nuclear 

HSV-1 DNA fractionated as such (Fig 3.1), indicating that the majority of nuclear 

HSV-1 DNA is in some sort of complex.  Further analyses of these complexes 

after partial MCN digestion revealed that they fractionate as cellular mono- to di- 

nucleosomes by differential centrifugation followed by sucrose gradients and then 
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size exclusion chromatography.  However, these complexes differ from most 

cellular nucleosomes in three major aspects.  First, the HSV-1 DNA in these 

complexes is far more accessible to MCN than DNA in most cellular chromatin 

(Fig 3.3, 3.8, 3.9) (Mouttet, Guetard et al. 1979; Leinbach and Summers 1980; 

Sinden, Pettijohn et al. 1982; Muggeridge and Fraser 1986).  Second, the 

interactions between the HSV-1 DNA complexes or between these complexes and 

cellular poly-nucleosomes are more unstable than the interactions between or 

within cellular nucleosomes (Figs 3.5 and 3.8). Such instability leads to the 

prompt dissociation of the HSV-1 DNA-containing complexes released into the 

soluble chromatin, allowing MCN access to the DNA within them, which is thus 

degraded.  If digestion of the soluble fraction was prevented, however, then the 

unstable digestion intermediates were obvious (Fig 3.8).  Third, the unstable 

HSV-1 DNA-containing complexes could be only partially stabilized from MCN 

redigestion by crosslinking.  These unstable HSV-1 complexes are as unstable as 

the most unstable cellular nucleosomes (Fig 3.9). 

The instability of the HSV-1 DNA containing complexes could be the 

result of weak HSV-1 DNA-protein or weak protein-protein interactions.  

Particularly unstable cellular nucleosomes have been characterized (Henikoff 

2008).  Jin et al. showed that such unstable cellular nucleosomes required 

crosslinking for stabilization (Jin and Felsenfeld 2007; Jin, Zang et al. 2009), 

similar to the unstable HSV-1 nucleosome-like complexes I characterize here (Fig 

3.9).  Instability within the cellular nucleosomes was attributed to the presence of 

histone variants such as H3.3.  H3.3 is the H3 variant synthesized in G1, S, G2, 
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and G0 (Wu, Tsai et al. 1982) and assembled into nucleosomes via replication-

independent pathways (Tagami, Ray-Gallet et al. 2004).  H3.3 would therefore be 

the most likely H3 variant available to be assembled in nucleosomes with 

infecting HSV-1 genomes.  Consistently, Berger et al. have shown by ChIP that 

H3.3 associates with infecting HSV-1 DNA (Placek, Huang et al. 2009).  The 

association was observed from as early as 1hpi to as late as 10hpi (Placek, Huang 

et al. 2009).  In contrast, association between HSV-1 DNA and the canonical H3 

variant, H3.1, was not observed until 6hpi and was dependent on HSV-1 DNA 

replication (Placek, Huang et al. 2009), consistent with the normal replication-

coupled deposition of H3.1 (Tagami, Ray-Gallet et al. 2004).  Results from our 

lab show that the available pool of free H3.3 increases during HSV-1 infection 

(K.L. Conn PhD Thesis, University of Alberta 2010), suggesting a potential 

source of H3.3 available for its incorporation into unstable nucleosome-like 

complexes containing HSV-1 DNA. 

The proposed unstable nucleosome-like complexes are consistent with the 

heterogeneously sized HSV-1 DNA fragments released by MCN digestion, which 

we and many others have observed (Fig 3.3 and refs. Leinbach and Summers 

1980; Muggeridge and Fraser 1986; Lentine and Bachenheimer 1990; Kent, Zeng 

et al. 2004).  HSV-1 DNA in unstable complexes would still remain randomly 

accessible to MCN.  Such unstable complexes would by definition be dynamic, 

and therefore not expected to be tightly confined to 160bp of DNA.  They would 

be expected to quickly change positions, by either unbinding and rebinding to, or 

by sliding through, the HSV-1 DNA.  In contrast to DNA in most cellular 

211



  

chromatin, therefore, MCN cleavage of HSV DNA would not be restricted by 

distinctly exposed (linker) or protected (core) sites. 

If HSV-1 DNA was indeed in unstable nucleosomes, then histones must 

continuously bind and unbind to HSV-1 DNA and consequently should be 

mobilized in infected cells.  Consistently, linker (Conn, Hendzel et al. 2008) and 

core (K.L. Conn PhD Thesis, University of Alberta 2010) histones are mobilized 

in infected cells at 4 and 7 hpi. 

Our proposed model is also consistent with the otherwise intriguing 

distribution of the sizes of HSV-1 DNA fragments released by standard MCN 

digestions (Fig 3.3 and refs. Leinbach and Summers 1980; Muggeridge and Fraser 

1986; Kent, Zeng et al. 2004).  Besides the heterogeneously-sizes fragments, only 

mono-, di-, and occasionally, tri- nucleosome-sized DNA fragments are visible, 

whereas tetra-, penta- or other poly-nucleosomes sized DNA are not.  Each of the 

unstable nucleosome-like complexes has an equal and independent probability of 

dissociating in any given period.  Therefore, the probability of detecting several 

adjacent complexes still together at any given time decreases exponentially.  If 

each complex has a 75% chance of disassembling in a given period, for example, 

then the relative abundance of mono-, di-, tri-, and tetra- nucleosome-like 

complexes at any given digestion time would be 1:0.25:0.06:0.01, respectively, 

making the detection of tetra- or longer poly-nucleosome size DNA extremely 

difficult.  Further consistent with the proposed model, the poly-nucleosome-sized 

HSV-1 DNA is obvious when the degradation of the unstable digestion 

intermediates is prevented by the modified MCN digestion protocol. 
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With only one exception (Cliffe and Knipe 2008), ChIP assays 

consistently show that a low and variable percentage of HSV-1, in comparison to 

cellular DNA, co-immunoprecipitates with histones (Herrera and Triezenberg 

2004; Kent, Zeng et al. 2004; Huang, Kent et al. 2006; Kutluay, Doroghazi et al. 

2008; Kutluay, DeVos et al. 2009; Kutluay and Triezenberg 2009; Placek, Huang 

et al. 2009).  This low percentage has often been interpreted as low histone 

occupancy (Kutluay and Triezenberg 2009).  However, the proposed unstable 

HSV-1 nucleosomes are also entirely consistent with such low percentages.  

Interactions between HSV-1 DNA and histones in unstable nucleosomes are 

transient by definition.  Histones in unstable complexes therefore spend less of the 

time within crosslinking distance from DNA.  At any given time, the probability 

of a given number of histones being crosslinked to DNA is lower, resulting in a 

low percentage of HSV-1 DNA co-immunoprecipitating with them (Jin, Zang et 

al. 2009).  Jin et al. recently characterized highly unstable cellular nucleosomes 

(Jin and Felsenfeld 2007; Jin, Zang et al. 2009).  Under standard conditions, 

histone variants H2A.Z and H3.3 could not be detected within the same 

nucleosomes by ChIP.  When the interactions within these complexes were 

stabilized by crosslinking, however, then the nucleosomes containing both 

variants were easily detected (Jin, Zang et al. 2009). 

ChIP results also show that although the occupancy appears to be low, the 

coverage throughout the entire HSV-1 genome appears to be relatively even 

(Herrera and Triezenberg 2004; Kent, Zeng et al. 2004; Cliffe and Knipe 2008; 

Kutluay and Triezenberg 2009; Placek, Huang et al. 2009).  The most common 
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interpretation is that histones bind randomly through the entire HSV-1 genomes at 

low occupancy.  However, it remained unclear how the association of histones 

with only a minority of HSV-1 DNA could regulate HSV-1 transcription globally.  

Through the modification of the MCN digestion protocol, however, I have 

quantitatively “trapped” most HSV-1 DNA in poly-nucleosome-like complexes, 

consistent with more or less regularly spaced nucleosomes (Fig 3.8).  These 

results suggest that the entire HSV-1 genomes may instead be “regularly 

chromatinized”, albeit in unstable nucleosomes.   

 

7.3. HSV-1 DNA is in unstable nucleosomes throughout the lytic replicative 

cycle  

Most HSV-1 DNA in lytically infected cells is at 5hpi in complexes with the 

biophysical properties of highly unstable nucleosomes.  However, it remained 

unknown whether HSV-1 DNA was in unstable nucleosomes at other times.  My 

next objective was therefore to evaluate whether HSV-1 DNA was in such 

nucleosome-like complexes at other times during lytic infection. Using the serial 

MCN digestion, I showed that HSV-1 DNA was in nucleosome-like complexes 

throughout HSV-1 infection (Fig 4.2).  The instability of the complexes isolated at 

2, 7, and 9hpi however, was not directly evaluated as it was for 5hpi (by 

crosslinking and MCN redigestion, for example).  However, the fact that HSV-1 

DNA could be trapped in nucleosomes-like complexes only after serial MCN 

digestion is highly suggestive that these complexes are also unstable.   
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Standard MCN digestions revealed that HSV-1 DNA was 3.6-fold less 

accessible than at 2hpi than at 5hpi (Fig 4.1).  Consistently, at 2hpi HSV-1 DNA 

was in larger, heavier, polynucleosome-like complexes than at 5hpi, as evaluated 

by serial MCN digestion (Fig 4.2).  Most striking, however, was the differential 

accessibility of HSV-1 IE and L loci DNA.  At 2hpi, HSV-1 IE, but not L, loci 

DNA was released in soluble chromatin, whereas at 5hpi both IE and L loci DNA 

were detectable to similar levels (Fig 4.2).  Interestingly, this time coincides with 

the transition from transcription of IE, E, but not L genes (2hpi), to transcription 

of IE, E, and L genes, and the start of DNA replication (5hpi).  Together these 

results suggested a relationship between HSV-1 transcription (or DNA 

replication) and accessibility of HSV-1 DNA to MCN.  These results are also 

consistent with Leinbach et al., who found that infecting (or parental) HSV-1 

DNA was less accessible to MCN than replicated (progeny) HSV-1 DNA 

(Leinbach and Summers 1980).   

Interestingly, Nitzche et al. have recently evaluated the dynamics of 

histone and nucleosome occupancy on HCMV DNA during lytic infection using a 

time course MCN digestion (Nitzsche, Paulus et al. 2008).  Consistent with the 

results presented herein, as well as with standard MCN digestions performed over 

the years (Leinbach and Summers 1980; Muggeridge and Fraser 1986; Deshmane 

and Fraser 1989), a percentage of HCMV DNA was protected to nucleosome size 

(Nitzsche, Paulus et al. 2008).  This ranges from a very minor percentage at 2hpi 

to a far more substantial percentage at later times (48 and 96hpi).  Importantly, the 

HCMV DNA digested to nucleosome size could only be detected as fragments 
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ranging from mono- to di- nucleosome in size.  This suggests that during lytic 

infection, like HSV-1 DNA, HCMV DNA is most likely in unstable nucleosome-

like complexes.  The probability of detecting larger tri- and tetra- nucleosomes is 

therefore very low.  Nitzche et al. also observed an increase in the accessibility of 

HCMV DNA as the infection progresses, very much like the data presented in Fig 

4.1.  Also consistent with the results presented in Fig 4.1, the majority of HCMV 

DNA was poorly accessible to MCN at early times post infection.   

 

7.4. A percentage of nuclear HSV-1 DNA is poorly accessible to MCN  

Both HSV-1 and HCMV DNA have populations that are poorly accessible to 

MCN.  The poorly accessible HSV-1 DNA observed following standard MCN 

digestion is typically referred to as “resistant” HSV-1 DNA which is interpreted 

as encapsidated HSV-1 DNA (Leinbach and Summers 1980; Muggeridge and 

Fraser 1986; Deshmane and Fraser 1989; Nitzsche, Paulus et al. 2008).  However, 

five lines of evidence suggest that most of the “resistant” HSV-1 DNA is not 

encapsidated.  First, so-called “encapsidated” HSV-1 DNA is observed 

throughout HSV-1 infection, even at 5hpi (at a multiplicity of infection of 5PFU 

per cell) when most HSV-1 DNA is in replication intermediates and therefore 

decapsidated (Jacob and Roizman 1977).  Second, the HSV-1 DNA that 

fractionates to the insoluble fraction after BamHI digestion is partially digested by 

BamHI (Fig 3.1, HSV-Nuclear, Insoluble).  Therefore, the HSV-1 DNA in this 

fraction is still accessible to BamHI.  Likewise, the HSV-1 DNA in the insoluble 

fraction after MCN digestion is also partially digested to heterogeneously sized 

216



  

fragments (Fig 3.2, HSV-Insoluble).  Third, the HSV-1 DNA migrating as a 

“resistant” band at the top of the agarose gel after standard MCN digestion is 

eventually digested by MCN, albeit to varying degrees dependent on the 

concentration of MCN (Fig 3.3, 4.1, 4.3, and 5.7).  Fourth, in conditions under 

which HSV-1 is poorly accessible to MCN (Fig 4.1-2hpi, Fig 4.3-PAA, CHX, and 

Rosco), serial MCN digestions clearly show that HSV-1 DNA is in 

polynucleosome-like complexes (Fig 4.2 and 4.4).  Finally, “resistant” HSV-1 

DNA is most prominent following standard MCN digestion of nuclei from cells 

treated with PAA, CHX, or Rosco.  In the presence of each of these drugs, all of 

the HSV-1 DNA detected following standard MCN digestion resolves as a 

“resistant” band at the top of the agarose gel.  However, these drugs all inhibit 

different stages of HSV-1 replication. In fact, HSV-1 transcription is ongoing in 

both the presence of PAA (IE and E genes) and CHX (IE genes).  Therefore, the 

MCN-resistant HSV-1 DNA is not likely encapsidated, but nonetheless less 

accessible to MCN. 

 

7.5. The accessibility of lytic HSV-1 DNA depends on the transcriptional 

activation state 

I next evaluated the relationship between the accessibility of HSV-1 DNA and 

transcription (or DNA replication), using PAA, CHX, and Rosco, which inhibit 

different stages of HSV-1 transcription.  All three inhibitors largely decreased the 

accessibility of HSV-1 DNA (Fig 4.3 and 4.4).  Interestingly, the extent to which 

they inhibited accessibility appeared to correlate with the extent to which they 
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inhibited HSV-1 transcription (Fig 4.3 and 4.4).  For example, HSV-1 IE DNA 

was 2.5- and 1.5-fold less accessible in the presence of Rosco than in the presence 

of CHX or PAA, respectively.  When evaluating HSV-1 L DNA, the decrease in 

accessibility increased to 4- and 2.5-fold, respectively.  Consistently, Rosco also 

has the greatest effect on HSV-1 transcription.  It inhibits the accumulation of 

HSV-1 IE, E, and L transcripts, as well as DNA replication (Schang, Rosenberg et 

al. 1999; Schang, Rosenberg et al. 2000).  Taken together, these results suggest 

that accessibility of HSV-1 DNA may regulate transcription.  Alternatively, 

changes in HSV-1 DNA accessibility may be a consequence of transcription. 

 

7.6. The effects of Rosco on transcription and MCN accessibility are specific 

for extrachromosomal DNA  

Consistent with a model in which Rosco inhibits transcription by decreasing 

access to HSV-1 DNA, I showed that Rosco prevents activation of, but does not 

inhibit ongoing, HSV-1 transcription (Fig 5.1).  Furthermore, the effects were 

promoter-independent.  Rosco prevented activation of transcription from 

otherwise unrelated HSV-1 IE and E promoters in the presence of their respective 

transcriptional activators (Fig. 5.1 and 5.6).  Therefore, the functions targeted by 

Rosco participate in the activation of IE gene transcription by cellular proteins 

and HSV-1 structural proteins, as well as in the regulation of E gene transcription 

by HSV-1 IE proteins.  In contrast, Rosco did not inhibit either the activation or 

the ongoing cellular transcription suggesting, that its effects were specific for the 

HSV-1 genome.   
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The genome-specific effects of Rosco were further evaluated using a 

recombinant cell line containing a reporter gene in which the ICP0 promoter 

drives the expression of RFP.  In collaboration with Dr. Diwan, we showed that 

Rosco only inhibited transcription driven by the ICP0 promoter when in the 

context of extrachromosomal DNA.  For example, Rosco strongly inhibited 

transcription driven by the ICP0 promoter in both the context of the native HSV-1 

genome (Fig 5.5) and transiently transfected plasmid DNA (Fig 5.6).  In both 

cases, the promoter and reporter gene were present as extrachromosomal DNA.  

In contrast, Rosco no longer inhibited transcription when the reporter gene driven 

by the ICP0 promoter was recombined into the cellular genome (Fig 5.5 and 5.6).  

Therefore, the effects of Rosco are genome-specific and promoter-independent. 

Previous studies have shown that many promoters recombined into the 

HSV-1 genome are regulated as HSV-1 E promoters (in that they require 

activation by HSV-1 IE proteins) (Smiley, Smibert et al. 1987; Smibert and 

Smiley 1990).  In contrast, HSV-1 promoters are typically regulated by similar 

mechanisms in HSV-1 or cellular genomes. For example, a variety of HSV-1 IE 

and E promoters recombined in a variety of cell lines still require activation by 

HSV-1 proteins (for examples, see Orberg and Schaffer 1987; Pasick and Smiley 

1988).  In fact, most early studies on the regulation of HSV-1 promoters were 

performed using HSV-1 promoters recombined in cellular genomes (for 

examples, see Mackem and Roizman 1982; Batterson and Roizman 1983).  My 

results demonstrated that the transactivation of a given HSV-1 IE promoter 

requires different factors depending on whether the promoter is in its natural 
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location in the HSV-1 genome or recombined in the cellular genome.  These 

results were therefore quite surprising.  However, I was not the first to describe 

such a phenomenon.  Nicholl et al. had previously shown that α -IFN treatment 

had similar genome-specific and promoter-independent effects.  Similar to the 

effects of Rosco, α-IFN efficiently inhibited transcription driven by the ICP0 

promoter in the context HSV-1 genome, but not by ICP0 promoters recombined 

in the genome (Nicholl and Preston 1996).  In addition, Nicholl et al. also 

observed that α-interferon inhibited a heterologous promoter that was not 

responsive to the same cellular and HSV-1 structural proteins as when in the 

HSV-1 genome (Nicholl and Preston 1996).   

Interestingly, one of the two most characterized functions of α-IFN is 

induction of cell-cycle arrest, resulting from an indirect inhibition of CDK 

activities.  Two of the CDK activities inhibited by α-IFN are CDK1 and CDK2 

(Bybee and Thomas 1992; Satomoto, Haisa et al. 1995; Sangfelt, Erickson et al. 

1997; Mandal, Bandyopadhyay et al. 1998), which are also among the CDKs that 

are the most sensitive to inhibition by Rosco (Appendix 1, recently reviewed in 

Schang, St Vincent et al. 2006).  The coincidences in the effects of Rosco and α-

IFN and the genome-specific effects on transcription and MCN accessibility 

suggest that CDKs may be required to maintain extrachromosomal DNA in a 

transcriptionally active state.   
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7.7. The proposed mechanism for the role of chromatin in the regulation of 

HSV-1 gene expression during lytic infections 

To summarize, one could envision a model in which incoming foreign DNA, 

whether extrachromosomal viral genomes (such as HSV-1) or plasmids (from 

transient transfections) is met by silencing efforts by the host cell.  In the case of 

HSV-1, these silencing events would most likely involve an effort to chromatinize 

the infecting HSV-1 DNA (Fig. 7.1 A).   

However, the poorly accessible nature of infecting (parental) HSV-1 

genomes also suggests another possibility.  Infecting HSV-1 DNA may remain 

complexed with the polyamines with which it was packaged in the capsid. HSV-1 

DNA would then require histones to replace the polyamines, to enable the 

genomes to enter the replicative cycle.  Such a model would be somewhat 

analogous to fertilization, during which packaging of the sperm DNA in the male 

pronucleus requires sequential replacement of core histones by small highly basic 

nuclear proteins called polyamines (Govin, Caron et al. 2004).  Upon fertilization, 

the protamines are then displaced and maternal histones associate with the 

paternal DNA.  The replication-independent H3 variant, H3.3, is required for this 

process.  Interestingly, H3.3 has also been shown to shown to be mobilized during 

HSV-1 infection (K.L. Conn PhD Thesis, University of Alberta 2010) and to 

associate with HSV-1 DNA as early as 1hpi (Placek, Huang et al. 2009).  

Regardless of the mechanisms whereby infecting HSV-1 DNA is maintained in an 

MCN-resistant state, escape from repression would result in an initial 
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mobilization of histones at early times post infection.  These histones would likely 

come from the free pool or be mobilized from cellular chromatin.   

This HSV-1 chromatin would then be locally de-repressed through the 

binding of Oct-1 to TAATGARAT sequences in IE promoters and subsequent 

recruitment of VP16 and HCF-1 (Fig 7.1B).  This local de-repression would be 

mediated through the recruitment of chromatin modifying proteins (for example, 

LSD1) to modify the chromatin environment, and RNAPII to activate IE 

transcription (Fig 7.1C).  This mechanism potentially prevents the formation of 

transcriptionally silent heterochromatin on HSV-1 DNA.  Such a model is 

supported by decreased IE transcription, accumulation of histones occupying 

HSV-1 DNA, and the presence of histones bearing repressive chromatin marks 

(H3K9me3) in the absence of VP16 or HCF-1 (Kutluay and Triezenberg 2009; 

Liang, Vogel et al. 2009).  However, VP16, KATs, chromatin remodelers, or 

removal of histones from HSV-1 DNA, have all been shown to be dispensable for 

IE transcription (Kutluay, DeVos et al. 2009; Kutluay and Triezenberg 2009).  

Therefore, the exact role histones and chromatin play in regulating HSV-1 IE 

gene expression still remain unclear. 

The IE proteins ICP0 and ICP4 would then mediate a global de-repression 

of HSV-1 genomes resulting in the activation of E gene transcription (Fig 7.1D).  

Consistent with such a proposed role in de-repression, ICP0 and ICP4 both 

interact with chromatin modifying proteins and even disrupt chromatin.  For 

example, ICP0 is an HSV-1 E3 ubiquitin ligase that promotes the degradation of 

the histone H3 variant CENP A (among many other proteins) (Everett, Earnshaw 
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et al. 1999; Lomonte, Sullivan et al. 2001; Lomonte and Morency 2007) and 

causes disruption of histone deacetylase (HDAC) complexes associated with 

transcriptional repression (Lomonte, Thomas et al. 2004; Gu, Liang et al. 2005; 

Gu and Roizman 2007).  More recently, ICP0 has also been shown to interact 

with the p300/CBP association factor (PCAF) KAT complex stimulating the 

acetylation of histones on viral promoters (Li, Cun et al. 2009).  In addition, ICP4, 

together with ICP0 disrupts silencing of cellular genes (Cheung, Panning et al. 

1997).   

I propose that the final stage of de-repression occurs during DNA 

replication of the HSV-1 genomes, which occurs after E proteins are expressed 

(Fig 7.1F).  The passage of the replication machinery would de-repress the 

remainder of the HSV-1 genomes, exposing L gene promoters. Along with 

template amplification, L gene transcription would then be activated (Fig 7.1G).   

One could therefore envision that blocking any of these proposed stages of 

de-repression, for example by the use of small molecule inhibitors, would prevent 

access to the HSV-1 promoters resulting in the inhibition of gene expression from 

HSV-1 genomes.  

 

Future directions 

By using a different approach than others, I have uncovered the molecular basis 

for a large literature of conflicting observations published during the last 20 years.  

The apparent association of only a small percentage of HSV-1 DNA with 

histones, the protection of only a small percentage of HSV-1 DNA to nucleosome 
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size, and the presence of so-called “encapsidated” HSV-1 DNA at 5hpi, are just a 

few of the observations that were difficult to reconcile based on our previous 

understanding of the intranuclear complexes formed by HSV-1 DNA during lytic 

infections.  The results I present here as my Doctoral Thesis provide a potential 

explanation for these observations.  Mainly, HSV-1 DNA is in complexes with 

the biophysical properties of unstable nucleosomes throughout lytic infections.  

However, this work is only the beginning of the characterization of the 

intranuclear HSV-1 DNA complexes during lytic infection.  One of the first 

pressing questions concerns the nature of these unstable HSV-1 nucleosomes.  

This question can now be directly evaluated using the modified MCN digestion 

protocol described herein.  Although the MCN digestion releases both cellular and 

HSV-1 DNA-containing complexes, the unstable nature of the HSV-1 complexes 

allows for their enrichment under conditions of limited digestions.  Such enriched 

fractions are then amenable to further characterization, such as proteomic and 

structural analyses.  Such studies could likewise be extended to the 

characterization of the poorly accessible population of HSV-1 DNA.   

In addition, the relationship between DNA accessibility and transcription 

activation state described in Chapter 4 and 5 requires further examination.  In 

collaboration with Dr. Stephanie Booth and Anna Majer at the University of 

Winnipeg, Canada, we are evaluating the HSV-1 DNA released as soluble 

chromatin in the presence of various HSV-1 replicative cycle inhibitors using an 

HSV-1 DNA microarray.  By comparing the accessibility of the DNA of specific 
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HSV-1 genes released under different activation states we hope to further test our 

model of de-repression outline in Figure 7.1. 

Finally, the observations that the effects of Rosco on accessibility and 

transcription are independent of promoter sequence and specific to 

extrachromosomal DNA are very intriguing.  This observation implies that HSV-

1 DNA is subject to a silencing mechanism that prevents transcription by 

decreasing DNA accessibility.  Such mechanisms may globally regulate 

extrachromosomal DNA.  Future studies should therefore be directed to identify 

the direct or indirect target of CDKs involved in the establishment of such a 

repressive state.
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APPENDICES 

Appendix 1. Specificity profile of selected oligo- or pan-specific PCIs.   

Appendix 1 is a modified version of Table 4 (Schang, St Vincent et al. 2006).  

The activity or binding of two oligo-specific pharmacological cyclin-dependent 

kinase inhibitors (PCIs; Rosco, Purv A) and one pan-specific PCI (Flav) against 

all human protein kinases, several non-human protein kinases, and other selected 

enzymes or biomolecules are presented.  The activities against each protein are 

presented as 50% inhibition concentrations (IC50, in µM), degree of inhibition at 

10µM of each drug (as percentage), or relative affinity (as Kd), n/t, not tested. 

For roscovitine (Rosco), light gray represents IC50 ≥7 µM, % inhibition 

<80 and Kd >7 µM, dark gray shading represents 0.7 µM ≤ IC50 <3.5 µM, % 

inhibition ≥93 and 0.7 µM ≤ Kd <3.5 µM, and bold and italicized figures 

represent 3.5 µM ≤ IC50 <7 µM, 80≤ % inhibition <93 and 3.5 µM ≤ Kd <7 µM.  

For purvalanol A (Purv A), light grey represents IC50 ≥0.7 µM and % inhibition 

<80, dark grey represents 0.07 µM≤ IC50 <0.35 µM and % inhibition ≥93, and 

bold and italicized figures represent 0.35 µM≤ IC50 <0.7 µM and 80≤ % inhibition 

<93.  For flavopiridol (Flav), light gray represents IC50 >1 µM and Kd >1 µM, 

dark gray shading represents 0.1 µM ≤ IC50 <0.5 µM and 0.1 µM ≤ Kd <0.5 µM, 

and bold and italicized figures represent 0.5 µM ≤ IC50 <1 µM and 0.5 µM ≤ Kd 

<1 µM.   

a, 250µM ATP (Kristjansdottir and Rudolph 2003); b, 15µM ATP (Gray, 

Wodicka et al. 1998); c, 15µM ATP (Meijer, Borgne et al. 1997); d, 15µM ATP 

(Vesely, Havlicek et al. 1994); e, ProQuinase, as quoted in (Bach, Knockaert et al. 
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2005); f, 100µM ATP (Bain, McLauchlan et al. 2003); g, 15µM ATP (Leclerc, 

Garnier et al. 2001); h, (Knockaert, Gray et al. 2000); i, 15µM ATP (Schang, 

Bantly et al. 2002); j, 15µM ATP (Knockaert and Meijer 2002); k, 144µM ATP 

(Wang, de la Fuente et al. 2001); l, 100µM ATP (McClue, Blake et al. 2002); m, 

50µM ATP (Caligiuri, Becker et al. 2005); n, 10µM ATP; 

http://www.upstate.com/img/pdf/KinaseProfiler.pdf; o, 375µM ATP (Losiewicz, 

Carlson et al. 1994); p, 10µM ATP (Pinhero, Liaw et al. 2004); q, 400µM and 

20µM ATP (CDK2 and CDK4, respectively, Carlson, Dubay et al. 1996); r, 

http://www.invitrogen.com/downloads/SelectScreen_Data_193.pdf; s, (Whittaker, 

Walton et al. 2004); t, (Whittaker, Walton et al. 2004; Fabian, Biggs et al. 2005); 

u, 15µM ATP (De Azevedo, Leclerc et al. 1997); v, 15µM ATP (Bach, Knockaert 

et al. 2005); w, 10µM ATP (Chao, Fujinaga et al. 2000); x, 15µM ATP (Tang, Li 

et al. 2005); y, 50µM ATP (Agbottah, de La Fuente et al. 2005); z, (Senderowicz 

and Sausville 2000); aa, 10µM ATP (Kawaguchi, Kato et al. 2003); ab, 144µM 

ATP (Heredia, Davis et al. 2005); ac, 100µM ATP (Zhou, Deng et al. 2004); ad, 

1,000µM ATP (Kaiser, Nishi et al. 2001; Zhou, Deng et al. 2004); ae, 

(Oikonomakos, Schnier et al. 2000); af, (Schnier, Kaur et al. 1999); ag, 

(Hooijberg, Broxterman et al. 1999); ah, (Bible, Bible et al. 2000); ai, 15µM ATP 

(Hoessel, Leclerc et al. 1999); aj, 50 µM ATP (Xie, Liu et al. 2004); ak, 5-50 µM 

ATP (Bain, Plater et al. 2007); al (Karaman, Herrgard et al. 2008).  

Definition of symbols and required formatting 

≥ ; greater than or equal to, ≤ ; lesser than or equal to, >  ; greater than, < ; lesser 

than, IC50 ; where; IC in normal font, 50 in subscript 
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