THE UNIVERSITY OF ALBERTA

THE EFFECTS OF THERMAL TREATMENT ON PROPERTIES OF FE-MO OXIDE CATALYSTS

JORGE ARUANNO

by

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CHEMICAL ENGINEERING

DEPARTMENT OF CHEMICAL ENGINEERING

EDMONTON, ALBERTA

SPRING, 1975

ABSTRACT

In this study the structural and compositional changes that Fe-Mo oxide catalysts undergo during treatment in air at elevated temperatures (up to 900K) were investigated. Commercial and laboratory prepared catalysts were examined. The changes in catalyst properties were determined by low temperature nitrogen adsorption, scanning electron microscopy, X-ray diffraction, X-ray fluorescence and thermogravimetric analysis. The activities of the catalysts for the oxidation of methanol in air to formaldehyde were measured using an (integral bed reactor.

The results showed that treatment at elevated temperatures resulted in the growth and segregation of $Fe_2(MoO_4)_3$ and MoO_3 crystals resulting in a loss of specific surface area and changes in specific activity. The changes in specific activity can be explained in terms of molybdenum depletion from a molybdenum-rich iron molybdate phase.

ACKNOWLEDGEMENTS

The author wishes to express his_sincere appreciation to Dr. Sieghard E. Wanke for his guidance and helpful supervision during the course of this investigation.

Thanks are due:

To Mr. Jerry P. Moser for fis valuable help with laboratory analysis.

To Mr. Don Sutherland and his staff for their assistance in the installation and maintenance of the instruments.

To Mrs. Valerie Pinkoski for her patience in typing the manuscript.

The financial support received from the Consejo Nacional de Investigaciones Cientificas y Tecnicas of Argentina and the University of Alberta is gratefully acknowledged.

	TABLE OF CONTENTS	,
, Q		Page
LIST OF TABLES	• •	¥
LIST OF FIGURES		×i
CHAPTER	•	•
I - INTRODUCTIO	N	•
II - LITERATURE	•	L I
	, , , , , , , , , , , , , , , , , , ,	4
	ldehyde Production Processes	4
	Molybdenum Oxide Catalyst	7
(i)	Phase Composition and Nature of	
9 19 19 19 19 19 19 19 19 19 19 19 19 19	the Active Component	8
(ii)	Mechanism of the Catalytic	and the second sec
6.	Oxidation	12
(iii)	Kinetics of the Reaction	15
(iv)	Changes in the Properties of the	
200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200	Catalyst	
		20
III - EQUIPMENT A	ND EXPERIMENTAL PROCEDURES	24
III.l Cata	lysts	24
III.2 Activ	vity Measurements	25
· (i)	Equipment	27
(ii)		32
(iii)		•
(111)	Gas Chromatographic Analysis	33
	Childeographic Analysis	34

	₽.	Page
	1.3 Characterization Techniques	38
	(i) Scanning Electron Microscopy	38
	(ii) X-Ray Diffraction	40
	(iii) Low Temperature Nitrogen	. 9•• \
·	Adsorption	40
	(iv) Atomic Absorption Spectroscopy	41
	(v) X-Ray Fluorescence	41 🗸
•	(vi) Thermogravimetric Analysis	42
IV - RESU	LTS .	43
IV.1	Scanning Electron Microscopy	43
7	(i) Lummus Catalysts	43
	(ii) Laboratory Prepared Catalysts	53
IV.2	X-Ray Diffraction	54
IV.3	Surface Area Determinations	57
IV.4	Catalyst Composition	60
IV.5	Thermogravimetric Analysis	61
IV.6	Kinetic Studies of the Reaction of	
,	Oxidation of Methanol	66
	(i) Testing of Rate Functions	, 66
	(ii) Catalyst Activity Measurements	75
V - DISCU	SSION	79
VI - CONCL	USIONS.	88
èr -		
• •	viii	

	•	Page	
REFERENCES		90	
APPENDIX A -	Calibration of Rotameter	96	
APPENDIX B -	Gas Chromatographic Analysis	104	•
APPENDIX C -	Surface Area Determinations:Computer		
٥	Program and Sample Results	117	
APPENDIX D -	Computer Program for Kinetic Data	· · · · ·	
	Analysis and Results of Individual		
	Experiments	129	

 C_{i}

ix

\$

LIST OF TÀBLES

•

÷

ċ

Table	No.		Page
, 1	¥	Properties of Lummus Catalyst as	1 1
<u></u> 1		Specified by Manufacturer	24
2 2	•	Description of Catalyst Treatment	26
3	,	Results of Catalyst Characterization	59
4	ą. 5	Thermogravimetric Analysis Measure-	•
. •		ments a	62
5	•	Results of Kinetic Experiments	71
6		Effect of Temperature on Reaction	× .
· .		Rate Constant	73
7		Results of Activity Measurements	77
			•
•		2	
· · · · ·		4 ,	

्रं

•

.

	LIST OF FIGURES	
Figure 1	No.	Page
1	Schematic Diagram of Equipment Used for	
	Activity Measurements	28
2	Cross-Section of Reactor	30
3	Scanning Electron Micrograph of	
	Catalyst B	44
- 4	Scanning Electron Micrograph of Fresh,	12
	Activated Catalyst (Sample #3)	45
چ ر	Scanning Electron Micrograph of Catalyst	· · ·
	Heated at 630 [°] C (Sample E)	46
6	Scanning Electron Micrographs of	•
	Catalysts 1, 3 and 5	47
[^] 7	Scanning Electron Micrographs of	o
•	Catalysts 6, 7, 8 and 9	48
· 8	Scanning Electron Micrographs of	· · · · ·
3 3	Catalysts 10 and 10'	49
9	Scanning Electron Micrographs of	
•	Catalyst 11 and MoO ₃ Crystals -	50
•		
	xi	

10

11

12

13

. 6

Έ	-		51
ا X-Ray Diffract	tion Patterns	for Catal	lysts.
3 and 5 to 9	. .		55
X-Ray Diffract	ion Patterns	for Catal	ysts
10, 10' and 11	•	N	56 '

xii

14

r. >.1

Arrhenius Plot for Methanol Oxidation 74

Page

- INTRODUCTION

2

Iron molybdenum oxide, which consists of a mixture of normal iron molybdate, $Fe_2(MoO_4)_3$, and molybdenum oxide, MoO_3 , is one of the most widely used catalysts in the production of formaldehyde from methanol. In the industrial process that uses this catalyst, the conversion of methanol in one single pass through a fixed bed reactor is >98% and the selectivity to formaldehyde is about 90 - 95%.

A significant amount of work on Fe-Mo oxide catalysts can be found in the literature. Most of this deals with the determination of the structure(s) and the active component of the catalyst and also with the mechanism of the reaction of oxidation of methanol to formaldehyde. One of the aspects which has been ignored in most studies is the deactivation of this type of catalyst with use.

Experience with industrial reactors has shown that after an initial period of constant, or even increasing activity, the activity of the catalyst starts

to decline. Since this industrial process does not have facilities to recover unreacted methanol, the methanol conversion per pass has to be maintained at greater than 98% at all tymes. As the activity of the catalyst starts to decline the required methanol conversion is maintained by increasing the reactor temperature. For example, in the initial period of production, when the catalyst is active, a typical value of initial temperature is 500K. As the catalyst activity begins to decline the reactor temperature is increased in 5 to 10K intervals to an approximate final value of 560K. When this temperature is reached, the activity and selectivity of the cataly $_{
m ot}$ t has declined to such a degree that it is no longer acceptable and the catalyst is removed and a fresh charge of catalyst is introduced. It is important to point out that the typical values of temperatures given are reactor wall temperatures, the temperature of the catalyst bed, due to the exothermic nature of the reaction, may be as much as 75K higher at the hot spot in the reactor. The life of the catalyst depends on the operating conditions but it is typically between 6 and 12 months.

2

In order to obtain some knowledge of this phenomenon of deactivation, the present study was undertaken to determine changes in the properties of Fe-Mo oxide catalysts during various treatments at elevated temperatures. The treatments used were intended to simulate the catalyst at various stages of deactivation. The catalysts, after treatment, were examined by various instrumental techniques such as Scanning Electron Microscopy, X-Ray Diffraction, X-Ray Fluorescence, BET Adsorption and Thermogravimetric Analysis. The astivityof the treated catalysts for the conversion of methanol to formaldehyde was determined using an integral bed reactor.

II - LITERATURE SURVEY

II.1 Formaldehyde Production Processes

Formaldehyde is widely used in the manufacture of many products but the main use today is in the production of resins and glues such as phenolic resins, urea-formaldehyde resins, melamine resins, polyacetal resins and acrylic esters [1].

Over 90% of the formaldehyde is currently produced from methanol and only a small fraction is still being prepared by direct oxidation of hydrocarbons.

Production from methanol is carried out by two catalytic processes. The classic procedure uses a silver catalyst and employs a rich methanol-air mixture, whereas, the second method makes use of an ironmolybdenum oxide catalyst and a lean methanol-air mixture. The two processes are competitive and the selection depends upon many things such as product end use, size of plant and type of operation [2]. Over the silver catalyst the reaction occurs in two steps - dehydrogenation of methanol and oxidation of hydrogen, <u>i.e</u>.

$$CH_{3}OH \xrightarrow{Ag} CH_{2}O + H_{2}$$
(1)

$$H_2 + \frac{1}{2} O_2 \longrightarrow H_2 O$$
 (2)

If an iron-molybdenum oxide catalyst is used, the reaction proceeds by a one-step oxidation process, i.e.

$$CH_{3}OH + \frac{1}{2}O_{2} \xrightarrow{\text{Fe-Mo oxide}} CH_{2}O + H_{2}O$$
 (3)

In both processes side reactions, which include destruction or direct combustion of the reacting methanol or degradation or combustion of the formaldehyde produced, can occur.

The difference in the operating conditions for the two processes are pronounced. Since methanol and air form explosive mixtures at concentrations ranging between 8 to 37 volume % methanol at atmospheric pressure the two processes must operate outside these limits.

The dehydrogenation of methanol over a silver

5

catalyst requires an excess of methanol versus air and therefore the process operates with methanol/air mixture above the upper finitiality limit. Air is only added to supply the energy, by oxidation of the hydrogen, necessary to maintain the operating temperature at the desired 600-700°C level. The gaseous products contain about 20 volume % hydrogen due to the lack of oxygen. The high operating temperatures result in side reactions. In order to minimize the by-product formation very short residence times are used and the product stream is immediately quenched at the exit of the reactor. The short residence time employed results in incomplete methanol conversion (60 - 80%) and consequently distillation equipment is needed to recover the unreacted methanol for recycling.

On the other hand, the oxidation process using a mixture of iron-molybdenum oxide catalyst operates at temperatures between 250 and 400°C. Since this type of catalyst becomes inert in presence of an excess of methanol and require a relatively high oxygen partial pressure to maintain its activity, it must operate with an excess of air and therefore below the lower limit of flammability. Due to the excess of air and lower temperature the selectivity is very high. The catalysts 6

that are now used are based on $Fe_2O_3 - MoO_3$ mixtures with an excess of MoO_3 over the stoichiometric amount corresponding to the normal ferric molybdate $Fe_2(MoO_4)_3$. In the industrial process that uses this catalyst an overall conversion of methanol greater than 97% and a selectivity to formaldehyde better than 94% have been reported [3].

II.2 Iron-molybdenum Oxide Catalysts

يتشكر

Adkins and Peterson [4] first prepared this catalyst in 1931. They pointed out the high activity and selectivity of this catalyst at relatively low reaction temperature for the oxidation of methanol to formaldehyde. The authors concluded that the most satisfactory catalyst was found to be an equimolar mixture of iron oxide and molybdenum oxide; with this catalyst they obtained a maximum conversion to formaldehyde of about 91% when feeding 10 g of methanol in 93 l of air at 373°C. This experimental work served as the basis for a considerable number of patents [5-8] devoted mainly to the improvement in the method of preparation of the catalyst.

The catalysts employed are in general obtained by coprecipitation of iron and molybdenum salts and they have a molar ratio of MoO₃ to Fe₂O₃ varying from 3.6 to 11.1.

(i) Phase Composition and Nature of the Active Component

In one of the first investigations made by Boreskov and coworkers [9, 10] a study of the chemical composition, its effect upon the activity and selectivity in the oxidation of methanol to formaldehyde and the nature of the catalytically active component was carried They prepared various catalysts with different Mo out. to Fe ratios. Their experimental data show that the maximum of specific catalytic activity is obtained for an atomic Mo/Fe ratio of 1.7 (or 63 atom % of Mo); for. Mo/Fe < 1.7 the catalytic activity is rapidly reduced to very low values while for Mo/Fe > 1.7 the catalytic activity decreases slower and linearly to the value of pure MoO₃. The catalyst with Mo/Fe = 1.7 has a specific activity which is 40 - 70 times greater than that of the oxides from which it has formed. They also found that for pure Fe_2O_3 and in mixed catalyst with Mo/Fe ≤ 1 the selectivity for the formation of formaldehyde was very On the other hand pure MoO, had a high selectivity low. but a very low activity. Therefore, they concluded that the catalytic properties of the mixed catalysts are not

linear functions of the properties of the oxide components and suggested that a reaction takes place between the original components forming a chemical compound with Mo/Fe = 1.5 to 1.7. In order to identify the active component they examined the catalysts by X-ray diffraction, electron paramagnetic resonance, infrared spectroscopy and thermography. The results showed the following:

1) In the catalysts with Mo/Fe = 1.5, after calcination at 400^oC, only one phase is present, normal iron molybdate $[Fe_2(MoD_4)_3]$ which is formed in the case of precipitation as an amorphous phase, and crystallizes upon heating to $350^{\circ}C$. With increasing content both of iron and of molybdenum in the catalysts, the crystallization of Fe₂(MoO₄)₃ occurs at higher temperatures.

2) With broad variations in composition of the crystallized catalysts, only two phases are present, $Fe_2(MoO_4)_3$ and MoO_3 for Mo/Fe > 1.5, and $Fe_2(MoO_4)_3$ and Fe_2O_3 for Mo/Fe < 1.5.

3) On the basis of these investigations, it was concluded that the activity of iron-molybdenum oxide catalysts is due to the formàtion of normal ferric

molybdate which is the active component. The fact that

commercial catalysts, in order to have high activity, need an excess of molybdenum over the stoichiometric amount corresponding to $Fe_2(MoO_4)_3$ does not quite agree with the conclusion of these investigators.

Pernicone et al. [11] showed that pure MoO_3 and pure $Fe_2(MoO_4)_3$ have much lower activity than a $MoO_3 - Fe_2(MoO_4)_3$ catalyst mixture with a molar ratio of They explained their experimental results by 9:1. assuming that both MoO₃ and Fe₂ (MoO₄) $_3$ are catalysts for the reaction of oxidation of methanol but that $Fe_2(MoO_4)_3$ is actually the most active component and that it may have a promoting effect on the MoO3. Another important aspect that they consider is the surface acidity of the catalyst. Pure MoO, showed higher acidity than mixed catalysts, but the latter showed a higher catalytic activity than the former; in fact, acid catalyst such as Al_2O_3 and SiO_2 are inactive for this reaction. Therefore, surface acidity is not the only factor that influences catalytic activity and redox properties play an important factor. One possible explanation that they gave is that these acid sites due to pure MoO_3 are the active sites for methanol adsorption and the role of $Fe_2(MoO_4)_3$ is to produce an adequate reducibility of the catalyst in order to increase the product desorption rate that seems to be

the rate controlling step. In conclusion, $Fe_2(MoO_4)_3$ to be an active catalyst must be Fe deficient, <u>i.e.</u> have a Mo excess with respect to the stoichiometric amount. То verify the validity of this hypothesis, Fagherazzi and Pernicone [12] carried out an X-ray structural study on $MoO_3 - Fe_2(MoO_4)_3$ and pure $Fe_2(MoO_4)_3$ catalysts and they found a larger unit cell for the $Fe_2(MoO_4)_3$ in the Mo rich catalyst. They concluded that the active phase is an iron molybdate containing Mo in excess of the stoichiometric amount (referred to as Fe-deficient). They also pointed out that heating the amorphous hydrous iron molybdate at 380⁰C results in the segregation of MoO₃ and crystallization of both MoO₃ and Fe-defective iron molybdate. Therefore the Fe-defective iron molybdate, which is present in the catalysts with Mo/Fe, >1.5, was postulated to be the active phase. They also mention that complete segregation of MoO, to give pure $Fe_2(MoO_4)_3$ should occur by heating at higher temperatures which should lead to reduced activity.

Peirs and Leroy [13] found the highest catalytic activity for a catalyst with a Mo/Fe = 3 activated at 330° C; they also detected the two characteristic phases of MoO₃ and ferric molybdate. 11

(ii) Mechanism of the Catalytic Oxidation

The mechanism of methanol oxidation over Fe and Mo oxide catalysts has been studied in detail by various investigators. For example Jiru <u>et al</u>. [14] postulated the following two-stage oxidation-reduction mechanism similar to that observed by Mars and Van Krevelen [15] for the oxidation of aromatic hydrocarbons on V_2O_5 , in which the lattice oxygen of the catalyst. participates in the reaction, <u>i.e</u>.

$$CH_{3}OH(g) + Cat_{ox} \xrightarrow{k_{1}} CH_{2}O(g) + H_{2}O(g) + Cat_{red} (4)$$

$$O_{2}(g) + Cat_{red} \xrightarrow{k_{2}} Cat_{ox} (5)'$$

This mechanism was verified by oxygen balance in the rate of interaction between methanol and catalyst without oxygen in the gaseous phase and by the rate of interaction between oxygen and partially reduced catalyst without methanol in the gaseous phase. The two steps could be repeated without lowering the activity of the catalyst. Other results obtained by these workers, with regard to physical changes of the catalyst during reduction-oxidation, which support the redox mechanism are: one, during the oxidation reaction the catalyst changes its yellowish colour into greyish blue; and two,

ar,

the electrical resistance decreases during the oxidation of methanol while after re-oxidation, it increases to almost its initial value.

The oxidation of methanol and formaldehyde was carried out by the same research group [16, 17] on MoO, Fe₂O₃ and mixed catalysts. On pure MoO₃ at 320^OC, without oxygen in the gas phase, the first dose of methanol produced mainly formaldehyde and water but a further dose of methanol produced mainly CO, CO2 and H2; also, with fresh catalyst formaldehyde does not react while with the used sample formaldehyde is oxidized. On pure Fe_2O_3 at 220⁰C, without oxygen in the gas phase, complete oxidation of methanol and formaldehyde occurs with formation of CO, CO, and H, and these products are the same with several doses of methanol. On $MoO_3 - Fe_2O_3$ mixed catalyst at 100°C, without oxygen in the gas phase, formaldehyde and water were the reaction products and the product composition did not change with several doses. Therefore, they supposed that the mechanism of the selective methanol oxidation is the same on mixed catalyst as that on $M \Theta O_3$ in its unreduced state, and it is caused by Mo⁶⁺ ions. An alcoholate bonding might be formed which decomposes under formation of formaldehyde and water; one H atom from the methanol molecule being bonded to a surface

oxygen. If a similar complex is formed on Fe_2O_3 it is very unstable because of the complete oxidation observed. Thus, in conclusion, they suggest that the role of Fe^{3+} ions is to hinder the reduction of Mo⁶⁺ ions and increase the lability of lattice oxygen available for the oxidation process.

These results are similar to those found by Pernicone and coworkers [18-20]. These authors assumed that the dissociative adsorption of methanol occurs on two types of centers, an anionic vacancy that would have the function of a Lewis acid center and an 0^{2-} ion that would behave as a Brönsted basic center. The 0^{2-} forms an hydroxyl and the anionic vacancy is occupied by a methoxyl. Then the surface reaction should occur by transfer of an H^+ ion from the methoxyl to a near O^{2-} ion, with the formation of a second hydroxyl and electron transfer to the reducible cation (either Mo^{6+}), this producing the CH,O formation on the anionic vacancy. After that, water can be removed from the two hydroxyls and desorbed with CH20 and formation of a new adsorption center. In their opinion, the presence of Fe³⁺ ions increases the number of methanol adsorption centers and at the same time facilitates the desorption of products. This step seems to be the rate-controlling since their

experimental results showed that neither the adsorption of reactants nor the surface reaction are the ratecontrolling steps. Other authors [21-22] arrived at the same conclusion with respect to the adsorption of methanol and oxygen.

In order to have a further evidence of the redox mechanism and clearly define the role of the two metals in the catalytic system, Trifiro <u>et al.</u> [23] reduced the mixed catalyst with N_2/H_2 and N_2/NH_3 mixtures and they found that iron molybdate, $Fe_2(MOO_4)_3$, is the first component of the system $MOO_3 - Fe_2O_3$ that is reduced to give ferrous molybdate, $FeMOO_4$. They represented the mechanism as follows:

 Fe^{3+} molybdate + $CH_3OH \longrightarrow Fe^{2+}$ molybdate + $CH_2O + H_2O$ (6) Fe^{2+} molybdate + $\frac{1}{2}O_2 \longrightarrow Fe^{3+}$ molybdate (7)

Therefore, the conclusion of these investigators is that Fe³⁺ acts as the transfer agent of oxygen and water between the surface and the gas phase.

(iii) Kinetics of the Reaction

The opinions of various authors about the rate

equation that can describe best the oxidation process differ. The different rate expressions proposed and their applicability will be discussed here.

The simplest kinetic equation proposed for the oxidation of methanol is the one corresponding to a first order reaction with respect to CH_3OH and of zero order with respect to O_2 , <u>i.e</u>.

 $r = k p_{CH_3OH^5}$

r - rate of react on, [mole/(g-sec)].
k - rate constant, [mole/(g-sec-Torr)].
P_{CH3OH} - partial pressure of methanol, [Torr].

where

The experimental data obtained by various investigators [9, 13, 29] were well fitted by this expression.

However, according to the two steps oxidationreduction mechanism mentioned before (Equations 4 and 5), Jiru <u>et al</u>. [14] proposed the following rate expression for the oxidation of methanol at low partial pressure of reactants, where 🏼

k₁

 α, m, n

- rate of oxidation of methanol,

k₁ p^m_{CH3OH}

 $\alpha (k_1 p_{CH_3OH}^m/k_2 p_{O_2}^n)$

[mole/(g-sec)]. (

P_{CH3OH}, P_{O2} - partial pressure of methanol and oxygen, [Torr].

> - rate constant of oxidation of methanol by oxygen from catalyst Cator [mole/(g-sec-Torr)].

17

(9)

- rate constant of oxidation of catalyst Cat_{red} by oxygen, [mole/(g-sec-Torr)]. - constants; calculation from experimental data gave m = n = 1, $\alpha = 0.5$.

The experiments were carried out in an integral reactor at atmospheric pressure and 270°C using a catalyst containing 17.5 wt % of Fe_2O_3 and 82.5 wt % of MoO_3 (Mo/Fe = 2.6).

In a subsequent work [24] from kinetic data obtained by means of a recycle reastor they recommended

the value m = n = 0.5.

The same kinetic equation has been used by other authors [25]. Pomerantsev and Mukhlenov [26] considered also the influence of the formaldehyde formed in the reaction according to the following equation:

k pCH₃OH $[1 + (0.5 p_{CH_2O}/p_{CH_3OH} p_{O_2}^{0.5})]$ 0.5

However, the data obtained by Pernicone <u>et al</u>. [18] using a flow and pulse reactor method did not verify these types of equation especially when high partial pressures of reactants were used. They pointed out that the oxidation-reduction mechanism proposed gives only an approximate description of a more complex phenomenon, although the basic idea that the lattice oxygen participates in the reaction was not excluded.

Bibin and Popov [27] made a detailed study of the reaction in the kinetic region by a circulating flow method and they found that water formed in the reaction has an inhibiting effect and must be included in the 18

(10)

reaction rate expression. They fitted their experimental results by the equation,

$$= \frac{k_{1}^{2} C_{Me}}{1 + a_{1}^{2} C_{Me} + a_{2}^{2} C_{H_{2}^{0}}}$$

where

r - rate of reaction, [μ mole/(m²-sec)]. C_{Me}, C_{H₂O} - concentration of methanol and water, [mole/m³]. k₁, a₁, a₂ - reaction constants.

The temperatures of the reaction were in the range of $225 - 308^{\circ}$ C and catalysts with a Mo/Fe = 1.7 - 1.8 were used.

The effect of water was also considered by Ewmenenko and Gorokhovatskii [28] along with the effect of oxygen; their experimental data were described by the equation:

$$r = k \frac{c_{Me}}{1 + b_1 c_{Me} + b_3 c_{H_20}} \cdot \frac{c_{O_2}}{1 + b_2 c_{O_2}}$$

which they also derived theoretically considering the

(11)

(12)

following Langmuir-Hinshelwood type mechanism:

$$o_2(g) + [] \longrightarrow [o_2]_{ads}$$
 (14)

$$[CH_{3}OH]_{ads} + [O_{2}]_{ads} \longrightarrow CH_{2}O (g) + [H_{2}O]_{ads} + [](15)$$

$$[H_2O]_{ads} \longrightarrow H_2O(g) + []$$
 (16)

where

[] - catalyst adsorption site b₁,b₂,b₃ - are the corresponding adsorption constants

(iv) Changes in the Properties of the Catalyst

Although this problem has not been very well studied some investigators pointed out the necessity of periodically regenerating or eventually replacing the catalyst due to loss of activity with use. For example Hodgins and Shelton [30] noted the following changes in the catalyst after 36 days of operation: a) the color changed from greenish-yellow to greenish-grey, b) the MoO₃ content decreased about 8%, c) using X-ray diffraction, the fresh catalyst showed no pattern but in the used one the crystalline pattern of MoO₃ appeared. Since the rate of sublimation of MoO_3 is appreciable at $700^{\circ}C$ they attribute its loss to volatilization. Also they consider that at the same time a redistribution apparently separates the original amorphous MoO_3 from the amorphous Fe_2O_3 in contact with it and therefore the active centers are lost.

Peirs and Leroy [13] studied by electron probe microanalysis the morphological variations of the catalyst related with the loss of activity. They used for the study a catalyst with atomic ratio Mo/Fe = 3 activated at 330°C for which they found the maximum specific activity. For the fresh catalyst, the two peaks in the electronic images obtained at Mo/Fe = 2.4 and 3.2 corresponded to the two phases; ferric molybdate and MoO2. However, the histrogram of the used catalyst showed the presence of only one peak at Mo/Fe = 1.4. The authors attribute this effect to the disappearance of the MoO₂ phase and the partial destruction of ferric molybdate. Also, they have found that a bluelike residue is formed at the base of the reactor where they measured a considerable decrease of temperature. The analysis by X-rays and electronic images of this residue showed the presence of the Mo and O and the absence of Fe; quantitative analysis gave a ratio O/Mo of about 3 explaining

in this form that the residue is MoO_3 generally called "molybdenum blue". Therefore this phenomenon would explain the disappearance of the peak corresponding to the MoO_3 phase.

A study of the variations occurring during high temperature treatment was carried out by Trifiro et al. [31]. They concluded that there are three ranges of temperature in which some marked change in the properties of the catalyst occurred. 0ver the first range, 300 , 350°C, a sharp increase of electrical conductance, the starting of CO production in the oxidation of methanol and the starting of bulk reduction of the catalyst in $N_2 - NH_3$ flow were noted. They attributed these effects to the higher rate of electronic transfer between Fe^{2+} and Fe^{3+} that occurs in the process of the ϵ reoxidation of the catalytic surface. This reoxidation can occur not only with oxygen but also from the reduction of the bulk Fe³⁺. The second variation took place at 500°C and consisted in an almost total reoxidation of Fe^{2+} in air with elimination of water, a decrease of the isomerization power in the oxidation of 1-butene and in the formation of CO, in the oxidation of methanol. They also pointed out that due to the more severe oxidation conditions the reduced form of the catalyst does not have the same structure as that of the oxidized form and this variation can cause the decomposition of molybdate to the single oxides. The third variation occurred at 600° C and it is characterized by a definite and sharp decrease in the surface area and by the breakdown of catalytic activity for 1-butene oxidation and cyclohexene epoxidation. They linked this loss of activity to a sintering phenomena occurring at this temperature.

23

III - EQUIPMENT AND EXPERIMENTAL PROCEDURES

III.1 ' Catalysts

Two different Fe-Mo oxide catalysts were employed in this work; one was a commercial catalyst obtained from the Lummus Company. Table I gives the physical and chemical properties of this catalyst as specified by the manufacturer.

TABLE 1: Pro

Properties of Lummus Catalyst as Specified

by Manufacturer

Fe	9.5 wt %
Мо	50.0 wt %
Surface area	4 m ² /g
Pore volume	0.2 cc/g

The other catalyst was prepared in the laboratory by co-precipitation of Fe-Mo oxide from ferric chloride (FeCl₃.6H₂O) and ammonium paramolybdate

 $[(NH_4)_6 MO_7O_{24}.4H_2O]$ solutions by a procedure similar to that described by Allyl et al. [32].

Portions of these two catalysts were heated in flowing air at various temperatures for varying periods of time. The samples were placed in a U-shaped Vycor tube and heated in a Thermolyne muffle furnace. The temperature of the furnace was controlled by a Thermo Electric 400 temperature controller. At the exit of the tube, outside the furnace, a glass wool plug was used to collect possible products of sublimation. The various treatment conditions used to obtain the catalyst samples are given in Table 2.

For the samples pretreated at temperatures greater than 670K white crystals were collected in the glass wool plug, and the wall of the U-tube near the glass plug became blue. The crystals were kept for subsequent analysis.

III.2 Activity Measurements

The activity of the catalysts described in Table 2 for the conversion of methanol in air to formaldehyde was determined in a fixed bed reactor. The equipment that was constructed for this purpose and the 25

12

TABLE 2: Description of Catalyst Treatment

Catalyst Number*	Temperature (K)	Length of Time (Hr.)
1	Fresh Lummus Catalyst, No Treatment	
2	500	137
3	500	572
4	520	450
5	670	17
6	. 770	18
7	820	18
8	870	20
9 :	820	42
10		Fresh Untreated (dried in air at 423 K for 24 hr.)
10'	530	12
11	. 870	- 20
A	• 820	48
В	870	25
C	870	72
D	910	15
Е	4 900	48

* For catalyst number 2 to 9 and A to E, the starting catalyst was fresh Lummus catalyst; for catalysts 10, 10' and 11 the starting catalyst was the sample prepared in the laboratory. Samples A, B, C, D and E were heated in TGA equipment. 26
procedure followed will now be discussed in detail.

(i) Equipment

A schematic diagram of the equipment is shown in Figure 1. The feed to the reactor consisted of an air- , methanol mixture. The air came from the house supply. It was dried by passing through a 12.7 cm dia., 30 cm long, aluminum oxide bed and fine particles were removed by a sintered metal filter (Nupro Cat. No. SS 316-2F-15). The upstream pressure was set by means of a single stage regulator (Fisher Governor Co. Type 67F R 224). The air flow rate was measured by means of a calibrated rotameter (Matheson, Cat. No. 621 PBX, with dual float tube, Cat. No. 603). The air flow rate was controlled with the rotameter needle valve. The rotameter readings were converted to flow rate according to the method described in Appendix A. The calibration included compensation for the variation of pressure in the rotaneter. The/pressure in the rotameter was measured by the mercury filled manometer shown in Figure 1.

Methanol was fed into the air stream as a liquid by means of a precalibrated syringe pump which provided uniform (±2%) and reproducible flow rates. The needle of the syringe was placed in contact with the bottom of the

tube of the air line to prevent drop formations which would result in pressure fluctuations. The air was preheated by means of heating tape to approximately 100°C in order to preheat the feed and also to assure complete evaporation of methanol. The air-methanol mixture could be routed to the reactor or to the gas chromatograph for analysis by means of a three-way valve. Feed stream composition were calculated from air and methanol feed rates and checked by gas chromatographic analysis.

The reactor was constructed out of a 1.9 cm, schedule 40, 316 stainless steel pipe. Its length was The feed was preheated by means of a coil immersed 76 cm. in a salt bath which consisted of a mixture of equal . quantities by weight of KNO, and NaNO; this mixture forms an eutectic which has a melting point of 222°C [33]. A cross section of the reactor and salt bath is shown in Figure 2. (This construction is not well suited for obtaining isothermal rate data. This reactor was initially designed to measure autothermal effects), The reactor was easily removable by loosing the four bolts that fastened it to the plate welded to the salt bath reservoir. Asbestos and copper gaskets did not provide an adequate seal; finally, an aluminum gasket, which provided a tight seal was used. The feed flowed counter-

currently through the annular region around the reactor as shown in Figure 2. The bath was heated by four 1550 watt U-shaped immersion heaters (0.8 cm in diameter and 1.4 m long) immersed in the bath; two of the heater elements were connected to a variable voltage supply and the other two to the temperature controller. The whole container was surrounded by 5 cm of asbestos insulation.

Temperatures at various positions in the catalyst bed and along the reactor wall (see Figure 2) were obtained by seven iron-constantan thermocouples. Two thermocouples, TC2 and TC6, were joined to the wall of the reactor and the five remaining thermocouples were positioned inside the reactor in order to obtain the temperatures at various positions in the catalyst bed. The thermocouples used were 1.6 mm O.D. (1/16"), stainless steel sheathed, grounded hot junction, purchased from Thermoelectric Company. The output of thermocouples TC2 to TC7 were recorded by a Speedomax Type G, Leeds and Northrup, 16 point variable-range, variable-zero temperature recorder. The range normally set on this recorder was 200 to 400⁰C. Thermocouple TCl was connected to a West (Model JPGB) temperature indicator-controller which controlled the temperature of the salt bath by regulating the current to two of the immersion heaters.

A constant current was passed through the other two heaters. Very good temperature control was obtained in this way and the temperature of the different thermocouples inside the reactor did not fluctuate more than $3^{\circ}C$ once a steady temperature in the bath was obtained.

The pressure in the reactor was regulated by adjusting the regulating value in the vent line before the GC inlet in order that the reading on the mercury manometer, attached to the inlet line of the reactor, corresponded to the required pressure. When the feed stream was analysed this value was adjusted to obtain the same pressure drop as in the case when the product stream was analysed.

(ii) Materials

The methanol used as a reactant in the experimental runs was supplied by Mallinckrodt Chemical Works Ltd. and had a purity greater than 99.7%.

Aluminum oxide about 6-16 mesh supplied by The British Drug Houses Ltd. was used as a desiccating agent for the air. Periodically it was regenerated by heating at 250°C for 24 hours.

Sodium nitrate and potassium nitrate, industrial grade, purchased from Olin Chemicals were used

to fill the salt bath.

The catalyst prepared in the laboratory was obtained from ammonium molybdate crystal $[(NH_4)_6 Mo_7 O_{24} . 4H_2 O]$ supplied by Allied Chemical Canada

Ltd. and ferric chloride (FeCl₃.6H₂O) supplied by The British Drug Houses Ltd.

Helium supplied by the Liquid Air Company was used as a carrier gas for gas chromatography.

(iii) Operation of Equipment

The first step consisted in charging the reactor with the catalyst under study. A 15 cm catalyst bed length was used. The upstream and downstream zones of the remaining of the reactor were filled with 0.5 mm Pyrex glass beads. Glass wool plugs were placed on both ends of the reactor (see Figure 1). For the first run, in which a charge consisting of only fresh Lummus catalyst pellets, it was noted that considerable temperature

differences existed along the catalyst bed ($\sim 30^{\circ}$ C for reaction temperatures between $230^{\circ} - 270^{\circ}$ C). In order to reduce this temperature gradient in the bed, the catalysts for all the other experimental runs were diluted with Pyrex beads (1:1 volume ratio of glass beads

to catalyst).

After the reactor had been placed inside the bath and all the bolts and fittings tightened the air stream was allowed to flow through the reactor and leaks were eliminated. Then the desired temperature was set in the controller and the calrod heaters were turned on. Approximately four hours of heating time were required to achieve the set temperature in the bath. When steady state temperature conditions in the reactor had been obtained the syringe pump was turned on, the air flow rate was adjusted to its desired value and the feed stream was routed to the gas chromatograph for analysis. After the feed had been analysed, the air-methanol stream was passed through the The temperature of the catalyst bed rose by as reactor. much as 25°C when this was done. The magnitude of the temperature rise was dependent on the initial reactor temperature and the feed composition. Approximately two hours were allowed for the temperature to reach a uniform value along the catalyst bed (variations ±3°C along catalyst bed), after that the product stream was analysed. Several product analyses were carried out for each run.

34

(iv) Gas Chromatographic Analysis

The components of the feed and product streams

were separated by gas chromatography using a Beckman GC2 chromatograph. The chromatograph was equipped with a thermal conductivity cell and a Beckman pneumaticallyoperated sampling valve (Cat. No. 102396). The volume of the sample loop used was 0.5 cc.

The following is a description of the chromatographic column used, the operating conditions and the components separated.

Column

6.35 mm O.D., 1.8 m long, spiral stainless steel tube. The first 0.9 m section was packed with Porapak T, 80 -100 mesh, and the other 0.9 m section with Porapak Q-S, 80 - 100 mesh. Both packings were purchased from Waters Associates (Cat. No. 27078 and 27090).

Column Temperature

165⁰C

Filament Current

180 ma.

Carrier Gas

Helium

Gas Flow Rate

Carrier side - 50 cc/min. Reference side - 25 cc/min.

Components Separated

"Air" (nitrogen and oxygen), formaldehyde, water and methanol.

The conditions given above were experimentally determined to be optimum considering separation and time of analysis.

The products were identified by their respective retention times obtained by passing pure samples of the gas involved through the column. For quantitative analysis the composition of the samples was computed from the area under the peaks of the various components and their respective correction factors. The output signal from the thermal conductivity cell was analysed on-line by an IBM 1800 computer and peak integrations were obtained electronically by using the Chromatograph Monitoring Program (CMP) [34]. The job defined for this analysis along with the procedure employed is given in Appendix B. Also a typical chromatogram with its corresponding computer output is shown in the same Appendix. The correction factors for water and "air" relative to methanol were obtained by calibration runs using samples of known composition according to the method described in Appendix B. The correction factor for component i, F_i , relative to methanol is defined by:

$$F_{i} = \frac{A_{CH_{3}OH} \times_{i}}{A_{i} \times_{CH_{3}OH}}$$

where

×,

ACH₂OH - area under methanol peak

A_i - area under peak for component i x_{CH₂OH} - mole fraction of methanol

- mole fraction of component i

The correction factor for formaldehyde was obtained by material balance calculation of product samples, <u>i.e.</u> the moles of formaldehyde in the product were equal to the moles of methanol reacted and the moles of water formed since no other reaction products besides water and formaldehyde were detected under the experimental conditions used. 37

(17)

The correction factors obtained in this work were 1.0, 1.02, 1.40 and 1.66 for methanol, air, formaldehyde and water, respectively. Appendix B gives in detail the method employed to calculate these values. The ratio F_{H_0}/F_{CH_0H} is in fair agreement with the value given by Dietz [35] and Messner et al. [36] but the F_{air}/F_{CH_0OH} ratio is different by ~25%. The reason for the variation in the air response factor from the value reported in the literature is probably due to the method by which the peak area was determined. The air peak is a very sharp peak of very short duration and hence has a different shape than the other peaks. Nevertheless, the area under the air peak as obtained by CMP was very reproducible.

III.3 Characterization Techniques

To determine the properties of the catalyst listed in Table 2 a variety of instrumental techniques were used. Each technique is described below.

(i) Scanning Electron Microscopy (SEM)

Information on surface morphology and crystal structure of the different samples of catalyst was

obtained from scanning electron micrographs.

The SEM is not a normal microscope in which the transmitted image of an object is magnified by electron lenses to produce high magnification [37]; rather, the image in the system is built up from point to point observations of the surface characteristics resulting from the interaction of the electron beam with the specimen sur-The backscattered and secondary electrons emitted face. fror c instantaneous point of impact can be deterted by a scin i lation counter and the output after amplification is used to modulate the recording intensity of the beam, generally the brightness of a cathode-ray display tube; this variation in brightness recorded produces the high magnified "image" of the object. In this way if the specimen surface has properties (as for example variations in topography or in the size of crystals) which cause the scattering of electrons to vary from point to point, then a two-dimensional image of the specimen surface will be built up on the screen of the display tube which will represent the object as seen in the "light" of the applied radiation. A photography of this image can be obtained if desired. Therefore, it can be seen that with this , technique one can obtain more information about the catalyst surface than employing other kinds of microscopes.

A S4 Stereoscan model, scanning electron microscope manufactured by Cambridge Scientific Instruments Ltd. was used for this purpose. The catalyst samples were coated with a thin film (thickness < 20 nm) of gold prior to examination since the Fe-Mo oxide mixtures are electrical insulators. Magnifications of up to 13000X were used.

(ii) X-Ray Diffraction (XRD)

X-ray diffraction studies on catalyst powders were carried out in order to determine the crystallographic structure of the samples. A Philips X-ray diffraction spectrometer was used for this purpose. The diffraction patterns were obtained using Fe filtered Co K α radiation, a Geiger-counter, and a Philips spectrogonimoter.

(iii) Low Temperature Nitrogen Adsorption (BET)

The specific surface area of the samples was determined by physical adsorption of nitrogen at 77K applying the BET method. This is a well known procedure and therefore the details of the experimental technique will not be discussed here. In the present work, the surface areas of all the samples were obtained by the method described by Gregg and Sing [38]. The samples were evacuated for 2 hr. at 250^OC before adsorption measurements. A standard Pyrex glass, high vacuum BET equipment was employed for these determinations. A Texas Instruments Co. fused quartz precision pressure gage/ (model 141A) was used for pressure measurements. Helium was used for dead-volume determinations.

(iv) Atomic Absorption Spectroscropy (AA)

A model 290B Perkin Elmer atomic absorption spectrophotometer was to be used to determine the Fe and Mo content of the samples. The AA method requires the preparation of solutions of the sample to be analysed but attemps to dissolve the Fe-Mo oxide were unsuccessful. The samples were treated first with hot aqua regia and boiled to dryness. Then the residue was collected with HCl (1:2) and boiled again to almost dryness. After making the solutions with HCl (1:5) there always remained an insoluble black solid. Finally, NH₄OH was tried as a solvent but also without satisfactory results.

(v) X-Ray Fluorescence (XRF)

In order to determine the Mo:Fe ratio of the catalysts the non-destructive XRF technique was employed.

The analyses were conducted on a Philips X-ray fluorescence spectrometer. Tungsten radiation and a LiF 200 analysing crystal were used. The characteristic radiations were detected quantitatively by a scintillation counter and plotted on a recorder chart.

(vi) Thermogravimetric Analysis (TGA)

TGA studies were carried out using a Model 950 DuPont Thermogravimetric Analyser. The weight loss of the samples were continuously plotted on the chart of the Model 900 DuPont Differential Thermal Analyser as a function of time and temperature. The method consisted in suspending one catalyst pellet in one of the arms of the microbalance of the apparatus. The samples were heated at a constant rate of 10°C/min from room temperature to the desired final temperature for each run and then the mode of operation was changed to isothermal. Since the weight losses were small, in general, compared with the total weight of the pellet, zero suppression was used to obtain greater sensitivity. Air, was passed over the catalyst during all the weight loss measurements.

IV - RESULTS

. IV.1 Scanning Electron Microscopy (SEM)

A large number of areas of the various catalyst samples were examined by SEM. The surface of the catalyst pellet was not uniform but showed different characteristics from one part of the pellet to the next. Figure 3 is a representative micrograph showing this effect. Despite these variations within each sample, definite trends with various treatments were observed. Figure 4 and 5 illustrate the marked difference in structure of the fresh (Catalyst 3) and a catalyst after extensive thermal treatment (Catalyst E). Figures 6 to 10 are representative sections of the surfaces for various catalyst samples.

On the basis of these micrographs we can make the following observations:

(i) Lummus Catalysts

All catalysts contained the plate-like MoO₃

Figure 3: SCANNING ELECTRON MICROGRAPH OF CATALYST B

Figure 5: SCANNING ELECTRON MICROGRAPH OF CATALYST HEATED AT 630°C (SAMPLE E)

1 Aug

Figure 10: SCANNING ELECTRON MICROGRAPH OF CATALYST E crystals [39] but the size of these crystals varied from catalyst to catalyst. That these plate-like structures are indeed MoO₃ crystals can be seen in Figure 9 in the bottom right-hand micrograph. The material used for obtaining this micrograph was the sublimated crystalline material collected during the pretreatment of Catalyst 9. These crystals were attached to the glass wool plug at the exit of the U-shaped tube used to preheat the sample. XRF showed that the only metal contained in this material was molybdenum.

A more marked change with treatment occurs in the non-MoO₃ phase of the catalyst. According to the literature this material is assumed to be normal iron molybdate, Fe₂ $(MoO_4)_3$, but no determination of the composition of this phase was carried out in this work. By examination of the micrographs it can be seen that a significant variation in the crystal size occurs with treatment at elevated temperatures. This phase, for the fresh Lummus catalysts, appears to be made up of small spheroids (<0.2µ in diameter) forming a sponge-like structure. Heating this catalyst, even at low temperature (Catalyst 3) causes this phase to change to well developed spheroids. As the temperature of treatment is increased the size of these spheroids increases from

~0.3µ for Catalyst 3 to more than 1µ for Catalyst 8. For Catalyst 9, heated at 820K, for a long period of time, the micrograph shows that an effect, in addition to the growth of crystals, appears to take place causing the plate-like structures of MoO₃ to become three-dimensional in nature, with ledges on the surface.

Examination of numerous micrographs showed that some parts of the surfaces presented spheroids in close contact with MoO₃ crystals. In these areas of contact, a "pitted" structure in the crystals was observed. This effect can be observed in Figure 7 (Catalyst 8) and Figure 10.

(ii) Laboratory Prepared Catalysts

A different structure is observed in the catalyst prepared in our laboratory (Catalyst 10); it can be seen in the corresponding micrograph (Figure 8) that this sample consists of sponge-like and fibrous structures. The sponge-like structure is probably $Fe_2(MoO_4)_3$ and the fibre-like material is possibly MoO_3 . Mild temperature treatment (Catalyst 10') causes the fibers to become more well-defined and plates of MoO_3 start to appear. Some indication of formation of spheroids is also present. Severe treatment (Catalyst 11) causes the formation of

the characteristic phases of MoO_3 plates and $Fe_2(MoO_4)_3$ spheroids. Micrographs of Catalyst 11 (Figure 9) show a structure which is similar to that of the Lummus catalyst treated at high temperature although the crystal growth in Catalyst 11 is more pronounced than in any of the catalysts.

IV.2 X-Ray Diffraction (XRD)

Theoremults of XRD studies are presented graphically in Figures 11 and 12. The XRD patterns show the characteristic diffraction lines of MOO_3 and $Fe_2(MOO_4)_3$. The lines due to these two phases are indicated on the figures. The line assignments for MOO_3 and $Fe_2(MOO_4)_3$ were taken from the ASTM diffraction files [40, 41]. The lines listed for iron molybdenum oxide, $Fe_2O_3.3-4 MOO_3$, [41] were taken as the $Fe_2(MOO_4)_3$. lines.

The diffraction patterns for the Lummus Catalysts (Figure 11) all clearly show the presence of MoO_3 and $Fe_2(MoO_4)_3$ crystal phases. All these samples have about the same degree of crystallinity as indicated by the intensity and sharpness of the diffraction lines; Catalysts 5, 8 and 9 having slightly above average intensities for the MoO_3 lines.

The XRD results for the samples prepared in the laboratory (Figure 12) show a much greater variance than the Lummus catalysts. Catalyst 10 was found to be amorphous. Treatment at very low temperatures produces a slightly crystalline structure as it can be seen in the pattern for Catalyst 10'. Increasing the temperature a more definite crystalline structure is observed. Catalyst 11 is the most crystalline of all the samples examined.

These results agree well with structural features observed by SEM since for Catalyst 10 the distinct well formed crystals, which form the two characteristic phases, were not observed. Micrographs of Catalyst 10' show the presence of some crystals, in agreement with the XRD results. The large well-defined crystals observed by SEM for Catalyst 11 also agree with the high degree of crystallinity observed by XRD.

IV.3 Surface Area Determinations

The specific surface areas were obtained by the BET method. The data from the experiments were processed according to the computer program presented in Appendix C. As an example, the complete table of results for Catalyst 1 is also given in Appendix C. Plots of the

BET equation with 8 to 10 points per isotherm in the range of P/P_{sat} between 0,05-0.35 all resulted in straight lines (see Figure C-1). In order to test the reproducibility of the method, duplicate determinations were carried out for Catalysts 5 and 11 and the same values were obtained.

In Table 3 the measured specific surface areas are listed. It can be seen that as the temperature of pretreatment increases the specific surface area

decreases. For Catalyst 3 the decrease of surface area is more pronounced due to the long treatment period of time (572 hr, compared to 15 to 42 hrs. for other samples)

Again, the qualitative SEM results agree well with the measured decrease in surface area with thermal treatment. The decrease in specific surface area is in accordance with the observed crystal growth. Although the fresh Lummus catalyst (Catalystic) whad a lower surface area than the prepared catalyst (Catalyst 10¹), similar treatment of these fresh catalysts 20 hr. at 870K) to give Catalysts 8 and 11, resulted in a much larger decrease in surface area for Catalyst 10¹.

to pressures up to 0.98 of the saturation pressure showed

Results of Catalysy Characterization TABLE 3:

•

	T	· · · · · · · · · · · · · · · · · · ·		،	5
	Catalyst	Surface Area (m ² /g)		Atomic Ratio	
	- Cataryst	(m /g)	by XRF	by Weight Loss	5.0
•	1	3.78	3.1		
s + /-	3	3.31	8. 1	-	
in .	5	3.53	3.0	_	
	6 19 - 7.5	3.22 2.42	2.9	3.1	
	8	1.21	2.9	3.0	
	9	1.66	2.8	.	
	10	8.70	a 3.4		, ,
	10'	10.72	3.7		
	11	0.25	3.0		2
	A		2.6	3.0	-
	B		2.1	2.9	
	D	- III	1.8	° 2.9	•
			1.8	2.8	
		·····	R		4
	•			6	

.23

4

ĸ,

that the isotherms were of Type IV (BDDT classification) [38]. Analysis of these isotherms showed that the catalysts did not contain any appreciable amount of pores with radii in the 0.001 to 0.03μ range. The micrographs show pores $> 0.1\mu$; these are too large to be determined by low temperature nitrogen adsorption. It is concluded from these results that these catalysts do not contain micropores.

1.4 Catalyst Composition

X-Ray Fluorescence (XRE) was used to estimate the Mc/Fe atomic ratio of the catalysts. The results of these determinations are shown in Column 3 of Table 3. The reported values were obtained by multiplying the Mo/Fe ratio of XRF peak heights by a response factor. This response factor, for the Lummus catalysts was calculated from the measured Mo/Fe peak height ratio and the known composition (see Table 1). This resulted in a response factor of 0.356. The response factor for Catalysts 10, 10', and 11 was obtained from the calculated composition of Catalyst 10 and the measured Mo/Fe peak height ratio. The Mo/Fe atomic ratio of Catalyst 10 was 3.4 based on the amount of FeCl₃.6H₂O and $(NH_4)_6MOO_7O_24$ 4H2O used in its preparation. The response factor for these catalysts was 0.365. The use of XRF peak areas,

fatter than peak heights resulted in similar values of Mo/Fe atomic ratios.

61

The results in Table 3 show a decrease in the Mo/Fe rationith thermal treatment. This is in agreement with the observed MoO₃ sublimation. The anomalous result for Catalyst 10' which appears to have a higher Mo/Fe ratio than Catalyst 10 (3.7 compared to 3.4) is probably due to the difference in crystallinity of the two samples, since XRF response is a function of crystal structure [42]. The Mo/Fe ratios obtained by XRF, as reported in Table 3, should only be interpreted qualitatively due to the dependence of XRF response on crystal structure and surface morphology.

IV.5 Thermogravimetric Analysis (TGA)

Weight losses of Lummus Catalyst measured by TGA for different treatment conditions are given in Table 4. Throughout the treatment air was passed over the catalyst pellet. A typical weight loss curve is shown in Figure 13. In one of the experiments, after treatment of the sample for 80 hr. at 870K (Catalyst C), the temperature was increased at a rate of 10°C/min and a sharp decrease in the reight of the pellet was noted at 1020K. This effect corresponds to the melting point of

TABLE 4: Thermogravimetric Analysis Measurements

62

		·			
	Catalyst Weight	Temp.	Time.	Total Weight	Loss
Catalyst	.(mg)*	(K)	(hr)	(mg)	
A	120.2	820	48	2.0	3
, В	138.0 _Q	с 870	25.	3.2	•
С	147.8	870	80	10.0	
D	14 6. 3	910	15 -	3.9	
			÷		
E	▶ 151.8	900	48	9.0	

and the second se

.

ferric molybdate [10].

It is also interesting to note that at temperatures greater than 820K, the wall of the exit of the tube which contained the satalyst became intensely coloured by a blue residue. This colour is characteristic of the molybdenum blues; these are molybdenum oxides with atomic oxygen to molybdenum slightly less than 3. White crystals, which were determined to be MoO_3 , also were collected at the exit of the TGA. The vapor pressure of MoO_3 at 1070K is 0.01 atm. and the rate of sublimation is appreciable between 870-970K. Therefore, it can be assumed that the total weight loss was due to sublimation of MoO_3 . This assumption appears valid since Catalyst 1 lost <0.05% of its weight when heated at 520K for 2 hr. Also, the XRF analysis of the white residue showed only the Mo peak.

Table 3, Column 4 shows the values of Mo/Fe ratio calculated from weight loss measurements by TGA (Catalysts A, B, D, E) and during treatment (Catalysts 6 and 7). These values were calculated by assuming that the catalyst has the general empirical formula $Fe_2(MoO_4)_3.xMoO_3$, that the total weight loss was due to sublimation of MoO_3 , and that the starting catalyst (Catalyst 1) had a Mo/Fe atomic ratio of 3.1 (Lummus). It can be observed that weight loss measurements show that the Mo/Fe atomic ratios obtained by XRF appear to be too low specially in the cases of the catalysts treated in the TGA equipment. One of the reasons of this discrepancy is perhaps the incorrectness in using the same response factor for all catalysts since the XRF signal is sensitive to the surface structure and sample heterogeneity [42].

65

Another reason, aside from the difference in XRF response due to differences in crystal structure, for the low Mo/Fe atomic ratios obtained by XRF is that the Mo/Fc ratio undoubtedly varies with position in the catalyst pellet. The Mo/Fe ratio is probably lower at the surface of the catalyst pellets than in the interior of the pellet since MoO, sublimation occurs from the exterior of the pellet, and loss of MoO, from the interior of the pellet would require migration (diffusion) of MoO3. The XRF measurements were carried out on uncrushed pellets and hence the low Mo/Fe ratios obtained reflect the exterior pellet composition rather than the bulk composition of the catalyst. The weight loss measurements, on the other hand, result in an average composition of the whole pellet.

Attempts to use atomic adsorption spectroscopy

in order to get a more accurate Fe and Mo content of the catalysts were frustrated by the inability to find a solvent which completely dissolved the catalysts.

IV.6 Kinetics Studies of the Oxidation of Methanol

Kinetics studies, using the previously described integral-bed reactor, were carried out to determine the activity of the catalysts for the oxidation of methanol to formaldehyde. The approach taken was to evaluate specific rate constants based on various rate functions, and to compare the specific activity of the various catalysts on the basis of the specific rate constants.

(i) Testing of Rate Functions

It was not the objective of this work to obtain a large amount of kinetic data for the determination of a rate function. The aim of the kinetic measurements was to obtain data on the effect of thermal treatment on the activity of the catalysts. During the activity measurements, sufficient kinetic data were obtained to evaluate the applicability of various rate functions proposed in the iterature to the catalysts employed in the present study. The oxidation of methanol to formaldehyde in the presence of Fe-Mo oxide catalysts proceeds practically irreversibly according to the overall equation:

 $CH_{3}OH(g) + \frac{1}{2}O_{2}(g) \longrightarrow CH_{2}O(g) + H_{2}O_{1}O_{2}$ (18)

A variety of rate functions for this system has been proposed in the literature (see Chapter II). In the present study, the concentration of formaldehyde and water in the feed were always close to zero, and oxygen was always present in large excess. The rate data were therefore analyzed by rate functions which did not include concentration terms for water or formaldehyde. The three rate functions examined were:

 $-r_{CH_3OH} = k_1 C_{CH_3OH}$ (19)

 $-r_{CH_{3}OH} = k_{\frac{1}{2}} C_{CH_{3}OH}^{\frac{1}{2}}$ (20)

$$-r_{CH_{3}OH} = k_{0} C_{CH_{3}OH}^{\frac{1}{2}} C_{0_{2}}^{\frac{1}{2}}$$

^rCH₃OH - rate of reaction based on surface area, [moles/(m²-sec)].

vhere

 k_i - rate constants. C_{CH_3OH}, C_{O_2} - concentrations of methanol and oxygen, respectively, [moles/m³].

The values of the rate constants, k_1 , k_2 , and k_0 , based on surface area, were calculated from the measured fractional conversion using the following equations:

$$k_{1} = \frac{A_{ot}}{S.W.C_{A_{o}}} [-\ln (1-X_{A})], [m/sec]$$
(22)

$$k_{\frac{1}{2}} = \frac{2 F_{A_{o}}}{S.W.C_{A_{o}}} [1-(1-X_{A})^{\frac{1}{2}}], [moles^{\frac{1}{2}}/(m^{\frac{1}{2}}-sec)]$$
(23)

$$k_{o} = \frac{2^{3/2}F_{A_{o}}}{S.W.C_{A}} \ln \frac{[F_{A_{o}}(1-X_{A})/2]^{\frac{1}{2}} - [F_{B_{o}}-\frac{1}{2}F_{A_{o}}X_{A}]}{[F_{A}/2]^{\frac{1}{2}} - F_{P}^{\frac{1}{2}}},$$

[m/sec] (24)

where

$$F_{A_0}$$
 - feed rate of methanol, [moles/sec].

F_B - feed rate of oxygen, [moles/sec].

C_A - feed concentration of methanol, [moles/m³]. - specific surface area of catalyst, $[m^2/g]$.

- weight of catalyst in reactor, [g]. W

 $X_A - ext fractional conversion of methanol.$

The exit fractional conversion of methanol was calculated he following three ways:

based on methanol analyses a.

S

$$x_{A} = \frac{F_{A_{O}} - F_{A,e}}{F_{A_{O}}}$$

based on formaldehyde analyses **b** .

$$F_{A} = \frac{F_{CH_2O,e}}{F_{A_0}}$$
(26)

c. based on water analyses

$$X_{A} = \frac{F_{H_{2}O,e} - F_{H_{2}O,o}}{F_{A_{O}}}$$
(27)

where

F_{i,o} - feed rate of component i, [moles/sec].
F_{i,e} - product rate of component i, [moles/sec].

70

Equations 22, 23, and 24 were obtained by integration of the design equation for an isothermal plug-flow reactor, using Equations 19, 20, and 21 as the rate functions and assuming that the volumetric flow rate change due to reaction is negligible. Neglecting this volume change introduces an error which is much smaller than the uncertainty in the measured fractional conversions. Appendix D gives the computer program used to calculate the fractional conversions and the rate constant for the various rate functions and definition of \vec{X}_A . The operating conditions of the individual runs and the feed and product compositions are also presented in Appendix D.

Values easured fractional conversions and the calculated values of the rate constants, according to Equations 22, 23, and 24, are listed in Table 5. The reported fractional conversions and rate constants are the average value obtained from methanol, water and formalde-

TABLE 5: Results of Kinetic Experiments

71

C

Temperature: 533 - 536K

Methanol Feed Rate: 1.08 x 10⁻⁴ moles/sec

·		·			
Run	Air Feed Rate x10 ³	Fractional Conversion	Rate	Constants k _l (gmoles ² /	
No.	(moles/sec)	X _A	(m/sec)	m ² -sec)	(m/sec)
		CATALYST	۲ 3	:. Ba	
69- 74	1.33	0.45	5.5	C D	
75- 83	1.86	9	5.7	6.2 5.8	• 3.0 2.7
90- 98 .	2.26	0.36	6.1	5.8	2.6
99-105	2.64	0.36	6.4	6.0	2.6
		CATALYST	6		F
			0		
226-233	1.30	0.48	6.1	6.9	3.3
216-225	1.60	0.51	7.8	8.1	3.8
213-215	2.27	0.47	8.9	8.3	3.7
		он ф			
A				۱ 	I

hyde analyses.

The data show that the rate function which is sorder in methanol (Equation 20) describes the data well. This rate tion is similar to that proposed by Pomerantsev and Mukhlenov [26] if one considers that, for the conditions used in our experiments, the term $(1 + 0.5p_{CH_2O}/p_{CH_3OH}p_{O_2})^{0.5}$ is approximately constant (< ±5% variation).

In order to determine the temperature dependence of the rate constant several experimental runs were carried out for Catalyst 3. Table 6 summarizes the experimentally obtained values. An Arrienius plot of these results is shown in Figure 14. It can be seen from this plot that the experimental points lay quite well on a straight line. The activation energy and pre-exponential factor calculated from the slope and intercept of this line, by linear-least-squares, were E = 16.5 kcal/mole and A = 3.51 moles²/m²-sec.

The activation energy of 16.5 kcal/mole agrees well with the values obtained by other workers. Jiru <u>et al</u>. [24], using the same rate function as given by Equation 20 obtained an activation energy of 16 kcal/mole. Pomerantsev and Mukhlenov [26], using a modified halfTABLÉ 6: Effect of Temperature o Reaction Rate Constant

. '

. '**.**

73 .

S.

90

s.

ut d

Catalyst Sample: 3

Methanol Feed Rate: 1.08 x 10⁻⁴ moles/sec

	· · · · · · · · · · · · · · · · · · ·		в. 	\		
· · .			Air Feed Rate	Fractional	100	1
	Run No	emp.	x 10 ³	Conversion	$k_{1_2} \times 10^7$	
			(gmoles/sec)	A A	(moles ¹ /m ¹ -sec)	
í,						
د ب	118-122	504	2.54	°. 	2.48	
•	123-130	513	2.30-	0.23	3.45	
i. T	156-162	519	2.27	0.26	3.92	-3
	131-139	524	2.30	0.26	4 - 05	
	90- 98	533	2.27	0.36	5.83	· •
•	140-146	544	2.30	0.52	8.93	·. ·
	106-112	55?	° 2.28	0.57	10.00	
	152-155	568	2.28 ,	0.80	- 16.20	•
	113-117	571	2.04	0.81	16.10	•
			<u> </u>			
				v		°.
ί. ·			y		2 (* 1775) 6	
	· · · · · · · · · · · · · · · · · · ·		A			1

order rate function, obtained activation energies of 14 to 20 kcal/mole. The comparison of the pre-exponential factor of 3.51 moles¹/m²-sec obtained in this work with values obtained by other investigators is difficult since most of the reported rate constants are not based on catalyst surface area. Jiru et al. [24], reports the

75

specific surface area of the catalyst employed, and by using the reported values of the half order rate constant at 270°C and the activation energy, a pre-exponentialfactor of 3.4 moles²/m² sec is obtained. This excellent agreement of the pre-exponential factor reported by mJie et al. [24] and the results of the present study are comewhat surprising since the catalyst used by these authors had a Mo/Fe atomic ratio of 2.6 while the same ratio for the catalyst used in this study was 3.1.

Ľ

Other factors, besides the composition of the catalyst, which can influence the apparent kinetics are energy and mass transport limitations. The two factors, as applied to the present system, will be discussed in a later section.

(ii) Catalyst Activity Measurements

The kinetic studies to determine the activity of the catalysts were carried out with an air feed rate of

2.20 - 2.27 x 10^{-3} moles/sec (except for the runs with Catalysts 7 and 11 where the air feed rates used were 1.86 x 10^{-3} and 1.59 x 10^{-3} moles/sec, respectively). The methanol feed rate was 1.08 x 10^{-4} moles/sec for all the runs. The average temperature of the catalyst bed, as measured by thermocouples TC1, TC3, TC4, TC5 and TC7 (see Figure 27, ranged from 531 to 536 K. The amount of catalyst charged to the reactor for catalysts, except Catalyst b1; was 20 to 21 g. For Catalyst 11 only 11.7 g were used. 76

Values of the measured fractional conversions and the calculated values of $k_{\underline{l}}$ are listed in Table 7. The reported fractional conversion and rate constant are the average values obtained from methanol, water and formaldehyde analyses. For each experiment several analyses of the feed and product streams were made. The calculated variation was $\sim \pm 5$ % of the reported value (e. if mole % of methanol in product = 2.0%, then the error in The values of the rate constant this value is k, based on methanol, water and formaldehyde analyses varied also within $\pm 5\%$ for $X_{\Lambda} > 0.15$. For Catalyst 1 several experiments were made under similar conditions (cf. Runs 168-176, 177-182, 183-189 and 190-193) and the results obtained show that the value of $k_{\underline{k}}$ based on the

TABLE 7: Results of Activity Measurements

نې

•					1. A 4
•	Run No.	Gatalyst	Fractional Conversion	$k_{\frac{1}{2}} \approx 10^7$ (gmoles ^{1/2} /m ^{1/2} -sec)	م نون تقویر
	168-176	1,	0.48	s. 7.0	
. * 9	198-204 213-215	5	0.36	5.8 8.1	
	242-250 255-258	• 6 7 8	0.47	8.3	
4. 199	263~264 251-254	。9 10'	0.11.	4.7	
	270-271	11	0.84	6.9 ~2	

erage value of X_A is reproducible within ±3%. For small fractional conversion, small errors in the measured a a 1 methanol composition causes large errors x_A and k_{y} , since the fractional conversion for this situation is obtained by subtraction using two numbers that are approximately equal in magnitude (see Equation 25). Therefore, for the cases where the fractional conver < 0.15 the average values of $X_{A_{i}}$ and $k_{J_{i}}$ reported in re based only water and formaldehyde analyses. Wrate constant for Catalyst 11 is approximate since the conversion was too low to be determined accurately.

£

V - DISCUSSION

The high activity of Fe-Mo oxide catalyst has generally been attributed to the iron molybdate phase containing Mo in a slight excess to the stoichiometric amount given by the formula $Fe_2(MoO_4)_3$ [11, 12, 17, 31]. Kolovertnov <u>et al.</u> [9] also report that an Fe-Mo oxide catalyst with atomic **H**o/Fe = 1.7 (<u>i.e.</u>, Mo in excess of the stoichiometric ratio of 1.5) has the highest specific Activity. The results obtained in the present work can be interpreted in terms of this Mo rich iron molybdate phase as the active species.

Before the specific activity of various catalysts can be compared on the basis of rate constants, it has to be established that the measured rate of reaction is the intrinsic rate, <u>i.e</u>. it is not influenced by mass or energy transfer limitations.

It is difficult to develop a general criterion for determining whether energy transfer within the catalyst pellets influences the measured rates for reactions following half-order kinetics. The results shown in Table 5 and Appendix D show that the present kinetic data can also be described by a first-order rate function (Equation 19). The first-order rate function does not describe the data quite as well as the half-order rate function, but for the qualitative determination of the effects of internal energy and mass transfer on the reaction rates it is adequate.

If the effect of thermal gradients in the interior of the catalyst pellets is to influence the measured rates by less than 5%, then the value of the parameter δ ; defined by Equation 28, should be less than 0.3 for exothermic reactions [43].

$$\delta = \frac{-\Delta H E D_i C_o}{D^o m^2}$$

where

-8

 $\Delta H = heat of reaction = -38 \times 10^{3} cal/mole [2].$ $E_{i} = activation energy for first-order rate function$ $= \cdot 19 \times 10^{3} cal/mole (obtained by Arrhenius plot of k_{1})$ $D_{i} = .effective diffusivity \simeq 0.05 cm^{2}/sec (see discussion below).$ $C_{i} = concentration of mothers in the set of the set$

 $C_{o} = \text{concentration of methanol on external surface of }$ catalyst pellet $\leq 1.7 \text{ moles/m}^3$.

(28)

 T_{o} = temperature at external surface of catalyst $\geq 504K$ λ = effective ermal conductivity of catalyst pellet $\simeq 4 \times 10$ cal/cm-sec-K. (See discussion below).

The values of D_i and λ given above are estimates, since no values for these parameters are available for the Fe-Mo oxide-methanol system. The value of D_i was estimated from the molecular diffusivity of methanol in air, D_M , by the method described by Petersen [44]. The ratio of the tortuosity factor to constriction factor was assumed to be 2 (it is probably considerably higher, but larger values of this ratio will result in lower values of D_i). D_M at 0° C is 0.132 cm²/sec [45]. Since D_M varies as $T^{3/2}$, [46], D_M at 504K is 0.33 cm²/sec. With a void fraction of the catalyst being approximately 0.3, D_i is estimated to be ≤ 0.05 cm²/sec. The effective thermal conductivity for oxides catalysts with a void fraction of ~0.3 is of the order of 4 x 10^{-4} cal/cm-sec-K [47,48].

The value of δ obtained by substituting the above values into Equation 28 is 0.304. This value is very close to the above cited value of 0.3. It should be kept in mind, that the calculated value of 0.304 used values of the parameters which would maximize δ . Hence, it is unlikely that in the present study the kinetics are influenced by temperature gradients inside the catalyst pellets.

Another problem of energy transport exists, <u>i.e.</u> the transform of energy between the catalyst pellets and the bulk gas phase. Using the method described by Smith [49], temperature differences between the external surface of the catalyst pellets and the bulk gas phase up to 6 to 8° C, were calculated. This was the maximum temperature difference and it occurred for Runs 69-74, **P**13-117, 152-155, and 226-233, <u>i.e.</u> the experiments carried out at low air feed rate (low Reynolds humber resulting in low heat transfer coefficients) and the experiments at higher temperatures (high reaction rates accompanied by high rates of energy liberation). For the majority of exper-

iments (air feed rates > 2500 cc (STP)/min and temperature < 550K), the catalyst pellet-bulk gas phase temperature difference was calculated to be $\leq 2^{\circ}C$

The above results can explain the observed dependence of the rate constant on air flow rate (see Table 5 and Appendix D). The experimental results show that at low air feed rates ($\lesssim 2500 \text{ cc} (STP)/\text{min}$) the determined rate constants are: larger than at higher air feed rates. At the low air flow rates, the catalyst temperature can be several degrees above the measured bulk

gas temperature, and hence the rate of reaction and the subsequently calculated rate constants are higher than they would be if the catalyst temperature had been equal to the gas phase temperature.

The problem of ternal mass transfer limitations $(\underline{i} \cdot \underline{e}, \text{ concentration gradients in the pores of the catalyst), can be examined by the Thiele parameter [50]. The value estimated for the Thiele parameter based on Single pores is <math>\leq 2.0$ using a pore length of 0.2 cm (equal to the radius of the pellets) and a pore radius of 500 Å, (estimated minimum radius of pores from micrographs). A similar value is obtained if the Thiele parameter is based on the catalyst pellet characteristics. This value of the Thiele parameter is close to the value of 3 at which internal mass transfer limitations start to be significant and it is greater than the value of 0.4 below which internal mass transfer limitations can be neglected.

The results shown in Figure 14 (Arrhenius plot) . suggest that internal mass transfer is not affecting the measured kinetics since no decrease in activation energy with increasing temperature is observed. This discrepancy of the effect of internal mass transfer as predicted by the estimated Thiele parameter and the observed invariance of the activation energy with temperature can be explained

by the physical structure of the catalyst pellets. The diffusion length of 0.2 cm/used in estimating the Thiele parameter is under ledly too"large (probably by more than an order of magnitude). This is the case because the catalyst pellets contain many large pores (cracks) as observed by SEM (see Figure 3). The presence of these large pores (radii > 10^4 Å) will reduce the resistance to mass transfer considerably, and the diffusion the small mores is over much shorter distances. It is therefore concluded that the kinetic results obtained are a influenced by internal mass transfer limitations. It internal mass transfer limitations are not present and the pellet is isothermal, then it is impossible for external ; mass transfer limitations to occur [51]

The above analyses have t, internal energy transfer and internal and external mass transfer do not affect the reaction rates. External mass and energy transfer was found to influence the reaction rates at temperatures >550°K and air flow rates ≤ 2500 cc (STP)/min. The experiments to determine the effect of treatment on the catalytic activity were carried out at 536K and air flow rates of >2500 cc (STP)/min; hence the measured rates were intrinsic rates.

The specific activities (i.e., the activity per unit of surface area) are proportional to the rate

constants, k_{2} , listed in Table 7. Treatment of catalyst for ≤ 18 hrs. at temperature ≤ 820 K resulted in an increase of up to 30% in the specific catalytic activity. This is probably due to crystallization of the active phase. Longer treatment at elevated temperatures (Catalysts 8, 9 and 11) and very long treatment at lower temperatures (Catalyst 3) results in a decrease in specific activity. This is probably due to the reduction of the excess Movin the Fe₂(MoO₄)₃ phase. This Mo could be incorporated into the MoO₃ crystals or be lost by sublimation.

The scanning electron micrographs show the development of large well defined spheroids attributed to $Fe_2(MoO_4)_3$ for Catalysts 8, 9 and 11. Although these spheroids are not as well developed in Catalyst 3, it is reasonable to assume that the prolonged treatment at 500K would result in the segregation of stoichiometric $Fe_2(MoO_4)_3$ and MoO_3 phases.

Examination of numerous scanning electron/micrographs showed spheroids in contact with MoO₃ crystals. The "pitted" structures in these cases indicate that material transport, probably MoO₃, occurs between the $Fe_2 (MoO_4)_3$ and MoO₃ phases. This would suggest that as long as sufficient physical contact exists between the two phases an active Mo rich iron molybdate phase will be

present. This need of the physical contact in order for the catalyst to be active, would explain the process of reactivation of deactivated catalyst by the addition or redispersion of molybdenum oxide [30].

The results of this work therefore qualitatively support the hypothesis that the loss of activity of Mo-Fe oxide catalysts is due to the removal of Mo from a Mo rich $Fe_2(MOO_4)_3$ phase. This loss occurs by recrystallization into well defined MoO_3 and $Fe_2(MOO_4)_3$ phases (as shown by micrographs), plus the sublimation of MoO_3. Although the XRF analysis of the catalysts pellet did not yield quantitative Mo/Fe ratios, the XRF analysis of the sublimated material showed only Mo. The micrographs of the sublimated material (Figure 9) showed that it consisted of MoO_3 occurs from the $Fe_2(MOO_4)_3$ crystals rich in Mo or only from MoO_3 crystals. The sublimation process is another possible mechanism by which Mo can be removed from the Mo rich $Fe_2(MOO_4)_3$ phase.

One difficulty arises in the determination of specific activities if one ascribes the catalytic activity to the Mo rich $Fe_2(MoO_4)_3$ phase. In this case one should express the rate constants in terms of $Fe_2(MoO_4)_3$ surface area rather than in terms of the total surface area.

Unfortunately, surface area measurements by the BET method do not enable one to distinguish between MoO_3 and $Fe_2(MoO_4)_3$ surface areas. On the basis of the scanning electron micrographs it is possible to estimate (very approximately) the $Fe_2(MoO_4)_3$ surface area if one assumes that the spheroid particles make up this phase. The approximate estimate of the $Fe_2(MoO_4)_3$ surface areas from the micrographs and the specific activities based on these areas showed the same trends for the specific activity as those based on the total surface area, but the increase in specific activity, based on $Fe_2(MoO_4)_3$ surface area, due to treatment at 820K and 18 hr. was ~708 as compared with 308 when based on the total surface area.

In the case of industrial reactors one is not interested in the specific activity of the catalyst, but in the total activity. Hence the specific activity of the catalyst may increase for an initial period, but the total activity declines due to the decrease in surface area. For prolonged treatment, as it is the case in industrial reactors (assuming that the treatment in air has similar effects as the conditions encountered in the reactor), both specific activity and specific surface area decrease. Hence, the deactivation of Fe-Mo oxides in industrial reactors is believed to occur because of losses in specific activity and specific area.

VI - CONCLUSIONS

The treatment at elevated temperatures has the following effects on iron molybdenum oxide catalysts:

1. Loss of Specific Surface Area

Based on the marked decrease in surface areas with thermal treatments observed in this work, it is concluded that one of the reasons for the deactivation of the Fe-Mo oxide catalysts is a loss of surface area.

2. Sublimation of MoO3

The physical loss of MoO_3 from the Fe-Mo oxide catalysts by sublimation reduces the Mo content in the Mo rich $Fe_2(MoO_4)_3$ phase either directly by sublimation of MoO_3 from this phase or indirectly by reducing the amount of MoO_3 in physical contact with the $Fe_2(MoO_4)_3$.

3. Growth and Segregation of MoO_3 and $Fe_2(MoO_4)_3$ phases

The elevated temperatures, or very long treatment at lower temperatures, produce the redistribution and growth of MoO_3 crystals and also a significant growth of $Fe_2(MoO_4)_3$ spheroids. This segregation apparently separates the $Fe_2(MoO_4)_3$ and MoO_3 phases originally in (contact and reduces the transfer of MoO_3 between the two phases which is necessary to maintain the catalytic activity.

The high Mo/Fe (>3) ratio in fresh industrial catalysts is necessary to extend the catalyst life since a lower Mo content would result in a more rapid segregation of the phases and depletion of the excess MoO₃ by sublimation.

REFERENCES

١.,

Ĵ.

-

· _

1

[1]	Chemical Week, p. 83, August 29 (1964).
[2]	Chauvel, A.R., Courty, P.R., Maux, R., and Petitpas;
•	C., Hydrocarbon Processing 52, 179 (1973).
[3]	Tsao, U., Chem. Eng. <u>77</u> (11), 118 (1970).
[4]	Adkins, H. and Peterson, W.R., J.A.C.S. 53, 1512
	(1931).
₽[5]	Meharg, V.E. and Adkins, H., U.S. Patent 1,913,405
4.	(1933).
[6]	Greco, G. and Soldano, U., Chem. Ing. Technik <u>31</u> ,.
	761 (1959).
[7]	Shelton, F.J., U.S. Patent 2,812,309 (1954).
[8]	Dixon, J.K. and Longfield, J.E., in <u>Catalysis</u> ,
÷.	Vol. VII, p. 236, Edited by P.H. Emmett,
	Reinhold, New York, 1960.
۲ [9]	Kolvertnov, G.D., Boreškov, G.K., Dzisko, V.A.,
• • •	Popov, B.I., Tarasova, D.V. and Belugina, G.G.,
	Kin. i Kat. <u>6</u> , 1052 (1965).
-	
· · · · · · · · · · · · · · · · · · ·	90

.

[10] Boreskov, G.K., Kolovertnæ, G.D., Kefeli, L.M., Plyasova, L.M., Karakchiev, L.G., Mastikhin, V.N., Popov, V.I., Dzisko, V.A. and Tarasova, D.V., Kin. i Kat. 7, 144 (1966).

- [11] Pernicone, N., Liberti, G. and Ersini, L., Proc. ______4th. Int. Congr. Cat., p. 366, Rice University Printing, Houston, 1969.-_____
- [12] Fagherazzi, G. and Pernicone N., J. Catal. <u>16</u>, 321 (1970).
 - [13] Peirs, Ş. and Leroy, J.M., Bull. Soc. Chim. Fr. <u>4</u>, 1241 (1972).

[14] Jiru, P., Wichterlova, B. and Tichy, J., Proc. 3rd. Int. Congr. Cat., 1, p. 199, North Holland, 1965.

- [15] Mars, P. and Van Krevelen, D.W., Chem. Eng. Sci. Spec. Suppl., <u>3</u>, 41 (1954).
- [16] Novakova, J. Jiru P. and Zavadil, V., J. Catal. <u>17</u>, 93 (1970).
- [17] Novakova, J., Jiru P. and Zavadil, V., J. Catal. <u>21</u>, 143 (1971).
- [18] Pernicone, N., Lazzerin F., Liberti, G. and
 - Lanzavecchia G., J. Catal. 14, 293 (1969).

[19], Pernicone, N., Lazzerin F., Liberti G. and

Lanzavecchia G., J. Catal. <u>14</u>, 391 (1969).

[20] Liberti, G., Pernicone, N. and Soattini, S., J. Catal. 27, 52 (1972).

[21] Popov, B.I. and Osipova, K.D., Kin. i Kat. <u>12</u>, 731

(1971).

[22] Popov, B.I., Osipova, K.D. and Pankratev, Yu. D., Kin. i Kat. <u>12</u>, 1243 (1971).

[23] Trifiro, F., De Vecchi, V. and Pasquon, I., J. Catal. 15, 8 (1969).

[24] Jiru, P., Tichy, I. and Wichterlova, B., Coll. Czech. Chem. Comm. <u>31</u>, 674 (1966).

[25] Dente, M., Poppi, R. and Pasquon, I., Chim. Ind. Milan 46, 1326 (1964).

[26] Pomerantsev, V.M, and Mukhlenov, I.P., Kin. i Kat. 11, 1351 (1970).

[27] Bibin, V.N. and Popov, B.I., Kin. i Kat. <u>10</u>, 1326 (1969).

[28] Evmenenko, N.P. and Gorokhovatskii, Ya. B., Kin. i Kat.<u>10</u>, 1299 (1969). [30] Hodgins, T.S. and Shelton, F.J., U.S. Patent 2,973,326 (1961).

- [31] Trifiro, F., Notarbartolo, S. and Pasquon, I., J. Catal. <u>22</u>, 324 (1971).
 - [32] Allyl, C.L., Barrentine, E.M., Hodgins, T.S., Shelton, F.J. and Rawson, R.L., U.S. Patent 2,812,309 (1957).
 - [33] Letin, E.M., Robbins, C.R. and McMurdie, H.F., <u>Phase Diagrams for Ceramists</u>, p. 331, Edited by the American Ceramic Society, Columbus, Ohio, 1964.
 - [34] Nagy, J.W. and Moser, J.P., <u>Users Manual for the</u> <u>Monitoring and Control of Gas Chromatographs</u> <u>by the IBM 1800 Computer</u>, Dept. of Chem. Eng., Univ. of Alberta, 1973.

[35] Dietz, W.A., J. Gas Chromatogr. 5, 68 (1967).

- [36] Messner, A.E., Rosie, D.M. and Argabright, P.A., Anal. Chem. <u>31</u>, 230 (1959).
- [37] Kimoto, S. and Russ, J.C., American Scientist 57, *112 (1969).

[38] Gregg, S.J. and Sing, K.S.W., <u>Adsorption, Surface</u> <u>Area and Porosity</u>, Chapter 2, Academic Press, New York, 1967.

- [39] Cotton, F.A. and Wilkinson, G., <u>Advanced Inorganic</u> <u>Chemistry</u>, p. 779, Interscience Publishers, New York, 1962.
- [40] <u>X-Ray Powder Data File</u>, ASTM Special Publication 48-J, <u>5-0508</u>, Philadelphia, Pennsylvania, 1960.
- [41] Powder Diffraction File, Inorganic Vol., No. PDIS-15, RB, <u>15-371</u>, Join Committee on Powder Diffraction Standards, Swarthmore, Pennsylvania, August 1972.
- [42] Carr-Brion, K.G. and Payne, K.W., The Analyst <u>95</u>, 977 (1970).
- [43] Petersen, E.E., <u>Chemical Reaction Analysis</u>, p. 79, Prentice Hall, Inc., Englewood Cliffs, N.J., 1965.

[44] Ibid., p. 122.

[45] Perry, J.H., <u>Chemical Engineering Handbook</u>, 4th Ed., p. 14-22, McGraw-Hill Book Company, New York, 1963. [46] Bird, R.B., Stewart, W.E. and Lightfoot, E.N.,

Transport Phenomena, p. 511, John Wiley & Sons, Inc., New-York, 1960.

[47] Cunningham, R.A., Carberry, J.J. and Smith, J.M., A.I.Ch.E. J. <u>11</u>, 636 (1965).

[48] Masamune, S. and Smith, J.M., J. Chem. Eng. Data <u>8</u>, 54 (1962).

[49] Smith, J.M., <u>Chemical Engineering Kinetics</u>, 2nd: Ed.,
 p. 362, McGraw-Hill Book Company, New York,
 1970.

[50] Petersen, E.E., <u>Chemical Reaction Analysis</u>, p. 53, Prentice Hall, Inc., Englewood Cliffs, N.J., 1965.

[51] Ibid., p. 50.

• •

CALIBRATION OF ROTAMETER

96

APPENDIX A

Calibration of Rotameter

where

.ρ.

The calibration of a rotameter for compressible fluids requires that the calibration runs be conducted in such a manner so that the density of the fluid in the rotameter is a constant. This is required since the mass flow rate, m, is related to the rotameter reading by

 $\dot{\mathbf{m}} = \left[\left(\rho_{f} - \rho \right) \rho \right]^{\frac{1}{2}} \mathbf{f}(\mathbf{y})$

 p_f = density of the rotameter float

= density of the fluid at the conditions in the rotameter

f(y) = relationship between volumetric tow rate of
 fluid at conditions in rotameter and the
 rotameter reading, y. f(y) is not a function of

In order to calibrate a specific rotameter, it is necessary to determine the relationship between m and y at only one value of ρ . The ideal gas law, for gases at low pressures, and Equation A-1 can then be used to determine the mass flow rate at rotameter pressures and temperatures other than the pressure and temperature used

197

(A.1)

for the calibration runs. The procedure to obtain the mass flow rate at conditions other than the calibration conditions is illustrated below.

Let

 ρ_c = density at the calibration conditions (T_c and P_c) ρ = density at any other temperature and pressure (T and P)

Using the ideal gas law we obtain

$$\rho_{\rm C} = \frac{P_{\rm C}M}{RT_{\rm C}}$$
(A.2)

(A.3)

98

and

$$\rho = \frac{PM}{RT}$$

where M = molecular weight of gas

Then the ratio of the mass flow at T and P to the mass flow rate at T_c and P_c , \dot{m}_c , at a fixed value of y, is given by

$$\frac{\dot{m}}{\dot{m}_{c}} = \frac{\left[\left(\rho_{f} - \rho\right)\rho\right]^{\frac{1}{2}}}{\left[\left(\rho_{f} - \rho_{c}\right)\rho_{c}\right]^{\frac{1}{2}}} \qquad (A.4)$$

or
$\dot{\mathbf{m}} = \frac{\left[\left(\rho_{f}^{\prime} - \rho\right)\rho\right]^{\frac{1}{2}}}{\left[\left(\rho_{f}^{\prime} - \rho_{c}^{\prime}\right)\rho_{c}^{\prime}\right]^{\frac{1}{2}}}$

 \mathcal{O}

By knowing the relationship between \dot{m}_{c} and y, the flow rate at other conditions can be calculated by means of Equation A.5.

In the present work, the calibration runs were carried out at 21.1°C and a pressure in the rotameter of 747 Torr. The volumetric flow fate as a function of rotameter reading was measured by a wet-test meter (0.1 ft³/revolution). The pressure at the exact of the rotameter was measured by a manometer, and this pressure was kept constant at a 1 flow rates by adjusting a needle valve downstream of the wet-test meter. The results of the calibration are shown in Table A-1. The measured volumetric flow rates were converted to volumetric flow rates at standard conditions Q , STP, (STP, standard temperature, $T_0 = 0^{\circ}C$; standard pressure, $P_0 = 760$ Torr). The use of flow rates at standard conditions is analogous to using mass flow rate. Hence, a plot of y versus Q_{c,STP} yields the necessary calibration curve. Figures A-1 and A-2 show the calibration curves for the two floats in the Matheson rotameter employed in this work.

For the present application Equation A-5 can be simplified since for all flow rate measurements the

99

(A.5)

temperature was $21^{\circ}C \pm 1^{\circ}C$, and the density of the rotameter floats are much larger than the fluid density (ρ_{f} for glass float $\simeq 3 \text{ g/cc}$, ρ_{f} for stainless steel float $\simeq 8 \text{ g/cc}$, and $\rho_{air} = 1 \times 10^{-3} \text{ g/cc}$). With these simplications, Equation A-5 becomes

$$\dot{m} = \left(\frac{P}{P_{c}}\right)^{2} \dot{m}_{c} \qquad (A.6)$$

and substituting Q_{STP} for \dot{m} and $Q_{c,\text{STP}}$ for \dot{m}_c yields

$$Q_{\text{STP}} = \left(\frac{P}{P_{c}}\right)^{\frac{1}{2}} Q_{c,\text{STP}}$$

Hence, with the aid of the calibration curves, $Q_{c,STP}$ can be found as a function of y, and the flow rate at the measured rotameter pressure P can be calculated by

Equation A.7.

(A.7)

TABLE A-1: Experimental Data for Calibration of Rotameter

$$P = P_{afm} + P_{manom} = 707.0 + 40.0 = 747.0$$
 Torr
T = 21.1°C

· <u>)</u>-

.

	У		Time for 1/10 ft	Q' at 747.0 Torr & 21.1 C	Q _{c,STP} at S.T.P.
	[mm]	•	[sec]	[cc/min]	[cc(STP)/min]
· ·	Float: S Glass	Float: tainless Steel		•	di sa
	-	110	42	4045.°3 - f ^{er}	3689.3
0	-	85	51	3331.4	3038.2
	150	65	65	2613.9	2384.9
2.	125	56	74	2296.0	2094.9
	100	47	88	1930.0	1761.6
	75	37	, 11 3	1503.6	1371.9
	50	25	168	1011.3	922.7
	25	14	381	445.9	406.8
•	•	······································		· · · · · · · · · · · · · · · · · · ·	

B-I Calculation of the Correction Factors

By definition the correction factor, F_i , for

component i is

$$F_i = F_{ref} \frac{A_{ref} x_i}{A_i x_{ref}}$$

(B.1)

where

A_{ref} - area under the peak for the component considered as a reference.
A_i - area under the peak for component i.
x_{ref} - mole fraction of the reference component.
x, - mole fraction of component i.

If we take methanol as a reference and we assign to this component a correction factor of 1.00 the correction factor is now defined by

 $F_{i} = \frac{A_{CH_{3}OH} \times i^{\circ}}{A_{i} \times CH_{3}OH}$ (B.2)

Samples, of various known compositions containing air, methanol and water, were prepared by introducing * • liquid mixtures of methanol and water into a hot air stream by means of the syringe pump. The composition of the liquid was known (by mixing measured amounts of methanol and water). The liquid rate of addition to the air stream was known from the calibration of the syringe pump. The air flow rate was measured using the calibrated rotameter. Mixtures having the following range of composition were prepared and analyzed: mole fraction methanol 0.057 to 0.092, mole fraction water 0.010 to 0.036, the remainder of the samples being air. Approximately 20 samples were analyzed in this manner. A set of sample calculations to obtain F_{air} and F_{H_20} from the peak areas and compositions is shown below. The average values obtained for the correction factors are given in Table B-1.

106

(i) Example of calculation of the correction factor for

 $G_{F,CH_3OH} = 0.2079 \text{ g/min, given by syringe pump.}$

 $G_{F,CH_3OH} = 0.2079/32.04 = 6.49 \times 10^{-3}$ moles/min.

 $Q_{\rm F,air} = 2050 \ \rm cc \ (STP)/min.$

air

or $G_{F,air} = 2050/22410 = 91.48 \times 10^{-3}$ moles/min.

Thus, the mole fractions are:

$$x_{CH_3OH} = \frac{6.49 \times 10^{-3}}{6.49 \times 10^{-3} + 91.48 \times 10^{-3}} = 0.0662$$

٢

and
$$x_{air} = \frac{91.48 \times 10^{-3}}{6.49 \times 10^{-3} + 91.48 \times 10^{-3}} = 0.9338$$

From the computer output the following value was obtained

$$\frac{\text{Peak area of methanol}}{\text{Peak area of air}} = \frac{A_{\text{CH}_3\text{OH}}}{A_{\text{air}}} = 0.074$$

Using these values and Equation B.2 the correction factor for air was calculated as

$$F_{air} = (0.94838/0.0662)(0.0746) = 1.05$$

(ii) Example of calculation of the correction factor for water:

Sample:

Water9.9571 g (Density = 1.000)Methanol28.8196 g (Density = 0.792)

Therefore, the fractions in volume are:

- Water 0.2148
- Methanol 0.7852

The flow rate of syringe pump is $Q_{pump} = 0.2625$ cc/min. Thus,

)

$$G_{F,H_2O} = (0.2625)(0.2148)(1.000) = 0.0564 \text{ g/min}$$

 $G_{F,CH_3OH} = (0.2625)(0.7852)(0.792) = 0.1632 \text{ g/min}$
and

$$G_{F,H_2O} = 0.0564/18.02 = 3.13 \times 10^{-3} \text{ moles/min}$$

$$G_{F,CH_{3}OH} = 0.1632/32.04 = 5.09 \times 10^{-3} \text{ moles/min}$$

$$Q_{\rm F,air} = 1760 \ \rm cc \ (STP)/min$$

and

$$G_{F,air} = 1760/22410 = 78.54 \times 10^{-3} \text{ moles/min}$$

•

Therefore, the molar fractions are:

$${}^{x}_{CH_{3}OH} = \frac{5.09 \times 10^{-3}}{5.09 \times 10^{-3} + 3.13 \times 10^{-3} + 78.54 \times 10^{-3}} = 0.0587$$
$${}^{x}_{H_{2}O} = \frac{3.13 \times 10^{-3}}{5.09 \times 10^{-3} + 3.13 \times 10^{-3} + 78.54 \times 10^{-3}} = 0.0361$$

109 `

From the computer output the following value was obtained

 $\frac{\text{Peak area of methanol}}{\text{Peak area of water}} = \frac{{}^{\text{A}}\text{CH}_{3}\text{OH}}{{}^{\text{A}}\text{H}_{2}\text{O}} = 2.70$

Using these values and Equation B.2 the correction factor for water was calculated as

 $F_{H_2O} = (0.0361/0.0587)(2.70) = 1.66$

(iii) Calculation of the correction factor for formaldenyde

The correction factor for formaldehyde could not be obtained in this fashion since no formaldehyde solution of known composition was available. The value for F_{CH_2O} reported in Table B-1 was obtained from product analyses of methanol-air oxidation experiments. Since the only observed reaction products were formaldehyde and water, the product stream contains equal number of moles of water and formaldehyde (water in feed stream was removed by drying column). Therefore, the correction factor for formaldehyde is given by

H₂O ACH20 FH20 FCH20 Over 50 analyses were carried out, and the average value of F_{CH_2O} obtained from these experiments is given in Table B-1.

B-II Computing Monitoring Program (CMP)

Table B-2 shows the listing of the job defined for chromatographic analysis using the calculated correction factors.

112

The analysis was started by entering information on a teletype to call the corresponding program. Then the sample was injected and simultaneously the CMP interrupt button was depressed. After, the GC data were processed, the corresponding results appeared on the teletype. Figure B-1 shows a typical chromatogram; its corresponding teletype print-out is shown in Table B-3.

, Q	, t		1.0	•	11
• , •	TABL	E B-2: GC	Job Listin	a j	
	JOB'NUMBER = GC NUMBER =	81 8	CALCULATI TOTAL PEA	INN OPTION KS	= 7 = 8
• •	FINISH TIME NORMALIZATION	= CONST. =	450 s 100°		•
•	*	REFERENCE	PEAK DATA	*	
				•	• • • •
9 	LOW TIME OF RE HIGH TIME OF R CONCENTRATION RESPONSE FACTO	EE PEAK DE REE PEA		 	и.
	o '	TIME-B	° AND DATA ≭	Q	• •
		V			•
LOW T 10 7 18 25	72. 2. 185. 5. 252.	0. 0. 0. 0.	STND FACTO 102. 140. 166. 100	1	COMPONENT AIR FORMALDE WATER METHANOL
			0		
WA	RMALDEHYDE	1 0 2 0 3 0	0 0	0 0 0 0	MO.X MO.X MO.X
ME	THANOL	4 3	, 0	0 0	MO.%
	* PARAMET	ER AND CON	TROL ACTION	DATA *	25
PARAMI	TER ACTIONS				
ACT.T	ME KNDTM ISTS	IRATE IHIGI	H ILOW IHAR	D'ISOFT IE	XP1-IEXP2
) 10	AB 11 AB 1	8PPS 15	0 -150 5 0 -150 5	5 5	1 2 1 ? •
72 448 457	RL 0 RL 20 RL 19	1 PPS 30 1 PPS 30 1 PPS 30	0 -30 4	4 4 4	1 2 1 2 1 2
7.71	• • •		•	1	
(,	D 3 ⁷	•			, s

TABLE B-3: Run 108-Teletype Output

 OGCJOB

 ** GC JOB KNTRY **

 ENTER

 GC. NO., JNBNO., LUN, KALC, CYCLE IND. (~1,0,1)

 8 81 11 7 0

 88111 7

 1 IF OK .. 2 IF NOT

 1

 JOB ENTER (D

1.8

9 MAR 74 12/34 HRS

,

** GC REPORTING JOB 81 **

PERCENT AREA UNKNOWN = 0.00

COMPONENT	RESULTS	UNITS	ELUTION TIME	PEAK AREA
AIR	93-611	Mn.%	• 31	0.4318612E 03
FORMALDEH	YNF 2.274	MU.%	153	0.7644201E 01
WATER	2.317	Mn.%	510	0.6569401E 01
METHANOL		Mn.%	59B	018455801E 01

JOB COMPLETE

APPENDIX C

SURFACE AREA DETERMINATIONS: COMPUTER PROGRAM AND SAMPLE RESULTS C-I BET Program

С С

С

С

С

Ç C

С С С

C .

С

С С

С

C

Ċ

С

С

С

С С

С

C C

С

0 0

> С С

С

C

• C • E-

с. С.

: C

C

С

С

С

С

C C

C

> THE FOLLOWING PROGRAM CALCULATES THE NITROGEN UPTAKE AS A FUNCTION OF PRESSURE FOR SURFACE AREA AND PORE SIZE DISTRIBUTION DETERMINATIONS

118

DATA TO BE READ IN CONSISTS OF THE FOLLOWING

CARD=1 - NSAM = NUMBER OF SAMPLES (I.E., NO. OF COMPLETE DETERMINATIONS) THE FOLLOWING DATA IS READ IN FOR EACH DETERMINATION

CARD = 2 - T = AVERAGE AMBIENT TEMP (DEG. F) THIS IS THE BURET TEMP

> PSAT= AVERAGE SATURATION PRESSURE (TORR) W = WEIGHT OF CATALYST SAMPLE (GRAMS)

CARD = 3 - RUN = RUN NUMBER

VOLUME PRESSURE DATA ARE NOW READ IN THE VOLUME-PRESSURE DATA ARE OF FOUR DIFFERENT TYPES. EACH TYPE IS IDENTIFIED BY THE NUMBER 'ID' WHICH ALONG WITH NP, THE NUMBER OF SETS OF DATA, IS READ IN CARD 4

ID = 1 - HELIUM CHARGE FOR DEAD VOLUME DETERMINATION = 2 - HELIUM EXPANDED INTO SAMPLE CELL

= 3 - NITROGEN CHARGE FOR ADSORPTION MEASUREMENT

= 4 - NITROGEN ADSORPTION MEASUREMENTS

THE VOLUME-PRESSURE DATA ARE READ IN FOR EACH SET OF DATA AS NB2(I) = HG LEVEL IN BURET 2 NB3(I) = HG LEVEL IN BURET 3 NB4(I) = HG LEVEL IN BURET 4 B1V(I) = VOLUME OF GAS IN BURET 1 (CC)

R(I) = READING FROM TEXAS INSTRUMENT PRESSURE GAUGEPS(I) = SATURATION PRESSURE AT EACH DATA POINT (TORR)

THE LEVEL IN EACH BURET IS 7 WHEN THE HG IS AT THE TOP , AND 1 WHEN THE HG IS AT THE BOTTOM. ALL OTHER LEVELS ARE SEQUENCIAL BETWEEN THESE LIMITS

BET PROGRAM

1

C

... (CONT'D)

٠.

`|____

<pre>INTEGER RUN DIMENSION BIV(30),NB2(30),NB3(30),NB4(30),R(30),P(30), *VV(30),AD(30),PR(30),V(30),X(30),VC(30),DV(30), *PX(30) READ(5,1) NSAM I FORMAT(112) D0 888 1X=1,NSAM READ(5,1) T.PSAT,W 2 FORMAT(1710,S) READ (5,555) RUN 555 FORMAT (112) WRITE (6,556) RUN,W 556 FORMAT (112) WRITE (6,556) RUN,H 557 FORMAT (112) T=(-7,32,1/1,0+273,16) 5 READ(5,4) NP,ID 5 READ(5,4) NP,ID 5 READ(5,4) NP,ID 5 READ(5,4) NP,ID 6 READ(5,4) NP,ID 7 = (-7,32,1/1,0+273,16) 5 READ(5,4) NP,ID 6 READ(5,4) NP,ID 7 = (-7,32,1/1,0+273,16) 5 READ(5,4) NP,ID 7 = (-7,32,1/1,0+273,16) 5 READ(5,4) NP,ID 7 = (-7,32,1/1,0+273,16) 5 READ(5,4) NP,ID 7 = (-7,32,1/1,0+273,16) 5 READ(5,4) NP,ID 7 = (-7,22,1/1,0+273,16) 5 READ(5,4) NP,ID 7 = (-7,22,1/1,0+273,16) 7 = (-7,22,1/1,0+27,1/1,0+2,1/1,0</pre>		
DIMENSION Blv(30), PR(30), V(30), X(30), NB4(30), R(30), P(30), *VV(30), AD(30), PR(30), Y(30), X(30), YC(30), DV(30), READ(5,1) NSAM, 1 FORMAT(112) D0 888 IJK=1,NSAM READ(5,25) RUN 555 FORMAT (112) WRITE (6,454) 444 FORMAT (1'1) WRITE (6,555) RUN, 556 FORMAT ('1') WRITE (6,555) RUN, 556 FORMAT ('1') T=(7-32)/1.84273.16 5 READ(5,4) NP,10 4 FORMAT (212) D0 38 L=1,NP READ(5,3) NB2(1),NB3(1),NB4(1),B1v(1),R(1),PX(1) 5 FORMAT (212) D0 38 L=1,NP READ(5,3) NB2(1),NB3(1),NB4(1),B1v(1),R(1),PX(1) 5 FORMAT (212,1513.3,2710.3) P(1)=3.07%R(1) V=B1v(1)+52.7 N2=NB2(1) 60 T0 (11,12,13,14,15,16,17), N2 6 (0 T0 18 12 V=V+90,31 60 T0 18 13 V=V+50,92 60 T0 18 14 V=V+200.09 15 V=V+12.43 60 T0 18 17 V=V+0. 18 CONTINUE N3=NB3(1) 60 T0 (21,22,23,24,25,26,27), N3 21 V=V+93,81 60 T0 28 22 V=V+195.93 60 T0 28	INTEGER RUN	(1) The second s second second secon second second sec
<pre>*VV(30),AD(30),PR(30),Y(30) ,X(30) ,YC(30),DY(30), *PX(30) READ(5;1) NSAM, 1 FORMAT(112) D 0 88B 1K×1,NSAM READ(5;2).T,PSAT,H 2 FORMAT(3F10-3) READ (5,555) RUN WRITE (6,444) 444 +FORMAT ('1') WRITE (6,556) RUN,W 556 FORMAT (/////////////ox,*ADSORPTION MEASUREMENTS', *//,10X,*CATALYST SAMPLE NUMBER',3X,*12,//+10X,*WEIGHT *OF ÇATALYST SAMPLE',3X,F10.3,3X,*GRAMS') T=(T-32,)/1.8+273.16 5 READ(5,4) NP,10 4 FORMAT (212) D0 38 1=1,NP READ(5,3) NB2(1),NB3(1),NB4(1),B1V(1),R(1),PX(1) 3 FORMAT(312,1F13.3,2F10.3) P(11=3,07*R(1) V=81V(1)+52.7 M2=NB2(1) G0 T0 (1),122,13,14+,15,16,17), N2 4 V=V+200.09 G0 T0 18 12 V=V+99.31 G0 T0 (18 13 V=V+59,92 G0 T0 18 14 V=V+22,19 G0 T0 18 15 V=V+12,43 G0 T0 18 16 V=V+2.43 G0 T0 18 17 V=V+0, 18 CONTINUE N3=NB3(1) G0 T0 (21,222,23,24,25,26,27), N3 21 V=V+39,81 G0 T0 28 22 V=V+195.93 G0 T0 28</pre>	DIMENSION B1V(30) + NB2(30) + NB3(3	0),NB4(30),R(30),P(30),
<pre>*PXi30) READ(5)1) NSAM, PGRMAT(112) D0 888 1JK=1,NSAM READ(5,2).T,PSAT,HH FGRMAT(3F10-3) READ(5,555) RUN 555 FGRMAT (112) wRITE (6,5656) RUN,HW 556 FGRMAT (112) wRITE (6,556) RUN,HW 556 FGRMAT (112) wRITE (6,556) RUN,HW 556 FGRMAT (112) wRITE (6,556) RUN,HW 70 GATALYST SAMPLE',3X,F10.3,3X,'ADSORPTION MEASUREMENTS', *//,10X,'CATALYST SAMPLE',3X,F10.3,3X,'GRAMS') T=(T-32.)/1.8+273.16 5 READ(5,4) NP,1D 4 FGRMAT(212) D0 38 I=1,NP READ(5,3) NB2(1),NB3(1),NB4(1),B1V(1),R(1),PX(1) 3 FORMAT(312,1F13.3,2F10.3) P(1)=2.07%R(1) v=B1V(1)+52.7 N2=NB2(1) G0 T0 (11,12,13,14,15,16,17), N2 6 11 v=4v200.09 G0 T0 18 12 v=4v90,31 G0 T0 18 13 v=4v59,92 G0 T0 18 14 v=4v25.19 G0 T0 18 15 v=4v12.43 G0 T0 18 16 v=4v5.69 G0 T0 18 17 v=4v0. 18 CONTINUE N3=NB3(1) G0 T0 (22,22,23,24,25,26,27), N3 21 v=4v30,81 G0 T0 28 22 v=v495.93 G0 T0 28</pre>	$+3/(130) \cdot AD(30) \cdot PB(30) \cdot Y(30) \cdot X(3)$	$0) \cdot YC(30) \cdot DY(30) \cdot$
READ(5,11) NSAM 1 FORMAT(112) D0 888 1JK=1,NSAM READ(5,2). T.PSAT,H 2 FORMAT(3F10.3) READ(5,555) RUN 555 FORMAT (112) WRITE (6,556) RUN,W 556 FORMAT ('1') WRITE (6,556) RUN,W 556 FORMAT (/////////////,10x,'ADSORPTION MEASUREMENTS', *//,10X,'CATALYST SAMPLE',92X,FI0.3,3X,'IGRAMS') Te(T=32.)/1.84-273.16 5 FORMAT (212) D0 38 1=1,NP READ(5,4) NP,1D 4 FORMAT(212) D0 38 1=1,NP READ(5,3) NB2(1),NB3(1),NB4(1),B1V(1),R(1),PX(1) 3 FORMAT(312,1F13.3,2F10.3) P(1)=3.07*R(1) v=Nb1V(1)+52.7 N2=NB2(1) 06 0T 0 118 12 V=V+200.09 G0 TO 118 13 V=V+25.19 G0 TO 18 14 V=V+25.19 G0 TO 18 14 15 V=V+2.43 16 V=V+2.22,23,24,25,26,27), N3 17 V=V+0. 18 CONTINUE <th></th> <th></th>		
<pre>1 FORMAT(112) D0 888 IJK=1,NSAM READ(5;2). T,PSAT,W 2 FORMAT(3F10.3) READ(5;555) RUN 555 FORMAT(112) WRITE (6,544) 444 450 FORMAT ('1') WRITE (6,556) RUN,W 556 FORMAT('1')////////10X,'ADSORPTION_MEASUREMENTS', *//,10X,'CATALYST SAMPLE NUMBER',3X,12,//,10X,'WEIGHT *0F CATALYST SAMPLE',3X,F10.3,3X,'GRAMS') T=(T-32)/1.8+273.16 5 READ(5,4) NP,ID 4 FORMAT(212) D0 38 I=1,NP READ(5,3) NB2(1),NB3(1),NB4(1),B1V(1),R(1),PX(I) 9 FORMAT(312,1F13.3,2F10.3) P(I)=3.07*R(I) V=B1V(1)+52.7 N2=NB2(1) G0 TO 18 12 V=V+09.31 G0 TO 18 13 V=V+59.92 G0 TO 18 14 V=V425.19 G0 TO 18 15 V=V+12.43 G0 TO 18 16 V=V+5.69 G0 TO 18 17 V=V+0. 18 [CONTINUE N3=NB3(I) G0 TO 18 17 V=V+0. 18 [CONTINUE N3=NB3(I) G0 TO 28 22 V=V+195.93 G0 TO 28 21 V=V+39.81 G0 TO 28 22 V=V+195.93 G0 TO 28 22 V=V+195.93 G0 TO 28 21 V=V+39.81 G0 TO 28 21 V=V+39.81 G0 TO 28 22 V=V+195.93 G0 TO 28 21 V=V+39.81 G0 TO 28 22 V=V+195.93 G0 TO 28 22 V=V+195.93 G0 TO 28 24 V=V+195.93 G0 TO 28 25 V=V+195.93 G0 TO 28 26 C0 C0</pre>		
DO 888 IJK=1,ÑSAM READ(5,2).T,PSAT,W 2 FORMAT(3F10-3) READ (5,555) RUN 555 FORMAT (112) WRITE (6,444) 444 FORMAT ('1') WRITE (6,556) RUN,W 556 FORMAT (////////////10X,*ADSORPTION MEASUREMENTS', *//,10X,*CATALYST SAMPLE NUMBER',3X,12,//,10X,*WEIGHT *//,10X,*CATALYST SAMPLE,'3X,F10.3,3X,*GRAMS') T=(T-32,)/1.8+2T3.16 5 READ(5,4) NP,ID 4 FORMAT (212) DO 38 1=1,NP READ(5,3) NB2(1),NB3(1),NB4(1),B1V(1),R(1),PX(1) 3 FORMAT(312,1F13.3,2F10.3) P(1)=3.07*R(1) V=B1V(1)+52.7 N2=NB2(1) GO TO 18 12 V=V+00.09 GO TO 18 13 V=V+55.99 GO TO 18 14 V=V+25.19 GO TO 18 15 V=V+12.43 GO TO 18 16 V=V+5.69 GO TO 18 17 V=V+0. 18 CONTINUE N3=NB3(1) GO TO (21,22,23,24+25,26,27), N3 21 V=V+39,81 GO TO 28 22 V=V+195.93 GO TO 28		
<pre>READ(5,2) T,PSAT,W PRAMAT(3F10.3) READ (5,555) RUM WRITE (6,4544) 444 FORMAT (112) WRITE (6,556) RUN,W 556 FORMAT ('1') WRITE (6,556) RUN,W 556 FORMAT (/'/'/////////////////////////////////</pre>		
<pre>2 FORMAT(3F10.3) READ (5,555) RUN 555 FORMAT (112) WRITE (6,444) 444 FORMAT ('1') WRITE (6,556) RUN,W 556 FORMAT ('////////////////////////////////////</pre>		- c
<pre>READ (5,555) RUN FORMAT (112) WRITE (6,444) 444 FORMAT ('1') WRITE (6,556) RUN,W 556 FORMAT (////////////////////////////////////</pre>		
<pre>555 FORMAT (112) wRITE (6,444) 444 FORMAT ('1') wRITE (6,556) RUN,W 556 FORMAT (////////////////////////////////////</pre>		
<pre>WRITE (6,444) 444 FORMAT ('I') wRITE (6,556) RUN,W 556 FORMAT (///////////////10x,'ADSORPTION MEASUREMENTS', *//,10x,'CATALYST SAMPLE NUMBER',3x,I2,//,10x,'WEIGHT *OF GATALYST SAMPLE',3x,FI0.3,3X,'GRAMS') T=(T-32,)/1.8+273.16 5 READ(5,4) NP,ID 4 FORMAT (212) DO 38 I=1,NP READ(5,3) NB2(I),NB3(I),NB4(I),B1V(I),R(I),PX(I) 3 FORMAT(312,IF13.3,2F10.3) P(I)=3.07*R(I) V=NB2(I) GO TO (11,12,13,14,15,16,17), N2 11 V=V+200.09 GO TO 18 12 V=V+99.31 GO TO 18 13 V=V+55.92 GO TO 18 14 V=V+25.19 GO TO 18 15 V=V+12.43 GO TO 18 16 V=V+5.69 GO TO 18 17 V=V+0. 18 CONTINUE N3=NB3(I) GO TO (21,22,23,24,25,26,27), N3 21 V=V+39,81 GO TO 28 22 V=V+195.93 GO TO 28 22 V=V+195.93 GO TO 28</pre>		
<pre>444 FORMAT ('I') WRITE (6,556) RUN,W 556 FORMAT (///////////////ADSORPTION MEASUREMENTS', *//,10X,'CATALYST SAMPLE NUMBER',3X,I2,//,10X,'WEIGHT *DF ÇATALYST SAMPLE',3X,FI0.3,3X,'GRAMS') T=(T-32,)/1.84273.16 5 READ(5,4) NP,ID 4 FORMAT (212) D0 38 I=1,NP READ(5,3) NB2(I),NB3(I),NB4(I),B1V(I),R(I),PX(I) 3 FORMAT(312,1F13,3;2F10.3) P(I)=3.07*R(I) V=81V(I)+52.7 N2=NB2(I) G0 TO 118 12 V=V+99.31 G0 TO 18 13 V=V+59.92 G0 TO 18 14 V=V+25.19 G0 TO 18 15 V=V+12.43 G0 TO 18 16 V=V+5.69 G0 TO 18 17 V=V+0. 18 CONTINUE N3=NN3(I) G0 TO (21,22,23,24,25,26,27), N3 21 V=V+339.81 G0 TO 28 22 V=V+195.93 G0 TO 28 21 V=V+329.81 G0 TO 28 22 V=V+195.93 G0 TO 28 22 V=V+195.93 23 V=V+195.93 24 V=V+195.93 24 V=V+195.93 25 V=V+195.93 25 V=V+195.93 26 V=V+195.93 27 V=V+195.93 27 V=V+195.93 28 V=V+195.93 28 V=V+195.93 28 V=V+195.93 29 V=V+195.93 20 V=V+105.93 20 V=V+105.93</pre>		
<pre>WRITE (6,556) RUN.W FORMAT (///////////////////NOX,'ADSORPTION MEASUREMENTS', *//,10X,'CATALYST SAMPLE NUMBER',3X,I2,//,10X,'WEIGHT *OF ÇATALYST SAMPLE',3X,F10.3,3X,'GRAMS') T=(T-32,)/1.8+273.16 5 READ(5,4) NP,ID 4 FORMAT (212) DO 38 I=1,NP READ(5,3) NB2(1),NB3(I),NB4(I),BIV(I),R(I),PX(I) 3 FORMAT(312,1F13.3,2F10.3) P(I)=3.07*R(I) V=B1V(I)+52.7 N2=NB2(I) GO TO (11,12,13,14,15,16,17), N2 6 11 V=V+200.09 GO TO 18 12 V=V+99.31 GO TO 18 13 V=V+59.92 GO TO 18 14 V=V+25,19 GO TO 18 15 V=V+12.43 GO TO 18 16 V=V+5.69 GO TO 18 17 V=V+0. 18 CONTINUE N3=NB3(I) GO TO (21,22,23,24,25,26,27), N3 21 V=V+39,81 GO TO 28 22 V=V+195.93 GO TO 28</pre>		
<pre>556 FORMAT (///////////10X,'ADSORPTION MEASUREMENTS', *//,10X,'CATALYST SAMPLE NUMBER',3X,F12,//,10X,'WEIGHT *OF GATALYST SAMPLE',3X,F10.3;3X,'GRAMS') T=(T-32,)/1.8+273.16 5 READ(5,4) NP,ID 4 FORMAT (212) D0 38 1=1,NP READ(5,3) NB2(1),NB3(1),NB4(1),B1V(1),R(1),PX(1) 9 FORMAT(312,1F13.3,2F10.3) P(1)=3.07*K(1) V=B1V(1)+52.7 N2=NB2(1) G0 T0 (11,12,13,14,15,16,17), N2 6 11 V=V+200.09 G0 T0 18 12 V=V+99,31 G0 T0 18 13 V=V+50.92 G0 T0 18 14 V=V+25.19 G0 T0 18 15 V=V+12.43 G0 T0 18 16 V=V+5.69 G0 T0 18 17 V=V+0. 18 CONTINUE N3=NB3(1) G0 T0 (21,22,23,24,25,26,27), N3 21 V=V+39,81 G0 T0 28 22 V=V+195,93 G0 T0 28</pre>		
<pre>*//,10X,*CATALYST SAMPLE NUMBER ", 3X, 12, //,10X,*WE1GHT *OF GATALYST SAMPLE',3X,F10.3,3X,*GRAMS') T=(T-32,)/1.8+273.16 5 READ(5,4) NP,ID 4 FORMAT (212) DO 38 I=1,NP READ(5,3) NB2(I),NB3(I),NB4(I),B1V(I),R(I),PX(I) 7 FORMAT(312,1F13.3,2F10.3) P(I)=3.07*R(I) V=81V(1)+52.7 N2=NB2(I) GO TO (11,12,13,14,15,16,17), N2 4 1 V=V+200.09 GO TO 18 12 V=V+99.31 GO TO 18 13 V=V+59.92 GO TO 18 14 V=V+25.19 GO TO 18 15 V=V+12.443 GO TO 18 16 V=V+5.69 GO TO 18 17 V=V+0. 18 CONTINUE N3=NB3(I) GO TO (21,22,23,24,25,26,27), N3 21 V=V+339.81 GO TO 28 22 V=V+195.93 GO TO 28</pre>	WRITE (6,556) RUN,W	
<pre>*DF GATALYST SAMPLE',3X,F10.3,3X,'GRAMS') T=(T-32.)/1.8+273.16 5 READ(5.4) NP,ID 4 FORMAT (212) DO 38 1=1,NP READ(5.3) NB2(I),NB3(I),NB4(I),B1V(I),R(I),PX(I) 3 FORMAT(312,1F13.3,2F10.3) P(I)=3.07*R(I) V=B1V(I)+52.7 N2=NB2(I) GO TO (11,12,13,14,15,16,17), N2 6 11 V=V+200.09 GO TO 18 12 V=V+99.31 GO TO 18 13 V=V+59.92 GO TO 18 14 V=V+25.19 GO TO 18 15 V=V+12.43 GO TO 18 16 V=V+5.69 GO TO 18 17 V=V+0. 18 CONTINUE N3=NB3(I) GO TO (21,22,23,24,25,26,27), N3 21 V=V+339.81 GO TO 28 22 V=V+195.93 GO TO 28</pre>	556 FORMAT (///////////////////AD	SORPTION MEASUREMENTS ,
<pre>*DF GATALYST SAMPLE',3X,F10.3,3X,'GRAMS') T=(T-32.)/1.8+273.16 5 READ(5.4) NP,ID 4 FORMAT (212) DO 38 1=1,NP READ(5.3) NB2(I),NB3(I),NB4(I),B1V(I),R(I),PX(I) 3 FORMAT(312,1F13.3,2F10.3) P(I)=3.07*R(I) V=B1V(I)+52.7 N2=NB2(I) GO TO (11,12,13,14,15,16,17), N2 6 11 V=V+200.09 GO TO 18 12 V=V+99.31 GO TO 18 13 V=V+59.92 GO TO 18 14 V=V+25.19 GO TO 18 15 V=V+12.43 GO TO 18 16 V=V+5.69 GO TO 18 17 V=V+0. 18 CONTINUE N3=NB3(I) GO TO (21,22,23,24,25,26,27), N3 21 V=V+339.81 GO TO 28 22 V=V+195.93 GO TO 28</pre>	*//,10X, CATALYST SAMPLE NUMBER	, 3X, I2, //, 10X, LWEIGHT
<pre>T=(T-32,)/1.8+273.16 5 READ(5,4) NP,ID 4 FORMAT (2I2) DO 38 I=1,NP READ(5,3) NB2(I),NB3(I),NB4(I),BIV(I),R(I),PX(I) 3 FORMAT(3I2,IF13.3,2F10.3) P(I)=3.07*R(I) V=B1V(I)+52.7 N2=NB2(I) GO TO (11,12,13,14,15,16,17), N2 6 11 V=V+200.09 GO TO 18 12 V=V+99.31 GO TO 18 13 V=V+59.92 GO TO 18 14 V=V+25.19 GO TO 18 15 V=V+12.43 GO TO 18 16 V=V+5.69 GO TO 18 17 V=V+0. 18 CONTINUE N3=NB3(I) GO TO (21,22,23,24,25,26,27), N3 21 V=V+39.81 GO TO 28 22 V=V+195.93 GO TO 28 21 V=V+95.93 GO TO 28</pre>	*OF GATALYST SAMPLE ,3X,F10.3,3 X	, GRAMS!)
<pre>5 READ(5,4) NP,ID 4 FORMAT (2I2) D0 38 I=1,NP READ(5,3) NB2(I),NB3(I),NB4(I),B1V(I),R(I),PX(I) 3 FORMAT(3I2,IF13,3,2F10.3) P(I)=3.07*R(I) V=81V(I)+52.7 N2=NB2(I) G0 TD (11,12,13,14,15,16,17), N2 4 11 V=V+200.09 G0 TD 18 12 V=V+09.31 G0 TD 18 13 V=V+59.92 G0 TD 18 14 V=V+25.19 G0 TD 18 15 V=V+12.43 G0 TD 18 16 V=V+5.69 G0 TD 18 17 V=V+0. 18 CONTINUE N3=NB3(I) G0 TD (21,22,23,24,25,26,27), N3 21 V=V+339,81 G0 TD 28 22 V=V+195.93 G0 TD 28</pre>		o
<pre>4 FORMAT (212) D0 38 I=1,NP READ(5,3) NB2(I),NB3(I),NB4(I),B1V(I),R(I),PX(I) 3 FORMAT(312,1F13.3,2F10.3) P(I)=3.07*R(I) V=B1V(I)+52.7 N2=NB2(I) G0 T0 (11,12,13,14,15,16,17), N2 4 1 V=V+200.09 G0 T0 18 12 V=V+99.31 G0 T0 18 13 V=V+59.92 G0 T0 18 14 V=V+59.92 G0 T0 18 15 V=V+12.43 G0 T0 18 16 V=V+5.69 G0 T0 18 17 V=V+0. 18 CONTINUE N3=NB3(I) G0 T0 (21,22,23,24+25,26,27), N3 21 V=V+39,81 G0 T0 28 22 V=V+195.93 G0 T0 28</pre>	5 READ(5,4) NP, ID	
D0 38 I=1,NP READ(5,3) NB2(I),NB3(I),NB4(I),BIV(I),R(I),PX(I) FORMAT(3I2,1F13,3,2F10.3) P(I)=3,07*R(I) V=BIV(I)+52.7 N2=NB2(1) G0 T0 (11,12,13,14,15,16,17), N2 (1 V=V+200.09 G0 T0 18 1 V=V+59.92 G0 T0 18 1 V=V+25.19 G0 T0 18 1 V=V+25.19 G0 T0 18 1 V=V+2.43 G0 T0 18 1 V=V+5.69 G0 T0 18 1 V=V+5.69 G0 T0 18 1 V=V+0. 18 CONTINUE N3=NB3(I) G0 T0 28 2 V=V+195.93 G0 T0 28		
<pre>READ(5,3) NB2(I),NB3(I),NB4(I),B1V(I),R(I),PX(I) FORMAT(312,1F13.3,2F10.3) P(I)=3.07*R(I) V=B1V(I)+52.7 N2=NB2(I) GO TO (11,12,13,14,15,16,17), N2 4 11 V=V+200.09 GO TO 18 12 V=V+99.31 GO TO 18 13 V=V+59.92 GO TO 18 14 V=V+25.19 GO TO 18 15 V=V+12.43 GO TO 18 16 V=V+5.69 GO TO 18 17 V=V+0. 18 CONTINUE N3=NB3(I) GO TO (21,22,23,24,25,26,27), N3 21 V=V+339,81 GO TO 28 22 V=V+195.93 GO TO 28</pre>	DO 38 I=1.NP	
<pre>3 FORMAT(312,1F13.3,2F10.3) P(1)=3.07*R(1) V=B1V(1)+52.7 N2=NB2(1) GO TO (11,12,13,14,15,16,17), N2 4 11 V=V+200.09 GO TO 18 12 V=V+99.31 GO TO 18 13 V=V+59.92 GO TO 18 14 V=V+25.19 GO TO 18 15 V=V+12.43 GO TO 18 16 V=V+5.69 GO TO 18 17 V=V+0. 18 CONTINUE N3=NB3(1) GO TO (21,22,23,24,25,26,27), N3 21 V=V+39.81 GO TO 28 22 V=V+195.93 GO TO 28</pre>	READ(5.3) NB2(I),NB3(I),NB4(I),	B1V(I),R(I),PX(I)
P(I)=3.07*R(I) V=B1V(I)+52.7 N2=NB2(I) GO TO (11,12,13,14,15,16,17), N2 11 V=V+200.09 GO TO 18 12 V=V+99.31 GO TO 18 13 V=V+59.92 GO TO 18 14 V=V+25.19 GO TO 18 15 V=V+12.43 GO TO 18 15 V=V+25.69 GO TO 18 16 V=V+5.69 GO TO 18 17 V=V+0. 18 CONTINUE N3=NB3(I) GO TO (21,22,23,24,25,26,27), N3 21 V=V+339.81 GO TO 28 22 V=V+195.93 GO TO 28	3 FORMAT(312,1F13,3,2F10,3)	
<pre>V=B1V(1)+52.7 N2=NB2(1) GO TO (11,12,13,14,15,16,17), N2 4 11 V=V+200.09 GO TO 18 12 V=V+99.31 GO TO 18 13 V=V+59.92 GO TO 18 14 V=V+25.19 GO TO 18 15 V=V+12.43 GO TO 18 16 V=V+5.69 GO TO 18 17 V=V+0. 18 CONTINUE N3=NB3(1) GO TO (21,22,23,24,25,26,27), N3 21 V=V+39.81 GO TO 28 22 V=V+195.93 GO TO 28</pre>		
N2=NB2(1) GO TO {11,12,13,14,15,16,17}, N2 11 V=V+200.09 GO TO 18 12 V=V+99.31 GO TO 18 13 V=V+59.92 GO TO 18 14 V=V+25.19 GO TO 18 15 V=V+12.43 GO TO 18 16 V=V+5.69 GO TO 18 17 V=V+0. 18 CONTINUE N3=NB3(1) GO TO (21,22,23,24,25,26,27), N3 21 V=V+39.81 GO TO 28 22 V=V+195.93 GO TO 28		
GO TO (11,12,13,14,15,16,17), N2 11 V=V+200.09 GO TO 18 12 V=V+99.31 GO TO 18 13 V=V+59.92 GO TO 18 14 V=V+25.19 GO TO 18 15 V=V+12.43 GO TO 18 16 V=V+5.69 GO TO 18 17 V=V+0. 18 CONTINUE N3=NB3(I) GO TO (21,22,23,24,25,26,27), N3 21 V=V+339,81 GO TO 28 22 V=V+195.93 GO TO 28		•
<pre>11 V=V+200.09 G0 T0 18 12 V=V+99.31 G0 T0 18 13 V=V+59.92 G0 T0 18 14 V=V+25.19 G0 T0 18 15 V=V+12.43 G0 T0 18 16 V=V+5.69 G0 T0 18 17 V=V+0. 18 CONTINUE N3=NB3(I) G0 T0 '(21,22,23,24,25,26,27), N3 21 V=V+39.81 G0 T0 28 22 V=V+195.93 G0 T0 28</pre>		2 6
G0 T0 18 12 V=V+99.31 G0 T0 18 13 V=V+59.92 G0 T0 18 14 V=V+25.19 G0 T0 18 15 V=V+12.43 G0 T0 18 16 V=V+5.69 G0 T0 18 17 V=V+0. 18 CONTINUE N3=NB3(I) G0 T0 '(21,22,23,24,25,26,27), N3 21 V=V+339.81 G0 T0 28 22 V=V+195.93 G0 T0 28		
12 V=V+99.31 GO TO 18 13 V=V+59.92 GO TO 18 14 V=V+25.19 GO TO 18 15 V=V+12.43 GO TO 18 16 V=V+5.69 GO TO 18 17 V=V+0. 18 CONTINUE N3=NB3(I) GO TO (21,22,23,24,25,26,27), N3 21 V=V+339.81 GO TO 28 22 V=V+195.93 GO TO 28		
GO TO 18 13 V=V+59.92 GO TO 18 14 V=V+25.19 GO TO 18 15 V=V+12.43 GO TO 18 16 V=V+5.69 GO TO 18 17 V=V+0. 18 CONTINUE N3=NB3(I) GO TO (21,22,23,24,25,26,27), N3 21 V=V+339.81 GO TO 28 22 V=V+195.93 GO TO 28		
<pre>13 V=V+59.92 GO TO 18 14 V=V+25.19 GO TO 18 15 V=V+12.43 GO TO 18 16 V=V+5.69 GO TO 18 17 V=V+0. 18 CONTINUE N3=NB3(I) GO TO (21,22,23,24,25,26,27), N3 21 V=V+339.81 GO TO 28 22 V=V+195.93 GO TO 28</pre>		
GO TO 18 14 V=V+25.19 GO TO 18 15 V=V+12.43 GO TO 18 16 V=V+5.69 GO TO 18 17 V=V+0. 18 CONTINUE N3=NB3(I) GO TO (21,22,23,24,25,26,27), N3 21 V=V+339.81 GO TO 28 22 V=V+195.93 GO TO 28		
14 V=V+25.19 GO TO 18 15 V=V+12.43 GO TO 18 16 V=V+5.69 GO TO 18 17 V=V+0. 18 CONTINUE N3=NB3(I) GO TO '(21,22,23,24,25,26,27), N3 21 V=V+339.81 GO TO 28 22 V=V+195.93 GO TO 28		
GO TO 18 15 V=V+12.43 GO TO 18 16 V=V+5.69 GO TO 18 17 V=V+0. 18 CONTINUE N3=NB3(I) GO TO '(21,22,23,24,25,26,27), N3 21 V=V+339.81 GO TO 28 22 V=V+195.93 GO TO 28		
15 V=V+12.43 GO TO 18 16 V=V+5.69 GO TO 18 17 V=V+0. 18 CONTINUE N3=NB3(I) GO TO (21,22,23,24,25,26,27), N3 21 V=V+339.81 GO TO 28 22 V=V+195.93 GO TO 28		
GO TO 18 16 V=V+5.69 GO TO 18 17 V=V+0. 18 CONTINUE N3=NB3(I) GO TO '(21,22,23,24,25,26,27), N3 21 V=V+339.81 GO TO 28 22 V=V+195.93 GO TO 28		
<pre>16 V=V+5.69 GO TO 18 17 V=V+0. 18 CONTINUE N3=NB3(I) GO TO (21,22,23,24,25,26,27), N3 21 V=V+339.81 GO TO 28 22 V=V+195.93 GO TO 28</pre>		
GO TO 18 17 V=V+0. 18 CONTINUE N3=NB3(I) GO TO (21,22,23,24,25,26,27), N3 21 V=V+339.81 GO TO 28 22 V=V+195.93 GO TO 28		
17 V=V+0. 18 CONTINUE N3=NB3(I) GO TO (21,22,23,24,25,26,27), N3 21 V=V+339.81 GO TO 28 22 V=V+195.93 GO TO 28		
18 CONTINUE N3=NB3(I) GO TO (21,22,23,24,25,26,27), N3 21 V=V+339.81 GO TO 28 22 V=V+195.93 GO TO 28		$(\mathbf{x}_{i}) \in \mathbf{A}_{i}$
N3=NB3(I) GO TO (21,22,23,24,25,26,27), N3 21 V=V+339.81 GO TO 28 22 V=V+195.93 GO TO 28		
GO TO (21,22,23,24,25,26,27), N3 21 V=V+339.81 GO TO 28 22 V=V+195.93 GO TO 28		
21 V=V+339.81 GO TO 28 22 V=V+195.93 GO TO 28	CO TO (21.22.23.24.25.26.27) N	
GO TO 28 22 V=V+195.93 GO TO 28		
22 V=V+195.93 GO TO 28		
GO TO 28		
	A state of the	and a second
and a second second second statistic and provide a second second second second second second second second sec		

1.14	120	-	
•			•
		•	. ~
			2.5

q			
			120
	BET PROGRAM		
	DET PRUGRAM	••• (CONT'D)	ter and the second second
GO TO 28			
24 V=V+68.			•
GO TO 28 25 V=V+29.76	la presenta de la composición de la composicinde la composición de la composición de la composición de	p_{1}	
25 V=V+29.76 GD TN 28			
26 V=V+15.19			
GO TO 28			
27 V=V+0. 28 CONTINUE			
28 CONTINUE N4=NB4(I)		1	
	,32,33,34,35,3	6.371. N4	
31 V=V+344.9	5		
GO TO 38		n n	
32 V=V+193.2 GO TO 38			
33 V=V+105.19	a	. 6	
GO TO 38			
34 V=V+65.07	د	· · ·	
GO TO 38	w.		
35 V=V+28.27) •••• GO TQ 38	1		
36 V=V+14.11			
GO TO 38			
37 V=V+0.			
38 VV(I)=V	150 200 2501	10	
50 WRITE(6,51	150,200,250),	IV.	
PVS =∯ ⊳			
• 51 FORMAT(///	,10X, HELIUM	CHARGE - CONSISTEN	CY CHECK !,/,
₩ 10 X , 'NUMBE	R PRESSURE	VOLUME PV	
DO 60 J=1, PV=P(J)*VV			
WRITE(6,52) J,P(J),VV(J)	• • • • • • • • • • • • • • • • • • •	
52 FORMAT(12X	+112,3F12.2)		
PVS=PVS+PV			
60 CONTINUE FNP=NP			
PVA=PVS/FN	Ρ		
WRITE(6,53			and the second
53 FORMAT(//,	10X, AVERAGE H	HELIUM CHARGE (PV)	=',1F12.2,'
* TORR-CC'), GO TO 5			
150 WRITE(6,15	1)		
151 FORMAT(///	,10X, DEAD VOL	UME OF SAMPLE CELI	•/•10X•
* NUMBER	PRESSURE	OLUME PV	,DEAD
*VOLUME') DVS=0.			
DO 160 J=1	•NP		0
DV = PVA/P(J)			
PV=P(J)*(V)			

```
BET PROGRAM
                                  (CONT'D))
                                    - 1
     WRITE(6,152) J,P(J),VV(J),PV,DV
 152 FORMAT(12X,112,4F12.2)
     DVS=DVS+DV
 160 CONTINUE
     FNP=NP
     DVA=DVS/FNP
     WRITE(6,153) DVA
 153 FORMAT(//,10X, 'AVERAGE DEAD VOLUME = ',1F10.2. CC!)
     GO TO 5
 200 WRITE (6,201)
 *DETERMINATION',/,10X, NUMBER PRESSURE
                                               VOLUME
                                                      СН
    *ARGE(CC AT STP)')
                            -710°
     SN2=0.
    DO 210 J=1,NP
    VN2=P(J)*VV(J)*273.16/T/760.
     WRITE(6,52) J,P(J),VV(J),VN2
    SN2=SN2+VN2
 210 CONTINUE
    FNP=NP.
    -VN2A=SN2/FNP
    WRITE(6,203) VN2A
 203 FORMAT(//,10X, AVERAGE NITROGEN CHARGE = +,1F12.2, CC
* AT STP!)
    GO TO 5
250 WRITE(6,251)
251 FORMAT(//,10X, INITROGEN ADSORPTION UPTAKE 1, 10X,
   * NUMBER PRESSURE VOLUME
                                   N2 IN GAS
                                              N2 ADSOR
   ★BED!)
    DO 260 J=1,NP
    VGP=VV(J)+DVA
    CGP=P(J)*VGP*273.16/T/760.
    ADN2=VN2A-CGP
    WRITE(6,152) J,P(J),VGP,CGP,ADN2
    AD(J) = ADN2/W
    PR(J) = P(J) / PX(J)
   Y(J) = PR(J) / (1 - PR(J)) / AD(J)
267 CONTINUE
    WRITE(6,300) PSAT
**SATURATION PRESSURE = ',1F6.1,' TORR')
    WRITE(6,301)
301 FORMAT(//,43X, 'AMOUNT ADS. ',/,10X, 'NUMBER',4X, 'P/PSAT'
 <*,3X, P/V(PSAT-P) ,5X, (CC/GM) ,5X, PSAT (TORR) )</pre>
   DO 350 J=1,NP
   WRITE(6,351) J, PR(J), Y(J), AD(J) , PX(J)
351 FORMAT(12X,112,2F12.4,1F12.2,2X,1F12.2)
35) CONTINUE
   N=0
   DO 400 J=1,NP
```

		. 0			122
	r 	•	•	•	•
	BET P	ROGRAM	(CONT ! D)		· · · ·
IF	PR(J)-0.05)	400.401.40	1	•* •	
401 IF(PR(J)-0.35)	402,402,40	0		
402 N=N	I+ <u>I</u>			*	to in prime and
	I)=PR(J) I)=Y(J)				
, 400 CON	TINUE			•1	
S X=	0.0	1 <u>.</u>			
	=0.0		•		•
	0.0- =0.0				·· , · ·
	30 I=1,N			•	•
	SX+X(I)				e e e e e e e e e e e e e e e e e e e
	SY+Y(I)		•	•	
SXY	= SXY+ X(I) * Y(I)		•	
	=SXX+X(I)*X(I FINUE)	· ·		
	N≈SXX−SX≈SX				. *
A= (S	SY*SXX-SXY*SX)/DEM	•	• * *	۰.
B=(N	1* SXY-SX*SY)/1	DEM		•	
SY2=					
SSDY SDY=	=0.0		•		•
	0 I=1,N		```		•
)=A+B*X(I)		· · · ·		· · · · ·
) = Y(I) - YC(I)	•		· · · ·	
SDY=	SDY+DY(I)				
SSDY	=SSDY+DY(I)*D	DY(I)	•	•	
40 CONT	SY2+Y(I)*Y(I)		•	· · ·	
	SORT(SSDY/(N-	-211			
PSDV=	= ((SDV*N)/SY)	*100	1		
WRIII	E(6,100)			•	•
DO 59	9 I=1,N			•	
59 CONT	E(6,102)		X(I),Y(I),Y	C(I), DY(I)
AR EA =	=4•25/(A+B)	.(•	
WRITE	(6,106) SDV	-		-	,
106 FORMA	T(/,10X, 'ST/	ANDARD DEV	IATION = 2	(E15 5) ·	
	1091007 F3UV				
108 FORMA WRITE	(/,10X, PEF (6,107) A,B	RCENT STAN	DARD DEVIATION	=! 2X, F10	0.5)
			LOX, 'A= ', F10.5		
	∧ 'D= '+F1U_5		LUX, A= ++10.5	••	
102 FORM	AT(1E16.4.3E)	5.61			
LUO FURMA	T('1';///////	///////////////////////////////////////	OX, LEAST SQUA	RE FIT OF	• • • • • • • • • • • • • • • • • • •
······	ESULTS',//,10 YM-YC')	X, P/PSAT	,9X, 'YMEAS', 1	OX, YCALC	1,
	(6,600) AR E A				
600 FORMA	T(///. 20X. 10	LIREACE ADD	A = ', 1F7.2, ' SC		
888 CONTI	NUE	ALE AKE	A = ' 1 IF / . 2, ' S(J. M/GRAMI) .
			"a		

C-II <u>Computer Output for Catalyst 1</u> ADSORPTION MEASUREMENTS CATALYST SAMPLE NUMBER 1 WEIGHT OF CATALYST SAMPLE 1.425 GRAMS HELIUM CHARGE - CONSISTENCY CHECK' NUMBER PRESSURE VOLUME PV 1 207.25° 77.89 16143.14 124

AVERAGE	HELIUM CHARGE	(PV) =	16109.26 TORR	-C.C
		*		•
-4-		252.79	16072.30	· .
- 2	-	152.01	16116.82 16104.79	•
1	207.25 ° 143.10	77.89	16143.14	•

	UME OF, SAMPI	LE CELL	•	
NUMBER	PRESSURE	VOLUME	PV	DEAD VOLUME
- 1	58.59	252, 79	16109.26	22.15
2	92.45	152.01	16109.26	22.23
3	119.63	112.62	16109_26	22.03
4,	161.49	77.89	16109.26	21.85

AVERAGE DEAD VOLUME = 22.06 CC

•		-			
	NITROGEN	CHARGE DETE	RMINATION		
	NUMBER	PRESSURE	VOLUME	CHARGE(CC AT S	TP)
	1	87.37	541.14	57.31	
	<u>ີ</u> , 2	[*] 73.54	641.92	57.22	• . •
	3	60:14	785.80	57.28	1 4 4
	• 4	50.51	937.55	57.41	•.
	•	U L		¹	
				(· · · · · · · · · · · · · · · · ·	σ
	AVERAGE	NITROGEN CHA	RGE =	57.31 CC AT	STP
		1 - 1			

.' .

5	· í		•		i si
	NITROGEN	ADSORPTION	UPTAKE		•
	NUMBER	PRESSURE	VOLUME	N2 IN GAS	N2 ADSORBED
1.1	1	48.26	959.61	14 و 56	1.17
	2	57.19	807.86	56.01	1.29
•••	7. 3 · · .	69.59	663.98	56.01	1.29
	4. 。	81.95	563.20	55.95	1.35
4	5	97.11	475.19	55.94	1.36
	6	118.91 '	387.42	55.84	1.46
	7	132.40	348.03	55 • 86	1.44
	8	149.34	307.91	55.74	1.56
	9	171.62	267,75	55.70	1.60
i	10	196.83	233.02	°55 •60	1.70
	11 .	233.16	196.22	55.46	1.84
	12	288.36	157.98	55.22	2.08
	13 🦌	328.41	138.48	55.13	2.17
	14	409.66	110.21	54.73 .	2.57

BET	RESUL	TS
,		

- SATURATION PRESSURE = 719.0 TORR

NUMBER P/PSAT P/V(PSAT-P) (CC/GM) PSAT (TORR) 1 0.0670 0.0874 0.82 720.00 2 0.0790 0.0941 0.91 723.50 3 0.0966 0.1180 0.90 720.00	· · ·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1 0.0670 0.0874 0.82 720.00 2 0.0790 0.0941 0.91 723.50 3 0.0966 0.1180 0.90 720.00	
3 0.0966 0.1180 0.90 720.00	
	· .
4 0.1135 0.1343 0.95 722.00	
5 0.1348 0.1627 0.95 720.00	
6. 0.1653 0.1932: 1.02 719.00	
7 0.1836 0.2215 1.01 721.00	
8 0.2077 0.2383 1.09 719.00	
⁹ 0.2377 0.2772 . 1.12 722.00	· ·
10 0.2730 0.3131 1.19 721.00	
11 0.3231 0.3684 721.50	
12 0.4021 0.4600 1.46 717.00	•
13 0.4551 0.5469 1.52 721.50	
14 0.5689 0.7302 1.80 720.00	, ,

LEAST SOUARE FIT OF BET RESULTS

A	• • •	·· · ·	21
PPSAT	YMEAS	YCALC	YM-YC
0.0670	0.087443	0.085043	0.002399
0.0790	0.094120	0.098418	-0.004298
0.0966	0.118017	0.118008	0.000008
0.1135	0.134345	0.136749	-0.002403
0.1348	0.162728	0.160531	0.002197
0.1653	0.193200	0.194463	-0.001262
0.1836	0.221500	0 • 214770	0.006730
0.2077	0.238387	0.241533	-0.003145
0.2377	0.277216	0.274913	0.002303
0.27.30	0.313162	0.314167	-0.001005
0.3231	0.368452	0.369975	-0.001522
•	a a the second		

127

STANDARD DEVIATION = • 0.33378E-02

PERCENT' STANDARD DEVIATION \doteq 1.66244.

Y=A+B*X A= 0.01048 B= 1.11240

SURFACE AREA = 3.78 SO.M/GRAM

APPENDIX D

COMPUTER PROGRAM FOR KINETIC DATA ANALYSIS

AND RESULTS OF INDIVIDUAL EXPERIMENTS

129

٦.

D-I Computer Program for Activity Measurements С C***** С THE FOLLOWING PROGRAM CALCULATES THE FRACTIONAL -С CONVERSIONS AND RATE CONSTANTS FOR THE OXIDATION OF С METHANOL TO FORMALDEHYDE C C C*********************************** C******* С С DATA INPUT DESCRIPTION С С CARD 1 NGC, ND FORMAT(212) С NGC NOT EQUAL TO ZERO THEN NO FEED GC ANAL. С ND = 0 CAUSES PROGRAM TO EXIT . С CARD 2, 3, AND 4 ALPHEMERIC DESCRIPTION OF RUN C UP TO 55 CHARACTERS PER CARD С STARTING IN SPACE 6 ON EACH CARD. С С С CARD 5 M1,A1,A2,A3,A4,A5,A6 (FORMAT(112,,6F10.4)) С M1=0 MEANS FEED COMPOSITION FROM FLOW RATES С A1 = TOTAL AIR FEED RATE IN CC(STP)/MINС A2 = METHANOL FEED RATE IN CC OF LIQUID/MIN С С A3 = ABSOLUTE PRESSURE IN REACTOR IN TORR A4 = REACTOR TEMPERATURE IN DEGREES KELVIN С A5 = CATALYST WEIGHT IN GRAMS Ç A6 = CATALYST SURFACE AREA IN SO.M/GRAM С С CARD 6 M1, A1, A2, M2 FORMAT(112,6F13.4,112) - C M1=1 MEANS FEED. ANALYSIS BY GC С A1 = PEAK AREA OF AIR IN FEED С A2 = PEAK AREA OF METHANOL IN FEED С A5 = NUMBER OF SQUARES ON GC CHART FOR WATER С IN FEED (GC JOB DEFINED DOES NOT DETECT С THESE SMALL PEAKS. THESE VALUES ARE С MULTIPLIED BY 0.245 TO CONVERT TO AREA С GIVEN BY GC PEAK) С M2 = NUMBER OF GC FEED ANALYSIS C. C REPEAT OF GC FEED ANALYSIS DATA (CARD 6) CARD 7 С С M1,A1,A2,A3,A4,A5,A6,M2 FORMAT(-112,6F10.4,112) CARD 8 · C Q. M1 =2 MEANS PRODUCT GC ANALYSIS С A1 = AREA OF AIR PEAK IN PRODUCT. С A2 = AREA OF FORMALDEHYDE PEAK IN PRODUCA С A3 = AREA OF WATER PEAK IN PRODUCT

```
131
             ACTIVITY MEASUREMENTS ... (CONT'D)
               A4 = AREA OF METHANOL PEAK IN PRODUCT
Ċ
              A5 AND A6 ARE ZERD
С
               M2 = NUMBER OF REPEAT GC PRODUCT ANALYSIS
Ċ
C<sup>**</sup>
      CARD 9 REPEAT OF CARD 8 FOR EACH PRODUCT ANALYSIS
С
С
               NEXT CARD IS CARD 1 FOR NEXT RUN
С
С
      ONLY ONE SET OF FEED FLOW RATES CAN BE GIVEN PER
С
      RUN. NEW SET OF DATA CARDS REQUIRED FOR EACH SET
C
      OF FEED FLOW RATES.
C
C
С
       DIMENSION X2FME(5), X2FN(5), X2FO(5), XPH(8), XPC(8),
     1 XPM(8), XPO(8), XPN(8), X1(5), X2(5), X3(5), X2FH2(5)
       DIMENSION XPOA(8)
       FME=1.00
       FAIR=1.02
       FH20=1.66
       FCH20=1.4
      FME, FAIR, FH20 AND FCH20 ARE GC CORRECTION FACTORS
С
C.
       CONTINUE
  150
       WRITE(6,11)
    . . .
       FORMAT('1',////,5X, 'KINETICS OF METHANOL OXIDATION'
   11
     1,./)
       READ(5,200) NGC,ND
       FORMAT(212)
  200
       IF(ND) 250,998,250
       CONTINUE
  257
       M3 = 0
       M4 = 0
       READ(5,10) Z1,Z2,Z3,Z4,Z5,Z6,Z7,Z8,Z9,ZA,ZB,ZC,ZD,ZE
       WRITE(6,10)Z1,Z2,Z3,Z4,Z5,Z6,Z7,Z8,Z9,ZA,ZB,ZC,ZD,ZE
       READ(5, 10) Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, ZA, ZB, ZC, ZD, ZE
       WRITE(6,10)21,22,23,24,25,26,27,28,29,24,28,2C,2D,2E
       READ(5,10) Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, ZA, ZB, ZC, ZD, ZE
       WRITE(6,10)Z1,Z2,Z3,Z4,Z5,Z6,Z7,Z8,Z9,ZA,ZB,ZC,ZD,ZE
       FOR MAT( 5X, 14A4)
   10
       READ(5,20) M1,A1,A2,A3,A4,A5,A6,M2
   1
       FORMAT(112,6F10.4,112)
   20
      IF(A1-0.01) 150,150,155
      IF(M1-1) 30,40,50
  1.55
   3) WRITE(6,31) A1,A2,A3,A4,A5,A6
   31. FORMAT(5X, AIR FEED RATE (CC(STP)/MIN) = , 1F7.1,/,5X,
     1'METHANOL FEED RATE (CC(LIQUID)/MIN) =',1F8.5,/,5X,
     2'REACTOR PRESSURE (TORR) = ,1F6.1,/,5X, TEMPERATURE
```

C.

	132
ACTIVITY MEASUREMEN	TS ••• (CONT • D)
3(KELVIN) =',1F6.1,/,5X,'C 41F6.2,/,5X,'CATALYST SURF QA=A1/22410.	ATALYST CHARGE (GRAMS) = ', ACE AREA (SQ.M/G) =',1F5.2)
C QA IS THE FEED RATE OF AI	R IN MOLES/MIN
OM=A2≠0.792/32.04	
C OM IS THE FEED RATE OF M	ETHANOL IN MOLES/MIN
X1FMF=QM/(QM+QA)*100. X1FD=20.9*ØA/(QM+QA) X1FN=79.1*QA/(QM+QA) AREA=A6*A5	
C AREA IS THE TOTAL AREA	OF CATALYSI IN REACTOR
PRES=A3/760.	
C PRES IS THE ABSOLUTE PRE	ESSURE IN REACTOR IN ATM.
TEMP=A4	
C TEMP IS REACT R TEMPERATI	URE IN DEG. K
	MOLE PERCENT OF MEOH, 02 AND Ated from feed flow rates
WRITE(6,32) 32 FORMAT(/,5X,'FEED AND PPO 1 CENT)',//,5X,'TYPE OF AND 2 NOL WATER CH2O',/) WRITE(6,33) X1FN,X1FO X1F 33 FORMAT(5X,'FEED (FLOW RAT GO TO 1 40 M3=M3+1 A2=A2+1.7 A9=A5*0.245	ALYSIS NITROGEN DXYGEN METHA
C THIS IS TO CONVERT SQUARE	S TO GC PEAK AREA
SA = FAIR*Al+A2+A9*FH20 X2FMF(M3)=A2/SA*100. X2FN(M3)=20.9*FAIR*A1/SA X2FN(M3)=79.1/20.9*X2FN(M X2FH2(M3)= FH20*A9/SA*100 WRITE(6,41) X2FN(M3),X2F0 41 FORMAT(5X,*FEED(G.C.)*,8X IF(M2-M3)998,60,1).](M3),X2FME(M3),X2FH2(M3)

```
ACTIVITY MEASUREMENTS ... (CONT * D)
   60 M3=0
      'FM2=M2
       F1 = 0'.
       F2=0.
       F3=0.
       F4=0.
       DO 65 I=1,M2
       F1=F1+X2FME(I)
       F2=F2+X2F((I))
       F4 = F4 + X2FH2(I)
   65 F3=F3+X2FN(I)
       XAMGC = F1/FM2
       XADGC=F2/FM2
       XANGC = F3/FM2
       XAHGC=F4/FM2
    ABOVE VALUES ARE AVERAGE FEED COMP, FROM GC
C
       WRITE(6,61) XANGC, XADGC, XAMGC, XAHGC
       FDRMAT(5X, 'AVG. FEED (G.C.)', 1F8.2, 1F9.2, 1F7.2, 1F8.3)
   61
       XAFM=(X1FME+XAMGC)/2.
       XAFO=(X1FO+XAOGC)/2.
       XAFN=(X1FN+XANGC)/2.
  AVERAGE FEED COMP. BY GC PLUS FEED RATES
С
       WRITE(6,62) XAEN,XAED,XAEM
       FORMAT(/,5X, 'AVERAGE FEED',6X,1F6.2,1F9.2,1F7.2,/)
   62
       GO TO 1
       M4 = M4 + 1
   50
       A2=A2+1.2
       A3=A3+1.7
       A4=A4+1.7
        THE ABOVE ARE CORRECTION FACTORS DUE TO DEAD BAND IN
С
        GC JOB DEFINITION "
С
       SIGA=FAIR#A1+A4+FCH20*A2+FH20*A3
       XPH(M4) = FH20 \times A3/SIGA \times 100.
       XPC(M4)=FCH20*A2/SIGA*100.
       XPM(M4) = A4/SIGA*100.
      THE FOLLOWING VALUES OF MOLE PERCENT FOR OXYGEN AND
С.
      NITROGEN ARE ESTIMATED FROM MEASURED FEED FLOW RATES
С
      AND METHANOL FEED COMPOSITION (X1FME) AND METHANOL
С.
      PRODUCT (XPM(M4)).
С
     - QFT=QA+QM
                       C :
                           .
        QFT = TOTAL FEED RATE IN MOLES/MIN
```

é.

```
ACTIVITY MEASUREMENTS ... (CONT'D)
        QPT=0FT*(100.+0.5*XAFM )/(100.+0.5*XPM(M4))
         OPT = TOTAL PRODUCT FLOW RATE IN MOLES/MIN
.C
        QFN=0.791*QA
С
         QFN = NITROGEN FEED RATE IN MOLES/MIN
             THIS IS EQUAL TO NITROGEN PRODUCT FLOW RATE
С
        XPN(M4) = QFN/QPT \neq 100.
      XPO(M4) = - XPN(M4) - XPC(M4) - XPH(M4) - XPM(M4) + 100.
        AVM=(OFT*(XAFM-XAHGC)+OPT*(XPH(M4)+XPC(M4)-XPM(M4)))/
     1 6.
                         . . .
       XPOA(M4) = (QFT * XAFO - AVM) / QPT
       WRITE(6,51) XPN(M4), XPN(M4), XPM(M4), XPH(M4), XPC(M4)
                  5X, PRODUCT (G.C.) , 4X, 1F6.2, 1F9.2, 1F7.2,
   51 FORMAT(
     1 1F7.2,1F7.2)
       IF(M2-M4)998,70,1
   70
       M4 = 0
       P1=0.
       P2=0.
       P3=0.
       P4=0.
       P5=0.
       P6=0.
       DO 75 I=1,M2
       P1=P1+XPM(I)
       P2=P2+XPC(I)
       P3=P3+XPH(I)
       P4 = P4 + XPO(I)
       P6=P6+XPOA(I)
   75
       P5=P5+XPN(I)
       PM2=M2
       XPAM=P1/PM2
       XPAC=P2/PM2
       XPAH=P3/PM2
       XPAD = P4/PM2
       XPAN=P5/PM2
       XPAVD = P6/PM2
С
       THE ABOVE VALUES ARE AVERAGE PRODUCT COMP. OBTAINED
С
       BY GC
                        С
       WRITE(6,71) XPAN, XPAN, XPAM, XPAH, XPAC
   71 FORMAT(/,5X, AVERAGE PRODUCT', 3X, 1F6.2, 3X, 1F6.2, 3F7.2,
   ··· 1/)
      THE FOLLOWING SECTION CALCULATES FRACTIONAL CONVERSION
C
      OF METHANOL BASED ON THE ANALYSIS OF VARIOUS PRODUCTS.
С
```
	WRITE(6,100)
100	FORMAT(5X, FRACTIONAL CONVERSION', //, 5X, FEED
	1 COMPRISITION',4X, 'BASED ON PRODUCT G.C. ANALYSIS OF',/
• • 2	,5X, BASED ON , 14X, METHANDL WATER FORMALDEHYDE!,/)
	J=1
•••	XF=X1FME/100.
101	@XP=XPAM/100
	$X1(J) = (1 - XP/XF)/(1 + 0.5 \times XP)$
	XPAZ=XPAH/100. XFAZ=XAHGC/100.
	$X_{2(J)=(XPAZ-XFAZ)/XF/(10.5*XPAZ) $
	XPAY=XPAC/100.
	X3(J) = XPAY/XF/(10.5*XPAY)
•	
С	X1,X2,X3 ARE FRACTIONAL CONVERSIONS BASED ON
c 💘	METHANOL, WATER AND FORMALDEHYDE, RESPECTIVELY.
•	1. A. B.
	IF(J-2)104,103,102
10 4	CONTINUE
	WRITE(6,105) X1(J),X2(J),X3(J)
10.5	FORMAT(5%, FEED FLOW RATES', 1F13.3, 1F9.3, 1F10.3)
••••	
10 3	WRITE(6,115) $X1(J), X2(J), X3(J)$
115	FORMAT(5X, AVG GC ANALYSIS, 1F13.3, 1F9.3, 1F10.3)
10.2	GO TO 130 WRITE (6,125) X1(J),X2(J),X3(J)
10 2 12 5	$WRITE (0,123) \land 1(0,1) \land 2(0,1) \land 1(0,1) \land 1(0$
	TENRMATISX THE FEED RAIENTATELS, ST TEYAST TETUS
	FORMAT(5X, GC + FEED RATES/, 1F13.3, 1F9.3, 1F10.3)
	GO TO 131
112	GO TO 131 IF(NGC) 151,110,151
	GO TO 131
112	GD TO 131 IF(NGC) 151,110,151 XAVGT=(X1(J)+X2(J)+X3(J))/3. GD TO 147
112 151	GD TO 131 IF(NGC) 151,110,151 XAVGT=(X1(J)+X2(J)+X3(J))/3. GD TO 147
112 151 110	GD TO 131 IF(NGC) 151,110,151 XAVGT=(X1(J)+X2(J)+X3(J))/3. GO TO 147 XF=XAMGC/100. J=J+1 GO TO 101
112 151 110 130	GD TO 131 IF(NGC) 151,110,151 XAVGT=(X1(J)+X2(J)+X3(J))/3. GO TO 147 XF=XAMGC/100. J=J+1 GD TO 101 XF=XAFM/100.
112 151 110 130	GD TO 131 IF(NGC) 151,110,151 XAVGT=(X1(J)+X2(J)+X3(J))/3. GO TO 147 XF=XAMGC/100. J=J+1 GO TO 101 XF=XAFM/100. J=J+1
112 151 110 130	GO TO 131 IF(NGC) 151,110,151 XAVGT=(X1(J)+X2(J)+X3(J))/3. GO TO 147 XF=XAMGC/100. J=J+1 GO TO 101 XF=XAFM/100. J=J+1 GO TO 101
112 151 110 130	GO TO 131 IF(NGC) 151,110,151 XAVGT=(X1(J)+X2(J)+X3(J))/3. GO TO 147 XF=XAMGC/100. J=J+1 GO TO 101 XF=XAFM/100. J=J+1 GO TO 101 CONTINUE
112 151 110 130	GO TO 131 IF(NGC) 151,110,151 XAVGT=(X1(J)+X2(J)+X3(J))/3. GO TO 147 XF=XAMGC/100. J=J+1 GO TO 101 XF=XAFM/100. J=J+1 GO TO 101 CONTINUE. T1=0.
112 151 110 130	GD TO 131 IF(NGC) 151,110,151 XAVGT=(X1(J)+X2(J)+X3(J))/3. GO TO 147 XF=XAMGC/100. J=J+1 GO TO 101 XF=XAFM/100. J=J+1 GO TO 101 CONTINUE T1=0. T2=0.
112 151 110 130	GO TO 131 IF(NGC) 151,110,151 XAVGT=(X1(J)+X2(J)+X3(J))/3. GO TO 147 XF=XAMGC/100. J=J+1 GO TO 101 XF=XAFM/100. J=J+1 GO TO 101 CONTINUE T1=0. T2=0. T3=0.
112 151 110 130	GO TO 131 IF(NGC) 151,110,151 XAVGT=(X1(J)+X2(J)+X3(J))/3. GO TO 147 XF=XAMGC/100. J=J+1 GO TO 101 XF=XAFM/100. J=J+1 GO TO 101 CONTINUE T1=0. T2=0. T3=0. DO 140 I=1,3
112 151 110 130	GO TO 131 IF(NGC) 151,110,151 XAVGT=(X1(J)+X2(J)+X3(J))/3. GO TO 147 XF=XAMGC/100. J=J+1 GO TO 101 XF=XAFM/100. J=J+1 GO TO 101 CONTINUE T1=0. T2=0. T3=0. DO 140 I=1,3 T1=T1+X1(I)
112 151 110 130 131	GO TO 131 IF(NGC) 151,110,151 XAVGT=(X1(J)+X2(J)+X3(J))/3. GO TO 147 XF=XAMGC/100. J=J+1 GO TO 101 XF=XAFM/100. J=J+1 GO TO 101 CONTINUE T1=0. T2=0. T3=0. DO 140 I=1,3 T1=T1+X1(I) T2=T2+X2(I)
112 151 110 130	GO TO 131 IF(NGC) 151,110,151 XAVGT=(X1(J)+X2(J)+X3(J))/3. GO TO 147 XF=XAMGC/100. J=J+1 GO TO 101 XF=XAFM/100. J=J+1 GO TO 101 CONTINUE T1=0. T2=0. T3=0. DO 140 I=1,3 T1=T1+X1(I)
112 151 110 130 131	GO TO 131 IF(NGC) 151,110,151 XAVGT=(X1(J)+X2(J)+X3(J))/3. GO TO 147 XF=XAMGC/100. J=J+1 GO TO 101 XF=XAFM/100. J=J+1 GO TO 101 CONTINUE T1=0. T2=0. T3=0. DO 140 I=1,3 T1=T1+X1(I) T2=T2+X2(I) T3=T3+X3(I)
112 151 110 130 131	GO TO 131 IF(NGC) 151,110,151 XAVGT=(X1(J)+X2(J)+X3(J))/3. GO TO 147 XF=XAMGC/100. J=J+1 GO TO 101 XF=XAFM/100. J=J+1 GO TO 101 CONTINUE T1=0. T2=0. T3=0. DO 140 I=1,3 T1=T1+X1(I) T2=T2+X2(I) T3=T3+X3(I) X1AV=T1/3.
112 151 110 130 131	GO TO 131 IF(NGC) 151,110,151 XAVGT=(X1(J)+X2(J)+X3(J))/3. GO TO 147 XF=XAMGC/100. J=J+1 GO TO 101 XF=XAFM/100. J=J+1 GO TO 101 CONTINUE T1=0. T2=0. T3=0. DO 140 I=1,3 T1=T1+X1(I) T2=T2+X2(I) T3=T3+X3(I) X1AV=T1/3. X2AV=T2/3.
112 151 110 130 131	GO TO 131 IF(NGC) 151,110,151 XAVGT=(X1(J)+X2(J)+X3(J))/3. GO TO 147 XF=XAMGC/100. J=J+1 GO TO 101 XF=XAFM/100. J=J+1 GO TO 101 CONTINUE T1=0. T2=0. T3=0. DO 140 I=1,3 T1=T1+X1(I) T2=T2+X2(I) T3=T3+X3(I) X1AV=T1/3. X2AV=T2/3.
112 151 110 130 131	GO TO 131 IF(NGC) 151,110,151 XAVGT=(X1(J)+X2(J)+X3(J))/3. GO TO 147 XF=XAMGC/100. J=J+1 GO TO 101 XF=XAFM/100. J=J+1 GO TO 101 CONTINUE T1=0. T2=0. T3=0. DO 140 I=1,3 T1=T1+X1(I) T2=T2+X2(I) T3=T3+X3(I) X1AV=T1/3. X2AV=T2/3.
112 151 110 130 131	GO TO 131 IF(NGC) 151,110,151 XAVGT=(X1(J)+X2(J)+X3(J))/3. GO TO 147 XF=XAMGC/100. J=J+1 GO TO 101 XF=XAFM/100. J=J+1 GO TO 101 CONTINUE T1=0. T2=0. T3=0. DO 140 I=1,3 T1=T1+X1(I) T2=T2+X2(I) T3=T3+X3(I) X1AV=T1/3. X2AV=T2/3.

•	136
	_ACTIVITY MEASURFMENTS(CONT'D)
No.	XAVGT = (T1 + T2 + T3)/9.
- 7147	
146	
ſ	CALCULATION OF FIRST ORDER RATE CONSTANTS BASED ON
C	SURFACE AREA (UNITS ARE M/SEC)
C	FOLLOWED BY HALF-ORDER RATE CONSTANTS BASED ON
C C	SURFACE AREA (UNITS ARE (GMOLES/M)**1/2/SEC) FOLLOWED BY RATE CONSTANT BASED ON HALF ORDER IN
C	METHANOL AND HALF ORDER IN OXYGEN
C	RK1 IS BASED ON FRACTIONAL CONVERSION OBTAINED FROM
C	METHANOL RK2 IS BASED ON FRACTIONAL CONVERSION OBTAINED FROM
r C	WATER
с С	RK3 IS BASED IN FRACTIONAL CONVERSION OBTAINED FROM
C	FORMALDEHS DE
C	RKAV IS BASED ON AVERAGE FRACTIONAL CONVERSION
· ·	CT=PRES*1000./TEMP/0.0821
· ·	CT=1./CT
•	QOX=QA*0.209 YYA=SQRT(QM/2.)
	YYB=SORT(QOX)
	X=X1AV
	RK1 = ((-ALDG(1X))*(OFT/QM+0.5)-0.5*X)*OM/60./AREA* 1 CT
	RK4=2./AREA/60.*(1(1X)**0.5)*(QFT*0M*CT)**0.5
•	YYX=SQRT(QOX-0.5*QM*X)
·	YYZ=SQRT(QM/2.*(1X)) RK7=2.82843*QFT/AREA*CT*ALOG((YYZ-YYX)/(YYA-YYB))
	$1 / 60_{\bullet}$
 •	X=X2AV
	RK2 = ((-ALOG(1 - X)) * (QFT/QM + 0.5) - 0.5 * X) * QM/60./AREA*
	1 CT RK5=2./AREA/60.*(1(1X)**0.5)*(QFT*0M*CT)**0.5
	YYX=SQRT(QUX-0.5*QM*X)
	YYZ=SQRT(QM/2.*(1X))
	RK8=2.82843*0FT/AREA*CT*ALDG((YYZ-YYX)/(YYA-YYB)) 1 /60.
	1 /00. X=X3AV
• <u>,</u> , • •	RK3 =((-ALOG(1X))*(OFT/OM+0.5)-0.5*X)*OM/60./AREA*
	1 CT RK6=2./AREA/60.*(1(1X)**0.5)*(QFT*QM*CT)**0.5
	YYX=SORT(ODX-0.5+OM+X)
	$YYZ = SORT(OM/2 \cdot * (1 \cdot - X))$
	RK9=2-82843*QFT/AREA*CT*ALOG((YYZ-YYX)/(YYA-YYB))
	1 /60. X=XAVGT
-	RKAV = ((-ALOG(1X))*(0FT/0M+0.5)-0.5*X)*0M/60./ARFA*
•	
•	
.e	

•

1	• • •	· ·	· .	• •		137
		1 A. A.	•	•	· · ·	
	ACTIVIT	TY MEASUREN	IENTS (C	ONT D)		•
				· · · · ·		•
· 1	CT.			* 1057*01*0		· ,
	RKB =2./AREA/ YYX=SDRT(00)			*(UF *\JM*C)**()•5	
	YYZ=SORT(OM/					· · ·
•	RKC=2.82843	8 ≭QFT/AREA ≉	CT*ALOG((Y	YZ-YYX)/(YY	(A-YYB))	· .
1	/60.		· .	¥	· ·	
	WRITE(6, 49)			•	•	
	WRITF(6,148)					
•	WRITE(6,160)				•	·
	WRITE(6,161)					
	FORMAT(/5X,					. ,
160	FORMAT(5X, FORMAT(5X, !	1/2 UKDEK	1 1 1 1 1 3 7 C	CI3.0391C1°14 CI2 2 1C11	21	
	FOR MAT(/, 5X		IRATE CO		51 /	an I in the second
	5X, BASED ON				ก้ระหงกร์	9
	AVEBAGE!)	I PLITANUL	MATEN	TONIAL		•
~	GO TO 150		· · ·		•	
998	CALL EXIT					
	END					1. I. S. J.
•						. '
· • •	a	;	a 1		•	
. •			• •		· · · ·	
	• * · · · · · · · · · · · · · · · · · ·					•
					1. M.	· .
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	•			• •		
· .		A 1 (1)	· · · · ·	•	••••	• •

D-II Listing of Kinetic Results

KINETICS OF METHANNL OXIDATION

· . -----F

RUNS NUMBER 168 TO 176 CATALYST SAMPLE NUMBER 1 FIVE GC FEED ANALYSES AND THREE GC PRODUCT ANALYSES AIR FEED RATE (CC(STP)/MIN) = 30.29.0METHANOL FEED RATE (CC(LIQUID)/MIN) = 0.26250 REACTOR PRESSURE (TORR) = 861.5TEMPERATURE (KELVIN) = 536.0CATALYST CHARGE (GRAMS) = 21.06CATALYST SURFACE AREA (SO.M/G) = 3.78 FEED AND PRODUCT COMPOSITIONS (MOLE PER CENT) TYPE OF ANALYSIS MITROGEN OXYGEN METHANOL WATER CH20 FEED (FLOW RATES) 75.47 19.94 4.58 FEED(G.C.) 19:90/ 75.34 4.74 0.000 FEED(G.C.) 75.32 19.-90 4.77 0.000 FEED(G.C.) 75.21 19.87 4.90 0.000 FEED(G.C.) 75.44 19.93 4.61 0.000 FEED(G.C.) 75.43 19.93-4.62 0.000 AVG. FEED (G.C.) 75.35 19,91 4.73 0.000 AVERAGE FEED " 75.41 19.92 4.65 PRODUCT (G.C.) 74.66 18.35 2.45 2.18 2.34 PRODUCT (G.C.) 74.64 18.38 2.39 2.10 2.46 PRODUCT (G.C.) 74.59 18,99 2.27 1.94 2.19 AVERAGE PRODUCT 74.63 18.57 2.37 2.07 2.33 FRACTIONAL CONVERSION FEED COMPOSITION BASED ON PRODUCT G.C. ANALYSES OF BASED ON METHANOL WATER FORMALDEHYDE -

 FEED FLOW RATES
 0.475
 0.458
 0.516

 AVG GC ANALYSIS
 0.492
 0.443
 0.499

 GC + FEED RATES
 0.484
 0.450
 0.507

• AVERAGE FRACTIONAL CONVERSION = 0.480

RATE CONSTANTS BASED ON METHANOL	WATER	FORMALDEH DE AVERAGE
1ST ORDER 0.766E-06	0.693E-06	0.821E-06 0.759E-06
1/2 ORDER 0.704E-06	0.647E-06	0.746E-06 0.699E-06
OXYGEN 0.315E-06	0.289E-06	0.334E-06 0.313E-06

KINETICS OF METHANOL OXIDATION RUNS NUMBER 177 TO 182 CATALYST SAMPLE NUMBER 1. THREE GC FEED ANALYSES AND THREE GC PRODUCT ANALYSES AIR FEED RATE (CC(STP)/MIN) = 3051.0 METHANOL FEED RATE (CC(LIQUID)/MIN) = 0.26250 REACTOR PRESSURE (TORR) = 874.2 TEMPERATURE (KELVIN) = 536.0. CATALYST CHARGE (GRAMS) = 21.06 CATALYST SURFACE AREA (SO.M/G) = 3.78FEED AND PRODUCT COMPOSITION'S (MOLE PER CENT) TYPE OF ANALYSIS NITROGEN OXYGEN METHANOL WATER CH20 6 . . 75. FEED (FLOW RATES) 19.94 4.54 FEED(G.C.) 75.63 19.98 4.38 0.000 FEED(G.C.) 75.53 19.95 -4-50 0.000 FEED (G.C.) 75.58 19.97 4.43 0.000 AVG. FEED (G.C.) 75.58 19.97 4.44 0.000 ÷ _11 AVERAGE FEED 75.54 19.96 4.49 . PRODUCT (G.C.) . 74.69 18.71 2.31 1.97 2.29 PRODUCT (G.C.) 74.66 18.89 2.23 1.95 2.24 . PRODUCT (G.C.) 27.4.72 18.68 2.38 2.03 2.18 AVERAGE PRODUCT 74.69 18.76 2.31 1.98 2.24 . . . FRACTIONAL CONVERSION FEED COMPOSITION BASED ON PRODUCT G.C. ANALYSES OF BASED ON METHANOL WATER FORMALDEHYDE . . . FEED FLOW RATES 0.486 0.441 0.498 AVG GC ANALYSIS 0.474 0.451 0.510 GC + FEED RATES 0.480 0.446 0.504 AVERAGE FRACTIONAL CONVERSION = 0.477 RATE CONSTANTS BASED ON METHANOL WATER FORMALDEHYDE AVERAGE \sim_{1} IST ORDER 0.752E-06 0.679F-06 0.806E-06 0.744E-06 1/2 ORDER 0.695E-06 0.637E-06 0.737E-06 0.689F-06 **DXYGEN** 0:309E-06 0.283E-06 0.327E-06 0.306E-06

· · ·

RUNS NUMBER 183 TO 189 CATALYST SAMPLE NUMBER 1 THREE GC_FEED_ANALYSES AND FOUR GC PRODUCT ANALYSES AIR FEED RATE (CC(STP)/MIN) \$ 30.51.0 METHANOL FEED RATE (CC(LIQUID)/MIN) = 0.26250 REACTOR PRESSURE (TORR) = 874.0 TEMPERATURE (KELVIN) = 536.0 CATALYST CHARGE (GRAMS) = 21.06CATALYST SURFACE AREA (SO.M/G) = 3.78 FEED AND PRODUCT COMPOSITIONS (MOLE PER CENT) TYPE OF ANALYSIS NITROGEN DXYGEN METHANOL WATER CH20 - **1** e 1 FEED (FLOW RATES) 75.50 . 4.54 .19.94 PEED(G.C.) 75.76 20.01 4.21 01000 FEED (G.C.) 75.58 19.97 4.44 0.000 FEED(G.C.) 75.82 20.03 4.13 0.000 AVG. FEED (G.C.) 75.72 20.00 4.26 0..000 AVERAGE FEED 5.61 19.97 4.40 PRODUCT (G.C.) 74.65 ... 19.51 2.11 1.68 2.03 PRODUCT (G.C.) 74.65 19.40 2.11 1.68 2.13 PRODUCT (G.C.) 74.64 19.48 ° 2.07 1.74 2.05 PRODUCT (G.C.) 74,66 19.22 2.13 1.94 2.02 1. 25 AVERAGE PRODUCT 74.65 19.40 2.11 1.76 •06 FRACTIONAL CONVERSION FEED COMPOSITION BASED ON PRODUCT G.C. ANALYSES OF BASED ON METHANOL WATER FORMALDEHYDE FEED LOW RATES 0.530 0:391 0.457 AVG GO ANALYSIS 0.499 3.417 0.488 GC + FEED RATES 0.515 0.403 0.472 AVERAGE FRACTIONAL, CONVERSION = 0.464 RATE CONSTANTS BASED ON METHANOL FORMALDEHYDE WATER AVERAGE с. н. _н.: 1ST ORDER 0.736F-06 0.716E-06 1/2 ORDER 0.756E-06 0.568E-16 0.682E-06 0.667E-06 OXYGEN 0.336E-08 0.252E-06 0.303F-06 0.296E-06

KINETICS OF METHANOL OXIDATION RUNS NUMBER 190 TO 193 CATALYST SAMPLE NUMBER 1 TWO GC FEED ANALYSES AND TWO GC PRODUCT ANALYSES AIR FEED RATE (CC(STP)/MIN) = 30.48.0° METHANOL FEED RATE (CC(LIQUID)/MIN) = 0.26250 REACTOR PRESSURE (TORR) = 872.7TEMPERATURE (KELVIN) = 536.0 CATALYST CHARGE (GRAMS) = 21.06CATALYST SHRFACE AREA (SO.M/G) = 3.78 FEED AND FRODUCT COMPOSITIONS (MOLE PER CENT) TYPE OF ANALYSIS NITROGEN OXYGEN METHANOL WATER CH20 FEED (FLOW RATES) 75.49 19.94 4.55 FEEDIG_C. 75.55 19.96 4.48 0.000 FEED(G.C.) 75.44 19.93 4.61 0.000 AVG. FEED (G.C.) 75.50 19.94 4. 54 0.000 10 AVERAGE FEED 75.49 19.94 PRODUCT (G.C.) 74.55 19.45 2.00 1.91 2.07 PRODUCT (G.C.) 74.65 19.18 2.26 1.78 2.11 AVERAGE PRODUCT 74.60 19.31 2.09 2.13 1.84 FRACTIONAL CONVERSION FEED COMPOSITION BASED ON PRODUCT G.C. ANALYSES OF BASED ON WATER FORMALDEHYDE METHANOL FEED FLOW RATES 0.526 0.410 0.464 AVG GC ANALYSI'S 0.525 0.410 0.464 GC + FEED RATES 0.526 0,410 0.464 AVERAGE FRACTIONAL CONVERSION = 0.467 RATE CONSTANTS BASED ON METHANOL WATER FORMALDEHYDE AVERAGE 12 1ST ORDER 0.859E-06 * 0.606E-06 0.718E-06 0.723E-06 1/2 ORDER 0.776E-06 0.578F-06 0.668E-06 0.672E-06 OXYGEN 0.345E-06 0.256E-06 0.297E-06 0.299E-06

Ľ

RUNS NUMBER 69 TO 74 CATALYST SAMPLE NUMBER 3 ONE GC FEED ANALYSIS AND FIVE GC PRODUCT ANALYSES AIR FEED RATE (CC(STP)/MIN) = 1788.0METHANOL FEED RATE (CC(LIQUID)/MIN) = 0.26250REACTOR PRESSURE (TORR) = 769.5TEMPERATURE (KELVIN) = 533.0CATALYST CHARGE (GRAMS) = 20.92CATALYST SURFACE AREA (S0.M/G) = 3.31

FEED AND PRODUCT COMPOSITIONS (MOLE PER CENT)

TYPE OF ANALYSIS NITROGEN OXYGEN METHANOL WATER CH20

FEED (FLDW RATES) FEED(G.C.) AVG. FEED (G.C.)	73.15 73.01 73.01	19.32 19.29 19.29	7.52 7.52 7.52 7.52	0.167 0.167	•
AVERAGE FEED	73.08	19.31	7.52		•
PRODUCT (G.G.) PRODUCT (G.C.) PRODUCT (G.C.) PRODUCT (G.C.) PRODUCT (G.C.)	72.07 71.90 72.00 72.01 71.95	16.87 17.35 16.07 -16.41 16.85	4.46 3.97 4.28 4.30 4.12	3.38 3.45 3.92 3.55 3.76	3.19 3.30 3.70 3.71 3.29
AVERAGE PRODUCT	71.99	16.71	4.23	4 41	D

ODUCT 71.99 16.71 4.23 3.61 3.44

FRACTIONAL CONVERSION

t

a

FEED COMPOSITION BASED ON PRODUCT G.C. ANALYSES OF METHANOL WATER FORMALDEHYDE

FEED FLOW RATES		e de la complete de l		
AVG GC ANALYSIS	0.428	0.467	0.466	ų
GC + FEED RATES	0.428	0.467	0.466	. ,
	9.0420	0.467	0•466	

AVERAGE FRACTIONAL CONVERSION = 0.453

RATE CONS BASED ON	TANTS METHANNL	WATER	FORMALDEHYDE	AVERAGE	
1/2 ORDER	0.506E-0 0.577E-0 -9-279E-06	0.570E-06 0.639E-06 0.309E-06	0.637F-06	0.5475-04	2
· /		n de la companya de l La companya de la comp			متأديم

: .

RUNS NUMBER 75 TO 83 CATALYST SAMPLE NUMBER 3 FOUR, GC FEED ANALYSES AND FIVE GC PRODUCT ANALYSES AIR FEED RATE (CC(STP)/MIN) = 2499.0METHANOL FEFD RATE (CC(LIQUID)/MIN) = 0.26250 REACTOR PRESSURE (TORR) = 821.3TEMPERATURE (KELVIN) = 533.0 CATALYST CHARGE (GRAMS) = 20.92 CATALYST SURFACE AREA (SO.M/G) = 3.31 FEED AND PRODUCT COMPOSITIONS (MOLE PER CENT) TYPE OF ANALYSIS NITROGEN DXYGEN METHANOL WATER CH20 FEED (FLOW RATES) 74.75 19.75 5.49 FEED (G.C.) 74.42 19.66 5.74 0.162 FEED(G.C.) 74.61 . 19.71/ 5.50 0.162 FEED (G.C.) 74.71 19.74 5.38 0.164 FEED(G.C.) 74.54 19.69 5.59 0.167 AVG. FEED (G.C.) 74.57 19.70 0.164 AVERAGE FEED 74.66 19.72 5.52 PRODUCT (G.C.) . 73.88 18.84 3.15 2.24 1.87 PRODUCT (G.C.) 73.99 18.21 3.45 2.35 1.97 PRODUCT (G.C.) 73.91 18.59 3.22 2.14 2.12 PRODUCT (G.C.) 73.95 18.18 3.35 2.45 2.04 PRODUCT (G.C.) 73.93 18.19 3.29 2.36 2.20 AVERAGE PRODUC 73.93 18.41 3.29 2.31 2.04 FRACTIONAL CONVERSION FEED COMPOSITION BASED ON PRODUCT G.C. ANALYSES OF BASED ON METHANOL WATER FORMALDEHYDE FEED FLOW RATES 0.394 0.395 0.375 AVG GC ANALYSIS 0.400 0.371 GC + FEED RATES 0.397 0.393 0.373 AVERAGE FRACTIONAL CONVERSION = 0.388 RATE CONSTANTS BASED ON METHANOL-WATER **FORMALDEHYDE** AVERAGE 1ST ORDER 0.585E-06 1.577E-16 0.541E-06 0.568F-06 1/2 ORDER 0.599E-06 0.592E-06 0.559E-06 0.583E-06 OXYGEN 0.275E-06 7.272E-76 0.256E-06 0.268E-06

RUN NUMBERS 90 TO 98 CATALYST NUMBER 3 FIVE-GC FFED ANALYSES AND FOUR GC PRODUCT ANALYSES AIR FEED RATE (CC(STP)/MIN) = 3746.0METHANOL FEED RATE (CE(LIQUID)/MIN) = 0.26250REACTOR PRESSURE (TORR) = 850.0TEMPERATURE (KELVIN) = 533.0CATALYST CHARGE (GRAMS) = 20.95CATALYST SURFACE AREA (S0.M/G) = 3.31

FEED AND PRODUCT COMPOSITIONS (MOLE PER CENT).

TYPE OF ANALYSIS NITROGEN OXYGEN METHANOL MATER CH20

					0
FEED (FLOW RATES FEED (G.C.) FEED (G.C.) FEED (G.C.) FEED (G.C.) FEED (G.C.) FEED (G.C.) AVG. FEED (G.C.)	75.49 75.24 74.97 75.45 75.29 75.16 75.22	19.94 19.88 19.80 19.93 19.89 19.85 19.85	4.55 4.70 5.05 4.43 4.65 4.81 4.73	0.167 0.166 0.165 0.165 0.164 0.160 0.165	
AVERAGE EEED	75.36	19.91	4.64		
PRODUCT (G.C.) PRODUCT (G.C.) PRODUCT (G.C.) PRODUCT (G.C.)	74 79 74 86 74 80 74 80	18.81 18.97 18.95 19.21	2.75 2.92 2.76 2.77	1.97 1.69 1.72 1.72	1.65 1.54 1.73 1.48
AVERAGE PRODUCT	74.81	18.99	2.80	1.78	1.60

FRACTIONAL CONVERSION

FEED COMPOSITION	BASED ON PRIMUCT G.C. ANALYSES OF	
BASED ON	METHANOL WATER FORMALDEHYDE	
•	THE PRICE CONMALDERIDE	

AVG GC ANALYSIS GC + FEED RATES	0.378 0.401 0.390	0.357 0.344 0.351	0.354 0.341 0.348

AVERAGE FRACTIONAL CONVERSION = 0.363

RATE CONSTANTS BASED ON METHANOL	WATER	FORMALDEHYDE	AVERAGE
IST ORDER 0.665E-06 1/2 ORDER 0.633E-06 DXYGEN 283E-06	-7.58EE-76	0.575E-06 0.556E-06	0.607E-06 0.583E-06

RUNS NUMBER 99 TO 105 CATALYST SAMPLE NUMBER 3 FOUR GC FEED ANALYSES AND THREE GC PRODUCT ANALYSES AIR FEED RATE (CC(STP)/MIN) = 3546.0 METHANDL FEED RATE (CC(LIQUID)/MIN) = 0.26250 REACTOR PRESSURE (TORR) = 916.3 TEMPERATURE (KELVIN) = 533.0 CATALYST CHARGE (GRAMS) = 20.92 CATALYST SURFACE AREA (SO.M/G) = 3.31 FEED AND PRODUCT COMPOSITIONS (MOLE PER CENT) TYPE OF ANALYSIS MITROGEN NAVGEN METHANOL WATER CH2D. FEED (FLOW RATES) 75.98 20.07 3.93 FEED(G.C.) 76.19 27.13 3.49 0.179FEED (G.C.) 75.96 20.07 3.78 0.180 FEED(G.C.? 75.83 20.03 3.94 0.181 FEED (G.C.) 75.91 20.05 3.84 0.181 AVG. FEED (G.C.) 75.97 20.07 3.76 0.180 AVERAGE FEED 75.98 20.07 3.85 PRODUCT (G.C.) 75.35 19.80 2.17 1.41 1.24 · CPRODUCT (G.C.) 75.43 19.34 2.38 1.55 1.27 PRODUCT (G.C.) 75.41. . 19. 40 2.32 1.44 1.41 AVERAGE PRODUCT. 75.40 19.51 - 2.29 1.47 1.31 FRACTIONAL CONVERSION FEED COMPOSITION BASED ON PRODUCT G.C. ANALYSES OF BASED ON METHANOL WATER FORMALDEHYDE FEED FLOW RATES 0.412 0.330 0.335. AVG GC ANALYSIS 0.386 0.345 0.350 GC + FEED RATES 0.399 .0.337 0.342 AVERAGE FRACTONAL CONVERSION = 0.360 RATE CONSTANTS BASED ON METHANOL WATER FORMALDEHYDE AVERAGE 1ST ORDER 0.737E-06 0.595E-06 0.605E-06 0.644E-06 1/2 ORDER 0.674E-06 7.558E-06 0.567E-06 0.5998-06 OXYGEN 0.289E-06 0.239E-06 0. 🗰 3 E-- 06 0.257E-06

١

Y.

RUNS NUMBER 106 TO 112 CATALYST SAMPLE NUMBER 3 FOUR GC FEED ANALYSES AND THREE GC PRODUCT ANALYSES AIR FEED RATE (CC(STP)/MIN) = 3061.0 METHANOL FEED RATE (CC(LIOUID)/MIN) = 0.26250 REACTOR PRESSURE (TORR) = 858.8 TEMPERATURE (KELVIN) = 552.0 CATALYST CHARGE (GRAMS) = 20.92 CATALYST SURFACE AREA (S0.M/G) = 3.31

1.

FEED AND PRODUCT COMPOSITIONS (MOLE PER CENT)

			-	•	
TYPE OF ANALYSIS	NITROGEN	OXYGEN	METHANOL	WATER	CH2N
FEED (FLOW RATES)	75.51	19.95	4.53		· · · ·
$FEED(G_{\bullet}C_{\bullet})$	75.18			0.194	
	75.45		4.40		
			4.29		••
FEED (G.C.)	75.35		4.53		
AVG. FEED (G.C.)		19.91		0.196	
AVERAGE FEED	75.45	19.93	4.51		•
PRODUCT (G.C.)	74.63	17.76	2.13	2.87	2.59
PRODUCT (G.C.)			1.82		2.55
PRODUCT (G.C.)	74.50		1.78		
AVERAGE PRODUCT	74.55	18.32	1.91	2.64	2.56
FRACTIONAL CONVER	SION	-		(
FEED COMPOSITION	BASED		CT G.C. /	NALYS	
BASED ON			TER FORM		
					, n C
FEED FLOW RATES	0.57	72 0.	546 0	.573	-
AVG GC ANALYSIS	0.56		550 0	.578	
GC +, FEED RATES	0.57			.576	•
		-			-
AVERAGE FRACTIONAL	. CONVERSI	N =).	565		•
RATE CONSTANTS					1 ·····
BASED ON METHANC		TED			AVEDACE
DASEN UN METRANU	WA	TER	FORMALDE		AVERADE
IST ORDER 0.117E-	-0.5° 0.1	10 5-0 5	0 1105	-05 0	0.115E-05
		63 E-0.6			•100E-05
		· · ·			
OXYGEN 0.462E-	-0.0 , 0.4	-39F-06	0.468E	-00 (•456E-06

· ····

RUNS NUMBER 113 TO 117 CATALYST SAMPLE NUMBER 3 TWO GC FEED ANALYSES AND THREE GC PRODUCT ANALYSES AIR FEED RATE (CC(STP)/MIN) = 2739.0 METHANOL FEED RATE (CC(LIQUID)/MIN) = 0.26250 REACTOR PRESSURE (TORR) = 854.0 TEMPERATURE (KELVIN) = 571.0CATALYST CHARGE (GRAMS) = 20.92 CATALYST SURFACE AREA (SO.M/G) = 3.31FEED AND PRODUCT COMPOSITIONS (MOLE PER CENT) TYPE OF ANALYSIS NITROGEN OXYGEN METHANOL WATER CH20 FEED (FLOW RATES) 75.11 19.84 5.04 74.69 FEED(G.C.) 19.73 5.38 0.188 FEED(G.C.) 74.70 19.73 5.37 0.184 AVG. FEED (G.C.) 74.69 19.73 0.186 5.38 AVERAGE FEED 74.90 19.79 5.21 PRODUCT (G.C.) 73.60 17.36 1.09 4.01 3.92. PRODUCT (G.C.) 73.65 16.24 1.23 4.47 4.39 PRODUCT (G.C.) 73.64 15.84 1.20 4.70 4.60 شد و مع AVER AGE BRODUCT 16.48 73.63 1.17 4.39 4.30 FRACTIONAL CONVERSION . FEED COMPOSITION BASED ON PRODUCT G.C. ANALYSES OF BASED ON METHANOL WATER FORMALDEHYDE FEED FLOW RATES 0.762 0.85.3 0.873 AVG GC ANALYSIS 0.776 0.799 0.817 GC + FEED RATES 0.769 0.825 0.844 AVERAGE FRACTIONAL CONVERSION = 0.813. RATE CONSTANTS BASED ON METHANOL WATER FORMALDEHYDE AVERAGE 1ST ORDER 0.191E-05 0.229E-05 0.244E-05 0.219E-05 1/2 ØRDER 0.147E-05 0.165E-05 0.1728-05 0.161E-05 **DXYGEÑ** 0.696E-06 0.783E-06 0.816E-06 0.763E-06

/

147

· <

RUNS NUMBER 118 TO 122 CATALYST SAMPLE NUMBER 3 THREE GC FEED ANALYSES AND TWO GC PRODUCT ANALYSES AIR FEED RATE (CC(STP)/MIN) = 3421.0 METHANOL FEED RATE (CC(LIOUID)/MIN) = 0.26250 REACTOR PRESSURE (TORR) = 884.5 TEMPERATURE (KELVIN) = 574.0 CATALYST CHARGE (GRAMS) = 20.92 CATALYST SURFACE AREA (S0.M/G) = 3.31

FEED AND PRODUCT COMPOSITIONS (MOLE PER CENT) TYPE OF ANALYSIS NITROGEN OXYGEN METHANOL WATER CH20

FEED (FLOW RATES) 75.87 20.04 4.07 FEED(G.C.) 75.56 19.96 4.30 0.161 FEED (G.C.) 75.61 19.97 4.25 0.157 75.53 FEED(G.C.) 19.95 4.35 0.157 AVG. FEED (G.C.) 75.57 19.96 .4.30 0.158 AVERAGE FEED 75.72 20.00 4.19 75.64 PRODUCT (G.C.) 19.17 3.56 0.96 0.65 PRODUCT (G.C.) 75.62 19.35 3.51 0.88 0.62 AVERAGE PRODUCT 75.63 19.26 3.53 0.92 0.63

FRACTIONAL CONVERSION

FEED COMPOSITIONBASED ON PRODUCT G.C. ANALYSES OFBASED ONMETHANOL WATER EQRMALDEHYDE

 FEED FLOW RATES
 0.130
 0.188
 0.157

 AVG GC ANALYSIS
 0.174
 0.179
 0.148

 GC + FEED RATES
 0.153
 0.183
 0.152

AVERAGE FRACTIONAL CONVERSION = 0.163

RATE CONSTANTS WATER FORMAL DEHYDE AVERAGE BASED ON METHANOL 1ST ORDER 0.226E-06 0.277E-06 0.226E-06 0.243E-06 1/2 ORDER 0.231E-06 0.281E-06 0.232F-06 0.248E-06 OXYGEN 0.980E-07 0.119E-06 0.982E-07 0.105E-06

RUNS NUMBER 123 TO 130 CATALYST SAMPLE NUMBER 3 FIVE GC FEED ANALYSES AND THREF GC PRODUCT ANALYSES AIR FEED RATE (CC(STP)/MIN) = 30.96.0 METHANOL FEED RATE (CC(LIOUID)/MIN) = 0.26250 REACTOR PRESSURE (TORR) = 864.1 TEMPERATURE (KELVIN) = 513.0 CATALYST CHARGE (GRAMS) = 20.92 CATALYST SURFACE AREA (S0.M/G) = 3.31

FEED AND PRODUCT COMPOSITIONS (MOLE PER CENT)

TYPE OF ANALYSIS NITROGEN OXYGEN METHANOL WATER CH20

•					•
FEED (FLOW RATES)	75.55	19.96	4.48		
FEED(G.C.)	75.48	19.94	4.41	0.159	
FEED(G.C.)	75.52	19.95	4.35	0.160	
FEED(G.C.)	75.60	19.97	4.26	0.160	
FEED(G.C.)	75.29	19.89	- 4.64	0.159	•
FEED(G.C.)	75.28	19.89	4.66 -	0.159	
AVG. FEED (G.C.)	75.43	19.93	4.46	0.159	•
AVERAGE FEED	75.49	19.94	4.47		•
PRODUCT (G.C.)	75.20	19.10	3.55	1.18	0.95
PRODUCT (G.C.)	75.16	19.12	3.42	1.27	1.01
PRODUCT (G.C.)	⊲ 75.16	19.15	3.42	1.30	0.94
			· · · · · ·		· ·

AVERAGE PRODUCT 75.17 19.13 3.46

FRACTIONAL CONVERSION

4

FEED COMPOSITIONBASED ONPRODUCT G.C. ANALYSES OFBASED ONMETHANOL WATER FORMALDEHYDE

1.25

0.96 91

FEED FLOW RATES	0.223 0.245	0.216.
AVG GC ANALYSIS	0.220 0.246	- 0.217
GC + FEED RATES	0.221 0.246	0.217

AVERAGE FRACTIONAL CONVERSION = 0.228

	RATE CONST	ANTS			
,	BASED ON		WATER	FORMALDEHYDE	AVERAGE
	1/2 ORDER	0.324E-06 0.334E-06 0.145E-06	7.365E-76 0.374E-06 7.162E-76	0.316E-06 0.327E-06 0.141E-06	0.345F-06

. .

RUNS NUMBER 131 TO 139 CATALYST SAMPLE NUMBER 3 FOUR GC FEED ANALYSES AND FIVE GC PRODUCT ANALYSES AIR FEED RATE (CC(STP)/MIN) = 3799.0 METHANOL FEED RATE (CC(LIQUID)/MIN) = 0.26250 REACTOR PRESSURE (TORR) = 864.7TEMPERATURE (KELVIN) = 524.0 CATALYST CHARGE. (GRAMS) = 20.92 CATALYST SURFACE AREA (\$0.M/G) = 3.31

FEED AND PRODUCT COMPOSITIONS (MOLE PER CENT)

TYPE OF ANALYSIS NITROGEN OXYGEN METHANOL WATER CH2O

FEED (FLOW RATES) FEED(G.C.) FEED(G.C.) FEED(G.C.) FEED(G.C.) AVG. FEED, (G.C.)) AVERAGE FEED	75.55 75.27 75.38 75.21 75.35 75.30 75.43	19.96 19.88 19.91 19.87 19.91 19.89 19.93	4.48 4.67 4.53 4.73 4.56 4.62 4.55	0.160 0.159 0.171 0.169 0.164	
PRODUCT (G.C.) PRODUCT (G.C.) PRODUCT (G.C.) PRODUCT (G.C.) PRODUCT (G.C.)	74.97 74.95 75.16, 75.12 75.14	19.68 19.62 18.77 19.15 18.84	2.99 2.92 3.50 3.39 3.44	1.24 1.39 1.46 1.24 1.52	1.10 1.11 1.09 1.08 1.04
AVERAGE PRODUCT	75.07	19.21	3.25	1.37	80.41

FRACTIONAL CONVERSION

FEED COMPOSITION BASED ON PRODUCT G.C. ANALYSES OF BASED ON. METHANOL WATER FORMALDEHYDE

FEED FLOW RATES			
	0.269	0.271	0.243
AVG GC ANALYSIS	0.292	0.262	0.235
GC + FEED RATES	0.281	0.267	0.239

AVERAGE FRACTIONAL CONVERSION = 0.262

RATE CONSTANTS

BASED ON	METHANOL	WATER	FORMALDEHYDE	AVERAGE
1/2 ORDER		0.410E-76 0.412E-06 0.181E-06	0.362E-06 0.367E-06 0.161E-06	0.405F-06

150

1)

KINETICS OF METHANOL OXIDATION RUNS NUMBER 140, TO 146 CATALYST SAMPLE NUMBER 3 THREE GC FEED ANALYSES AND FOUR GC PRODUCT ANALYSES AIR FEED RATE (CC(STP)/MIN) = 3087.0 METHANOL FEED RATE (CC(LIQUID)/MIN) = 0.26250 REACTOR PRESSURE (TORR) = 876.4 TEMPERATURE (KELVIN) = 544.0 ··· CATALYST CHARGE (GRAMS) = 20.92 CATALYST SURFACE AREA (SO.M/G) = 3.31FEED AND PRODUCT COMPOSITIONS (MOLE PER CENT) TYPE OF ANALYSIS NITROGEN OXYGEN METHANOL WATER CH2D FEED (FLOW RATES) 75.54 19.95 4.49 FEED (G.C.)-75.33 19.90 4.59 0.159 FEED(G.C.) 75.66 19.99 4.18 0.165 FEED(G.C.) 75.23 19.87 4:71 0.163 -AVG. FEED (G.C.) 75.41 4.49 19.92 0.162 AVERAGE FEED 75.47 19.94 4.49 PRODUCT (G,C.) 74.71 17.92 2.26 2:.66 2.42 PRODUCT (G.C.) 74.76 17.99 2:39 2.46 .2.37 PRODUCT (G.C.) 74.81 17.57 **e** 2.53 2.68 2.39 PRODUCT (G.C.) 17,73 74.74 · 2.33 2.74 2.44 <u>۳</u> AVERAGE PRODUCT 74.75 17.81 2.38 2.63 -2.40 FRACTIONAL CONVERSION FEED COMPOSITION BASED ON PRODUCT G.C. ANALYSES OF BASED ON METHANOL WAJER FORMALDEHYDE FEED FLOW RATES. 0.465 0.557 0.542 AVG GC ANALYSIS 0.465 0.557 0.542 GC + FEED RATES 0.465 0.557 0.542 AVERAGE FRACTIONAL CONVERSION = 0.521 RATE CONSTANTS

BASED ON	METHANOL	WATER	FORMALDEHYDE	AVERAGE
	0.845E-06 0.778E-06 0.347E-06	0.110E-05 0.971E-06 0.435E-06	0.105E-05 0.936E-06 0.419E-06	0.893E-06

*

÷,

RUNS NUMBER 152 TO 155 CATALYST SAMPLE NIJMBER 3 GC FEED ANALYSES AND TWO TWO GC PRODUCT ANALYSES AIR FEED RATE (CC(STP)/MIN) = 3060.0 METHANOL FEED RATE (CC(LIQUID)/MIN) = 0.26250 REACTOR PRESSURE (TORR) = 879.5 . . TEMPERATURE (KELVIN)- = 568.0 CATALYST CHARGE (GRAMS) = 20.92 CATALYST SURFACE AREA (SO.M/G) = 3 1

FEED AND PRODUCT COMPOSITIONS (MOL PER CENT)

TYPE OF ANALYSIS NITROGEN DXYGEN METHANOL WATER CH2D

· · · · · · · · · · · · · · · · · · ·					
FEED (FLOW RATES)	75.51	19.95	4.53		
$FEED(G_{\bullet}C_{\bullet})$	-75.18	19.86		-0.184	
FEED(G.C.)	75.32	19.97	4.58	0.183	
AVG. FEED (G.C.)	75.25	19.88	4.67	0.183	\$
AVERAGE FEED	75.38	19.91	4.60	_	••••
PRODUCT (G.C.) PRODUCT (G.C.)	74.29 74.33	16.69 16.19		3.81 4.11	3.89 3.91
AVERAGE PRODUCT	74.31	16.44	1.36	3.96	3.90

FRACTIONAL CONVERSION Ś - ---

6	•				·
FEED COMPOSITION	BASED ON PI		C C .	41141	
BASED ON	METHANO			ANALYSES	UF
	METHANOL	WATER	FOR	MALDEHYD	IE ST
FEED FLOW RATES	0.694	0 951	· · · ·	0 077	•

AVG GC ANALYSIS GC + FEED RATES	0.826 0.838	
		0.000

AVERAGE FRACTIONAL CONVERSION = 0.800

1. 2

RATE CONSTANTS . *

BASED ON	METHANOL	WATER	FORMALDEHYDE	AVERAGE
1ST DRDER 1√2 ORDER-		0.256E-05	0.281E-05	0.226E-05

0.609E-06		0.1865-05	
	0.0145-00	0.861E-06	0.752E-06
 the second se			

KINETICS OF METHANOL OXIDATION RUNS NUMBER 156 TO 162 CATALYST SAMPLE NUMBER 3 FOUR GC FEED ANALYSES AND THREE GC PRODUCT ANALYSES AIR FEED RATE (OC(STP)/MIN) = 3052.0 METHANOL FEED RATE (CC(LIQUID)/MIN)' = 0.26250 REACTOR PRESSURE (TORR) = 856.8 TEMPERATURE (KELVIN) = 519.0CATALYST CHARGE (GRAMS) = 20.92 GATALYST SURFACE AREA (SO.M/G) = 3.31) FEED AND PRODUCT COMPOSITIONS (MOLE PER CENT) NITROGEN OXYGEN METHANOL WATER CH20 TYPE OF ANALYSIS 19.94 4.54 75.50 FEED (FLOW RATES) 19.99 4.18 0,162 75,65 FEED(G.C.) 0,163 75.56 19.96 4.31 FEED (G.C.) 4.37 0,166 19.95 75.50 FEED(6.C.) 0.165 19.97 4.24 75.60 FEED (G.C.) 0.164 19.97 4.28 AVG. FEED (G.C.) 75.58 4.41 75.54 19.96 AVERAGE FEED • 3.23 1.31 1.18 19.19 PRODUCT (G.C.) 75.06 1.22 1.13 75.12 19.13 3.38 PRODUCT (G.C.) 1.17 75.07 19.18 3.25 1.31 PRODUCT (G.C.) Ø 1.28 1.16 3.29 - 75.08 19.17 AVERAGE PRODUCT FRACTIONAL CONVERSION BASED ON PRODUCT G.C. ANALYSES OF FEED COMPOSITION METHANOL WATER FORMALDENYOE BASED ON 0.257 0.271 .0.247 FEED FLOW RATES 0.273 0.227 0.263 AVG GC ANALYSIS 0.250 0.255 0.265 GC + FEED RATES AVERAGE FRACTIONAL CONVERSION = 9.256 RATE CONSTANTS SORMAL DEHYDE AVERAGE. BASED ON METHANOL WATER 0.383E-0.6 0.402E-06 0.386E-06 1ST: ORDER 0.374E-06 0.407E-06 0.392E+06).390 E-06 1/2 ORDER 0.381E-06 0.178E-06 0.172E-06 4.5 0.167E-06 0.171E-06 OXYGEN

RUNS NUMBER 198 TO 204 CATALYST SAMPLE NUMBER 5 GC FEED ANALYSES AND TWO GC PRODUCT ANALYSES ŦWO AIR FEED RATE (CC(STP)/MIN) = 3040.0 METHANOL FEFD RATE (CC(LIQUID)/MIN) = 0.26250 REACTOR PRESSURE (TORR) = 868,0 TEMPERATURE (KELVIN) = 536.0° CATALYST CHARGE (GRAMS) = 20.08CATALYST SURFACE AREA (SO. M/G) = 3.53FEED AND PRODUCT COMPOSITIONS (MOLE PER CENT) TYPE OF ANALYSIS NITROGEN OXYGEN METHANOL WATER CH20 1 FEED (FLOW RATES) 75.48 19.94 4.56 EED(G.C.) 75.35 19,97 4.53 0.203 FEED(G.C.) 75.45 0.202 19.93 4.40 AVG. FEED (G.C.) .75.40 19.92 4.46 0.203 AVERAGE FEED 75.44 19.93 4.51 PRODUCT (G.C.) 74.68 18.34 2.34 2.31 2.30 PRODUCT '(G.C.) 74.66 18.37 2:27 2.44 2.24 AVERAGE PRODUCT 74.67 18.36 2.38 2.27 2.30 FRACTIONAL CONVERSION FEED COMPOSITION BASED ON PRODUCT G.C. ANALYSES OF BASED ON METHANOL WATER, FORMALDEHYDE FEED FLOW RATES 0.488 0.483 0.503 AVG GC ANALYSIS 0.477 0.493 0.514 0.483 GC + FEED RATES 0.488 0.509 AVERAGE FRACTIONAL CONVERSION = 0.493 RATE CONSTANTS BASED ON METHANOL WATER FORMALDEHYDE AVERAGE

 1ST ORDER
 0.855E-06
 0.868E-06
 0.922E-06
 0.868E-06

 1/2 ORDER
 0.788E-06
 0.798E-06
 0.839E-06
 0.839E-06

 0XYGEN
 0.351E-06
 0.356E-06
 0.374E-06
 0.360E-06

RUNS NUMBER 213 TO 215 CATALYST SAMPLE NUMBER 6 DNE GC FEED ANALYSES AND TWO GC PRODUCT ANALYSES AIR FEED RATE (CC(STP)/MIN) = 3051.0 METHANOL FEED RATE (CC(LIQUID)/MIN) = 0.26250 REACTOR PRESSURE (TORR) = 870.7 TEMPERATURE (KELVIN) = 536.0 CATALYST CHARGE (GRAMS) = 20.08 CATALYST SURFACE AREA (SG.M/G) = 3.22 155

FEED AND PRODUCT COMPOSITIONS (MOLE PER CENT)

TYPE OF ANALYSIS NITROGEN OXYGEN METHANOL WATER CH20

FEED (FLOW RATES) 75.50 -19.94 . 54 FEED(G.C.) 75.53 '¥9.95 4.35 0.157 75.53 AVG. FEED (G.C.) 19.95 4.35 0.157 AVERAGE FEED 75.51 19.95 4-45 . 2 PRODUCT (G.C.) 74.70 1.8.85 2.12 2.00 2.30 PRODUCT (G.C.) 18.59 2.34 2.25 2:07 74.72 AVERAGE PRODUCT 74.71 2.19 18.72 2.32 2.04

FRACTIONAL CONVERSION

÷.

FEED COMPOSITIONBASED ON PRODUCT G.C. ANALYSES OFBASED ONMETHANOL WATER FORMALDERYDE

 FEED FLOW RATES
 0.483
 0.452
 0.453

 AVG GC ANALYSIS
 0.460
 0.472
 0.472

 GC + FEED RATES
 0.472
 0.462
 0.462

AVERAGE FRACTIONAL CONVERSION = 0.466

 RATE CONSTANTS
 WATER
 FORMALDEHYDE
 AVERAGE

 BASED ON
 METHANOL
 WATER
 FORMALDEHYDE
 AVERAGE

 1ST ORDER
 0.907E-06
 0.881E-06
 0.883E-06
 0.890E-06

 1/2 ORDER
 0.840E-06
 0.881E-06
 0.821E-06
 0.827E-06

DXYGEN 0.374E-06 0.365E-06 0.368E-06

KINETICS OF METHANOL OXIMATION RUNS NUMBER 216 TO 225 CATALYST SAMPLE NUMBER 6 THREE GC FEED ANALYSES AND FOUR GC P ANALYSES AIR FEED RATE (CC(STP)/MIN) = 2153.0 METHANOL FEED RATE (CC(LIQUID)/MIN) 01262 REACTOR PRESSURE (TORR) = 823.2 TEMPERATURE (KELVIN) = 536.0 CATALYST CHARGE (GRAMS) = 20.08 CATALYST SURFACE AREA (SQ.M/G) = 3.22 FEED AND PRODUCT COMPOSITIONS (MOLE PER CENT) NITROGEN OXYGEN METHANOL WATER CH20 TYPE OF ANALYSIS FEED (FLOW RATES) 74.09 19.57 6.32 FEED(G.C.) . 74.00 19.55 6.43 0.000 FEED (G.C.) 74.16 19,59 6.23 0.000 FEED(G.C.) 74.15 19.59 6.24 0.000 AVG. FEED (G.C. 74.11. 19.58 6.30 0.000 AVERAGE FEED 74.10 19.57 6.31 PRODUCT (G.C.) 72.85 18.13 2.86 3.06 3.07 PRODUCT (G.C.*) 72.83 18,15 2.81 3.11 3.07 PRODUCT **NG**: C .) 72 80 17.93 2.672 3.24 3:28 PRODUCT (72.89 18.15 2.97 2.92 3.05 AVER AGE PRODUCT 72.84 18.09 2.84 3.08 3.12 2 FRACEIONAL CONVERSION FEED COMPOSITION BASED ON PRODUCT G.C. ANALYSES OF BASED ON METHANOL WATER FORMALDEHYDE FEED FLOW RATES 0.542 0.495 0.501 AVG GC ANALYSIS 0.541 0.497 0.503 GC + FEED RATES 0.541 0.496 0.5.02 AVERAGE FRACTIONAL CONVERSION = 0.513 RATE CONSTANTS BASED ON. METHANOL FORMALDEHYDE & AVERAGE #WATER 1ST ORDER 0.846E-06 0.742E-06 0°.756E-06 0.780E-06 1/2 DRDER 0.865E-06 0.778E-06 0.789E-06 0.810E-06 OXYGEN 0.404E-06 0.362E-06 0.367E-06 0.377E-06

14

÷.	3	· · · · · · · · · · · · · · · · · · ·		157
		۰ ۱		•.
	· · · · · · · · · · · · · · · · · · ·			t t
•	KINETICS OF METHA	NOL OXIDATION	X	
	RUNS NUMBER 226 T	n		
1	CATALYST SAMPLE		• • •	
	FOUR GC FEED ANA		GC PRODUCT ANAL	YSES
	AIR FEED RATE (CC	<pre>\$</pre>	3.0	
· · ·	METHANOL FEED RAT	E (CC(LIQUID)/MI	N) = 0.26250	
	REACTOR PRESSURE TENPERATURE (KELV)	(10RR) = 799.0		•
·	CATALYST CHARGE ($SR \Delta MS = 20.08$	·	
	CATALYST SURFACE		3.22	
		-		•
	FEED AND PRODUCT (SOMPOSITIONS (MOL	E PER CENT)	
	TYPE OF ANALYSIS	NITROGEN DXYGEN	METHANOL WATER	СН20
	FEED (FLOW RATES)	73.04 19.29	7.65	
	FEED(G.C.)	72.72 19.21	7.83 0.232	•
	FEED(G.C.)	72.89 19.24	7.60 0.232	
	FEED(G.C.)	72.42 19.13		
	FEED(G.C.) AVG. FEED (G.C.)	72.65 19.19 72.67 19.20	7.92 0.233	
		72.67. 19.20	7.88 0.232	
•	AVERAGE FEED	72.85 19.25	7.77	9
	PRODUCT (G.C.)	71.66 16.90	3.85 3.90	3.67
	PRODUCT (G.C.)	71.66 17.21	3.85 3.55	· 3.72
	PRODUCT (G.C.)	71.69 16.61	3.94 .3.94	3.80
	AVERAGE PRODUCT	71.67 16.90	3.88 3.80	3.73
Ç8	FRACTIONAL CONVERS		r -	
	144			
•	FEED COMPOSITION	BASED ON PRODU	CT G.G. ANALYS TER FORMALDEH'	
	FEED FLOW RATES	0.483 0.	474 0.497	
2 A	AVG GC ANALYSIS	0.498		
3	GC + FEED RATES		467 0.489	
÷		* · · · · · · · · · · · · · · · · · · ·	•	
	AVERAGE FRACTIONAL	CONVERSION = .	482	
	RATE CONSTANTS N			· · · · ·
	BASED ON METHANO	WATER	FORMALDEHYDE	AVERAGE
~ .			a.	
	1ST ORDER 0.623E-		0.621E-06 @	.608E-06
	1/2 ORDER 0.708E-0)6		.694E-06
•	OXYGEN 0.338E-C	06 0.319E-06	0.337E-06 (•331E-06
1		, К., У .,		
-		e.		

RUNS NUMBER 242 TO 250 CATALYST SAMPLE NUMBER 7 FIVE GC FEED ANALYSES AND DUR GC PRODUCT ANALYSES AIR FEED RATE (CC(STP)/MINE = :2906,0 METHANOL FEFD RATE (CC(LI PD) (N) = 0.26250 REACTOR PRESSURE (TOPR) = 14.7 TEMPERATURE (KELVIN) = 536.0 -CATALYST CHARGE (GRAMS) = 20 08 CATALYST SURFACE AREA (SO.M/G) = 2.42REED AND PRODUCT COMPOSITIONS (MOLE PER CENT) 1.00 TYPE OF ANALYSIS NITROGEN OXYGEN METHANOL WATER CH20 74.7% FEED (FLOW RATES) 19.75 5.48 FEED(G.C.)~ 74.91 19.79 5.29 0.000 FEED(G.C.) 75.04 19.82 5.12 0.000 FEED(G.C.) 74.71 19.74 5.54 0.000 FEED(G.C.) 74.76 19.75 5.48. 0.000 FEED(G.C.) 75.03 19.82 5.14 0.000 AVG. FEED (G.C.) 74.89 19.78 5.31 0.000 AVERAGE, FEED, 74.82 19.77 5.40 and the PRODUCT (G.C.) 73.87 19.14 2.95 1.98 2.03 SPRODUCT (G.C.) .73.81 19.72 2.79 1.68 1.98 PRODUCT (G.C.) 73.93 18.92 - 3.13 1.89 2.10 PRODUCT (G.C.) 73.88 19.12 2.98 1.89 2.11 AVERAGE PRODUCT -73.87 19.22 2.96 1.86 2.06 FRACTIONAL CONVERSION FEED COMPOSITION BASED ON PRODUCT G.C. ANALYSES OF BASED ON METHANOL WATER FORMALDEHYDE FEED FLOW RATES 0.452 0.379 0.343 AVG GC ANALYSIS 0.435 0.391 0.354 GC + FEED RATES 0.444 0.348 0.385 AVERAGE FRACTIONAL CONVERSION = 0.392 RATE CONSTANTS BASED ON METHANOL WATER DRMALDEHYDE AVER AGE 1900RDER 0,983E-06 0.718F-06 0.815E-06 0.835E-06 10 DRDER 0 979E-06 7.743E-76 0.831E-06 0.849E-06 ÓXYGEN - 0.453E-06 0.343E-06 0.384E-06 0-393E-06

KINETICS OF METHANOL OXIDATION 1.2 RUNS NUMBER 255 TO 258 CATALYST SAMPLE NUMBER 8 TWO GC FEED ANALYSES AND TWO GC PRODUCT ANALYSES AIR FEED RATE (CC(STP)/MIN) = 2957.0 METHANOL FEED RATE (CC(LIQUID)/MIN) = 0.26250 REACTOR PRESSURE (TORR) = 839.7 TEMPERATURE, (KELVIN) = 536.0 CATALYST CHARGE (GRAMS) = 20.05 CATALY ST SHAFAGE AREA (SD.MAG) . 1.21 FEED AND PRODUCT COMPOSITIONS IMONS PER CENT) 1. A. . Sec. TYPE OF ANALYSIS MITRAGEN OXYGEN METHANOL WATER CH20 10 FEED (FLOW RATES) 75.39 4.68~ FEED(G.C.) 75.22 4.74 19.87 0.150 FEED(G.C.) 75.22 19.87 4.74 0.149 AVG FEED (G.C.) 75.22 19.87 4.74 0.149 AVERAGE FEED 75.31 19, 89 4.71 C) PRODUCT (G.C.) 75.08 19.83 3.87 0.70 0.50 PRODUCT (G.C.) 75.09 19.82 3.90 0.71 0.48 AVERAGE PRODUCT 75.08 19.81 / 3.89 0.71 0.49 FRACTIONAL CONVERSION. FEED COMPOSITION BASED ON BRODUCT G.C. ANALYSES DE BASED ON METHANOL WATER FORMALDEHYDE FEED FLOW RATES 0.1665 0.120 0.105 AVG GC ANALYSIS 0.118 0, 176 0.103 GC + FEED RATES 0.171 0.119 0.104 AVERAGE FRACTIONAL CONVERSION = 0.131RATE CONSTANTS BASED ON METHANOL WATER FORMALDEHYDE AVERAGE 1ST ORDER 0.714E-06 0.481E-06 0.417E-06 0.535E-06 * 1/2 ORDER 0.737E-06 0.505E-06 0.440E-06 0.560E-06

0.226E-06

0.197E-06

0.251E-06

, OXYGEN

0-331E-06

160 KINETICS OF METHANOL OXIDATION RUNS NUMBER 263 TO 264 CATALYST SAMPLE NUMBER 9.. ONE GC FEED ANALYSES AND ONE GC PRODUCT ANALYSES AIR FEED RATE (CC(STP)/MIN) = 3002.0 METHANOL FEED RATE, (CC(LIQUID)/MIN) = 0.26250 REACTOR PRESSURE (TORR) = 858.5TEMPERATURE (KELVIN) = .536.0 CATALYST CHARGE (GRAMS) = 20.04 CATALYST SURFACE AREA (SO.M/G) = 1.66 FEED AND PRODUCT COMPOSITIONS (MOLE PER CENT) TYPE OF ANALYSIS MITROGEN OXYGEN METHANOL WATER GH20 FEED (FLOW RATES) 75.44 19.93 4.62 -FEED(G.C.) 75:65 19.98 4.12 0.234 AVG. FEED (G.C.) 75.65 19.98 4.12 0.234 AVERAGE FEED 75.54 19.96 4.37 PRODUCT (G. C. T. 75.25 20.15 3.84 0.51 0.23 AVERAGE PRODUCT 75.25 20.153 / 3.84 0.51 0.23 FRACTIONAL CONVERSION . . . FEED COMPOSITION BASED ON PRODUCT G.C. ANALYSES DE 0 BASED ON METHANOL WATER FORMALDEHYDE FEED FLOW RATES. AVG GC ANALYSI 0.164 0.050 0.060 0.0.66 0.067. 0.056 GC + FEED RATES 0.118 0.064 0.052 AVERAGE FRACTIONAL CONVERSION = 0.077 RATE CONSTANTS BASED ON FORMAL DEHYDE METHANOL WATER **AVERAGE** ۰. 1ST ORDER 0.338E-06 0.181E-06 0.149E-06 0.222E-06 1/2 ORDER 0.357E-06 0.194E-06 0.160E-06 0.236E-06 OXYGEN 0.158E-06 0.862E-07 0.710E-07 0.104E-06

KINETICS OF METHANOL OXIDATION RUNS NUMBER 251 TO 254 CATALYST SAMPLE NUMBER 10 . GC FEED ANALYSES AND TWO GC PRODUCT ANALYSES TWO AIR FEED RATE (CC(STP)/MIN) = 2971.0 METHANOL FEED RATE (CC(LIQUID)/MIN) = 0.26250 REACTOR PRESSURE (TORR) = 816.8TEMPERATURE (KELVIN) = 536.0CATALYST CHARGE (GRAMS) = 20.05CATALYST SURFACE AREA (SQ.M/G) = 8.70 FEED AND PRODUCT COMPOSITIONS (MOLE 'PER CENT) TYPE OF ANALYSIS NITROGEN OXYGEN METHANOL WATER CH20 FEED (FLOW RATES) 75.40 19.92 4.66 FEED(G.C.) 75.39 19.92 4.52 0.160 FEED(G.C.) 75.34 19.90 - 4.58 0,160, AVG. FEED (G.C.) 75.36 19.91 . 4. 55 0.160 AVERAGE FEED 75.38 19.91 4.61 PRODUCT (G.C.) 74.04 17.19 0.89 4.46 3.40 PRODUCT (G.C.) 74.04 17.09 0.90 4.48 3.46 AVERAGE PRODUCT 74.04 17.14 0.90 4.47 3.43 FRACTIONAL CONVERSION FEED COMPOSITION BASED ON PRODUCT G.C. ANALYSES OF BASED ON METHANOL WATER FORMALDEHYDE FEED FLOW RATES 0 2 2 0.945 0.749 AVG GC ANALYSIS 0.797 0.968 0.767 GC + FEED RATES 0.800 0.956 0.758 ----AVERAGE FRACTIONAL CONVERSION = 0.838 RATE CONSTANTS BASED ON METHANOL WATER FORMALDEHYDE AVERAGE 1ST ORDER 0.886E-06 0.173E-25 0.100E-05 0.781E-06 1/2 ORDER 0.642E-06 0.920 E-06 0.590E-06 0.694E-06 DXYGEN 0.299E-06 0.432E-06 0.274E-06 0.324E-06

162 KINETICS OF METHANOL OXIDATION RUNS NUMBER 270 TO#271 (USED DISC INTEGRATOR) CATALYST SAMPLE NUMBER 11 1 GC FEED ANALYSES AND DNE ONE GC PRODUCT ANALYSES. AIR FEED RATE (CG(STP)/MIN) = 2134.0 METHANOL FEED RATE (CC(LIQUID)/MIN) = 0.26250 REACTOR PRESSURE (TORR) = 794.0 TEMPERATURE (KELVIN) = 531.0 CATALYST CHARGE (GRAMS) = 11.67 CATALYST SURFACE AREA (SO.M/G) = 0.25 FEED AND PRODUCT COMPOSITIONS (MOLE PER CENT) 1 TYPE OF ANALYSIS' NITROGEN OXYGEN METHANOL WATER CH20 FEED (FLOW RATES) 74.05 19.56 6.37 FEED(G.C.) 74.08 19.57 6.25 0.089 AVG. FEED (G.C.) 74.08 19.57 6.25 0.089 AVERAGE FEED 74.0.6 19.57 6.31 PRODUCT (G.C.) 73.97 19.73 6.10 0.13 0.04 AVERAGE PRODUCT 73.97 19.73. 6.10 0.13 0.04 FRACTIONAL CONVERSION FEED COMPOSITION BASED ON PRODUCT G.C. ANALYSES OF BASED ON METHANOL WATER FORMALDEHYDE FEED FLOW RATES 0.041 0.0107 -0.006 AVG GC ANALYSIS 0.022 2.007 0.006 GC + FEED RATES 0.032 0.007 0.006 AVERAGE FRACTIONAL CONVERSION = 0.015 RATE CONSTANTS BASED ON METHANOL WATER FORMALDEHYDE AVERAGE 1ST ORDER 0.787E-06 0.177E-06 0.166E-06 0.375E-06 0.205E-06 0.462E-06 0.375E-06 1/2 ORDER 0.965E-06 0.218E-06 OXYGEN 0.446E-06 0.101E-06 - 0.949E-07 0.213E-06