University of Alberta

DOMINEERING: SOLVING LARGE COMBINATORIAL SEARCH SPACES

by

Nathan Bullock

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2002

i~

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ofttawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothégque nationale

services bibliographiques

395, rue Wellingion
Ottawa ON K1A ON4

Your file Votre rélérence

Our file Notre réfdrence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-81374-6

Canada

University of Alberta

Library Release Form

Name of Author: Nathan Bullock
Title of Thesis: Domineering: Solving Large Combinatorial Search Spaces
Degree: Master of Science

Year this Degree Granted: 2002

Permission is hereby granted to the University of Alberta Library to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly
or scientific research purposes only.

The author reserves all other publication and other rights in association with
the copyright in the thesis, and except as herein before provided, neither the
thesis nor any substantial portion thereof may be printed or otherwise re-
produced in any material form whatever without the author’s prior written
permission.

Nathan Bullock
108 10820 78 Ave
Edmonton, Alberta
Canada T6E 1P8

Date: Z’ é \j:/% £ zﬂfff’@a

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies and Research for acceptance, a thesis entitled Domineer-
ing: Solving Large Combinatorial Search Spaces submitted by Nathan
Bullock in partial fulfillment of the requirements for the degree of Master of
Science.

? -
& M " et fw’“”; e
B

Dr. Martin Miiller
Co-Supervisor

- a/}fy ,// /5,//2;

If)r« ’Jonathan Schaeffef”
Co—Supe;wsor Pt

e i
.7""
el
,/,'f
4 i

é{kw{.«a

ibrz/B?ﬁlce Sutherland’
TGN Toplons

Dr. T. Anthony Marsland

~J
o

Date: v\—»7¢ n:?:/%ﬁ ng

",

When we walk with gratitude, we do not walk with arrogance and conceit
and egotism, but rather with a spirit of thanksgiving that is becoming to us
and will bless our lives. We should all be thankful to the Almighty for His
wonderful blessings upon us.

Gordon B. Hinckley

Abstract

Domineering, also known as crosscram, is a perfect-information, two-player
game. It i1s played on a board which consists of a subset of a square lattice.
The game is played by two players who take turns placing 2 x 1 tiles upon the
board. One player is only allowed to place a tile in a horizontal orientation
and the other is only allowed to place a tile in a vertical orientation. Tiles are
not allowed to overlap. The game ends when one player, the loser, is unable
to place any more tiles onto the board.

We have created a search program which is able to prove who wins on many
different sizes of boards. Some of which no one else has ever been able to solve.
The main improvement we have come up with is an evaluation function which
is able to statically determine a winner at a shallower point in the search,
allowing us to eliminate large portions of the search space. This, along with
a few other improvements, has enabled us to solve board positions with just a

fraction of the number of nodes which previous solvers have needed.

Acknowledgements

A special thanks to my parents, for their love and guidance. To my eternal
companion, Kelli, for her willingness in helping me to achieve my goals. To
our children, for their laughter and unique insight into the world around them.

I would like to thank both of my supervisors. Martin Miiller for all of
his ideas, comments, and revisions. Jonathan Schaeffer for giving me the
motivation to keep going when [was ready to quit. I would also like to thank
all those who have made thinking so much fun: Ryan Hayward, Lorna Stewart,
Stephen Wismath, Rex Forsyth, Kim Francis, and many others. There are so
many others who I owe my thanks to. To all of you. Thanks!

Most importantly, for His help, from Whom all truth emanates, I am

humbly grateful.

Table of Contents

1 Introduction 1

1.1 Playing Domineering, 2

1.2 DOMI e 3

1.3 Extending Results To Larger Boards 4

1.4 Motivation 6

1.5 Contributions of Thesis 7

2 Alpha-Beta Search of Minimax Game Trees 8
2.1 Alpha-Beta Algorithm

2.2 Move Ordering 11

2.3 Enphancements 12

3 Determining Who Wins 14

3.1 Definitions L 14

3.2 Board Properties 0. 15

3.3 Board Covero 17

3.4 Game Playing Strategy L. 17

3.5 Lower Bound on Number of Moves Remaining 19

3.5.1 Example of Lower Bound 22

3.6 Upper Bound on Number of Moves Remaining 23

3.6.1 Unplayable Squares 24

3.6.2 Available Squares for Opponent 28

3.6.3 Example of Upper Bound 29

3.7 The Winner Is 30

4 Search Enhancements

4.1 Transposition Tables
4.1.1 Implementation
4.1.2 Replacement Schemes

4.1.3 Experimental Results

4.1.4 Analysis of Replacement Schemes

4.2 Move Order Heuristic for Domineering

4.2.1 Exploiting Symmetries in Domineering

4.2.2 Analysis of Exploitation
4.3 Ignoring Safe Moves

44 Conclusion

5 Solving 10 x 10 Domineering

5.1 Estimation of Difficulty
5.2 Splitting up the Work
5.3 10 x 10 A First Player Win

54 Correctness

6 Conclusion

7 Future Work

7.1 Insights into the Game of Domineering
8 Appendix

Bibliography

31
31
33
34
36
37
38
38
40
42
43

45
45
46
48
48

50
50
92

56
a7

58

64

List of Figures

1.1

1.2

1.3

1.4

2.1

2.2

2.3

3.1

Game on a 4 x 5 board with vertical moving first. (a) First two
moves are (2,2) and (2,3). (b) Next two moves are (3,4) and
(4,2). (c) Next two moves are (1,1) and (1,4). (d) Last moves
are (3,1), (1,2), and (2,5). Horizontal can’t move; vertical wins. 3
Game-theoretic values for various sizes of domineering boards
and the number of nodes DOMI needed to calculate the values [3]. 4
Matrix which allows us to determine {2 x (g + h+ 1)] when we
know [2xgland [2xh]. 5
Matrix which allows us to determine [m x (g+ h)] when we know

mxgland [m xhl. oo 5

Minimax Tree. The boxes represent the maximizing player,
Max, while the ellipses represent the minimizing player, Min.
The lines represent the possible move choices that could be made. 9
General Alpha-Beta Algorithm. Nega-max is the idea that if
we swap alpha and beta and negate them as well as the return
value, we can treat the Min nodes identically to the Max nodes. 10
Alpha-Beta Pruning. Dark lines indicate pruning of the tree
assuming we are traversing the tree from left to right. 11
Alpha-Beta Pruning with Optimal Move Ordering. Dark lines
indicate pruning of the tree assuming we are traversing the tree

from left toright. L 12

An example of a 2 x 3 domineering board. The shaded 1 x 2

rectangle is a tile which was placed by the horizontal player. . 15

3.4

3.6

3.7

4.1

4.2

Board properties from the perspective of the vertical player. (a)
A, B, C, and D are vulnerable areas. (b) A, B, and C are safe
areas. (c¢) A and B are both protective areas. (d) The square

outlined with a dotted line is a protective area, A is where a

safe area would be created if vertical played a tile at position B.

A possible covering of a 6 x 10 board for the vertical player. P
denotes a protective area, V2 a type 2 vulnerable area, V'1 a
tvpe 1 vulnerable area, and S a safearea..
Crossing a protective and type 2 vulnerable area. (a) Opponent
places a tile, B, across both a protective area, A, and type 2
vulnerable area, C. (b) Player cancels both A and C and creates
a new type 2 vulnerable area, D.
The square, A, is not covered by vertical’s board covering and
is not available to horizontal. (The dotted rectangles denote
vertical’s board covering.) L.
Option Area for vertical. (a) B marks a type 3 option area
for the safe area A. (b) If C is in the board cover, B couldn’t
be added. (c) All of the squares denoted by an X would be
unavailable for the opponent if vertical took the option.
A possible covering of a 6 x 10 board for the vertical player.
The squares denoted with O1 and O2 are option areas and the
underlined V'1 denotes a type 1 vulnerable area with a protected

SQUATE. © + v v v v e e e e e e e e e e

Board Symmetries. Each of these boards are equivalent to each
other through a vertical and/or horizontal reflection. We don’t
attempt to find symmetries through rotation since it affects the
meaning of vertical and horizontal.
Board equivalence. It is easy to see that these two boards are

equivalent to each other. Only empty squares are important in

16

18

21

23

25

29

32

33

4.3

4.4

4.5

4.6
4.7

5.1
9.2

Transposition Table Experiments. The x axis of each graph
measures the different sizes of transposition tables for each of
our experiments. The y axis shows the average number of nodes
required to solve the different cases in each data set. Note the
very close similarity between the two test sets, except that they
differ from each other by a factor of about four.
Exploiting the Symmetries of Domineering. These two boards
represent, two different positions, two ply deep, in the proof of
6 x 4 domineering with horizontal going first. Note that if we
play in position A in both of them we have to continue to search
both positions. If we play B they become transpositions of each
other.
Comparison of primary move ordering scheme vs the primary
scheme enhanced with our symmetrical move ordering scheme.
Graph shows the number of nodes examined at each ply in the
8 x 8 proof tree for each move ordering implementation. Note
the y axis uses a logarithmicscale.
This gives a tabular view of the data displayed in Figure 4.5. .
Proof tree sizes for various boards with safe moves either being

generated ornot. Lo

Growth of 10 x 10 Search Tree.
Minimal Alpha-Beta Tree of Depth 4 (assuming first player
win). Since we are assuming a first player win, the first player
only needs to make one move at each of his turns, while all of the
second player’s possible moves need to be examined. The small
triangles at the bottom of the tree represent the independent
searches that can be divided among many different processors
to validate that the values of the nodes at the fourth ply of the

tree are all wins for the first player.

36

40

41
41

43

46

47

6.1

6.2

6.3

6.4

6.5

8.1

8.2
8.3

Game-theoretic values for various sizes of domineering boards
and the number of nodes Obsequi needed to calculate the val-
ues. (We used a transposition table with 223 entries and the
FindFirst replacement scheme.) Compare to Figure 1.2.
New game-theoretic values which have been determined by Ob-
sequi for various interesting board positions, as well as the num-
ber of nodes needed to calculate the values. Note that 9 x 9 has
been previously solved by DOMI [9]. To solve the above po-
sitions we used a transposition table with 223 entries and the
TwoBig replacement scheme, except for 4 x19 where we used the
FindFirst replacement scheme, and 10 x 10, which was solved
as described in Chapter 5.
Comparison of different evaluation functions (number of nodes
at each ply of the search). The z axis is the depth or ply of the
search, the y axis is the log of the number of nodes which were
examined at that depth of the search. “All - A” denotes that
we used all of the enhancements except A.
Comparison of the size of the proof trees for 8 x 8 domineering
given a certain evaluation function. “All - A” denotes that we
used all of the enhancements except 4.
Updated chart of what we know about who wins Domineering
on rectangular boards. New results which we have obtained
from Obsequi are shaded. The y axis is the number of rows, x
axis is the number of columns. A value such as 1h means the
position is either a first player or horizontal win (further work

needs to be done to determine the exact value).

Growth of proof tree size for 2 x n boards. Note the y axis uses
a logarithmicscale. L.
Proof tree size for various 2 x n boards.
Growth of proof tree size for 4 x n boards. Note the vy axis uses

a logarithmicscale. oL

ol

04

o4

55

99
59

60

8.4

8.5

8.6

8.7

8.8
8.9

Proof tree size for various 4 x n boards. N/A denotes that this
value was never computed.

Growth of proof tree size for 6 x n boards. Note the y axis uses

Proof tree size for various 6 x n boards. N/A denotes that this
value was never computed.o
Growth of proof tree size for 8 x n boards. Note the y axis uses
a logarithmic scale.
Proof tree size for various 8 x n boards.
Growth of proof tree size for n x n boards. Note the y axis uses

a logarithmicscale. o0 0oL

8.10 Proof tree size for various n x n boards.

60

61

61

62
62

63
63

Chapter 1

Introduction

Domineering, also known as crosscram, is a perfect-information, two-player
game. It is played on a board which consists of a subset of a square lattice.
The 8 x 8 board is a popular size used by human players. The game is played
by two players who take turns placing 2 x 1 tiles upon the board. One player
is only allowed to place a tile in a horizontal orientation and the other is only
allowed to place a tile in a vertical orientation. Tiles are not allowed to overlap.
The game ends when one player, the loser, is unable to place any more tiles
onto the board.

Domineering was introduced by Goéran Andersson around 1973. Since then
it has been investigated from both a mathematical and an artificial intelligence
point of view.

Mathematicians have examined domineering using an elegant theory called
combinatorial game theory [1]. This approach has allowed them to determine
exact combinatorial game values for many of the smaller game boards which,
because of the power of combinatorial game theory, allows them to determine
the combinatorial game value for any set of these boards added together. For
example if the value of the 2 x 2 board is known, then the value of two 2 x 2
game boards played together can be determined. These results have appeared

in a number of books on combinatorial game theory [4, 2].

Artificial intelligence researchers have also taken an active role in looking
at the game of domineering and, through the use of state-of-the-art search
engines, have been able to determine the game theoretic value of many different
sizes of domineering boards [3]. In domineering there exist four possible values

for each position:

e A vertical win, denoted by V', meaning that regardless of who goes first

vertical will always win.

e A horizontal win, denoted by H, meaning that regardless of who goes

first horizontal will always win.

e A first player win, denoted by 1st, meaning that regardless of who goes

first the first player will always win.

e A second player win, denoted by 2nd, meaning that regardless of who

goes first the second player will always win.

Interest in domineering among artificial intelligence researchers has in-
creased as a result of domineering tournaments organized by Professor Elwyn
Berlekamp, one of the founders of combinatorial game theory. The first tour-
nament was held at MSRI in Berkeley in July of 1994 {10] with a prize of $500
US and the second was held as part of the IJCAI’97 conference in Nagoya,
Japan with a prize of $1000 US.

1.1 Playing Domineering

To refer to a move, we will specify each move by the row and column number of
its upper (for vertical) or left square (for horizontal) coordinates. We label the
rows top to bottom from 1 to the number of rows on the board, and columns
left to right from 1 to the number of columns on the board. Figure 1.1 shows

an example of a game on a 4 X 5 board with vertical moving first.

2

(a) (b)

© : T @

t i s s e

Figure 1.1: Game on a 4 x 5 board with vertical moving first. (a) First two
moves are (2,2) and (2,3). (b) Next two moves are (3,4) and (4,2). (c) Next
two moves are (1,1) and (1,4). (d) Last moves are (3,1), (1,2), and (2,5).
Horizontal can’t move; vertical wins.

1.2 DOMI

The first published program to solve domineering positions was the program
DOMI authored by Breuker et al. [3]. This became our catalyst for writing an
improved domineering solver.

The major strengths of DOMI are its use of transposition tables and its
move ordering heuristic. Both of which were instrumental in enabling it to
solve domineering board positions as efficiently as it did.

Some of the key results which DOMI calculated were the m x n boards
where 2 < m < 8 and m < n < 9 (see Figure 1.2). Note the exponential
growth of the size of the proof trees for the increasing board sizes.

Since the publishing of these results, DOMI has been improved to the point

Board Size Result Nodes | Board Size Result Nodes

2 x 2 1 1 4x7 \Y 1984
2x3 1 2 4x8 H 12,024
2 x4 H 13 4x9 V 45,314
2x5 V 15 5%x5H 2 604
2 x6 1 14 5% 6 H 1,500
2x7 1 17 5x7 H 13,584
2x8 H 67 5x8 H 30,348
2x9 V 126 5%x9 H 177,324
3% 3 1 1 6 X6 1 17,232
3 x4 H 10 6x7 \Y 302,259
3 x5 H 19 6 x8 H 3,362,436
3x6 H 40 6x9 Vv 18,421,911
IxT H 77 Tx7 1 408,260
3 x8 H 74 7x8 H 12,339,876
3x9 H 99 7x9 H 320,589,295
4 x4 1 40 8 x 8 1 441,990,070
4x5 \Y 87 8 x9 V 70,918,073,509
4 x6 1 1327

Figure 1.2: Game-theoretic values for various sizes of domineering boards and
the number of nodes DOMI needed to calculate the values [3].

that it can now solve 8 x 9 domineering in approximately 3 billion nodes in

size and 9 x 9 domineering with 25 billion nodes [9].

1.3 Extending Results To Larger Boards

Using search techniques for solving domineering boards obviously limits the
size of the largest board that can be solved. Lachmann et al. came up with a
number of different rules which enable the extending of the results on smaller
boards to determine the game theoretic values of larger boards [6]. We will
denote the value of an m x n board as [m x nj.

The first observation is that on 2 x n boards, vertical, if vertical has the
first move, is able to split the board into two different sizes of boards, each of

which still have 2 rows. Then by looking at the game theoretic values for each

of these smaller boards we can determine some information about the larger
board. For example we know [2 x 5] = V, therefore if vertical has the first
move on a 2 x 11 board they can play across the sixth column splitting the
board into two 2 x 5 boards, of which we know they can win in both. Note
that this doesn’t say anything about 2 x n boards when horizontal has the
first turn.

From this observation they came up with the rule shown in Figure 1.3
which can be used to determine the game theoretic value of a 2 x (g + h + 1)

domineering board.

(2 x g] 2nd A%
(2 % h)
2nd Istor V. 1storV
\Y Istor V. 1storV

Figure 1.3: Matrix which allows us to determine [2 x (g + h + 1)] when we
know [2 x g] and [2 x h].

The second observation is much more general. On any board horizontal
can avoid placing a tile across two adjacent columns, effectively playing an
mx (g+h) game as the sum of an m x g and an m x h game. This observation
is much more general since it works for any size of board. From this observation
they came up with the rule shown in Figure 1.4 which can be used to determine
the game theoretic value of an m x (g + h) domineering board. For example

since [5 x 2] = H and [5 x 5] = 2 we can determine that [5 X (5+2)] = H.

m x g 1st 2nd H
[m x k]
1st IstorH 1stor H
2nd 1stor H 2nd or H H
H 1st or H H H

Figure 1.4: Matrix which allows us to determine [m x (g + h)] when we know
[m x g] and [m x hl.

One more observation they made was that since neither player can have
an advantage on a square board, all n x n boards must have a value of either
1or 2.

Through the use of Breuker et al.’s results, a theoretical result for the
2 x 31 board, and the previous observations, Lachmann et al. were able to
determine the winner for all boards with 2, 3, 5, and 7 rows. Also they were
able to determine the winners for all boards with 4, 9, and 11 rows, except for
a finite number of smaller boards. Through the use of our domineering solver,
Obsequi, described in this thesis, we have been able to determine the game
theoretic values for a few previously unsolved game boards, notably 4 x 19,
4 x 21, 6 x 14, 8 X 10, and 10 x 10, which has filled in a number of the holes
in Lachmann et al.’s original results. See Figure 6.5 for an updated chart of

those boards for which we can calculate the game theoretic value.

1.4 Motivation

Game and puzzle programs search large combinatorial search spaces. Research
is constantly looking for ways to make these search programs more efficient.
Possible methods to do this are large databases of endgame positions, more
efficient search algorithms, specialized local searches, or game-specific static
evaluations.

Domineering is a nice game to use for exploring heuristic search. It has
simple rules, nice mathematical properties, a challenging search space, and is
amenable to combinatorial game theory analysis. As a measure of the progress
we have made, 2 years ago 9 x 9 domineering had not yet been solved, today
we are not only able to solve 9 x 9 domineering in a matter of hours but we can

solve 10 x 10 domineering, which is at least a thousand times more difficult.

1.5 Contributions of Thesis

In this thesis we will show that one effective way to reduce the size of the
proof trees, for different sizes of domineering boards, is to come up with a
more advanced evaluation function. This improved evaluation function will be
able to determine the winner of a game at a shallower point in the search tree,
allowing us to prune a potentially large number of positions from the search.

This substantial pruning of positions from the search tree has enabled
us to solve the standard domineering board, 8§ x 8, in a matter of seconds
where previously it had taken hours. As well it has enabled us to solve larger
domineering boards than have ever before been solved, most notably the 10x10
board.

In this thesis we will also take a look at search enhancements, each of
which incrementally helps to improve our solver. These include an improved
move ordering scheme and an improved replacement scheme for our solver’s
transposition table.

One more noteworthy contribution is the source code to Obsequi, our
domineering solver. We would like to allow other researchers to be able to
study the game of domineering without having to spend weeks or months
writing a program which is able to run with the speed and efficiency neces-
sary to solve the game on larger boards. The code is publicly available at

www.cs.ualberta.ca/"games/domineering.

-~J

Chapter 2

Alpha-Beta Search of Minimax
Game Trees

The search space of a two player game can be looked at as a minimax tree where
one player (Max) is always trying to play the move which has the maximum
value associated with it and the other (Min) is trying to play the move which
has the minimum value associated with it (or in other words minimizing Max’s
score). See Figure 2.1 for an example of a minimax tree.

Each parent node takes the maximum or minimum of its children. For
example, in Figure 2.1, the player, Max, at the top node of the tree has a
choice of obtaining a 4 or a 5, and obviously chooses the 5. The minimax
algorithm propagates (or backs up) values from the leaf nodes of the tree to
the root, alternating between maximizing and minimizing.

Note that intertor nodes, or those nodes which have children, do not have
an assigned value but gain their values from their children, while leaf nodes,

those nodes with no children, must have a specific value associated with them.

2.1 Alpha-Beta Algorithm

The entire minimax search tree does not need to be built in order to determine
the value at the root of the tree. Some of the nodes in the tree can be proven

to be irrelevant. For example, assume we have a minimax tree with a root

Figure 2.1: Minimax Tree. The boxes represent the maximizing player, Max,
while the ellipses represent the minimizing player, Min. The lines represent
the possible move choices that could be made.

(Max) node which has two children, A and B, and have already determined
A has a value of 5 and are currently trying to determine the value of B. If we
determine any of B’s children have a value less than or equal to 5 then we can
prune the rest of B’s children from the tree since, because B is a Min node,
it is now guaranteed to backup a value less than or equal to 5 which will not
affect the value of the root of the tree.

The alpha-beta search algorithm is a depth first traversal of a minimax
tree which maintains, for each subtree, lower (alpha) and upper (beta) bounds
on the range of values which can affect the value of the root of the tree. When
the value of a subtree is determined to be outside of this range, the algorithm
is then able to prune the subtree without further search, since it has been
proven to not affect the value of the root of the tree. For the basic alpha-beta
algorithm see Figure 2.2.

We can use the alpha-beta algorithm on the same search space that we
looked at in Figure 2.1. In doing this we see that we are able to still determine

the correct value of the root of the tree while finding cutoffs which allow us

int
AlphaBeta(Position p, int alpha, int beta)
{
Children childl]; /* Array for children of position. */

int best = MIN_INT; /* Smallest possible value. */
int result, number, i;

/* Generate children of current position. */
number = generate_children(p, child);

/* No children therefore leaf node: return value of leaf. */
if (number == 0) return evaluate(p);

/* Iterate through all children. */
for(i = 0; i < number; i++) {

/* Recurse using nega-max variant of alpha-beta. */
result = -AlphaBeta(child[i], -beta, -alpha);

/* Keep best result so far. */
best = MAX(result, best);

/* Prune if out of range. */
if (best >= beta) return best;

/* Possibly need to increase lower bound. */

alpha = MAX(alpha, best);

return best;

}

Figure 2.2: General Alpha-Beta Algorithm. Nega-max is the idea that if we
swap alpha and beta and negate them as well as the return value, we can treat
the Min nodes identically to the Max nodes.

10

Hhebel T dl

Figure 2.3: Alpha-Beta Pruning. Dark lines indicate pruning of the tree as-
suming we are traversing the tree from left to right.

to reduce the number of nodes which we have to look at in the tree (see

Figure 2.3).

2.2 Move Ordering

One important thing to note about the alpha-beta pruning algorithm is that
the number of nodes which are pruned greatly depends on the ordering of the
nodes at each level of the tree. In fact in the worst possible case alpha-beta
pruning will not find any cutoffs and will have to search just as many nodes as
a naive minimax algorithm. At the same time if we are able to find the best
possible ordering of the nodes, this being that Max always generates the child
with the largest value first while Min always generates the child with the min-
imum value first, we will be able to find the largest possible number of cutoffs
(see Figure 2.4). To be more precise, assume we have a search space with a
branching factor of b and a depth of d. The simple minimax algorithm will
generate a tree with approximately 5% nodes, while the alpha-beta algorithm

will, in the best case, generate a tree with approximately b% nodes. (Note that

11

Figure 2.4: Alpha-Beta Pruning with Optimal Move Ordering. Dark lines
indicate pruning of the tree assuming we are traversing the tree from left to
right.

through the use of transposition tables the number of positions searched can
be reduced further.)

Since we don’t know the value of an interior node until the subtree of this
node has been examined, a heuristic needs be employed to predict the best
ordering of the children of a node. It is easy to see that it is very desirable
to have a heuristic which is able to accurately order the children of a node in

relation to what their values really are.

2.3 Enhancements

There are many other methods that can be used in creating further reductions
in the number of nodes which need to be examined in a game tree. Some of
these are iterative deepening, transposition tables, refutation tables, minimal
window, aspiration search, and the killer heuristic. (Jonathan Schaeffer gives
an explanation of these different techniques and compares them in [8].)

Each of these methods work by either improving the ordering of the interior

nodes, reducing the size of the alpha-beta bounds which increases the chance

12

of pruning, or re-using information in the event that we see an identical subtree

later in the search.

13

Chapter 3

Determining Who Wins

The number of nodes in a typical search tree grows exponentially with the
depth of the tree. Given this fact it is easy to see that it is desirable to
determine the winner in a game at the shallowest point possible, since this
will save us from searching a large portion of the tree.

In Obsequi we determine a lower bound on the number of moves that a
player, o, could make, given the current board position and using a certain
strategy. Then we determine an upper bound on the number of moves that
a’s opponent, 3, could make, given the strategy that o used to get their lower
bound. If o’s lower bound is greater than (or equal to, depending on who
just moved) B’s upper bound then we can conclude that « wins. Similarly
we can also do this for 8 and determine if they win. In this chapter we let «
denote the player for whom we are trying to determine a lower bound, or in
other words the player for whom we are trying to determine if they win given

a specific board position. We refer to a’s opposition as f.

3.1 Definitions

We define an unoccupied square as one which is not currently covered by a
tile. Conversely an occupied square is one which is covered by a tile or which

1s not part of the board.

14

B |C |D

Figure 3.1: An example of a 2 x 3 domineering board. The shaded 1 x 2
rectangle is a tile which was placed by the horizontal player.

An available square is a square which a player can place one of their tiles
across. A square is unavailable for a player if its borders are occupied in such
a way that there is no way for that player to place a tile on that square. In
Figure 3.1 the square marked by an A is unavailable for the horizontal player
while the squares B, C, and D are all available.

We can also look at squares from the perspective of where a player’s op-
ponent can play. A protected square is one which the opponent is unable
to play on; from the opponent’s perspective this square would be considered
unavailable. An unprotected square is one which the opponent could place a
tile upon; the opponent would consider this square available. In Figure 3.1 the
square marked by an A is protected for the vertical player, while the squares

B, C, and D are all unprotected for the vertical player.

3.2 Board Properties

In order to determine a lower bound on the number of moves a player can
make, we define three types of board properties which we use to calculate this
bound. These three properties are: safe areas, vulnerable areas, and protective
areas. Note that these properties are determined seperately for the horizontal
and vertical player.

A vulnerable area for a player, «, is a pair of adjacent squares where «

can place a tile (see Figure 3.2(a)).

15

(a) C (®

oo

(© ()

_____ - -

_____ ———

Figure 3.2: Board properties from the perspective of the vertical player. (a)
A, B, C, and D are vulnerable areas. (b) A, B, and C are safe areas. (¢) A
and B are both protective areas. (d) The square outlined with a dotted line
is a protective area, A is where a safe area would be created if vertical played
a tile at position B.

A safe area is a vulnerable area where both squares are protected squares
for a, or in other words unavailable to 8 (see Figure 3.2(b)).! It is easy to see
that it is impossible for 8 to place a tile which would overlap with one of a’s
safe areas. The concept of a safe area (or safe move) was also used in [3].

A protective area for a player, «, is a 2 X 2 unoccupied region of the
board where one of the sides is bordered by occupied squares (or the edge of
the board) in such a way that « is able to place a tile, completely inside this
area, in such a way that the other 2 squares, not covered by «’s tile, form a

safe area for a afterwards (see Figures 3.2(c) and 3.2(d)).

1Note that the terms safe and vulnerable may be a poor choice of words since a safe area
is a subset of a vulnerable area. Nevertheless, we still feel that the terms accurately describe
the properties of the areas.

16

Important: Two of «'s areas are considered adjacent if a single one of 4’s

tiles could overlap both areas.

3.3 Board Cover

In order to use these board properties to get bounds on the number of moves
a player has remaining, we need to determine how many of these properties
exist on a given board. The rules for covering the board with these various

properties are:

1. No two areas can overlap. In other words, no square can be contained

within two different areas.

2. No two protective areas can be adjacent. For example the covering of
the board in Figure 3.2(c) would be invalid for the vertical player since

areas A and B are adjacent.

To improve the lower bound on the number of moves a player has left,
given a certain board position, we distinguish two types of vulnerable areas:
those which are not adjacent to any board property are type 1 vulnerable areas
and those which are adjacent to other board properties are type 2 vulnerable
areas. This naming scheme is to make it clear that 8, with a single tile, could
overlap up to two of ’s type 2 vulnerable areas, but only one of a’s type 1
vulnerable areas. For example, A and B in Figure 3.2(a) are type 2 vulnerable
moves, while C' and D are type 1 vulnerable moves.

An example of a complete covering of a board is shown in Figure 3.3.

3.4 Game Playing Strategy

Given a certain board position, we want to determine a strategy for a which

allows us to determine a lower bound on the number of moves « can make,

17

T T N e R O I T T S r T
| t | [[iy ! | |
\ 1 \ P ! ,\/ R Vi i ¢]
| ; | thy 1y ty 1 | i
T 1 ¥ R 1y A 1 7 J
| 1 ' vy il 1 | i !
\ 1) R 1y Vi | \ !
| i \ I by R t i |
SR N) SRS N R IS SR 1 I I S [-
T I R T g
i ! 1 i th !
1 ! | I b]
] ! 1 ' BR !
T i i I T t
i ! 1 b " !
| ! P NN T !
1 ! 1 Fh th !
[I | WERURURSE I I S SN S |
1 ! : 1 ! ! HE T h !
1 ! 1 ' 1 J 1 !
! Vl‘ ' ' Vl‘ IS ! |S !
1 !) ! 1 ! 1 !
T T T T T T T a
i ! t ! 1 ! 1 1
1 | 1 ! l ! 1 t
' ! 1 ! ' ! ' !
i Lot R [R

Figure 3.3: A possible covering of a 6 x 10 board for the vertical player. P
denotes a protective area, V2 a type 2 vulnerable area, V1 a type 1 vulnerable
area, and S a safe area.

The strategy is fairly simple. First we assume that it is currently §’s turn.
We will show later that this assumption does not really affect the size of the

proof tree. Then we reply to each move 8 makes in the following way:

e If B places a tile over at least one of a’s areas, then a responds by playing

in the same type of area as ’s tile overlapped. More explicitly:

1. If B places a tile over one of «’s protective areas, and this was
not a’s last protective area, a will respond by playing in another
protective area. Note that this applies even if 8’s tile overlapped

both a protective and a type 2 vulnerable area.

2. Else, if 5 places a tile over one or two of o’s type 2 vulnerable areas,
and these were not o’s last type 2 vulnerable areas, a responds by

playing in another of these areas.

3. Else, if B places a tile over one of a’s type 1 vulnerable areas, and

this was not o’s last type 1 vulnerable area, o responds by playing

18

in another of these areas.

4. Else, if there are no areas remaining of the same type as that which
B placed their tile upon, « responds by playing in any available area

type.

e If B’s tile does not overlap any of a’s area types, then a can play a tile

in either a safe area, a vulnerable area, or a protective area.

By following this strategy « is guaranteed to get some fraction of each
type of area which they have marked in their board cover. Furthermore, by
looking at the properties of the board and the number of moves o was able to
play, we can determine an upper bound on the number of moves # can make.
Finally, by comparing these upper and lower bounds, and taking into account
whose turn it is, we can determine if o will win by following this game playing
strategy.

We have no illusions that this strategy is an optimal one, but from the
results we will show in Section 6.1 it appears to be very effective for comput-
ing bounds. What makes our strategy nice is that it is simple, makes sense
intuitively, and is formulated in a way which makes it easy to prove bounds
on the number of moves each player can still make. The main goal of this

approach is to recognize easy wins and losses early in our search.

3.5 Lower Bound on Number of Moves Re-
maining

Now that we have defined a set of board properties, rules for creating a board
cover, and a game strategy, we can compute a reasonable lower bound on the
number of moves a player has left. We will refer to the number of protective

areas that exist in o’s covering of the board as prot(«), the number of type

19

2 vulnerable areas as vuln2(«), the number of type 1 vulnerable areas as

vulnl(a), and the number of safe areas as safe(a).

Theorem 3.5.1 If it is currently 5's turn, and o plays with the strategy given

in Section 8.4, then a has at least moves(a) left where:

moves(a) = 2 - [pmt(a)J + [”ﬂ@@} N [M

2 3 2

4

| +sasete) + sta)

Where

1 if vuln2(a) mod 3 # 0 and vulnl(a) mod 2 #0
fla) = :
0 otherwise.

A few special cases can be removed in the case where prot(a) mod 2 = 1, by
canceling one of the protective areas in a’s cover of the board and converting
it into two type 2 vulnerable moves. This guarantees that prot(a) mod 2 = 0,

simplifying the above equalion and the proof.

Proof: We know from our general game strategy, given in Section 3.4, that
o attempts to reply to any of 8’s moves by playing in the same type of area
which f's tile overlapped. From this we can guarantee o will be able to place
their tiles in some fraction of each type of area which has been included in the

board cover.

1. Due to the nature of a safe area, namely the opponent cannot place a
tile which will overlap it, a will be able to play a tile in every one of
the safe areas which are marked on the board regardless of how f plays.

Thus « is guaranteed safe(a) moves.

2. Since § can only block one of a’s protective areas with each of their

tiles and then the very next turn « will place a tile within one of these

20

(a) (b)

O i

o o | - — -

[(U U,

Figure 3.4: Crossing a protective and type 2 vulnerable area. (a) Opponent
places a tile, B, across both a protective area, A, and type 2 vulnerable area,
C. (b) Player cancels both A and C and creates a new type 2 vulnerable area,

D.
protective areas, « will be able to occupy at least LEE%Q—)J of those areas.
Also we know that for each protective area that « places a tile in, o also
creates another safe area for themselves. Therefore each protective area
which « is able to occupy gives them 2 moves. Hence, a’s protective

¢
areas guarantee « at least 2 - tp e Q)J moves.

It is possible for B to overlap both a protective area and a type 2 vul-
nerable area with one tile (see Figure 3.4(a)). However in doing this g
covers only one square in the protective area. Therefore, from the re-
maining portion of o’s protective area, another type 2 vulnerable area

can be created to make up for the one which was lost (see Figure 3.4(b)).

3. Since § can place a tile over at most two of «’s type 2 vulnerable areas
with each move and a can respond by placing a tile in another type 2
vulnerable area, o will be able to occupy at least [M—?@} of their type

2 vulnerable areas.

4. Similarly, since 3 can place a tile over at most one of ’s type 1 vulnerable
areas with each move and o can respond by placing a tile within another

type 1 vulnerable area, o will be able to occupy at least LMJ of

21

their type 1 vulnerable areas.

There is one special case that we should take note of. If vuln2(«) mod 3 # 0
and vulnl(a) mod 2 # 0 then there will be a point when S will have to place
a tile across either one or two remaining type 2 vulnerable areas or they will
have to place a tile over a remaining type 1 vulnerable area. In either case
o will not be able to respond by playing on that same type of area, but will
have to respond by placing a tile on the other type of vulnerable area. Since
the number of this other type of area is not evenly divisible by either 3 or 2

respectively, o will be guaranteed at least one more move of this type. O

A lower bound on the number of moves that o has remaining if it is cur-
rently o’s turn to move can also be easily calculated. We can simply place a
tile on the board, according to some heuristic, and then calculate the lower

bound after that move.

3.5.1 Example of Lower Bound

Consider the board covering given in Figure 3.3, let a be the vertical player,
and assume that it is horizontal’s turn to play. We can use Theorem 3.5.1 to
determine a lower bound on the number of moves that vertical can make.

In Figure 3.3, prot(a) = 3, vuln2(a) = 4, vulnl(a) = 2, and safe(a) =
5. Since prot(a) mod 2 = 1 we convert one protective area into two type 2
vulnerable areas, leading to prot{a) = 2, vuln2(a) = 6, vulnl(a) = 2, and

safe(a) = 5. Now we can use our formula:

o (2] 9]+ 2]+
= 10

moves(a) = 2- pm;(a)J + UUan(a)J + [Wlnl(Q)J + safe(a) + f(a)

No matter how J plays, o can play at least 10 more tiles. Note that Breuker

et al. would obtain a lower bound of 5.

22

o - - —

RS 1 [P —— -

Figure 3.5: The square, A, is not covered by vertical’s board covering and
is not available to horizontal. (The dotted rectangles denote vertical’s board
covering.)

3.6 Upper Bound on Number of Moves Re-
maining

We now would like to place an upper bound on the number of moves that
B could play, given a specific board position and assuming that o will play
according to the strategy given in Section 3.4.

In the previous section we determined that « is guaranteed, regardless of
how f plays, to be able to play at least moves(c) more tiles onto the board.
Therefore, this enables us to look at what properties the game board will have
after o has placed all of these tiles, realizing of course that o must follow the
strategy given in Section 3.4 and that we don’t know how g will play.

Since « has placed at least moves(a) tiles, 8 has at least 2- moves(a) fewer
unoccupied squares available to play their tiles on. Let squares(5) denote the
number of squares which are still unoccupied after a has placed their tiles
upon the board.

Further there can be squares on the board which are not covered by a’s
board cover, yet are unavailable to 5. Let unavail(8) denote the number of
squares which fit this description (see Figure 3.5). These squares will never
be played on since f§ is unable to and «’s strategy doesn’t take them into

consideration.

Finally there are a number of squares which are included in o’s covering
of the board but which, due to the properties of these squares and of what we
know of how « will play their tiles, o will not actually cover with a tile and
B will be unable to play on. Let unplayable(8) denote the number of these

types of squares. We describe these in more detail below.

3.6.1 Unplayable Squares

To determine the number of squares which are included in «&’s board cover but
which neither o will cover with a tile nor which 8 will be able to play on, we
define two more types of board properties.

An option area for « is an unprotected, unoccupied square which is ap-
pended to an already existing safe area, in such a way as to create a 1 x 3
rectangle (see Figure 3.6(a)). To include an option area in a board cover, it
cannot be adjacent to any other board properties contained in the board cover
(see Figure 3.6(b)).

There are three types of option areas, type 1, 2, and 3, corresponding to the
number of squares which they make unavailable for § if the option is played
(see Figure 3.6(c)). We note that a type 3 option is a subset of a type 2 option
since it makes at least 2 squares unavailable to . Similarly a type 2 option is
a subset of a type 1 option. We refer to the number of each of these different
areas as opl(«a), op2(«a), and op3(a) respectively.

A vulnerable area with a protected square for o/ is a type 1 or type 2
vulnerable area in which one of the squares is unavailable to 5. The importance
of these vulnerable areas with protected squares is that for each of these types
of areas which « does not place a tile within unplayable() can be increased
by one. We refer to the number of each of these different areas as vuln2_p(«a)
and vulnl_p(a). Important: The squares which these areas cover are the

only ones which will be counted twice in our board cover, each of these areas

24

(a) (b

CHITID ¢

; aaic o PR 5 ; x —

Figure 3.6: Option Area for vertical. (a) B marks a type 3 option area for the
safe area A. (b) If C is in the board cover, B couldn’t be added. (c) All of
the squares denoted by an X would be unavailable for the opponent if vertical
took the option.

will be counted as both a type 2 vulnerable area and a type 2 vulnerable area
with a protected square, or as both a type 1 vulnerable area and a type 1
vulnerable area with a protected square.

To account for these new properties we refine the strategy given in Sec-
tion 3.4 a little bit. First, if o has the choice of playing in a type 1 vulnerable
area which doesn’t contain a protected square and one which does, they will
choose to play in the one which doesn’t. Same thing for the type 2 vulnerable
areas. Since we are still playing type 1 or type 2 vulnerable moves when we
are supposed to, this does not affect the proof of Theorem 3.5.1. Second, any
move which # makes which overlaps one of a’s option areas, a will respond by
taking one of its options which is of the same value as what 3 covered. This
also doesn’t affect the proof of Theorem 3.5.1 since 5’s move wouldn’t overlap

any of a’s other areas.

Theorem 3.6.1 If it s currently 8’s turn, and o plays with the strategy given
in Section 3.4, then there is at least unplayable(3) squares which are covered
in «’s covering of the board, which will not be used by any of a’s moves(«)

tiles and which will not be available to 5 where:

'U,Tl.p]/(L'yCl-ble(ﬁ) — (UUZTLQ.}?(O{) __ Lvulng‘z(a) N vulnfl(u)v:;:ul'n/Z_p(a)J

4+ (’U’Ll,]nl"p(ﬂ) . (tvulr;l(a)J _ {>1,'11.1,71,1(Q)‘;ul'n,l_p(a)))
+3. t»opf;(a)‘l +92. {opim)J + {oplv(o)} + f(OZ) _|_g(a)

and

—1 df vuln2(a) mod 3 # 0 and vulnl(a) mod 2 # 0
fla) = and one of vuln2 p(a) > 0 or vulnl_p(a) > 0.
0 otherwise.

and
(0 if vuln2(a) mod 3 # 0 and vulnl(a) mod 2 # 0.
0 else if vuln2(a) mod 3 = 0 and vulnl(a) mod 2 = 0.
3 else if op3(a) mod 2 = 1.
gler) = 4 2 else if op2(a) mod 2 = 1.
1 else if opl(e) mod 2 = 1.
. 0 otherwise.

To remove a few special cases from the proof:

o [f prot(a) mod 2 = 1, cancel one of the protective areas in a’s cover
of the board and convert it into two type 2 vulnerable moves. Hence,

prot(a) mod 2 = 0.

If nesther of the first two cases in g(a) apply make it so that all of op3(c),
op2(c), and opl(c) have an even value, except one, by converting option
areas to smaller types as needed. For example if you had one of each of
the different types of option areas, and since a type 2 is a subset of a
type 1, you could label the type 2 option area as a type 1 leaving one type

3 option area and two type 1 option areas.

If one of the first two cases in g{a) apply make it so that all of op3(c),

op2(ar), and opl(a) have an even value by converting option areas to

26

smaller types as needed. For example if you had one of each of the
different types of option areas, and since a type 315 a subset of a type 2,
you could label the type 8 option area as a type 2 and completely remove

the type 1 option area leaving two type 2 option areas.
Proof:

1. By the strategy given in Section 3.4, and our slight refinements given

above «v will be able to place a tile in at least L of their

vuln2(a)—vuln2_pa) J
3
type 2 vulnerable areas which do not have a protected square before

they could possibly run out of these types of areas. Therefore they will
not have to play in (vuan_p(a) - ([M} — L”“l”‘z(a)“‘m‘mz‘p(a)J)) of

3 3

their type 2 vulnerable areas which contain a protected square, each of

which leaves one square which 8 can’t use.

2. An identical argument can be used to determine the number of type 1
vulnerable areas which contain a protected square that o will not have

to place a tile within.

3. For the option areas, each time S blocks one of a’s option areas, a will
be able to immediately respond by placing a tile within one of their other
option areas of an equal value to what § just blocked. Therefore, we can
see that we will be able to use at least [QE%QJ of each option type. We
can also see that for each type 3 option we use it makes three squares

unavailable for 38, two for type 2 options, and one for type 1 options.

Finally there are two special cases which need to be taken care of. The
first one is just an extension of the special case in the previous proof, where
vuln2{«) mod 3 # 0 and vulnl(a) mod 2 # 0. In Theorem 3.5.1 we were able
to show that this special case enabled « to place one more tile on one of the

two types of vulnerable moves. This means that unless both vuln2_p(«) and

27

vulnl_p(«) equal zero, this extra move that a plays could possibly occupy one
more of their vulnerable moves which contain a protected square. This would
mean that we over-calculated the number of squares in o’s cover which will be
unavailable to 3 by one.

The second special case is when o has only one of vuln2(c) mod 3 # 0 or
vulnl(a) mod 2 # 0 and an uneven number of one of their option types. This
will mean that at some point in the game S will have to play across one of
these two types of areas, and o will be able to respond in the other. This will
give o either one more option or one more vulnerable move. If they receive the
extra option then this removes up to 3 squares from f (the value of the option
area). If they receive the extra vulnerable move this removes two squares from
B (the area of the extra tile « can play) and 8 will need two more squares than
they did before since a will now be able to play moves(a) + 1 tiles. Since no
options are worth more than 4 squares it is always in 3’s interest to count the

value of the option and forget about giving o an extra move.O

3.6.2 Available Squares for Opponent

We have now determined the number of unoccupied squares 5 will have re-
maining after « has played their moves(a) tiles, the number of these squares
which were not contained in «’s board cover which are not available to 3, and
the number of squares within «’s cover which will not be available for 5. From

avail(8)
2

all of this we can conclude that S can play a maximum of t moves,

where

avail(f) = squares(f) — unavail(B) — unplayable(3).

28

P P Y R P I A T
\ ' . 1y [N i) 1
IS ! !P ‘~V2‘lV2'IP ! : |S !
[!) ' T R ! | !
T £ i T 13 T t 7 t
1 ! | iy th i ! t !
|) 1 th aE i ! [!
1 ! ! th th h 1 | !
U I PRV B B [V B SO 1 A N I LF
r T N S P N R
| J 1 Yy th ! 102'
IS ! ' P V21 V2 1 '
| ! , 1y 1 1 ; Lot
0 1 i T LN} T ———
} i , iy il ' N 1
1 ! I Y i ' |Ol‘
' ! i B BN [1 !
L JUR I PO b B [NV i SR 1 | v 1
Y T e T
|Ol' ! i t ! I | 1 !
i ! 1V1’ |y_1l | | |S i
P ') 1 vl V) . 1
1 K 1 ¥] t i t
' l ' RN h i) 1
i ! ' ! 1 1 ')
) i | 1 ') \ 1
T e] R [[N

Figure 3.7: A possible covering of a 6 x 10 board for the vertical player. The
squares denoted with O1 and O2 are option areas and the underlined V1
denotes a type 1 vulnerable area with a protected square.

3.6.3 Example of Upper Bound

Consider the example given in Section 3.5.1 and the augmented board covering
given in Figure 3.7. From these and Theorem 3.6.1 we determine an upper
bound on the number of moves that horizontal can make.

In Section 3.5.1 we already showed that «, the vertical player, can still
play at least 10 tiles, with prot(a) = 2, vuln2(a) = 6, vulnl{a) = 2, and
safe(a) = 5. In Figure 3.7 we can also see squares(f) = 22, unavail(3) = 0,
opl(a) = 2, op2(a) = 1, op3(e) = 0, vuln2_p(a) = 0, and vulnl p(a) = 1.

Now we can use our formula:

unplayable(8) = (vulrﬂ_P(&)" ([M?(QJ - WW(&)_;UMZPM)
(

+ (vulnl_p O/) N ['uuln;(a)J N Lvulﬂl(a}-—;ulnl_p(a)))

13- [2| 4. 2|y 2l 4 f(a) + g(a)

= 1
To determine the upper bound on the number of squares 8 can place a tile

on we use the formula from Section 3.6.2:

avail(f) = squares(f) — unavail(f) — unplayable(B)

= (22) = (0) = (1)
= 21

Therefore we can determine that 5 can play at most L%J = 10 tiles. Note

that Breuker et al. would obtain an upper bound of 15.

3.7 The Winner Is ...

In a given board position « can still make at least moves(a) moves, no matter
what o’s opponent does, provided that « plays according to our given strategy.
We also know that a’s opponent can place at most t@%@lJ tiles. If it is
currently 8’s turn and moves(a) > opp_moves(a), then o can win. Similarly,
if it is currently o’s turn and moves(a) > opp_moves(a), then a can win.
From our examples in Section 3.5.1 and Section 3.6.3 we know « can play
at least 10 more tiles and f can play at most 10 tiles. Therefore, since it is
currently ’s turn we can deduce that « has a win in this position. Breuker et
al.’s bounds do not allow them to be able to solve this position statically and

therefore they are forced to build a large search tree to determine this result.

30

Chapter 4

Search Enhancements

All search programs, when optimized for a specific search task, will use a
number of different enhancements to the normal alpha-beta search algorithm.
These enhancements could include iterative deepening, transposition tables,
move ordering heuristics, specialized local searches, and many other general
as well as problem-specific ideas.

In our program a couple of the enhancements which we felt were worth
analyzing were the use of transposition tables in our solver (or more specifically
the replacement scheme used with the transposition tables) and the move
ordering scheme. Both of these ideas were already looked at by Breuker et
al. in their program DOMI [3]. We have extended their findings with some
improvements of our own. We have also made one other enhancement which
they did not investigate, by proving that one type of move is always inferior

to some other move on the board we can prune these moves from the search.

4.1 Transposition Tables

Most if not all search programs for game-playing or other search-related prob-
lems build trees during the traversal of the search space of the problem. A
common situation is that multiple paths reach the same state in the search

space. Unless we are able to determine that we have seen a state before and

31

(a) (b)

(© @

Figure 4.1: Board Symmetries. Each of these boards are equivalent to each
other through a vertical and/or horizontal reflection. We don’t attempt to
find symmetries through rotation since it affects the meaning of vertical and
horizontal.

know its value, we will end up duplicating previously done searches below that
state.

In game-playing and solving programs, transposition tables 7, 5] are com-
monly used to store a game state and the value associated with that state.
These tables are designed for fast access to the entries in the table. If a state
from the search is found in the table, then its value can be retrieved and fur-
ther search at the node might be unnecessary. We will commonly refer to the
game state as the game position.

Transposition tables can be used to exploit the symmetries which exist in
a given search space. For example in domineering if a position is identical
to the horizontal reflection of a different position, and in both cases it is the

same player’s turn to move, then the positions can be considered isomorphic.

32

(a) (b)

Figure 4.2: Board equivalence. It is easy to see that these two boards are
equivalent to each other. Only empty squares are important in determining
the equivalence of domineering positions.

In domineering a position can be mapped to its horizontal and/or vertical
reflection (see Figure 4.1). All isomorphic positions can be looked up in the
transposition table. Alternatively, a position could be mapped to a canonical
position and then looked up in the transposition table. It is interesting to
point out that in domineering it is unimportant to distinguish between which
tiles have been placed on the board but only on which squares are currently

unoccupied (see Figure 4.2).

4.1.1 TImplementation

Our transposition table implementation is very similar to that used in the pro-
gram DOMI [3]. The transposition table is just a basic hash table. A random
integer is associated with each square on the board. Then for a given position
we exclusive-or (xor) all of the integers together which are associated with oc-
cupied squares. The resulting value is used as the hash value for that specific
position (modulo the hash table size). This general method of determining a
hash value is commonly called a Zobrist hash function [11]. Note that since we

are using a hash table, collisions between different board positions can occur.

33

During a search, as we determine the values of different board positions
we can store these values into the transposition table by using the hash value
associated with that position as the index. This also allows us to check in
the hash table, before searching a position’s subtree, to determine if we have
already determined the value of that position. Besides storing the value of the
position in the hash table, in order to differentiate between positions which
hash to the same location in the transposition table, we also need to store a key
which uniquely identifies that position (in our case we store the entire position)
and which player moves next. We also store other information associated with
this position in the hash table, such as the size of the subtree we searched to

determine the positions value.

4.1.2 Replacement Schemes

For a large search space there are not enough entries in the transposition
table to contain information about each distinct position which is examined.
Therefore, when two different positions have the same hash value, we need to
have some method to decide which position will stay in the transposition table
and which is removed.

Breuker et al. looked at a number of different replacement schemes and ran
tests to determine which of them worked best in the game of domineering [3].

The replacement schemes they considered were:

e New. This scheme places the new position in the transposition table,

and discards the older position (i.e. the one currently in the table).

e Deep. This scheme places the position with the deepest subtree in the
transposition table. In other words, if a position in the table has a search
depth of 5 and the new position has been searched to a depth of 7, then

replace.

34

e Big. This scheme places the position with the biggest subtree (the sub-
tree with the largest number of nodes) in the transposition table. For
example, 1f position 4 was searched to a depth of 5 and took 10,000
nodes, and position B was searched to a depth of 7 but took only 200

nodes, put A in the transposition table.

e TwoBig and TwoDeep. These are both two-level transposition tables.
Each hash value has two entries associated with it. The first entry uses
either a deep or a big replacement scheme. If the new position is not
stored in the first entry it is always stored in the second entry. The result
is a combination of the Big or Deep scheme and the New scheme. The
second entry captures recency and improves the temporal locality in the

search.

Breuker et al. concluded that TwoBig was the best of all of these replace-
ment schemes.

In our implementation of a domineering solver we came up with two other
replacement schemes worth considering. Both are just slight variations on the
Big scheme. We call these two new schemes FindFirst and FindWorst. Both
of these schemes use a single-level transposition table which stores the size
(number of nodes) of the subtree with the position.

Our two replacement schemes work as follows:

e FindFirst. From the symmetries in the game of domineering each po-
sition has four possible entries in the transposition table which it maps
to (i.e. by reflection). In this scheme we check each of these four en-
tries, replacing the first entry which has a smaller subtree than this new

position.

e FindWorst. In this scheme we determine which of the four entries which

a position maps to has the position with the smallest subtree stored in

35

Difficult Test Set Easier Test Set

280 T T . T lOO T T 1 . T T
Big —— Big —+—
L TwoBig —-a- | TwoRig @
260 FindFirst -2 90 r FindFirsbt TN
— 240 | FindWOrSt TR - _ —~ L] FindWOrSt ————
g £ gt]
8 2
=220 F 0% - =
% .‘\‘ g 70 B -1
g 200 F 4 - . 2
E @ 260 f :
Z 180 | 1 z
3 R 250+]
_“.é 160 R . 2
Z 140 | . S 40
120 + 4 30 F i
100 L L L 20 : 1 . . \
21 22 23 19 20 21 22 23
Transposition Table Size (2x) Transposition Table Size (27x)

Figure 4.3: Transposition Table Experiments. The x axis of each graph mea-
sures the different sizes of transposition tables for each of our experiments.
The y axis shows the average number of nodes required to solve the different
cases in each data set. Note the very close similarity between the two test sets,
except that they differ from each other by a factor of about four.

it. Then if the new position’s subtree is larger than this smallest subtree,

we replace that position with the new one.

4.1.3 Experimental Results

To measure the effectiveness of these four different replacement schemes we
looked at positions from our 10 x 10 proof set. From these positions we picked 8
positions which needed about 200 million nodes in order to determine a winner
and 10 positions which needed about 50 million nodes in order to solve. We will
call these two test sets Difficult and Easier. Then we processed each of these
two test sets with different combinations of hash-table size and replacement
scheme, taking the average number of nodes which were required to solve the

position sets under each set of conditions. The results are shown in Figure 4.3.

36

4.1.4 Analysis of Replacement Schemes

The FindWorst results closely mirrored the FindFirst results. However since
FindWorst is computationally more expensive, FindFirst is the more practical
of the two. Also TwoBig seemed to be a superior scheme in comparison to the
simpler Big scheme, confirming the results reported by Breuker et al. [3].

In comparing the two schemes FindFirst and TwoBig, the choice of a re-
placement scheme really depends on the amount of memory available and the
difficulty of the problem. Our results would seem to point out that there is a
crossover point, approximately when the number of nodes is 50 times larger
than the size of the transposition table, below which the FindFirst replacement
scheme begins to outperform the TwoBig replacement scheme. FindFirst is
computationally less expensive than the TwoBig scheme, and on average is
able to process 2-3% more nodes in the same amount of time.

To emphasize the difference between the two replacement schemes we would
like to point out one section in Figure 4.3. With a transposition table size
of four million entries (2%2), on the difficult test set the difference between
FindFirst and TwoBig was on average eight million nodes or about five percent.
Then if we include the cost of the two replacement schemes into the figures the
difference jumps to around 8 percent. This we consider fairly significant. Also
if we assume that the two replacement schemes equal out as the number of
nodes approaches 50 times the size of the transposition tables, FindFirst will
be the superior scheme for problems sizes of between 0 to 200 million nodes
(when we have a four million entry transposition table).

From this we conclude that either one of these schemes can be the superior
scheme to use but that it depends on the size of the search space and the
amount of memory available. To solve 10 x 10 domineering took many CPU

months of computing power and 8 percent translates into a savings of around

37

2 weeks of computing!

4.2 Move Order Heuristic for Domineering

As we already noted in Section 2.2, a good move ordering heuristic is very
important to the alpha-beta search algorithm.

In our domineering solver we used the same move ordering scheme as that
of Breuker et al. [3]. Each move is assigned a score which reflects (1) how many
guaranteed moves a player has compared to their opponent and (2) the total
number of moves a player has compared to their opponent. The higher the
score, the more likely the move is good. The formula for this move ordering

value is

value = real(Max) — real(Min) + safe(Max) — safe(Min),

where real(z) denotes the maximum number of tiles that the player z could
place on the board if their opponent did not place any more tiles upon the
board, and safe(z) denotes the number of tiles that player x could place on the
board regardless of how many tiles their opponent placed on the board (formal
definitions are given in Section 1.2). The children of a node are considered in
decreasing order of their move score.

For the most part, this heuristic worked very well as a first-order move
ordering scheme. However, for any given node many of its children recieve the
same score. Therefore we felt that a second-order move order scheme would

improve the move ordering.

4.2.1 Exploiting Symmetries in Domineering

In domineering we know that if a position is identical to the horizontal and/or
vertical reflection of another position, and in both cases it is the same player’s

turn, then we can consider these positions as being identical. This means that

38

once we have searched the subtree of one of these positions and determined
the value of that position, there is no need to search the subtree of the other
position, since both positions must have the same value.

Therefore we should be able to exploit this property of domineering by
guiding the search towards positions which are more similar with respect to
reflection. This will increase the chances of isomorphic positions in the search.

In order to do this we came up with a secondary move ordering scheme.
Each move is assigned a score which denotes how early in the search a move
which is a reflection of itself was played. The earlier a reflective move was
played the more likely the move will guide us to an isomorphic position which

already exists in the transposition table. The formula for the value of the move

(x,y) is

depth(m —z +v, y)
value(z,y) = min depth(m —z +v, n—y+h)
depth(z, n—1y+h)

where depth(x,y) is the depth at which the move (z,y) was played by the
current player or infinite if that move has not been played, m is the number
of rows on the board, n is the number of columns on the board, v is 2 if
the current player is vertical and 1 otherwise, and h is 2 if the current player
is horizontal and 1 otherwise. The children of a node will be considered in
increasing order of this secondary move score.

For example (see Figure 4.4) assume that our program is trying to solve 6 x4
domineering with horizontal going first (note that this is a win for horizontal).
Our program first chooses a move for horizontal, then it must try all possible
positions for the vertical player to prove that vertical can’t win (Figure 4.4 (a)
and (b) each show one of vertical’s possible moves). On horizontal’s second
move there are a number of positions which are valued identically by our

primary move ordering function. Now if we were just generating our moves in

39

(a) ., ®

Figure 4.4: Exploiting the Symmetries of Domineering. These two boards
represent two different positions, two ply deep, in the proof of 6 x4 domineering
with horizontal going first. Note that if we play in position A in both of them
we have to continue to search both positions. If we play B they become
transpositions of each other.

a top-to-bottom, left-to-right fashion we would end up playing A first in both
cases, and we would have to search both subtrees to find out if both were wins
for horizontal. But if we used our secondary ordering function we would find
that in both cases we would play B first, since B would recieve a value of 1
and A would recieve a value of co from our secondary move ordering scheme,

making both positions identical and giving us the opportunity to prune one of

the cases from our search tree.

4.2.2 Analysis of Exploitation

We want to compare the primary move ordering scheme, which we described
in Section 4.2, against our enhanced version which uses both the primary and
secondary move ordering schemes. We ran a number of tests comparing the
number of nodes which it took to solve different board sizes using each of
these two move ordering methods. We found that adding a symmetry bias to

the scheme substantially decreased the growth of the number of nodes at each

40

Comparison of Move Ordering Schemes

18 T T ¥ ¥ T T ¥ T T T T T T T T T T T : .
Primary —+—

16 1 Primary + Symmetrical —&-— 7]

14 |

12
10

Number of Nodes (log x)

L i3 1

I

I

S NV O\ 0o

1 2 3

§ 9 101112 13 14 15 16 17 18 19 20 21
Search Depth

Figure 4.5: Comparison of primary move ordering scheme vs the primary
scheme enhanced with our symmetrical move ordering scheme. Graph shows
the number of nodes examined at each ply in the 8 x 8 proof tree for each
move ordering implementation. Note the y axis uses a logarithmic scale.

Depth Primary g;ﬁrigg, Depth Primary g;zzg;;
1 1 1 12 2,381,100 871,659
2 52 52 13 251,905 77,648
3 52 52 14 863,380 235,807
4 2,346 1,263 15 166,431 30,700
5 1,271 728 16 103,767 21,289
6 48 217 21,622 17 49,112 8,833
7 16,612 9,823 18 24,086 4,538
8 365,997 161,329 19 7,248 2,003
9 90,709 39,980 20 4,488 698
10 1,802,293 652,707 21 420 169
11 274,926 95,345

Figure 4.6: This gives a tabular view of the data displayed in Figure 4.5.

subsequent level of depth in the search. For example in solving 8 x 8 dom-
ineering, using only the primary move ordering scheme, our program had to
search 6 million nodes to determine the winner, but by using the combination
of the two move ordering schemes it took only slightly over 2 million nodes.
As expected, both versions had to search to the same depth to determine a
winner, but the number of nodes at each depth was significantly reduced. (See
Figure 4.5 and Figure 4.6). Note that the odd/even saw-tooth affect in the

graph is due to the assymetry of alternating Max and Min nodes.

4.3 Ignoring Safe Moves

One further enhancement that Obsequi can take advantage of is the idea that
as long as there exists a vulnerable area for the current player there is no need

to place a tile in a safe area.

Theorem 4.3.1 Given a domineering board which contains at least one safe
area and one vulnerable area for o and it 18 «’s turn to play. Then there exists
a vulnerable area which is as good or better a mowve for o than to play in any

of the safe areas.

Proof: Assume the optimal move sequence for o and S until the end of the
game is mq (@), my(B), mz(a), ma(5), ... and that m;(a) was placed in a safe
area. There are two cases we need to look at.

Case 1. At least one of a’s moves was placed in a vulnerable area. Let
ms(a) be the first vulnerable move a played. Since m,(«) is the first vul-
nerable move, mi(a), ma(a), ..., m, () are all safe moves. « could get the
same results by playing m,(a) first, then m(a), ms(a),..., mz—1(a), since
my(a), me(a), ..., my1(c) are all safe moves and therefore 5 could not inter-

fere with them.

42

Board Size | Safe Moves No Safe Moves
7Tx8 1,030,221 949,209
7x9 7,472.487 6,052,516
8x8 2,272,909 2,023,301

Figure 4.7: Proof tree sizes for various boards with safe moves either being
generated or not.

Case 2. None of a’s moves were placed in a vulnerable area. Let m;(a)
be replaced with an existing vulnerable move. Since this vulnerable move can
disrupt at most one of a’s safe areas, and it can only decrease the amount of

space 3 has to place their moves, it can not negatively affect a. O

This enhancement is a very simple idea to help reduce the branching factor
in the game of domineering. Figure 4.7 shows a number of tests which show
that this enhancement does have a small affect on the size of the proof trees
for various sizes of boards. Node expansion also becomes more efficient since
there are fewer child positions to examine and evaluate. We will refer to these
types of relationships, where one move is guaranteed to always be at least as

good or better than another, as a dominance relationship.

4.4 Conclusion

In this chapter we have introduced three new search enhancements: a new
replacement scheme, FindFirst, a secondary move ordering function which ex-
ploits the symmetries which exist in domineering, and a dominance relation
between vulnerable and safe moves. The first two of these enhancements are
modifications of previously published ideas, yet in some cases they give sub-
stantial improvements to the size of the proof trees. The third enhancement
is a new idea for domineering, which possibly has great promise for further

improvements. Possibly other dominance relations can be discovered which

43

will further reduce the branching factor of domineering.

All of these enhancements are important for building a better domineering
search program, and yet even together they do not have nearly as much impact
on the size of the search trees as our improved evaluation function.

We still feel that there are large areas for improvement in search enhance-
ments for domineering. One of those areas would be an improved transposition
replacement scheme which tries to merge the improvements gained from Find-
First with the sustained effectiveness of the TwoBig scheme. Another area
for further research would be to try to prove further dominance relationships.
Possibly there exists patterns, where one position in the pattern dominates
another position, allowing us to reduce the branching factor of domineering

further.

44

Chapter 5

Solving 10 x 10 Domineering

One of the goals we wanted to reach in doing research on domineering was to
solve larger boards than had ever been solved before. The pinnacle being the
10 x 10 board - the smallest interesting-sized unresolved problem.

Previous to our research, 8 x 8 domineering as well as many other smaller
board sizes, had been solved by various people. 9 x 9 domineering had been
solved by Breuker et al. with their program DOMI [3]. We wanted to try the

next step: 10 x 10 domineering.

5.1 Estimation of Difficulty

We can get an estimate of the total size of the search space for 10 x 10 domi-
neering by estimating the total number of different board positions which are
reachable. To estimate this we looked at the first 5 ply of the search space (see
Figure 5.1). We note that on average the number of moves available decreases
by about 3 with each ply of the search. This would mean that to search to the
end of the game a depth of at least 30 would need to be reached. Also it can
be noted that for the first five ply the effective branching factor ranges from
25 to 77. Therefore a conservative estimate of the effective branching factor
at each ply would be a factor of 25. This data suggests that the size of the

search space is approximately 25%0 = 8.6 - 104!

45

Branching Nodes at Effective
Depth Factor Current Depth Branching Factor |
0 90 1 25
1 86 25 77
2 83 1944 41
3 79 81609 43
4 7 3520539 48
5 74 169944142 -

Figure 5.1: Growth of 10 x 10 Search Tree.

Another method to determine the difficulty of the problem is to look at the
number of nodes which it took to solve smaller boards and then just extend
those numbers to the larger board. For example in the published results by
Breuker et al. [3] 7 x 7 domineering took about 4 - 10° nodes, 8 x 8 took 4 - 108
nodes, and 8 x 9 took 7-10!° nodes. At this rate of growth we estimated that
9 x 9 could easily need more than 4- 10! nodes and 10 x 10 domineering may
take upwards of 5 - 10'* nodes to solve. This is a number which is probably
beyond our current computational resources.

The good news is that if we use this same method of estimation with the
number of nodes which Obsequi needed to solve 8 x 8 domineering, 2-10°, and
9 x 9 domineering, 2.5 - 10° nodes, we get a much smaller estimate of around

3 - 102 nodes to solve 10 x 10 domineering.

5.2 Splitting up the Work

Examining 3 trillion nodes is obviously much better than 500 trillion, but with
only one processor we estimated that it would have taken upwards of 150 days,
probably more since the transposition table wouldn’t have been big enough to
be effective. Therefore the work needed to be split up.

Our initial assumption was that 10 x 10 domineering was a first player win.

Therefore we ran our solver with the condition that every node at the eighth

46

D:5tox
W1 W2 Wn

Figure 5.2: Minimal Alpha-Beta Tree of Depth 4 (assuming first player win).
Since we are assuming a first player win, the first player only needs to make
one move at each of his turns, while all of the second player’s possible moves
need to be examined. The small triangles at the bottom of the tree represent
the independent searches that can be divided among many different processors
to validate that the values of the nodes at the fourth ply of the tree are all
wins for the first player.

ply of the search was a first player win. If our assumption of the values of all of
these nodes was correct then this would be the first 8 ply, with transpositions
removed, of the proof tree for 10 x 10 domineering. (See Figure 5.2). We
then had the program write all the leaf nodes of this tree to a large file. The
650,531 nodes which were generated were then split into a number of different
work files, and each file was assigned to a different processor. Each of these
processors then worked on verifying that in fact all of these nodes were first
player wins.

Obviously, if any losses were found we would then need to re-run our solver
with the added knowledge of which cases were second player wins, from which
a new set of nodes would be generated. The process would iterate from there
until we were able to find a set of leaf nodes which were all first player wins.

At this point we would then have a correct proof for 10 x 10 domineering.

47

5.3 10 x 10 A First Player Win

The computers which we used to solve this problem varied from Pentium 3
600 MHz machines to Pentium 3 900MHz machines, with transposition tables
which varied in size from between 1 million entries to 8 million entries, depend-
ing on the amount of memory available on the given machine. The number of
nodes which they could examine per second ranged from 140,000 to 210,000.
3,541,685,253,370 (3.5 trillion) nodes later the results were in: 10 x 10
domineering is indeed a first player win. If vertical is the first player then
a winning move is position (1,2). Obsequi’s original move ordering had been
good enough that there was no need for a second iteration of the solving

process: all 8-ply positions in the DAG were proven to be wins.

5.4 Correctness

Computer programs are inherently problem ridden; a subtraction sign instead
of an addition sign, an = instead of an ==, etc. Therefore we would like to
give a couple of reasons why we feel that the results can be trusted.

First, we have examined hundreds of random positions in the search trees.
These positions have been examined to make sure that the right set of moves
were generated, to make sure that the evaluation function returned the correct
value for the given position, and to make sure the correct board positions were
generated when we applied these moves to the current board position. Second,
we ran Obsegui on all of the boards which have been previously solved by other
researchers, and verified that Obsequi returns the same values for each of these
boards. Third, in solving 10 x 10 domineering, we tried to make our method
of breaking the problem up into smaller sub-problems as simple as possible, so
as not to introduce new complexities which may have errors attached to them.

One final point we would like to address is the fact that Obsegui did not

48

make any mistakes for the first player in any of their first four moves. This
may seem surprising, but for example in 8 x 8 domineering, Obsequi didn’t
make any mistakes until the sixth ply of the search, and then only made 2
mistakes out of 9862 moves. Therefore given the fact that the search space
for 10 x 10 is considerably bigger, it is completely believable that Obsequi was
able to extend its perfect accuracy to the eighth ply of the search.

For all of the reasons stated above we are very confident in our results. But
as always independent confirmation of our 10 x 10 results would definitely be

welcome and lend even greater credibility to the results.

49

Chapter 6

Conclusion

The improvements we have made in the evaluation function, move ordering,
and the transposition table replacement scheme have made an enormous im-
pact on the size of domineering positions we are able to solve.

One measure of how far we have progressed is the length of time it takes
to solve a specific board position. In “Solving 8 x 8 Domineering” by Breuker
et al. [3] it was mentioned that it took them 600 hours and almost 71 billion
nodes to determine that 8 x 9 domineering was a win for the vertical player.
Obsequi is able to tell us the same result in less than twenty minutes and needs
to examine fewer than 260 million nodes. This is a huge improvement in a
time span of just 2 years, and represents a difference which is far larger than
just the improvements in computer hardware. It is illustrative to compare
DOMTI’s results, Figure 1.2, to those of Obsequi, Figure 6.1.

A second measure of the progress which has been made is the number of

new board positions which Obsequi can solve (see Figure 6.2).

6.1 Evaluation Function

The most significant improvement in our solver was our evaluation function.
This enabled Obsequi to prune lines of search from its proof trees far faster

than previous programs. This means that when a losing move is made our

50

Board Size Result Nodes | Board Size Result Nodes
2% 2 1 1 4x7 vV 802
2 %3 1 2] 4x8 H 2.570
2 x4 H 7 4%x9 \Y 13,570
2 x5 \Y 6 5x5 2 259
2x6 1 8 5 X6 H 324
2x7 1 2 Bbx T H 2,210
2x8 H 26 hx8 H 2,467
2x9 \Y 65 5x9 H 11,669
3x3 1 1 6 x6 1 908
3 x4 H 5 6x7 Vv 24.227
3xb H 14 6x8 H 204,813
3x6 H 16 6x9 \% 1,374,535
3IXT H 43 TxXT 1 31,440
3x8 H 33 7x8 H 949,209
3x9 H 100 7%x9 H 6,052,516
4 x 4 1 23 8x8 1 2,023,301
4 x5 V 42 8x9 A% 259,064,428
4%x6 1 583

Figure 6.1: Game-theoretic values for various sizes of domineering boards and
the number of nodes Obsequi needed to calculate the values. (We used a
transposition table with 22 entries and the FindFirst replacement scheme.)
Compare to Figure 1.2.

Board Size Result Nodes
4 x 19 H 314,148,901
4 % 21 H 3,390,074,758
6 x 14 H 1,864,870,370
8 x 10 H 4,125,516,739
9x9 1 1,657,032,906
10 x 10 1 3,541,685,253,370

Figure 6.2: New game-theoretic values which have been determined by Obsequi
for various interesting board positions, as well as the number of nodes needed
to calculate the values. Note that 9x9 has been previously solved by DOMI [9].
To solve the above positions we used a transposition table with 2?2 entries and
the TwoBig replacement scheme, except for 4 x 19 where we used the FindFirst
replacement scheme, and 10 x 10, which was solved as described in Chapter 5.

o1

enhancements are able to determine this much sooner and therefore prune the
subtree of that position.

In the 8 x 8 proof tree this enables our program to examine 40 times
fewer nodes than it would without these enhancements. For example, with
all of Obsequi’s enhancements turned on it takes 2,023,301 nodes to prove
[8 x 8] = 1. If we turn off all the enhancements to the evaluation function
it takes 84,034,856 nodes. See Figure 6.3 and Figure 6.4 for a more detailed
look at how individual enhancements affect the size of the proof tree for § x 8

domineering.

6.2 Extending To All Rectangular Boards

Even with all the progress which has been made in solving the game of dom-
ineering we are still only able to solve a fairly small number of domineering
boards. Thanks to the results of Lachmann et al. [6] we are able to extend the
results obtained through search techniques to much larger boards.

The new results which we have computed, in conjuction with the rules
discovered by Lachmann et al. [6], have enabled us to determine the values
of many more board positions. Some of the more interesting values which we

have obtained, which were not previously known, are:

e [4 x 19] = [4 x 21] = H. With these two results we now are able to
determine who wins on all 4 x x boards. [4 x z] = H for all values of z,

where z > 14.

e [6 x 14] = H. With this new result we can now determine [6 x z] = H

for all even values of z, where z > 20.

e [8 x 10] = H. This is the first 8 x z board which has been determined

to have a value of H.

@
[N]

e [10 x 10] = 1. This is the largest square board ever solved.

See Figure 6.5 for an updated table of who wins on rectangular boards.

18 T T 1 T T T T T H ¥ T T

&] T T T T 1 T T
16 | Cl . E]E, i
14 -
=
_%_0 12 +]
S 10t ’
3
Z
B 8¢t 1
8 Legend SO\ k
g 6 | All Enhancements : WO
2 iAll - Protective e NN
4l , ‘All - Unavailable | %G
All - Vuln. w/ Prot T
All - Vuln. Type 1 Ml
2r AAll - Option Areas Bh
No Enhancements 8o
O & i ! 1. 1 1 | 1 i 1 1, L 1 1 1 L

1 23 45 6 7 8 91011 121314151617 18 19 20 21 22
Search Depth

Figure 6.3: Comparison of different evaluation functions (number of nodes at
each ply of the search). The z axis is the depth or ply of the search, the y axis
is the log of the number of nodes which were examined at that depth of the
search. “All - A” denotes that we used all of the enhancements except A.

Enhancements Size of Proof Tree (nodes)
All Enhancements 2,023,301
All - protective areas 6,610,775
All - unavailable squares 2,566,004
All - vulnerable areas w/ protected squares 4,045,384
All - vulnerable type 1 areas 2,972,216
All - option areas 4,525,704
No Enhancements to Evaluation Function 84,034,856

Figure 6.4: Comparison of the size of the proof trees for 8 X 8 domineering
given a certain evaluation function. “All - A” denotes that we used all of the
enhancements except A.

34
H
H
A\

V HIV H
VIVIVIVIVIV |V
ViVviv
VIHIV

1
1
1
1

viviviviviv vi v

25 VIVIV V. VI Iv|V

VH V HVIHVHH

7
8
9
10,V
11

BMJNENGS SUN, S SR A

260VIVIV VIV VIV

\
v
)\

2740Vi1
270 VI VI VIVIV

SEmmmmmm mSm sl
AmzmmmEm = | SERRC RN
S m‘m‘mmmm:{m SISk L
e EEEEIEEERR e
sommms = (5 || of
Qmmmmmm s s (=2 o T
Emw« E:& oS m‘ ;q: = » : o o e ‘AW‘!*
0 o e e 1 et PP S
S —mm @S |8 9 RERE
i o o Kl O K I I R L
e R R = P P >*§>§L B SIS
R P TP = I P I B I P e B P = P R P
ol > ml > m | > :>z>3:’"§§z>:*§">w_>;[>a>] SEEs
w m) m |] — T REREERE RN |
S = Py P g >(>] S| FSISPSHN
B EEEECLEE ‘ EEE
o >] > >
i m] >
> >
1>

24

Figure 6.5: Updated chart of what we know about who wins Domineering on
rectangular boards. New results which we have obtained from Obsequ:i are
shaded. The y axis is the number of rows, z axis is the number of columns. A
value such as 1h means the position is either a first player or horizontal win
(further work needs to be done to determine the exact value).

95

Chapter 7

Future Work

There are a number of other methods which we feel have some promise in

improving the search on domineering boards. Some of these are:

e A further improved evaluation function. We feel that although a signifi-
cant amount of progress has been made on the evaluation function there
is still room for continued improvement. For example some vulnerable
moves, when they are played, create a square which is unavailable to
both players. This property could possibly be taken into account. Any
single new improvement will likely make a small impact on the depth of
the search, but due to the large branching factor can have a significant

impact on the size of the proof tree.

e A better board packing algorithm. The algorithm we used in packing
different areas onto the board is basically a greedy algorithm. We know
that it does not pack the properties onto the board optimally, and as
the board sizes which we try to solve grow its deviation from an optimal

packing will probably increase.

e Almost all search programs could benefit from a method which would
increase the number of transpositions which the search tree contained

(a heuristic which guides the search towards previously seen positions).

56

Due to its high number of transpositions Domineering could be a good

test bed for this type of research.

e Finding other moves, besides safe moves, which can be proven to always
be inferior to some other move. Possibly a number of patterns could
be found where it can be proven that if a move matches pattern A and
another move matches pattern B, A will always be at least as good as
B. These patterns would help to reduce the branching factor of the
search and continue to decrease the cost of node expansion. We looked
at a number of these types of ideas but so far have been able to either
find counter examples for the patterns or were unable to prove that the

pattern was correct.

7.1 Insights into the Game of Domineering

There were also a number of ideas that we looked at, which didn’t work.

One of these was building a database of combinatorial game values for small
board positions, once the board is decomposed into these smaller positions we
would be able to determine the value of the larger position. This problem
would appear to have a large amount of potential but what we found was
that our improved evaluation function was determining the value of the board
before the board started to break up into non-trivial partitions. Therefore this
idea was abandoned.

One more comment we have for future researchers of domineering is that
we feel that solving 11 x 11 domineering is definitely attainable. Although to
do this another large jump is going to have to be made. As processors get
faster and transposition tables get larger, along with a possible 40 or 50 times
reduction in the number of nodes in a given Domineering proof tree, a solution

can probably be found for the 11 x 11 board in a reasonable amount of time.

Chapter 8

Appendix

This section contains a number of charts and graphs which show the growth
of the size of the proof trees for increasing board sizes. As we can see from

these graphs the size of the proof trees increase exponentially.

Proof Tree Size for Boards with 2 Rows
16 T 7 T T T T T T T T T T T T

14 .

12 X

10 ¢ y

Number of Nodes (log x)
o0

0 1 L i 1 i 1 1] 1]] 1 i3 1 i

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of Columns

Figure 8.1: Growth of proof tree size for 2 x n boards. Note the y axis uses a
logarithmic scale.

Board Size Result Nodes | Board Size Result Nodes
2% 2 1 1 2 x 17 H 2,880
2x3 1 2 2x 18 1 6,317
2x4 H 7 2x 19 1 15,597
2x%x5 V 6 2% 20 H 743
2%x6 1 8 2% 21 H 13,628
2x7 1 2 2% 22 H 68,319
2x8 H 26 2 x 23 1 302,707
2x9 \Y 65 2 x 24 H 2,148
2x10 1 39 2% 25 H 49,373
2x11 1 46 2 x 26 H 183,975
2 x 12 H 76 2 x 27 1 6,342,676
2x 13 2 1,417 2 x 28 H 6,447
2 x 14 1 381 2 x 29 H 187,416
2x15 1 756 2 % 30 H 438,905
2% 16 H 457

Figure 8.2: Proof tree size for various 2 X n boards.

Proof Tree Size for Boards with 4 Rows
25 1 T T T T T T 1] T

Number of Nodes (log x)

0 1 1 1 L 1 1 A 1 i

2 4 6 8 10 12 14 16 18 20 22
Number of Columns

Figure 8.3: Growth of proof tree size for 4 x n boards. Note the y axis uses a
logarithmic scale.

Board Size Result Nodes | Board Size Result Nodes
4 x 2 V 7 4 %12 H 92,876
4 %3 \Y 5 4x13 2 4,177,688
4 x4 1 23 4 x 14 H 587,431
4x5 \% 42 4 %15 H 17,854,350
4 X6 1 583 4 x 16 H 9,916,799
4x7 Vv 802 4 x 17 H 43,950,177
4x8 H 2,570 4 x 18 H 79,398,047
4x9 A% 13,549 4 %19 H 314,148,901
4 %10 H 15,570 4 x 20 H N/A
4x11 A% 218,713 4 x 21 H 3,390,074,758

Figure 8.4: Proof tree size for various 4 x n boards. N/A denotes that this
value was never computed.

60

Proof Tree Size for Boards with 6 Rows

T H T T T T

Number of Nodes (log x)

2 4 6 8 10 12 14

Number of Columns

Figure 8.5: Growth of proof tree size for 6 x n boards. Note the y axis uses a
logarithmic scale.

Board Size Result Nodes | Board Size Result Nodes

6 x 2 1 8 6x9 \Y 1,374,535
6 x 3 Vv 16 6 x 10 1 1,184,184
6 x 4 1 583 6 x 11 1 184,246,797
6 x5 V 324 6 x 12 H 54,126,298
6 x 6 1 908 6x 13 V N/A
6 x7 Vv 24,227 6 x 14 H 1,864,870,370
6 x 8 H 204,813

Figure 8.6: Proof tree size for various 6 x n boards. N/A denotes that this
valite was never computed.

61

Proof Tree Size for Boards with 8 Rows

Mo
w

L] il T T

Number of Nodes (log x)

0 i H 1 i
2 4 6 8 10

Number of Columns

Figure 8.7: Growth of proof tree size for 8 x n boards. Note the y axis uses a
logarithmic scale.

Board Size Result Nodes | Board Size Result Nodes
8 x 2 V 26 8 x 7 V 947.776
8% 3 \% 33 8 x8 1 2,023,301
8 x4 A% 2,570 8 x9 V 259,064,428
8 x5 \Y 2,467 8 x 10 H 4,125,516,739
8 x 6 \Y% 204,837

Figure 8.8: Proof tree size for various 8 x n boards.

62

Proof Tree Size for nxn Boards

Number of Nodes {log x)
O

T T

Figure 8.9: Growth of proof tree size for n x n boards.

6 8
Value of n

10

Note the y axis uses a

logarithmic scale.
Board Size Result Nodes | Board Size Result Nodes
2 x 2 1 1 TxT 1 31,440
3x3 1 1 8 x8 1 2,023,301
4 x4 1 23 9x%x9 1 1,657,032,906
5x5 2 259 | 10x 10 1 3,541,685,253,370
6x6 1 908

Figure 8.10: Proof tree size for various n x n boards.

63

Bibliography

[1] E. R. Berlekamp. Blockbusting and Domineering. J. Combin. Theory,
Series A, 49:67-116. 1988.

[2] E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for Your
Mathematical Plays. Academic Press, New York, 1982.

[3] D. M. Breuker, J. W. H. M. Uiterwijk, and H. J. van den Herik. Solving
8 x 8 Domineering. Theoretical Computer Science, 230:195-206, 2000.

[4] J. H. Conway. On Numbers and Games. Academic Press, London, 1986.

[5] R. D. Greenblatt, D. E. Eastlake, and S. D. Crocker. The Greenblatt
Chess Program. In Full Joint Computing Conference Proceedings, vol-
ume 31, pages 801-810, San Francisco, 1967.

[6] M. Lachmann, C. Moore, and I. Rapaport. Who Wins Domineering on
Rectangular Boards. MSRI Workshop on Combinatorial Games, 2000.

[7] Aske Plaat. Research Re:search and Re-search. PhD thesis, Tinbergen
Institute and Department of Computer Science, Erasmus University Rot-
terdam, June 1996.

[8] Jonathan Schaeffer. The History Heuristic and Alpha-Beta Search En-
hancements in Practice. IEEE Transactions on Patlern Analysis and
Machine Intelligence, 11(11):1203-1212, 19809.

[9] J. W. H. M. Uiterwijk. Personal communication, 2001.

[10] J. West. Championship-level play of Domineering. In R.J. Nowakowski,
editor, Games of No Chance, volume 29, pages 85-91. Cambridge Uni-
versity Press, Cambridge, MSRI Publications, 1996.

[11] A. L. Zobrist. A new hashing method with application for game play-

ing. Technical Report 88, Computer Science Department, University of
Wisconsin, Madison, 1970. reprinted in ICCA J. (2) (1990) 69-73.

64

