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ABSTRACT

The shear connector is a new type of masonry tie used to connect the two wythes
of a masonry cavity wall. With the use of shear connectors, the stiffness and the load
carrying capacities of cavity walls increase. However, there is no guidance for the design
of such walls especially when the slenderness ratio of the wall is high.

As part of an ongoing investigation into the behaviour of this type of element, nine
full scale shear connected masonry cavity walls have been tested under vertical eccentric
loads. The tests provide a large amount of information regarding the behaviour of shear
connected cavity walls. In addition, 46 shear connector units have been experimentally
investigated under various loading conditions to provide information on the strength and
stiffness properties of the units.

A nonlinear finite element analysis model is used to simulate the experimental
investigation. A comparison of the simulation to the test results shows that the numerical
simulation is quite satisfactory. The capacities and the load-deflection curves agree well
with the test results.

Using the finite element model, a parametric study is carried out. Ninety-one cavity
walls are analyzed. The parameters under investigation include the loading eccentricity,
the slenderness ratio, the ratio of the end moments, the material properties of the block
wythe, the cavity width, etc. A data base is then established including the results of the
experiments and the numerical analyses.

A multi-linear regression analysis is carried out based on the data of the
exberiments and numerical analyses. The effective stiffness of the shear connected cavity

walls is evaluated. Design equations for the ultimate strength of cavity walls are proposed



using the effective stiffness derived above in the context of the mument inagnifier
approach. A comparison of the proposed approach to the tests and the current taasonry
code shows that the proposed approach has adequate accuracy and better agreement with

the test results than current code recommendations.
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CHAPTER ONE

INTRODUCTION

1.1 Introduction

As a structural element, a masonry wall should be designed to resist the lateral
loads and/or the superimposed vertical loads. As an exterior element of the building, the
wall serves as an aesthetic finish as well as a weather barrier to protect against moisture
penetration and maintain good insulation. To accomplish these two functions, a masonry
wall is designed, quite often, as a cavity wall with two wythes connected together. The
exterior wythe of the cavity wall is usually constructed with burnt clay units and the
interior wythe is usually constructed with concrete masonry units. Between the two
wythes is the cavity which usually ranges from 25 mm to 100 mm. Modern improvements
in the type of component, the design and the construction have led masonry walls to

become thinner and more slender than ever before.

Traditional cavity walls are normally designed with the interior wythe as the load
bearing wythe. The exterior wythe is designed with no requirement to resist the axiai icad
other than bearing its own weight. Under lateral loads such as wind pressure or seismic
loads, the exterior wythe is designed to be able to transfer the lateral loads to the
structural back-up through the connectors without severe cracking or stability failure. The

requirement is met by specifying a maximum spacing of the connectors which is 600 mm

vertically anc 800 mm horizontally.

In recent years, new types of masonry ties have been introduced. One such tie

that is gaining acceptance is known as a “shear connector”. The so called shear
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connectors possess shear stiffness in the vertical plane and can transfer shear forces
between the two wythes of a cavity wall. Research has revealed that the capacities and the
stiffness of such shear connected cavity walls are increased considerably from the single
wythe walls. This beneficial effect provided by the exterior wythe is important to the
structural performance of slender masonry walls. In the design of such walls, consideration

should be given to the contribution of the exterior wythe as a result of the composite
actions between the two wythes of the wall.

Prior to the introduction of the CSA Standard CAN3-S304.1-94, masonry
designers used the allowable stress design philosophy. The design of a masonry wall was
dominated by the semi-empirical reduction factor method. Although a more rational
moment magnifier approach was accepted by CAN3-S304-M84, the design equations
were based on very simple assumptions which could not properly reflect the real behaviour
of masonry walls. The current masonry structural code CAN3-S304.1-94 uses the moment
magnifier method to design slender masonry walls. However, there is no direct guidance

provided in the current code regarding the contribution of the exterior wythe to the
capacity of shear connécted cavity walls.

This investigation provides more information on the behaviour of slender masonry

cavity walls and proposes a design approach to these walls under vertical eccentric

compressive loads.

1.2 Literature Review

1.2.1 Shear Connector

The concept of a shear connector was introduced by Mullins and O’Connor at the

University of Queensland, Australia (Mullins and O’Connor, 1987). The idea was to
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transfer shear forces between the iwo wythes. The proposed shear connector consisted of
a sheet of metal and extended tabs as shown in Figurel.1. The metal sheet is placed
perpendicular to the two wythes of the wall and is continuous along the height of the
cavity wall. The tabs are embedded into the head joints of each wythe at a specified
spacing. Mullins and O’Connor concluded that this type of connector could improve the
strength and stiffness of laterally loaded cavity wall.

One of the disadvantages of Mullins and ©'Connor’s connector is that both the
width and the height of the units used to construct the two wythes must be identical. In
other words, the connector is unable to incorporate the differences in the height 6f the
course and the width of the units. Another problem is that the coupling effect induced by
the connector may cause severe internal stresses in the wall due to the differential

movement of the two wythes.

To overcome these problems, 2 new connector was proposed and investigated at
the Canadian Masonry Research Institute and the University of Alberta. Pacholok (1988)
tested the preliminary form of the shear connector which was later improved by
Papanikolas et al.(1990). This type of connector is able to deal with the differences in the
course height of the two wythes and is able to cope with the differential movement of the

wall. Details of this shear connector will be discussed in the next chapter.

1.2.2 Shear Connected Masonry Cavity Wall

Since the introduction of the shear connector, experimental programs have been
conducted by several researchers to investigate the performance of shear connected cavity
walls subjected to lateral or vertical loading. Five full scale shear connected cavity walls
under lateral loading were tested by Pacholok (1988). Compared to the traditional cavity

wall constructed with flexible ties, it was found that the shear connected wall systems
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resulted in increased lateral load carrying capacity and decreased lateral deflection.
Twelve similar tests conducted by Papanikolas et al.(1990), with improved shear

connectors confirmed these resuits.

Goyal et al. (1993) tested seven shear connected slender masonry cavity walls
under vertical load. 'Of seven specimens, four were plain masonry walls and the other three
were reinforced masonry walls. The test results showed that when a shear connected
cavity wall is subjected to vertical eccentric loads, with the eccentricity towards the
exterior wythe, the stiffness, and the capacity of the wall is increased and the deflection is
decreased compared to those of a single wythe wall. It was also found that the

contribution of the exterior wythe to the strength of the cavity wall increascs as the

loading eccentricity increases.

Neis and Sakr (1993) tested twenty-four cavity walls with various types of
connectors. Among them, six walls were constructed with the shear connector mentioned
above. The walls were subjected to vertical eccentric loads with small loading eccentricity.

The increase of the capacity and stiffness of the cavity was not obvious and less than 10%.

1.2.3 Traditional Design Methods of Slender Masonry Walls

The traditional design method of slender masonry walls under vertical compressive
loads is the reduction factor method. The capacity is reduced as a result of the slenderness
effect and the loading eccentricity. The capacity of a slender wall is calculated as the

capacity of a short axially loaded wall multiplied by the reduction factors C, and C,.

Yokel and Dikkers (1971) suggested that the moment magnifier method which had

been successfully used for steel and concrete structures be accepted for the decign of
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slender masonry walls. They suggested that the magnified moment should be calculated

by:
M=M,) Co
=M, , 2
-7
In which,
M, = Maximum moment imposed by external force
Ch=06+04 (M]/Mz) =04
M, = the smaller end moment,
M; = the larger end moment,
2
(kh)
where,

k = effective length factor

h = wall height,

E
EI = —:-;—5”— , for plain masonry wall

E1
EI = 2’ 5" for reinforced masonry wall

E; = initial tangent modulus of elasticity for masonry

I, = moment of inertia of the uncracked section

(1.1)

Expressions for the effective stiffness EI were proposed by several other

researchers. Hatzinikolas et al. (1978) suggested that: for plain masonry or reinforced

masonry walls with loading eccentricity less than t/3, the moment of inertia is:



1=e(o.5—5:—) 1, (1.2)

and for reinforced walls with loading eccentricity greater than t/3:
I1=(05-e/0)1,>011, (1.3)

where, I, = the moment of inertia of uncracked section.

n*E, I
Ojinaga and Turkstra ( 1980 ) suggested that: P, = ( k};")z'—lr— (1.4)
For unreinforced masonry:
Iy=(1,+1,)/4 for0< ee; <1 (1.5a)

Ig=thelesserof (I; + I,)/4and (I, + 1,)/4 for -1 < e/e2< 0  (1.5b)

For reinforced masonry:
Iy=(I+1,+1,)/4 for0< ele; <1 (1.5¢)

Ig = thelesser of { I} +2I,+ I, )/4 and (I, +2I,, +1,)/4 for -1 < e /e; < 0 (1.5d)

where, I,, I, = the cracked or uncracked moments of inertia of the sections at ends 1
and 2.

I, = uncracked moment of inertia of the section.
I, = the cracked moment of inertia of the transformed section subjected to a pure
moment M,
This expression for EI was adapted by the CAN3-S304-M84 Code.

Ojinaga and Turkstra ( 1980 ) also proposed the load displacement method for the
design of slender masonry wall. In this method the wall is designed to carry a secondary
moment in addition to the primary moment. The secondary moment was calculated as the

product of the axial load P, and the displacement of the section centroid from the
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centroidal plane through the *vall ends. The displacement is obtained using the same EI as
calculated with the moment magnifier method. The method was initially proposed as an

iterative procedure but was accepted as a one step approach.

The current structural masonry design code CAN3-S304.1-94 allows both the load
displacement method and the moment magnifier method to be used to consider the
secondary moment effect. The effective stiffness of the wall is expressed as a function of
the moment of inertia of the uncracked and the cracked sections, the loading eccentricity e
and the kermn eccentricity ex. The term kern eccentricity ex stands for the limiting
eccentricity that prevents tension being developed in the section. Details of the moment
magnifier method specified by the current code will be discussed in Chapter Six.

This brief literature review indicates that little research has been conducted on the
behaviour of shear connected slender cavity walls. It is noticeable that the evaluation of
the cross-sectional properties at different loading stages is/was based on the properties of
single wythe walls. There is no direct guidance regarding the estimation of the cross-

sectional properties of the c.:mposite system nor the evaluation of the effective stiffness of
cavity walls.

1.3 Objectives and the Scope of the Thesis

The main purpose of this investigation is to improve understanding of the
beheviour of shear connected slender masonry cavity walls subjected to vertically applied
eccentric loads. Through the experimental and analytical investigation, a design guide for
such walls is presented. The investigation can be subdivided into the following objectives:
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To experimentally investigate the behaviour of the shear connectors under various
loading conditions, and to evaluate the cross sectional properties of the shear
connecors based on the test results.

To experimentally study the behaviour of cavity walls subjected to vertical
eccentric loading, and to specifically examine the effect of loading eccentricities
on the capacity and the stiffness of the cavity wall.

To develop a finite element analysis model for numerical simulation of the full
scale wall tests. This model would %z used to compare the analytical resuits with
the experimental results to verify the validity of the analysis model.

To study experimentally, and/or analytically, the effects of parameters such as the
geometric and ma: 2rial properties of the cavity wall as well as the loading

conditions.

To evaluate the effective stiffness of the cavity wall for calculating the moment
magnifier factor.

To estimate the stiffness of the cavity wall for the purpose of deflection
calculation.

To develop a rational approach for the design of slender masonry cavity walls

which properly accounts for the contribution of the exterior wythe to the capacity
of the cavity wall.

1.4 Organization of the Thesis

In Chapter Two of this thesis, the experimental program carried out on the shear

connectors is described. Chapter Three presents the experimental program on shear

connected slender masonry cavity walls. The effect of the loading eccentricities on the
capacity of the cavity walls is studied. A finite element model is developed in Chapter Four
for numerical simulation of the experimental program. The tests validate the analytical
results. In Chapter Five, the numerical model is used to analyze more walls with varying
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parameters to study the effects of these variables on the capacity and the stiffness of the
cavity wails. Chapter Six presents the derivation of the design equations for cavity walls.
Finally, a brief summary of the conclusions and recommendations are addressed in

Chapter Seven.
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CHAPTER TWO

SHEAR CONNECTORS

2.1 Introduction

The composite action between the two wythes of a cavity wall relies on the
efficiency of the shear connector as a moment transfer mechanism. An experimental
program on the behaviour of the shear connectors was carried out as part of this
investigation. This program investigated the strength and the stiffness of the shear
connectors under various loading conditions. The test program and the results are

described and discussed in this chapter.

2.2 The Shear Connector

The connector mentioned in this thesis is a device which connects the two wythes
of the masonry cavity walls. In recent years, many new types of connectors have been
invented. At present, a variety of connectors are commercially available for masonry cavity
walls. The shape and placement of the connectors depend on the specific functions that
must be fulfilled. Nevertheless, there exist differences in the quality of the performance
that the connectors should accomplish.

2.2.1 Development of the Shear Connectors

The connector should function as a wall tie to transfer the forces between the two
wythes. T#a brick wythe of the cavity wall is usually subjected to horizontal wind load.
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The connectors should be able to tie the exterior wythe to the back-up wythe so that

under lateral pressure or suction, the exterior wythe does not develop large cracking
failure. Although it is not required that the exterior wythe resist the vertical load which is
ndrmally imposed on the back-up wythe, a proper connection between the two wythes
could enhance the capacity of the cavity wall under vertical loading. In the direction
perpendicular to the wall panel, the connector should be able to restrain any extensive
relative movement which causes tl:: two wythes to move closer or apart. This is because
large movements or rotation could result in significant cracking within the brick joints,
weakening the ability of the exterior wythe to act as a barrier to the outside climates. To
accomplish this function, the connectors should be firmly embedded within the joints
without pull-out or punch through failure. It also has to have adequate strength and

stiffness to provide restraint to the exterior wythe.

Traditional connectors provided for transferring the loads from the exterior wythe
to the inner wythe. The shear connectors initially tested b Pacholok (1988) and improved
by Papanikolas and the Canadian Masonry Research Institute (1990) caused the two
wythes to act together in resisting loads applied perpendicular to the outer wythe. Unlike
traditional connectors, this type of shear connector provides partial restraint to the
movements of the two wythes of the wall. The connector consists of a steel plate, a V-tie,
and a device which holds the insulation material in place as shown in Figure 2.1. The steel
plate and the V-tie form the force transfer mechanism. To transfer the force, the thin and
short plate of the connector has a relatively larg~ shear stiffness. To ensure proper
restraint to the wythes, the V-tie made of steel rod is embedded, at one end into the brick
mortar joints. The plate is firmly embedded in the block mortar joints. To provide
flexibility in the direction parallel to the wall panel, the V-tie and the thin plate are
connected through one of eight small holes at the tip of the thin plate to allow relative
rotation between them therefore, the two wythes connected by such mechanism can have

relative vertical movement without inducing large stresses. Figure 2.2 shows a shear

connector embedded in a cavity wall.



2.2.2 The Profile of Shear Connectors

Figures 2.3(a) and 2.3 (b) show the dimensions of the connector plates for a 75
mm and a 100 mm cavities. The nomina! thickness of the connector plate is 1.5 to 1.6 mm.
Eight holes with a diameter of 6 mm are located at the front edge of the plate. The V-tie is
installed in one of the eight holes. This mechanism allows the connection between the
plate and the V-tie to be adjustable along the height to incorporate the difference in
courses between the block and the brick wythes. In the middle part of the plate, there are
five holes in the 75 mm connector and eight holes in the 100 mm connector. These holes
are made to reduce the thermal conductivity of the connector. The rear part of the
connector plate which is embedded into the mortar layer of the block wythe contains a

cantilever lip embedded horizontally to enhance the embedment of the connector as shown

in Figure 2.1.

2.2.3 Physical Properties of the Shear Connectors

As shown in Figure 2.2, one end of the connector plate is embedded into the
mortar-block joint. With adequate embedment, this part of connector plate will work
together with the block wythe. Therefore, the strength and the stiffness of this part are not
important. The middle part of the connector plate is left in the cavity. Under different

loading conditions, this part of the connector plate can be subject to tension, compression,

and shear forces.

To investigate the behaviour of the shear connector in the cavity wall, the cross-
sectional properties of the part of connector plate which is exposed in the cavity need to
be evaluated. As can be seen in Figure 2.3, the evaluation of the cross-sectional properties

is not easy to accomplish due to the irregular shape of the plate. Even though the
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theoretical cross-sectional properties may be derived from the dimensions of the

connector, using these properties to predict the behaviour of the connector may not reflect
stress concentrations, inelastic effects and residual stresses from fabrication. The variations
in the locading conditions include the location of the V-tie along the height of the
connector, the initial out-of-plane eccentricities due to the imperfections in the alignment
between the connector plate and the V-tie as well as the different load types imposed on
the block or brick wyihes, etc. Therefore, an experimental investigation was carried out to
evaluate the cross-sectional properties of the connector. The investigation was focused on
establishing a nominal connector plate which has a rectangular shape and solid cross

section. The cross-sectional properties of this shear connector are equivalent to the

properties of the real connector.

2.3 Tests on Shear Connectors

To investigate the behaviour of the shear connector and to find out the equivalent

cross-sectional properties as a nominal plate, a total of 46 shear connectors has been

tested under tension, compression, shear and bending.

2.3.1 Tension Test
2.3.1.1 Test Set-up and Measurement

The tests were carried out on the testing frame shown in Figure 2.5. The
specimens were fixed at one end to the testing frame as shown in Plate 2.1. The tensile

force was applied »t the free end through a steel rod which connected the specimens with

a manually controlled hydraulic jack.

A linec. variable differential transformer (LVDT) was placed at the loading point

and was used to measure the elongation of the specimens. Because the LVDT was
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mounted at the point between the base of the frame and the load cell, the elongation of the
rod could affect the accuracy of the test results. To take this into account, a special test
was conducted on the elongation of the rod to exclude the rod deformation from the
recorded shear connector elongation. Three dial gauges were also mounted on the frame

to monitor the in-plane and out-of-plane displacement as shown in Plate 2.1.

2.3.1.2 Test Results and Discussion

The yield strengths, the ultimate strengths and the flexibility parameters of the
connectors under tensile loading are summarized in Table 2.1(a), in which the flexibility
parameter is the reciprocal of the slope of the load-deflection curves at the elastic stage. A
typical load-deflection curve of the tensile specimen is shown in Figure 2.7(a). It was
found that all the tensile failures were caused by local yielding at the loading hole. At the
final stage of loading, the loading hole was simply pulled apart. Comparing the results
between the specimens with different loading locations, it was found that the loading at
the third hole resulted in the highest load capacity and the maximum initial stiffness.
However, the difference in capacity due tc ihs loading locations is not significant. It can
be seen from the table that for each loading point, the variations of the results of the
ultimate load capacity and the stiffness obtained from three duplicated tests are small.
These results indicate that the tensile capacity and the initial stiffness of the shear

connector are affected by the cross-sectional properties around the loading holes.

2.3.2 Compression Test

A total of fourteen specimens was tested under compressive load. Among them,
three were 75 mm connectors and all the others were 100 mm connectors. For the 100
mm specimens, the load was applied at the first, the third and the fourth holes respectively.

For the 75 mm specimens, the load was applied at the third hole.
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2.3.2.1 Test Set-up and Measurement

The compression test set-up is shown in Figure 2.6(a) and Plate 2.2. A pin which is
essentially a straightened V-tie was used to connect the specimen with the loading plate
which was connected to the hydraulic jack. The stiffness of the loading plate was much
higher than that of the specimen, therefore the deformation of the loading plate should not
affect the test results. This loading system was trying to simulate the real situation where a

V-tie embedded in the mortar layer in the brick wythe and attached to the connector plate
through the holes.

A LVDT was placed at the loading point to record the in-plane deformation of the

specimen. Three dial gauges were placed to record the out-of-plane deformations.

2.3.2.2 Test Results and Discussion

Compression test results are summarized in Table 2.1(b). It was found that the
failure mode of all the compression tests was out-of-plane buckling. Plate 2.3 shows a
specimen that buckled under ultimate compressive load. A typical load-deflection curve of
the compression test is shown in Figure 2.7(b). Test results revealed that the load vs.
deformation response is approximately linear before reaching the ultimate load followed
by a sudden drop after reaching the ultimate load. This shape of the load-deflection curve
reflects the buckling failure mode of the specimens. It was also found from the test that
loading at the third hole gave the highest load capacity with a mean value of 3.92 kN for
75 mm cavity connector and 3.45 kN for 100 mm cavity connector. This fact seems to
imply that the centroid of the connector plate may pass through the third hole or close to
it. It was also found that the slope of the load-deflection curve was influenced by the
loading iocations. Loading at the first hole resulted in a larger deformation of the

specimens. During the whole loading process, dial gauges were used to record out-of-
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plane displacements. The dial gauges indicated that at the initial loading stage of the
compression tests, the loading device was kept in a good alignment with the specimens.
The out-of-plane deformations were small for most specimens. It was not until the loads
almost reached the ultimate load capacities, that the out-of-plane displacements developed

rapidly.

2.3.3 Shear Test

A total of thirteen specimens was tested under shear loading. Three were 75 mm
shear connectors, while the others were 100 mm connectors. For the 100 mm specimens,
the loads were applied at the third, the fourth, and the eighth holes respectively. For the 75

mm specimens, the load was applied at the third hole.

2.3.3.1 Test Set-up and Measurement

The shear test set-up is shown in Figure 2.6 (b) and Plate 2.4. The shear force was
applied in the plane parallel to the connector plate through a loading rod. A LVDT was
placed at the loading point to measure the shear deformation of the specimens. The
" elongation of the rod was tested, recorded and eliminated from the records of the

elongation of the specimens.

2.3.3.2 Test Results and Discussion

The shear test results are summarized in Table 2.1 (c). Loading at the third hole
resulted in the largest load carrying capacities. However, the difference was not significant

when loading at the different locations. The stiffness is almost the same when loading at
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the third and the fourth holes. Figure 2.7 (c) shows the load-deflection curve of one of the
specimens under shear load.

2.3.4 Bending Test

A total of six specimens was tested under bending. Three of them were 75 mm

connectors and the other three were 100 mm connectors.

2.3.4.1 Test Set-up and Measurement

The bending device is shown in Figure 2.6(c) and Plate 2.5. A loading device made
of two steel plates was connected to the specimen as shown in the figure. The connection
between the loading plate and the specimen was through two steel pins one at the first
hole and she other at the eighth hole of the specimen. At the other end of the loading plate,
a stee] rod was used to connect the loading plate to the hydraulic jack. When a tension
force generated from the hydraulic jack is applied to the steel rod, the loading plate will
irﬁpose‘ a tensile force at the first hole and an equal compressive force at the eighth hole.
The tensile and the compressive forces will form a bending couple. This bending device
induced a moment and a shearing force on the specimen. LVDT’s were placed at the tip of

the shear connectors to measure the deformation of the specimens under the bending

moment and the shear force.

The test results are summarized in Table 2.1(d). Failure of the specimens was due

to large deformation in the tension zone accompanied with local buckling in the

compression zone.
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2.4 Capacities of the Shear Connectors

Table 2.2 summarizes the ultimate capacities of the connectors under each loading

case. It should be mentioned that the test results should be interpreted rationally by

considering the following aspects:

In the case of the connector subjected to tension and shear loads, as discussed
earlier, the strength of the connector depends much on the properties of the plate that
surrounds the loading hole. Since this area is relatively weak, the deformation of the
connector is significant before reaching the ultimate load. For this reason, the yield

strength was used in defining the properties of the connector.

In a cavity wall, where the block wythe is subjected to an eccentric vertical load,
the connector may be loaded with a combination of shear, bending and/or axial forces. In

such situations, the strength of the connector is weaker than that when subjected to a

single load.

When more than one connector is placed in a course, the total strength is smaller
than the sum of each individual connector. This is because the pattern of the placement of
the connector and the inevitable imperfection in the construction of the wall could cause

stress concentration in one or a few connectors.

2.5 Beam Model

To investigate the behaviour of the connector and to evaluate its cross-sectional
properties, a short beam analysis model was established. The shear connector plate
exposed in the cavity is treated 2s a beam. At the end where the connector plate is
embedded into the block wythe, the end restraint is simplified as fixed. At the other end,
the connector plate is subjected to the load transferred through the V-tie. This end was

treated as free end. Thus, the connector plate is a cantilever beam subjected to the loads
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applied at the frce end. This beam is very short. The span-height ratio usually ranges from
1.0 to 1.6. In such short beam, the shear deformation is of great importance. Figure 2.4(a)
shows a short beam and the coordinate of deformations. The flexibility matrix for such a
beam is (Ghali and Neville, 1989):

{h’ L

_|3EI Ga, 2EI

[f]—[ S @2.1)
2FI EI

h
Where, Ga is the shear deformation at the free end due to a unit transverse load applied

r
at that end. G is the shear modulus of elasticity, a, is the reduced area of the cross section.

a, depends on the shear stress distribution, which in turn depends on the shape of the cross

section ( Timoshenko and Gere, 1972).

Therefore, the stiffness matrix of this beam is:

[ 12E1 6EI
(+a)h®  (Q+a)h’
1= VR GiaEr (2.2)

T(+a)h®  (Q+a)h J

12E7
h*Ga,

In which, a =

If the axial deformation is included, the flexibility matrix is:



So Ju f.,]

A= fa f2 fa J=

31 f32 f33

.
0 0
¥ h B
361 ¥ Ga, 2EI
n? h
2EI ET |

21

2.3)

In which, f; is the deformation at point i caused by the force applied at point j.

Figure 2.4 (b) shows the coordinates which correspond to the flexibility matrix of equation

(2.3) Therefore, the corresponding stiffness matrix is:

K, K, K;
[S] = Kn Kzz Kzs
K, K, K,

Where, K, is the force induced at point i due to the deformation at point j.

| Ea
h
0

LO

0 0
12E1 6EI
(+a)h®> (Q+a)h’

6EI (4+a)El
T(+a)?  (Q+a)h |

2.6 Cross-Sectional Properties of the Connectors

2.6.1 Stiffness of the Shear Connectors

(2.4)

The test results of various loading conditions were used to evaluate the terms in

the flexibility matrix and stiffness matrix. For 100 mm cavity connectors, it was found

from the combined shear and bending tests that:



Sz = fop =2466x107° rad/kN

2
where notations follow the coordinates shown in Figure 2.4(b). Because f,; = f;, = -

T 2EI’
for # = 97 mm, which is the actual length of the specimen measured from the loading
point to the end restraint, the EI value is found to be:

97* (mm*) 9 2
= —=191x 10 N-
2 %2466 x 10~ (rad / kN)) 8 o
And if E is taken as 200 GPa, then I = 9550 mm’ .
Also the shear and bending tests indicated that:
= " ko 03073 m/kN

J2 =354 Ga = "

Rearranging the above expression, one obtains:
h
Ga, = W = 655 kN
~3E +03073
12E1

The term was found to have a value of a = —5——=3.72

h*Ga,
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h
Lastly the term f,, = Fa - 0.1876 mm/kN corresponds to ihe loading case where the axial

h
force is in tension. For axial force in compression, f,, = Ea - 03127 mmv/kN.

The corresponding flexibility matrix and stiffness matrix are written as:

B N
3 2 | [01876 0 0
h h h -3
[f]=]| o + =] o 03073 _ 2466 x 10
3El - Ga, 2EI 0 2466x10~3 5079 x107°
h? h
0 —_— —_
! 2EI  EI_

From which the stiffness matrix is obtained as:

[ Ea
h 12T SEI 533 0 0 ‘l
IS1=1 0 Wiaw “wreE || O 32 -258-03 J
o - 6E] (4+a)EI 0 -2580 322x10
L (+a)h* (Q+a)h

Where, K;; = 5.33 kN/mm corresponds to the loading case in which the axial force is in

tension. For compressive axial load, K;; = 3.18 kN/mm.

The flexibility matrix and stiffness matrix obtained above are for 100 mm

connectors. For 75 mm connectors, a similar derivation is followed:
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From the tests it was found that:

hz
f23=f32=_2'l_;7=1-06><10-3 rad/kN

for h = 77 mm,

_ h*(mm*)
" 2x106x1073(rad / kN)

=2806%10° N-mm’
And if E = 200 GPa, then I = 14030 mm®.
Similarly,

h3
3EI * Ga,

Fon = = 02668 mm/kN

where 0.2668 mm/kN was obtained from the test. Rearrange the above expression, to

obtain Ga, as:
h
Ga = 3 =362 kN
—— +0.2668
3EI
12EI
Hence, a = "WGa, 15.69

Lastly, fi; = 0.1876 mm/kN and K;; = 5.33 kN/mm correspond to the loading case where
the axial force is in tension. For the axial force in compression and for 75 mm cavity

connectors, fj;= 0.3675 mm/kN, and K;; =2.72 kN/mm.

Therefore, the flexibility matrix is:
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T f.,] [01876 0 o |
[f]= Ia Ju Ju =l 0 02668 106x1073 ‘\
o Ju f;,J 0 106x10° 27.44x10°

The corresponding stiffne’.> matrix is:

K, K, K,|[533 o 0
K 0 4419 -1701
0 -1701 430x10°

e
é’!
[

The EI values obtained from the above derivation were used in the numerical
analyses of the cavity walls which will be described in Chapter Four and Chapter Five. For
the 75 mm connector, £ = 200 GPa and, I = 14030 mm*. For the 100 mm connector,
E =200 GPa and, I = 9550 mm*.

2.6.2 Effective Cross- Sectional Area

The axial load capacities obtained in the test were thought to be higher than
expected in actual practice. This is because the end restraints are stiffer than the actual
embedment of the connector in the brick wythe. Therefore only 1/3 of the average
capacity was considered effective. For the 75 mm connector, the axial load capacity was
taken as 0.9 kN. Assuming a yield strength of 300 MPa, the corresponding cross-sectional

area is 2.95 mm?. For 17" - wvity connector, the area is 1.82 mm’. This corresponds to the
axial load capacity of 0.6 - .

2.7 Summary

In this chapter, the shear connector used in this investigation is discussed. The test

results on such connectors are presented. Based on the test results, the cross-sectional
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properties of the connectors are evaluated. Those values were used in the numerical
analyses of the cavity walls. Based on the test results, the stiffness matrices of the short

beam model of the connectors were evaluated.



Table 2.1 (a) Shear Connector Tension Test

Speéimen Load Loading Cavity Ultimate Yield Flexibility

Type hole Load Load Parameter

mm kN kN mm/kN
S1 T 4 100 3.51 2.81 0.1946
S2 T 4 100 3.72 2.98 0.2398
s3 T 4 100 3.75 2.85 0.1812
S5 T 1 100 3.66 2.72 0.2278
S$6 T 1 100 3.69 2.66 0.1736
S7 T 1 100 3.72 2.68 0.1812
s8 T 3 100 3.81 2.68 0.2066
S9 T 3 100 3.78 2.83 0.1706
S10 T 3 100 3.81 3.02 0.1721
$22 T 3 100 3.66 2.71 0.1695
's24 T 3 100 3.51 2.85 0.1869
$25 T 3 100 3.60 3.00 0.1688
S26 T 3 100 3.72 2.98 0.1264

Note:

T = tension force

Loading hole = number of the loading holes {abeled from the top to the
bottom of the coniicctor plate

Flexibility Parameter = inverse of initial slope of the load-deformation curve of

the specimen



Table 2.1 (b) Shear Connector Compression Test
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Specimen

Loading  Cavity Ultimate Flexibility

Type Location Load Parameter
mm kN mm/kN

S C 3 100 3.63 0.2924
S12 C 3 100 4.20 0.3413
S13 C 3 100 3.72 0.298%
S23 C 3 100 3.66 0.2924
S14 C 4 100 3.78 0.3021
S15 C 4 100 3.59 0.2936
S17 C 4 100 3.57 0.275%
S18 Cc 1 100 2.91 0.2725
S19 C 1 100 3.12 0.3891
S20 C 1 100 3.18 0.3559
S21 C 1 100 2.85 0.3268
S49 C 3 75 3.66 0.3333
S50 C 3 75 3.36 0.3891
S52 C 3 75 4.74 0.3802




Table 2.1 (c) Shear Connector Shear Test

Specimen  Load Loading Cavity Ultimate Flexibility
Type hole Load Parameter
mm kN mm/kN
§27 S 8 100 2.64 Rejected
S28 S 8 100 2,70 Rejected
S29 S 8 100 2.61 0.2899
S30 S 8 100 2.73 0.2559
S31 S 3 100 2.76 0.2899
§32 S 3 100 2.91 0.3344
S33 S 3 100 2.73 0.2985
S34 S 4 100 2.76 0.3268
S35 S 4 100 2.85 0.3236
S36 S 4 100 2.73 0.2625
837 S 3 75 5.21 0.2786
S38 S 3 75 3.21 0.2688
S39 S 3 75 3.27 0.2532

Table 2.1 (d) Shear Connector Bending Test

Specimen Load Loading Cavity Ultimate Maximum  Flexibility

Type hole Load Moment Parameter
mm kN kN-m mm/kN

sS4 8 N/A 100 1.47 0.140 0.5650
S42 B N/A 100 1.47 0.140 0.5618
s43 B N/A 100 1.44 0.137 0.5025
s44 B N/A 75 1.83 0.174 0.3106
S46 8 N/A 75 1.63 0.145 0.2558
sS47 B N/A 75 1.63 0.145 0.2941




Table 2.2

Ultimate Load (kN)
Type of Numberof  Cavity
Loading Specimens (mm) Mean Standard Standard
Error Diviation
T 13 100 3.72 0.0275 0.099
C 11 100 3.45 0.1233 0.409
S 10 100 2.74 0.0280 0.089
B 3 100 1.46 0.0100 0.017
S 3 75 3.23 ~0.0200 0.035
C 3 75 3.92 0.4190 0.725
B 3 75 1.63 0.1000 0.173

Note:

T = Tensile Load

C = Compressive Load
S = Shear Load

B = Bending



Figure 2.1 Shear connector (Courtesy K.Papanikolas)
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Figure 2.2 Shear connector in the cavity wall
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CHAPTER THREE
EXPERIMENTAL PROGRAM

3.1 Introduction

The literature review indicated that few tests had been conducted on shear
connected cavity walls and little information was available on the evaluation of the
stiffness and the ultimate load capacity for cavity walls subjected to eccentric vertical
loading. The existing information related only to the performance of the connector. In

order to evaluate the performance of the assembly, a test program wvas undertaken.

The experimental program included two phases - the full scale wall tests and the
corresponding material tests. In the material tests, both the strengths and the deformation
properties of the masonry assemblages were examined. In the full scale wall tests, a total
of nine cavity wall tests was conducted. The experimental investigation was designed to
observe the effects of the loading eccentricities by changing the magnitude and direction.
Other parameters affecting the behaviour of the cavity walls were studied numerically and
will be discussed in Chapter Five. The details of the test program are described in this

chapter along with the test results and discussion.

3.2 Materials and Material Tests

A full suite of ancillary tests were conducted on units and prisms from both the
blocks and bricks used in the experimental program. The materials used in material tests

and full scale wall tests were locally supplied in the Edmonton, Alberta area.
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3.2.1 Concrete Masonry Units

Standard 200 mm hollow concrete block units were used throughout the tests.
Figure 3.1(a) to 3.1(c) show the dimensions and the configuration of the regular stretcher,
the half and single corner of such units. Table 3.1 lists the physical properties of such units

supplied by the manufacturer where the nominal compressive strength is 15 MPa
(H/15/C/0).

Five regular units with a nominal dimension of 200 x 200 x 400 mm were tested
for uniaxial compressive strength. A typical failure pattern is shown in Plate 3.1. Test
results are summarized in Table 3.2 . The mean of the strength is 17.35 MPa and the
standard deviation is 2.49 MPa.

Three regular units were tested to examine their deformation properties. The
deformation was measured using a Twc-inch Demec Gauge. During the test, one
specimen experienced early cracking at a load of 25 kN. The measuring point spalled off.
No measurement was recorded for this specimen. The modulus of elasticity of the units

was derived from the test results and is listed in Table3.3 where the mean value is
16088 MPa.

3.2.2 Concrete Masonry Prisms

Since the concrete block wythes of the cavity walls were constructed with two
cores grouted vertically from the top to bottom, two types of specimens were tested for

the properties of concrete masonry prisms - grouted prisms and ungrouted prisms.

- Hollow Block Prisms

Five ungrouted concrete block prisms ( hollow block prisms ) were tested for the

uniaxial compressive strength, f'm. The specimens were five courses in height and one unit
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in length and were fabricated with mortar laid along the two face shells as well as two

side-end webs. This mortar bedded area was taken into account when deriving the
compressive strength from the ultimate loads. At the ultimate loads, the prisms were
vertically separated into pieces - a typical splitting failure pattern as shown in Plate 3.2.
The test results of compressive strengths for hollow block prisms f',, are listed in Table 3.4
where the mean of 'y, is 19.30 MPa and the standard deviation is 2.62 MPa.

Three hollow concrete block prisms with the same dimensions were tested to
determine the modulus of elasticity of the masonry assemblage. The specimens were five
courses in height and one unit in length. The uniaxial deformation of the prisms was
measured with a 200 mm Demec Gauge. The measuring length on the prisms incorporated
both the units and the mortar layer. The test results are listed in Table 3.5. The mean of

the values of the modulus of elasticity of hollow block prism is 15606 MPa.

- Grouted Prisms

Five grouted concrete block prisms were tested Jor uniaxial compressive strength.
The specimens were five courses in height and one unit in length. The typical failure
pattern was a split off face shell as shown in Plate 3.3. The test results are listed in Table
3.6 where the mean strength is 10.55 MPa and the standard deviation is 1.01 MPa. As can
be seen from Tables 3.3 and 3.6, grouting increased the ultimate load capacities while the
strength obtained from the grouted prism test is lower than that obtained from the hollow
prism test since they were based on a different cross-sectional area. The lower strength of
the grouted prisms may be attributed to the voids in grouted masonry, differential
shrinkage and creep between units and grout material as well as differences in stress-

strain behaviour between units and the grout material (Glanville and Hatzinikolas 1989 ).

Three grouted concrete block prisms with the same dimensions were tested to

determine the modulus of elasticity of grouted masonry assemblages. The Demec Gauge
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with 200 mm gauge length was used to measure the uniaxial deformation. The modulus of

elasticity obtained from the tests are listed in Table 3.5. The mean is 8551 MPa.

3.2.3 Burnt Clay Units

Locally supplied burnt clay brick units were used to construct the brick wythes of
the cavity walls and were used for the brick material tests. Figure 3.1(d) shows the
dimensions and the configuration of the brick unit. The physical properties of the brick

units provided by the manufacturer are summarized in Table 3.7.

Five brick units were tested for uniaxial compressive strength. Table 3.8 shows the

test result’s-‘.. The mean strength was 29.36 MPa and the standard deviation was 3.30 MPa.

3.2.4 Burnt Clay Prisms

Five specimens were tested for uniaxial compressive strength of burnt clay brick
prisms. The specimens were five courses in height and one unit in length. The typical
failure pattern was vertical splitting of the prism. Table 3.9 lists the test results. The mean
value of the compressive strength is 18.13 MPa. The standard deviaticn is 4.2 MPa.

Three brick prisms with the same dimensions were tested to determine the
modulus of elasticity of the brick assemblage. The uniaxial deformation was measured
with a Two-inch Demec Gauge. The test results are summarized in Table 3.10 where the
mean value is 6536 MPa.

3.2.5. Mortar; Grout and Reinforcement

Premixed type S mortar was used to construct the prisms and the walls. Six 50
x 50 x 50 mm cubes were cast to test the strength. The results are summarized in Table

3.11 where the mean of the values is 10.9 MPa and the standard deviation is 1.24 MPa.
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The grout was mixed on site. The weight ratio between cement, sand and pea
gravel is 1 : 3.92 : 2.78. The water cement ratio is 1 : 1. Five 75 x 75 x 150 mm grout
prisms were cast and tested to determine the compressive strength of the grout. The

results are shown in Table 3.12. The mean grout strength is 29.4 MPa and the standard
deviation is 5.6 MPa.

Each cavity wall was reinforced vertically with two 15M rebars. The specified
strength of the rebar was 300 MPa. The locations of the rebars will be described later. All
the cavity walls were reinforced horizontally with # 9 wire joint reinforcement, placed

every third course. The configuration of the joint reinforcement is shown in Fig. 3.2.

3.3 Full Scale Cavity Wall Tests

3.3.1 Specimens

Nine reinforced masonry cavity wall specimens were constructed and tested. All
the specimens were constructed with the same materials and of the same dimensions
except the cavity width. Each cavity wall consisted of two wythes connected with shear
connectors. The back-up wythe was built with concrete blocks and the brick wythe was
built with burnt clay bricks. The specimens were 24 courses high and 1.2 m wide. The
total height between the top and the bottom hinges of the loading apparatus was around
5.28 m. The concrete block wythes were 190 mm thick and the brick wythes were 90 mm
thick. The cavity widths were either 75 mm or 100 mm as labelled in Table 3.13.

The specimens were constructed with type S mortar. The thickness of the mortar
joints was 10 mm. The concrete block wythes were mortared only at the face shells while
the brick brick wythes were laid in a full mortar bed. Horizontal reinforcement was placed
in-the mortar joints of the block wythes at every third course. The second core from the

each side of the block wythe was grouted and each grouted core was reinforced with one
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15M longitudinal reinforcement. The grouting for each core was completed in two stages

with 12 courses grouted at each stage.

The shear connectors discussed in Chapter Two were used for all the specimens.
The connectors were placed with the same pattern and it is as shown in Figure 3.3. The
vertical and horizontal maximum spacing was 600 mm and 800 mm respectively. More
connectors were placed at the top and the bottom ends of the specimens in order to

account for the anticipated higher loads in these locations.

In order to move the specimens into the test machine, the block wythes of the
walls were built on top of 1300 x 240 x 310 mm concrete pedestals while the brick
wythes were built on 1300 x150 x 150 x 20 steel angles overhanging on the concrete
pedestals. The pedestals were designed with embedded bolts to allow the specimens to be

moved as well as to be loaded at the bottoms.

For specimens W6, W8, and W9, a loading eccentricity of 90 mm was added at
the top of each specimen. This meant that the loading point was at the edge of the block
wythe. To distribute the load along the cross-section and to ensure local bearing
resistance, 13 mm thick steel plates were placed at the top of these three specimens. The

steei plates were welded to the longitudinal reinforcement which was placed at the grouted

cores.

3.3.2 Test Set-Up

Figure 3.4 shows the set-up for the full scale wall tests. At the bottom end, a hinge
was placed along the bottom line of the specimen. Its centre line was carefully aligned
with the centre line of the block wythe. The hinge was 103 mm in width, 105 mm in
height, and 1265 mm in length. A thin layer of plaster was laid at the top of the hinge and
the concrete pedestal sat on the plaster. The plaster layer was used to keep an uniform

contact between the concrete pedestal and the bottom hinge. After the specimen was
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positioned, several bolts were placed underneath the steel angle to support the brick

wythe. They were removed once the loading started.

A steel channel was placed on the top of the specimen. Again, a plaster layer was
placed between the top of the specimen and the channel to allow uniform contact between
them. On the top of the channel was a hinge assembly which was bolted at the two side-
ends to the channel. To prevent lateral movement at the top of the specimen, two parallel
braces were used built from steel angles. Each brace was connected to the centre of the

hinge at one end and to an independent column at the other end. The column base was
fixed to the load floor.

The vertical load was applied by a 6600 kN MTS machine. The moment was
applied at the top end of the specimen by shifting the position of the hinge on the channel.
The moment at the bottom end of the specimen was applied through a built-up loading
arm which was bolted to the concrete pedestal at one end as shown in Plate 3.4. At the
other end of the loading arm, a manually controlled hydraulic ram was used to apply
upwards or downwards lcading in accordance with the desired direction of the moment.

Plate 3.5 shows the loading frame for the hydraulic ram.

3.3.3 Instrumentation

The vertical load was measured directly by the MTS machine. The load on the
loading arm was measured by a load cell. The horizontal displacement of the specimen
was recorded by eleven LVDT’s with five on the block wythe side and six on the brick
wythe side. On the top of each wythe of the specimen, one LVDT was attached to
measure the vertical movement of the specimen. Three rotation meters were mounted on

the specimen with one at the top and one at the bottom of the block wythe and one at the
bottom of the brick wythe.
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3.3.4 Test Procedure

After 28 days of curing, the specimens were moved into the loading frame by a 10

tonne crane, one specimen at a time.

In order to control the magnitude and ratio of the moments at the bottom and the
top of the specimen, the load applied at the loading arm was controlled by a pre-calculated
load ratio for each load increment throughout the test. The vertical loading from the MTS
machine was carried out by stroke control. For the specimens Iaded in double curvature,
the initial loading condition was carefully controlled to create the double curvature

situation.

Throughout each test, loads, displacements and rotations were monitored and
recorded automatically by a computer. This was done through a Fluke data acquisition

system which was connected with the measuring devices.

3.3.5 Test Results and Discussion

3.3.5.1 Specimen W1

This specimen had a 75 mm cavity and was loz#x« at both ends of the wall with
an eccentricity ¢f t/3 (63.3 mm) measured from the centre of the cross-section of the
block wythe to the direction of away from the brick wythe. That is e/e; = 1. The

specimen deflected towards the brick wythe in single curvature.

Figure 3.5 shows the load versus mid-height deflection curve of the block wythe.
As can be seen, the deflection response of the specimen was fairly linear up to a load level
of 320 kN, i.e., the change of the slope of the response curve was small. At a load about
300 kN, the first crack in the brick wythe was observed at the number 34 mortar joint

( mid-height ) where a V-Tie was embedded. As the load increased, more cracks occurred
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at the mortar joints of the brick wythe at, or close to, the positions of the shear
connectors. The brick wythe was finally separatud into several rigid brick assemblages by
large horizontal cracks at the mortar layers. In the block wythe of the specimen, cracking
started at the mid-height mortar joint. More cracks at the mortar joints occurred as the
load increased. Horizontal cracks also formed on the tension side of the concrete block
wythe. These cracks formed when the bond between the mortar and units failed. The
ultimate load was 451 kN. After reaching the ultimate load, the specimen could still
sustain the load at a high level even though large deformations had developed. The final

failure was due to the large deflection which was about 40 mm at mid-height. The failure

was ductile.

Figure 3.6 shows a comparison of the response curve between specimen W1 and a
single masonry wall with the same materials and the same dimensions conducted by Goyal,
et al. (1993). It can be observed that the effect of the interaction between the block wythe

and the shear connected brick wythe is significant since both the strength and the initial

stiffness of the wall were improved.

3.3.5.2 Specimens W2 and W5

Specimen W2 had 75 mm cavity and was loaded with an eccentricity of t/3
(63.3 mm) from the centre of the cross-section of the block wythe to the direction of away

from the brick wythe only at the top of the specimen. That is e//e; = 0. The specimen

deflected in single curvature towards the brick wythe.

Figure 3.7 shows the load versus mid-height deflection curve of specimen W2, As
shown in the Figure, the change of the slope of the deflection curve was small before the
load reached 500 kN. After this load level, the deflection developed at a more rapid rate.
The cracking in the brick wythe started at the number 50 mortar layer ( Height = 3.9 m)
which was one brick layer away from a shear connector position. The subsequent cracking

in the brick wythe occurred at the mortar joints at, or close to, the shear connector
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positions. The cracks in the block wythe of the specimen were also at the mortar joints
and were distributed in the upper part of the block wythe. Cracking in both wythes was
due to debonding as shown in Plate 3.6 where debonding between the mortar joints and
the brick units can be observed. Tte ultimate load of the specimen was 818.0 kN.

Specimen WS was designed with the same dimensions and the same loading
conditions of specimen W2. The test results were similar to those of the specimen W2.
The ultimate load was 815.5 kN.

3.3.5.3 Specimen W3

This specimen had 75 mm cavity and was loaded with an eccentricity of t/3 (63.3
mm) measured from the centre of the cross-section of the block wythe to the direction of
towards the brick wythe only at the top end of the specimen. That is e)/e; = 0. The
specimen deflected in single curvature towards the block wythe.

The load versus mid-height deflection curve for specimen W3 is shown in Figure
3.8. As shown in the Figure, the deflection response was almost linear up to a load of 350
kN. The deflection increased more rapidly after this load level. At this load level a crack
occurred in the brick at a height of 3.8 m from the bottom of the specimen. The crack
went through the brick wythe and no other cracks formed in the brick wythe until
complete failure of the specimen occurred. The cracking in the block wythe started at the
number 17 mortar joint ( height = 3.7 m ). When approaching failure, cracks were
observed at all the mortar joints of the upper part of the block wythe. The ultimate load

was 651.9 kN. After reaching the ultimate load, the specimen sustained the load at a high
level.

Comparing specimen W3 with specimen W2, the only significant difference lay in
the direction of the loading eccentricity. The specimen W2 was loaded with the
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eccentricity away from the brick wythe while the specimen W3 was loaded towards the
brick wythe. The ultimate load of specimen W3 was, however, twenty percent less than
that of specimen W2. Since we have two specimens ( specimens W2 and W5 ) with
similar test results for the latter case, and since the loading eccentricity of specimen W3
was towards the brick wythe which was closer to the centroid of the cross-section of the
cavity wall, we may conclude that the uitimate load capacity of specimen W3 was lower
than expected. This may be due to material property variation and the variation in the

efficiency of the shear connector working under various loading conditions.

3.3.5.4 Specimen W4

This specimen was constructed with a 75 mm cavity and was loaded with an
eccentricity of t/3 (63.3 mm) from the centre of the cross-section of the block wythe at
the both ends of the wall with opposite directions. That is e//ez = -1. The loading at the

lower end of the specimen was maintained constant after the primary load reached 800
kN.

Figure 3.9 shows the deflection shapes along the height of the block wythe at
several load levels. As shown in the figure the specimen deflected initially in double
curvature. As the load increased, unwinding of the specimen to the direction of the upper
end could be observed but was not significant. After the load reached 800 kN, the upper
curve developed more quickly since the upper end had larger moment. During the test, a
crack was observed at the number 57( height = 4.4 m ) mortar joint of the brick wythe.
For safety reasons, the lower part of the brick wythe and the block wythe were nat
closely observed. At the ultimate load of 1200 kN, the face shells of the blocks at the top
end of the specimen were spalled off as shown in plate 3.7. Crushing of the block was
sudden and without warning. The loading dropped off quickly from the ultimate point and

the specimen reached failure. No descending part of the response curve was captured.
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Comparing specimens W1, W2 and W4, the properties of the specimens and the
magnitudes of the loading eccentricities were the same, but the ratios of e/e; were
different, +1, 0, and -1. The corresponding values ot :ae ultimate load capacities were
451 kN, 818 kN, and 1200 kN respectively. As can be seen, the capacities of the
specimens were strongly influenced by the end eccentricity ratios. On the other hand, the

ductility decreased as the end eccentricity ratio changed from the positive to the
negative values.

3.3.5.5. Specimen W%

Specimer %~ v had a 75 mm cavity and was loaded at both ends of the specimen
with an eccentricity of /2 ( 90 mm ) measured from the centre of the cross-section of the

block wythe towards the brick wythe. That is ej/e> = 1. The specimen deflected in single
curvature towards the block wythe.

The load verses mid-height deflection curve is shown in Figure 3.10. It can be
observed that the deflection increased at a faster rate at load levels higher than 150 kN.
Two cracks in the brick wythe were observed at the mortar layers at mid-height and at a
height of 4.5 m ( number 59 mortar layer counted from the bottom). When approaching
failure, these two mortar joints were completely debonded. In the block wythe, cracks
appeared at several mortar joints of the middle part of the specimen. The two cracks at the
mid-height, however, were the most developed. Cne of the cracks spread into the block
unit as shown in Plate 3.8. The ultimate load was 251.4 kN.

3.3.5.6 Specimen W8

This specimen had a 75 mm cavity and was loaded at both ends of the specimen
with an eccentricity of t/2 ( 90 mm ) measured from the centre of the cross-section of the
block wythe in the direction of away from the brick wythe. That is ei/e; = 1. The
specimen deflected in single curvature towards the brick wythe.
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_ Figur: © 11 shows the load-displacement response of the specimen. As can be
observed from the figure the response curve was approximately linear at the initial loading
stage. When the load reached about 160 kN, a big crack appeared at the number 58
mortar joint at mid-height of the brick wythe. The whole mortar joint cracked through
immediately after. The deflection corresponding to this cracking was about 9 mm. Cracks
in the block wryize also occurred at mid-height. After this, the deflection increased rapidly
while the load remained constant but sustained for quite a long time. The ultimate

deflection was about 90 mm, ten times the deflection at the ultimate load. The ultimate
load capacity was 166 kN.

Unlike other specimens, the curvature of the response of specimen W8 skows a
sudden change at the ultimate load as can be seen in Figure 3.11. This sudden change may

have been casised by local buckling of the shear connectors. This will be discussed further
in Chapter Four.

Comparing specimen W6 with W8, The physical properties of the specimens and
the loading conditions were the same except the direction of the eccentricities. Specimen
W6 was loaded with an eccentricity towards the brick wythe while specimen W8 was
loaded away from the brick wythe. The ultimate load capacity of specimen W6 was higher

than that of specimen W8 indicating the direction of the loading eccentricity may affect the
behaviour of cavity walls.

3.3.5.7 Specimen W7

Specimen W7 had a 100 mm cavity and was loaded at both ends of the wall with
an eccentricity of t/3 (63.3 mm) measured from the centre of the cross-section of the

block wythe towards the brick wythe. That is e)/e; = 1. The specimen deflected in single
curvature towards the block wythe.
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The load versus mid-height deflection curve of the block wythe is shot " ix Figure
3.12. The curve was approximately linear up to a load of 320 kN. The curve then

gradually showed increasing nonlinearity and reached the ultimate load at 424.0 kN.

3.3.5.8. Specimen W9

The specimen W9 had a 75 mm cavity and was loaded with an eccentricity of t/2
(90 mm ) measured from the centre of the cross-section of the block wythe at the both
ends of the specimen in opposite directions. That is e)/e; = -1. The moment ratio between

the top end and the bottom end was kept unchanged throughout the test.

The deflection shapes along the height of the specimen are plotted at different load
levels and shown in Figure 3.13. As can be seen, the specimen initially deflected in double
curvature. As the load increased, unwinding of the specimen occurred towards the lower
end of the specimen. This unwinding phenomenon was not significant and the specimen
remained in double curvature until the failure. At a load level of 822 kN, compression
failure started at the face shells of the block units at the top end of the block wythe. The
face shell spalled off as shown in Plate 3.9. The failure was brittle. No descending part of

the curve was obtained in the test. The ultimate load capacity was 822.9 kN

3.3.6 Summary of the Test Results

A total of nine fuil scale cavity masonry walls was testcd. The physical properties,
the loading conditions and the ultimate load capacities are summarized in Table 3.14. The

test results and the observations led to the following conclusions:

(1). The behaviour of the cavity walls was affected by the magnitude of the loading
eccentricities as well as the end eccentricity ratios. The ultimate load decreased
while the ductility increased as the magaitude of the eccentricities increased and as

the value of the end eccentricity ratios changed from -1 to +1.
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The ultimate load capacity was also affected by the directions of the loading

eccentricities, either towards or away from the brick wythes. The effects of this
influence will be discussed in Chapter Five.

At least two failure patterns were captured by the tests. Specimens W4 and W9,
which were loaded with e;/Je; = -1, failed in a brittle manner in a material
compression failure pattern. The other specimens, which were loaded with either
ei/e; = 0 or ey/e;= 1, failed by inelastic instability due to large deformations caused
by the initial moments, the vertical loads and the second order effects. Specimen
W8, however, may be an exception since its response changed direction suddenly

at about the ultimate load level. This failure pattern will be discussed further in

Chapter Four.

Cracking of the specimens in both the brick wythe and the block wythes occurred
at the mortar layers. The nature of the cracking was identified as debonding
between the units and the mortar joints. Most cracks developed within the mortar
layers but a few of the cracks in the block wythes extended into the units.
Cracking in the brick v.ythes was concentrated at a few mortar layers near the
locations of the shear connectors. While, cracking in the block wythe was more
uniformly distributed in several mortar layers since the block wythes were

reinforced and partially grouted.

The load-deflection responses were approximately linear up to a load level of at
least 0.53 P, .

The reinforced cavity walls being tested exhitited good ductility except when
loaded in double curvature.
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(7). Compared with single masonry walls, the ultimate ioad capacity and the initial
stiffness of the shear connected cavity wall increased significantly.



Table 3.1 Physical Properties of Concrete Block Units

Properties 200 mm Standard
Block H/15/C/O
Width 190 mm
Length 390 mm
Height 190 mm
Minimum Face Shell Thickness 32 mm

Gross Area 74100 mm?

Net Area 41500 mm?

Unit Mass( kg ) 13.4

Moisture Content 10.2

Absorption( % ) 14.3

Table 3.2 Compressive Strength of Concrete Block Units

Specimens Ultimate Load Ultimate Strength *

kN MPa

1 591.0 14.24

2 756.0 18.21

3 638.0 15.37

4 776.0 18.70

5 842.0 20.29
AVERAGE 720.6 17.35

* Based on net area of 41500 mm>.

Table 3.3 Modulus of Elasticity of éoncrete Block Units

Specimen Modulus of Elasticity
MPa
1 14105
2 18072
3 N/A*
AVERAGE 16088

* Specimen cracked at P=25 kN.



Table 3.4 Compressive Strength of Hollow Concrete Block Prisms

Specimens Ultimate Load Ultimate Strength *

kN MPa

1 504.0 15.59

2 725.0 22.42

3 575.0 17.79

4 660.0 20.42

5 644.0 19.92
AVERAGE 621.6 19.30

* Based on bedded area of 32328 mm?.

Table 3.5 Modulus of Elasticity of Concrete Block Prisms

Specimens Modulus of Elasticity of Modulus of Elasticity of
Grouted Prism* MPa Hollow Prism** MPa

1 8465 14040
2 8724 16320
3 8465 16460
AVERAGE 8551 15606

* Based on gross cross-sectional area of 72200 mm”>.

** Based on bedded area of 32328 mm?>.

Table 3.6 Compressive Strength of Grouted Concrete Block Prisms

Specimens Ultimate Load Ultimate Strength *
kN MPa
1 782.0 10.55
2 749.0 10.11
3 788.0 10.63
4 693.0 935
5 898.0 12.12
AVERAGE 782.0 10.55

* Based on gross cross-sectional area of 74100 mm?®.



Table 3.7 Physical Properties of Burnt Clay Brick Units

Property Burnt Clay Brick Units

Width 90 mm
Length 190 mm
Height 63 mm

Volume of Voids 25%

Thermal Expansion Coefficient 3.6x10°
Weight per Unit 1.6kg
V/eight of wall / Sq.m 140 kg

Table 3.8 Compressive Strength of Burnt Clay Brick Units

Specimens Ultimate Load Ultimate Strength *

kN MPa

1 427.0 27.74

2 452.0 29.37

3 381.0 24.76

4 492.0 31.97

5 507.0 32.94
AVERAGE 451.8 29.36

* Based on net area of 15390 mm?.

Table 3.9 Compressive Strength Of Burnt Clay Brick Prisms

Specimens Ultimate Load Ultimate Strength *
kN MPa
1 298.0 19.36
2 226.0 14.68
3 230.0 14.94
4 258.0 16.76
5 383.0 24.89
AVERAGE 279.0 18.13

* Based on cross-sectional area of 15390 mm®.
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Table 3.10 Modulus of Elasticity of Burnt Clay Brick Prisms

Specimens Burnt Clay Brick Prisms*
MPa
1 6821
2 6529
3 6259
AVERAGE 6536

*Based on cross-sectional area of 15390 mm?>.

Table 3.11 Compressive Strength of Mortar

Specimens Ultimate Load Ultimate Strength *
kN MPa

1 285 114
2 26.5 10.6
3 28.0 11.2
4 315 12.6
5 220 8.8
6 27.0 108

AVERAGE 27.3 10.9

Table 3.12 Compressive Strength Of Grout Material

Specimens Ultimate Load(prism) Strength (prism)

kN MPa
1 152.5 27.11
2 120.5 21.42
3 193.5 34.40
4 197.0 35.02
5 163.5 29.07

AVERAGE 165.4 29.40
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Table 3.13 Summary of Full Scale Wall Tests

60

Specimens Slenderness Cavity Eccentricity e; / e; Ultimate
mm Load
kN
w1 27.81 75 t/3* (a)** 1 451.0
w2 27.82 75 t/3(a) 0 818.0
w3 27.81 75 t/3 (t)** 0 651.9
W4 27.84 75 t/3 -1 1200.1
W5 27.81 75 t/3(a) 0 815.5
w6 27.84 75 t/2*(t) 1 2514
w7 27.82 100 t/3(t) 1 424.0
w8 27.89 75 t/2(a) 1 166.0
W9 27.83 75 t/2 ’ -1 822.9

* t = Thickness of the wall. Here, t /3 =63.3 mm; t/ 2 =90 mm.

**(a) = away from brick wythe; (t) = towards brick wythe.
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Figure 3.1 Dimensions of concrete block units and burnt clay unit

Figure 3.2 Ladder type horizontal reinforcement
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Figure 3.5 Load vs. mid-height deflection of specimen W1
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Figure 3.6 Load - deflection curves of single and cavity walls of W1
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Figure 3.7 Load vs. mid-height deflection of specimen W2
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Figure 3.8 Load vs. mid-height deflection of specimen W3
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Figure 3.9 (b) Deflected shapes of specimen W4 ( P = 800 kN )
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Plate 3.1 Failure of concrete block u



Plate 3.2 Failure of hollow block prism in compression
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Plate 3.3 Failure of grouted block prism in compression
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Plate 3.4 MTS loading frame



Plate 3.5 Loading frame for hydraulic ram
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Plate 3.8 Debonding cracks extended into units



Plate 3.9 Failure of specimen W9
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CHAPTER FOUR

NUMERICAL SIMULATION

4.1 Introduction

To fully understand the behaviour of the masonry cavity walls, a large number of
vall tests are required in order to incorporate a wide range of performing parameters that
affect wall behaviour. However, such a fully experimentally based investigation is too
expensive and time consuming to be feasible in practice. A small number of full scale tests
is critical, however, to provide reliable information for assessing the behaviour of the wall.
In this work, the experimental database obtained at the University of Alberta consists of
four plain cavity walls and three reinforced cavity walls tested by Goyal et al.(1993) and

the nine reinforced cavity walls tested in the course of this study.

In order to extend the database a numerical analysis model can be used to
investigate the full range of parameters not covered by the tests. The performance of this
model must, first, be verified against the test results in order to develop confidence in the
results and to develop an insight into the mode of failure. This chapter presents a simple
and efficient nonlinear finite element model developed to complement the experimental
work. The model was implemented in the general purpose finite element program
ABAQUS( Hibbitt et al. 1994 ). The model accounts for both material and geometrical
nonlinearity aspects of the tests which wili be discussed in subsequcsit sections. In order to
verify thv accuracy of the simulation, a comparison between the test results and the results
by finite element simulation, specifically the load-deflection response curves and critical
loads P., will be stressed in section 4.4. It was, then, used tc extend the database of tests

to a wider range of variables. This will be the subject of the next chapter.
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4.2 Numerical Model
4.2.1 Finite Element Mesh

4.2.1.1 Beam Element Model

Masonry walls subjected to combined axial load and out-of-plane bending moment
are usually designed to span vertically. Such walls work essentially as columns with
uniformly distributed deflection along the width of the wall. If, however, side supports are
provided, which are usually designed to resist horizontal forces and to reduce sienderness
effects, the wall can also span horizontally forming curvatures in two directions. Since the
scope of this research is focused on vertically loaded walls, only vertical span walls were
considered as were the cases in the experimental progiam. No side supports nor their
beneficial effect on the deflection of the wall have been considered. Since Poisson’s ratio
properties in masonry walls are not clear, plain strain response v.as neglected, and plane
stress conditions were assumed. These walls could be modeled as a two dimensional

continuum or as a beam assembly. The model presented herein is a beam model with the

different components modeled along their centrelines.

Two reasons were considered when selecting a beam element model instead of a
two-dimensional plane stress element model. First, the beam element model is simpler
with fewer nodes and is more suitable to model large dimensional structures. Second, we
are more interested in the overall behaviour - the stiffness and strength for instance-of the

masonry walls under consideration, rather than in the local distribution of the stresses.

There are several types of beam elements available in ABAQUS. The 3-node
quadratic beam type element, B22, was selected for masonry assemblages. This type of
element uses Timoshenko beam theory (Timoshenko, 1972) which takes into account the
transverse shear deformation of the cross-section. Hence, the deformed cross-section may

not remain normal to the beam axis. Such an assumption is consistent with the case of
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masonry assemblages under out-of-plane bending where the transverse shear deformation
is significant (Essawy, et al. 1985). Unlike the response to axial and flexural loads, the

transverse shear deformation is treated in ABAQUS as a linear elastic response.

To model the shear connectors, a special type of element- 3-node quadratic beam
elements with hybrid formulation B22H was used. This is because the shear connectoris a
very short element. It exhibits very large stiffness about the axis of bending. It was found
from analysis that a beneficial effect is achieved by using hybrid elements which treat the
axial and transverse shear forces as independent degrees of freedom. The shear

connectors were modeled with an elastic perfectly plastic von Mises material model.

4.2.1.2 Element Mesh

Masonry is a composite material. In an assemblage of masonry, individual
materials interact with each other rendering the behaviour of the assemblage difficult to
predict by using the material properties of each individual component. As a consequence,
when finite element analysis is introduced into masonry structures, a common argument
arises on whether a macroscopic or a microscopic analytical model should be chosen.
Microscopic models usually consider the existence of mortar joints as layers of weakness
by separately modeling mortar joints and units (Arya and Hegemier, 1982, Page, 1978,
Balachandran 1974). A microscopic model has been developed and tried in this research
project initially. That model's‘iparately considered each mortar yoint and each unit. There
was no interface element between the mortar joint and unit. The mortar tension failure
mode was based on the debonding limiting stresses between mortar and unit. It was found
that analytical results based or: this model were not satisfactory. In the author’s opinion,
this model was unable to simulate the crack propagation between elements after
debonding. The discontinuity of deformation between a debonded mortar element and a
unit element caused numerical solution problems. Some improvement to this model may
be achieved by adding interface elements between joints and units( Lotfi, et al. 1994 ).

Howev~r. adding interface elements is not practical since it would make the number of
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elements which is already quite large, even larger with no guarantee that satisfactory
results could be obtained.

For the above reasons, a macroscopic model was finally chosen. In this model, the
wall is discretised into finite elements with no particular attention given to the position of
mortar layers. Debonding would most probably occur within an element which could be
modeled as a crack and allowed to propagate as a crack. Properties of the masonry
assemblage as a whole, that is, the properties of masonry prisms, could thus be used
instead of the different properties of each individual material component. The weakness
of mortar layer in tension was considered by using the bond strengths as tensile stiengths
between concrete masonry units and mortar joints as well as between brick units and

mortar joints respectively. Detailed material properties will be discussed in the next

section.

Figure 4.1 shows the proposed finite element mesh. The concrete masonry wythe
is simply supported with a hinge at the bottom and a roller at the top. A relatively stiff
element was used to model the steel angle at the bottom of the brick masonry wythe. One
end of this element is fixed to the bottom of the concrete masonry wythe and the other end
is connected to the brick masonry wythe by a two-node constraint equation. The two
nodes are overlapped at one point by a constraint equation which allows horizontal
movement while constraining the vertical movement between the steel angle element and
brick masonry wythe to be equal. Hinges were used to model the connection between
shear connector plates and V-ties while fixed end conditions were used to model the joints

between connector plates and concrete masonry elements zs well as between the V-ties

and brick masonry elements.

To account for the effects of embedment, the stiffness and the cross-sectional area
of shear connector plates and V-ties embedded within the masonry wythes were modeled
with values higher than those of the connectors or V-ties themselves. The ratios of

properties between embedded and outstanding parts were one hundred for moment of
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inertia and ten for cross-sectional area. A larger ratio was selected for the bending
stiffness because embedment contributes more to the stiffness than to the cross-sectional
area of shear connectors. The selection of those ratios was semi-empirical since little
information was available from previous research. Papanikolas et al. (1990) assumed
infinitely large stiffness and cross-sectional area for the embedded part of connectors in
their analytical model of these walls. A preliminary analysis conducted during the west
reported herein indicated that the increment in the stiffness and cross-sectional area for
embedded parts has little effect on the behaviour of the whole connector if those values

were increased beyond the suggested range.
4.2.2 Material and Parameters

4.2.2.1 Properties of Masonry Assemblage aind Reinforcement

In the elastic range, the masonry assemblage waz modeled as an isotropic elastic
material. Young’s modulus of both the concrete masonry and brick masonry were based
on the average prism test values reported in Chapter 3. These Young’s moduli and

Poisson’s ratios are listed in table 4.1 (a) and (b).

Beyond the elastic range, the material option *CONCRETE in ABAQUS was used
to model masonry assemblages. This option provides a smeared crack propagation
simulation. The cracking failure criterion is defined by a “crack detection surface” which is
a function of the principal stresses. Once the stress state reaches this surface cracking is
initiated. The presence of cracks will be reflected in the con:itutive calculation at related
integration points. That is, the stress and material stiffness at that integration point will be
changed. Since at each integration point, different constitutive values may be used, the

crack propagation from point to point can be simulated.

In order to use this material model, several material properties have to be defined.

For the uniaxial compressive stress-strain relationship, a simplified curve with several



81
straight line segments was selected in which the ascending part was defined by prism test

results and the descending part was obtained according to the proposed curve by
Atkinson and Yan ( 1990). This simplified curve was used bvth for concrete masonry and

for brick masonry with different control parameters, f'm. which were obtained from tests.

For masonry in tension, as mentioned above, the bond strength between the units
and mortar layer were used as tensile strengths since in most cases masonry experiences
tensile failure by debonding of mortar and units. This bond strength is often referred to as
the flexural tensile strength of masonry. The tensile sirength values as defined above are
listed in table 4.1(a) and 4.1 (b) where ratios of these tensile strengths to the

corresponding compressive strengths are also listed as required by ABAQUS.

Another category of parameters defines the phenomenon of tension stiffening
which reflects the postcracking behaviour between the cracks. Unfortunately, there is no
such information for masonry to date. A reasonable way of estimating the tension
stiffening effect in reinforced masonry structure is to compare it with reinforced concrete
structure. In reinforced concrete structures, the tension stiffening effect is a function of the
reinforcement ratio, the bond strength between rebar and concrete, as well as the finite
element mesh. In reinforced masonry structures, beside those mentioned above, the grout
fill, in author’s opinion, has a significant effect on tension stiffening behaviour. This is
because the grout fill bonded with the rebar is a continuous member from top to bottom
of the wall. Moreover, the tensile strength of grout material is much higher, usually more
thian five times that of the bond strength of masoruy. Thus, once the debonding occurs
between a unit and a mortar joint, the grout fill together with rebar will act as a stiffener to
resist the propagation of debonding. Therefore, the complete debonding of that joint is
delayed. This effect needs to be quantified in future research. At present, the tension
stiffening is modeled here with the descending part of the stress strain curve in tension.
The total strain corresponding to the stress ranging from failure to zero was selected as

4.3 x 10>, Figure 4.2 shows the complete stress-strain curve used in this analysis including

the part of tension stiffening.
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4.2.2.2 Properties of Shear Connectors

In Chapter 2, an equivalent stiffness EI has been derived which converts the
perforated connector plate into a plate with a solid cross-section. These values of EI were
used to model the connector behaviour. The modulus of elasticity, E , of the connector
plate was selected as 200 GPa. The cross-section of the connector plate was sized so that
the products of moment inertia of the cross-section and the modulus of elasticity equaled
the EI value derived from Chapter 2. The equivalent cross-sectional areas of the shear
connectors were defined according to the load-displacement response of the shear
connector tests. A value of yield strength of the connectors was defined as a nominal
strength such that the capacities of the connectors based on the equivalent cross-section

approach to the capacity of the connector under a combined load condition. These

values are listed in table 4.1 (b).
4.2.3 Analysis Procedure

4.2.3.1 Nonlinear Solution Methods

In ABAQUS nonlinear incremental static analysis is controlled using the
Newton-Raphson iteration method. However, Newton’s technique is ineffective when the
load-displacement curve undergoes an unstable response as shown in Fig. 4.5, where, the
negative stiffness of the curve indicates buckling or collapse. ABAQUS provides another
solution technique to deal with such cases - the modified Riks algorithm ( Ramm 1981,
Riks 1979). The principal idea of this method is to treat the load magnitude as a variable
such that the equilibrium solutions are obtained by controlling the iteration path along the

load-displacement curve. Fig. 4.3 shows a schematic of the modified Riks algorithm.

The solution is obtained by “ moving a given distance along the tangent line to the

current solution point, and then searching for equilibrium in the plane that passes through
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the point thus obtained and is orthogonal to the same tangent line”.( ABAQUS User's
Manual, 1992).

The loading procedure was carried out incrementally in several stages using a
load control solution strategy with a standard Newton-Raphson iterative procedure.
Before reaching the ultimate load point, the solution strategy switched to a modified Riks
algorithm to obtain ultimate load P, and to proceed into the postbuckling load-
displacement response. The increment sizes within each step were kept small because
there is a finite radius of convergence for Newton’s method. If the increment is too large,

divergence is indicated by the program and no solution could be obtained.

4.2.3.2 Removal of the Element

Another «spect of the analysis is the treatment of the buckling behaviour of the
shear comnectors. Once a connector is buckled, the load on that connector will be
redistyibuisd aiiong other connectors. This phenomenon was modeled with ABAQUS’s
option *MGIEL CHANGE im wiion, 3 gerpnt that is no longer effective is removed. It
was assumed that successive failure would occur in a layer of connectors if one of them
buckled first. Thus, the removal of a connector element means that the whole layer of the

connectors, which usually contains two or three connectors, is removed.

4.3 Simulation of Test Results

All tests reported here were conducted on walls made with 200 mm blocks with a
variety of end conditions and eccentricities. The eccentricities referred to here are
measured from the centroidal axis of the block wythe. Table 4.2 summarizes the

parameters of the test specimens, as well as the results of both test and analysis.
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4.3.1 Group 1, Loading with e,/ e; =1

This group consists of specimens W1, W6, W7 and W8. Specimens W1 and W8
both had 75 mm cavities, were both loaded with eccentricities away from the brick wythe
but W1 had e = /3 while W8 had e = t/2. Specimens W6 and W7 were loaded towards the
brick wythe but the first had a 75 mm cavity and eccentricity of t/2 while the second had a

100 mm cavity and a t/3 eccentricity.

Figure 4.4 shows the mid-height load-displacement responses of specimen W1
obtained from the analysis and test. It can be observed that the model performance is
satisfactory since it reproduces most characteristics of the test curve. Specifically, the
ultimate load P, from analysis is consistent with that obtained in the test and the
deformation of the wall obtained from analysis has good agreement with that obtained

from the test even into the post-cracking range and post-ultimate range.

Figure 4.5 shows the results for specimen W7. The model performance here is also
satisfactory. The deformation response from the numerical analysis is fairly consistent

with that of the test result up to a load level of P = 0.9 Py.

For specimen W6, the results are shown in Fig. 4.6. It can be observed that the
numerical analysis presents a load-deflection response pattern and failure mode similar to
those of the test even though some difference exists between the two curves. The ultimate
load P, predicted by the analysis is below the value measured from the test by 5.9 %. It
seems that the simulation curve overestimates the cracking strength and underestimates
the post-cracking capacity. Those differences may result from a number of reasons. The
variation in the properties of masonry materials is high, especially the variation in the bond
strength between masonry units and mortar joints. Since specimen W6 was subjected to a
load with large eccentricity, 90 mm, the cross-section of the wall was subjected to a

strain gradient. Such a strain gradient may affect the tension stiffening behaviour. That



87
effect was considered constant in the analysis. Considering the two conditions, the small

discrepancy between the analysis and test is understandable and acceptable.

Figure 4.7 shows the numerical and experimental responses of specimen W8.
Both the ultimate load and the deflection history have been well predicted by the analysis.
It was found in the analysis that the shear connectors at the top of the specimen reached
thgir ultimate load capacity and buckled. Those connectors were removed from the wall

for the subsequent load steps using the procedure described earlier. This failure mode will
be discussed further in section 4.4.

4.3.2 Group 2, Loading withe; /e;=0

This group consists of two specimens W2 and W3. Both had 75 mm cavities and
were loaded with an eccentricity of e = t/ 3 at the top of the wall and zero at the bottom.
Specimen W2 was loaded away from the brick wythe while specimen W3 was loaded

towards the brick wythe. Figure 4.8 and 4.9 show the numerical analysis and the test
responses for specisnen W2 and W3.

For specimen W2, the analysis overestimates the ultimate load capacity by tiftcen
percent. Again, the variation in the material properties and in the estimation of post-

cracking s*rength may explain the discrepancy in the response.

For specimen W3, as mentioned in Chapter 3, a lower load capacity was observed
in the test than expected. Therefore, two sets of material properties were used to obtain
two parallel numerical responses . In one set, average material properties obtained from
prism tests were used as were the cases of other specimens. It was found that the analysis
result corresponding to this set of material properties overestimates the ultimate load
capacity Py by 40 %. In the other set, a lower compression strengths £m = 0.7 fm average
was selected both for concrete block masonry and for brick masonry. The value 0.7 was

chosen to account for possible variation in the prism test results. The corresponding
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tensile strengths were also changed proportionally. The numerical response based on this
set of material properties agrees well with the test curve on the initial part of deflection
and on ultimate load capacity as shown in Fig. 4.9. The values of P, from both sets of

analytical results arc listed in Table 4.2.

4.3.3 Group 3, Loading with e,/ ¢; =-1

This group consists of specimens W4 and W9. Both had 75 mm cavities and were
both loaded with opposite eccentricities at the two ends of each specimen causing the

walls to deflect in double curvature. The loading eccentricities for specimens W4 and W9

were t/3 and t/2 respectively.

Since both the initial conditions and the unwinding phenomena have effects on the
deflected shape of specimens with double curvature, relative displacement between upper

and lower curves is plotted instead of deflection at one point.

Figure 4.10 shows the relative displacement between nodes at elevations of 0.85m
and 4.4m from the bottom of specimen W4 obtained from the analysis and the test. In
the analysis, the loading steps were designed to follow the loading procedure of the test
exactly. That is, the moment at the bottom of the wall remained unchanged after loading
beyond 800 kN. The P, obtained from analysis is fairly consistent with that from the test.
In the test, the failure started from the outer face-shell of the top block of corncrete
masonry wythe where the top concrete block masonry reached its prism compression

strength. The failure mode and the locations of failure detected by the analysis were the

same as those observed in the test.

Figure 4.11 shows the test and analysis results of specimen W9. The curves
obtained in the test and analysis are fairly close. The predicted ultimate load capacity is
10% less than the measured value in the test. Again, the failure mode was similar to that

of the test - a material compression failure mode.
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4.4 Failure Modes

A study of the failure patterns was conducted based on the numerical analysis and

the test results. For the specimens under investigation, failure can be categorized into
three groups: inelastic instability failure of the whole cavity wall due to large

deformations, material failure, and buckling of the shear connectors.

- Buckling of the whole wall

When loading with single curvature and equal eccentricities at the two ends of the
specimen, failure, in most instances, was by buckling or inelastic instability of the whole
cavity wall. Specimens that experienced that failure type underwent a nonlinear
deflection stage up to the ultimate load followed by a softening part in which the load
reduced and the deflection increased rapidly. Such nonlinearity was due to the nonlinear
constitutive relationships ¢f the materials and the slenderness effect. In most cases, the
post-buckling strength of the specimen could be traced using a stroke control technique in

the test or Riks solution method in the analysis.

For specimens loaded with eccentricity only at one end, the failure mode was also
inelastic instability failure of the whole specimen. Since the maximum moment was at one
end of the wall, the slenderness effect might not be as obvious as in the first case where

eccentric loads were added at both ends of specimens.

- Material failure

The material failure mode occurred under a double curvature loading condition.
Since the maximum moment occurred at the two ends of the specimen, the slenderness
effect was not significant. The failure was brittle with a sudden spalling of the face-shell at
the top masonry block course. No post failure part of thie response was obtained from the

test nor from the analysis. It was detected from the analysis that at the failure zone, the
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concrete blocks reached the compression strength obtained from the concrete masonry

prism tests.

- Buckling of the shear connector

In the analysis of specimen W8, it was found that some shear connectors reached
their ultimate load capacity and buckled. The buckling started at the first layer of
connectors from the top of the wall at a load level of 120 kN. More connectors ( the
second layer from the +op and the first layer from the bottom) buckled as the load
increased until the whole specimen reached the ultimate load. During the test, although no
buckling of the shear connectors was captured due to the difficulty of observation, it was
observed that several big cracks formed in the brick wythe causing the wythe to separate
into several rigid parts before reaching the ultimate load. Summarizing the observation
from the test as well as from the analysis, it is believed that for the wall with designed
shear connector pattern and large eccentricity ( e = t/2 ), buckling of the shear connectors
accompanied with through cracking of the brick wythe resulted in plastic hinges forming
at the locations of cracks in the brick wythe. The brick wythe stopped resisting additional
moment after the formation of the plastic hinges causing the redistribution of the moment
among the two wythes of the cavity wall. Because of the existence of reinforcement in the

block wythe, the wall could sustain significant loac even after reaching the ultimate load.

4.5 Summary

Above all, it can be concluded that the numerical simulation of masonry cavity
wall tests is quite satisfactory. The model reproduces most characteristics of the load-
deflection curves of the test results. Table 4.2 summarizes the analytical results for Py and
their comparison to the test results. The mean of the ratio of Py analytical/ Pu test iS 1.0170

( or 1.0602 considering average material property for specimen W3 ). The standard
deviation is 0.0835 (or 0.1527 considering average material property for specimen W3).



Table 4.1(a) Properties of Masonry

Material Properties V#iver Used
(a) & (b)/ P
Concrete Block Maodulus of Elasticity 13920 Mia 721.2
Poisson’s Ratio 0.2 N/A
Compression Strength 19.3 MPa N/A
Tensile ( Bond) 0.56 MPa 0.029
Strength
Brick Veneer Modulus of Elasticity 6536 MPa 361.0
Poisson’s Ratio 0.2 N/A
Compression Strength 18.1 MPa N/A
Tensile ( Bond) 0.63 MPa 0.035
Strength

Table 4.1(b) Properties of Shear Connectors

Material Properties 75 mm Connectors 100 mm Connectors
Modulus of Elasticity 200 MPa 200 MPa
Nominal Strength F, 300MPa 300 MPa
Area (one connector) 2.95 mm’ 1.82 mm?
Moment of Inertia 14030 mm* 9550 mm*

( one connector)
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Table 4.2 Comparison of Analysis to Test
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a P. P, Analysis
Specimen Cc* e ey e*t aan Slende Analysis Test / Test
ort rmess
mm kN kN

wl 5 1 t/3 a 278 4478 451.0 0.993
w2 75 0 t/3 a 278 938.0 818.5 1.146
w3 75 0 t/3 t 278 662.0 651.9 1.015

913.6 1.401
wé 5 -1 t/3 N/A 278 11980 1200.} 0.998
w5 75 0 t/3 a 27.8 938.0 815.5 1.150
wb 75 1 t/2 t 278 236.4 251.4 0.940
w7 100 1 t/3 t 27.8 424 4 4240 1.001
w8 75 1 t/2 a 278 168.7 166.0 1.016
w9 5 -1 t/2 N/A 27.8 738.0 822.9 0.897

* C = cavity;

** ¢ = eccentricity

*¥% g = away from veneer;
t= towards veneer
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CHAPTER FIVE

PARAMETRIC STUDY

5.1 Introduction

The database established by the experimental program was confined to a limited
number and range of variables. In fact, many other parameters affect the ultimate load
carrying capacity and the stiffness of the cavity walls. Using the finite element analysis
model described in Chapter Four, an extensive parametric study was carried out to
investigate the effects of these parameters. The investigation started with studying and
selecting the potential variables and their range. Ninety-one hypothetical reinforced
masonry cavity walls were, then, analyzed. This numerical analysis, or computer test,
enlarged extensively the experimental database. It furnished sufficient information for a
regression analysis which will be discussed in the next chapter. The analysis also provided
a way of exploring the interrelationship between parameters. This chapter presents the

selection of the variables and parametric study along with the analysis results. More results
will be discussed in the next chapter.

5.2 The Variables

| A cursory look at the problem suggests that a large set of parameters could have
effects on the behaviour of shear connected cavity walls. These parameters are the
loading conditions as well as the geometric and material properties of the walls.
Rationally, these parameters are the potential predictor variables in estimating the ultimate

load-bearing capacity and the effective stiffness of the cavity walls.
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A parametric study could be based on a number of basic variables such as: the
slenderness ratio L/t ; the eccentricity of the loading e ; the ratio between the
eccentricities at the top and the lower ends of the wall e//ez; the material properties of the
block wythe such as: the modulus of elasticity Em, the compressive and tensile strengths;
the material properties of the brick wythe; the ratio between the stiffness of the block
wythe and the brick wythe (EDrick /(EDbtock ; the material and geometric properties of the
shear connectors, the cavity width and the end conditions. However, not all those

parameters were set as variables for several reasons.

First, some parameters have a limi‘ed variation in practice such as the physical
properties of the shear connectors. For each cavity width, the connectors are
manufactured with fixed dimensions hence the variations in geometric properties of the
connectors are small. Furthermore, the variations in the material properties of the
connectors are relatively small compared to the material properties of masonry. Hence,

these parameters were not selected as variables instead they were set with fixed values in

the analysis.

Second, there exists certain relationships among some parameters. For example,
there is some correlation between the compressive strength and the bond strength of
mortar (Neis and Chow, 1980). There is also correlation between the mortar strength and
the compressive strength of the block assemblage (Drysdale and Hamid, 1979). Hence,
only the compressive strength of the block assemblage which is more reliable and
convenient to measure was chosen as a variable. The bond strength was expressed as a

fraction of the compressive strength of the block assemblage.

Third, some parameters were difficult to estimate or have relatively small effects
on the behaviour of the cavity walls. These parameters were not considered as variables in
the analysis. The strength of the brick assemblage of the brick wythe for example, was
considered to have less significant effect than that of the block wythe. Hence the

compressive and the tensile strengths of the brick assemblage were set as constants.
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However, in considering the influence on the behaviour of the cavity walls caused by the

brick wythe, a general parameter (El)urick /(El)uo;k was selected as a variable to reflect the

composite action.

Finally, the evaluation of some parameters such as the end condition of the cavity
wall were left to the future research. In this investigation, the model for the end condition
of the cavity wall both for the block wythe and the brick wythe followed common

practice. The efficiency of this model has been verified by the experimental program and

the numerical simulation.

For the above reasons, the parameters selected as primary variables affecting the
behaviour of the cavity walls were: the slenderness ratio L/t , the eccentricity of the
loading e, the ratio between the eccentricities at the top and the lower ends of the wall
ei/ez, the modulus of elasticity of the block wythe En, the compressive strength of the
block assemblage, the ratio between the stiffness of the block wythe and the brick wythe
(EDurick /(EDbiock , and the cavity width C.

The specimens were analyzed in nine series. The names of the specimens for each
series are shown in Table 5.1. The specimens in series 1, 5, 6, 7, and 8 were named WS
to WS6, WSL1 to WSL6, WSS1 to WSS6, WSM1 to WSM15 and WSM16 to WSM30,
respectively. These series were designed with the loading eccentricity, the slenderness
ratio and the ratio of ei/e; as the variables. Series 1, 5, and 6 had slenderness ratios of
27.8, 37.3 and 18.3, respectively. Series 1, 7, and 8 had the ratio of e//ez as 1, O, and -1
respectively. Series 2 was designed with (EDprick /(EDbtock  as the key variable and the
specimens were named WSB1 to WSB9. The modulus of elasticity of the block wythe Ep,
was chosen as the variable for series 3 where the specimens were named as from WSEI1 to
WSES6. The compressive strength of the block assemblage was the variable for series 4
and the specimens in this series were named as from WSF1 to WSF9. Series 9 was
designed with the width of the cavity, the direction of the loading eccentricity and the ratio
of (EDrick /(EDwiock as the variables.
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In the next few sections, a brief description of the above variables will be given

along with discussions and samples of the analysis results.

5.3 The Eccentricity of the Loading

£.3.1 Definitions

The loading eccentrivity is defined as the distance from the centroid of the cross-
section of the block wythe measured in the direction normal to the surface of the wall. It

could be measured either towards the brick wythe; or away from the brick wythe.

Regardless of whether the moment and the axial force are from the same source or
not, the loading eccentricity e = M/P could be used to relate the axial load and the
bending moment applied at the wall. Hence in the analysis, the term eccentricity e refers to
the cases where either a vertical eccentric load is applied or a vertical concentric load and

a bending moment are applied simultaneously.

5.3.2 Mechanisms of the Wall Behaviour Under Combined Loading

The behaviour of the cavity walls under combined axial load and bending moment
is a complex function of the parameters discussed in this chapter. At this stage, it is not
the purpose of this section to discuss the mechanism thoroughty. However, since the
loading eccentricity is believed to be a key factor affecting the behaviour of the wall and
the failure mode, the important aspects of load-carrying mechanisms were considered

when selecting the range of the variables and interpreting the analysis resuits.

_ The first facet is the interaction between the axial load and the bending moment.
Because the wall is in general under a combined loading condition, the axial load-bearing
capacity is affected by the applied bending moment. This effect could be represented by

interaction diagrams which are functions of the magnitude of the loading eccentricity and
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the material properties. Therefore, when selecting the range of eccentricity and other

parameters, consideration was given so that a family of interaction diagrams could be

constructed according to the variables and their analysis results.

The second facet is that the resistance of masonry walls to the out-of-plane
bending moment is much weaker than its resistance to the axial compression. This is
because of the anisotropic material properties of masonry. The low bond strength
between the mortar joint and the units leads to early wall cracking when loaded with
large eccentricity. The cracks cause the stiffness of the wall to drop dramatically. As a
consequence, the wall deflects more and the moment increases due to the second order
effects. The moment causes the cracks to grow and new cracks to form. The process
could continue until the wall fails. Hence, the response of a masonry cavity wall to the

different combination of the axial load and the out-of-plane bending moment

sensitive and fundamental.

is very

The third facet is the efficiency of the shear connector as a load transfer
mechanism. The contribution of the brick wythe to the load bearing capacity depends
much on how the shear connectors are loaded and how effectively they could transfer the
load to the brick wythe. Some previous studies showed that the contribution of the brick
wythe to the load bearing capacity increases as the eccentricity increases ( Goyal et al.

1993 ). The analysis results confirmed the same trend as will be shown later.

5.3.3 Strain Gradient

Under combined loading conditions and for large eccentricity, the strain gradient
may be significant and rather nonlinear along the thickness of the wall. The actual stress
at the extreme fibre may, thus, exceed the compressive strength of the masonry
assemblage. For solid masonry, the maximum stress at the extreme fibre at failure could be
1.3 to 1.5 times the strength for concentric loading. For grouted concrete masonry, the

maximum stress could be 1.5 to 2.0 times the strength for concentric loading (Drysdale
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and Hamid, 1982). For hollow masonry, the strain gradient effect is not significant
because the stress along the thickness of the face shell of the block is relatively uniformly
distributed. The walls under analysis are partially grouted and the strain gradient in the

cross-section is not considered to be significant.

5.3.4 Analysis Results

In the analysis, the loading eccentricities were selected as 0, t/12, /6, t/3, and
/2 where t was the thickness of the block wythe. These values covered the ranges of
large and small eccentricities in practice. Figure5.1 shows the load-deflection curves of
one group of specimens loaded with equal eccentricities at both ends of walls. The
specimens were WS1, WS4, WS2, WS5 and WS6. The properties and the loading
conditions of this group of specimens are listed in Table 5.1.

Specimen WSI is loaded with zero eccentricity. It can be seen that before reaching
the ultimate load, the deflection of the specimen is very small, about one millimetre. The
small deflection may be caused by the difference between the actual centroid and the
nominal centroid of the specimen which is based on the centroid of the loaded wythe not
the centroid of the whole cross section of the cavity wall. After reaching the ultimate load,
a sharp change in the slope of the load-deflection curve indicates buckling of the specimen.
After this point, the curve is flat. The deflection increases without a corresponding
increase in the load. Specimens WS4, WS2, WSS, and WS6 are loaded with an
eccentricity of t/12, /6, t/3 and t/2 respectively. As expected, the analysis results
shown in Fig.5.1 reveal decreasing axial load-carrying capacity with increasing
eccentricity. It also shows that the curves tend to become more and more smooth around
the ultimate load as the eccentricity increases. This is attributed to the nonlinear material
properties and the effect of second-order moment caused by large deflections. As
mentioned earlier in this section, the different shapes of the load-deflection curves confirm

that the response of the masonry cavity walls is sensitive to the different combinations of

axial load and bending moment.



105

In this investigation, the effect of the direction of the eccentricity on the stiffness
and the load-carrying capacity is also studied. It is found that the effect of this parameter
on the stiffness and the ultimate load capacity of the wall is not significant. Therefore, as
shown in Table 5.1, most specimens in the analyses are loaded with eccentricities away
from the brick wythes, a few are loaded with eccentricities towards the brick wythe to

serve as a comparison. These are WAll, WAI2, WA16, WA17, WS102, WS104,
WS108, WS205, WS205, WS207 and WS209.

5.4 The Slenderness Ratio

Under combined axial load and bending, the axial load carrying capacity of
masonry walls decreases as the wall height increases. The reduction of the axial load
capacity is due to the additional moment caused by the deflection of the wall, i.e. the
second order moment effect. The decrease in load carrying capacity is more significant for
slender wails than for short walls. This is called the slenderness effect.

The slenderness of the wall is usually expressed in terms of the height-to-thickness
ratio, L/t. A more accurate expression should account for the differences between hollow
and solid masonry. In this case the height-to-radius of gyration ratio, L/r, would be
accurate. For convenience, the slenderness ratio is defined as the height of the wall, L, to

the thickness of the block wythe, t, in this investigation.

Three slenderness ratios: 18.3, 27.8 and 37.3 were selected for analysis. The
slenderness ratio of 27.8 was also used in the experimental program. These values were
chosen intentionally to cover the range of “slender walls” in practice. In Table 5.1,
specimens with slenderness ratios 37.8 and 22.0 are also listed. These slenderness ratios
are associated with a change in the thickness of the block wythe. Specimens with these
slenderness ratios were not considered in the segression analysis for slenderness ratio.

However, they were used to verify the results of the full regression analysis.
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Figure 5.2 shows the load-deflection curves of three specimens loaded in the
same manner and having similar geometric and material properties except for the
slenderness ratio. Specimens WSL3, WSS, and WSSI have slenderness ratios of 18.3,
27.8 and 37.3 respectively. The properties and the loading conditions of these three
specimens are listed in Table 5.1. The loading eccentricity is t/3 at both ends of the walls.
It is obvious that the load carrying capacity of the wall decreases as the slenderness ratio
increases. It can also be observed that slender walls “soften” earlier than short walls. More

results will be discussed in details in the next chapter.

5.5 The Ratio Between the Eccentricity at the Top and Bottom of the Wall: e,/e:

The ratio of e;/e; was defined according to the relative magnitude and direction of
the eccentricities applied at the fop and the bottom ends of the wall. Since the smaller
value is always defined as e, hence le/ezl< 1 . For the combination causing the
specimen to deform in single curvature, the ratio e//e; is positive. Accordingly, the ratio
of ey/e; is negative if the eccentricities cause the specimen to deflect in double curvature.

In the analysis, three ej/e; ratios were selected as 1;0; and -1.

Figure 5.3 shows the load-deflection curves of three specimens with e,/e; ratio as
1, 0, and -1 respectively, WSL3, WSM11, and WSM30. Their properties are listed in
Table 5.1. It is o* vious that with other parameters constant and only the ratio of e/e;

variable, the ultimate load-carrying capacity and the deflection at the same load level
changed dramatically.

It should be mentioned that the maximum deflection along the height of the wall
did not occur at the same location. For the specimen loaded with ei/e; ratio as 1, the
maximum deflection caused by both primary moment and the P-A effect is at mid-height.

For specimens loaded with ey/e; ratio equal to 0, the maximum deflection occurred at the
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height between the mid-height and the loaded end. The exact location depends on the end
conditions and the relative magnitude of the end moment and the moment caused by P-A.
For slender walls, if the magnitude of the end eccentricity is not very large, the maximum
deflection point is very close to the mid-height. This was verified by the test and the
analysis. Thus, for simplicity, the deflection for specimen WSMI11 was measured at the
mid-height of the wall. For specimen loaded with ey/e; ratio equal to -1, the maximum
deflrtion occurred at the quarter point from the top and the bottom end of the wall. The
deflection of specimen WSM30 was obtained as the average of the deflections at the
quarter height of both the upper and the lower part of the wall. As mentioned earlier in

Chapter Three, this average value eliminates the effect of initial imperfections and the
unwinding effect.

5.6 The Compressive Strength of the Block Assemblage

Depending on the magnitude of the eccentricity and other parameters, the cross-
section of the wall could be fully in compression or with part of the section in tension.
Therefore, the compressive and tensile strength of the block assemblage are important

parameters affecting the load carrying capacity and may have an effect on the .tiffness of
the cavity wall.

In the analysis, it has been verified that the cracks in the masonry wall caused by
tensile stresses were initiated and developed mostly at the mortar joints. For this reason as
mentioned in Chapter Four, the bond strength between the mortar joint and the units was

used as the tensile strength of the masonry assembiage for the numerical simulation as well
as the parametric study, reported here.

A simple relationship of f, = 0.029 f 'm was used to define the tensile ( bond )
strength of the block assemblage. The tensile strength was determined according to the

previous research (Ghosh, 1989, Sarker and Brown, 1978). Because the compressive
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strength of the block assemblage is selected as a variable, the tensile strength also changes

value as the compressive strength changes.

The material strength of the brick wythes is not considered a variable since the
brick wythes are not directly loaded.

Three compressive strengths for block wythe were selected, 10.0, 19.3, and 25.0
MPa. Figure5.4 shows the load-deflection curves of specimens WSF1, WSF2, and WSF3.
The properties of these three specimens are listed in Table 5.1. As expected the analysis
results showed in Fig.5.4 reveal that the strength of the block assemblage has an influence
on the ultimate load-carrying capacity of the cavity wall. However, the three curves are
approximately identical before the load reaches about 65% to 75% of the ultimate load.
Therefore, this variable does not seem to have much influence on the stiffness of the wall

at the initial loading stage.

5.7 The Modulus of Elasticity of the Block Assemblage

The modulus of elasticity of the block assemblage exerts a direct influence on the
deflection behaviour of the cavity wall. The CAN3-S304.1-94 code defines the modulus of

elasticity of the block assemblage as:
E.=850fn

In which, E. is the modulus of elasticity of the block assemblage ;

fm is the compressive strength of the block assemblage.

This relationship can be expressed as Ex= o f'n. This simple relationship between
the modulus of elasticity and the compressive strength of the block assemblage was
confirmed by many researchers (Hatzinikolas, 1978). In the numerical simulation of the

experimental program, the values of the compressive strength and the modulus of
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elasticity of the block assemblage were both obtained directly from the prism test results.
The value of @ was calculated as 721. This value is about 15% smaller than that
suggested by the code CAN3-S304.1-94. In order to account for the variation of the
value a and to cover a wider range of the block units, three values for a were used in the

parametric analysis as 721, 850, and 1000 respectively.

Figure 5.5 shows the load-deflection curves of specimens WSE1l, WSE2, and
WSE3. The three specimens have the same properties and loading conditions except the
value of o is 721, 850, and 1000, respectively. The other properties of the specimens are
listed in Table 5.1. It can be observed that the E,, value affects the slope of the deflection
curve almost from the beginning of the loading. The ultimate load-carrying capacity

increases as the E, value increases. The increment in capacity, however, 1is not
significant.

5.8 The Ratio of (EDurick /(ET)siock

The ratio of (EDuria/(EDbiock is an artificial parameter which reflects the relative
stiffness between the block wythe and the brick wythe. (EI)wo represents the mutiiple of
the modulus of elasticity and the moment of inertia of the block wythe while, (EI)prick
represents the same properties of the brick wythe. Since the brick wythe is not loaded
directly, the material properties of the brick  wythe are relatively less important.
Therefore, only the parameter (EDwica/(EI)biock Was used to reflects the composite action

between the two wythes of ti.e cavity wall and to evaluate the contribution provided by
the brick wythe.

Three different values of (EDpria/(EDwiock Were selected to study this parameter.
They were 0.128, 0.0524, and 0.0301. There are also two other values of
(EDbrict/EDb1ock : 0.0469 and 0.0399 as listed in Table 5.1. These occurred from changing
the value the E, of the block wythes. The load-deflection curves of three specimens
WSB1, WSB2, and WSB3 are illustrated in Fig.5.6, having (EDuict/(EDbiock value of



0.0524, 0.128, and 0.0301 respectively. For these three specimens, the thickness of the
brick wythe was 90 mm while the thickness of the block wythe was 140 mm, 190 mm,
and 240 mm, respectively. The change of relative stiffness between two the wythes was

reflected in the ratio of (EDuia/(EDsiec The other properties of the specimens are listed in
Table 5.1.

5.9 The Cavity Width

It is believed that the cavity wall should become stiffer with an increasing cavity
width. This is mainly due to the shift of the centroid of the cross-section and the increase
of the moment of inertia as a consequence. However, this increment is affected by the
efficiency and stiffness of the shear connectors. In this investigation, two cavity widths
have been used: 75 mm and 100 mm. The shear connectors manufactured for 100 mm
cavity width were more flexible than those for 75 mm cavity width. Figure 5.7 shows the
load-deflection curves of specimen W1 and W7 obtained from the test. Specimen W1 had
a cavity width of 75 mm and specimen W7 had a cavity width of 100 mm. The other
parameters for these two specimens were the same except for the cross-section properties
of the shear connectors and the direction of the eccentricity. Specimen W1 was loaded
away from the brick wythe while specimen W7 was loaded towards the brick wythe. It
can be seen that at the initial loading stage, the responses of the two specimens were
almost identical. There was no obvious increase in the stiffness of wall W7 as expected.
The reason was that the stiffness of the specific shear connector used in this investigation
decreases as the cavity width increases. The decrease in the stiffness of the connector
reduces the efficiency of the connectors as a load transfer mechanism. Therefore, less

contribution has been provided by the brick wythe.

Because of the contradictory effects caused by increasing the cavity width and
decreasing the stiffness of the connector, no relationship in numerical quantities has been
found between the behaviour of the wall and the cavity width. Nevertheless, it appears
that for cavity width varying between 75 mm and 100 mm , the variations in the stiffness

110
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and the ultimate load capacity are not significant. Therefore, using the shear connectors

specified in this research, the cavity width may be eliminated from the variable set in

predicting the behaviour of cavity walls.

5.10 Summary

The variables which could affect the behaviour of the cavity walls have been
carefully selected. By combination of these variables, about ninety-one cavity walls have
been analyzed. Table 5.1 lists all the properties, geometry and loading conditions of the

specimens in the parametric study. From the preliminary discussion of the analyses results,
the following conclusions could be arrived at:

(@) The loading eccentricity e, the slenderness ratio L/t, and the ratio of ei/e; are the
important factors affecting the stiffness and the load-carrying capacity of the cavity
wall. The loading eccentricity affects the failure mode which has been reflected in
the load-deflection curves shown in Fig.5.1. The other parameters may also affect

the failure mode. This will be discussed in the next chapter.

2) The compressive and tensile strengths of the block wythe have an effect on the

ultimate load-carrying capacity of the cavity wall. They do not affect the initial
stiffness of the wall as illustrated in Fig. 5.4.

) The modulus of elasticity of the block wythe influences the deflection and load-
carrying capacity, obviously.

(C)) The ratio of (EDurc/(EDbios influences the behaviour of the wall, also obviously.

) The influence of the cavity width on the stiffness and load-carrying capacity was

counteracted by the stiffness of the shear connector. For large cavity width and the
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shear connector commonly used in practice, there is no significant change in the

load-carrying capacity and the stiffness of the wall.
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Figure 5.1 Load deflection curves of specimens WSI1, WS84, WS2, WSS, and WS6
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Figure 5.2 Load deflection curves of specimens WSL3, WSS, and WSS1
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Figure 5.3 Load-deflection curves of specimens WSL3, WSM11, and '"WSM30
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Figure 5.4 Load-deflection curves of specimens WSF1, WSF2, and WSF3
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Figure 5.5 Load-deflection curves of specimens WSE1,WSE2, a2nd WSE3
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Figure 5.6 Load-deflection curves of specimens WSB1, WSB2, and WSB3



-88ERBEEEBESE

Figure 5.7 Load-deflection curves of specimens W1 and W7
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CHAPTER SIX

DESIGN OF SLENDER MASONRY CAVITY WALLS

6.1 Introduction

Slender masonry cavity walls exhibit a non-linear load-deflection response when
subjected to combined axial load and out-of-plane bending. As analyzed and discussed in
the previous chapters, the response of each specimen was a complex function of the
loading conditions, the geometry, and the material properties of the wall. As a result,
rigorous analysis as a design method for slender masonry cavity walls is a rather
complicated matter and is generally too complex to be efficiently used in practice. On the
other hand the moment magnifier method is generally accepted as a rational approximate
approach. The difficulty in executing this method lies in the proper evaluation of the
effective stiffness of the wall, EI. For this purpose, nine full scale cavity walls have been
tested and about ninety-one computer simulated cavity walls subjected to short-time loads
have been analyzed by this investigation. Based on the results of the experiments and
analyses, a multi-linear regression analysis was carried out to evaluate the value of

effective stiffness of the wall. This will be presented in the following sections.

To demonstrate the effects of the parameters analyzed in the computer tests, more
analysis results will be presented in this chapter along with a further discussion on the
behaviour of the masonry cavity walls under combined axial load and bending moment. A
rational design procedure for slender masonry cavity walls is proposed in which the effects
of the variations of the major variables are considered. A comparison between the

proposed design formula and the tests as well as the analysis results will be addressed in
section 6.8.
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6.2 Behaviour of Slender Masonry Cavity Walls

The behaviour of slender masonry cavity walls is influenced by a number of
variables. A large number of cavity walls has been analyzed using the firite element model
tested and verified in Chapter Five against the results of physical tests. In Chapter Five,
the analysis results have been displayed in the form of load-deflection curves of the
specimens. In this secticn, a more detailed discussion of the analysis results is presented

through a number of different curves and diagrams which demonstrate the relationship

between some of the significant variables.

6.2.1 Slenderness Effects

An efficient way of discussing the slenderness effect on the walls is through the
interaction diagrams. When a pin-ended wall loaded with a vertical load, P, at an
eccentricity, e, giving rise to symmetric end moments M = Pe at its two ends, the wall
deflects at mid-height laterally by an amount A. The magnitude of 4 is dependent among
other factors on the slenderness ratio of the wall and on its geometric and material
properties. The maximum moment is, thus, is P(e + 4) and occurs at mid-height of the
wall. Figure 6.1 shows an interaction diagram of a wall. The curve DABCG is the
interaction diagram for the cross-section. It represents the combined axial load and the
bending moment required to cause the failure of the cross-section. The line O-A represents
the axial load versus the end moment of the wall, Pe, while the line O-B describes the axial
load versus the maximum moment at mid-height of the wall. The difference between the

two lines is usually referred to as the second order effect.

For slender walls, the second order moment caused by the lateral deflection A can
be significant. As shown in Fig. 6.1, the actual failure occurs when the second order
response line O-B intersects the interaction diagram DABCG at point B. The difference of
the moments between the points B and B’ is the additional moment caused by lateral
deflection. The corresponding increase in longitudinal stresses results in material damage

which shows as the reduction in the axial load eapacity between the theoretical point A
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and the second order point B'. In order to study the effect of the slenderness and other

variables, the slender wall interaction diagrams need to be plotted. The construction of
such interaction diagrams for slender walls can be based on the results obtained from the
parametric results of Chapter 5. For each failure case of slender wall, a point
corresponding to the axial load capacity and the nominal end moment Pe is plotted as
represented by points B or C as shown in Fig. 6.1. The broken line DB'C'G passing
through points B' and C is the slender wall interaction diagram corresponding to a
slenderness ratio L/7. By varying the slenderness ratio, a family of slender wall interaction
diagrams can be constructed. The construction of the slender wall interaction diagram was
based on the end moment not the maximum moment because in practice, the end moment

is readily available to designers as opposed to the maximum moment.

The group of figures 6.2 shows a family of slender cavity wall interaction diagrams
of the specimens analyzed in Chapter 5. Figure 6.2(a) shows the interaction diagrams for
the specimens loaded with equal end moment at the two ends, e,/e; = 1. Figures 6.2(b)
and (c) show the interaction diagrams for the specimens loaded with e/e; = 0, and
ei/e; = -1, respectively. Within each of these figures, three curves are plotted for three
slenderness ratios of 12.3, 27.8 and 37.3. It is clear from Fig. 6.2(a) that the interaction
diagram with larger slenderness ratio always falls inside that with a smaller slenderness
ratio. This indicates that an increase of the slenderness ratio reduces the load carrying
capacity. However, as shown in Fig. 6.2(c), in the presence of a large eccentricity and an
end momeut ratio e,/e> = -1, i.e. the specimen bent in double curvature, the reduction of
the capacity due to the slenderness is not obvious. This is because when the wall is loaded
with equal end moment, the moment caused by deflection will always contribute to the
total maximum moment thus the slenderness ratio play a part in the load carrying capacity.
When the wall is loaded with e,/e> = -/ and forced to deflect in double curvature, the

second order effects are not as high and failure is primarily governed by material failure.
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6.2.2 Magnitude of Load Eccentricity

In Chapter Five, Fig. 5.3 presented the load deflection curves for five specimens
with a slenderness ratio of 27.8 and five different load eccentricities of 0, //2, /6, /3 and
2. Figure 6.3 shows a family of curves of load-carrying capacity versus loading
eccentricity to reveal the influence of the loading eccentricity, e/, on the strength of the
cavity walls. The three curves are for three slenderness ratios, L/, of 18.3, 27.8, and 37.3.
It is clear that the ultimate load-carrying capacity is significantly reduced as the
eccentricity ratio, e/f, increases. Also the figure shows that the reduction of the load

carrying capacity is more severe in the range of small eccentricities and less so for large

eccentricities.

6.2.3 Effect of Material Properties

To study the effects of the material properties on the behaviour of the cavity walls,
the analysis results of Chapter 5 with varying material properties have been plotted into a
series of curves. Figure 6.4 shows a family of ultimate load versus slenderness ratio L/t
curves for three different compressive strength values, f'», of 10.0, 19.3, and 25.0 MPa, a
corresponding curve of ultimate load versus slenderness ratio, L/, is plotted as shown in
Figure 6.4. Each point in the curve represents the analysis result from one specimen. The
specimens were all pin-ended and were loaded with an equal end eccentricity of #/3 at both
ends of the walls. Increasing the strength of the block masonry, naturally, increases the
capacity of the wall. The influence of the strength, however, is less significant in the range

of large eccentricity because the second order effect is then more severe.

To explore the influence of the modulus of elasticity, E. , of the block wythe, a
family of curves from the analysis results are presented in Fig. 6.5. Each curve plots the
ultimate load versus The slenderness ratio for three different values of E.,= 721 fm,
850 f', and 1000 f".. Here f’, is 19.3 MPa. The specimens were loaded with an equal end
eccentricity of /3 at both ends of the wall. It can be observed that increasing the E,, value

enhances the cupacity of the wall. The enhancement is not affected by the height of the
wall.
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6.2.4 Effect of Stiffness Ratio (EDs.ic’ (EDsioer

The stiffness ratio, (ED)sric’ (ED)siock . stands for the relative stiffness of the block
wythe and the brick wythe. It reflects, partially, the degree of the composite action
between the two wythes. Since the brick wythe has a fixed width of 90 mm, the stiffness
ratio is changed by changing the size of the block wythe. Figure 6.6 shows the ultimate
load versus the slenderness ratio for three different values of the stiffness ratio, 0.0301,
0.0524 and 0.128. For each value of (ED)s.ici/(ED siock ratio, two curves are plotted, one for
a cavity wall and the other for a single wythe wall with the same block size. All the
specimens were loaded with an equal end eccentricity of #3 at both ends of the walls. It
can be seen from the curves that the ultimate load capacity of the cavity walls is
significantly higher than that of the corresponding single walls. The percentage increase is
higher for the wall with larger stiffness ratio. This is because the larger the ratio of
(EDsric/ (ED biock, the more the brick wythe contributes to the total capacity of the wall.

Figure 6.6 also show that the strength gained by slender cavity walls is slightly higher than
that by the shorter cavity walls.

6.2.5 Summary

Figures 6.2 and 6.3 indicate that the slenderness ratio L/, the end moment ratio
e,/e; and the loading eccentricity e/f are important variables which influence the capacity
of the cavity wall. The above discussion revealed that these three variables are, in some
extent, interrelated. In addition one would expect the material properties, represented by

fm and E,, and the geometric construction of the wall, (EDsrict/(El)bi0ck , also to influence

the wall response to varying degrees.

6.3 The Moment Magnifier Method

From the above discussion, it is clear that a rational design method for masonry
cavity walls should meet a number requirements. It should consider the secondary moment
effect. It should be able to reflect the effect of slenderness, the effect of nonlinear material

properties as well as the contribution to the load capacity provided by the brick wythe. In
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addition, it should be accurate but with reasonable simplicity. At present, a rigorous
second-order analysis is not practical in the design of masonry cavity walls. The moment
magnifier method is an approximate approach that could meet the above requirements.
Here the wall is designed for the expected axial load in combination with the applied
bending moment magnified to reflect the second order effects. The moment magnifier
should be a function of the slenderness ratio and the geometry and effective stiffness of the
wall. Compared to the other approximate methods, the moment magnifier method has the
advantages of rationality, accuracy, and ease of use (MacGregor 1970). The current
masonry design code-Code S304.1-94 has adopted the moment magnifier method.
However, up to the present, there is no direct guide for estimating the moment magnifier
for cavity walls. In addition, the contribution of the brick wythe to the effective stiffness of
the wall is neglected.

To apply the moment magnifier method efficiently to masonry cavity walls, simple
semi-rational expressions of the moment magnifier that could be applied directly to the
cavity wall are derived in the following. The derivation of the moment magnifier is
conducted in such a way that the existence of the brick wythe is considered in the context
of an effective stiffness of the whole wall. First, the derivation of the theoretical moment
magnifier for both equal and unequal end moment situations is described in this section
along with a discussion of the moment magnifier method adapted by Code CAN3-304.1-
94. Later the effective stiffness of the cavity wall is obtained through a linear regression
analysis of the results of Chapter 5.

6.3.1 Moment Magnifier for Pin-Ended Cavity Wall Loaded with Equal End

Eccentricity

To derive the moment magnifier expression, the masonry cavity walls under
discussion are simplified as a beam-column loaded and restrained at the ends as shown in

Fig. 6.7(a). The general differential equation that governs the behaviour of the beam-
column is:
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EI v+ Pv=M, —%(M, +M,) (6.1)
in which v is the deflection. For equal end moments M, = -M, = M . Let M = Pe, and k

? = P/EI. The general solution form for this equation is well known:

v = Asin(kz) + Bcos(kz) —e

By applying the boundary conditions, the maximum lateral deflection vm occurs at

the mid-height of the beam-column and is expressed as:
kLY . (kL kL kL
Vi, = Vo = € tan| — Jsin| — | +coy — | - 1] = ¢ sec{ — | —1
2 2 2 2

P
Expanding sec(%) , and substitute (kL)* = nz( 2

cr

), the mid-height deflection is

obtained as,

3

1
A=V = v —3 J 62)
= PC’

2
In which, v, = SeEI is the deflection under the initial end moment Pe, and P, is Euler

2
buckling load, P, = ”ijl . The maximum magnified moment is, thus, obtained as:

( P
M_ = Pe+ Py, =P 1+—8—‘1‘;" P/ =P P/ (6.3)
~\1- 7%, -k,
Or simply

M__ = Pes =M.5 (6.4)



132
In which, & is the so called moment magnifier. For the pin-ended wall with equal end

moment:

(1+0238/, )
5o _+__/£-.v_J

T,

(6.5)

6.3.2 Moment Magnifier for Pin-Ended Wall with e,/ e; Ratio Equals to 0, and -1

In the case of equal end eccentricity the maximum second order moment occurs at
the same section as the applied end moment (Pe is uniform along the length of the
specimen). Therefore, the maximum total moment can be obtained by adding the
maximum moments from the two sources directly. However, for the beam-column
subjected to unequal end moments, i.e. with a moment gradient along the length of the
element as shown in Fig. 6.7(b), the maximum moments caused by the applied force and
the deflection do not necessarily occur at same location. The moment magnifier for this

case is discussed as follows:

The governing equation (6.1) can be simplified as:

El” + Pv = —M.(l -q +.p)%) (6.6)

in which, 8 = M‘ is the end moments ratio. Note that in the derivation of the moment
2

magnifier, B = / stands for the moments in the direction as labelled in Fig. 6.7(b), that is

B =1 when the beam-column bent in double curvature, whereas § = -/ when the beam-

column bent in single curvature, and therefore -1< f <1.

The general solution is obtained as:

v= Asin(la)+Bcos(/a)-e(1-(1+ﬂ)%)
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in which k% = &= and M. = Pe. Introducing the boundary conditions it is easy to obtain

an expression for the deflection:

ink(L—Z)- B sinkZ z
v=e(sm( si?kLﬁ = ’”(”'B)Z) 6.7

By differentiating Eq.6.7 an expression for the bending moment distributions
obtained:

M = _Eiv" = Pe(sin'{k(L ) ,asin(kz)) 68

sin(kL)

The condition for maximum moment can also be obtained by differentiating
Eq. 6.8 once and setting the derivative equal = O:

B —coskL

tankZ = == (6.9)

Here Z is the location of maximum moment. From Eq. 6.9, 8> cos(kL) only if Z is
negative. Therefore , M_,, = M. , i.e. , the maximum moment occurs at the end of the

specimen. This situation occurs for a shorter beam-column, or a very large eccentricity
applied at the end of the specimen.

On the other hand, for a slender beam-column with a small end eccentricity

B < cos(kl), and Z is positive. Extracting § from Eq. 6.9 and substituting in Eq. 6.7 , the

maximum moment is obtained as:
M, =M. seckZ (6.10)

It is clear that the location of the maximum moment and the moment maghnifier is a
function of the end moment ratio 8 and the load level P/P.,. As a result, the maximum

moment Pe,,., and the maximum second order moment Pv,.. (or as usually called PA4yax)
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can not be added directly. It is also clear that the maximum total moment is smaller than
the sum of the maximum primary moment and the maximum secondary moment. i.e.
My, SMomaxe + Pvp.

The Case for =0 :
It is easy here to consider the deflection at mid-height, Z = % The corresponding
deflection is obtained form Eq. 6.7 as:

. kL
A=v=e 2 1 —M"( - 1) 6.11
T P |sinkl 2| 2P 2 6.11)
. i . kL . . .
Noting :that £° = B ar.d expanding sec—~ the deflection A is obtained as:

w1 |

A=v=—0 EILI—LJ—AOI—-E (6.12)
P, P

cr

2

16EI’

subjected to a moment of M, at one end of the specimen. The magnified moment at this

In which, A. = is the first-order deflection at mid-height of the beam-column

section is:

1+o.23§-
e e
o= —+A)=P-— ——3|=Ped 6.13
.= % | —— | " 6.13a)
Pcr
(1-0231)'
P(OSe+A) 11 TP,
S~ e _ZL l_Pv (6.13b)
P

cr
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The Case for =1 :

This is the case of double curvature with equal eccentricities. Here the maximum

3L L 3L
second order deflection occurs at Z = 2o Z = —. Substitute Z=——, and =/ into

equation (6.7) to obtain the corresponding deflection as :

sin(EL—) - sin(3 —ké)
M, 4 3L

4
A= l42x2 6.14
P sin(kL) *aL (6.14)

Eq. 6.4 can be simplified as:

A= M, (l - sec(E-)) (6.15)
2P 4
ing sec L i that &% = 2 (kL)? = (_P_)
Expanding sec 2’ and noting that ¥ = A (kL) == 7))
_ M. 1 (6.16)
~ 64EI 1P '
4P_

The magnified moment at this section is:

M=—A§—°+PA=P(—;—+A) = Ped (6.17a)
140231
_ P(0Se+A) “ap

1
_1 e 6.17b
6 Pe 2 P | ( )
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6.3.3 The Moment Magnifier Method Adopted by the Current Masonry Code

The current Canadian masonry design code S304.1 requires that the effect of

slenderness should be considered for a masonry wall with

KL/t >(1o—3.{:—')] (6.18)

The wall shall be designed to resist the factored axizi load Pr obtained from first-
order analysis and the magnified moment that includes the second-order effect caused by
lateral displacement of the wall. The magnified moment is obtained from the factored
primary moment magnified by § as:

5=_Cn (6.19b)
Pf
1—- L
P

Here C,, accounts for the end moment ratio and P., is the Euler buckling load.

Cn = 0.6+ 0.4My/M; > 0.4 (6.20a)
”2¢¢ (El)qﬂ‘
e =tavos gy (6200)

in which, (ED).q is the effective stiffness. The stiffness is calculated from the modulus of
elasticity, E,,=850f'», and the prism moment of inertia, /. it is taken as

(ED ey = 0.4 E, ], For unreinforced masonry (6.21a)

(EDy = E,,,(O.ZSI ,—(0251,-1, )(-(‘Z—z_ef;—))) For reinforced masonry (6.21b)
k.

in which:
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e = M,/Px

ex = Ig/Ag
S = section modulus
A, = the effective cross-sectional area used for design.

(ED) .4 shall not be taken greater than 0.25 E,/,, , but need not be taken as less than
E,I... Here I, = the moment of inertia of the compression zone and the transformed area
of the tension steel and /or the tied compression reinforcement about the centroidal axis of

the cracked section when subjected to a pure moment, M,.

Comparing the formula specified by Code CAN3-304.1-94 with the theoretical
derivation discussed in Section 6.3.1 and 6.3.2, there are some aspects that need to be
noted. First, in the theoretical derivation the materials are assumed to be linear elastic. To
consider the effect of cracking, creep, and the inelastic non-homogenous material
properties for masonry wall, the code uses the effective moment of inertia (El)¢gto replace
the EI in the theoretical formula. However in dealing with cavity walls, it is not convenient
to use the expression given by the code to consider the existence of the brick wythe. The
difficulty lies in the proper evaluation of the effective values for I, and I for cavity wall.
Therefore the contribution provided by the brick wythe is usually neglected. This will
underestimate the capacity of the cavity wall. In the next section, the evaluation of the

(El).4 for cavity wall carried out by this research is described.

Second, as has mentioned earlier, when the wall is subjected to unequal end
moments, the maximum total moment is smaller than the sum of the maximum primary
moment and. the maximum secondary moment. i.e. Muax S Momaxt PVmac . Therefore, if a
unique expression of tisz moment magnifier is used for all the loading situations as is the
case in the current code expression, consideration should be given to the beneficial effect

caused by unequal end moments. Austin's equivalent moment factor Cm (Austin 1961) is
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accepted by the current code to relate the actual moment diagram to an equivalent uniform

moment diagram

Third, comparing equation (6.5) with equation (6.19b), it can be seen that the term
0.23P/Pcr in the theoretical formula (6.3) has been neglected by the code. For slender
masonry walls loaded with large eccentricity, the ultimate load carrying capacity decreases
considerable from the Euler buckling load due to the effect of slenderness. Thus,
0.23P/Pcr << 1. The simplification of neglecting item 0.23P/Pcr is acceptable. However,

for a small or moderate eccentricity, this simplification is on the unconservative side.

Fourth, because the end conditions for cavity walls described in the tests and
analyses are typical and assume no restriction of rotation at the two ends of the wall, the

effective length factor k is taken as 1.0. This is acceptable and assumed throughout this

investigation.

6.4 Effective Stiffness of Cavity Walls

The proper evaluation of the effective stiffness (El).gs is the major difficulty in
applying the moment magnifier method to masonry compression members. This is because
of the high variability of the factors reflected in this term. For masonry cavity walls, the
effective stiffness should be able to reflect the effect of slenderness, the effect of the
nonlinear stress-strain response as well as the contribution provided by the brick wythe to

the load capacity of the cavity wall. This section will present the ey,algation of (ED) 5

Noting that the nominal stiffness value Eyl, of the block wythe can be calculated
directly as long as the cross-section dimensions and the prism material properties are

known, a simple approach would express (E).y as a function of the nominal stiffness value

EnlL as:

(ED o= & (Enlo) (6.23)



in which, « is a non-dimensional factor which depends on the variables including the load

eccentricity, the material properties as well as the geometry of the cavity wall:
o =F( L1, elt, fm , (EDbrick /(EI) piock , €tC.) (6.24)

If one can evaluate the effective stiffness (£])ycorresponding to each specimen in
the tests and numerical analyses, the factor a is then easily calculated from Eq. 6.23

through a multi-linear regression analysis of different combinations of the variables in
Eq. 6.24

6.4.1 Test and Analysis Results of EI

The value of (E).ycan be obtained by rearranging the magnified deflection derived
in Section 6.3. In the case of equal end moments (el/e2=1), rearrange Eq. 6.5:

p, - P23+ ) ©25
A
”ZEI,ﬂ' .

Substitute P, = Iz intc the above equation, and rearrange again to extract (El) .y

PI? e ) e
Ely=——70231+ 1) = PL* (01246 + 0.1013) B=-1) (6.26)
w

For a specimen with a specified length and loading condition, an (EI),y value

corresponding to each failure case with the load capacity P, and the deflection A can be
obtained from Eq. 6.26.

The same approach applies to the cases of unequal end moments. For, rearrange
2

Eq. 6.8, note that A. = 16E]

, substitute for P., and extract (El).y.

El = PL2(0.0625%+ 0.1013)  B=0 6.27)
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For the case of # = 1, i.e. e/e; = -1, rearrange Eq. 6.17, note that A. = GaEl "
and substitute for P,
El= PL’(0.01562-Z—+0.02604) B=1 (6.28)

For each specimen conducted by the tests and analyses, the deflections
corresponding to each load step were recorded throughout the tests and analyses. Using
Eqs. 6.16, 6.17 and 6.18 a value of (EJ).g corresponding to each load step of the tests and
the analyses can be obtained because the values of e and L in the equations are constant
for a specified specimen. A curve of the stiffness (EI).s versus the load P was plotted for
each sﬁéqimen. Figures 6.8(a) to 6.8(e) show such curves of a number of specimens. It can
be seen that almost all the curves exhibit two distinct parts. The first part is from initial
loading up to a load level of about P = 0.67P, . The curves are fairly flat indicating that
the (EI) value for this part is almost constant for a given specimen for a specific loading
condition. The second part is from about P = 0.67 P, to failure. The (El).y value in this

stage changes dramatically. For the design purpose, two (EI) s values have been evaluated
for each specimen from these curves.

The first value of (El).y corresponds to the serviceability limit state design of the
wall and is estimated from the flat part of the curves. This (El).y value is to be used in the
calculation of the deflection under specified load and will be called (EI)spe.. Even though
the derivation of the (EI), .. for the calculation of the deflection is not the main objective
of this research and the proper evaluation of (EI)s.. may need more considerations, the
(EI),,.; value evaluated here aims to provide more information for the research in this

field. After carrying out a regression analysis, a simple expression has been found as:

Elpec = (0754-!-028 +00075 +l36( )”"*)EI (6.29)

(ED o
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The second value is the so called effective stiffness, (El),g , which is the primary

objective of this thesis, and is intended to estimate the ultimate load carrying capacity of
cavity walls. From the curves EJ versus P, it was found that the failure mode of specimen
could have influence on the value (£]).scorresponding to the ultimate load P,. For a brittle
failure, the EI value corresponding to the failure load P, can be easily obtained from the
curve. This failure mode occurs for a specimen with a small eccentricity and little
slenderness effect. However, for a ductile failure, there is some difficulty in estimating the
EI value corresponding to the ultimate load P,. As can be observed from the curve that a
small change in the value of P, could results in a large difference in the estimated £/ value.
In other words, the estimated effective stiffness is sensitive to the load P, defined in the

curve. For such cases, the EJ value was obtained immediately before the load reached the
value of P,,.

6.4.2 Regression Analysis for the Effective Stiffness (El) .y

A multi-linear regression analysis was carried out for an expression of a, the
effective stiffness ratio defined in Eqs. 6.23 and 6.24. A linear regression analysis was
chosen because it yields simple expressions for & and because the trend analyses shown in
Figs. 6.2, 6.4, 6.5 and 6.6 indicate a near linear dependence. The final expression was
examined statistically using the test and analysis samples. The prediction accuracy of the
expression was monitored by the standard error of the equation and of each variable. The

regression analyses for & was conducted in several groups using different combinations of
the variables:

1. e/t, L/t, (EDurick/ (EDblock, [ » €1/€2, Ep;
2. e/t, L/t, (EDuricx/(EDplock, €1/€2;
3. e/t, L/t, (EDuric/(EDblock;

4. elt, L/,
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Where, e/t stands for loading eccentricity, L/t for the slenderness ratio,
(ED brici/(E)siock for the ratio of the stiffness of the two wythes, f7, for the compressive
strength of the block wythe, and E,, for the modulus of elasticity of the block wythe.

The first combination includes all the major variables which has effects on the

effective stiffness. The result of the regression analysis is:

EIMd

a =0.663- 0.353(5) + 0.0137(5) +017 —-—-) +0.00375f,, - 0.07 1(e—') - o.oooz(ﬁ) (6.30)
t t El . e /.

2 m

Equation 6.30 shows the influence of each of the variables on the stiffness of the
wall. A positive sign of the coefficient of a variable indicates a proportional increase of the
effective stiffness. A negative sign indicates an inversely proportional effect. As expected,
the second term reflects a decrease of the effective stiffness as the loading eccentricity
increases. This is obvious since the larger the eccentricity, the larger the moment, and
more cracks develop in the cavity wall. The third term reflects an increase of the effective
stiffness with an increase of the slenderness ratio. The reason is that there are longer
uncracked segments in a longer wall than in a shorter wall. Hence, the uncracked section
in a longer wall contributes more to the effective stiffness than in a shorter wall. This

results seems to contradict the fact that the ultimate load capacity of the wall decreases as
| the slenderness ratio increases. However by observing the equation of moment magnifier,
it is clear that the effect of length is counted twice in the equation of the moment amplifier,
once explicitly in the equation and once implicitly in the expression of EI. Therefore, the
results is believed to be reasonable. Equation 6.30 also indicates that the ratio of
(EDpric/(EDsocc ' has a positive effect on the effective stifthess. An increase in
(ED brict/ (EI) s1ock means more contribution from the brick wythe to the effective stiffness of
the whole cavity wall. The fifth term shows a slight increase in the effective stiffness as the
strength of the block masonry increases. Here the strength fm represents both the variation
in compressive strength and the tensile strength since the ratio between these two
strengths is usually considered constant. It is understandable that higher strengths of the

masonry wall delay the occurrence of cracks and are associated with an increase in the
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modulus of elasticity E,,. However, this term is not a significant predictor of the response

variable. The sixth term indicates a decrease of the effective stiffness as the end moment
ratio changes from negative to positive within the range of -1 to 1. This indicates that the
end moment ratio plays a role in the effective stiffness of the wall. With unequal end
moments, less cracks will developed, therefore, larger effective stiffness is expected. The
last coefficient accounts for the modulus of the elasticity of the block wythe. This variable

seems redundant since the modulus of the elasticity was already considered.

It is found that the e/t, L/t , (EDbric/(EDbiock and e/e; are the important variables in
the expression of the effective stiffness of the wall. Thus, Eq. 6.30 can be simplified as:

e L (EI) e
a=0.641-03 59(—) + 0.0135(—) +0.21 -——éﬂ) - 0.073(—') (6.31
t t (EI )y e, )

For practical design purposes, the expression for « might further simplified as a
function of three or two variables as:

L ((EI)
a =0.582— 0.7(5) + 0.0151(—) +0.821 __m) (6.32)
t t N7

L
a=065- 0.396(%)+0.0121(—t—) (6.33)

The large change in the coefficients is due to differences in the size of the dats
base. For instance, the points reflecting the ratio e,/e; were dropped when performing the

regression analysis for Equation 6.32.

6.5 Effect of Unequal End Moments

In Section 6.4, the expression of the effective stiffness of the wall was analyzed
The effective stiffness obtained from the expression is thus ready to be used in estimatin,

moment magnifier. Recalling the pin-ended wall loaded with equzl end moments, th
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maximum moment of the wall is the sum of the end moment and the maximum secondary

moment, and the moment magnifier as described by Eq. 6.5 is:

1+023 %ﬂ

-k,

However, in Section 6.3.2 it was also shown that for the wall with unequal end

o=

moments, the maximum moment Pe,... and the maximum second order moment PA,.. can
not be added directly. The maximum total moment is smaller than the sum of the
maximum primary moment and the maximum secondary moment. i.e.
Miypae € Momax+ PAmax. In order to corsider the resulting beneficial effect, the equivalent
moment factor C,, in the current code is intended to relate the actual case to an equal end

moment case. To verify the validity of this expression for a cavity wall, the C,, value is

expressed as:

—ard Mo
C,=a+ b(Mz) (6.34)

in which the constants @ and b can be evaluated from a regression analysis. Thus, the

complete expression of the moment magnifier should be:

(102

Ca\1+0235"

5= 3 (6.35)
=P

er

Rearranging Eq. 6.35, Cp, is isolaicd as:

C,=0| —F% (6.36)
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The term inside the large brackets on the right hand side of Eq. 6.36 and the moment

magnifier & were evaluated based on the test results and the expression for the effective
stiffness (EI).gderived above, Eq. 6.30. The expressions for 8 are obtained from Eq. 6.5
(er/e2=1), Eq.6.13b (ei/e;=0) and Eq. 6.17b (ei/e; =-1). These too have to be
evaluated. A linear regression analysis was carried out using these values for Cm to obtain
the constants a and b in Eq.6. 34. This resulted in:

M
C,, = 0.647+0401—" (6.37)
M,

Equation (6.37) is very close to that adopted by the code, Eq. 6.20a. The code

expression is, thus, recommended herein in the form:

M,

2

10=C, =06+04

>04 {6.38)

The lower limit on C. > 0.4 was initially used by steel design codes to prevent lateral
torsional buckling. For a masonry cavity wall, this mode is not possible. This limit may,
therefore, appear to be conservative. However, to account on the uncertainties of the

behaviour of masonry cavity walls, this limitation should be kept in the design code.

6.6 Other Considerations

The above discussion was based on the assumption of a short-time loading
condition. The effect of creep under sustained load has not been considered. It is believed
that the effective stiffness of the wall will be reduced as a result of the effect of sustained
load and creep. The long-term behaviour of a cavity wall is left for future research. At

present, the S304.1 cocde accounts for long term effects using a modification factor
(1+0.55; ) so that:

(74
-2 39
(EDy =153 G Eud (6.39)
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in which, B is the ratio of factored dead load moment to total factored moment. The
validity of this expression needs to be verified by future research.

In design practice, consideration should be given to the variations in the effective
stiffness. The resistance factor ¢. = 0.65 given by the Code S304.1 should be used
whenever the effective stiffness is to be used in the ultimate limit states design.

Throughout this investigation, the effective height factor K is taken as 1.0 which is
suitable for the end constraints as described in the tests and analyses. For design purposes,

the determination of the height factor should follow the Code S304.1 Clause 11.1.2.1.

6.7 Proposed Design Equations for Slender Masonry Cavity Walls

For the purpose of deflection calculations at specified loads, the effective moment
of inertia of the cavity walls can be estimated by equation:

EI = (075+03 +00075 +135( )”""‘)El (6.40)

(ED) o

For the ultimate limit state, the masonry cavity wall should be designed to resist

the factored load Ps and the magnified moment M. The magnified moment is obtained
followirg the equations:

M, =6M, (6.41)

in which, M, is the primary moment applied at the ends of the block wythe and & is the
moment magnif.er:

8=—% (6.42)

M
The factor Cn, should be obtained as a function of the end moment ratio M‘ as:
2
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10=C, =06+04 M, .04
M

(6.43)
2
P is the Euler buckling load:
7’ ¢, (El)
P ="
at (kL)? (6.44)

in which, ¢. is the resistance factor, . = 0.65. k is the effective length factor. For the
cavity wall as described, k should be taken as 1.0. (ED).g is the effective stiffness of the
wall. For cavity wall (EI).s should be determined by the proposed equation:

_ 1 _ e £ (El),
(El)g = 7. (0.6 o.7( :) + 0.015( t) + 0'82(_—(E1),,,w,)) E.l, (6.45)

A design example is provided in Appendix A.

6.8 Comparison of Proposed Design Method with Tests and Analyses

It is desirable to check the proposed design formula against the tests and analyses.
The (El) value calculated by the proposed formula were examined with the values
obtained by the tests and analyses. In the comparison, the resistance factor is taken as 1.0,
i.e. ¢ = 1.0. With 95% confidence limit, the mean of (Elegcomp / (Eleg)anaty is 1.016, the
standard error is 0.0241 and the standard deviation is 0.198. The magnified moments
calculated by the proposed equations were checked against the values obtained
theoretically using the (El) g value obtained from tests or analyses. In the calculation ¢, =
1.0, and the limitation of Cm = 0.4 was not considered. With 95% confidence limit, the

mean is 0.986, the standard deviation is 0.1297, and the standard error is 0.0158.

Figure 6.9 (a) to 6.9(¢) show a series of comparisons of the proposed design
approach to the test results and the current code. Figure 6.9(a) shows the comparison of
proposed design approach with the test results of this study and the results from Goyal’s
tests. The figure shows that the proposed design approach agrees well with the test



results. When the resistance factor ¢, is introduced, there is a significant safety margin as
shown in Figure 6.9(b). Figure 6.9(c) shows the comparison of the proposed approach to
the tests and the current code. Where, the capacity of the wall calculated by the current
code was computed without considering the structural performance of the brick wythe. It
can be observed that the current code is too conservative and may not be even applicable
when the ratio of ey/ez is negative. Figure 6.9(d) and 6.9(¢) show the comparison of the
proposed approach to the tests when ei/e; = 0, and -1. Again a large safety margin is
observed when the resistance factor is introduced.

6.9 Summary

In this chapter the analysis results of the cavity walls were further discussed. The
theoretical expressions of the moment magnifier were derived. Based on the results of the
tests and analyses, expressions for the effective stiffness were evaluated by means of linear
regression analyses. The final proposed expression for the effective stiffness is easy tG use

in the design of a cavity wall. The expression was shown to be of adequate accuracy.
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Load P
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Figure 6.1 Interaction diagram
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Figure 6.2 (a) Slender wall interaction diagram
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Figure 6.2 (b) Slender wall interaction diagram
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Figure 6.2 (c) Slender wall interaction diagram
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fm=19.3MPa, Em=721 fm, equal end moment
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Figure 6.3 Effect of loading eccentricity
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Figure 6.4 Effect of block strength
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Figure 6.5 Effect of modulus of elasticity
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Figure 6.6 Effect of the ratio of (EDwric/(EDbiock
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(b) Double curvature

Figure 6.7 Simplified schematic of the cavity walls
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Figure 6.9(c) Comparison of proposed approach ( ¢. = 0.65) to
the current Code CAN3-304.1-94 and test results
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CHAPTER SEVEN

SUMMARY AND CONCLUSIONS

7.1 Summary

In this study, full scale wall tests have been carried out on shear connected slender
masonry cavity walls. The behaviour of the wall at various loading stages has been
observed. The experimental investigation was focused on the effects of the loading
eccentricities including the magnitude, the direction, as well as the ratio of the
eécentricities at the two ends. The full scale wall tests were simulated by a finite element
analysis model which was shown to be of adequate accuracy in predicting the behaviour
of a cavity wall. The data base established by the experimental program was then
extended by means of the numerical analyses. The experimental and numerical analysis
results have been used in a regression analysis through which the equatiors for the design

of shear connected slender masonry cavity walls have been derived and proposed.

The experimental program has also been conducted on shear connectors under
tension, compression, shear and bending loads. The test results have provided useful
information regarding the capacity and ihe stiffness of the connectors under various
loading conditions. The cross-sectional properties of the connectors have been evaluated
from the test results. The stiffness matrices of a short beam model for both the 75 mm and

100 mm connectors have been evaluated.

170
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7.2 Conclusions

According to the experimental and analytical investigation, the following
conclusions are arrived at:

(1 Owing to the structural contribution of the brick wythe, the capacity and the
stiffness of the shear connected slender masonry cavity wall have been increased
considerably when subjected to the vertical eccentric loads. The increase in the
capacity and the stiffness is in proportion to the ratio of the relative stiffness of the
brick to block wythe. The increase in the capacity and the stiffness is also affected

by the slenderness ratio of the wall; the slender walls show better improvement
than the shorter walls.

) The failure of the slender masonry cavity walls was detected as one of three
modes: the inelast:. instability failure of the wall due to large deformation caused
by the initial moments, the vertical load and the second order effects; the material
compression failure pattern and the failure of the shear connectors. A material
compression failure pattern occurs when the wall is loaded with a small
eccentricity or the ratio of the eccentricity at the two ends of the wall causes the
wall to deflect in double curvature. The failure mode caused by the failure of the

-tear connectors could be prevented by specifying a closer spacing between the

connectors.

3) The response of the shear connected masonry cavity wall subjected to vertical
eccentric load is a function of the loading eccentricity, the slenderness ratio, the
ratio of the end moments, the material properties of the block wythe, the cavity
width, the properties of the connectors and their arrangement, etc. Among them,

the slenderness ratio, the loading eccentricity, the ratio of the end moments and the
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ratio of the stiffness of the two wythes are tlie most significant factors affecting

the strength and the stiffness of the shear connected cavity walls:

- Increasing the slenderness ratio reduces the load carrying capacity. The slenderness
effect becomes fess significant as the ratio of the end moments changes from
positive to negative within the range of +1 to -1, single curvature to double

curvature.

- Increasing the loading eccentricity reduces the capacity of the wall considerably.
Also the capacity of the wall decreases while ihe ductility increases, when the

ratio of the end eczentricities changes from -1 to +1.

4 The influence of the cavity width on the wall stiffness and the load-carrying
capacity was counterzcted by the stiffness of the shear connector. For a large
cavity width spanned the shear connecter commonly used in practice, there is no

significant change in the load-carrying capacity and the stiffness of the wall.

7.3 Recommendations

¢)) The design procedure proposed in Chapter 6 is recommended for the design of

shear connected cavity walls not covered by CAN3-304.1-94.

(2) Further research should be perfcrmed to examine the long-time behaviour of the

cavity walls and to evaluate the effects of sustained !oads.

3) The examination of the end effects on the behaviour of the cavity walls and the

evaluation of the effective lengti factor should be performed.

4 Further experimental and analytica! research is recommended to extend the

database and to develop rational safety factors that are suitabile for limit state

design.
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APPENDIX A

Design Example

Design a cavity wall, using a concrete block wythe as back-up, 90 mm clay brick as
brick wythe, the two wythes are tied with shear connectors. The height of the wall
between points of lateral supports is 4800 mm. The wall is vertically loaded with a
factored dead load of 100 kN/m and a factored live load of 100 kN/m acting at an
eccentricity of 60 mm away from the centroid of the cross-section of the block wythe. The

cavity is 75 mm.

Use: J'm =15 MPa for the concrete block, f» = 10 MPa for the brick, f,= 300 MPa
for steel .

Solution Trial 1

1. Estimate the thickness of the block wythe:
Try 200 mm.

2. Isthe wall slender? ( CAN3-S304.1-94)

B 2890 53510 35(3‘—J-65
L~ 190 e,/

The wall is quite slender.

3. Grouting and reinforcement:

Partially grouted at 400 mm, and reinforced with 15M bars @ 400 mm o.c.
4. Check if the moments are less than the minimum primary moment( CAN3-S304.1-94):

qin = 0.1t = 0.1x200 = 20 mm < 60 mm

177



5. Compute (ED.s:

The modulus of elasticity of the block wythe:

The moment of inertia of the block wythe:

The modulus of elasticity of the brick wythe:

The moment of inertia of the brick wythe:

(ED)p i

_ 60.75x 10 x 8500

178

En = 850x15 = 12750 MPa

Ioto = I, = 507x10° mm* / m
E.. = 850x10 = 8500 MPa
Ipsck = 60.75%10° mm* / m

(ET) procx

L/t = 4800/190 = 25.3, e/t =60/190 =0.3158

(EI),y = kos 07( )+0015(Z)

~ 507 x10° x12750

(ED, e
(EI),,,.,.,,,) Emlo

= 0.0799

Eq.(6.45)

= (0.6 - 0.7x0.3158 + 0.015x25.3+ 0.82x0.0799) x6.46 x10'
= 0.82x6.46x10"%= 5.29x10'* N- mm*m

6. Compute the magnified moment:
Ba=0.5, k=10,Cr=1.0

P (El) 4 72 x065%x52x10"
= — = — =1158 kN/m  Eq.(6.44
= = (1+05B,)(kn)* ~ (1+025)x 4800 q.(6.44)
C, _ 10 _ ‘ |
o —-1—_-—1-)—-—:_—2—0—6‘—121 EQ(642)
P, 1158
Mo = Ped =200 x 60 x 1.21 x 10? = 14.5 kN-m/m Eq.(6.41)

7. Design the wall: ( CAN3-S304.1-94)
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(a) Compute the factored vertical load resistance:

Prmasy = 0.8 ( 0.85 @ f'm A.)
=0.8 (0.85 x 0.55 x 15 x 132.7 x 10%)
=744 kN/m

(b) Compute the factored moment resistance under pure bending:
Check iff,=1,?

C=085abd,yf'»=0.85x0.8 x c x1000 x 0.55x1 x 15

600

=————x9
Where, c 600+f,,x

5

T=¢.f. A, = 0.85 x f, x 500 = 425 f,
C=T
f,=617>f,

Hence, f,=f
0.85 abgmy f'm = ¢: 1 As
0.85 x a x 1000 x 0.55 x 15 = 0.85 x 300 x 500

a=18.18

S M= ¢, 1. A, (95 - a/2) = 0.85 x 300 x 500 x (95 - 18.18/2)
=10.95 kKN- m /m

(c) Construct a simplified interaction diagram:
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Construct a simplified interaction diagram with three points: ( Panax. 0), (Prmax/2. Prmax€/2).

O, M)

The point representing the factored load Pr and magnified moment M,, (200kN/m,
14 SkN-m/m) falls outside the interaction diagram as shown below:
o

v o]
g0

g0
-
B a0
Sam
]
§m
™
0o

The design is not adequate.

Solution Trial 2

Try 250 mm block wythe partially grouted at 400 mm and reinforced with 15M bars

@ 400 mm o.c. Repeat the above design procedures:

€min = 0.1t = 0.1x240 = 24 mm < 60 mm

The moment of inertia of the block wythe: Iptocx = I, = 984x10° mm* / m
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(El)pe _ 60.75x 10° x 8500
(ED)yee 984 x10° x 12750

= 00412

L/t = 4800/240 = 20, e/t =60/240 = 0.25

(ED, = (0.6 - 0.7(%) +0.01 s(%) +08 %j))smlo

= (0.6 - 0.7x0.25 + 0.015x20+ 0.82x0.0412) x12.55 x10'2
=0.758x12.55x10'%*= 9.52x10"* N- mm*/m

Compute the magnified moment:

Ba=05, k=10,C,=1.0

p 7n*¢ (El)yy 7% x065x%952x10"
=f =

= =2120 kN/m
“ {1+058,)(kk)> ~  (1+025)x 4800°

C, _ 10 _
P 2120

M =Ped =200 x 60 x 1.10 x 103 = 13.2 kN-m

Design the wall:
Compute the factored vertical load resistance:
Primay = 0.8 (0.85 @ [f'm Ac)
= 0.8 (0.85 x 0.55 x 15 x 160.85 x 10%)
=902 kN/m

Compute the factored moment resistance under pure bending:
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0.85 ab¢,,,zf'm = ¢:fr A
0.85 x a x 1000 x 0.55 x 15 =0.85 x 300 x SO0
=18.18

M= f,A: (95-a2) - 0.85 x 300 x 500 x ( 120 - 18.18/2)
= 14.14 kN-m/m

Construct a simplified interaction diagram with three points: ( P 0). (Pruax/2,
Prmaxex /2), (0, My).

=27 5008
% = 4 T 16085x10° mm

The poit refiesenting the factored load Prand magnified moment My, (200kN/m,

14.5kN-m/m) f¥is inside the interaction %277+ 5 shown below:

Axial Load ( kN)
oBBEBB8B8Y8B8E

o
)
3
&
]
]

The design is adequate.



