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Abstract

Semantic segmentation is about classifying every pixel in an image. In recent

years, methods based on Fully Convolutional Networks (FCN) have dominated

this field in terms of segmentation accuracy. We are interested in tackling

the challenges that these methods are faced with. First, it is expensive to

acquire pixel level labels to train the network. Second, FCN often has trouble

with data that present imbalanced positive and negative samples. This issue

often comes up in domains such as medical imaging and satellite imagery

analysis, where the object of interest can be very small. The large number of

negative samples can overwhelm the positive samples during training, leading

to a biased representation learned by the network. In this thesis, we investigate

how an object localization mechanism can address these two challenges.

We propose an end-to-end neural network that improves the segmentation

accuracy of FCN by incorporating an object localization unit. This network

performs object localization first, which is then used as a cue to guide the

training of the segmentation network. The two steps share convolutional fea-

tures. This allows us to leverage object detection labels to help with the

training of the segmentation network, alleviating the need for large-scale pixel

level labels. To avoid applying max pooling on object proposals that limits

the spatial accuracy, we introduce a new type of convolutional layer named

ROI convolution. It applies convolution directly on the object proposals in

one shot, without the need of passing them individually through the down-

stream network. We show that this layer is differentiable therefore allowing
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the network to be trained end-to-end.

To demonstrate the efficacy of our method, we apply it to the problem of

medical image segmentation. With the object localization unit, our method

performs well despite the high class imbalance and it outperforms existing

methods on small object segmentation. To understand further about the pro-

posed method and the impact of ROI convolution, we also conducted ablation

studies and experimented on an endoscopic image dataset with balanced data.
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Chapter 1

Introduction

Deep learning has revolutionized the field of computer vision in the past few

years. In particular, Convolutional Neural Networks (CNNs) has become a

standard architecture and achieved great success in many computer vision

tasks, including image classification, object detection and semantic segmenta-

tion.

Image classification is about predicting the classes for the objects contained

in the image. Object detection adds localization on top of image classification.

The goal is to not only predict the class for each object, but also find its

bounding box. This thesis is focused on the task of semantic segmentation,

which is about classifying every pixel in an image. It can be viewed as a

pixel-level classification task, whereas image classification and object detection

perform image-level and region-level classification, respectively. Despite the

success of deep learning in semantic segmentation, there remains some open

challenges that CNNs often have issues with, including:

1. The lack of labels for training: the advancement of deep learning in

the past decade is partially due to the large-scale public datasets such

as ImageNet [48], MS COCO [36]. These datasets provide millions of

labeled images that allow training very deep neural networks without

over-fitting. Acquiring the annotations for segmentation is a tedious and

time consuming process. The annotations for large-scale datasets are

typically obtained through crowd-sourcing. ImageNet and MS COCO

both used Amazon Mechanical Turk (AMT) [8] to pay on-line workers
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to annotate the images. However, crowd-sourcing is not applicable in

some domains. For example, annotating medical imaging data often

requires domain-specific expertise. Although there have been attempts

of crowd-sourcing medical image annotation [17], [40], they were limited

to particular use cases. The study in [17] was only performed on image

classification. And Maier-Hein et al . [40] only studied the segmentation

of surgical instruments on Endoscopic data. Another concern is the

highly private nature of medical records, which limits the type of data

that can be posted on-line [42]. In general, the labeling work needs

a doctor or other well-trained professionals to perform for long hours.

There are often inter-expert variations in the labels, which would take

extra time to reconcile.

2. Imbalanced Data: CNNs typically need a reasonable number of positive

and negative training samples to learn the representation. They work

best when the ratio of positive and negative samples are balanced. How-

ever, this is not the case in some applications such as medical imaging

and satellite imagery analysis, where the object of interest can be very

small. The negative samples will overwhelm the positive samples during

training, leading to a biased representation learned by the network.

In this thesis, we propose an algorithm that aims at tackling these chal-

lenges. The main contribution of this thesis is that we propose a novel convo-

lutional neural network architecture that incorporates an object localization

unit to improve semantic segmentation accuracy. We introduce a new type

of convolutional layer named ROI convolution. This layer is simple, easy to

use, yet effective. We show that this layer is differentiable therefore allow-

ing the network to be trained end-to-end. To demonstrate the efficacy of our

method, we apply it to the problem of medical image segmentation. We test

our method on an ultrasound image dataset where the object of interest is

small. We show that with the localization unit, our method performs well

despite the high class imbalance and it outperforms the conventional meth-

ods. To understand further about the impact of ROI convolution, We also
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conducted ablation studies and experimented on an endoscopic image dataset

with objects of regular size.

The rest of this thesis is organized as follows. Chapter 2 gives an overview

of deep learning in semantic segmentation and object detection and covers

some methods in medical image segmentation. We summarize the related

work, introduce the key concepts that lead to our work and explain where

the proposed method fits in the literature. Chapter 3 describes our proposed

network and introduces the new layer ROI convolution. Chapter 4 shows

the experiments of applying our method on two image segmentation tasks

and the ablation study on the impact of ROI convolution and the localization

mechanism. Chapter 5 concludes the thesis and points out the future directions

of this line of work.
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Chapter 2

Background and Related Works

In this chapter, we present an overview of deep learning algorithms in se-

mantic segmentation and object localization. The methods in medical image

segmentation are briefly summarized as well. We cover the related works and

introduce the key concepts of the deep learning methods that are most relevant

to our proposed work. In the end, we further explains the connection of our

proposed method to the literature and highlight the major differences.

2.1 General Architectures of CNN

Convolutional Neural Network (CNN) is a class of neural network architectures

that makes heavy use of convolutional layers. It is effective in learning the

hidden features of data, especially in computer vision tasks. Its popularity

today is largely due to the success of AlexNet [31]. AlexNet was a CNN

that made a major breakthrough in 2012. Prior to that year, the traditional

algorithms that relied on hand-engineered features had long been the state-

of-the-art. AlexNet won the ImageNet 2012 competition by a large margin,

outperforming all the traditional algorithms. Since then, the computer vision

community has witnessed a dramatic paradigm shift from algorithms that use

hand-engineered features to CNN-based algorithms. Many CNN architectures

have been proposed during the process. Some of the most popular ones include

VGG16 [49], GoogleNet [50], ResNet [23]. We show the architecture of VGG16

in Fig. 2.1, as it is the most relevant to our proposed algorithm.

These CNNs were originally developed for image classification but then
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Image credit: https://recodbr.files.wordpress.com/2016/07/talk2cordunicamp2016.pdf

Figure 2.1: VGG16 architecture

adapted and applied to many other applications as the backbone network.

When transferring the architecture to other tasks, the top layers of the net-

work are often adapted as they carry high-level semantic information that is

specific to the task. The bottom layers are kept intact on the other hand, since

the low level features are found to be very similar across different tasks [53].

It has become a standard to start from a network that has been pre-trained

on ImageNet data and fine-tune the network to the data for the specific appli-

cation.

2.2 Semantic Segmentation

2.2.1 Fully Convolutional Networks (FCN)

Fully Convolutional Network (FCN) [39] is the de-facto network architecture

in semantic segmentation and has been the basis for many advanced network

models since its release. The architecture is shown in Fig. 2.2.

The architecture of FCN is adapted from the CNNs as discussed in Sec-

tion 2.1. The top layers of CNNs for image classification are typically fully

connected (FC) layers that transform the features to a fixed size vector while
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shown in Fig.2.2b were used where the feature maps at different scales were put

together by element-wise sum. The downsampling path contains convolutional

layers and pooling layers, whereas the upsampling path contains transposed

convolutional layers that convert the condensed feature maps back to the size

of the input image.

2.2.2 Advanced Variants of FCN

Since the inception of FCN, there have been a lot of work that builds on top

of it, some of which are shown in Fig. 2.3.

DeepLab [9] added atrous convolution to a convolutional network backbone

like VGG16 [49] or ResNet [23], to handle objects at multiple scales. It ap-

plied a fully connected Conditional Random Field (CRF) as a post-processing

step to refine the output. The workflow is shown in Figure 2.3a. Dilation

Network [54] designed a “multi-scale context aggregation" module that makes

use of multiple dilated convolutional layers to capture more contextual infor-

mation from the image. The “dilated convolution" is the same as the “atrous

convolution", but the author argued that “dilated convolution" is a better term

to use. We refer the readers to the original paper for details.

U-Net [47], as shown in Figure 2.3c, was developed specifically for medical

image segmentation. The network has a U shape architecture where it tried to

make upsampling and downsampling streams symmetrical, with skip connec-

tions that concatenates the feature maps from downsampling layers to those

in the upsampling layers.

Simon et al. [26] adapted DenseNet [24] for semantic segmentation, where

they employed dense skip connections, shown in Fig. 2.3b. Their network was

also in a U shape. The dense skip connections were added to the downsampling

stream only. Similar to U-Net, there were also skip connections connecting

downsampling and upsampling streams. Unlike the previous works where the

features maps were added element-wise, they concatenated the feature maps.
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2.2.3 Medical Image Segmentation

The majority of the work described in the last section were on natural images.

Although they were designed to be general-purpose, their architectures often

have to be adapted when applied to medical images, to account for the different

characteristics of the data. Unlike natural images which are two dimensional

(2D) colored images, medical images often come as three dimensional (3D)

grayscale images and may contain multiple modalities. They take more time

to annotate compared to natural images thus the number of available training

images are fewer. Another key difference is that many tasks in medical imaging

involve segmenting small regions. This requires deliberate designs of the neural

network to avoid loosing the features of these regions as the feature maps get

condensed through the layers. We summarize some existing works in medical

image segmentation in this section.

Traditional methods: A nice summary of the traditional methods prior

to deep learning was given in [21]. One class of the methods is based on

discriminative models. Hand-designed features incorporating domain priors

are generated for each voxel. A classifier then takes these features as input

to classify each voxel. The popular choices of classifiers include SVM [4] and

random forest [18]. The other class is based on variational methods, including

Chan and Vesse [6], level-set [11], graphcut [52], etc.

Deep learning methods: A survey on recent deep learning methods on

medical image analysis has been conducted in [37]. Segmentation was found

to be the most common subject out of all the analysis tasks.

In terms of the size of the input data, deep learning segmentation methods

can be divided into two classes: patch-based and image-based methods. Patch-

based methods typically train a CNN on small patches (either 2D or 3D)

sampled from the full-size images [21], [28], [43]. The output for each patch

is the predicted class for the central pixel/voxel. The benefit of this approach

is that it can control the number of positive and negative data in the input

patches via different sampling methods. This allows them to avoid the issues

of imbalanced data during network training. But a patch does not contain the
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global context. This is generally compensated for by using patches of multiple

sizes in multiple streams and merge the features of the streams. On the other

hand, image based methods directly apply an FCN on the original full size

images. Brosch et al . developed a shallow encoder-decoder network [5], which

consisted of two convolutional layers and two transposed convolutioanal layers.

There were also deeper networks including U-Net described in the last section

and its 3D extension [10].

There are various ways of incorporating the information of the third dimen-

sion and different modalities. 2D methods: U-Net worked on 2D grayscale

images. Brosch et al . used three-channel input data where the channels are

from three modalities of the same 2D slice. 2.5D methods: one can stack up

three 2D slices along the Z-axis as in [43], or slices on the three axes as in the

tri-planar approaches [32], [43]. 3D methods: methods that directly applies

on 3D voxels [10], [28]. In our work, we focus on the 2D methods.

2.2.4 Limitations of Existing Methods

Most of the image-based neural networks are trained with the same cross-

entropy loss function that essentially makes the network learn a classifier for

each pixel and average or sum up the loss for all pixels. This makes it hard

to train the network when the object to segment is small. One can use the

patch-base methods, where patches sampled from the original images were

used as the input to the network [21], [29]. This alleviated the data imbalance

problem. But on the downside, it caused computational overhead at inference

time and introduced more hyper-parameters such as the size of the patch

and the method of sampling patches for training. Another issue is that a

small patch may lead to a loss of the context around the object which may be

necessary for segmentation. Although this can be compensated for by sampling

patches of various size and merging their feature maps at some point in the

network [21], it again requires a lot of engineering effort to tune for the best

setup. Our work aims to avoid this hand-engineering step with an algorithm

inspired by object detection, described in Chapter 3.
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from step 1, trained with regression loss on the bounding box parameters and

classification loss on the objectness of the object. Its output is the feature maps

for these bounding boxes called region of interests (ROIs), and the objectness

scores(background or foreground) associated with each ROI. 3. a pooling layer

called ROI-Pooling is applied to each ROI to transform them into fix-size

feature maps as the inputs for the downstream network.

The downstream network is the fast R-CNN network [19], used for detec-

tion, as shown in Fig. 2.4b. It is a small fully connected network that perform

region-wise classification and regression. The feature maps from every ROI are

first passed through two shared fully connected layers. Then the classification

branch uses a fully connected layer to predict the class of the ROI, and the

regression branch uses a fully connected layer to refine the location of the ROI.

2.3.2 ROI-Pooling and ROI-Align

The key step connecting the two sub-networks in Faster R-CNN is the ROI-

pooling layer [19]. ROI-pooling layer applies max pooling to each ROI to

convert them into fixed-size inputs. For a feature map of size h x w, and a

pooling layer with the desired output size H x W , the feature map will be

divided into a grid with bin size h/H x w/W . Max pooling is applied in

each bin. The problem with ROI pooling is that it involves quantization in

two steps: First, it computes the ground truth bounding box coordinate on

the feature map as [x/stride], x is the original coordinate in the input image

space, stride is the ratio between the size of the original input image and the

feature map, [.] denotes rounding which rounds the float-point coordinate to

the closest integer. Second, dividing the feature map into the bins also involves

quantization.

These quantizations cause an alignment inaccuracy which inevitably hurts

the localization performance. ROI-Align [22] was introduced to reduce this

alignment error. The idea is to remove all the quantizations in ROI-pooling.

It keeps the floating-point coordinate and uses regular sample location in each

bin (either taking the value from the center pixel, or bilinear sampling at

four regularly sampled locations) to compute the feature instead of using all
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the pixels inside the bin. It has significantly improved the overall detection

performance.

However, there are two general problems with pooling: 1. It loses spatial

information. Pooling can have different size and strides. The pools over-

lap when the stride is smaller than the pool size. However, most CNNs use

non-overlapping pools, where some spatial information is thrown away. The

formulation makes the resulting features invariant to translations, which is

necessary for the classification task, but it leads to a negative impact on tasks

requiring pixel-level accuracy like detection and segmentation. This was an is-

sue discussed by many. Geoff Hinton mentioned it recently in his online Q&A

session [1], “The pooling operation used in convolutional neural networks is a

big mistake and the fact that it works so well is a disaster. If the pools do

not overlap, pooling loses valuable information about where things are. We

need this information to detect precise relationships between the parts of an

object.” 2. Bin collapsing problem: ROI pooling is ill-defined if the desired

output size is bigger than the input. It causes collapsing bins [55] where the

output features are not discriminative.

2.3.3 ROI Convolution

Dong et al. [7] proposed ROI convolution to speed up the network at inference

time for face detection. They first used a conventional boosting cascade de-

tector to generate ROIs. Then a cascaded CNN for face detection is applied

only on the input inside the ROIs. The ROI convolution was excluded from

the training of the network. During training time, neither boosting cascade

detector or ROI convolution were used. There seemed to be duplicated com-

putations in that the cascaded CNN already included a RPN which produced

ROIs. But these ROIs never got used in the ROI convolution. During test

time, all the convolutional layers are replaced with ROI convolutional layers,

including those in the RPN, using the ROIs generated by the boosting detec-

tor. ROI convolution was viewed only as a means to improve computational

efficiency. We will show in Chapter 4 that using ROI convolution in training

time can bring significant benefits.
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ing box, and a segmentation loss which is a binary cross-entropy loss on the

ground-truth class versus the background class. It was shown that this multi-

task loss improved the accuracy compared to training for each task in cascade.

ROI-align layer was introduced in this work for accurate localization. Com-

pared to ROI-pooling, or a similar layer called ROI-warping proposed in MNC,

ROI-align significantly improves the segmentation accuracy. It indicates that

precise bounding box localization is a key to accurate downstream segmenta-

tion. However, as discussed in the previous section, the use of pooling reduced

the resolution of the features which causes a loss of spatial details especially

along the object boundary.

The works discussed in this section so far are two-stage approaches, based

on the underlying detection pipeline. The first stage produces ROIs and the

second stage processes them independently to predict the class and mask. On

the other hand, the one-stage approaches [35], [38], [44] bypass the stage of ROI

generation. Instead, they simultaneously handle the bounding box prediction

and classification, directly on the feature map of the whole image. It avoids

the computational overhead of region-wise processing in the second stage of

the two-stage approach. And as a result, it does not require pooling.

BlitzNet [16] is a one-stage network. It adopted a fully convolutional archi-

tecture and performed image-wise computation for simultaneous detection and

segmentation. The accuracy of the network benefited from both tasks. But

it did not make explicit use of the detection result to improve segmentation

accuracy.

In general, one-stage methods in detection and instance segmentation trade

off accuracy for speed compared to two-stage methods. However, it was re-

cently pointed out that one-stage methods were also able to achieve state-

of-the-art accuracy if the class imbalance of the bounding box proposals was

addressed, for example by the “focal loss” function [35].

As mentioned earlier in this chapter, full-image based semantic segmen-

tation methods have issues with small objects. But the result of instance

segmentation shows accurate segmentation mask even for small objects. It

indicates that the localization capability introduced by the object detection
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module helps with accurate pixel-wise classification. We suspect that object

detection forces the network to maintain enough spatial information in its

learned representations.

There have been some attempts in using object detection as an intermediate

step to train an algorithm to extract features for semantic segmentation tasks

[12], [13] rather than as the end result. Prior to deep learning methods, Pablo

et al. [2] proposed a method where low-level object detectors were used to pro-

vide the pixel-wise features for semantic segmentation. They first combined

low-level object detectors with high-level information to generate free-form re-

gion proposals and assigned scores to them that indicated the probability of

belonging to an object category. Then these regions and their scores were used

to generate pixel-wise features for training a number of SVM classifiers for se-

mantic segmentation. BoxSup [12] explored using bounding box annotation

in a weakly-supervised or unsupervised setting. Unsupervised region proposal

methods [3], [30], [51] were applied to generate the candidate segmentation

masks. The ground truth bounding box was used to pick the best segmen-

tation mask from the candidates. This mask was used as the label to train

the segmentation FCN and then got refined by the output of the FCN. The

same procedure iterated to further train the FCN and refine the masks. They

achieved competitive segmentation accuracy by only using a small number of

segmentation labels and a large number of bounding box labels. But this ap-

proach was not end-to-end. The bounding box annotations did not directly

supervise the training of the network. It was combined with external region

proposal algorithms which generated the candidate segmentation masks. The

accuracy of the network was bottlenecked by that of the region proposal al-

gorithm. Jifeng et al . [13] used foreground segmentation masks generated by

selective search [51] to locate the objects on the feature maps of the full im-

age. The masks are then classified individually by feeding their features to

fully connected layers. Instead of generating bounding boxes as a first step,

they generated segmentation masks (super-pixels). However, like in [12], they

also relied on external region proposal methods such as Selective Search [51].

In video segmentation tasks, object detection can be leveraged in a weakly-
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labeled setting where only image-level labels are available. Yu et al. [56] used

an object detector to generate proposals for bounding boxes and free-form re-

gions. These noisy proposals then got filtered based on their spatio-temporal

consistency. The segmentation was further refined for each possible sequence

of the object using shape likelihoods, which optimized object-level statistics,

leading to better long-range consistency on the object-level.

2.5 Connection of Our Proposed Method to the

Literature

Our proposed method on semantic image segmentation has drawn inspirations

from the literature of object detection and instance segmentation. It is similar

to Mask R-CNN in that they both incorporate the region proposal network to

localize the object of interests. Both methods are the same as Faster R-CNN

in terms of the region proposal generation. They differ in how the regions and

the convolutional features are used in the downstream network. Mask R-CNN

uses the ROI-Align layer to aggregate the features for each ROI and process

them one-by-one with fully connected layers. Our method processes all the

ROIs in one pass by introducing an ROI convolutional layer that allows direct

convolution inside the ROIs. Chapter 3 will discuss our method in details.
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Chapter 3

Method

This chapter starts off by further motivating our work by highlighting the

challenges faced by neural networks in semantic segmentation, followed by our

proposed method in details.

The networks for object classification are often used as the initial backbone

architecture for semantic segmentation. These networks are re-purposed and

fine-tuned for segmentation task. The problem is that some characteristics

in the representation learned by the network are fundamentally different be-

tween classification and segmentation. Classification network is designed to be

translation invariant. The idea is that the final prediction should be invariant

to the locations of an object in the image space. On the other hand, seman-

tic segmentation requires pixel-level accuracy. Classification network makes

extensive use of pooling to build in the translation invariance while pooling

is ideally to be avoided in the context of segmentation. To improve the seg-

mentation accuracy, we need some mechanisms to compensate for the loss of

spatial information due to pooling. Another problem in semantic segmenta-

tion that we aim to address is the difficulty in obtaining high-quality pixel-wise

labels in practice. In contrast, it is easier to obtain labels for object detection:

bounding boxes locations and their classes. It was reported that the semantic

segmentation labels took more that 15 times longer to finish than spotting the

instances [12] when annotating MS COCO dataset. If we could incorporate

the available object detection labels in the training of semantic segmentation

task, it may help reduce the need for segmentation labels. Note that we use
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bounding box and ROI interchangeably throughout the text.

In this work, we develop a new mechanism that leverages the ideas in

object detection to improve the localization capability of the segmentation

network. Instead of viewing object detection as part of the final objective

as in instance segmentation, we propose to use it as an intermediate step to

guide the training of the network, such that the network maintains spatial

information in the early stages of its learned representations. We show later

that this approach helps to improve the segmentation accuracy. Because object

detection is integrated in the network, it also naturally addresses the second

issue discussed above about the need for labels. With the new method, we can

directly train the network with bounding box labels.

The overall architecture is shown in Figure 3.1. We essentially break down

the segmentation task into two stages: first localizing a rough region in which

the object has been detected, then performing segmentation in the region.

The first part of the network is Region-Proposal-Network (RPN) (Section 3.2)

which is part of the backbone of Faster R-CNN. The bounding box prediction

from RPN is used as an extra input to the downstream convolutional layers for

segmentation (Section 3.4) to improve its localization capability. We introduce

an ROI convolutional layer (Section 3.3) that directly convolves on all the ROIs

in one pass without the need of ROI pooling or other region-wise processing,

and show that this layer is trainable through backpropagation. The proposed

network can be trained end-to-end.

3.1 Backbone

VGG16 [49] and ResNet [23] are two of the most popular choices for backbone

feature extractors. We use VGG16 as the feature extractor, i.e., the backbone

of the architecture, since it is a simpler network and do not need as much

data to train. It is shown in Fig. 2.1. The network that we propose here

could be built on top of a deeper backbone like ResNet [23] or FPN [34] to

further improve accuracy. But a simpler backbone helps to keep the focus on

showing that adding a localization module improves the segmentation accuracy
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translation and log-space shift of width and height relative to the anchors.

Again, the ∗ denotes a variable as the ground truth.

The classification loss is a binary cross entropy loss: Lcls(pi, p
∗

i ) = −p∗i log(pi).

The regression loss is a smooth L1 loss, also called a Huber Loss [20]: Lreg(ti, t
∗

i ) =
∑

Lhuber(ti, t
∗

i ).

Lhuber(x) =

{

0.5σ2x2, if |x| ≤ 1

σ2

|x| − 0.5
σ2 , otherwise

(3.3)

The σ is a parameter that controls the boundary of the L2 loss and L1 loss. It

is set to 3 throughout the experiments in Faster R-CNN and our experiments.

3.3 ROI Convolution

The output of the RPN is a list of ROIs in terms of bounding boxes. The

features for the ROIs can be extracted from the feature map of the previous

layer and passed to downstream segmentation network. Region-wise method

has been widely used [13], [22], [45] where each ROI is processed individually

as a new input image. To obtain a fixed-size input, each ROI is first fed into

a pooling layer which produces a fixed-size grid. The features for each cell in

the grid are those of the pixel that has the maximum activation in that cell.

In contrast, we propose an image-wise method to simplify the computation,

where the downstream segmentation network processes all the ROIs in one

shot. In order to do that, a new layer called ROI convolution is introduced. A

similar idea has been proposed in [7]. But they used ROI convolution only in

the inference time to speed up computation. We show that ROI convolution

is differentiable and is trainable through backward propagation. We use ROI

convolution at both training and inference time.

The schematic diagram of ROI convolution is illustrated in Fig. 3.3a. For

comparison we also include an illustration for ROI pooling in Fig. 3.3b. Note

the edge case in the ROI convolution, where we want to compute the output

feature for a pixel at the boundary of the ROI. The filter covers some pixels

outside the ROI. Instead of masking out these pixels, we use the original

features of them during the computation as long as the target pixel is inside
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(a) ROI convolution

Image Credit:
https://blog.deepsense.ai/region-of-interest-pooling-explained

(b) ROI Pooling

Figure 3.3: Comparison of operators on ROI

the ROI. The idea is that we want to account for the context of the target

pixel during the convolution.

We compare the architecture of FCN-32s [39], Faster R-CNN [45], and our

network RPN-FCN in Fig. 3.4, highlighting the key difference in how the fea-

tures of the ROIs are extracted and passed to the downstream network. All

the three networks use VGG16 as the backbone. They differ from the step fol-

lowing the ‘conv5’ feature map of VGG16. Faster R-CNN applies ROI pooling

to transform to region-wise computation on each ROI. FCN applies standard

max pooling on the full feature map and produces a full-size probability map
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l, of size k × k. Bl is the bias at layer l. In practice, it is usually a scalar for

each channel. ∗ denotes the ROI convolution. ∪ROI denotes the union of the

set of indices inside all the ROIs. The indicator function checks if the pixel

(i, j) is inside any ROI. The forward pass is just like the regular convolution

except that the pixels outside the ROIs are set to zeros.

3.3.2 Backpropagation of ROI Convolution

The backpropagation of ROI convolution can be computed as follows. Suppose

that we have the cost function E, and ∂E
∂zl

= δl for the current layer l, we need

to compute ∂E
∂zl−1 , ∂E

∂wl and ∂E
∂Bl :

∂E

∂zl−1

i,j

=
k−1
∑

a=0

k−1
∑

b=0

δli−a,j−bσ
′

i−a,j−bw
l
a,b1[(i− a, j − b) ∈ ∪ROI] (3.5)

∂E

∂wl
a,b

=

W l
o

∑

j=0

Hl
o

∑

i=0

δli,jσ
′

i,jz
l−1

i+a,j+b1[(i, j) ∈ ∪ROI] (3.6)

∂E

∂Bl
=

W l
o

∑

j=0

Hl
o

∑

i=0

δli,jσ
′

i,j (3.7)

where W l
o, H

l
o denotes the width and height of the output of layer l. σ′

i,j

denotes the derivative of the activation function at pixel (i,j). Unlike in regular

convolution, the pixels outside the ROIs do not contribute to the gradient in

the ROI convolutional layer. We give the derivation of the backpropagation

equations below. For regular convolution, we need to sum up the gradients of

all the pixels on the output feature map:

∂E

∂wl
a,b

=

W l
o

∑

j=0

Hl
o

∑

i=0

∂E

∂zli,j

∂zli,j
∂yli,j

∂yli,j
∂wl

a,b

=

W l
o

∑

j=0

Hl
o

∑

i=0

δli,jσ
′

i,j

∂(
∑k−1

b=0

∑k−1

a=0
wl

a,bz
l−1

i+a,j+b +Bl)

∂wl
a,b

=

W l
o

∑

j=0

Hl
o

∑

i=0

δli,jσ
′

i,jz
l−1

i+a,j+b (3.8)
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∂E

∂Bl
=

W l
o

∑

j=0

Hl
o

∑

i=0

∂E

∂zli,j

∂zli,j
∂yli,j

∂yli,j
∂Bl

=

W l
o

∑

j=0

Hl
o

∑

i=0

δli,jσ
′

i,j

∂(
∑k−1

b=0

∑k−1

a=0
wl

a,bz
l−1

i+a,j+b +Bl)

∂Bl

=

W l
o

∑

j=0

Hl
o

∑

i=0

δli,jσ
′

i,j (3.9)

∂E

∂zl−1

i,j

=
∑

m

∑

n

∂E

∂zlm,n

∂zlm,n

∂ylm,n

∂ylm,n

∂zl−1
m,n

=
∑

m

∑

n

δlm,nσ
′

m,n

∂(
∑k−1

b=0

∑k−1

a=0
wl

a,bz
l−1

m+a,n+b +Bl)

∂zl−1

i,j

(3.10)

=
∑

i−a

∑

j−b

δli−a,j−bσ
′

i−a,j−bw
l
a,b (3.11)

=
k−1
∑

a=0

k−1
∑

b=0

δli−a,j−bσ
′

i−a,j−bw
l
a,b (3.12)

The transformation from Eq. 3.10 to Eq. 3.11 is based on the following:

the partial derivative will be zero except for i = m + a, j = n + b, reorder

the terms: m = i − a, n = j − b, the equation can therefore be re-written by

substituting the subscripts.

From these backpropagation equations 3.8, 3.9 and 3.12, it is trivial to

derive the backpropagation for ROI convolution. The idea is that the features

at layer l−1 are not only masked by the ROI during the forward computation,

but they are also masked during the gradient computation.

3.4 Transposed Convolution

Transposed convolution is a standard operation in FCN network for upsam-

pling the feature map from a small size into a full size of the input image. It

has got its name from that it can be thought of a regular convolution with a

transposed filter fT .

Fig. 3.5 is an illustration of a transposed convolution on an input image

of size 2 x 2, that has a filter 3 x 3, stride 2, padding 2 [15]. In practice, a
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Figure 3.5: Transposed convolution of filter 3 x 3, input 2 x 2, stride 2, padding
2 [15].

transposed convolution is implemented by swapping the forward and backward

function of a regular convolutional layer.

3.5 Loss Function

We use a multi-task loss that is similar to that defined in Mask RCNN [22]:

L = Lrpn+Lseg where the loss for RPN is combined with the segmentation loss

Lseg. Different from the loss in [22], our loss is defined over the full image as

opposed to each ROI. The loss for RPN, Lreg +Lcls, is the average loss for all

ROIs, same as in [45]. The segmentation loss Lseg is the standard cross-entropy

loss for the entire image:

Lseg = −
∑

i

k
∑

c=0

log pi(y = c) (3.13)

where i is the index of the pixel on the output probability map. c is the index

of class, in the set {0,2,...,k}. pi(y = c) is the predicted probability of pixel i

belonging to class c. This multi-task loss is back-propagated through all the

layers in the network including both the segmentation layers and RPN.
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3.6 Implementation of Convolution and ROI Con-

volution

3.6.1 Caffe’s Implementation of Convolutional Layer

Convolution can be thought of as sliding the filter across the input feature

map, inserting the dot product of the filter and the input patch at that loca-

tion into the output at the location of the center pixel. To avoid a for-loop

for computing the dot product at each location which would be slow, Caffe

approaches convolution as a multiplication of two big matrices to speed up the

computation. The core idea is that all the patches across the input image are

reshaped and concatenated into one matrix. The filter is reshaped, replicated

and organized into another matrix. One can then use an optimized linear al-

gebra library to perform the matrix multiplication. This process is illustrated

in Fig.3.6.

3.6.2 Implementation of ROI Convolutional Layer

We implemented the ROI convolutional layer in Caffe. The logic is very similar

to the convolutional layer except that the reshaped data need to account for

the ROI. In particular, in the forward pass, if a pixel is outside the ROIs, its

surrounding patch covered by the convolutional filter will be set to zeros in

the reshaped feature map D shown in Fig. 3.6. In the backward pass, based

on Equation 3.5 and Equation 3.6, the gradient w.r.t. the input features z and

the gradient w.r.t. the filters w are both computed based on the gradient w.r.t.

the features in the next layer, which is set to zero for any pixel outside the

ROIs.
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Figure 3.6: The implementation of convolution in Caffe
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Chapter 4

Experiments

4.1 Dataset

4.1.1 Hip Ultrasound Data

Experiments were performed on a clinical dataset of 3D ultrasound (US) im-

ages of infant hips for diagnosis of developmental dysplasia of the hip (DDH).

DDH, a condition affecting up to 1 in 30 infants, is easy to treat if diagnosed

early, but if undiagnosed can result in early onset osteoarthritis, and accounts

for around 30 of all hip replacements in patients under 60. Current DDH’s

diagnosis based on 2D Ultrasound is notoriously operator-dependent, requir-

ing years of training to reach reasonable and more importantly reproducible

performance [25].

The segmentation of acetabulum bone is an essential step towards making

diagnosis of DDH fully automated and less reliant on the operator. However

the task is very challenging due to the highly noisy nature of ultrasound images

compared to CT or MRI images, and the shadowing/discontinuities present

in the boundaries of the bone. And the classes are highly imbalanced: the

acetabulum only takes up a small portion of the image (0.3 percent in our

dataset).

Data collection was performed with institutional Health Ethics Review

Board approval and written informed consent from parents, at the Radiology

Department at University of Alberta. Three-dimensional ultrasound scans

of infants’ hip, were obtained on a Philips iU22 scanner (Philips Healthcare,
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Andover, Mass) using a 13 MHz linear (Philips 13VL5) transducer in coronal

orientation, harmonics ‘off’. The transducer was steered over an angular range

of ±15°in 3.2 seconds.

The anatomy of the hip and its ultrasound image are illustrated in Fig. 4.1.

Each 3D ultrasound volume is comprised of 256 ultrasound slices of 0.13 mm

thickness containing 411× 192 pixels measuring 0.11× 0.20 mm. The volumes

were exported to Cartesian DICOM format and used for segmentation.

The dataset consists of 49 three-dimensional ultrasound scans that has

manually annotated segmentation labels for acetabulum provided by the lead

pediatric musculoskeletal radiologist. We randomly divide them into a training

set of 30 scans and a testing set of 19 scans. The scans from the same patient

either all go into the training or testing set. We crop some of the scans to make

all the 2D slices share a unified size of 367×192 pixels (height by width). Most

3D volumes contain 256 slices.

4.1.2 Robotic Instrument Dataset - Endoscopic Images
Vision Challenge 2017

Robotic Instrument Dataset is a public dataset released as part of the En-

doscopic Images Vision Challenge 2017 [46] at the Medical Image Computing

and Computer Assisted Interventions Conference (MICCAI) 2017. An exam-

ple of the data is shown in Fig. 4.2. The dataset contains 10 videos each with

300 images, captured at 2 Hz. Out of these 10 videos, two full videos and the

last 75 frames of each of the other eight videos are used as a hold-out set for

testing. The rest are the training set: the first 225 frames of each of the eight

videos. Each frame is an RGB image. This challenge consisted of three tasks:

a binary segmentation task and two multi-class segmentation tasks. In our

experiment, we focus on the binary segmentation task only.
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channels was reduced from 21 to 2 for binary segmentation.

Solver hyper-parameters The network was trained using SGD with a

momentum of 0.9 and weight decay of 0.0005. Learning rate was set to 1e−5

for the hip ultrasound data and 1e−4 for the robotic instrument data, and

reduced by a ratio of 0.1 for every 50k iterations. The segmentation is nor-

malized by the number of pixels on the image to balance the losses of object

localization and segmentation. During training, a dropout of 0.5 was used in

the two convolutional layers following RPN. If not specifically mentioned, for

the network layers that were the same as in FCN and Faster R-CNN, we tried

to keep the parameters the same as those used in the original work to make a

fair comparison. The implementation was based on Caffe [27], where we added

the implementation of ROI convolutional layer. The experiment was carried

out on an NVIDIA Pascal 1080 GPU.

4.4 Results and Discussion

The proposed network was designed with small object segmentation in mind,

i.e., imbalanced data. In this section, we first show how it performs on the

acetabulum segmentation where the data is imbalanced. We then present the

result on the robotic instrument segmentation where the data is balanced. We

conduct ablation studies on the acetabulum segmentation to investigate the

impact of ROI convolutional layer in training and inference time.

4.4.1 Acetabulum Segmentation on Hip Ultrasound

We compared our method with its FCN counterpart FCN-32s, and U-Net

[47]. We used the original Caffe implementation for FCN-32s. For U-Net, we

tried three different implementations: the original Caffe implementation, an

implementation included in the 3D-U-Net [10], and a Tensorflow [41] imple-

mentation. The best result was reported, which was achieved with the code

base of 3D-U-Net. Note that 3D-U-Net comes with an on-the-fly deformation

layer that augment the training data at every iteration. It may be the reason

why it performed better than the other implementations. For FCN-32s and
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Table 4.1: Comparison of our proposed method RPN-FCN with FCN-32s
and U-Net. Scores are averaged over all the test slices. Bold numbers denote
the best of these three methods. For all the methods, the best results from
hyper-parameter tuning and different implementations are reported.

Method Precision Recall Dice Score
RPN-FCN 31.29 40.16 35.18

FCN-32s 18.24 28.54 22.25
U-Net 3.94 6.33 4.86

RPN-FCN, we only augmented the data with horizontal flipping.

The test scores are summarized in Table 4.1. The results that we reported

were the mean scores for all the 4864 test slices. We did not cherry-pick test

slices. The distribution of the dice score were shown in Fig. 4.3 by sorting

the slices that contain positive labels based on their dice score. Our method

RPN-FCN achieves better overall segmentation performance than the other

two methods. And it yields an improved dice score on a wide range of slices.

Adding RPN on top of FCN-32s constrains the segmentation problem in a

smaller region. The result suggests that it is an effective way to train the

downstream segmentation layers. Outperforming U-Net also shows the efficacy

of this localization mechanism.

Our network is similar to FCN-32s in that the backbone are both VGG16

and the upsampling paths are similar. The major difference lies in the use

of ROI convolution after ‘conv5’ layer of VGG16. Due to the removal of the

pooling layer, the feature map has a higher resolution. It only needs to be

upsampled by a factor of 16 instead of 32 as in the original FCN. Upsampling

from a higher resolution feature helps to retain the features of small objects,

therefore improving the segmentation accuracy.

The dice score is low compared to other medical image segmentation tasks.

The main reason is that the object of interest is small. Full-image based net-

works generally have some issues dealing with this type of imbalanced data

[29]. The representations learned by the network are dominated by the ma-

jority class, in this case, the background. U-Net introduced class weighting in
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Table 4.3: Comparison of RPN-FCN with or without using the detection loss
and ROI convolution in training, on acetabulum segmentation. Scores are av-
eraged over all the test slices. Bold numbers denote the best of these methods.

Method Precision Recall Dice Score
FCN-noPool5-scratch 20.40 25.88 22.81
RPN-FCN 31.29 40.16 35.18

FCN-32s 18.24 28.54 22.25

the ROI convolutional layer with conventional convolutional layer during in-

ference time while loading the same weights. The segmentation result was

identical, which we found to be a bit surprising. It showed that the network

performed equally well even when the convolution is applied on the full-size of

the image. In other words, the benefit of using ROI convolution was not at the

inference time. We asked the question: did ROI convolution help in training

time? Although it seemed to be true based on the dice score comparison with

FCN-32s and U-Net, could the performance difference instead be related to

the small changes that we made to the FCN-32s network architecture, such as

smaller padding and removal of a pooling layer?

To answer this question, We conducted an experiment where we took the

exact architecture of our RPN-FCN, removed the detection branch, replaced

ROI convolution with conventional convolution, trained it from segmentation

loss only. We named this method as “FCN-noPool5-scratch”. The result is

shown in Table 4.3. The segmentation results from RPN-FCN and FCN-32s

are included for comparison. RPN-FCN performed significantly better than

its counterpart “FCN-noPool5-scratch” trained from segmentation loss, while

the dice scores from FCN-32s and “FCN-noPool5-scratch” were similar. This

showed the benefit of training the network with the localization unit and the

ROI convolution. On one hand, it allows the use of box-level labels for training.

On the other hand, it inherently forced the network to learn features useful for

localization and therefore helps improve the segmentation on small objects.
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diagnosis. Every case uploaded to the cloud is itself used to further train the

deep-learning algorithm, constantly refining accuracy. Within a generation the

societal burden of hip osteoarthritis could drop substantially, with large cost

savings.

As one algorithm in this on-line tool set, the proposed segmentation al-

gorithm has been trained off-line and deployed on the cloud server. It can

auto-segment acetabulum from the images uploaded by the users and visu-

alize the segmentation result. Fig. 4.9 demonstrates a few examples of the

segmentation results for test images, where the regions in red illustrate the

predicted acetabulum. The user interface is shown in Fig. 4.8.

The web application is in its early shape. Two modes have been imple-

mented so far: single-image mode and volume mode. In the single-image

mode, the user picks the 2D slices that he or she would like to segment, and

get back the 2D segmentations for these slices. In the volume mode, the goal

is to quickly obtain the segmentation for the entire 3D volume. The algorithm

first picks several “key-slices” automatically from the volume and generates

their segmentations (for example, segment one out of every 20 slices). Then

the segmentations for the rest of the slices in between the “key-slices” are

obtained by interpolation.

The algorithm currently runs at about 0.35 seconds per 2D image on a

Tesla M60 GPU on an AWS server. And the average time taken in the volume

mode is roughly 5 seconds per volume. We are working on further integrating

the algorithm and improving its speed and segmentation accuracy.
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Chapter 5

Conclusion and Future Work

We presented a novel method for improving the segmentation accuracy of

fully convolutional networks. Drawing inspiration from the object detection

literature, we incorporated the Region-Proposal-Network (RPN) which was

part of the backbone of Faster R-CNN. The bounding box prediction from

RPN was used as an extra input to the downstream convolutional layers for

segmentation to improve its localization capability.

We introduced a ROI convolutional layer that directly convolved on all the

ROIs in one pass without the need of ROI pooling or region-wise processing,

and showed that this layer was trainable through backpropagation.

We essentially broke down the segmentation task into two steps: first local-

izing a rough region in which the object had been detected, then performing

segmentation in the region. The proposed network was trained end-to-end and

tested on two image segmentation datasets. We showed that by breaking down

the segmentation problem into a joint detection and segmentation process, the

segmentation accuracy was improved on small objects.

For future work, it would be interesting to extend this work from binary

segmentation to multi-class segmentation. It may also be worth investigat-

ing adding the gradients w.r.t. the bounding box parameters in the back-

propagation of the ROI convolution.
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