
Action Elimination and Plan Neighborhood Graph Search:
Two Algorithms for Plan Improvement - Extended Version

Hootan Nakhost and Martin Müller
Department of Computing Science

University of Alberta
{nakhost,mmueller}@ualberta.ca

Abstract

Compared to optimal planners, satisficing planners can solve
much harder problems but may produce overly costly and
long plans. Plan quality for satisficing planners has become
increasingly important. The most recent planning compe-
tition IPC-2008 used the cost of the best known plan di-
vided by the cost of the generated plan as an evaluation met-
ric. This paper proposes and evaluates two simple but ef-
fective methods for plan improvement: Action Elimination
improves an existing plan by repeatedly removing sets of
irrelevant actions. Plan Neighborhood Graph Search finds
a new, shorter plan by creating a plan neighborhood graph
PNG(π) of a given plan π, and then extracts a shortest path
from PNG(π). Both methods are implemented in the ARAS
postprocessor and are empirically shown to improve the re-
sult of several planners, including the top four planners from
IPC-2008, under competition conditions.

Improving Plan Quality
Satisficing deterministic planners can solve much harder in-
stances than optimal planners but may generate plans that
are far from optimal. Earlier planning competitions have
emphasized coverage in terms of total number of problems
solved, as well as raw speed. The focus of IPC-2008 was
on finding the best plan with a given finite amount of re-
sources. Much work in satisficing planning has gone into
generating a high quality plan directly. Such systems out-
put a single plan and then stop. In contrast, anytime plan-
ners such as LAMA (Richter, Helmert, and Westphal 2008;
Richter and Westphal 2008) and LPG (Gerevini, Saetti, and
Serina 2008) aim to quickly find a lower-quality plan, then
improve it over time. The contribution of this paper are
two simple but effective postprocessing methods for plan
improvement: Action Elimination (AE) and Plan Neighbor-
hood Graph Search (PNGS). Both methods can take any
valid plan as input and attempt to improve it. AE is a fast
algorithm, while PNGS works in anytime fashion. Both
AE and PNGS improve the performance of all the plan-
ners tested as measured by the IPC-2008 metric. In contrast
to LAMA, the new methods search for local improvements

Technical Report TR 10-01, March 2010. Copyright c© 2010,
Dept. of Computing Science, University of Alberta, Canada. All
rights reserved. A shorter version of this paper was accepted for
publication at ICAPS 2010.

“near” an existing plan. In contrast to LPG, they search in
state space not plan space.

There are many ways to measure plan quality. Two popu-
lar metrics for unit cost actions are sequential plan length
measured in total number of actions, and makespan, the
shortest execution time of a plan if actions can be executed in
parallel. The IPC-2008 metric for non-uniform action costs
(including zero) was additive cost, with the total cost of a
plan defined as the sum of all action costs.

What is New in the Extended Version?
This version contains further discussions regarding AE: it is
shown that the action elimination problem is NP-Hard, and
an example where AE fails to find certain kind of redundan-
cies is discussed. There are also more detailed results re-
garding the cases where the best known plans for IPC-2008
are improved.

The rest of this paper is organized as follows: After in-
troducing necessary notation, a greedy algorithm for Action
Elimination is developed and its limitations are shown. Plan
Neighborhood Graph Search is described next. The experi-
ments evaluate Action Elimination and Plan Neighborhood
Graph Search both as standalone methods and in combina-
tion.

Related Work
Weighted A*, or WA* (Pohl 1970), produces plans that are
within a constant factor W of optimal. The LAMA plan-
ner, winner of the IPC-2008 competition, uses weighted A*
with a large initial value of W to quickly produce an ini-
tial plan, then gradually reduces the weight W, while us-
ing the best found plan for additional pruning. Anytime A*
(Hansen and Zhou 2007) also uses successive runs of WA*.
While LAMA restarts the search from the initial state each
time a solution is found, Anytime A* continues the current
search with new parameters. Anytime Window A* (Aine,
Chakrabarti, and Kumar 2007) uses A* within a window in
the search space that moves in a depth first manner. The size
of the window is increased when a solution is found.

The path improvement methods Joint, LPA* (Ratner and
Pohl 1986) and ITSA* (Furcy 2006) are closely related to
Plan Neighborhood Graph Search and a detailed comparison
will follow later.



The LPG planner (Gerevini, Saetti, and Serina 2008) uses
heuristic local search in plan space. It optimizes an objec-
tive function that measures the difficulty of resolving the in-
consistencies and the estimated cost of the solution. When
LPG is used as an anytime system for plan improvement, it
restarts from a partial plan, obtained from the current best
plan by removing some actions randomly, preferring the
most expensive ones. An added numerical constraint on the
cost forces the next solution to be cheaper.

For the makespan metric, the post-processing approaches
of (Do and Kambhampati 2003; Veloso, Pérez, and Car-
bonell 1990; Bäckström 1998) aim to reduce the make-span
of a given totally ordered plan by converting it to a partially
ordered plan. Since these approaches do not change the set
of actions in the plan, they do not improve the cost according
to the other metrics above. In planning by rewriting (Ambite
and Knoblock 2001), domain-specific rules rewrite a given
plan into a better quality one. Rewriting rules are given by
an expert or learned from training examples (Upal 1999).

Two Approaches to Plan Improvement
While there is a number of current algorithms for plan im-
provement in the weighted A* family, there has been no re-
cent work on the general case when the quality of the initial
plan is unknown. This is surprising since such plans are ar-
guably most in need of improvement! The two methods AE
and PNGS presented here take any plan produced by a sat-
isficing planner and try to improve it. The methods produce
no global guarantees on the solution quality. However, any
known quality bound for the input plan, such as W in a plan
produced by WA* with an admissible heuristic, implies a
corresponding tighter bound on the improved plan.

Both AE and PNGS search for the best possible plan
within a neighborhood of similar plans, but use different
concepts of neighborhood. AE only removes actions from
a given plan. PNGS exactly solves a shortest path problem
in a neighborhood of a plan consisting of states close to the
plan’s trajectory in state space.

Notation and Background
Consider STRIPS planning with additive costs, using the
following notation:

Definition 1 (Planning Task). A planning task is a tuple Π =
(Σ, S, s0, A, f,G) where:

• Σ is a finite set of propositions.
• S ⊆ 2Σ is the set of all the states.
• s0 ∈ S is the initial state.
• A is the set of actions and each action is a triple

a(pre[a], add[a], del[a]), where pre[a], add[a] and del[a]
are sets of propositions, and contain the preconditions,
positive effects and negative effects of a, respectively.

• f : A→ N is the cost function.
• G ⊆ Σ is the goal.

Action a is applicable to state s if pre[a] ⊆ s. The re-
sult of applying a to s is Γ(s, a) = (s\del(a)) ∪ add(a).
The result of applying a sequence of actions (a1, . . . , an)

to a state s is defined recursively by Γ(s, (a1)) = Γ(s, a1),
Γ(s, (a1, . . . , an)) = Γ(Γ(s, (a1, . . . , an−1)), an).

Definition 2 (Plan). Let Π = (Σ, S, s0, A, f,G) be a plan-
ning task, and π = (a1, . . . , an) an action sequence. π is a
plan for Π iff G ⊆ Γ(s0, (a1, . . . , an)). The cost of π is the
sum of action costs, cost(π) = Σn

i=1f(ai).

The complexity result about action elimination is derived
from results on Relaxed Planning Tasks (RPTs). RPTs are
used in a popular method for deriving heuristic functions
(Hoffmann and Nebel 2001; Bonet and Geffner 2001).

Definition 3 (Relaxed Planning Task). A Planning Task Π =
(Σ, S, s0, A, f,G) is called relaxed iff for all actions a ∈ A,
del(a) = ∅.

While RPTMIN - the decision problem of finding an op-
timal solution for an RPT - is NP-hard (Bylander 1994),
deciding relaxed solvability is in P (Bylander 1994). The
algorithm that is commonly used to find an approximation
of the optimal solution is based on Graphplan (Blum and
Furst 1997). The Relaxed Graphplan (RGP) (Hoffmann and
Nebel 2001) of an RPT is a layered graph consisting of al-
ternating fact and action layers. The first layer in the graph,
S1, contains all the propositions in the initial state. Each ac-
tion layer, Ai, consists of all the actions whose preconditions
are satisfied in the previous fact layer Si and each fact layer,
Si+1, where i ≥ 1, includes all the propositions in the fact
layer Si plus the effects of all the actions in layer Ai. The
RGP for a solvable problem is expanded until it includes all
goal propositions.

Action Elimination
Given a plan π, the goal of Action Elimination is to find a
shorter plan by removing actions from π.

Definition 4 (Reduction). Let Π be a planning task, π a
plan for Π, and π′ a subsequence of π. π′ is a reduction of
π, denoted by reduct(π, π′), iff π′ is also a plan for Π.

Definition 5 (Minimal Reduction). Let π be a plan and π′

be a reduction of π. π′ is a minimal reduction of π if for
every π′′ such that reduct(π, π′′), cost(π′) ≤ cost(π′′).

A minimal reduction is a lowest-cost plan that can be
achieved by removing actions. Finding a minimal reduc-
tion can be difficult: the corresponding decision problem is
NP-hard.

Theorem 1. Given a plan π and a positive integer k, let
REDUCTIONMIN be the problem of determining the ex-
istence of a reduction π′ such that cost(π′) ≤ k. Deciding
REDUCTIONMIN is NP-hard.

Proof. The proof reduces RPTMIN to
REDUCTIONMIN.
Let Π = (Σ, S, s0, A, f : A → 1, G) be an RPT. Let
RGP(k) be the k-level relaxed Graphplan of Π. Assume
all goal propositions are true in the last fact layer since
otherwise RPTMIN would be trivial for k. RGP(k) can be
built in polynomial time (Hoffmann and Nebel 2001). Let
Pi be a sequence of all actions in the action layer Ai. Then



it is easy to see that the sequence π = P1 . . . Pk, which is
the concatenation of sequences Pi, is a plan for Π.

The theorem is equivalent to showing that the plan π has
a reduction with cost at most k iff Π has a plan with cost at
most k.
The implication⇒ is trivial since by definition, every reduc-
tion of π is also a plan for Π. To show⇐, assume Π has an
optimal plan πo = (ao

1, . . . , a
o
k′), where k′ ≤ k. Then for

every 1 ≤ i ≤ k′ all propositions in pre[ao
i ] are reachable

in i − 1 steps. Therefore, by construction, Ai, and conse-
quently, Pi contain the action ao

i . Thus, πo is a subsequence
of π.

Since the reduction can be done in polynomial time,
REDUCTIONMIN is at least as hard as RPTMIN.

The next subsection describes an effective greedy algo-
rithm to compute reductions of a plan.

Algorithm 1 Action Elimination

Input Initial State s0, plan π = (a1, . . . , an), and
goal condition G

Output A plan reduction
s← s0

i← 1
repeat

mark ai {try to remove ai}
s′ ← s
for j ← i + 1 to length(π) do

if aj is not applicable to s′ then
mark aj

else
s′ ← Γ(s′, aj)

end if
end for
if s′ satisfies G then

remove marked actions from π {commit}
else

unmark all actions
s← Γ(s, ai)

end if
i← i + 1

until i > length(π)
return π

A greedy Algorithm for Action Elimination
Action Elimination iteratively improves a given plan π =
(a1, . . . , an) by computing a plan reduction in each itera-
tion. The details are given in Algorithm 1. Starting from
a1, the algorithm tentatively tries to remove one action a.
After removing a, all other actions that lose their support -
at least one of their preconditions becomes unsatisfied - are
removed from the plan. If the reduced sequence remains
a solution, the algorithm commits to this new plan. Other-
wise, the plan is restored to the state before a was removed.
The process continues until all actions in the remaining plan
have been tried. Validating a single reduction takes O(n×p)
time, where p is the maximum number of preconditions of

Name pre add del
OPk φ {k} {p}
OPr φ {r} φ
OPp φ {p} {q}
OPq {k} {q} φ

Table 1: Definition of actions in a planning task example.

an action. The time complexity of the whole algorithm is
O(n2 × p).

Algorithm 1 is just one specific, simple implementation
of the idea of using successive plan reductions and can not
identify all the removable actions. In general, different re-
duction sequences do not necessarily lead to a unique irre-
ducible plan. For example, if the original plan contains two
redundant but different ways of achieving the same goal,
a sequence of reductions could remove either one (but not
both).

Algorithm 1 does not identify all the removable actions.
Consider a planning task with initial state {p, q}, goal state
{p, q, r} and the four actions defined in Table 1. In the
plan π = (OPk, OPp, OPr, OPq), only OPr is necessary
and OPk, OPp and OPq can be removed. The algorithm
first marks OPk, causing OPq to lose its support and be
marked as well. However, since the remaining sequence
(OPp, OPr) is not a plan, this step fails and nothing is re-
moved. Next, the algorithm tries OPp, but again the remain-
ing sequence is not a plan. Therefore, no action is removed
from the plan by Algorithm 1. The main reason of this fail-
ure is that the algorithm focuses on positive effects, and does
not properly capture the negative interactions between inter-
leaving subsequences.

Plan Neighborhood Graph Search
Most state of the art planners behave in a “greedy” way in
terms of a heuristic function. They only examine a tiny sub-
set of the state space, following narrow paths guided by their
heuristic. In contrast, the search of optimal planners is much
broader since A* with admissible heuristics needs to expand
every state with small enough f -value. Plan Neighborhood
Graph Search (PNGS) takes a middle ground between these
two approaches. The plan neighborhood graph represents
a subset of the state space “near” the existing plan that is
wider than the path searched by greedy planners. Like op-
timal planners, it finds the best possible solution in a search
space. However, like satisficing planners, this search is lim-
ited to a small part of the whole state space. PNGS uses local
search around the plan trajectory to build the neighborhood
graph, then extracts a shortest path from this graph.

Let M be a deterministic graph search method, such as
breadth-first or best-first search. M must be able to ex-
pand the graph of a finite search space one node at a time
from a given start state s0 to generate a sequence of states
(s0, s1, s2, . . . , sn). To be useable in PNGS, M must pro-
vide a method edgeto(s) that returns the edge along which
state s was most recently reached in the search.

For a given exploration limit L, let L′ ≤ L be the number
of states actually expanded in the search from some start



point s0. Let v(s0,M,L) = {si|0 ≤ i ≤ L′} be the set of
all these states and e(s0,M,L) =

⋃
i=1···L′ edgeto(si) be

the set of directed edges generated in this search.
Neighborhood graph search expands a given seed graph

SG = (V,E) by running M from each start state in V
with exploration limit L. The neighborhood graph of SG
is defined as NG(SG, M, L) = (

⋃
x∈V v(x,M,L), E ∪⋃

x∈V e(x,M,L)). Algorithm 2 gives pseudocode.

Algorithm 2 Computation of Neighborhood Graph

Input A subgraph (V,E) of a state space with
V = {v0, . . . , vn}, E ⊆ V × V , nonnegative integer
L, and search method M

Output The graph NG(V,M,L)

V ′ ← V
for i← 0 to n do

M.initialize(vi) {search neigborhood of vi}
for j ← 1 to L do

s←M.get next state()
if is null state(s) then

return (V ′, E)
end if
V ′ ← V ′ ∪ s
E ← E ∪M .edgeto(s)

end for
end for
return (V ′, E)

Let π = (a1, . . . , an) be a plan, Sπ = {s0, . . . , sn}
the set of all states visited when executing π, with
si = Γ(s0, (a1, ..., ai)) for 0 < i ≤ n, and
Eπ = {(s0, s1), . . . , (sn−1, sn)} the edges linking suc-
cessive states in the plan. With M and L defined as
above, the L-plan neighborhood graph of π is defined
as PNG(π,M,L) = NG((Sπ, Eπ),M,L). Informally,
PNG(π,M,L) contains the original seed plan augmented
by the union of the neighborhoods constructed using M
around each state along the plan π.

The number of vertices in PNG(π,M,L) is bounded by
(L + 1) × (n + 1). While building a neighborhood graph,
all goal states are identified. A lowest-cost path from s0 to
a goal state in the graph is built by a standard Dijkstra-type
shortest path algorithm. If the search method M uses for-
ward search, backward chaining from the goal states works
well here since the branching factor in regression is often
much smaller. For backwards plan extraction, the prior-
ity queue in Dijkstra’s algorithm is initialized with all goal
states in PNG(π,M,L).

A simple anytime version of PNGS can be implemented
by iteratively doubling the exploration limit L up to a re-
source limit. Each iteration starts with the best plan from
the previous iteration as seed plan. One benefit of the explo-
ration limit L is that it corresponds directly to the amount of
resources used by the search method M . Methods such as
breadth-first and best-first search need time and memory at
most linear in the number of states.

The notion of plan neighborhood graph can be ex-

tended to multiple input plans as well as multiple lo-
cal search methods. For multiple input plans, compute
the neighborhood graph of the union of all input plans.
If Sπ0 , Eπ0 , Sπ1 and Eπ1 are the states and action
edges of plans π0 and π1, then PNG(π0 ∪ π1,M,L) =
NG((Sπ0 ∪ Sπ1 , Eπ0 ∪ Eπ1),M,L). Different search
methods M0 and M1 can be used to construct a merged
neighborhood combining the expansion strategies of each
method as PNG(π, {M0,M1}, L) = PNG(π,M0, L) ∪
PNG(π,M1, L).

Extended neighborhood graphs utilize several input plans
and/or search methods in order to find a better plan. Us-
ing multiple input plans allows PNGS to search near good-
quality fragments of several different plans. Multiple search
methods may allow better exploration of the state space.

Local Search Methods for PNGS
The experiments reported here use either a single search
method, MA∗, or a combination of two search methods
MA∗ + Mbbfs : MA∗ is derived from the baseline uniform
cost search algorithm from the optimal track of IPC-2008
(Helmert, Do, and Refanidis 2008). It performs a “blind”
A* search with the heuristic h set to 0 for goal states and
to the minimum action cost in the problem for other states.
However, as in LAMA (Richter and Westphal 2008), MA∗ is
modified to better deal with the zero cost actions present in
several competition domains. Since blind A* never expands
any other action as long as zero cost actions are available, all
action costs are increased by 1 while building the neighbor-
hood graph. For extracting the shortest path, they are reset
to the true action cost to guarantee that the returned plan’s
cost never exceeds the input plan’s cost.

The combined search MA∗ + Mbbfs uses forward MA∗
search as well as backward breadth first search (bbfs). Bbfs
generates predecessor states and actions that lead to a given
state, ignoring action costs.

Comparison of PNGS with Related Work
Joint and LPA* (Ratner and Pohl 1986) improve a given plan
by using an optimal solver. The optimal solver searches for
shortcuts between any pair of states that are a fixed distance
d apart in the input plan. In contrast to these approaches
that redefine the goal state for each search, PNGS always
uses the original goal states of the planning problem for its
search. Another key difference is that instead of searching
for each shortcut in isolation, PNGS builds the complete
neighborhood graph before extracting a shortest path. In
the example in Figure 1, building a neighborhood graph im-
proves on separate searches. Here, M is the A* algorithm
with the blind heuristic, L = 4, and the input plan has three
states. When A* is run from each point separately, it fails to
improve the input plan, as in Figures 1.b and 1.c. However,
PNGS improves the cost by 5 units.

ITSA* (Furcy 2006) improves a given path in a graph us-
ing an A* search restricted to a tunnel near the given path π.
The tunnel contains all states s with dist(s, π) ≤ d, where
dist(s, π) is defined as the minimum cost path from any
state in π to s. ITSA* successively increases d in each it-
eration and terminates when a memory limit is exceeded. In



Figure 1: (a) The input plan. (b) and (c) Separate local
searches fail. (d) The neighborhood graph contains an im-
proved plan.

(Furcy 2006), ITSA* was tested on problems with unit-cost
actions, setting d = 0, 1, 2, · · · . For the experiments in this
paper on domains with non-uniform costs, d was set to the
minimum distance among all unexplored states, as is stan-
dard practice in iterative deepening A* with nonunit costs.
Each iteration runs until the first goal state is expanded.

Compared to ITSA*, PNGS uses a different search con-
trol and separates neighborhood creation from search. In
contrast to the L parameter in PNGS, the search effort of
ITSA* iterations can not be easily predicted from the d
parameter in domains with nonuniform branching factor.
ITSA*’s distance function can also lead to an unbalanced
expansion at different points along the input plan, since its
number of states expanded corresponds to the number of
low-cost paths available. ITSA* expands many more nodes
in regions where many cheap actions are available.

Building and searching the neighborhood simultaneously
as in ITSA* allows some more pruning. One advantage
of the two phase computation in PNGS is that different ac-
tion costs can be used in each phase, which works better
for domains with zero-cost actions. The option to merge
neighborhoods generated by different search methods with
complementary strengths is also useful.

Different Requirements for Shortest Path vs Path
Improvement Algorithms
Increasing action costs by 1 for building the neighborhood
graph in MA∗ helps address the problem of zero action costs.
However, if there is a big gap between the costs of cheap and
expensive actions, blind A* still heavily favors expanding
cheap actions. This bias is good for finding a shortest path
to a goal, but problematic for the current task of improving a
given path. Alternatives to both cheap and expensive actions

need to be explored in order to find improved plans. This
issue was discovered late in the course of this research and
has not yet been addressed satisfactorily.

Experiments
The ARAS plan postprocessor implements Action Elimina-
tion and PNGS on the basis of the Fast Downward (FD)
(Helmert 2006) framework. MA∗ and Mbbfs are imple-
mented as local search methods. For direct comparison,
ITSA* was implemented in the same environment. In-
creased action costs are also used in ITSA* to avoid prob-
lems with zero cost actions. Therefore, it is not guaranteed
that ITSA* returns a plan of equal or less cost. ARAS sup-
ports propositional PDDL2.2, excluding derived predicates,
as well as action costs in PDDL3.1. ARAS and LPG were
used to improve the results of the ARVAND (Nakhost and
Müller 2009) and FF (Hoffmann and Nebel 2001) planners
in the IPC-2004 domains Pipesworld Tankage, Pipesworld
NoTankage, Airport and Satellite. Further, ARAS is com-
pared to ITSA* in all IPC-2008 domains on plans produced
by ARVAND, FF, and the top four planners from the compe-
tition: LAMA, FFsa, FFha, and C3. Currently, LPG does
not support IPC-2008 domains. The input plans for ARAS
were generated by a single run of the latest available version
of each planner. Tests used a 2.7 GHz AMD processor with
4GB memory and 30 minutes time limit per problem.

Experiment 1: Postprocessing for IPC-2008
Domains
Tests used the IPC-2008 scoring function, with the cost of
the best plan produced by any satisficing planner at the
IPC-2008 competition divided by the cost of the generated
plan. Unlike the competition itself, and in order to measure
progress since then, a plan that is better than the best IPC-
2008 plan achieves a score higher than one.

For the planners returning a single plan, FF, FFsa, FFha

and C3, the planner is run until it finds a solution. The re-
maining time up to 30 minutes total is used to improve the
plan with ARAS or ITSA*.

Both LAMA and ARVAND can run in an anytime setting.
Given both an anytime planner and an anytime postproces-
sor, a preliminary experiment was run to determine a rea-
sonable allocation of time between them as follows: first,
the planner is run until a fixed cutoff time is reached. If
no solution is found yet, it is kept running until the first
solution is found. Next, the postprocessor is used to im-
prove the planner’s best generated plan until the 30 minute
timeout. The cutoff time is varied from 0 to 30 minutes in
1 minute intervals. Figures 2 and 3 show the total scores
of LAMA and ARVAND over all IPC-2008 domains, when
combined with the postprocessors MA∗, MA∗ + Mbbfs , and
ITSA*. For comparison, the baseline shows the anytime
planner stopped at the cutoff time without any postprocess-
ing. For both LAMA and ARVAND, the PNGS methods
outperform ITSA*. MA∗ + Mbbfs and MA∗ are very close
for ARVAND. MA∗ + Mbbfs is slightly superior for LAMA.
The best schedule for LAMA is 24 minutes (or until the
first plan is found) for the planner followed by 6 minutes for



Figure 2: Total IPC-2008 score for varying cutoff times
combining LAMA with MA∗, MA∗ + Mbbfs and ITSA*

ARAS, while for ARVAND the optimum is at 18 + 12 min-
utes. For both planners, the performance curve is almost flat
for cutoff times ranging from about 7 to 26 minutes.

Figure 3: ARVAND with MA∗, MA∗ + Mbbfs and ITSA*

The results for all tested planners on IPC-2008 are sum-
marized in Figure 7. For each planner/postprocessor pair
the total score, and the score obtained in each domain is
shown. LAMA and ARVAND use the cutoff times deter-
mined above. Cybersecurity is included in the totals, but no
detail graph is shown; in this domain, postprocessors did not
improve any plan except some generated by ARVAND.

The total scores shown in the bottom right of Figure 7 il-
lustrate that postprocessing would have provided an advan-
tage in the IPC-2008 competition: any of the planners that
took places 3-5, FFsa, FFha, and C3, would have improved
to second place. Both ARAS and ITSA* find substantial
improvements for many LAMA and FF plans as well, ad-
vancing the state of the art.

ARAS seems to be most effective on problems consist-

ing of several loosely coupled subtasks. In these domains,
due to low interaction between different parts of a plan, ef-
fective local improvements are possible. For example, all
postprocessors perform very well in the transportation do-
mains Transport and Elevator. In other domains, results vary
greatly by planner. Postprocessing in Pegsol gains more than
10 points for FF variants and C3, and 4 points for ARAS.
However, there is very limited scope for improvement for
LAMA, since it already solves 27 out of 30 tasks optimally
in this domain.

In PNGS, MA∗ + Mbbfs outperforms MA∗, especially in
domains where local improvements are effective. Although
the size of the largest neighborhood graph is equal for both
search methods in these experiments, their structure is to-
tally different. In MA∗ + Mbbfs , the expanded states are
closer to the plan, which contributes to finding better short-
cuts.

In contrast, in Openstacks such local improvements are
hard. This domain models a combinatorial optimization
problem, with the goal of minimizing the maximum num-
ber of stacks used in manufacturing. It seems very unlikely
to find a shortcut in solutions for this planning domain. Ac-
tions that affect the total cost - adding a stack - completely
change the search neighborhood; propositions showing the
availability of the added stacks will be present in all succes-
sive states. This makes it difficult to locally improve plans.
Most of the improvements in this domain are obtained on
smaller tasks where the largest neighborhood graph is large
enough to contain a new goal state. In this domain, using
all memory for MA∗ works better than splitting it between
MA∗ and Mbbfs.

Actions that affect the total cost - adding a stack - com-
pletely change the search neighborhood. Most improve-
ments are found for smaller tasks where the largest neigh-
borhood graph contains a new goal state. Here, using all
memory for MA∗ works better than dividing it between MA∗
and Mbbfs .

Figure 4: Plan cost and size of neighborhood graph for MA∗
when varying the expansion limit in Elevators-22.



Both MA∗ and MA∗ +Mbbfs usually outperform ITSA*,
which has trouble when there are large cost differences be-
tween actions. For example, in Transport, pick up and drop
have unit cost, while the distance-dependent cost of drive
is usually much larger. ITSA* tends to explore sequences
of many cheap actions, but largely ignores crucial drive
actions. For example in Transport-14 the cheapest driv-
ing action has cost 12, and ITSA* reached a maximum
d = 71, while the neighborhood graph of PNGS with MA∗
contained some nodes up to a cost of 253 from the input
graph. It found a solution of overall cost 2217 compared to
ITSA*’s 2617.

Figures 4 and 5 show the effect of varying expansion and
distance limit using Elevators-22 as an example. The in-
put plan was generated by LAMA and has a cost of 663.
The size of the neighborhood graph in PNGS grows linearly
with the expansion limit. The growth rate of ITSA* varies
depending on the average branching factor in the explored
regions at each iteration.

Figure 5: Plan cost and nodes expanded by ITSA* with
varying d in Elevators-22.

Action Elimination
Figure 6 reports results for two configurations of ARAS that
use Action Elimination: AE represents a single run of Ac-
tion Elimination. PNGS + AE* runs PNGS and Action
Elimination alternately: AE is used before each iteration of
PNGS. MA∗ + Mbbfs are used as search methods in PNGS.
This combination works better than either AE or PNGS
alone. Running AE alternately helps to remove actions that
are no longer necessary due to reductions made by the pre-
vious iteration of PNGS. For example, if PNGS replaces a
sequence of actions s with a less expensive alternative, then
previous actions that were supporting propositions used by
s may become redundant. PNGS cannot easily identify such
redundancies since paths excluding these actions do not of-
ten hit another state in the plan; usually all nearby states in
the plan already contain the effects generated by earlier, now
redundant actions.

Table 3 lists the problem instances in which ARAS im-
proved on the best previously known results. For each prob-
lem, the cost of the best previously known plan, the cost of
ARAS’ improved plan, and the base planner whose plan was
used as the input are shown. An interesting entry in this ta-
ble is Woodworking problem 13. While the original plans
generated by the five planners had very different costs and
lengths, after running ARAS with PNGS + AE*, all of them
converged to the same cost 445, which improved on the pre-
viously best result of 555. Out of the total of 270 instances
tested, ARAS with PNGS + AE* improved the best previ-
ously published results for 60 instances.

On average, a PNGS run consists of 10 to 12 iterations
and each iteration takes 30 seconds. AE is much faster: the
average time for a single run is less than a second.

Figure 6: IPC-2008 scores of planners LAMA, ARVAND,
FF, FFsa, FFha, and C3 with ARAS versions AE, PNGS,
PNGS + AE*.

Experiment 2: IPC-2004 - ARAS vs LPG
Table 2 summarizes the results for IPC-2004 with an IPC-
2008-like metric: cost of the best plan computed in all ex-
periments divided by cost of the generated plan. ARVAND
plans were generated by a single run of the planner. LPG
results are averaged over five runs. The timeout for planning
and then postprocessing was set to 30 minutes total.

ARAS performs much better than LPG in improving the
longer plans generated by ARVAND. The results are close
for FF-generated plans, with a slight overall edge for ARAS.
LPG and ARAS have different strengths since they search
different spaces. Long plans with a large branching fac-
tor in plan space affect LPG much more than ARAS, while
a large branching factor in state space does not necessar-
ily slow down LPG’s search in plan space. Apart from the
search space, the heuristic search in LPG is better suited to



ARVAND

Postprocessor No Tankage Tankage Airport Satellite Total

None 15.26 16.20 44.6 5.01 81.07
LPG 41.43 27.22 46.53 32.43 147.62
AE 27.73 21.81 44.6 16.11 110.25
PNGS 44.26 39.98 45 23.68 152.92
PNGS+AE* 45.6 42.47 45 33.62 166.69

FF

Postprocessor No Tankage Tankage Airport Satellite Total

None 25.57 16.88 35.2 33.9 111.55
LPG 33.01 18.37 36.47 35.45 123.30
AE 26.39 16.93 35.2 34.58 113.1
PNGS 34.66 21.45 35.6 34.67 126.38
PNGS+AE* 34.81 21.45 35.59 34.98 126.83

Table 2: Combining ARVAND and FF with ARAS (AE,
PNGS, PNGS+AE*) and LPG in four IPC-2004 domains.

find global alternatives for good quality plans generated by
planners such as FF, than to finding local improvements in
a long ARVAND plan.

The results for ARVAND in Satellite are interesting. In
this domain, ARVAND generates solutions with many un-
necessary actions. LPG, focusing more on causal relations,
is much better than PNGS in removing irrelevant actions.
However, the combination of action elimination and PNGS
can beat LPG: action elimination identifies irrelevant ac-
tions while PNGS searches for shortcuts.

Conclusions and Future Work
Experiments with the two plan improvement methods im-
plemented in ARAS, Action Elimination and Plan Neigh-
borhood Graph Search, show substantial improvements of a
large variety of plans and for all tested planners. The main
limitation of both methods is that they can only find local
improvements near the previous plan. This approach is in-
effective in domains such as Cybersecurity or Openstacks.
There are many promising directions for future work:

• Find more reductions in Action Elimination.

• Adapt the search effort per node in PNGS.

• Try PNGS with multiple input plans.

• Investigate the effect of macros on plan improvability.

• Focus more on avoiding expensive actions in PNGS.

Acknowledgments
The authors wish to thank Malte Helmert for providing the
source code for FD, and the anonymous referees for their
valuable advice. This research is supported by a Provost
Doctoral Entrance Award funded by the University of Al-
berta, and by grants from iCORE, the province of Alberta’s
Informatics Circle of Research Excellence, and NSERC,
the Natural Sciences and Engineering Research Council of
Canada.

References
Aine, S.; Chakrabarti, P. P.; and Kumar, R. 2007. AWA* -
a window constrained anytime heuristic search algorithm.
In IJCAI, 2250–2255.
Ambite, J. L., and Knoblock, C. A. 2001. Planning by
rewriting. JAIR 15:207–261.
Bäckström, C. 1998. Computational aspects of reordering
plans. JAIR 9:99–137.
Blum, A., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial Intelligence 90(1-
2):281–300.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence
69(1-2):165–204.
Do, M. B., and Kambhampati, S. 2003. Improving tempo-
ral flexibility of position constrained metric temporal plans.
In ICAPS, 42–51.
Furcy, D. 2006. ITSA*: Iterative tunneling search with
A*. In AAAI Workshop on Heuristic Search, Memory-
Based Heuristics and Their Applications, 21–26.
Gerevini, A.; Saetti, A.; and Serina, I. 2008. An ap-
proach to efficient planning with numerical fluents and
multi-criteria plan quality. Artificial Intelligence 172(8-
9):899–944.
Hansen, E. A., and Zhou, R. 2007. Anytime heuristic
search. JAIR 28:267–297.
Helmert, M.; Do, M.; and Refanidis, I. 2008.
International Planning Competition-2008, Determinis-
tic Part. Available at http://ipc.informatik.
uni-freiburg.de/.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253–302.
Nakhost, H., and Müller, M. 2009. Monte-Carlo explo-
ration for deterministic planning. In IJCAI, 1766–1771.
Pohl, I. 1970. Heuristic search viewed as pathfinding in a
graph. Artificial Intelligence 1(3):193–204.
Ratner, D., and Pohl, I. 1986. Joint and LPA*: combination
of approximation and search. In AAAI, 173–177.
Richter, S., and Westphal, M. 2008. The LAMA
planner. Using landmark counting in heuristic search.
http://ipc.informatik.uni-freiburg.de/
Planners.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In AAAI, 975–982.
Upal, M. A. 1999. Learning rewrite rules to improve plan
quality. In AAAI, 984.
Veloso, M. M.; Pérez, M. A.; and Carbonell, J. G. 1990.
Nonlinear planning with parallel resource allocation. In
DARPA Workshop on Innovative Approaches to Planning,
Scheduling, and Control, 207–212. Morgan Kaufmann.



Table 3: Problems where ARAS improved the best known plans. “Best Known” is the cost of the best previously known plan generated by a planner. “ARAS” is the cost of the
improved plan. For each pair of task and configuration the base planner is shown. Multiple entries indicate that the same result was achieved for input plans from more than one
planner. “Total” (last row) show the number of tasks in which the configuration could improve on best known results.

Problem ITSA* MA∗ MA∗ + Mbbfs AE PNGS + AE* Best Known ARAS

elevators-03 -
LAMA , ARVAND LAMA , FFsa

-
LAMA , ARVAND

70 66FFha , FFsa FFha , FFsa

C3 C3
elevators-04 - C3 - - - 93 88
elevators-06 - FFha FF - ARVAND 121 86
elevators-07 - LAMA - - - 100 92
elevators-08 - LAMA , FF LAMA - FF 94 88
elevators-09 - LAMA LAMA - LAMA 101 99
elevators-10 - - - - LAMA 187 146

elevators-11
FF , FFsa FF , FFsa FF , FFsa -

ARVAND , FF
108 91

FFsa

elevators-12 - - FF - FFsa 157 130
elevators-13 - - FFha - - 186 142
elevators-14 - LAMA - - - 208 183
elevators-15 - - - - FFha 261 200
elevators-16 - - - - LAMA 287 213
elevators-17 - - - - FF , FFsa 356 238
elevators-18 - - - - FFsa 387 293
elevators-19 FF - - - - 311 297
elevators-20 - LAMA LAMA - LAMA 429 247
elevators-21 - FF - - FF 195 163
elevators-22 - - - - FF 362 312
elevators-23 - - LAMA - LAMA 321 274
elevators-24 - - - - FFha 541 439
elevators-25 - - - - FFha 571 507
elevators-26 - - - - FFha 809 547
elevators-27 - - - - LAMA 773 489
elevators-28 - - FF - FF 724 681
elevators-29 - - - - LAMA 1045 605
elevators-30 - - - - FF 769 694

parcprinter-15
FF LAMA , ARVAND LAMA , ARVAND LAMA , FFha LAMA , ARVAND

1695510 1695507FF , FFha FF , FFha FFsa , C3 FF , FFha

FFsa , C3 FFsa , C3 FFsa , C3

parcprinter-16
FF LAMA , FF LAMA , FF LAMA , FFha LAMA , FF

1675410 1675408FFha , FFsa FFha , FFsa FFsa , C3 FFha , FFsa

C3 C3 C3

parcprinter-17
FF LAMA , FF LAMA , FF LAMA , FFha LAMA , FF

1713580 1713576FFha , FFsa FFha , FFsa FFsa , C3 FFha , FFsa

C3 C3 C3

parcprinter-19 -
ARVAND , FF ARVAND , FF LAMA , FFha LAMA , FF

3353260 3353256FFha , FFsa FFha , FFsa FFsa , C3 FFha , FFsa

C3 C3 C3

parcprinter-20
FF FF , FFha FF , FFha FFha , FFsa FF , FFha 2754190 2754187

FFsa , C3 FFsa , C3 C3 FFsa , C3

pegsol-28
FFsa LAMA , ARVAND LAMA , ARVAND

-
LAMA , ARVAND

16 12FF , FFha FF , FFha FF , FFha

FFsa , C3 FFsa , C3 FFsa , C3

pegsol-29 -
LAMA , ARVAND LAMA , ARVAND

-
LAMA , ARVAND

14 11FF , FFsa FF , FFsa FF , FFsa

C3 C3 C3
pegsol-30 - C3 LAMA , C3 - LAMA , C3 25 19
transport-03 - - - - FFsa 369 357
transport-05 - - - - FFha 597 588
transport-07 - - LAMA - LAMA 1260 861
transport-08 - - - - FF 1216 947
transport-09 - - LAMA - LAMA 1001 805
transport-10 - LAMA LAMA - LAMA 1285 1083
Continued on Next Page. . .



Table 3 – Continued

Problem ITSA* MA∗ MA∗ + Mbbfs AE PNGS + AE* Best Known ARAS

transport-13
FFha , FFsa

-
LAMA , ARVAND

-
LAMA , ARVAND

1125 959FF , FFha FFha , FFsa

FFsa

transport-14 - - - - FF 2157 1513
transport-15 - - - - ARVAND 2954 2306
transport-16 - - - - LAMA 4928 3692
transport-17 - - - - FFha 4193 3826
transport-18 - - LAMA - LAMA 4151 3707
transport-19 - - - - LAMA 7648 5533
transport-20 - - - - LAMA 6773 5761
transport-23 - - - - FF 837 825
transport-24 - - FFha - - 1301 1034
transport-25 - - - - ARVAND 1833 1496
transport-26 - - LAMA - LAMA 2502 2260
transport-27 - - - - FF 3317 2917
transport-28 - - - - LAMA 3027 2867
transport-29 - - - - FFha 3294 2505
transport-30 - - - - FF 5513 5102

woodworking-03
C3 FFha , FFsa FFha , FFsa -

FFha , FFsa 620 445
C3 C3 C3

woodworking-04 - C3 - - - 835 755
woodworking-05 FF , C3 - - - FF 685 545
woodworking-07 - - - - ARVAND 1230 1070
woodworking-08 C3 C3 C3 - C3 1465 1460
woodworking-10 - - - - ARVAND 1525 1470

woodworking-13 -
LAMA , FF LAMA , FF

-
LAMA , FF

555 445FFha , FFsa FFha , FFsa FFha , FFsa

C3
woodworking-14 C3 - - - - 585 485
woodworking-15 - FFsa - - - 885 815
woodworking-18 - - - - FFha , FFsa 1310 1260
woodworking-25 C3 - - - - 650 640
woodworking-26 FF - - - - 1000 985
woodworking-27 C3 C3 C3 C3 C3 900 870
woodworking-30 - - - - C3 1605 1515

Total 15 25 29 6 60 - -



Figure 7: IPC-2008 scores of planners (LAMA, ARVAND, FF, FFsa, FFha, and C3) combined with no postprocessors (base),
ITSA*, ARAS MA∗ and ARAS MA∗ + Mbbfs . Total scores include Cybersecurity.


