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Abstract

This research compared the variability /diversity of spectral information
captured with spectrometers at the airborne, field, and leaf level to tree species
diversity. Airborne measurements were made over the North Saskatchewan River
Valley while field and leaf measurements were done with synthetic tree plots on the
roof of the Biological Sciences building, University of Alberta. Measures of optical
diversity (spectral variables), such as the standard deviation in vegetation indices,
principal components, and slope analysis, showed significant correlation to species
diversity indices. The strongest correlations (R2: ODI#3 = 0.90, ODI#6 = 0.86) were
achieved with linear models using three to five spectral variables, called Optical
Diversity Indices (ODIs). Experimental methods found that this correlation was
based primarily on variation in leaf optical properties. Additionally, rough canopies
increased optical diversity and greater spectral range improved correlations slightly.
These findings can help design operational methods for remote assessment of

biodiversity based on optical diversity.
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Chapter 1 - Introduction

Biodiversity is broadly defined as the “full variety of life on Earth” (Takacs,
1996). One of the most common ways to represent biodiversity of a local area is
species richness (alpha diversity) (Whittaker 1960, Whittaker 1972). A subset of
species richness is functional diversity (linked to genetic diversity) (Scherer-
Lorenzen et al,, 2005). Functional diversity may be of greater ecological significance
than alpha diversity because, by definition, it measures the range and value of
species traits that influence ecosystem functioning (Tilman, 2001). Maintaining a
high diversity of life is vital for ecosystem function and resilience (Tilman 1996,
Naeem 1994, Isbell et al. 2011). A number of studies have found that more species
promote higher productivity due to certain species being more productive at
different times (Yachi & Loreau 1999, Craine 2003, Tilman et al. 2006, Zavaleta
2010). A high diversity ecosystem does not always correlate to a highly productive
ecosystem because this is more related to the productivity of the dominant species
(Millennium Ecosystem Assesment, 2005). A high diversity ecosystem may be more
important since many, less dominant, species can act as “insurance” for the
ecosystem, adding resilience in the face of disturbance (Millennium Ecosystem
Assesment, 2005). From a utilitarian point of view, biodiversity/habitat
conservation is vital due to its implications on hydrology, soils, atmospheric
composition and food resources (Ghilarov 2000, Millennium Ecosystem Assessment
2005). Increasing temperature, COz levels, pollution, and habitat fragmentation
through industrialization are threatening global biodiversity and the essential goods
and services it provides (Barnosky et al. 2011, Bir et al. 2001).

Of particular interest to biodiversity studies is the diversity of vegetation,

and tree species in particular. Vegetation is the energy base of most terrestrial food



chains and creates a habitat for many species in the area (Reagan & Vaide, 1996).
Thus, the diversity of tree species is often related to the diversity of many other
organisms (Pharo & Beattie 2001, Negi & Gadgil 2002, Williams et al. 2006), which
has been called the surrogacy principle (Gamon, 2008). Because of these reasons, a
portion of conservation efforts is typically devoted to maintaining the diversity of
forests ecosystems through the creation of nature reserves, and conservation
agreements (see Canadian Boreal Forest Agreement). Human development, such as,
agriculture in tropical rainforests and resource extraction in the boreal forests are
threatening the diversity of these ecosystems (Koh & Wilcove 2008, Dyer et al, 2008,
Schindler & Lee, 2010).

Given the importance of vegetation diversity to whole-system diversity,
tracking and surveying the diversity of tree species should be a high priority.
Traditionally this has been done through the fieldwork of biologists with plot based
species counts. These counts can be turned into indices such as the Simpson and
Shannon Index to give a numerical representation of biodiversity. Recent advances
in remote sensing technology have brought about new methods to sample
vegetation diversity. These methods mainly use spectrometers that measure
reflected sunlight. The data from this is then analyzed in various ways (explained
below) and related to biodiversity. Remote sensing methods provide benefits over
fieldwork due to the area that can be covered in a short amount of time and the
unbiased nature of remote sensing data.

The remote sensing of biodiversity can be done with airborne instruments,
which spectrally distinguish species and map out the number of species in an area
(Franklin et al. 1994, Gougeon 1995, Jones et al. 2010, Féret & Asner 2012, Leutner

etal 2012, Clark and Roberts 2012). It can also be done by relating the diversity of



tree species to certain remotely sensed variables (climatic variables, and habitat
type) (Fairbanks & McGwire, 2004, Elith et al. 2006, Pearson et al. 2007, Chaves et
al, 2007, Buermann et al,, 2008, Saatchi et al, 2008).

A more recent method relates the diversity (or variability) of spectral
information to the diversity of vegetation species. This method is referred to as the
Spectral Variability Hypothesis (SVH) (Palmer et al. 2000, Palmer et al. 2002). The
SVH states that spectral heterogeneity in space should scale with species diversity
(Palmer et al. 2000, Palmer et al. 2002). The SVH or variations on it have been
tested in tundra ecosystems (Gould, 2000), prairie (Palmer et al, 2002), savanna
grasslands (Oindo & Skidmore, 2002), Mediterranean scrubland (Zutta 2003, Levin
et al 2007), tropical dry forests (Gillespie, 2005), tropical forests (Carlson et al,
2007), wetlands (Rocchini et al, 2007), woodland/marshes (Lucas & Carter, 2008),
and highland savanna (Oldeland et al, 2010). The majority of these studies found a
correlation between spectral heterogeneity and species diversity but many different
methods were used, and causes of the correlations were not fully explored.
Additionally, not all ecosystems have been tested to see if similar relationships exist.

One major ecosystem missed is the boreal forest. The boreal forest’s large
extent and major role in the carbon cycle (Schlesinger 1997, Magnani et al. 2007)
make it an important ecosystem to test the SVH. Additionally, human alterations in
climate, nutrient cycles, and land use due to industrialization are causing stresses on
boreal forest diversity (Schindler 1998, Schindler & Lee 2010). The large
seasonality, extent, and lower relative diversity in the boreal forest present new
challenges to the remote sensing of biodiversity in such forest.

Along with the incomplete testing across all ecosystems, the SVH also lacks

experimental tests and adequate explanations of the driving forces behind the



optical diversity (from now on abbreviated as “OD”)-species diversity correlation.
Experimental methods may be able to estimate whether leaf chemical properties or
canopy structure is driving spectral variability. This has been debated in the
literature. Studies such as Wessman et al. (1988), Martin & Abner (1997), Asner et
al. (2002), and Carlson et al. (2007) have found that leaf properties drive vegetation
reflectance when canopies are optically thick. Other studies have argued that
canopy structure dominates the spectral signal, and leaf chemical properties cannot
be detected with canopy level remote sensing (Knyazikhin et al, 2012). These
differing results may be a factor of the differing forest types, i.e., dense forests
(where leaf properties dominate) versus sparse forests (where canopy structure
dominates). Experimental methods may also be able to tell us if additional factors
such as tree stand roughness, and nutrient stress are contributing to additional
spectral variance.

Finally, experimental tests may also be able to help to standardize the ideal
spatial resolution, spectral resolution, and spectral range for use in biodiversity
studies. Rocchini et al. (2010) argues spectral variability is its highest (i.e. it’s easier
to discriminate species) when there are more spectral bands (larger range and more
bands within the range) and when pixel size approximates the size of the objects
under consideration. On the other hand, greater spectral resolution and range may
not be needed if the appropriate, information-dense bands can be identified
(Rocchini et al, 2010). Many studies have found that higher spectral resolution
rather than higher spatial resolution leads to a better correlation between OD and
species diversity (Nagendra et al. 2010, Stickler and Southworth 2008). Although,

these experiments compared Landsat and IKONOS, both of which do not have high



spectral or spatial resolution in the first place. These issues need to be resolved in
order to move towards an operational method of remotely sensed biodiversity.

This study attempts to further the knowledge on the remote sensing of
biodiversity with tests in the boreal forest and also experimental analysis of the SVH.
Chapter 2 attempts to test the relation of OD to species diversity with a controlled
experimental method. Additionally, Chapter 2 explores the relative importance of
leaf versus canopy properties on spectral variance, the effect of canopy roughness
on spectral variance, and the effect of variable spectral range on the OD-species
diversity correlation. These experimental methods can further the understanding of
the OD-species diversity relationship and help move towards a standardized
method of airborne/satellite biodiversity sampling. The third chapter scales up the
tests of the second chapter by surveying optical diversity in boreal forest plots with
an airborne imaging spectrometer. With guidance from previous studies (Zutta
2003, Carlson et al. 2007, Oldeland et al. 2010) various measures of spectral
diversity were tested to see if they strongly correlated to tree species diversity as

seen in Zutta (2003), and Carlson et al. (2007).
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Chapter 2 - Experimental tests of optical diversity

Introduction

The concept that optical diversity (OD) relates to species diversity was
introduced as the “Spectral Variance Hypothesis” by Palmer et al. (2000, 2002).
Versions of this have also been tested by Gould (2000), Zutta (2003), Rocchini et al.
(2004, 2007), Carlson et al. (2007) and Oldeland et al. (2010). While these studies
have all shown correlations between optical diversity and species diversity, they do
not always reveal the factors behind the correlations. It is likely that the correlation
is a function of reflectance variation at the canopy level and leaf level. The factors
affecting the canopy and leaf reflectance are outlined below.

Vegetation reflectance is controlled by physical canopy attributes, leaf
optical properties, soil properties, illumination conditions, and view geometry (Ross
1981, Goel 1988, Myneni et al. 1989, Jacquemoud et al. 1992, Curran et al. 1992).
With experimental methods, the variation in soil properties, illumination conditions,
and view geometry can be minimized, thus clarifying the role of leaf properties and
physical canopy structure on the resulting optical signal. According to the Optical
Diversity Hypothesis (Ustin & Gamon 2010), these factors can vary between species,
but they can also vary in time. This hypothesis states that optical type is a function
plant canopy structure, leaf traits (chemistry and physiology), and phenology.

While this might explain the drivers of optical diversity, this hypothesis has not
been fully tested. A challenging aspect is that species do not always produce unique
spectral signatures.

Physical canopy structure causes variable canopy reflectance through the
variable orientation of leaves and stems in three-dimensional space (Asner, 1998).

This causes differing interactions of photons through multiple scattering on
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different surfaces such as leaves, stems, and soil (Asner, 1998). This interaction of
photons can be affected by leaf area and leaf angle distribution (Asner, 1998).
Erectophile foliar types tend to trap more light in lower levels which results in
lower near infra-red (NIR) reflectance than planophile foliar types (Goel 1988,
Gitelson et al. 2002a). Tree canopy shape can also affect reflectance.

Leaf optical properties are partly controlled by the concentrations of
biochemicals and water found in the leaf (Curran et al, 1992). These cause many
major absorption features in the VIS-SWIR spectral regions (Curran et al, 1992).
The visible region is affected by three pigment types (chlorophylls, carotenoids, and
anthocyanins) (Blackburn, 2007). Chlorophylls dominate the absorption of leaf
spectra in the blue and red regions (Sims & Gamon, 2002). Carotenoids absorb in
the blue region (420-500nm) while anthocyanins absorb in the blue and green
wavelengths (Gamon & Surfus 1999, Sims & Gamon 2002, Gitelson et al. 2002b,
Gitelson & Merzlyak 2004). Water absorption affects several regions in the NIR to
SWIR (Pefiuelas et al. 1997, Curran et al. 1992). Other biochemicals, such as
cellulose, lignin and nitrogen (largely from proteins) cause absorption features
around 2100nm (Kokaly 2001, Kokaly et al. 2007,Kokaly et al. 2009). Consequently,
variation between tree species’ leaf optical properties should be controlled by their
respective water content, chlorophyll and other pigment absorption, related to
photosynthetic capacity (Teillet et al. 1997, Gamon et al. 1992), and concentration of
other chemicals (Curran et al, 1992). According to the functional convergence
hypothesis (Field, 1991), canopy structure and leaf properties have also been found
to influence each other (Ustin and Gamon 2010, Ollinger 2011). For example, leaf
nitrogen content is often associated with higher LAl and photosynthetic capacity,

affecting both leaf properties and canopy structure (Field 1991, Ollinger 2011).
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Along with variation in individual tree structure, optical properties are
affected by the overall structure of the plot in question (i.e. canopy roughness, forest
gaps, variation in biomass, and percent cover) (Colwell, 1974). Rough canopy
structure along with shadowing can increase the variance of reflectance values
across a stand or landscape (Colwell, 1974). As canopy roughness increases,
increased multiple scattering also alters reflectance (Jones & Vaughan, 2010).

In forest ecosystems, variation in canopy structure (mainly variation in LAI
and leaf angle) is a primary source of variability in optical properties, with
secondary effects of leaf optical properties (Asner, 1998). Knyazikhin et al. (2012)
argued that leaf chemical properties cannot be measured with canopy level remote
sensing because variation in physical canopy structure dominates the spectral signal.
Other studies have found that leaf properties can become detectable when canopies
are optically thick (Wessman et al. 1988, Martin & Aber 1997). More recent work
has found that, in closed canopy forests, spectral variation is dominated by leaf
biochemical properties and less affected by canopy structure (Asner et al. 2002,
Carlson et al. 2007, Clark & Roberts 2012). Consequently, the relative influence of
canopy structure vs. leaf properties on optical diversity remains an open question
(Townsend et al, 2013).

Considering all these factors, the ideal instrument, to measure spectral
variability of vegetation would be a full range spectrometer (400-2500nm) because
it can capture the full range of variation in canopy structure and leaf traits. On the
other hand, because it is known that many spectral features co-vary, using the full
spectral range might be redundant. For example, the nitrogen absorption in the
SWIR may not be needed in analysis because nitrogen has also been linked to NIR

reflectance (Ollinger et al. 2008, Martin et al. 2008). Carlson et al. (2007) and

16



Oldeland et al. (2010) found full-range spectroscopy to be very helpful in optical
diversity studies. Lucas et al. (2008) found full range measurements lead to a slight
improvement in tree species classification, but the majority of the information was
in the VIS-NIR region. To my knowledge no studies have explicitly examined the
effect of different spectral ranges on optical diversity.

The main aim of this chapter was to test the OD-species diversity
relationship with boreal forest tree species. Additionally I wanted to test the
relative effects of leaf properties versus canopy structure on optical diversity, see
how varying tree heights affect the variance of spectral indices, and explore how
increasing or decreasing spectral range effects the correlation between OD indices
and species diversity indices. Given the results seen in previous studies (Zutta
(2003), and Carlson et al. (2007)), I predicted that optical diversity would correlate
with species diversity for synthetic tree plots. The debate over the effect of leaf
versus canopy properties on overall reflectance suggests a stronger effect of leaf
properties when canopies are optically thick (Wessman et al. 1988, Martin & Aber
1997). Other studies have argued that only canopy structure affects reflectance
(Knyazikhin et al, 2012). Therefore, | hypothesized that optical diversity is
controlled by both leaf traits and canopy structure. From my knowledge of light
scattering in rough canopies, I predicted that varying tree height will increase
optical diversity. Finally, studies such as Oldeland et al. (2010) and Carlson et al.
(2007) have cited the importance of full spectral range for their results, and,
therefore, I predicted that increased spectral range will improve the OD-species

diversity correlation.

17



Methods
Study Design

This set of experiments was conducted to test the OD-species diversity
relationship and the factors controlling the relationship, specifically, the effect of:
leaf traits and canopy structure, canopy roughness, and spectral range. The general
design tested the OD-species diversity relationship while three specific experiments
addressed the specific factors behind optical diversity. To accomplish these goals,
an experimental design was established where tree seedlings could be arranged into
synthetic stands. Using different arrangements of species, low diversity plots were
spectrally compared to high diversity plots. This was done at the leaf and canopy
scale to investigate the effects of leaf traits and canopy structure on the correlation
between OD and species diversity. These plots were also arranged into rough
canopies and smooth canopies to investigate the effect of a rough canopy on OD.
This data was analyzed at different spectral ranges to investigate if increased

spectral range improves correlations between OD and species diversity.

Tree plot setup

Trees were kept in deep tree pots (used to avoid root drying) (TP 49 (10 x
24 cm), Stuewe & Sons, Tangent, Oregon, USA) with a soil mixture of two parts
potting soil (Sunshine Mix #4, Sun Gro Horticulture, Agawam, MA, USA), one part
topsoil, and 150g/60L of slow release fertilizer (Nutricote 14-14-14, Plant Products
Co., Brampton, ON). Trees were watered regularly and treated with liquid fertilizer
(Plant Prod Ultimate 20-20-20, Sure-Gro, Brantford, ON) monthly.

Plot setup was done with 1-3 year old seedlings of seven tree species (Table
2-1). Tree species were selected based upon their prevalence in the Edmonton

River Valley forest area (study area of Chapter 3). Note that one species (Larix
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sibirica) was an exotic species from the Siberian boreal forest meant to substitute
for the local larch (Larix laricina), which was not available. The synthetic plots were
arranged on a south facing rooftop (sixth floor Biological Sciences building,
University of Alberta), in a five by five tree plot (see Figure 2-1 and 2-2). Black tarps
were placed around the plot to reduce side lighting, and wind. Pots of grass were
placed around the west, north, and east edges of the plot to reduce reflectance from

the roof surface.

Table 2-1: List of tree species used in study with their age, and distinguishing traits.

Common Name Scientific Name Age (years) Distinguishing Trait
Green Ash Fraxinus pennsylvanica 1 Dense canopy

Manitoba Maple Acer negundo 1 Large leaf area

Schubert Chokecherry Prunus virginiana 2 Purple colored leaves
Trembling aspen Populus tremuloides 1 Dark green smaller leaves
White Spruce Picea glauca 2 Short needle conifer
Lodgepole Pine Pinus contorta 2 Long needle conifer
Siberian Larch Larix sibirica 3 Deciduous conifer

An

t
grasspets  spectrometer

Figure 2-1: Diagram of basic rooftop sampling design. This example shows a species
richness 6 plot. Species are labeled by their genus and species initials (Fraxinus
pennsylvanica = Fp). See Figure 2-2 for representative photo.
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Figure 2-2: Five by five tree plot, with a species richness of 5 on the south
facing roof to the biological sciences building, University of Alberta. Note
black box surrounding plot was not used in August scans, but the black cloth
was used on both dates to minimize side lighting and reduce wind.

Instrumentation

All data were collected with a full range (350-2500 nm) spectrometer (PSR
series Spectroradiometer, Spectral Evolution, North Andover, MA, USA). The
spectral range was reduced to 440-1600nm to allow comparisons with leaf level
data. Canopy scans were done by attaching a 4¢ field of view (FOV) lens to the
spectrometer. Leaf scans were done by attaching an optical fiber leaf clip (models
UNI410 and UNI501, PP Systems, Haverhill, MA), and halogen light source (Figure
2-3). In the later case, actual sampling spot size was 0.6 mm in diameter, enabling
repeatable reflectance measurements on individual leaves, including needle-leaved
conifers. Due to light attenuation by the fiber (not specifically designed for the
Spectral Evolution instrument), the leaf scans resulted in a useable spectral range of
440-1600nm (limited noise from 440-1000nm, moderate noise from 1000-1600nm.

This is due to the detectors changing from a silicon photodiode detector (range 400-
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1000nm), to two indium gallium arsenide (InGaAs) detectors (1000-2500nm). The
signal to noise ratio was much lower in the InGaAs detectors than the silicon

detector.

Spectrometer <@ T .

: - Y1 leaf Clip
Light Source a= )~ “B_ T ————

Figure 2-3: Leaf sampling procedure set up with bifurcated fiber.

Spectral measurements - canopy scans

All data was collected during the spring and summer months of 2013 (May,
June, July, August) on the sixth floor roof of the Biological Sciences Building,
University of Alberta. Canopy scans (without leaf clip) were only done under clear,
to mainly sunny, skies. White scans, using a white panel (Spectralon™, Labsphere,
North Sutton, New Hampshire, USA), were done before the first scan and after every
10 scans. The spectrometer was held approximately 180cm off the ground to give a
10cm FOV (size of one pot) and the lens was centered over the trees using a laser.
Each tree was scanned once (25 trees resulting in 25 spectra) but each scan was an
average of 10 scans for the same location (set during instrument setup). All 25 trees

were sampled in a gridded pattern starting in the northwest corner.

Spectral measurements - leaf scans

Leaf level measurements were done under clear to cloudy weather
conditions (clouds did not affect the radiation source, see Figure 2-3). White scans,
using a small white reference (Labsphere, North Sutton, NH, USA) were done before
the first scan and after every 10 trees (I attempted to use the same spot on the white

reference). Using a leaf clip, three leaves were scanned per tree. Again, each
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individual leaf scan was an average of 10 scans (set during instrument setup) and all
25 trees were sampled in a gridded pattern. The three leaf scans per tree were then
average to get a single scan per tree (25 total scans per plot). These scans were then
spectrally smoothed with a 3 band running average (after averaging the three
scans). This step helped with the noise from 1000-1600nm, and was needed to

compare leaf level slope variables (noisy) to canopy level slope variables (clean).

Biodiversity metrics computed

For each plot the species richness, Simpson Index (eq. 2-1), and Shannon
Index (eq. 2-2) were computed. The reported Simpson index was actually the
reciprocal of Simpson Index (eq. 2-1) because the reciprocal scales positively with
diversity (unlike the normal Simpson Index), and because the maximum value is the
number of species in the plot (Williams, 1964, Peet, 1974). Additionally, the log of
Simpson and Shannon Index were calculated to investigate a possible saturating

effect of optical diversity.

. . ni(n;—1)
Reciprocal Simpson Index = 1/ Zlem (2-1)

Where there are S species and n; is the number of individuals of the ith species and N
is the total number of individuals.
S#wannon Index = — Y;_, p; Inp; (2-2)

pi is the proportion of individuals from the sample total of species i.

Spectral metrics computed

For each experiment, scans were processed to percent reflectance with
processing software (DARWin SP Application Software, Spectral Evolution, North
Andover, MA, USA). 25 scans per plot of canopy and leaf scans were processed by

first calculating all spectral variables seen in table 2-2 along with the reflectance and
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derivative PCA. Principal component analysis (PCA) weightings were calculated
from the 25 scans in the highest diversity plot (SR=7). These weightings were then
applied to each plot, which resulted in a series of eight PC variables (see Appendix
A).

The selection of spectral variables (Table 2-2) was guided by the weighting
of each wavelength in the PCA and also their use in prior studies (Zutta 2003,
Carlson et al. 2007). Based on the PCA, I chose indices from the NIR region (PC1),
visible blue and red wavelengths (PC2), and green wavelengths and 1430nm water
band region (PC3) (Table 2-2). The 970nm WBI was chosen due to use in Zutta
(2003) while slope analyses at 525, 717, and 1150nm were chosen due to use in
Carlson et al. (2007) and due to their location regarding important chemical and
water absorption features. Many spectral variables were used because | wanted to
test the relative strengths (correlations) of each type (vegetation indices, PCs, and
slope analyses).

Each plot therefore had 25 spectra/scans with 23 associated spectral
variables. The 25 scans were then used to compute a standard deviation or range
value for the 23 spectral variables. This then resulted in each plot having one
standard deviation/range value for each spectral variable (see Figure 2-4 for

example with NDVI).
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Table 2-2: List of vegetation indices with their abbreviation, formula, and citation

Name

Vis/NIR indices
Gitelson’s Chlorophyll
Index

Normalized difference
vegetation index
Slope at 717nm

Slope at 680nm

Structure independent
pigment index
Photochemical reflectance
index

Slope at 550nm

Slope at 525nm

Water indices
Relative water content
Water Band Index
Slope at 1150

Abbreviation
GIC

NDVI
Slope717
Slope680

SIPI

PRI

Slope550
Slope525
RWC

WBI
Slope1150

S
I
N
IV
™y

N ~J

22121212
21212122

I EEEE

Species Richness = 6

deviation of NDVI.

Formula
R7s0/R705
(Rso0-Re80) /(Rsoo+Res0)

(R7186.-R717.4)/(718.6-
717.4)
(Res1.7-Reso.4) /(681.7-
680.4)
(Rs00-R445)/(Rs00-Reso)

(Rs31-Rs70) /(Rs31+Rs70)

(Rss1.1-Rsa9.7) /(551.1-
549.7)
(Rs26.6-Rs25.1) /(526.6-
521.1)

R1100/R1430

Rao0o/Ro70

(R1153.4-R11495) /(1153.4-
1149.5)

Source
Gitelson & Merzlyak,

1997
Sims & Gamon, 2002

Pefiuelas et al., 1995

Gamon et al,, 1992

Yu etal, 2000
Pefiuelas et al.,, 1997

Standard Deviation of NDVI = 0.035
Figure 2-4: Spectral processing method. Start with a five by five tree plot with a species richness of 6.
Through the spectral measurement method 25 scans/spectra are acquired. These scans are then
converted into a spectral variable (in this case NDVI). Using the 25 values of NDVI, a single standard
deviation value is calculated. Therefore in the end the species richness 6 plot has a 0.035 standard

At the leaf and canopy level, each variable was correlated against Simpson

Index (SI), log Simpson Index (LSI), Shannon Index (SH), log Shannon index (LSH),
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and species richness (SR). With this suite of spectral variables, optical diversity
indices (ODIs) were built by using linear models in R statistical software (R: A
language and environment for statistical computing, R foundation for statistical
computing, Vienna, Austria). Spectral variables (i.e. PC1-4, vegetation indices, and
slope variables) were selected based upon their correlation value, p-value, and
region in the spectral profile (i.e. 2 variables were not used if measuring the exact
same wavelength). ODIs were correlated against all the diversity indices and judged

based on their R2 value, RMSE value, and p-value.

Additional Analysis

To compare the effect of leaf traits and canopy structure on the OD-species
diversity relationship, the correlation (with species diversity) of leaf level spectral
variables was compared to the correlation of canopy level spectral variables. This
comparison yielded a change in correlation (delta R2) between leaf level and the
canopy level. This change in correlation was recorded for 18 spectral variables and
ODI#3.

The effect of canopy roughness was analyzed by calculating the percent
change in standard deviation or range of 18 spectral variables. This was done by
taking the standard deviation/range value of rough canopies and subtracting the
standard deviation/range value of smooth canopies. The spectral range experiment
was done by analyzing canopy level data at three separate ranges (450-1600nm,
450-1000nm, and 450-800nm). At each new range, the correlation (to species
diversity) of the PCs and ODI#3 was recalculated. Like the leaf versus canopy
experiment, the change in correlation was then recorded for PC 1-4 reflectance and

derivative and ODI#3.
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Results

Figures 2-5 and 2-6 show a representative spectral profile for the seven tree
species used in this study. Variation between species occurs throughout the whole
spectral range but the greatest absolute differences occur in the NIR/SWIR region.
The white spruce and lodgepole pine (both conifers) show lower NIR reflectance in
both the leaf level (Figure 2-6) and canopy level (Figure 2-5) measurements while
the broadleaf trees and Siberian Larch show higher NIR reflectance. Also seen is
the increased noise in the leaf level spectra above 1000nm (Figure 2-6) matching
the range of the second instrument detector. The maximum noise variation seems

to be about 5% reflectance but the general shape of the spectra is still maintained.
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Figure 2-5: Canopy level spectra of the 7 tree species used in optical diversity testing. Spectral range
400-2500nm. Done with even canopy distribution. Spectra not smoothed. Grey regions represent
areas of bad data due to water absorption and/or detector transitions.
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Figure 2-6: Leaf level spectra of the 7 tree species used in optical diversity testing. Spectral range
440-1600nm. Note noise near 1000nm (region of detector change) due to light attenuation by the
fiber. Smoothed spectra shown rather than original spectra.

Figure 2-7 relates the PCA weightings to wavelengths, providing insight into

the spectral regions with high information content. PC1 appears to be correlated to

general brightness and is particularly sensitive to the NIR region and less to the
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green (525nm) hump. PC2 is sensitive to the visible spectral range 440nm-700nm,
particularly the blue and red regions. PC3 is correlated to the green hump
(~525nm) and the water absorption feature at 1400-1600nm. PC4 does not show
any strong correlation, but did show a slight double peak near the red edge (the
chlorophyll fluorescence region; Gamon et al, 1990). With these spectral regions in
mind, I selected vegetation indices that fell in the same regions as indicated by the

PC bands.
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Figure 2-7: Correlation (R2 value) as a function of wavelength (440-1600nm) for of PCs 1-4 using
canopy-scale data.

ODI Correlation

In total, 23 spectral variables were used to analyze the correlation between
OD and species diversity at the canopy level (Table 2-3). These variables included
several vegetation indices, slope variables, and products of PCA, as described in
Methods. Of all the biodiversity indices, log Simpson Index showed the best

correlation with spectral variables while species richness showed the worst
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correlation. 13 of the 23 indices showed a significant (p<0.05) correlation with log
Simpson Index and 8 variables showed a significance of p<0.01. Taking the log of an
index did not improve results with the Shannon index as the average correlation
was higher for the linear version. The highest correlated variables to species
diversity appear to be common vegetation indices (SIPI, NDVI, and WBI) and slope
variables. These accounted for seven out of the eight most correlated variables. The
principal component method resulted in five moderately correlated variables, with
the five showing significant (p<0.05) correlations with log Simpson Index. Using the
range in slope rather than the standard deviation in slope provided better

correlations with biodiversity indices, with a 0.098 average increase in correlation.
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Table 2-3: List of all canopy level variables and their R2 value when correlated individually against
species richness, Simpson Index, log Simpson Index, Shannon Index, and log Shannon Index.
Variables listed in order from highest average R2 value to lowest R2 value. From smooth canopy
reflectance spectra. P-value for each correlation listed in parentheses.

Species Simpson Log Shannon Log Average
richness Index Simpson Index Shannon R2 value
(SR) (8))) Index (LSI) (SH) Index (LSI)
SIPIsa 0.482 0.722 0.651 0.600 0.437 0.578
(0.005) (0.0001) (0.0004) (0.0011) (0.01) (0.003)
NDVIs4 0.472 0.494 0.587 0.598 0.577 0.546
(0.006) (0.005) (0.001) (0.001) (0.001) (0.003)
525sloperange 0.436 0.610 0.609 0.574 0.461 0.538
(0.01) (0.0009) (0.0009) (0.001) (0.007) (0.004)
717sloperange 0.388 0.534 0.595 0.561 0.553 0.526
(0.02) (0.002) (0.001) (0.002) (0.002) (0.005)
WBIs4 0.559 0.532 0.508 0.519 0.397 0.503
(0.002) (0.003) (0.004) (0.0036) (0.015) (0.006)
PC1slopesd 0.358 0.545 0.558 0.513 0.429 0.480
(0.02) (0.002) (0.002) (0.004) (0.01) (0.009)
717slopesd 0.331 0.464 0.471 0.439 0.378 0.416
(0.03) (0.007) (0.006) (0.009) (0.02) (0.01)
525slopesa 0.274 0.479 0.481 0.433 0.334 0.400
(0.05) (0.006) (0.006) (0.01) (0.03) (0.02)
PC1ls4 0.317 0.445 0.429 0.399 0.350 0.388
(0.03) (0.009) (0.01) (0.01) (0.02) (0.02)
PC3slopesd 0.277 0.385 0.430 0.403 0.372 0.373
(0.05) (0.02) (0.01) (0.01) (0.02) (0.02)
PC3s4a 0.276 0.328 0.414 0.403 0.407 0.366
(0.05) (0.03) (0.01) (0.01) (0.01) (0.03)
680slopesd 0.327 0.287 0.354 0.376 0.345 0.338
(0.03) (0.04) (0.02) (0.02) (0.03) (0.03)
PC4s4a 0.169 0.252 0.343 0.324 0.369 0.291
(0.14) (0.07) (0.03) (0.03) (0.02) (0.06)
RWCs4 0.295 0.139 0.181 0.222 0.197 0.207
(0.04) (0.2) (0.1) (0.09) (0.1) (0.1)
PRIsa 0.224 0.170 0.149 0.165 0.0811 0.158
(0.2) (0.1) (0.1) (0.1) (0.2) (0.2)
1150sloperange  0.138 0.187 0.185 0.175 0.102 0.157
(0.1) (0.1) (0.1) (0.1) (0.2) (0.2)
PC2s4q 0.0639 0.0996 0.186 0.181 0.224 0.155
(0.4) (0.3) (0.1) (0.1) (0.1) (0.2)
550slopesda 0.077 0.102 0.159 0.155 0.203 0.139
(0.3) (0.3) (0.2) (0.2) (0.1) (0.2)
PC2slopesd 0.167 0.115 0.0922 0.100 0.0472 0.104
(0.1) (0.2) (0.3) (0.3) (0.5) (0.3)
1150slopesd 0.0645 0.127 0.106 0.0901 0.0405 0.0859
(0.4) (0.2) (0.3) (0.3) (0.5) (0.3)
PC4slopesd 0.166 0.0689 0.0650 0.0857 0.0314 0.0834
(0.1) (0.4) (0.4) (0.3) (0.5) (0.3)
GIC 0.00165 0.0395 0.0603 0.0374 0.04957 0.0375
(0.9) (0.5) (0.4) (0.5) (0.5) (0.5)
average 0.266 0.324 0.346 0.334 0.291

All ODIs showed the highest correlation with the log of Simpson Index.
Based on Zutta (2003), ODI#1 (Figure 2-8) used a combination of NDVIq, PRIs4, and

WBIsq which resulted in a R2of 0.71. ODI#2 (Figure 2-9) showed a slightly higher
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correlation at R of 0.75. The most highly correlated ODI in this chapter was ODI#3
(Figure 2-10). This was a combination of NDVIsq, WBIsq, SIPIsg, PC344, and
525sloperange and it resulted in a R2 value of 0.90. All ODIs listed above showed a

significant correlation (p<0.01) to log Simpsons Index.
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Figure 2-8: The relationship between ODI#1 (a Figure 2-9: The relationship between ODI#2 (a
linear combination of NDVIs4, WBIsq, and PRIsq) linear combination of NDVIsd, PC1sd, and PC3sq)
and the log of Simpson Index for 14, 5x5 tree and the log of Simpson Index for 14, 5x5 tree
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Figure 2.10: The relationship between ODI#3 (a
linear combination of NDVIsd, PC3sd, 525sloperange,
WBIsq, and SIPIsa) and the log of Simpson Index for
14, 5x5 tree plots of varying diversity.
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Table 2-4: List of ODIs with: diversity index correlated against, spectral variables used in equation,
and R?, p-value, and RMSE of correlation. Actual equations with coefficients are shown below. Bold
equations represent the ODIs shown above.

ODI Diversity Spectral variables R2 p-value RMSE
Index
1 Log Simpson  NDVIsq + WBIsa + PRIsa 0.71 0.0050 0.15
2 Log Simpson  NDVIsq + PC1sa + PC3sd 0.75 0.0020 0.13
3 Log Simpson  NDVIsda + PC3sd + 525sloperange + WBIsa+  0.90 0.0006 0.087
SIPLsa
slope  Log Simpson 524sloperange + 717slopereange - 0.76  0.001 0.13
1150510perange
PCA Log Simpson PC1slopesd + PC1sa - PC3slopesd + PC3 0.59 0.06 0.17
ODI#1 = 21.4NDVIsa + 8.844WBIsa + 16.302PRIsq - 1.23 (2-3)
ODI#2 = 25.3NDVIsa + 0.00122PC1sqd + 0.00954PC3sa - 1.17 (2-4)

ODI#3 = 13.9NDVIsa + 0.00543PC3sa + 1.09(525sl0operange) + 2.73WBIsa + 28.1SIPlsa- 1.142 (2-5)
ODlIslope = 2.468(524510perange) + 0.4425(717510p6reange) - 0.1352(1150510p6range) -0.936 (2-6)

ODIpca = 4.225PC1slopesd + 0.0026PC1s4 - 0.084PC3slopesd + 0.00151PC3 - 1.02 (2-7)
Leaflevel optical diversity

Figure 2-11 shows how leaf level PCA weightings are correlated to
wavelength. PC1 is related to NIR brightness and less to the VIS region. PC2 is
related to the VIS region, and the red region in particular. PC3 is related to the
green region (~550nm) while having a smaller relation to the red edge region. PC4
is sensitive to the water absorption from 1400-1600nm. In general, leaf level
weightings seem to be responsive to small-scale features rather than general region

brightness
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Figure 2-11: Correlation (R2 value) as a function of wavelength (440-1600nm) for of PCs 1-4
using leaf level data.

Table 2-5 shows the correlation between 18 spectral variables and species
diversity indices at the leaf level (PCqerivative 1-4 not used due to noise past 1000nm).
Log Simpson Index showed the highest correlation to leaf level optical variables
while species richness showed the lowest correlation. 9 out of the 18 variables
showed a significant (p-value<0.05) correlation with log Simpson Index and 8
showed a significance of p<0.01. Slope analysis in the green slope and NIR slope
regions had four out of the six highest correlated spectral variables. The range in
717nm slope showed the highest correlation to any biodiversity index at a R2 value

0f 0.851 (to log SI).
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Table 2-5: List of all leaf level variables and their RZ value when correlated against species
richness, Simpson Index, log Simpson Index, Shannon Index, and log Shannon Index. Variables
listed in order from highest average R2 value to lowest R2 value. P-values are shown in
parentheses.

SR SI Log SI SH Log SH Average R2
717sloperange 0.625 0.754 0.851 0.833 0.783 0.743
(0.0007) (5E-5) (2E-6) (5E-6) (2E-5) (0.0002)
717slopesd 0.750 0.585 0.436 0.571 0.591 0.590
(6E-5) (0.001) (0.01) (0.007) (0.003) (0.004)
GICsa 0.402 0.602 0.704 0.658 0.635 0.569
(0.01) (0.001) (0.0002) (0.0004) (0.0006) (0.005)
NDVIs4 0.404 0.467 0.589 0.585 0.66 0.486
(0.01) (0.007) (0.001) (0.001) (0.0003) (0.007)
525slopesa 0.612 0.484 0.345 0.364 0.174 0.480
(0.0009) (0.005) (0.03) (0.02) (0.13) (0.01)
525sloperange 0.303 0.499 0.617 0.467 0.264 0.473
(0.04) (0.005) (0.0008) (0.002) (0.04) (0.02)
PC1s4 0.244 0.433 0.549 0.505 0.518 0.409
(0.07) (0.01) (0.002) (0.004) (0.003) (0.02)
PC2s4 0.281 0.431 0.495 0.464 0.489 0.403
(0.05) (0.01) (0.005) (0.007) (0.005) (0.02)
SIPIsa 0.300 0.329 0.405 0.407 0.458 0.345
(0.04) (0.031) (0.01) (0.01) (0.008) (0.3)
PC4sda 0.103 0.234 0.252 0.220 0.244 0.196
(0.3) (0.08) (0.06) (0.09) (0.07) (0.1)
RWCsa 0.115 0.103 0.24 0.265 0.415 0.155
(0.2) (0.2) (0.07) (0.06) (0.01) (0.2)
PC3s4a 0.159 0.0645 0.128 0.161 0.159 0.117
(0.2) (0.4) (0.2) (0.2) (0.2) (0.2)
1150slopesd 0.098 0.083 0.098 0.104 0.0866 0.093
(0.3) (0.3) (0.3) (0.3) (0.3) (0.3)
WBIs4 0.0546 0.0654 0.106 0.106 0.157 0.0755
(0.4) (0.4) (0.3) (0.3) (0.2) (0.3)
680slopesd 0.0041 0.0664 0.1173 0.0924 0.147 0.0626
(0.8) (0.4) (0.2) (0.3) (0.2) (0.4)
PRIsa 0.0497 0.0544 0.0828 0.0846 0.0635 0.0623
(0.4) (0.4) (0.3) (0.3) (0.4) (0.4)
550slopesda 0.0322 0.0989 0.0405 0.0270 0.00945 0.057
(0.53) (0.3) (0.5) (0.6) (0.7) (0.4)
1150sloperange  0.0000 0.0049 0.0004 0.00029 0.000145 0.0018
(0.9) (0.8) (0.9) (0.9) (0.9) (0.9)
average 0.252 0.297 0.337 0.328 0.325

Leaf optical diversity versus canopy optical Diversity

Figure 2-12 summarizes the change in correlation value from canopy to leaf
level scans. 11 out of the 18 spectral variables showed higher correlation in canopy
measurements. Common vegetation indices (SIPI, NDVI, WBI, PRI) all showed
better correlation in canopy scans. Slope analysis in the green and red slope regions
(525nm and 717nm) show higher correlation at the leaf level. Variables such as GIC

and PC2 showed a much higher correlation in leaf level scans due to the fact that
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there was nearly no correlation at the canopy scale. Figure 2-13 shows ODI#3
correlated against log Simpson Index at the leaf and canopy scale. The canopy level

ODI results in a R2 of 0.90 while the leaf level ODI results in an R2 of 0.80.
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Figure 2-12: Change in average R2 value between canopy and leaf level scans for
all vegetation index seen in Tables 2-3 and 2-5.
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Figure 2-13: ODI#3 at the leaf and canopy scale. Red points represent leaf
level data while blue points represent canopy level data.

Variable canopy height

Figures 2-14 and 2-15 demonstrate that spectral variance increases when
canopy height is uneven. The uniform height canopy shows a low standard
deviation around the average, from 40-60% reflectance in the NIR. The variable
height canopy shows a high standard deviation around the average, from 20-60%
reflectance in the NIR. Figure 2-16 shows the weighting of the principal component
bands with uneven canopies. In general, it seems to be very similar to the even
canopy PCA weightings. It does appear to be less sensitive to small absorbance
features (i.e. the humps in the VIS region of Figure 2-7). The only major difference
between Figure 2-7 and Figure 2-16 is the lack of the green region in PC3. Figure 2-

17 shows 15 out of the 18 spectral variables show higher variation in uneven
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canopy scans. The only variables with higher variance in uniform canopy scans were

three slope variables.
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Figure 2-14: Average spectrum (black) with one
standard deviation below and above the average
(green) for a SR=1 plot with a uniform canopy.
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Figure 2-15: Average spectrum (black) with one
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Figure 2-16: Correlation (R2 value) as a function of wavelength (440-1600nm) for of PCs 1-4 using

uneven canopy data.
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a non-uniform canopy and a uniform canopy. Greater deviation in non-uniform canopy
shown in blue and greater deviation in uniform canopy shown in red.

Spectral range

Reducing the spectral range to the range of silicon photodiode
spectrometers (400-1000nm) did not show any major change in the correlation of
PC variables (Figure 2-18). The change in R2 value for ODI#3 between the two
ranges is mainly due to the loss of the 1400-1600nm water band used in PC3. The
only loss of information when decreasing spectral range from 400-1600nm to 400-
1000nm is limited to RWC, 1150slope, and one part of PC3. When reducing the
range to 400-800nm, PCs 1 and 3 were seen to have a moderate drop in correlation
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(about 0.2) while PC2 increased its R2 value by 0.3 (Figure 2-19). There was little
change in the PCgerivative Variables, except for PC4qgerivative, Which increased in
correlation by 0.369 when moving to 400-800nm range. ODI#3 dropped correlation
by 0.14 when using the 800nm range mainly due to the loss of WBI in the linear
equation. Note that that these results were only analyzed up to 1600nm and
therefore we cannot analyze the change in correlation for a true “full range”

detector (range 400-2500nm).
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Figure 2-18: The change in correlation (species Figure 2-19: The change in correlation (species
diversity and optical diversity) when the spectral diversity and optical diversity) when the
range is changed from 400-1600nm to 400- spectral range is changed from 400-1600nm to
1000nm. Blue indicates higher correlation using 400-800nm. Blue indicates higher correlation
the 400-1600nm range while red indicates higher using the 400-1600nm range while red indicates
correlation using the 400-1000nm range. higher correlation using the 400-800nm range.

Discussion
Spectral variation hypothesis (Canopy)

This research shows that the majority of vegetation indices, slope variables,
and principal component variables tested show a significant correlation to
biodiversity variables. The highest correlated of these spectral variables were

vegetation indices and slope variables. This indicates that absorption features used
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to measure vegetation function may be useful for optical diversity studies.
Additionally, most of these variables had the highest correlation with log Simpson
Index. This may indicate that there is a saturating effect associated with optical
diversity although the OD relationship with Shannon Index does not show this
saturating effect. Therefore, the shape of the relationship between OD and
biodiversity indices may depend on the biodiversity index used.

This experiment supports the SVH and, with the suite of variables used, it
shows the SVH methods can be assessed many ways. These methods include: the
standard deviation of principal components of reflectance spectra (Rocchini et al.
2004 and Oldeland et al. 2010), the standard deviation of principal components of
derivative spectra, the standard deviation or range in slope of absorbance features
(similar to Carlson et al, 2007), and the standard deviation of vegetation indices
(Zutta, 2003). All these methods yielded at least two spectral variables that showed
significant correlation (p<0.05) with biodiversity variables. The most promising
method may be to combine these various approaches as seen in ODI#3. This used
the highest correlated variables from each method (combined in a linear model) and

yielded a total correlation of R2 0.90 with log Simpson Index.

Leafversus Canopy effects on optical diversity

My hypothesis on the effects of leaf versus canopy structure states that part
of optical diversity should be affected by leaf traits and part should be affected by
canopy structure. Vegetation reflectance is influenced by optical leaf level
properties, leaf area, leaf orientation, supporting structure orientation, background
reflectance, viewing geometry, and solar geometry (Colwell, 1974). Because the
experimental design minimized the variation in background reflectance, viewing

geometry, and solar geometry, variation in canopy reflectance should primarily be a
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function of variation in leaf properties and canopy structure while variation in leaf
reflectance will be a function of leaf properties. If my hypothesis is correct,
correlation between optical diversity and species diversity should be higher at the
canopy level since canopy reflectance is a function of leaf reflectance plus other
structural canopy level variables. The conclusions about this hypothesis are
outlined below.

Slope variables at 525 and 717nm appear to refute my hypothesis of a
greater correlation with diversity at the canopy scale (Figure 2-12). This is because
the correlation between the spectral variables and species diversity is reduced
when moving from leaf level to canopy level data indicating a negative effect of
canopy structure on the OD-species diversity correlation. These regions represent
promising areas for biodiversity detection since they are correlated to species
diversity at both the leaf and canopy scale (Carlson et al, 2007). Because the
correlation is less at the canopy scale, the effect of varying canopy structure is
limiting the ability of these indices to detect optical diversity. The other three
spectral variables with lower correlation at canopy scale are likely not suitable
indices for biodiversity monitoring since they have little correlation at the canopy
scale (except PC1, which has virtually no change in correlation)

In the case of the other 11 spectral variables, there is an increase in
correlation at the canopy scale (Figure 2-12). These variables support my
hypothesis that optical diversity is a combination of leaf and canopy structure traits
because canopy level data increases the ability to detect variation in optical
diversity. Leaf scans likely have the ability to distinguish between physiologically
different species such as white spruce and trembling aspen. However, when there

are seven species, leaf-level scans likely cannot differentiate between spectrally
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similar species (e.g. Manitoba maple and three green ash). Canopy scans can more
effectively differentiate these due to the additional influence of contrasting canopy
structure (e.g. LAl and mean leaf angle (MLA)) (Asner, 1998), which can be
estimated through NDVI, SIPI, PC1, and WBI.

Under the conditions of this study, it appears that the majority of the
correlation between OD and species is controlled by variation in leaf properties.
Figure 2-13 shows leaf level correlation (R2 = 0.80) is very similar to canopy level
correlation (R2 =0.90) (using ODI#3). The variation in leaf level traits or their
expression via canopy structure, seen in the 0.80 correlation, is likely a major
constituent of the 0.90 correlation seen at the canopy level (hypothetically, a
combination of leaf traits and canopy structure). Note that this conclusion may not
apply to more complex and less optically thick canopies as seen in the next chapter.
The percentage of canopy versus leaf variation also depends on which optical
variables are used in the ODI equation. For example, if more slope variables are
used, it is likely the role of leaf traits will increase even more.

These findings are consistent with the findings of other studies from other
biomes. Carlson et al. (2007) found that the variation in leaf level properties could
be seen from canopy imagery by calculating the variation in the slope of chemical
and water absorbance features. This chapter also showed that the slope of
absorbance features was useful for estimating the variation in leaf properties
(although varying canopy structure does slightly limit that ability). The majority of
my spectral variables and ODIs showed that optical diversity is controlled by both
leaf properties (to a larger degree) and canopy structure (lesser degree). Early work
by Asner (1998) initially showed variability of vegetation reflectance was primarily

related to canopy structure. As more ecosystems were explored, it was found that
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as canopies became optically thick, the role of variation in leaf properties became
more important (Asner et al. 2002, Carlson et al. 2007, Clark & Roberts, 2012). This
conclusion agrees with this study since the canopies of this experiment were

densely packed and my correlations were primarily attributed to leaf properties.

Canopy height effects

Figure 2-17 clearly shows that uneven canopy structure leads to an increase
in OD when compared to the same plot with an even canopy structure. This is likely
due to increased shading and increased multiple scattering in the uneven canopies
(Chen et al, 1999). This directly affects optical variables such as PC 1-4 since these
variables are subject to brightness changes (particularly PC1). Brightness changes
will also increase variation in slope and ratio based variables since it has been found
that shaded trees will have higher NIR/RED ratios than sunlit trees (Chen et al,
1999) due to higher multiple scattering in the NIR compared to the RED region.
Similarly, Danson (1995) found the position in the canopy (i.e., shaded or not
shaded) caused substantially different spectral signatures of species. These results
give insight into which optical variables are useful for measuring plot level canopy
structure (i.e., canopy roughness). Based on Figure 2-17 and the weightings in
Figure 2-7, the standard deviation in PC1 is best suited for measuring plot level
canopy structure, due to its ability to detect variation in sun exposure, canopy gaps,
and general brightness (although more weighted towards NIR brightness).

These results showed that plot level canopy structure (canopy roughness)
plays a large role in optical diversity. Fortunately, increased canopy roughness
tends to correlate to increased species diversity because different species grow at
varying rates (Denslow, 1987). Therefore, variation in tree height (plot level

structure), along with physiology, plant structure, and phenology, could be an
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additional factor in determining optical diversity. Consequently, optical diversity
may be related to functional diversity rather than species diversity per se. Optical
diversity may also be a factor of spatial heterogeneity (Rocchini, 2007), which is
then secondarily related to functional/species diversity. Experimental tests of the
surrogacy hypothesis (Gamon, 2008) would be needed to resolve these issues.
Optical diversity is likely capturing significant functional differences in plot level

structure (spatial heterogeneity), physiology, plant structure, and phenology.

Spectral range

Changing spectral range was shown to have an effect on the ability of
spectral diversity to detect species diversity. When reducing the range from 400-
1600nm to 400-1000nm PC3 was the only spectral variable significantly affected
while the correlation in ODI#3 was reduced by 0.06 mainly due to the loss of 1400-
1600nm in PC3. Two spectral variables were lost with this change (RWC and
1150slope) but these variables were not highly correlated to species diversity.

Reducing the spectral range even further, to 400-800nm, caused the
wavelength weightings to change in the PCA. Thus, correlations between PC 1 and 3
and species diversity were reduced while the correlation with PC2 was increased.
This change in PC3 plus the loss of WBI in the linear equation resulted in decreased
the correlation of ODI#3 by 0.16. In general, increased spectral range does increase
the ability to detect optical diversity by increasing the number of spectral regions
that can be used to discriminate plant species (Oldeland et al. 2010, Palmer et al.
2002). Conversely, it appears much of the information needed, in the 400-1600nm
range, may be in the VIS and NIR regions as seen with the analysis at 400-800nm
and 400-1000nm. Although it should be noted that I did not analyze the full range

(400-2500nm) and this region may be an area important for distinguishing some
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species and thus increasing optical diversity. Lucas et al. (2008) found similar
results to this study in that most tree species could be identified with VIS-NIR data
and adding SWIR data slightly improved the classification. This may not be the case
for all optical diversity studies and may vary between ecosystem types.

Other studies on the remote sensing of biodiversity (Carlson et al. 2007,
Oldeland et al. 2010, Lucas & Carter 2008) have used full range spectrometers (400-
2500nm) in their analysis. Carlson et al. (2007) cites the need for the water
absorption feature at 1201nm and the nitrogen absorption feature at 1523nm as a
reason for using full range while Oldeland et al. (2010) states covering all spectral
regions is a key factor when relating OD to species diversity. It is not yet know if the
cost of additional spectral range is worth the improved results. Additional range
should improve correlation, but the degree to which it improves the correlation may
depend on the ecosystem in question. Future studies could hopefully extend the
range to 400-2500nm (not done in this research) and test the effect of incrementally

reducing the spectral range.

Conclusions

This study shows that the variance in spectral variables is correlated to
species diversity. More than half the spectral variables used showed a significant
correlation with species diversity. When used in a linear model, these ODIs correlate
very strongly to species diversity (R2>0.7). The results on leaf versus canopy effects
showed that these ODIs are primarily controlled by variation in leaf properties. Itis
likely that as canopies become more complex, the importance of canopy structure in
detecting diversity will increase. The tree height experiment showed that increased

canopy roughness increases the variance in spectral indices while the spectral range
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test showed that increasing the spectral range (to 1600nm) does slightly improve
correlations between OD and species diversity although tests to the full range (400-

2500nm) were not analyzed.
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Chapter 3 - Assessing species diversity of boreal forest trees with imaging
spectrometry

Introduction

Chapter 2 has shown that optical diversity does correlate to species
diversity in a controlled experimental setting. This chapter focuses on scaling up
this method to work on an airborne platform over real world forest canopies. This
scaling up of airborne biodiversity assessment is important because traditional, plot
based sampling methods of biodiversity are often not spatially extensive or frequent
enough to meet either modern management or conservation needs. Traditional
measures of biodiversity, such as species richness, Shannon Index (Shannon, 1948),
and Simpson Index (Simpson, 1949), are common metrics of biodiversity but every
index has its weaknesses and criticisms (Goodman 1975, Peet 1974), and may not
be practical on a large scale. Measuring the status of biodiversity with remotely
sensed data offers an alternative way to gather this information over large areas
(Turner et al.,, 2003).

Many airborne and satellite methods can be used to remotely sense
biodiversity. One path is to indirectly relate biodiversity to spectral variables and
other remotely sensed variables (i.e. climatic) (Fairbanks and McGwire, 2004, Elith
etal 2006, Pearson et al. 2007, Chaves et al, 2007, Buermann et al., 2008, Saatchi et
al, 2008). One of the more common approaches has been to map species, and
species assemblages using classification methods. With the development of
airborne LiDAR and imaging spectrometers having high spectral range and high
spatial resolution, classification of tree canopies has been advancing quickly. Recent
studies have shown promising results by differentiating species based upon their

unique spectra effected by varying leaf area index, leaf angle and chemical
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composition (Jones et al. 2010, Féret & Asner 2012, Colgan et al. 2012, Leutner et al.
2012, Clark and Roberts 2012). The classification technique seems to be one of the
most promising methods because it provides a direct identification of species. On
the other hand, this method still often requires ground based reference data to
properly classify tree species and classification also becomes more difficult with
mixed pixels (Rocchini et al, 2013). Consequently, this method may not be readily
applicable to large areas.

Another approach to remotely sense biodiversity is to relate the variation in
spectral information content (spectral diversity) to species diversity. While this
method is not a direct measure of species identity, like classification mapping, it can
provide a “first filter” estimate for patterns of biodiversity (Rocchini et al, 2010).
This concept was proposed by Palmer et al. (2000, 2002) as the Spectral Variance
Hypothesis, which states that spectral heterogeneity in space should scale with
species diversity. Many variations of this theme have been successfully explored
including the ODIs seen in Chapter 2. Several studies have correlated the standard
deviation of a single spectral variable to species diversity (Chapter 2, Gould 2000,
Oindo and Skidmore 2002, Gillespie 2005, Lassau et al. 2005, Levin et al. 2007).
Similarly, Zutta (2003) showed that variation in a combination of indices (NDVI, PRI,
and WBI) correlated with species richness for shrub-dominated Mediterranean
ecosystems. Lucas and Carter (2008) also used the variation in various indices to
predict species richness in a wetland ecosystem. In this case, correlations between
index variation and species diversity did not hold across all sites. Other studies
have used the distance from a spectral centroid relating to species diversity
(Rocchini et al. 2007, Oldeland 2010). Carlson et al. (2007) showed that the range in

slope of spectral absorption features strongly correlates to tree species richness.
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Additionally, Chapter 2 showed strong correlations (R2 = 0.90) between optical
diversity indices and species diversity for controlled experimental plots.

Some of the studies above, have seen the use of vegetation indices for
biodiversity monitoring and Chapter 2 has shown that the standard deviation of
vegetation indices show some of strongest correlations to species diversity (NDVIsq
R2=0.58, WBIsa R2 = 0.51). The normalized differential vegetation index (NDVI)
(Rouse et al, 1973) is derived from red and NIR radiance or reflectance (Teillet et al,
1997). Depending on the application, it can be used to approximate photosynthetic
activity, green canopy structure, and green biomass (Teillet et al, 1997). The
photochemical reflectance index (PRI) uses two wavelengths in the green region to
monitor changing photosynthetic light-use efficiency related to the xanthophyll
cycle pigment conversion (Gamon et al. 1992, Pefiuelas et al. 1995) or seasonally
shifting pigment pool sizes (Sims & Gamon 2002, Stylinski et al. 2002, Filella et al.
2004 & 2009, Garrity et al. 2011). The water band index (WBI) uses the water
absorption feature in the NIR region to indicate the water content in the fine tissues
of the canopy (Pefiuelas et al, 1993, Sims & Gamon 2003). These spectral regions
are all areas of high information content (Thenkabail et al, 2004) and provide
simple summaries of this information. Because different plant species and
functional types vary in their structural and physiological properties (Ustin &
Gamon, 2010), these indices can also add information useful in interpreting
functional diversity.

Despite these recent successes, this research lacks a unified theory
explaining how optical diversity detects biodiversity. Chapter 2 did help clarify this
by predicting that the OD-species diversity relationship was largely driven by

variation in leaf traits, although I also concluded that real world canopies may not
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follow this trend due to complex canopy structure and variations in canopy
openness. From past studies, using airborne methods, it is known that spectral
variance at the canopy level is mainly caused by variation in canopy structure,
including leaf area and mean leaf angle, although as canopies become more optically
thick and LAI increases the role of canopy chemistry is increased (Asner, 1998). Itis
also not known if the methods that work in one ecosystem will also work in another
(mainly due to large phenology in temperate ecosystems); most emphasis has been
on tropical ecosystems, with less emphasis on northern latitudes. Additionally, there
is no universally accepted method of biodiversity sampling in the field, with
multiple metrics and sampling methods in use (Peet, 1974). Until these issues are
resolved, large scale remote sensing of biodiversity will be problematic.

To my knowledge, remote sensing methods of assessing diversity have not
been widely tested in the boreal biome, a region of relatively low diversity
compared to the tropics. Parviaininen et al. (2009) tested remote sensing methods
in the boreal forest of Europe but these correlations were limited to relating
maximum NDVI to species richness. The prospect for rapidly increasing human
disturbance combined with climate change threatens to further alter boreal
diversity (Dyer et al, 2008, Schindler & Lee 2010), making boreal biodiversity
assessment an emerging priority. Using remote sensing methods to do this is
particularly important since the boreal forest covers such a large area. The
relatively low diversity and large phenological changes in boreal forests distinguish
them from tropical forests, where most current efforts have been focused.

With improving instrumentation, the trend with the remote sensing of
biodiversity appears to be moving to high quality spectral data covering a full

spectral range (400-2500nm) (Carlson et al. 2007, Oldeland et al. 2010). Carlson et
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al. (2007) used low noise, high spectral range data and took advantage of this by
using slope analysis over the full spectral range (400-2500nm). However, the cost
of the high-end instruments are beyond the means of most individual investigators
or research programs, and their availability is limited to a few well-funded
programs - i.e.,, APEX (Itten et al, 2008), NEON (Kampe et al, 2010), and the
Carnegie Airborne Observatory (Asner et al., 2007) - limiting more widespread
testing of the optical diversity. On the other hand, a number of new, inexpensive
silicon photodiode-based instruments are also emerging that provide a more limited
spectral range and lower signal-to-noise, but at about two orders of magnitude
lower cost.

This study applied airborne imaging spectrometry to examine biodiversity
in the mixedwood boreal ecosystem of Edmonton, Alberta, Canada. My hypothesis
was that variation in optical signatures (indices or spectral reflectance) detectable
by imaging spectrometry would scale with species diversity, as hypothesized in the
Spectral Variation Hypothesis (Palmer et al. 2000). The main goal was to see if the
relationships between OD and species diversity, found in chapter 2, would scale up
to airborne data with real world forest canopies. A secondary goal was to see how
well an inexpensive, silicon photodiode imaging spectrometer could capture

variations in boreal forest biodiversity.

Methods
Biodiversity Sampling

This study covered forested regions along the North Saskatchewan River
Valley of Edmonton, Alberta. This is a city park system with typical mixedwood
boreal tree species such as Populus tremuloides (Trembling Aspen), Betula

papyrifera (White Birch), Pinus banksiana (Jack Pine), Picea glauca (White Spruce),
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Pinus contorta (Lodgepole Pine), Fraxinus pennsylvanica (Green Ash), Acer negundo
(Manitoba Maple) (City of Edmonton, 1992). Since this park is situated within an
urban area, non-native species are also found (City of Edmonton, 1992).
Consequently, the river valley can have higher plant species diversity than many

other mixedwood boreal habitats.

0 2
= === Kilometers N

Figure 3-1: 10 River valley plots. In Kinsmen Park/University (top) and Fort Edmonton Park area
(bottom). Yellow squares are the 30 x 30m sampling areas (Courtesy Google Earth, 2013).

Field sampling was done during the summer of 2012 (1 year after the
remote sensing data was acquired). This may affect the analysis but changes to
forest composition take place over a much larger time period (Bergeron & Dubuc,
1989) and therefore any changes are likely very small. The two sampling locations
were Kinsman Park/University area (53°31'42.93”N 113°30°51.44”W) and Fort
Edmonton Park area (53°29°44.65”N 113°35’15.55”"W) (Figure 3-1). To survey for

diversity, areas of continuous forest cover within the flight path were identified
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from the imagery. Additionally, one area of mown lawn was chosen as a low
diversity site. While it is know that lawns are often a mixture of several species of
grasses, this site was treated as a single-species monoculture because individual
species were not easily identifiable in this mown field. It was included as a base
(low point) for the correlation since forest plots with a species richness of one are
very rare. From this area, several sampling plots were chosen based upon
accessibility, continuous canopy cover, and relatively level terrain. For each plot,
four corners were marked with flagging tape (to form a 30x30m, or 900m2 plot) and
each corner had its GPS coordinates recorded. This size of plot was chosen because
previous studies (Carlson et al, 2007 and Oldeland et al, 2010) have shown, on
average, this size range yields better results. Because the GPS error was
approximately 5m, a centroid was generated for each plot, and plots were then
located in the imagery based on the assumption of a 30x30m square plot around
each centroid. Based upon image inspection, the actual error appears to be 1-2
meters. Within each plot, each species visible in the upper canopy (no understory
species) was recorded. For the forest plots, this method emphasized taller plants,
typically over two meters in height, and did not include the understory vegetation,
or other non-tree species. Consequently, the field biodiversity measurements

emphasized dominant trees, and not the total biological diversity of each site.

Image Processing

(See Appendix B for detailed methods)

All project imagery was acquired on August, 8%, 2011 using an imaging
spectrometer (MicroHyperspec, Headwall, Fitchburg, MA, USA) with a nominal

spectral range of 400-1000 nm. The instrument was flown on a fixed-wing aircraft
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(Cessna 310) from a height of approximately 1341 m and a speed of 62 meters per
second, yielding a resolution (pixel size) of approximately 1m on the ground.

To process the raw radiance data into spectral reflectance, several steps
were taken. First, a flat field correction was done to remove patterns inherent in the
detector array (Roberts et al,, 1986). Next the images were georectified to remove
geometric distortions and the images were georeferenced so plots could be found in
the image. An initial spectral calibration was applied using a factory calibration
from the vendor (Headwall, Fitchburg, MA, USA). A final spectral adjustment was
then added using the 760nm oxygen band as a reference point (Richards, 2013).
The images were then corrected to reflectance with an empirical linear correction
(Roberts et al, 1985) that used 9 x 9 m white, grey and black reference tarps
(Odyssey, J.Ennis Fabrics LTD., Edmonton, AB, Canada) placed in the flight path on
the ground as references. For this correction, the spectral reflectance of these tarps
was determined with a dual-channel spectrometer (UniSpec DC, Amesbury
Massachusetts, USA) that was cross-calibrated using a white reference standard
(Spectralon™, Labsphere, North Sutton, New Hampshire, USA). To reduce the size of
the data and avoid noisy spectral regions, the spectral dimension of the images was
reduced to 400-900nm (the bands with acceptable signal-to-noise) (See Figure 3-2).
To reduce the remaining noise, an ENVI spatial smoothing filter was applied, with a
3x3 filter size and a multiplicative noise model of 0.25 (see Lee, 1980 for details).
Finally a mask was applied which eliminated any pixels with NDVI values below 0.3

(non-vegetated) to avoid any edge effects of nearby paths.
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Figure 3-2: Sample spectra of typical forest pixels (Range 400-900nm) with PRI and NDVI wavelengths
(equations 3-1 and 3-2) shown with arrows. Pixel spectra taken from forest North of the University of
Alberta Campus (See Figure 3-1). Note the increased noise towards 900. Spectra have been smoothed
as described in the methods.

Vegetation & ODI Index Calculation

A modified NDVI was calculated from reflectance images using equation 3-1
(Gitelson and Merzlyak, 1997) in image processing software (ENVI, Exelis Visual
Information Solutions, McLean, VA, USA). This version was used rather than more
common red and NIR NDVI wavelengths (Rouse et al., 1974) because of the
increasing noise towards 900nm (Figure 3-2), and because of the demonstrated
sensitivity of these wavelengths to chlorophyll content (Gitelson & Merzlyak, 1997).
PRI was calculated from equation 3-2 (Gamon et al, 1993), providing an indicator of
chlorophyll:carotenoid ratios (Sims & Gamon 2002, Stylinski et al. 2002, Filella et al.

2009, Garrity et al. 2011).

NDVI = (R750 — R705)/(R750 + R705) (3-1)
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PRI = (Rs31 — Rs70)/(Rs31 + Rs70) (3-2)

For each plot, the standard deviation of NDVI, and PRI were calculated in
ENVIL. NDVI and PRI were calculated for every pixel and then the standard deviation
(of the plot) was calculated by using the 900 pixels per plot. These standard
deviation values were then compared to species richness, reciprocal Simpson Index

(eq- 3-3), and Shannon Index (eq. 3-4).

. . ni(n;—1)
Reciprocal Simpson Index = 1/ Zlem (3-3)

Where there are S species and n; is the number of individuals of the it species and N
is the total number of individuals.

S#wannon Index = — Y;_, p; Inp; (3-4)
pi is the proportion of individuals from the sample total of species i.

Using statistical software (R: A language and environment for statistical
computing, R Foundation for Statistical Computing, Vienna, Austria), the variables of
standard deviation of NDVI (NDVIs4), and standard deviation of PRI (PRIsq), were
combined in a linear model and correlated against Species Richness (SR), Simpson
Index (SI), and Shannon Index (SH) (ODI#4). ODI numbers are continued from the
previous chapter. The models were evaluated based upon their R2 value, RMSE and
p-value.

As an alternate method to the index-based approach, an ODI based upon a
principal components analysis was also used. To calculate the principal components,
the largest, most diverse, continuous forested area in the study area (top photo of
Figure 3-1) was used to calculate the weighting for each wavelength in ENVI. These
weightings were then applied to each of the 10 plots and principal components
(PCs) 1-10 were calculated for each plot. The standard deviation of PCs 1-3 were
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then calculated by using the 900 pixel values of PCs 1-3 from each plot to geta
single standard deviation value for each plot. Similar to the previous index method,
the variables PC1sq, and PC2s4 were put into a linear model (ODI#5) and judged by
R2, RMSE and p-value. As a final method, the principal component method was
combined with the index method in a linear model and, assessed by Rz, RMSE and p-

value (ODI#6).

Results

The ten river valley plots had species richness values varying from 1-13
(Table 3-1). Simpson Index values ranged from 0.5-8.5 while Shannon Index
ranged from 0-3.23 (Table 3-1). Most plots contained typical mixed wood boreal
ecosystem species such as Populus tremuloides, Picea glauca, Betula papyrifera, and
Pinus banksiana but since this is an urban environment many plots, especially the
higher diversity locations, contained many atypical boreal tree species. The most
representative plot for a mixedwood boreal is likely plot ten, as four out of the six

species are typical boreal species.

63



Table 3-1: List of all 30x30m plots used with their biodiversity values, species, and centroid latitude

and longitude.

Plot SR
1 6
2 5
3 8
4 5
5 1
6 12
7 13
8 3
9 8
10 6

SI
3.214

2.348

5.411

3.96

0.5

6.761

8.511

1.595

5.04

4.625

SH
1.908

1.382

2.599

2.018

3.029

3.23

0.981

2.479

2.264

Species

Populus tremuloides, Populus trichocarpa,
Acer negundo, Tilia Americana,

Quercus rubra, Prunus pensylvanica
Populus tremuloides, Populus trichocarpa,
Acer negundo, Ulmus Americana,

Picea glauca

Populus tremuloides, Populus trichocarpa,
Acer negundo, Betula papyrifera,

Betula occidentails, Picea glauca,

Cornus stolonifera, Acer pensylvanicum
Populus trichocarpa, Acer negundo,

Picea glauca, Sorbus Americana,

Prunus pensylvanica

mowed Unidentified grass species

Populus trichocarpa, Acer negundo,
Sorbus Americana, Picea glauca,

Tilia Americana, Populus tremuloides,
Betula occidentails, Sorbus albus,

Prunus pensylvanica, Crataegus douglasii,
Prunus virginiana, Fraxinus pennsylvanica,
Populus trichocarpa, Sorbus Americana,
Picea glauca, Tilia Americana,

Populus tremuloides, Betula papyifera,

Populus balsamifera, Fraxinus pennsylvanica,

Crataegus douglasii, Cornus sericea,
Prunus pensylvanica, Ulmus Americana,
Caragana arborescens

Populus tremuloides, Sorbus aucuparia,
Acer negundo,

Populus trichocarpa, Abies balsamea,
Populus balsamifera, Pinus banksiana,

Populus tremuloides, Fraxinus pennsylvanica,

Crataegus douglasii, Betula occidentails,
Populus tremuloides, Populus trichocarpa,
Pinus banksiana, Prunus pensylvanica,
Betula papyifera, Acer pensylvanicum

Centroid location

53°31'45.45"N,
113°31'4.97"W

53°31'43.64"N,
113°30'52.67"W

53°31'39.33"N,
113°30'46.04"W

53°31'37.58"N,
113°30'54.92"W

53°31'45.25"N,
113°31'2.03"W
53°31'46.78"N,
113°31'11.81"W

53°31'46.68"N,
113°31'10.40"W

53°29'45.38"N,
113°35'12.86"W
53°29'52.46"N,
113°35'34.13"W

53°29'45.70"N,
113°35'33.76"W

The ability of optical diversity to depict species diversity can be visualized in

Figure 3-3, showing the spatial patterns of NDVI and PC1 for two plots of different

species diversity. In the NDVI images, the SR3 plot has a relatively uniform NDVI

pattern, while the SR 6 plot shows much more spatial variation. PC1 of the species

richness 6 plot also clearly shows more spatial variation than the SR 3 plot, with a

more speckled pattern in the SR 6 plot.
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Low Diversity Moderate Diversity
Species Richness 3, 0DI#3=4.4 Species Richness 6, O0DI#3=7.9

NDVI

PC1

- |
Figure 3-3: Two contrasting vegetation plots in the Fort Edmonton park area (the top image is a
100x100m image with the 30x30m plot outlined in yellow while the rest of the images are 30x30m
plots). The left panel is plot#8 (see Figure 3-1) and has a species richness of 3 while the right panel
is plot 10 (see Figure 3-1) and has a species richness of 6. The middle panel is NDVI and the bottom
panel is the first principal component of variation (red values represent high PC1/NDVI values and
blue represents low PC1/NDVI values).
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The standard deviation of NDVI, and PRI each had a positive linear relation
with species richness, Simpson Index, and Shannon Index. Shannon Index showed
the strongest correlation with both NDVI (0.74) and PRI (0.553) (Figures 3-4 and 3-
5). Results of ODI tests are listed in Table 3-2. When PRI and NDVI were combined
in a linear model and correlated against Shannon Index (ODI#4, see Equation 3-5)
the R2 value increased to 0.75 (Figure 3-6).

The principal components method showed similar positive correlations with
field-based assessment of diversity. Both PC1 and PC2 showed positive linear
relationships with Simpson Index, Shannon Index and species richness. When PC1
and 2 were combined (ODI #2, equation 3-6 and Figure 3-7) the correlation with
species richness increased to an R2 of 0.80. Finally, when the principal component
method was put in combination with NDVI (ODI #3), the R2value rose to 0.86

(equation 3-7 and Figure 3-8).

Table 3-2: Optical Diversity Indices (ODIs) and their associated species diversity indices, spectral
variables (used to correlate against diversity indices), R2 value, p-value and RMSE value. Equations for
ODIs #1-3 are provided below (Eq. 2.5-2.7).

ODI# Diversity index Spectral variables RZvalue p-value RMSE

4 Shannon NDVIs + PRIgq 0.75 0.007 0.461

5 Species Richness  PCl1s4+ PC24q 0.80 0.0036 1.60

6 Species Richness = NDVIgq + PC154 + PC25¢  0.86 0.005 1.32

7 Species Richness NDVIsq + PRIsq 0.56 0.055 1.88

8 Simpson NDVIsq + PRIgq 0.59 0.014 1.46

9 Simpson PClsa + PC24 0.66 0.025 1.33

10 Shannon NDVIgq + PClsq + PC2,¢  0.81 0.014 0.408
ODI#4 = 44.063NDVIsq + 14.18PRIsq - 1.339 (3-5)
ODI#5 = 0.08572PC1sq+ 1.06073PC2sq - 8.378 (3-6)
ODI#6 = 95.95NDVIsq + 0.0330PC1sq + 0.733PC24q - 8.01 (3-7)
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Figure 3-4: The relationship between the
standard deviation of NDVI and Shannon Index
for ten 30x30m forested plots sampled (R2=0.74,
RMSE=0.468, p-value=0.0013).
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Figure 3-6: The relationship between Optical
Diversity Index #5(a linear combination of NDVI
and PRI, equation 3-5) and Shannon Index for the
ten 30x30m forested plots sampled (R2=0.75,
RMSE=0.461, p-value=0.0074).

Standard Deviation of PRI

Figure 3-5: The relationship between the
standard deviation of PRI and Shannon Index for
ten 30x30m forested plots sampled (R2=0.553,
RMSE=0.622, p-value=0.013)
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Figure 3-7: The relationship between Optical
Diversity Index #5 (a linear combination of PC 1
and 2, equation 3-6) and species richness for ten
30x30m forested plots sampled (R2=0.80,
RMSE=1.60, p-value=0.0036).
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10
1

Species Richness

Figure 3-8: The relationship between Optical Diversity Index
#3 (a combination of NDVI, PC1, and PC2, equation 3-7) and
Species richness for ten 30x30m forested plots sampled
(R2=0.86, RMSE=1.32, p-value=0.005).
To understand the weightings assigned to individual wavelength by the

principal components transformation, [ plotted the correlations (R2) of each

principal component (1-3) against wavelength (Figure 3-9).
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Figure 3-9: Correlation between reflectance value and PC value (R2 value) as a function of
wavelength (400-800nm) for of PCs 1-3.
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The correlation of PC1 with wavelength resembles a green vegetation
reflectance spectrum, and is particularly high in the green and NIR regions. PC2
appears to be most strongly related to the two chlorophyll absorption areas in the
blue and red region. PC3 was relatively flat, and did not show a strong correlation

with wavelength or vegetation indices.

Discussion
Optical diversity, species diversity correlation

As expected from similar work in other ecosystems (Carlson et al. 2007,
Zutta 2003, Rocchini et al. 2007, Oldeland et al 2010), and Chapter 2, vegetation
diversity was correlated with several metrics of optical diversity for these boreal
forest plots. Notably, all optical diversity indices were sensitive to the green and
NIR spectral regions (see equations 3-5, 3-6, 3-7, and Figure 3-9), suggesting these
regions largely drive the correlations between spectral reflectance and species
diversity for my results. These spectral regions include two of the more important
areas of vegetation spectra for assessing pigment levels, potential photosynthetic
activity and total biomass. The NDVI (NIR & red) region tells us about the potential
photosynthetic activity and green canopy structure of the plant (Gamon et al. 1995,
Gitelson & Merzlyak 1997). Similarly, the PRI (green) region used in ODIs #1-3
yields information on the relative chlorophyll:carotenoid levels of the plant (Sims &
Gamon 2002, Stylinski et al. 2002, Filella et al. 2009, Garrity et al. 2011). The ODIs
are most likely responding to differences in photosynthetic pigment content or
activity and canopy structure between species, as expressed in their leaf and canopy
spectra. Itis also possible that the ODIs are responding to variation in biomass

within the plot, which is expressed through variation in NDVI and PC1. My ODIs (4
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and 5) also show a high degree of convergence in that they utilize similar spectral
regions and yield very similar results, despite their different methods (index versus

PC).

Study comparisons

The concept of directly linking the variation in optical signals to biodiversity
is relatively new and the results presented here are consistent with several recent
studies in other ecosystems that indicate a strong potential for airborne and satellite
remote sensing assessment of biodiversity. The indices (NDVI, PRI, ODI#4, ODI#5,
and ODI#6) offered here suggest there may be many alternate ways to link optical
properties to other metrics of biodiversity. Methods using single variable (NDVI
and PRI) regression in this study (Figures 3-4 and 3-5) showed similar results to
methods used in other studies (Gould 2000, Oindo and Skidmore 2002, Gillespie
2005, Lassau et al. 2005, Levin et al. 2007). My ODI #4 is consistent with the
findings of Zutta (2003) in chaparral ecosystems and shows that a similar ODI
derived from the vegetation indices NDVI and PRI using airborne imagery can also
indicate tree species diversity in a boreal ecosystem.

The use of the standard deviation of PCA bands (ODI#5) showed a higher
correlation than Oldeland et al. (2010) who used distance from a spectral centroid
of PCA bands. Carlson et al. (2007) showed an almost identical correlation to my
ODI #6 by using the spectral variation (range) of reflectance-derivative spectra.
ODI#5 provides an new method of estimating vegetation diversity from airborne
data by using the standard deviation of principal component bands. This method is
comparable to the work of Rocchini et al. (2007) and Oldeland et al. (2010) who use

similar PCA methods on multispectral and hyperspectral data sets but used the
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distance from centroid rather than the standard deviation. ODI#6 combines both
index and PCA methods and yielded the highest correlation (0.86), comparable to

similar correlations reported for other ecosystems (Carlson et al. 2007, Zutta 2003).

Factors behind optical diversity — species diversity correlation

This research shows that optical diversity correlates to vegetation diversity
but it is not known precisely why it does, but several possibilities have been
reported. The results of Chapter 2 demonstrate that variation in leaf properties is
the primary reason for the OD species diversity correlation (in a controlled setting).
In a real world setting it is likely that both variation in leaf traits and variation in
canopy structure or biomass are controlling the correlation.

Based on a review of other literature, Asner (1998) states that, in forest
ecosystems, spectral variability is caused by differing leaf area and leaf angle with a
lesser effect of leaf optical properties. Variation in leaf properties becomes more
significant in specific spectral regions. Ustin & Gamon (2010) proposed that optical
diversity is a function of leaf traits (e.g. leaf structure and chemical composition),
canopy structure, and phenology. The results of this study suggest that
photosynthetic pigment levels, or their expression via canopy structure (which
affects the visible and NIR regions) are dominant drivers of the OD-biodiversity
correlations for boreal forests, at least for the spectral range covered by the sensor.
An additional theory could be that the variation in biomass, seen through variation
in NDVI and PC1, is the driving force behind the OD-species diversity correlation.
This would mean variation in leaf traits do not play a role in the correlation. The
data from Chapter 2 suggests there is a correlation between OD and species

diversity at the leaf level, but it is not known if airborne data can pick up on this.
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Studies such as Asner & Martin (2008) and Carlson et al. (2007) have argued that
variation from leaf chemical properties can be observed from airborne data when
canopies are optically thick (tropical ecosystems). It is not known if the canopies of
this Chapter were of suitable optical thickness to detect variation in leaf traits.

Besides canopy chemistry, and canopy structure, non-species factors could
alter the spectral signal as well, including physiological or ontogenetic and
phenological influences. Stressed plants can cause optical variation due to their
reduced NDVI (Jones and Vaughan, 2010) and PRI (Gamon et al, 1997) relative to
their healthier counterpart. Leaf or tree age also affects the optical properties.
Older, taller trees will lead to rougher canopy surface with complex multiple
scattering and BRDF effects (Jones and Vaughan, 2010). The effect of tree height
(canopy roughness) was shown to increase optical diversity in Chapter 2. It is likely
that this increase in OD actually helped the OD-species diversity correlation in this
chapter since rough canopies will usually correlate high species diversity because
different trees tend to grow at different rates.

The scatter of my ODIs may be partly due to confounding, non-species based
factors, but it could also be due to the fact that traditional diversity indices based on
field measurements are also not perfect measures of biodiversity. Diversity is
defined by the index used to measure it (Hulbert 1971, Peet 1974, Izak & Papp
2000), and different diversity metrics yield different results (Figures 3-4 to 3-8,
Tables 3-1 and 3-2). I propose that optical diversity can capture different aspects of
vegetation diversity than more traditional field methods based on species. For
example, optical diversity may be explicitly capturing functionally significant
variation in leaf traits, canopy structure, and their seasonal expression, as proposed

in Ustin & Gamon (2010), and may be secondarily related to species diversity per se.
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Surrogacy

Through relationships between canopy structure and functional processes
such as biogeochemical cycles (Asner et al, 1998) optical diversity could also yield
information on the diversity of other community levels such as understory plant
diversity, soil microbe diversity, insect diversity, and bird diversity. This link
between different levels or definitions of diversity has been called surrogacy (Pharo
& Beattie 2001, Negi & Gadgil 2002, Williams et al. 2006, Gamon 2008), and

deserves further study.

Future research needs

To truly understand optical diversity, comparative experimental approaches
are needed to examine the causes behind optical diversity. In particular,
experiments are needed to investigate the effect of the three variables (canopy
structure, physiology/chemistry, and phenology) of the optical diversity hypothesis
(Ustin and Gamon, 2010). A challenge could be the difficulty and high costs of large-
scale experiments using remote sensing, which often does not easily lend itself to
manipulative experiments. Also, remote sensing may have an inherent problem
capturing full community diversity due to fact that airborne methods are heavily
weighted towards visible or dominant tree species. On the other hand, the diversity
of dominant vegetation can also correlate to the diversity of many other taxa due to
the principal of surrogacy (Pharo & Beattie 2001, Negi & Gadgil 2002, Williams et al.

2006 Gamon 2008).
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Study Limitations

One limitation of this study appears to be the number of data points (10) in
the ODI correlations. While this low number of data points can lead to less
significant correlations, all ODIs were still found to have significant correlation to
p<0.01. More data points could certainty help fill some gaps in the data such as the
lack of points between SR 9-11, but the data points provided in this study still give a
good representation for the OD species diversity relationship.

The spectral range and the noise of the data in this study appear to be
limitations, but there may be several reasons why the noise is a minor factor. PCs 1
and 2 recombine information from many bands in the VIS and NIR and therefore
reduce the effect of noise in the spectra. PCAs have been used to deal with noise in
hyperspectral data in many studies (Bajcsy & Groves, 2004) and have also been
used in biodiversity studies (Oldeland et al,, 2010). PRI is in the least noisy area of
the spectrum and should be minimally affected by noise. Similarly, the large
contrast in reflectance values at the red edge tend to minimize the noise limitations
for this spectral region (NDVI). However, it is possible that improvements in signal-
to-noise could yield improved results with the methods shown here.

It could be beneficial to add spectral range (e.g. to include the water band at
970nm used by Zutta (2003), and additional absorption features in the SWIR
reported in Asner et al. (2007)), but the cost increase may not necessarily be worth
the added benefit of increased range. Chapter 2 suggests that extending the spectral
range to 1600nm slightly increases the correlation between optical diversity and
species diversity, but at a substantial increase in cost and computational complexity.
Lucas et al. (2008) found similar results in that most tree species could be identified

from VIS-NIR data and the inclusion of SWIR slightly improved classification results.
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Further studies are clearly needed to evaluate the relative cost and benefit of
different spectral regions for biodiversity assessment. The identification of the
“best” spectral regions for biodiversity assessment could help clarify if full-range
spectrometers are needed for biodiversity work.

The more important factor in instrument capabilities may be spatial
resolution. Low spatial resolution limits the spectral heterogeneity (Rocchini et al,
2010) and can reduce the information content needed for assessing spectral
variance. This study shows that high spatial resolution (~1m), equal to or smaller
than the tree canopies in question, can be successful in measuring spectral
heterogeneity of a forest landscape, but leaves open the question of defining the
ideal resolution, which may vary with ecosystem depending upon canopy size and

scale of heterogeneity (another area where more work is needed).

Conclusion & Recommendations

These results indicate that optical diversity provides an alternate and
complementary measure of vegetation diversity that scales well with several
established field methods (species richness, Shannon Index or Simpson Index) and
readily samples the diversity of dominant plant species of an area. Each method,
from single variable indices to combined ODIs, correlated with species diversity,
indicating many possible methods of sampling optical diversity. Index- and PCA-
based methods also converged on similar spectral regions, which gives insight into
the best spectral regions for biodiversity assessment in the VIS/NIR region. Even
lacking full-range, high quality spectral data, the results reported here for boreal

forests are comparable to other findings with other sensors from other ecosystems.
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Remote sensing of biodiversity could provide advantages over traditional methods,
particularly for large-scale surveying of diversity, and may provide a novel way of
looking at biodiversity via optical diversity. Further experimental work is needed
to understand the relative contributions of leaf properties, canopy structure and
phenology to optical diversity. Also, more work is needed to clarify the ideal or
necessary spatial resolution for assessing biodiversity with remote sensing.
Disadvantages of estimating vegetation diversity via imaging spectrometry include
the cost of airborne data collection and the complexity of data processing. However,
with the trend of increasing computing power and decreasing cost, digital data
acquisition and processing will likely get easier. Similarly, the advent of automated
aircraft (UAVs) provides new opportunities for low-cost image collection for
biodiversity mapping. My results suggest that further development of the PCA
method may be a promising approach. Once questions of the ideal spatial and
spectral resolution are resolved, optical diversity sampling methods could be used
with high altitude aircraft or satellite, and large areas of forests could be sampled
regularly to track the changes of biodiversity. This could be particularly beneficial

for vast and relatively inaccessible regions like the boreal forest ecosystems.
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Chapter 4 - Synthesis, Conclusions, and Future Research

Synthesis of Rooftop and airborne data
Synthesis

This study has outlined many methods with which biodiversity can be sampled
using spectral information. The end goal of the remote sensing of biodiversity
(using optical diversity) should be an operational method, which works for many
data sets, in many locations. While Chapters 2 and 3 have shown ODIs that correlate
to species diversity, the methods and variables in the ODIs have not been consistent.
Therefore, in this chapter [ will demonstrate a standardized method to build an ODI
and attempt to use this method on both the airborne and rooftop data sets.

Figure 4-1 outlines this method and shows how it can be repeated. Spectral
variables are selected for an ODI based upon their R2 value and significance of
correlation to the diversity of the tree plots. If this method is used for the rooftop
and airborne data, three common spectral variables are output (NDVIsg, PC1s4, and
PC2/3s4). PC 2 is used for airborne while PC3 is used for rooftop because they

utilize similar spectral regions.
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Figure 4-1: Flow diagram working from original spectral data to an optical diversity index.

If the methods from Figure 4-1 are used I get a similar, significant

Nl

4

Optical Diversity Index

correlation for both data sets (The airborne data may show a higher correlation due

to the larger spread of diversity values) (Figure 4-2). I propose this ODIl as a

possible operational index for estimating the Simpson Index of 900m? forest plots

(equation 4-1).
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Figure 4-2: An ODI (linear combination of NDVI, PC1, and PC2 or PC3 for
rooftop) correlated against log of Simpsons Index. Airborne data shown
with blue (10 points) and rooftop data shown with red (14 points). Airborne
(p-value = 0.016, RMSE = 0.15) rooftop (p-value = 0.0020, RMSE = 0.14).
PC2 used for airborne while PC3 used for rooftop due to similar wavelength
weightings.

Simpson Index = 10(12NDVI5q+0.008PC15q+0.02PC25q-0.82) (4-1)

Where PC1 weightings are based upon NIR brightness, PC2/3 weightings are based
upon green region brightness, and sd represents the standard deviation of all pixels

contained in the 900mz2 plot of variable x.

Given higher quality spectral data and a larger spectral range (limited by the
data of Chapter 3), other variables may be preferable to the ones seen in equation 4-
1. For example, Chapter 2 has shown that slope analysis at 525nm may be
preferable to PC2/3 even though they utilize similar regions. Chapter 2 has also
shown that the inclusion of WBI can improve ODI-species diversity correlations.
Therefore, less noisy data along with a larger spectral range will likely lead to a

different ODI with slightly better results (see ODI#3).
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Conclusions

The main goal of this research was to investigate if optical diversity could
accurately predict species diversity of tree species. In the end, optical diversity
showed significant correlation to species diversity at several spatial scales, using
airborne (1m pixel), canopy (10cm pixel), and leaf (<1mm pixel) measurements.
Additionally, it was found that optical diversity can be measured in many ways and
the majority of these methods significantly correlate to species diversity. These
measures include: the standard deviation of vegetation indices, standard deviation
of principal components of reflectance and derivative spectra, and the standard
deviation and range in slope analysis. Optical diversity was found to have the
strongest relationship to species diversity when three to five variables were
combined into an optical diversity index. This yielded R2 values of 0.90 for ODI#3
and 0.86 for ODI#6.

Chapter 2 investigated the factors behind the OD-species diversity
relationship. In the conditions of this controlled experiment, the OD-species
diversity relationship was primarily based upon variation in leaf properties (or its
expression via canopy structure). In the real world conditions as shown in Chapter
3 the correlation is likely based upon variation in leaf properties, canopy structure,
and biomass. Another important factor affecting OD was found to be plot level
canopy roughness. Chapter 2 found that increased canopy roughness leads to an
increase in optical diversity. I predict that this may help the airborne correlation in
Chapter 3 because varying canopy height tends to correlate to a higher diversity
canopy. Finally, Chapter 2 found that an increased spectral range (up to 400-
1600nm) improves the OD-species diversity correlation but not to a large degree

(AR? <0.1).
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Future Research

Standardized ODIs may prove to be very useful for biodiversity monitoring
but much more work is still needed to fully understand the many factors, which
affect optical diversity and its correlation to species diversity. Experimental work,
similar to this study, at a larger scale (i.e. fully grown trees) could see if the results
of Chapter 2 scale up to real world scenarios (as partially explored by Clark &
Roberts 2012). These experiments could also include tests addressing phenology,
ideal spectral resolution, and ideal instrumentation. The effect of phenology could
be addressed by collecting data every month and testing if the OD-species diversity
correlation changes across seasons. Spatial resolution could be addressed by using
a high spatial resolution airborne instrument (<1m) and incrementally increasing
the pixel size. The ideal pixel size for biodiversity studies could then be identified
by the pixel size that yields the highest correlation to species diversity.

Another crucial issue is which measure of variability to use. The
relationship between OD and species diversity is clearly evident, but we do not
know if the various measures of variance (standard deviation (Chapters 2 and 3,
Zutta 2003, Gould 2000), range (Carlson et al. 2007), and distance from centroid
(Rocchini et al. 2007, Oldeland et al. 2010)) are accurately interpreting this variance.
Developing a new way to measure the variation in information content, such as
maximum entropy (McCallum et al, 2000), may be the way to move forward or
experimental methods could test to see which measure of variance best relates to
species diversity.

Using optical diversity to survey biodiversity can provide research, or
conservation groups with an alternative to traditional biodiversity sampling

methods. Remote sensing techniques are particularly beneficial for extensive
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forests because many square kilometers of forests can be sampled in a single day.
Additionally, remote sensing provides unbiased data. This is often a problem with
field diversity measurements. This study moves towards a standardized method
where vegetation diversity can be sampled with remote sensing data, as seen in
Figures 4-1 and 4-2. This is important because optical diversity values from around
the world should be able to be compared. This study also provided important
spectral indices for use in ODI equations. In the end, this study is a necessary step
for working towards a standardized method of remotely sensed biodiversity. A fully
functioning method of airborne or satellite biodiversity sampling would be vital to

conservation efforts during a time of rapid biodiversity decline.
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Appendix A - Index and PCA calculation for rooftop data
Index calculation

The following code takes reflectance data from rooftop plots and calculates
the standard deviation of all vegetation indices and slope variables. A csv file of
reflectance data is read into r as a matrix. Using the row number corresponding to
the proper wavelength, the indices are calculated for each column. This results in
25 index values per plot. The standard deviation of that index is than calculated
using the sd function in R.

setwd("C:\\Users\\Evan DeLancey\\Desktop\\summer_2013_analysis\\specev\\22082013\\SR2")
#folder name notifies you of the species richness of the plot

data=read.csv("full.csv")
#read data set

ref=as.matrix(data)

git.ci=ref[223,] /ref[184,]
#number in brackets represents the waveband which corresponds to the proper wavelength
needed for the index calculation

sd(git.ci)
#Takes the standard deviation of the 25 values of the spectral variable

NDVI=(ref[263,]-ref[165,])/(ref[263,]+ref[165,])
sd(NDVI)
WBI=ref[427,] /ref[353,]
sd(WBI)
PRI=(ref[62,]-ref[89,])/(ref[62,]+ref[89,])
sd(PRI)
SIPI=(ref[263,]-ref[4,])/(ref[263,]-ref[169,])
sd(SIPI)
RWC=ref[488,]/ref[576,]
sd(RWC)
d=read.csv("wave.csv"
wave=d$wave
wave.d=diff(wave)
deriv=diff(ref) /wave.d

#Calculates the derivate spectra

green=deriv[72,]
sd(green)
red=deriv[154,]
sd(red)
greenl=deriv[57,]
sd(greenl)
rg=range(greenl)
rg[2]-rg[1]
red1=deriv[197,]
sd(red1)
rr=range(red1)
rr[2]-rr[1]
waterl=deriv[501,]
sd(water1)
rw=range(water1)
rw[2]-rw[1]
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PCA Analysis

The following code performs a PCA on the highest diversity tree plot. It then
applies these weightings to every other plot and calculates the standard deviation of

principal components 1-4 for each plot.

setwd("C:\\Users\\Evan DeLancey\\Desktop\\deriv_pca")
d6=read.csv("SR7_20.csv")

d4=read.csv("SR7_21.csv")

d2=read.csv("SR2_22.csv")

data6=as.matrix(d6)

data4=as.matrix(d4)

data2=as.matrix(d2)

prc=prcomp(data6,center=T,scale=T)

#Uses SR7 plot as base for weightings in the PCA

varimax1=varimax(prc$rotation)
#Saves the weightings of the SR7 PCA so they can be applied to other plots

new6=data6%*%varimax1$loadings
sd(new6[,1])
sd(new6[,2])
sd(new6[,3])
sd(new6[,4])
sd(new2[,1])
new2=data2%*%varimax1$loadings
new4=data4%*%varimax1$loadings
sd(new2[,1])
sd(new2[,2])
sd(new2[,3
sd(new2[,4
sd(new4[,1
sd(new4[,2
sd(new4[,3
sd(new4[,4])

#outputs the standard deviation of PCs 1-4

Appendix B - Calculating an Optical Diversity index (ODI) from raw airborne

data

I. Georeferencing

Credit of rectification process goes to David Stonehouse (Verimap Plus, Calgary,
Alberta, Canada). To alter the code, open with notepad. See Instructions below to

convert raw data to a TIFF georeferenced image.

Dave'’s batch file

The first executable is PPOcorrect. Below is the syntax and an example batch call that [ have

used successfully on the 0430 data.

Some parameters are the same, some are different and some are new so please read carefully.
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Example:
ppocorrect 0.0 0.0 0.0 777 "1:\0430\Session 04-30-002\NavData\pp0o0430.001" 0 6000 2000
[:\0430\RA_1000_img\ 1:\0430\RA_1000_img\dems\50cm_1_00000.bt

[:\0430\RA_1000_img\camcfg.txt :\0430\RA_1000_img\filename-00000-0-meta.txt
[:\0430\RA_1000_img\filename-00000.cube 1:\0430\RA_1000_img\ outcube2.tif

1. PPO Correct
Syntax - There are new parameters, namely configuration files.
ppocorrect <Pitch_Offset> <Roll_Offset> <Yaw_Offset> <start_line>
<PPOFileName> <PPO_position> <start_line> <num_lines> <output_directory>
<BT_DTM_file> <camcfg.txt> <meta_filename> <cube_config>
Pitch_Offset Roll_Offset Yaw_Offset are to correct geometry
start_line - correlation between the IMU file and the image GPS time stamp
Ideally this should be zero but may need to be tuned to get
rid of line wobble due to time offsets between data sets
PPOFileName - input file containing aircraft attitude - no flipping necessary
PPO_Position - integer number containing shortcut into PPO
file (0 if not known)

start_line - Line within the BLOCK to start rectification. You can get this from the trajectory
files on the I: drive

num_lines - the number of lines to rectify
output_directory - rectified output directory

BT_DTM._file - input Binary Terrain DTM to rectify to. *File size should be less than 5,000 KB
when using all bands. If needed crop .bt file in global mapper.

camcfg.txt - text file containing FL and IC for camera
meta_filename - filename containing the necessary meta data for the line
cube_config - configuration file for the hyperspectral cube

out_name - name of the output file (tif)

2. camcfg.txt format:
focal_len=17
width=1000
height=1004

pitch=7.4
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img_center=500

focal_len is the focal length of the lens used
width is the width of the sensor

height is the height of the sensor

pitch is the pitch of the sensor

img_center is where the center of the lens hits the center of the diffraction grating (half the
width is ideal)

3. cube_config (filename-00000.cube)
session_number=0
prefix=filename
frames_per_block=200
blocks_in_session=271
number_of_bands_to_process=4
nm_bands=800 670 550 490
pixel_disp=1.862
pixel0_wave=-192.9385145

image_folder=1:\0430\RA_1000_img

session_number is the number of the session and can be retrieved from the file names.
Example (filename-00023-0.raw is session 23).

prefix is the starting part of the file name, established by the capture software (example:
test_flight-00000-0.raw has a prefix "test_flight")

frames_per_block is established during the capture and is usually 200

blocks_in_session is how many blocks were captured in a given flight line. This number will
be the number of saved files for a given session. The files are numbered so just look at the
last file to be captured and add one.

number_of_bands_to_process is how many bands to process. Right now I just have the
"QuickLooks" version, so you specify how many bands to do. In the not too distant future I

will be adding a "-1" option to do all the bands. This should be a good start.

nm_bands is nanometer bands to process. Specify one wavelength for each of the number of
bands to process.

pixel_disp is the number of wavelengths represented by each pixel. Leave this at 1.862.

pixel0_wave is the y-intercept of the linear equation of the wavelength vs. pixel position.
Leave this at-192.9385145

image_folder is where the raw input images are stored
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Once the image is rectified, it will produce a multiband TIFF image. The first three bands
listed in nm_bands become the R, G, and B components, respectively. If there is 2 bands to be
rectified, a multiband grey image will be produced. If a single band is rectified, a single band
grey image will be produced.

4. GenerateLinePositions

The second executable is GenerateLinePositions (add ".exe" extension). Example:

GenerateLinePositions 100 770 "1:\0430\Session 04-30-002\NavData\PP00430.001" 200
271 1:\0430\RA_1000_img\filename-00000-0-meta.txt :\0430\RA_1000_img\linepos.csv

GenerateLinePositions <line interval> <offset> <ppofile>
<frames_per_block> <blocks_in_session>
<meta_file> <output_file>

line_interval is the number of scanlines between the position

reporting
offset is the GPS/UTC Offset represented in scanlines
(15 sec. offset = 15/0.01949 = 770)

ppofile is the navigation file

frames_per_block is the number of frames captured in a single
image block (ex. 200)

blocks_in_session is the number of blocks saved for this session

meta_file is the meta file associated with this session

output_file is name of the comma separated values file that will be output

General changes (line by line changes to executable file)

1. ppocorrect 0.0 0.0 0.0 777 "I:\0430\Session 04-30-002\NavData\ppo0430.001" 0 6000 2000
1:\0430\RA_1000_img\ 1:\0430\RA_1000_img\dems\50cm_1_00000.bt
[:\0430\RA_1000_img\camcfg.txt :\0430\RA_1000_img\filename-00000-0-meta.txt
[:\0430\RA_1000_img\filename-00000.cube 1:\0430\RA_1000_img\ outcube2.tif

- experiment with till you get the desired result. Or if using the 2011 summer data

use -1.8 6.2 0.5 785

2. ppocorrect 0.0 0.0 0.0 777 "I:\0430\Session 04-30-002\NavData\ppo0430.001" 0 6000 2000
[:\0430\RA_1000_img\ 1:\0430\RA_1000_img\dems\50cm_1_00000.bt
[:\0430\RA_1000_img\camcfg.txt :\0430\RA_1000_img\filename-00000-0-meta.txt
[:\0430\RA_1000_img\filename-00000.cube 1:\0430\RA_1000_img\ outcube2.tif

-insert location of ppo file for flight

3. ppocorrect 0.0 0.0 0.0 777 "1:\0430\Session 04-30-002\NavData\ppo0430.001" 0 6000 2000
[:\0430\RA_1000_img\ 1:\0430\RA_1000_img\dems\50cm_1_00000.bt
[:\0430\RA_1000_img\camcfg.txt :\0430\RA_1000_img\filename-00000-0-meta.txt
[:\0430\RA_1000_img\filename-00000.cube 1:\0430\RA_1000_img\ outcube2.tif
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- Keep the first number 0, second should be start line (get from google earth
trajectory images of your needed session), third number the number of lines needed
(last line - start line)

4. ppocorrect 0.0 0.0 0.0 777 "I:\0430\Session 04-30-002\NavData\ppo0430.001" 0 6000 2000
1:\0430\RA_1000_img\ 1:\0430\RA_1000_img\dems\50cm_1_00000.bt
[:\0430\RA_1000_img\camcfg.txt :\0430\RA_1000_img\filename-00000-0-meta.txt
[:\0430\RA_1000_img\filename-00000.cube 1:\0430\RA_1000_img\ outcube2.tif

-insert location where you want TIFF saved

5. ppocorrect 0.0 0.0 0.0 777 "1:\0430\Session 04-30-002\NavData\ppo0430.001" 0 6000 2000
[:\0430\RA_1000_img\ I:\0430\RA_1000_img\dems\50cm_1_00000.bt
[:\0430\RA_1000_img\camcfg.txt :\0430\RA_1000_img\filename-00000-0-meta.txt
[:\0430\RA_1000_img\filename-00000.cube 1:\0430\RA_1000_img\ outcube2.tif

-insert location of .bt DEM file for the area where your image is located

6. ppocorrect 0.0 0.0 0.0 777 "I1:\0430\Session 04-30-002\NavData\pp00430.001" 0 6000 2000
[:\0430\RA_1000_img\ 1:\0430\RA_1000_img\dems\50cm_1_00000.bt
[:\0430\RA_1000_img\camcfg.txt I:\0430\RA_1000_img\ filename-00000-0-meta.txt
[:\0430\RA_1000_img\filename-00000.cube 1:\0430\RA_1000_img\ outcube2.tif

-insert location of .txt file for your session

7. ppocorrect 0.0 0.0 0.0 777 "1:\0430\Session 04-30-002\NavData\ppo0430.001" 0 6000 2000
[:\0430\RA_1000_img\ 1:\0430\RA_1000_img\dems\50cm_1_00000.bt
[:\0430\RA_1000_img\camcfg.txt :\0430\RA_1000_img\filename-00000-0-meta.txt
1:\0430\RA_1000_img\filename-00000.cube 1:\0430\RA_1000_img\ outcube2.tif

-insert .cube file found on I: drive adjust according to instructions above

8. ppocorrect 0.0 0.0 0.0 777 "1:\0430\Session 04-30-002\NavData\ppo0430.001" 0 6000 2000
[:\0430\RA_1000_img\ 1:\0430\RA_1000_img\dems\50cm_1_00000.bt
[:\0430\RA_1000_img\camcfg.txt :\0430\RA_1000_img\filename-00000-0-meta.txt
[:\0430\RA_1000_img\filename-00000.cube I:\0430\RA_1000_img\outcube2.tif

-name of your file

I1. Flat field correction (FFC)

Using Li Haitao’s IDL code available on the lab computer of Dr. John Gamon'’s lab in
the folder “I:\tutorial_calibration_2011\code” filename: aircraft_ffc.

II1. Oxygen Band Correction

Using Li Haitao’s IDL code available on the Lab computer of Dr. John Gamon’s lab in
the folder “I:\tutorial_calibration_2011\code” filename: headwall_fraunhofer.
Alternatively open TIFF image in ENVI.

- Find wavelength where oxygen band A occurs

- Count the number of bands between the real oxygen band and the one in the
image in the .hdr file
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- Subtract or add the corresponding number of bands so the oxygen band
lines up with the proper wavelength
o Delete the first x number 0.000nm bands if subtracting and add on x
number 0.000nm if adding

IV. Empirical Line Correction

Credit goes to Li Haitao for the code and the work. Code can be found below and on
the computer in Dr. John Gamon'’s lab in the folder
“I:\tutorial_calibration_2011\code” filename: elc.
Keep all code the same except the parts highlighted below

PRO ELC

factorpath="I:\tutorial_calibration_2011\'

imgpath="[:\Evan_airborne\ELC'
imgfile=file_search(imgpath, "*.tiff', count=num_file)
imgn=N_ELEMENTS (imgfile)-1

outpath="l:\Evan_airborne\plots_reflectance’

dspa=1000
drad=991
dtem=200

print, imgfile

:read factors, ascii
fct=READ_ASCII(factorpath+'ELC_00011_26.cff,RECORD_START=5,TEMPLA
TE = sTemplate)

factors=fct.field1[0:3,*]

solar_irr=factors[1,*]

path_rad=factors[2,*]

envi, /restore_base_save_files
envi_batch_init, log_file="batch.txt'
; Open the input file

1]

FOR imgi=0,1 DO BEGIN
envi_open_data_file, imgfile[imgi], r_fid=fid

if (fid eq -1) then return
envi_file_query, fid, dims=dims, nb=nb
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if (fid eq -1) then begin
envi_batch_exit
return

endif

envi_file_query, fid, ns=ns, nl=nl, nb=nb
dims = [-1, 0, ns-1, 0, nl-1]
pos =lindgen(nb)

bgpos=strpos(imgfile[imgi],'cube_W00")
enpos=strpos(imgfile[imgi],".tif")
out_name=strmid(imgfile[imgi], bgpos,enpos-bgpos)
out_name=outpath+'ELC_"+out_name+".img'

print, out_name

envi_doit, 'eline_cal doit', $
fid=fid, pos=pos, dims=dims, $
path_rad=path_rad, $
solar_irr=solar_irr, $
out_name=out_name, r_fid=r_fid

; Exit ENVI

1]

ENDFOR
: envi_batch_exit

Highlight 1: Location of .tif files

Highlight 2: Output location

Highlight 3: Number of bands (may have changed from 1004 if you deleted or added
bands with oxygen band correction)

*Note 1: If values for reflectance go between 0 and 20 (ie. white roofs are a flat line
at a value of 20) use band math to divide by 20.
- Enter “float(b1)/20” into band math select b1 to be all the bands in the
reflectance image
*Note 2: Subset number of bands as needed. For Summer 2011 data take 400nm-
900nm (reduces processing time in next steps).

V. Georeferencing (ENVI)

1. Open reflectance image in ENVI
2. Open .bt files used in generating .TIFF in global mapper and save as JPEG.
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3. Open JPEG terrain file in ENVI

4. Under Map->registration “select GCPs: image to image “
a. Base image (JPEG), warp image (TIF)

5. Add four points to GCPs the corners of the maps should match up exactly
a. Make sure both maps are in the same projection and coordinate

system
6. Save GCPs and warp with map->registration “warp image: image to image”
7. You have a reflectance image with corresponding lat/long values for each
pixel
8. Add plots to map with ROI tool and pixel locator and save ROIs

VI. Image smoothing (ENVI)

Used to smooth the spectra and reduce noise.
1. Under filter->adaptive select “Lee”

2. Select the reflectance image (subset bands to 400-900nm if not already
done)

3. Filter size of 3x3 or 4x4, noise model “Multiplicative”, set Multiplicative
Noise mean to 0.25.

VII. NDVI, PRI, green/red index and Masking (ENVI)

Calculating NDVI, PRI, green/red index and eliminating all non-vegetation for the
image.
1. Basic tools>band math
2. Calculate NDVI and PRI: Enter expression “(float(b1)-
float(b2))/(float(b1)+float(b2))”
a. NDVI: Enter wavelength closest to 750nm for b1 and closest to
705nm for b2
b. PRI: Enter wavelength closest to 531nm for b1 and closest to 570nm
for b2
c. Green/red index: Enter wavelength closest to 550nm for b1 and
closest to 675nm for b2
d. If spectra is noisy use average value of 3 or 4 bands around 750nm
and 705nm
((float(b1)+float(b2)+float(b3)+float(b4))/4)/((float(b5)+float(b6)+
float(b7)+float(b8))/4)
3. Load NDVIimage to display
4. Basic tools > masking = build mask
a. Select the NDVI display
b. Options>import data range
c. Data min value=0.3 or 0.4
d. Save mask
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VIIL. Principal Component Analysis ENVI

1. Take largest section of continuous forest as an ROI
2. Run PCA from menu
a. Transform - Principal Components > Forward PC rotation =
Compute new statistics and rotate
b. Save PCA file
3. Perform PCA on whole image where plots are located
a. Transform - Principal Components - Forward PC rotation > PC
rotation from existing statistics
4. Each band will be a PC band
a. Take the standard deviation of your plots for PC1, 2, and 3

IX. Optical Diversity Index (ENVI)

1. Load any index to display
Basic tools>masking—>apply mask
a. Selectindex file and select NDVI 0.3 mask from previous step for
“select mask band”
b. Set mask values to NaN
3. Load masked image to display
4. Load ROIs to display
5. Go to band math and enter equation “float(b1)”
a. Select masked file
b. Select spatial subset->ROI/EVF->select one of the plots
c. Select quick stats from display of ROI and record the standard
deviation, mean, and max of the plot
d. Repeat for all plots in image
6. Repeat for all other indices
7. Alternatively from masked image window select tools>ROIs—>export ROIs
to ASCII
a. Exporteach ROI and analyses in R
8. Build linear model on combinations of the 3 indices relating to species
richness or Simpsons index
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