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ABSTRACT 

Critical habitat definitions for endangered species require quantitative knowledge 

of a species' use of its environment. I compared two species distribution modelling 

techniques for the Burrowing Owl (Athene cunicularid) in Prairie Canada. My 

comparison revealed that Ecological Niche Factor Analysis (ENFA) models can provide 

robust ecological indications of habitat suitability, while a carefully designed logistic 

regression Resource Selection Function (RSF) model can provide better spatially explicit 

predictions. I created six RSF habitat selection models, and determined that home-range 

use was best predicted by large-scale, abiotic factors (soil and climate), rather than 

grassland fragmentation or land-use type. Furthermore, nest survival and fledgling 

production did not vary with respect to this presence-based home-range selection. My 

research indicates that the unique soil and climate conditions that are associated with 

breeding Burrowing Owls home-range selection are important factors for narrowing the 

delineation of potential critical habitat for this species. 
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CHAPTER 1. GENERAL INTRODUCTION 

1.1 CRITICAL HABITAT IN CANADA 

As of September 2007, 539 species were listed as being 'at risk' of extinction in 

Canada (COSEWIC 2007). Declines of most endangered and threatened species in 

Canada are thought to be associated with habitat loss and fragmentation; as such, the 

Species-at-Risk Act regulates habitat protection and management for all listed species. 

The Act defines habitat1 as species-specific, with critical habitat2 defined as 'the habitat 

that is necessary for the persistence and recovery of a listed wildlife species'. This 

management definition is contingent upon the identification of critical habitat within the 

recovery strategy3 or action plans4 for each individual species. In this context, legal 

designation of areas identified as critical habitat does not exist until an approved recovery 

strategy or action plan delineates the bounds of the critical habitat. To date (August 

2008), 67 recovery strategies have been finalized, with 160 delayed. 

In Canada, the definition of critical habitat is legalized by the 'Responsible 

Minister' - either the Minister of the Environment, Fisheries and Oceans, or Parks 

Canada. However, recovery teams have the responsibility of providing advice and 

making recommendations for critical habitat designations. Recovery teams typically 

consist of Species-at-Risk biologists and managers (both federal and provincial), species 

experts, associated non-governmental organizations, land managers, industry, First 

Nations, and public representatives, as appropriate. Along with any relevant published 

research, recovery team members are the main source of scientific and expert advice for 

defining critical habitat. Discussions among recovery team members on how to define 
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critical habitat have mainly focused on how to fill ecological data-gaps and assess socio

economic factors that limit the ability of government agencies to manage habitat 

resources. Less attention has been paid to the methods of analyzing habitat relationships 

and identifying approaches to modelling such data. Most recovery teams have described 

the biophysical attributes required by a species, typically based on qualitative literature 

reviews. The lack of a cohesive, quantitative framework for defining the spatial bounds 

of critical habitat remains a challenge for most recovery teams; however, the variation in 

species - from molluscs to plants to large mammals - and their unique ecological needs, 

makes it difficult to prescribe one all-inclusive framework. Effective support and 

implementation of critical habitat designations requires: 1) quantitative methods capable 

of creating spatially explicit predictions of critical habitat; 2) recognition of spatial and 

temporal scale when making decisions about what habitat is critical; and 3) ecologically 

based criteria of habitat needs that are linked to the main demographic factors that limit 

population growth in individual species. The goal of my thesis is to address these issues 

and to identify potential critical habitat for the endangered Western Burrowing Owl 

(Athene cunicularia hypugaea; herein, Burrowing Owl) in the Canadian prairies. 

1.2 SPECIES DISTRIBUTION MODELS 

Species Distribution Models (SDMs) are useful tools for evaluating critical 

habitat requirements for endangered species, as they quantify the relationship between 

species and their environment using empirical data (Guisan and Zimmerman, 2000; 

Johnson and Gillingham, 2005). However, note that species distribution is only one 

component of critical habitat, describing where species are currently found or where they 

have the potential to be found (see discussion below on habitat quality). Most SDM 
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applications are correlative in nature, meaning that the mechanisms that make one habitat 

type better than another are not explicitly tested. Instead, ecologists assume that, by 

identifying environmental features with which species occurrence or abundance are 

correlated, necessary resources such as food, shelter, and reproduction sites will be 

present (Corsi et al., 2000; Guisan and Zimmermann, 2000). The choice of an 

appropriate modelling technique can be difficult, because each approach may be unique 

in the underlying ecological questions and hypotheses it can address (Guisan and 

Zimmerman, 2000). 

Many different SDM techniques have been developed; for example, Ecological 

Niche Factor Analysis (ENFA; Hirzel et al. 2002), Mahalanobis distance (e.g., Clark et 

al. 1993; Rotenberry et al., 2006), and resource selection functions (RSFs; Manly et al., 

2002). Each technique has various limitations and assumptions that can affect what is 

predicted as a species' distribution and, therefore, the spatial bounds of what is deemed 

potential critical habitat. For example, Johnson and Gillingham (2005) evaluated four 

SDMs - a qualitative Habitat Suitability Index (HSI), a quantitative RSF, a Mahalanobis 

distance model, and an ecological niche model - for radio-collared woodland caribou 

(Rangifer tarandus caribou). They developed models for three sets of independent 

variables, using all four approaches, and then evaluated these models with a temporally 

independent set of locations. They also compared the similarities and differences of the 

four species distribution maps that were produced. Their evaluation showed that each of 

the quantitative SDMs were better predictors than the qualitative HSI; however, the 

spatial distribution of the habitats was quite variable among the quantitative SDM 

models. This has obvious implications for the delineation of critical habitats. Careful 
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consideration of the exact objectives of a study, the ecology of the species, and the 

availability of species location and environmental data is needed when choosing a 

particular modelling framework. 

1.3 ISSUES OF SCALE AND ORDERS OF SELECTION 

Which analytical technique is best to use when modelling critical habitat is in part 

an issue of scale. Recent advances in landscape ecology have clearly demonstrated the 

importance of spatial and temporal dynamics of species-environment relationships at 

various scales (Corsi et al., 2000; Garshelis, 2000; Boyce et al., 2002; Guisan and 

Thuiller, 2005). Relationships that appear to be important within a local study site are not 

necessarily applicable on a regional level. For instance, Wiens et al. (1987) found that 

habitat use and selection patterns by several shrub steppe bird species in North America 

varied depending on the spatial scale analysed. Johnson (1980) emphasized that 

conclusions drawn from any use-versus-availability study depend on the researchers' 

definition of what resources are available to the animal in question. As such, Johnson 

(1980) introduced the now well-known hierarchical ordering of selection processes: first-

order selection is the geographic range of the species, second-order is the home-range 

within the geographic range, third-order is the usage of various components of habitat 

within the home-range, and fourth-order is the attainment of resources within those 

home-range habitat components. Temporal processes can be thought of as a similar 

metric, where resources are defined by their availability during a specified range of time 

(e.g., breeding season vs. non-breeding season resources; pre- vs. post- human 

developments on a landscape). Critical habitat is inherently linked to the hierarchical 
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nature of these properties, and understanding these relationships at each scale of selection 

is vital to the definition of critical habitat for a species. 

Most SDMs are generated at the first-order geographic range; whereas, the most 

common use-versus-availability models define habitat selection (the disproportionate use 

of resources; Manly et al., 2002) at the third-order scale. As well, management plans and 

study designs are typically drawn up for localized areas, such as national or provincial 

parks. Therefore, recovery teams that use literature reviews to define critical habitat are 

mostly confined in their definition to third-order selection. Geographic range is species-

specific, varying from one small pond to an entire continent. However, most habitat 

models for species that range over large areas do not account for regional variation that 

might be driven by large-scale processes, such as climate, soils, or other macro-ecological 

processes (factors more likely to be observed at second-order selection). These regional 

processes could dictate how species are distributed and using habitat on finer scales of 

selection, if used habitat components differ from one region to another. To link all of 

these processes together into a concise definition of critical habitat, recovery teams need 

to understand how species' habitat use can change depending on the order of selection. 

1.4 HABITAT QUALITY 

As mentioned above, species distribution is only one component of what defines 

critical habitat. Recovery teams can adopt the terms "suitable" and "essential" to narrow 

the extent of critical habitat. I consider suitable habitat to describe where the species' 

occurs (or has occurred), or its distribution, while essential habitat is that which is 

necessary for populations to persist and grow. These two concepts can be measured 

independently; however, they must be considered simultaneously to define critical 
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habitat. For example, population growth cannot happen without species presence, and 

species presence fades without population growth and replacement. Another term 

frequently used in the scientific literature is that of habitat quality, defined as "the per 

capita contribution to population growth expected from a given habitat" (Johnson, 2007). 

High-quality habitat can therefore be thought of as the most essential component of 

critical habitat. Optimally, critical habitat definitions encompass high-quality areas with 

a high number of animals, which allows for more rapid population growth, and faster 

recovery of a species. 

Density, however, is not always an indicator of habitat quality (Van Home, 1983). 

Van Home (1983) points out that population size may have been determined at a time or 

place other than when it was measured or species' hierarchy dynamics force lower-

ranked individuals to crowd into sub-prime areas. Possibly the most relevant issue for 

species-at-risk is the case where anthropogenic disturbances alter a species' ability to 

recognize and select high-quality habitat (Bock and Jones, 2004). To disentangle 

potentially 'false' indicators of high-quality habitats (e.g., density of individuals) from 

actual high-quality habitat that needs to be protected, recovery teams need to relate 

resource use and availability to population persistence and growth. 

1.5 STUDY SPECIES AND AREA 

Burrowing Owls are unique in North America as fossorial owls, nesting in 

abandoned, underground burrows, most commonly created by prairie dogs, ground 

squirrels and badgers (Haug et al., 1993; Poulin et al., 2005). They are small owls 

(~160g; Wellicome, 2005), with some evidence of sexual dimorphism as females are 

heavier, and males are slightly larger in some linear measurements (Plumpton and Lutz, 
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1994). Plumage differences have also been described, as females are typically found to 

be slightly darker than males during the breeding season (Haug et al., 1993). They are 

short-lived, as no banded owls were found to be over six-years old during a long-term 

study in Saskatchewan (D. Todd, R. Poulin, and T. Wellicome, unpubl. data). The 

Canadian population is migratory, arriving during the summer season to breed (~ April to 

September; Haug et al. 1993). The natural ecology and life-history traits of the 

Burrowing Owl during this time are well studied. Males usually arrive first on breeding 

grounds, establishing territories and preparing potential nesting burrows, and begin 

courtship when females arrive (Haug et al., 1993). Burrowing Owls are monogamous 

during the breeding season; however, pair bonds are not permanent (Haug et al., 1993). 

Typically only one brood is attempted per season, with egg laying beginning soon after 

pair formation in May (Haug et al., 1993). Approximately 1 egg is laid every 1.5 days 

with typical clutch sizes ranging from 6-12 eggs (Wellicome, 2005). The incubation 

period (first egg to first hatch) lasts approximately 30 days, with incubation by the 

females only (Haug et al., 1993). After hatching, the female does all brooding until the 

young are capable of autothermoregulation (Haug et al., 1993). Male owls hunt and 

provide food during incubation and brooding, until the young are less dependent, 

approximately 2 weeks post-hatch, at which point the female also hunts (Haug et al., 

1993). Juveniles are mobile and can be seen at the burrow entrance around 14 days 

(Haug et al., 1993). They often engage in temporary dispersal movements from the nest 

burrow to satellite burrows prior to permanent departure from the nest (Davies and 

Restani, 2006; T. Wellicome, pers. comm.), which occurs approximately 53 days post-

hatch (Todd et al., 2007). 
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Largely because of a declining population over the past several decades, the 

Burrowing Owl is classified as an endangered species in Canada (COSEWIC 2006). 

Historically, this owl was common across the four western provinces that encompass the 

potential range of the species in Canada; currently, Alberta and Saskatchewan are the 

only provinces with naturally occurring breeding populations. In British Columbia, the 

species was considered extirpated in 1978, and the current breeding population exists 

because of annual reintroductions (Wellicome and Haug, 1995; Mitchell 2008). In 

Manitoba, the last confirmed nesting pair was seen in 1999 (K. DeSmet, unpubl. data), 

although unconfirmed sightings of a few owls have been reported each year. Throughout 

North America, modern agricultural practices and associated increases in human 

activities have resulted in widespread loss and fragmentation of grassland, which are 

commonly presumed to be the ultimate factors for the Burrowing Owl population decline 

(Wellicome and Haug, 1995; CEC 2005). 

In the Canadian prairies, the current breeding range of the Burrowing Owl covers 

over 18 million ha in southeastern Alberta and southern Saskatchewan, from the Canada-

U.S. border (49th parallel) to 52°50TSf latitude and 113°0'W and 103°30'W longitude (see 

Figure 1.1). This area is located within the mixed prairie of the Grassland eco-region, 

with a diverse plant community dominated by medium-height grasses (e.g., needle and 

thread, Stipa comata), short grasses (e.g., blue grama, Bouteloua gracilis), and sedges 

(Trottier, 1992). Land use is dominated by mixed agricultural practices (51%), ranching 

activities on native and non-native grassland (40%), and oil and gas activity (roads, wells, 

pipelines, compressors). This area holds the majority of known breeding Burrowing Owls 

in Canada, and the current naturally occurring population. 
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Qualitative descriptions summarize Burrowing Owl habitat as short grass, open 

terrain on relatively flat, treeless plains, associated with fossorial mammals (Wedgwood, 

1978; Haug et al., 1993). Past research on Burrowing Owl habitat has focused mainly on 

these qualitative site descriptions (e.g., Coulombe, 1971; Wedgwood, 1978) and third-

and fourth-order processes (Johnson, 1980) that operate on small-scale environmental 

relationships (e.g., Green and Anthony, 1989; Poulin et al., 2005). Tall vegetation and 

permanent cover within the species' foraging home-range are assumed to be important 

for providing an adequate prey supply, which is required in addition to a suitable nest 

burrow in an open area immediately surrounded by short vegetation (Wellicome and 

Haug, 1995). 

1.6 THESIS OVERVIEW 

In this thesis, I examine some of the technical and ecological aspects related to the 

definition of critical habitat for Species-At-Risk in Canada. Specifically, I create several 

models describing species-environment relationships of the endangered Burrowing Owl 

to identify suitable and essential breeding areas in the Canadian Prairie region. The 

historical and current geographic range of the Burrowing Owl (first-order selection) is 

well known and defined in this area (COSEWIC 2006). Also, regional studies within this 

range, describing nest-burrow and foraging-site selection (third-order habitat selection), 

have been conducted or are ongoing (see thesis work and published literature from E. 

Haug, R. Poulin, D. Shyry, R. Sissons, and T. Wellicome). However, within this region, 

there is a lack of information on home-range habitat selection (second-order selection). 

Therefore, I will attempt to fill this knowledge gap and explore Burrowing Owl home-
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range habitat selection and examine how it relates to high-quality habitat at the same 

spatial scale. 

In Chapter 2,1 examine the predictive ability and model performance of two 

different SDM techniques. Based on this analysis, I choose one technique to continue my 

analysis of home-range habitat selection. In Chapter 3,1 investigate large-scale 

environmental predictors of home-range selection, and determine the effects of these 

large-scale predictors on suitable vegetation cues. The results of this analysis provide a 

definition of suitable, high-use areas within the Burrowing Owl's prairie range. In 

Chapter 4,1 examine potential links between these high-use areas and high reproductive 

success, in terms of nest survival and fledgling production. In Chapter 5,1 summarize 

my results, discuss limitations of my study and future research needs, and make 

recommendations for modelling and defining critical habitat for Burrowing Owls and 

other Species-At-Risk in Canada. 
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Figure 1.1. The study area located within the mixed grassland eco-region of south-eastern 
Alberta and southern Saskatchewan. Dominant land-uses include mixed agricultural practices 
(51%), ranching activities on native and non-native grassland (40%), and oil and gas activity 
(roads, wells, pipelines, compressors). This area approximates the current geographic range of 
Burrowing Owls within the Canadian Prairie region, encompassed by the towns of Lethbridge 
(112.81407, 49.69773), Drumheller (112.63263, 51.42054), Estevan (102.99084, 49.139679), 
and Rosetown (107.99069, 51.54930; all locations given as longitude and latitude decimal 
degrees, respectively). 
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CHAPTER 2. COMPARING ECOLOGICAL NICHE 
FACTOR ANALYSIS AND LOGISTIC REGRESSION 
RESOURCE SELECTION FUNCTIONS USING AN 

ENDANGERED SPECIES 

2.1 INTRODUCTION 

The integration of Species Distribution Models (SDMs) with Geographical 

Information Systems provides ecologists and wildlife managers with a powerful tool, 

especially for large spatial scales. Typically, conservation biologists use SDMs to help 

determine suitable habitat sites and make predictions about the size of populations that 

can be supported by those habitats (Boyce and McDonald, 1999; Hirzel et al., 2004; 

Thatcher et al., 2006). This same approach can be used when modelling endangered 

species, though these species present some unique challenges (Engler et al., 2004; Norris 

2004). With species that have declined, location data can be scarce and is often not 

associated with known absence points (commonly referred to as 'presence-only' data). 

Furthermore, ecological knowledge of endangered species under optimal conditions is 

often impossible. Most SDMs work best when assuming that the species is in 

equilibrium with its environment (Guisan and Thuiller, 2005), which is not the case for 

declining populations. 

A fundamental difficulty for endangered species biologists is choosing the 

appropriate statistical modelling technique given the above constraints. The availability 

and number of SDMs has increased over the past few decades, which has prompted 

several studies that document species-environment relationships under varying 

circumstances. Most of these studies apply a single technique to help define habitat 
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requirements for a single species (e.g., Hirzel et al., 2004; Johnson et al., 2004; Browning 

et al., 2005; Richardson et al., 2005). However, the extensive array of choices causes 

much confusion, and there is a need to examine the performance of each technique in 

terms of prediction accuracy. Several recent studies have attempted to clarify some of the 

uncertainties related to choosing a technique (e.g., Brotons et al., 2004; Segurado and 

Araujo, 2004; Johnson and Gillingham, 2005; Olivier and Wotherspoon, 2006), however, 

the general consensus from these studies is that one universally applicable technique does 

not exist. As well, these studies have not directly compared the ecological interpretability 

of model results - specifically, examining if the model attributes concur with what is 

known about the species' natural history and ecology. The implications of using a model 

that predicts well without examining the ecological reality of the model can be 

detrimental. In the case of endangered species, managers need to justify the ecological 

consequences of their policies and decisions and, if variables "do not make sense", 

credibility can be lost. Biologists must carefully consider the available species data and 

known ecological characteristics of the species before choosing a modelling technique. 

Pearce and Boyce (2006) presented a review of modelling species distribution 

with presence-only data. One approach is to contrast the distribution of presence sites 

with the available environment. Two common and easy-to-use techniques based on this 

approach are the Ecological Niche Factor Analysis (ENFA, Hirzel et al., 2002) and 

resource selection functions (Manly et al. 2002). ENFA compares the environmental 

conditions of presence locations to the available environmental conditions across the 

entire study area. The ENFA employs a two-step approach: first is a factor analysis to 

summarize environmental variables into fewer, uncorrelated ecological factors; and 
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second, a habitat suitability model is computed using the most important factors from the 

factor analysis as predictor variables (Hirzel et al., 2002). In comparison, a resource 

selection function is any mathematical function that provides a value for a resource unit 

that is proportional to its probability of use by an organism. The logistic regression 

resource selection function use-versus-availability technique (herein, RSF) contrasts a 

sample of species presence locations with a random sample of available locations, 

estimating relative likelihoods of use with an exponential model (Manly et al., 2002). 

Regardless of technique, SDMs can best define critical habitat for endangered 

species when the models are based on reliable, scientific research that has established the 

variables that influence species-habitat relationships. An a priori selection of variables is 

hard to justify biologically without sufficient background knowledge - typical of 

endangered species - so one solution is to include all potentially relevant variables. 

However, including a greater number of variables can create models which are ineffective 

for ecological interpretation and also introduce statistical problems such as collinearity 

and variable redundancy (Hirzel et al., 2002). Hirzel et al. (2001) suggest that an ENFA 

is ideal when ecological knowledge is insufficient to develop a priori candidate models 

and an evaluation of many potential variables is required. In contrast, an RSF is 

inherently linked to a solid knowledge of the species-environment relationship (Hosmer 

and Lemeshow, 2000; Manly et al., 2002), and pre-screening to reduce the number of 

correlated predictor variables is a general practice. 

To date, no empirical studies have directly compared RSFs to ENFA models. 

However, studies have been published that compare ENFA to logistic regression 

Generalized Linear Models (comparing presence vs. absence or 'pseudo'-absence), 
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focusing solely on predictive capabilities under various scenarios. Performance under 

varying species abundance (Hirzel et al., 2001), marginality and prevalence (Brotons et 

al., 2004), distribution (Segurado and Araujo, 2004), and the quality of species location 

data (Engler et al., 2004) have all been examined. Most studies have concluded that the 

two methods provide similar results but that Generalized Linear Models have greater 

predictive accuracy under optimal data quality and species conditions (common and in 

equilibrium with the environment; Hirzel et al., 2001). 

The objective of this study is to analyze the predictive ability and ecological 

interpretations of two SDM techniques, the ENFA and RSF. I also examined how model 

performance is affected by including a greater number of covariates as well as the 

associated issue of collinearity. Collinearity occurs when predictor variables show a 

strong degree of correlation, typically indicated by significant Pearson or Spearman pair-

wise correlation statistics (approximately >0.7). Bonate (1999) found that collinearity 

can inflate the standard errors of parameter estimates in regression analysis. This could 

cause significant relationships to go undetected because the confidence interval around 

the parameter coefficients will increase to include zero, indicating no effect. As well, 

collinearity may bias the actual value of the parameter estimates (Bonate, 1999), resulting 

in false species-environment relationships. Manel et al. (1999) alluded to the sensitivity 

of logistic regression to collinearity in predictor variables while ENFA approaches are 

considered to be robust to collinearity issues; however, a formal investigation of model 

performance has not been conducted. 

In this study, I used the same base set of environmental predictor variables with 

both the ENFA and RSF, under high to low levels of collinearity, to produce habitat 
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suitability models for the endangered Burrowing Owl in the Canadian prairies. I 

measured predictive performance across all models using temporally independent 

location data. I then examined patterns in the variables to assess the ecological 

interpretations of each technique. The Burrowing Owl presents an interesting case study, 

because knowledge of the habitat requirements of the species at large spatial scales is 

limited, and a priori decisions in variable selection can be subjective. 

2.2 METHODS 

2.2.1 Species Location Data 

For Burrowing Owls, presence-only data is the only available data because no 

large-scale systematic surveys exist for this species. I developed all SDMs with location 

data provided by two provincial government databases: the Alberta Fish and Wildlife 

Management Information System and the Saskatchewan Conservation Data Centre. 

These data represent presence-only locations where observers detected Burrowing Owls 

(e.g., visual observation or Burrowing Owl food pellets located near burrows). I 

constrained these data to the extent of the study area (see Chapter 1 for a description), 

from ~1987-2004, which covers almost all of the current range of the owls. 

The Canadian Wildlife Service (CWS) provided an additional set of location data 

that were collected during a large-scale Burrowing Owl monitoring project undertaken by 

T. Wellicome. From 2003-2006, this project located Burrowing Owl nests and other 

incidental presence-only detections by re-surveying known previous nesting sites and 

searching the surrounding landscape. Additional locations were obtained through 

cooperation with other biologists, land owners and managers with knowledge of breeding 

Burrowing Owl locations. To evaluate the models built with the provincial databases, I 
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used a subset of the CWS data recorded from 2005-2006. This subset provided a 

temporally independent data set for model evaluation. 

2.2.2 Environmental Data 

Qualitative descriptions summarize Burrowing Owl habitat as short grass, open 

terrain, on relatively flat, treeless plains, associated with fossorial mammals (Wedgwood, 

1978; Haug et al., 1993). I selected 19 environmental predictor variables corresponding 

to this description and the availability of spatial data layers (Table 2.1). I created a raster 

layer for each variable with a 30-m pixel resolution. Haug and Oliphant (1990) found 

that the maximum home-range size of Burrowing Owls was approximately 4.8-km2, 

which is equivalent to a circle with a 1.2-km radius. For every variable, each 30-m pixel 

in my maps summarizes the information within the neighbouring 1.2-km radius 

landscape. I derived proportional, distance, and fragmentation land-use variables from 

the Prairie Farm Rehabilitation Association dataset (land cover grid), elevation and slope 

variables from a Digital Elevation Model provided by Parks Canada (Swift Fox Recovery 

Team)1, and road metric variables from the National Road Network Canada database. To 

provide a consistent comparison, I included only the linear forms of each variable in the 

modelling approaches compared in this chapter, though non-linear relationships between 

selection and habitat covariates are common (see Chapter 3). 

To assess collinearity within the dataset, I calculated the correlation matrix among 

all variables using BIOMAPPER 3.2 software (Hirzel et al., 2006; Table 2.2). The 

majority of the variables were uncorrected; however, I found various levels of 

collinearity among seven of the variables. I divided the levels of collinearity into four 
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categories: high (>0.90), strong (0.75-0.90), weak (0.50-0.75), and low (<0.50). I used 

these categories as the basis for building each SDM under high to low collinearity levels. 

2.2.3 Statistical Modelling 

I explored two common SDM presence-only techniques: the ENFA and RSF. 

Both techniques produce mathematical functions that can provide relative ranks of habitat 

suitability for comparison purposes. 

Ecological Niche Factor Analysis (ENFA) 

I used the BIOMAPPER 3.2 software (Hirzel et al., 2006) to calculate ENFA 

models describing Burrowing Owl habitat suitability, following the methods outlined in 

Hirzel et al. (2002). I used the 'box-cox' transformation (Sokal and Rohlf, 1981) within 

BIOMAPPER to normalize any non-normal data before model building, and included 

these transformed variables in both the ENFA and RSF modelling techniques. 

BIOMAPPER software performs predictive habitat modelling in two steps: first, the 

ENFA summarizes the environmental predictor variables into principal component 

factors that can be used to describe habitat suitability given the available data; and 

second, those factors that explain the most variance are used as predictors to create a 

predictive habitat suitability model and map. 

Hutchinson's (1957) concept of the ecological niche forms the basis for the 

ENFA, where the species' niche is a subset of the overall available environment. Hirzel 

et al. (2002) characterize this niche using an ordination approach, similar to a Principal 

Components Analysis, to organize data in a multivariate environmental space. ENFA 

reduces the number of variables into fewer, uncorrelated, ecologically meaningful factors 

by comparing the species distribution (described by the presence-only locations) on X 
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environmental variables to the global (overall) distribution of the same X variables. The 

calculations used within the ENFA assume that species distribution is non-random within 

the multivariate environmental space (Hirzel et al., 2002). For example, a species with a 

preference for low elevation is expected to occur in areas with lower elevation, as 

compared to the global average elevation within the study area. 

ENFA quantifies the species' niche axes in terms of marginality and 

specialization factors (Hirzel et al., 2002). The marginality factor, extracted first, 

indicates the species niche position - how far it is from average conditions in the study 

area. It ranges from 0-1, and describes the ecological distance between the species mean 

value (ms) onXvariable(s) and the mean of the available environment (or 'global' mean, 

mo) on X variable(s). It is calculated by taking the absolute difference between the 

species mean (ms) and global mean (mG), and dividing by 1.96 standard deviations (ao) 

of the global distribution. 

Marginality = | mo — ms\ /1.96 <JG 

A large overall marginality value (close to 1) indicates that the species has greater 

restriction on its ecological requirements relative to the overall environment. The 

coefficient values on the marginality factor indicate the contribution of each variable to 

the marginality, in units of standard deviations (of the global distribution). Higher 

absolute coefficient values indicate a higher contribution to the marginality and a further 

departure from the mean available habitat, in respect to that variable. Positive values 

indicate selection for higher-than-mean values, and negative values indicate selection for 

lower-than-mean values. 
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The specialization factor(s) are subsequently extracted, which describe species 

niche breadth, sorted by decreasing amounts of explained variance. These factors 

quantify the specialization - or selectivity - of the species relative to the available 

environment. Specialization is calculated as the ratio of the standard deviation of the 

global distribution (GG) to the standard deviation of the species distribution (as). 

Specialization = CTG/ (?S 

Specialization is inversely related to species tolerance, where an overall specialization 

value exceeding 1.0 indicates some form of specialization and, therefore, less tolerance 

(Hirzel et al., 2002). The coefficients of the specialization factors are interpreted 

differently from those of the marginality factor. Higher absolute coefficient values 

indicate that the species is more restricted (specialized) on that variable, and coefficient 

signs are arbitrary. 

Typically, only a few of the first factors (e.g. marginality plus 1-4 specialization 

factors) describe most of the variance in the dataset, and are used to calculate habitat 

suitability. I used a threshold value of 0.75 for cumulative variance to select the number 

of specialization factors included in each of the predictive habitat suitability maps. To 

build the habitat suitability maps within the BIOMAPPER software, I used the geometric 

mean algorithm, which is calculated based on the density of points in the environmental 

space using the geometric mean to all points (Hirzel and Arlettaz, 2003). The principle 

behind this method is to determine the suitability field of each species observation point 

within the environmental space (determined by the retained factors), such that when 

points are close together, the suitability field is stronger. The suitability field is 

calculated over the whole environmental space using the geometric mean of the distances 
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to all observations, for every point. Therefore, the model is calibrated in the 

environmental space, and then applied to the geographic space of the study area, 

providing a smooth set of environmental envelopes around the observation points and a 

good generalization of the species niche (Hirzel and Arlettaz, 2003). This algorithm 

makes no assumptions about the shape of the species distribution; however, the density of 

observations should represent the species' niche. 

Logistic Regression Resource Selection Function (RSF) 

A resource selection function is based primarily on habitat selection theory, where 

a species' disproportionate use of a resource compared to its availability is defined as 

selective (Manly et al., 2002). The most common form of a resource selection function is 

derived using logistic regression. An RSF contrasts any two of the following datasets: 1-

used points (species presence locations), 2- unused points (known species absence 

points), or 3- available points (sampled at random without replacement from the available 

environment). I contrasted the presence-only ('used') points with a random sample of 

available points across the entire study area (n = 48726). The RSF estimates relative 

likelihoods using the logistic discriminant: 

W(X) = exp (fijXi + fi2X2 + ... + P„Xn) 

where /?/.../?„ represent the coefficients estimated from a logistic regression model, and 

w(x) is the relative probability of occurrence (Manly et al., 2002; Johnson et al. 2006). I 

performed all RSF analyses in STATA 9.0 (STATA corp., 2005). 

Modelling Framework 

I built ENFA and RSF models with varying numbers of predictor variables that 

varied in their level of collinearity (Table 2.3). At the high collinearity level, all variables 

24 



were included. At the strong level, I removed one variable at random for every pair of 

collinear variables above an absolute value of 0.90. For example, PG and PC are 

correlated at a level of-0.94; therefore I removed the PC variable from all models at the 

strong level, and subsequent lower levels. This procedure was continued for both the 

weak and low collinearity levels, with a maximum correlation of 0.75 at the weak level 

and 0.50 at the low collinearity level. This was done to see how each modelling technique 

performed with different numbers of covariates. 

For each modelling technique, I performed two analyses to create two different 

models at each level. For the ENFA analysis, the first model, a, included all variables, 

after removing any collinearities according to the level of analysis. For the second 

model, b, I removed any variables where the absolute value of the marginality factor 

coefficient was < 0.05, as calculated in model a, because higher coefficient values are 

more important for explaining species distribution (see ENFA discussion above; Hirzel et 

al., 2002) and a coefficient < 0.05 may indicate redundancy. For example, at the strong 

level, model a (ENFA2a) included 18 variables, which was all variables minus PC, since 

PC and PG were collinear above the 0.90 threshold for that level. A second analysis was 

performed to produce model b (ENFA2b), where all variables with a marginality 

coefficient < 0.05, as calculated in model a, were removed. This procedure created a 

more parsimonious model, and simulated the 'step-wise' approach commonly used in 

logistic regression. 

For the RSF analysis, I also analysed two models for every collinearity level. All 

variables were forced into the first model, a, after removing any collinearities according 

to the level of analysis. I then analysed a second model, b, in which I incorporated a 
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backwards stepwise procedure to remove any non-significant variables from model a. All 

of the ENFA and RSF models were then integrated into ArcGIS 9.x software (ESRI, 

2004) to produce comparable habitat suitability maps. 

2.2.4 Model Evaluation 

To evaluate the predictive capability of each of the models, I used the temporally 

independent CWS dataset in conjunction with the evaluation method proposed by 

Johnson et al. (2006). I used quantile divisions to reclassify all of the original ENFA and 

RSF maps into 10 approximately equal-area bins ranked from low- to high- suitability. I 

used the division breakpoints to determine the midpoint value wfa) of the original habitat 

suitability score for each bin, /. I calculated the area of each bin A(XJ) with the total 

number of pixels in each bin. Using these values, I calculated a utilization value U(XJ) for 

each of the 10 bins with the following formula (Boyce and McDonald 1999): 

U(Xj) = wix^Aix^wix^AiXj) 

I overlaid the CWS dataset onto each map and tallied the number of locations 

within each of the 10 bins as the observed values. Expected values for each bin / were 

calculated by multiplying the total number of CWS evaluation points by the utilization 

value U(xt) of each bin /. I used linear regression statistics (constant, Po; slope, Pi; and R 

value) and the % goodness-of-fit to compare the expected number for each bin /' to the 

observed number of CWS points in each bin. If a model is approximately proportional to 

the probability of use, the linear regression constant will be close to zero and the slope 

will be close to 1.0. However, the predictive power is best described by the R and the % 

goodness-of-fit tests, which assess the fit of the model. A model that accurately predicts 
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observed values with the expected values will have high, positive R2 values and a non-

significant % value. R represents the proportion of variance (or information) in the 

observed values that can be predicted from the expected values; whereas, the % statistic 

estimates how well the observed distribution of CWS points matches the expected 

distribution estimated by the statistical model. I also included the Spearman rank 

correlation statistic (Boyce et al., 2002) as another measure of predictive performance. I 

calculated the area-adjusted frequency (AAF) of the CWS points in each bin using the 

formula (Boyce et al., 2002; Johnson et al., 2006): 

AAF = 0.1/Ai*Ui 

where At is the proportion of available study pixels in bins i, and Uj is the proportion of 

CWS points within bin i. The numerator value of 0.1 was used to standardize the 

available pixels in each bin to produce the area-adjusted frequency. I then used these 

AAF values per bin in comparison to bin rank to calculate Spearman rank correlation 

scores for each model. 

2.3 RESULTS 

I developed and mapped eight ENFA and eight RSF models, using the species 

presence locations provided by the provincial datasets (n = 2548). Using all ENFAs, I 

calculated a mean species marginality of 0.38 (range 0.35 - 0.40), indicating that 

Burrowing Owls live in average environmental conditions. The mean specialization of 

1.57 (range 1.51 - 1.65) corresponds to a tolerance level of 0.64. This indicates that the 

species is tolerant to environmental changes, although they do have a small amount of 

specialization (some 'selectivity'). 
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Each of the models were evaluated using the temporally independent data 

provided by CWS (n = 359; Table 2.4). Overall, ENFA models had poor predictive 

ability, with linear regression statistics revealing models not proportional to the 

probability of use, and very weak fit between expected and observed values (e.g., R < 

0.40, and Rs < 0.60). The RSF models were all substantially better predictors, as 

indicated by the R2 values > 0.90 and Rs values > 0.95. This discrepancy between the fit 

of the two techniques is illustrated in Figure 2.1, which depicts the fitted regression line 

for the most predictive model of each technique, ENFA4a and RSF3b. Note the 

dispersion of points from the regression line, as well as the slope and intercept. Chi-

square goodness-of-fit tests indicated poor fit for all ENFA and RSF models (p-values < 

0.05); however, all RSF models showed much better fit than any ENFA model. In 

general, Table 2.4 shows that decreasing the number of covariates corresponded to a 

slight increase in the predictive ability of the ENFA models, whereas the predictive 

ability of the RSF models did not change with the number of covariates included. 

Regardless of method, all models at the highest collinearity level were the least 

predictive, indicating a maximum correlation tolerance of 0.90 between variables. 

Figures 2.2 and 2.3 illustrate the habitat suitability maps of the least and most predictive 

ENFA and RSF models, respectively. 

I examined variable patterns within the models to assess the ecological 

interpretability of each technique. The ENFA model with the most predictive ability was 

the full model at low collinearity, ENFA4a (Table 2.5), and therefore, I compared those 

model coefficients to the standardized variable coefficients included in the equivalent 

RSF model, RSF4a (Table 2.6). This allows for the direction and strength of coefficients 
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to be directly compared between methods, where a greater deviance from zero (either 

positive or negative) indicates a stronger association between where an animal occurs and 

that covariate. 

In ENFA4a, the marginality coefficients indicate that Burrowing Owls are 

associated with flat, low areas (SL= - 0.55, EL = -0.302) and large amounts of grassland 

with few shrubs and trees (PG = 0.362, PS = -0.276, PT = -0.181); far from trees and 

shrubs (DTV = 0.385) and close to roads (DR = -0.283, RD = 0.235). The RSF4a model 

also indicates that Burrowing Owls are selective for flat, low areas (SL= -0.708, EL = -

0.261) with large amounts of grassland with few shrubs and trees (PG = 0.538, PS = -

0.222, PT = -0.096). However, this model suggests an inconsistent relationship with 

roads, because the association with distance to roads (DR = -0.500) increased, but the 

association with road density decreased (RD = 0.046) between methods. As well, the 

strength of the association of distance to tall vegetation (trees and shrubs, DTV) 

decreased in the RSF to 0.124. 

Figure 2.4 illustrates the variation of coefficient values for each technique. ENFA 

models show less variation with relatively constant coefficient values over all models. 

RSF model coefficients vary greatly for a number of variables, including PH, PO, PWE 

and PWA, and show instability in coefficient value and sign. 

2.4 DISCUSSION 

This study presents a new assessment of SDM performance by comparing ENFA 

with RSF models, in terms of predictive ability and ecological interpretability, with 

changing numbers of covariates and collinearity levels. My results suggest that 

regardless of the variable set considered, the RSF was better at prediction than the ENFA. 
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However, the ENFA provided consistent ecological interpretations, concurring with what 

is thought to be true about Burrowing Owl ecology. 

In terms of predictive ability alone, RSFs were proportional to the probability of 

use as defined by the CWS Burrowing Owl locations, while ENFA models were not. 

Both methods produced significant chi-square values, indicating that neither method 

produced a model that fit particularly well with the expected data. However, the lowest 

chi-square value for an ENFA model is over 10 times the highest chi-square value for a 

RSF model, suggesting that the RSF outperformed the ENFA. Previous studies (e.g., 

Brotons et al., 2004, Olivier and Wotherspoon, 2006) demonstrated that logistic 

regression models tend to provide more accurate predictions than ENFA models, 

especially when absence data is available and reliable. My research indicates that RSFs 

also provide a more accurate prediction of suitable habitat than ENFA models when 

absence data are not available. 

A preliminary step in multivariate logistic regression applications that is 

encouraged by Hosmer and Lemeshow (2000) is to assess variables for collinearity 

because the inclusion of correlated variables could produce spurious results. In practice, 

the cut-off point for designating variables as collinear typically ranges from 0.5 - 0.9, 

although 0.70 is frequently used in RSFs (e.g., Richardson et al., 2005). However, my 

results suggest that incorporating correlated variables up to a 0.90 threshold did not affect 

the predictive ability of RSF models. While reliable ecological information is still an 

asset to all modelling procedures, these results allow for more confidence in exploratory 

procedures for prediction, with less a priori knowledge. 
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Regarding the predictive patterns of both SDM techniques, I expected that ENFA 

models would be unaffected by the number of covariates and collinearity because the 

analysis is designed to take any number of correlated variables and transform them into 

fewer uncorrelated factors (Hirzel et al., 2002). The ENFA also weights the variables, 

without rejection, so that subjective decisions based on a priori knowledge are minimal 

(Hirzel et al., 2002). For the RSF models, I expected that the number of covariates and 

collinearity would affect their predictive ability, as regression analyses are typically 

affected by collinearity and redundancy (Bonate, 1999; Hosmer and Lemeshow, 2000). 

However, in my study, the predictive ability of ENFA models, and not the RSFs, 

corresponded to the number of variables included in the analysis and the level of 

collinearity among the covariates. While these results are surprising at first, I argue that 

this relationship is related to ENFA's overall lack of predictive power. ENFA is designed 

as an optimal exploratory tool to detect species' niche characteristics and not for 

prediction (C. Calenge, pers. comm.). The basic principle behind the factor analysis is 

that any number of variables can be 'collapsed' into uncorrelated factors, thereby 

eliminating collinearity among variables in order to capture the main characteristics of 

the species' niche. These factors likely do not capture all of the variation that could be 

explained by the original covariates, and varying amounts of specific information can be 

lost. This decreases the predictive power of the analysis in order to generalize the species 

niche. This problem is potentially exacerbated by increasing the number of covariates, 

regardless of their collinearity, as this can increase the statistical 'noise' or redundant 

information in the analysis. Because the increased information and noise are collapsed 

together, variation is lost while redundant information is included; causing decreased 
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predictive power with a greater number of covariates. The RSF technique is different, as 

it captures and uses all of the information that is provided by the data. By incorporating 

all of the specific details and information, RSFs provide more accurate predictions, 

regardless of the variable set used. 

Predictive ability, however, is not the sole measure of model performance. 

Basille et al. (2008) emphasize two questions fundamental to habitat selection studies: 

the where-question of prediction ("Where is the species found?") and the what-question 

("What does the species search for?"). Often the focus is on prediction, but we must also 

look at the ecological relationships revealed in the model. ENFA models provided 

robust, ecologically meaningful marginality coefficients corresponding with previous 

research on Burrowing Owl habitat requirements, regardless of the number of variables 

and collinearity in the analysis. In the RSF models, however, the strength and direction 

of certain variable coefficients changed depending on the variable set. These inconsistent 

coefficients are known as 'bouncing betas', or unstable model parameters. While the 

RSF models were accurate predictors, these bouncing betas indicate that the number of 

variables and collinearity present in the models does affect model performance. This 

bouncing beta phenomenon can be problematic for biologists and managers trying to 

determine and identify what specific environmental characteristics provide suitable 

habitat for the species in question. 

An example of this problem is seen in Figure 2.3. For all RSF models, Burrowing 

Owls selected urban areas consistent with anthropogenic land uses (e.g., Moose Jaw and 

Regina are ranked highly suitable, as indicated by the dark green colour in Figure 2.3). 

The implications of designating all human land use areas as suitable habitat is potentially 
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quite devastating to the recovery of the species. While Burrowing Owls are adaptable 

and can occur on small patches of vegetation as long as there is a burrow, selecting for 

this entire land use is highly unlikely. A more likely explanation is that the proportion of 

human land use is extremely small over the entire landscape (-0.55%) and there are a 

number of notable owl locations in anthropogenic areas; specifically, golf courses and 

pastures near horse racetracks in Moose Jaw. As well, certain vegetative areas such as 

those near farmstead or roadside ditches may have been lumped into the urban land-use 

category (PO), due to data constraints (pixel size of 30x30m). This could also create 

confusion between the 'used' vegetated areas, and the 'unused' road or building within 

the pixel. The RSF method uses this information by designating this 'rare' land-use as 

being highly selected for, as the proportion of used points is significantly greater than the 

proportion of 'other' land use in the available environment. However, ENFA models 

show that this relationship is insignificant, with a median marginality coefficient value 

close to zero. ENFA recognizes that 'other' land-use is rare over the entire landscape and 

may not be an important overall indicator of species' habitat suitability. While RSF 

appears to be highly affected by a small number of points, outliers do not significantly 

affect the ecological interpretability of ENFA models. The vegetated areas within urban 

land-use may be important, however, only a small pixel size (grain) would be able to 

tease apart these relationships more thoroughly. 

Another issue confounding this analysis is the existence of non-linear 

relationships between predictor variables and species locations, which could affect each 

SDM techniques quite differently. Hirzel et al. (2002) caution that the "ENFA only 

handles linear dependencies within the species niche." As such, I did not include or 
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account for non-linear relationships, as my goal was to compare modelling techniques 

under the most similar conditions. However, in chapter 3,1 show that most of the 

relationships between Burrowing Owl use and the environmental predictor variables can 

be described by non-linear terms. This means that the linearity assumptions of the ENFA 

are inappropriate for this analysis, which could explain the lack of predictive power. The 

RSF technique allows for some adjustment if collinearities and/or non-linear relationships 

are present, which may account for the higher predictive power in conjunction with the 

bouncing betas. However, by exploring the nonlinearities explicitly, RSFs may yield 

consistent and interpretable ecological patterns, while retaining the high predictive 

ability. 

Another factor that could create problems with model performance is the non-

random collection of points within the provincial databases. Burrowing Owls near 

human land-use areas are probably more likely to be seen and reported, as opposed to 

owls that are located within large pastures less-disturbed by humans. Mackenzie et al. 

(2006) outlined principles and methods dealing with detection issues; however, because 

my study is comparing two techniques using the same data, detection problems are 

inherent in all derived models, regardless of technique. 

Overall, these results support previous research that attests to ENFA's utility as a 

preliminary step in habitat modelling. Hirzel et al. (2001) showed that ENFA models 

were robust to the quality and quantity of the data, when using a virtual species under 

controlled conditions. Olivier and Wotherspoon (2006) suggest that ENFA predictions 

can provide a template for characterizing habitat suitability before the application of other 

modelling techniques and this analysis supports that observation. However, I believe that 
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RSFs have a greater potential to overcome the statistical issues present in this study. My 

goal was to create simple habitat suitability models to compare modelling techniques 

under the most similar conditions, and I found that RSFs were highly predictive models. 

An assessment and incorporation of non-linear relationships in future studies can alleviate 

the problem of bouncing betas. As well, there are model selection techniques available 

for use with RSFs that are useful for evaluating specific a priori predictions of habitat 

suitability, and significant variable sets. At the very least, an examination of the 

ecological interpretations of the ENFA models can provide a useful starting point for 

developing RSF models and predictions. 

2.5 CONCLUSION 

My comparison of two SDM techniques revealed that ENFA models can provide 

robust ecological indications of habitat suitability, while a carefully designed RSF model 

can provide better spatially-explicit predictions. ENFA models were poor predictors 

overall, and the predictive ability of these models increased as the number of covariates 

and level of collinearity decreased. RSF models were all good predictors, and their 

predictive ability was less affected by changing the number of covariates included. 

However, ENFA models provided consistent ecological interpretation corresponding to 

previous research for the species. The ecological interpretations of the RSF were 

inconsistent, shown by large changes in coefficient values and some spurious 

relationships from high to low collinearity levels. Endangered species biologists contend 

with real species and real data, and I provide an example using real data where the effects 

of multiple variables and collinearity are considered in relation to both the predictive 

ability and ecological implications of two different SDM techniques. 
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Table 2.1. Environmental predictor variables used as the basis for all ENFA and RSF model 
building. Each variable is represented as a raster layer with a 30-m resolution, where each pixel 
is a focal summary of the surrounding area within a 1.2-km radius, "b" indicates layers that were 
transformed in BIOMAPPER 3.2 software (Hirzel et al., 2006) using the Box-Cox algorithm (Sokal 
and Rohlf, 1981). 

Code 

EL 
SL 
DR 

DTV 

DWA 
DWE 

GE 

GN 

GP 

GR 
PC 
PG 

PH 

PO 

PS 

PT 

PWA 

PWE 

RD 

Environmental Predictor Variable, 
units 

Elevation, m 
Slope, degrees 

Distance to roads, m 
Distance to tall vegetation (trees & 

shrubs), m 
Distance to water, m 

Distance to wetlands, m 

Grassland edge density, m/km2 

Number of grassland patches 

Grassland patch size, m2 

Grassland edge to area ratio 
Proportion of cultivated land 

Proportion of grassland 

Proportion of hayb 

Proportion of other land use (urban, 
roads, buildings)b 

proportion of shrubs b 

proportion of treed areas b 

proportion of waterb 

proportion of wetland 

weighted road density, m/km2 

Mean 

772.3 
1.78 
713 

2318 

1744 
2599 

2124.1 

5.7 

1304693 

42.6 
0.515 
0.400 

0.017 

0.005 

0.012 

0.002 

0.013 

0.016 

1359.6 

SD 

136.5 
1.78 
778 

3440 

1593 
3986 

2747.9 

12.5 

1700936 

84.2 
0.381 
0.374 

0.044 

0.019 

0.028 

0.012 

0.036 

0.032 

1760.1 

Min. 

497 
0 
15 

0 

0 
0 

0 

0 

0 

0 
0 
0 

0 

0 

0 

0 

0 

0 

0 

Max. 

1443 
23.17 
9846 

29716* 

14266 * 
36880 * 

21670* 

180 

4521600* 

658 
1 
1 

0.293 

0.293 

0.287 

0.292 

0.293 

1 

70444 

* These layers possess values that were too large to compute within BIOMAPPER, therefore, 
they were divided by a factor to ensure maximum values < 10000 for each ENFA model. 
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Table 2.2. Correlation matrix calculated between all environmental predictor variables across the entire study area using BIOMAPPER 3.2 
software (Hirzel et al., 2006). All collinearities > 0.50 are highlighted in bold, italic font. 

EL 

SL 

DR 
DTV 

DWA _____ 

GE 
GN 

GP 

GR 

PC 

PG 

j _ PH 

° PO 

PS 
PT 

PWA 

PWE 

RD 

EL 

1 

0.34 

0.24 

0.18 

0.21 

0.42 

-0.06 
-0.14 

0.31 
-0.22 

-0.25 

0.3 

0.01 

-0.11 

-0.14 

0.14 

-0.12 

-0.17 

-0.11 

SL 

1 

0.22 

-0.12 

0.06 

~0.02 

0.31 
0.02 

0.24 

-0.24 
r-0.35 

0.35 

-0.08 
-0.07 

0.22 
0.27 

0 

-0.02 

-0.16 

DR 

1 
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"o 1 
015 
0 02 
-0 1 
0 48 

-0.19 

-0.48 

0.49 

-0.11 
-0.13 

0.06 

0.03 

0.11 

-0.05 

-0.36 
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1 
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-0 18 
.017 
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I 0.09 
10.01 
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i-0.26 
1-0.12 
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|0.01 

DWA 

*_ 

1 

0 28 

-0 13 

-0 15 

018 

-0.06 

-0.06 
0.14 

-0.01 

-0.09 

-0.11 

6.03 
-0.31 

-0.2 

-0.04 

DWE 

1 

-0 16 
-0 13 
0 15 

-0.1 

-0.09 

0.12 
0.1 

-0.09 

-0.13 
-0.01 

-0.03 
-0.29 
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GEC 

_ -

1 
0.59 
-0 14 
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Note thata indicates the highest collinearity (>0.90) variable removed at all lower levels,b indicates the strongest collinearity (0.75-0.90) 
variable removed at lower levels, and ° indicates the weakest collinearity (0.5-0.75) variables removed at the lowest level. 



Table 2.3. Modelling framework used to build all Ecological Niche Factor Analysis (ENFA) models 
and logistic regression Resource Selection Functions (RSFs), showing subsequent variable 
removals at each level with a reduced amount of collinearity. At the high collinearity level, all 
variables were retained. At the strong collinearity level (and subsequent lower levels), one 
variable was removed for every pair of variables correlated above the threshold value shown in 
the table (i.e. 0.90 at the strong level; see Table 2.2 for correlation values). Correlated variables 
were chosen at random for removal. 

Collinearity 
Category ENFA Variables * ENFA 

model RSF Variables ** 
RSF 

model 

1)HIGH 

2)STRONG 

<0.90 

3) WEAK 

<0.75 

4) LOW 

O.50 

(all 19 variables) 

(all 19 variables)-R 

(19-PC) 

(19-PC)-R 

(19-PC-GP) 

(19 -PC-GP) -R 

(19 -PC-GP-GE-PO) 

( 1 9 - P C - G P - G E - P O ) - R 

ENFAIa 

ENFAlb 

ENFA2a 

ENFA2b 

ENFA3a 

ENFA3b 

ENFA4a 

ENFA4b 

F (all 19 variables) 

SW (all 19 variables) 

F(19-PC) 

SW(19-PC) 

F(19-PC-GP) 

SW (19-PC-GP) 

F (19-PC-GP-GE-PO) 

SW(19 -PC-GP-GE-PO) 

RSF1a 

RSF1b 

RSF2a 

RSF2b 

RSF3a 

RSF3b 

RSF4a 

RSF4b 

* R = redundant variables defined by an absolute value < 0.05 for the marginality factor 
coefficient. These variables were removed to create a more parsimonious model comparable to 
stepwise logistic regression models. 

** F = forced logistic regression model including all variables listed and SW = stepwise algorithm 
used to remove any non-significant variables from model 
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Table 2.4. Predictive accuracy statistics (linear regression, % goodness-of-fit tests, and area-
adjusted frequency Spearman rank scores) comparing expected values (derived from provincial 
database locations) vs. observed values (Canadian Wildlife Service data, n=359) for Burrowing 
Owls across the Canadian prairies. The most predictive model within each technique is indicated 
with "*". 

a) Ecological N 

Collinearity 
Category 

1)HIGH 

2)STRONG 

3) WEAK 

4) LOW 

iche Factor Ar 

MODEL 

ENFAIa 

ENFAlb 

ENFA2a 

ENFA2b 

ENFA3a 

ENFA3b 

ENFA4a* 

ENFA4b 

lalysis (ENFA) models, ENFA1 

Linear Regression 

R2 Po 3i 

0.001 

0.002 

0.217 

0.096 

0.259 

0.257 

0.331 

0.370 

0.098 

0.097 

0.082 

0.090 

0.072 

0.074 

0.072 

0.074 

0.016 

0.026 

0.181 

0.100 

0.284 

0.256 

0.275 

0.262 

a - ENFA4b. 

Goodness-of-Fit 

P 

790.7 

785.7 

552.5 

591.9 

417.7 

379.6 

417.3 

551.1 

< 0.0001 

< 0.0001 

< 0.0001 

< 0.0001 

< 0.0001 

< 0.0001 

< 0.0001 

< 0.0001 

Spes 
(A 

Rs 

0.346 

0.127 

0.491 

0.382 

0.491 

0.564 

0.600 

0.576 

irman 
*F) 

P 

0.328 

0.726 

0.150 

0.276 

0.150 

0.090 

0.067 

0.082 

b) Logistic Regression-Resource Selection Function (RSF) models, RSF1a - RSF4b. 

Collinearity 
Category 

1)HIGH 

2)STRONG 

3) WEAK 

4) LOW 

MODEL 

RSF1a 

RSF1b 

RSF2a 

RSF2b 

RSF3a 

RSF3b* 

RSF4a 

RSF4b 

Linear Regression 

R2 Po Pi 

0.899 

0.904 

0.958 

0.947 

0.963 

0.966 

0.926 

0.922 

0.018 

0.018 

-0.010 

-0.008 

-0.013 

-0.012 

0.016 

0.014 

0.817 

0.815 

1.098 

1.082 

1.129 

1.124 

0.845 

0.858 

Goodness-of-Fit 

2 

1 P 
35.5 

34.0 

21.7 

24.3 

21.0 

19.8 

31.1 

33.2 

< 0.0001 

< 0.0001 

0.0099 

0.0039 

0.0125 

0.019 

0.0003 

0.0001 

(A 

Rs 

0.952 

0.997 

0.997 

0.988 

0.988 

0.997 

0.988 

0.979 

AF) 

P 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 
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Table 2.5. Variable and factor statistics for the Ecological Niche Factor Analysis (ENFA) model 
with the best predictive ability, ENFA4a. Shown below are the explained specialization values (in 
parenthesis) for the first 6 out of 17 ecological factors (marginality + five specialization factors) 
and coefficient values for the environmental predictor variables. Only the first 3 factors were 
retained to calculate the habitat suitability map, explaining 76.7% of the total information, and 
53.5% of the specialization. 

'ariable 

SL 
DTV 
PG 
EL 
DR 
PS 
RD 
GR 
PT 
GN 

PWE 
DWE 
DWA 
PH 

PWA 

Marginality 

(12.1%) 

-0.55 

0.385 
0.362 
-0.302 
-0.283 
-0.276 
0.235 
-0.205 
-0.181 
-0.152 
-0.11 
0.054 

0.025 
0.015 
-0.035 

Spec. 1 

(33.8%) 

-0.153 

0.025 
0.018 
-0.004 
-0.063 
-0.14 
0.013 
-0.022 
0.974 
-0.034 
-0.039 
0.018 
-0.012 
0.015 
0.003 

Spec. 2 

(7.6%) 

-0.64 
-0.03 
-0.265 
0.654 
-0.146 
0.086 
-0.133 
0.117 
-0.046 
0.095 
-0.008 
-0.114 
0.036 
-0.059 
-0.053 

Spec. 3 

(6.5%) 

-0.422 
0.071 
-0.101 
-0.213 
0.228 
0.767 
-0.06 
-0.026 
0.059 
-0.102 
0.021 
0.107 

0.016 
-0.131 
0.272 

Spec. 4 

(5.8%) 

0.192 

0.048 
0.225 
0.106 
-0.696 
0.501 
-0.143 
0.057 
-0.07 

-0.075 
0.064 
-0.042 
-0.027 
-0.086 
-0.339 

Spec. 5 

(4.7%) 

-0.188 
-0.119 
0.091 
0.148 
0.179 
0.252 
0.042 
0.033 
0.065 
-0.765 
0.418 
0.062 
0.016 
0.055 
-0.225 

Variables are sorted by decreasing absolute values on the marginality factor. Positive values on 
the marginality factor indicate that Burrowing Owl suitability increases with higher values than 
average for that variable, and vice versa. Coefficient signs on the specialization factor have no 
meaning, although large absolute values indicate some sensitivity to change. 
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Table 2.6. Variables in the Logistic Regression Resource Selection Function (RSF) model 
RSF4a. Variables were standardized before inclusion in model, to provide a direct coefficient 
comparison with ENFA4a. Shown below are the coefficients with standard errors and p-values 
for each term included in the model. Changes in coefficient ranks, the strength of association and 
the absolute values in comparison to the values for ENFA4a (illustrated in Table 2.6) are also 
provided for ease of interpretation. 

Variable 

SL 

PG 
DR 
EL 
PS 
GR 
DTV 
DWE 
PT 

DWA 
RD 

PWA 
GN 

PWE 
PH 

Coefficient 

-0.708 
0.538 
-0.500 
-0.261 
-0.222 
-0.146 
0.124 
0.106 
-0.096 

-0.071 
0.046 
0.021 
-0.016 
0.014 
0.013 

SE 

0.043 
0.026 
0.041 
0.031 
0.037 
0.029 
0.021 
0.027 

0.056 
0.025 
0.015 
0.024 
0.027 
0.023 
0.021 

P 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.09 

0.01 
0.00 
0.38 
0.55 
0.54 
0.52 

A Rank 

0 
1 
2 
0 
1 
2 
-5 
4 

0 
3 
-4 
3 

-3 
-3 
-1 

Strength 

t 
T 
T 
i 
i 
I 
i 
t 
i 
I 
i 
4 
4 
1 
i 

Value 

0.158 
0.176 
0.217 
0.041 
0.054 
0.059 
0.261 
0.052 
0.085 

0.096 
0.189 
0.056 
0.136 
0.124 
0.002 

Variables are sorted by decreasing absolute values of the coefficients. 
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Figure 2.1. Expected versus observed proportion of evaluation data points for the temporally 
independent Canadian Wildlife Service data (n = 359) for A) the ENFA model with the highest 
predictive ability, ENFA4a, and B) the RSF model with the highest predictive ability, RSF3b. The 
fitted regression line is presented as a linear equation along with R values. 

44 



a) ENFAIa 

^STUDYAREA 

'i 
AB SK 

b) ENFA4a 

Habitat Suitability Class 

i mi 
\ ' V T > t . « > < > ' \ < b < » k 5 > 

0 45 90 180 270 
i Kilometers 

360 

Figure 2.2. Ecological Niche Factor Analysis (ENFA) habitat suitability maps for Burrowing Owls 
across the Canadian mixed grassland prairies. The ENFA model with the least predictive ability 
according to Table 2.4 is shown in a) ENFAIa, while the ENFA with the most predictive ability is 
shown in b) ENFA4a. The inset map shows the study area located in southern Alberta (AB) and 
Saskatchewan (SK) in Canada. 
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Figure 2.3. Logistic Regression Resource Selection Function (RSF) habitat suitability maps for 
Burrowing Owls across the Canadian mixed grassland prairies. The RSF model with the least 
predictive ability according to Table 2.4 is shown in a) RSF1a, while the RSF with the greatest 
predictive ability is shown in b) RSF3b. The inset map shows the study area located in southern 
Alberta (AB) and Saskatchewan (SK) in Canada. 
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ENFA LR-RSF 

Figure 2.4. Box-plots of standardized coefficient values for each environmental predictor variable 
(excluding proportion of cultivated land, PC) included in all ENFA and RSF models. Median 
values close to zero and symmetric boxes about the median line indicate less variation over all 
models with differing collinearity levels. Median values furthest away from zero indicate 
coefficient instability. 
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CHAPTER 3. DO LARGE-SCALE ABIOTIC FACTORS 
INFLUENCE WHAT IS BIOTIC HABITAT FOR 

BURROWING OWLS IN THE CANADIAN PRAIRIES? 

3.1 INTRODUCTION 

Analysing species-habitat relationships is a key step in conservation planning for 

avian species. However, most studies that attempt to understand these species-habitat 

relationships are conducted at relatively small spatial scales in localized regions (e.g., 

Bisson and Stutchbury 2000, Davis, 2005; Stenhouse et al., 2005; Smith et al., 2007) 

describing third-order selection processes (Johnson, 1980). In general, these research 

projects have concluded that vegetation structure and composition are key determinants 

of avian habitat suitability. These conclusions have lead managers to focus on 

maintaining and manipulating vegetation as methods of conserving species, yet the 

importance of environmental abiotic factors in structuring vegetation communities 

(Clements, 1936; Whittaker, 1953) is often overlooked. Regional patterns in climate, 

soil, and biota are interdependent (O'Neill et al., 1986), and small-scale datasets do not 

reflect the variation produced by large-scale environmental processes that dictate higher 

order selection patterns (Johnson, 1980). Bio-geographical studies that examine the 

entire range of a species tend to find that abiotic environmental variables - such as 

climate and soils - are better predictors of where species occur (Turner, 2005). 

Parker and Bendix (1996) reviewed multiple examples of how abiotic processes 

influence the distribution of vegetation at the landscape scale. Less is known about 

whether soil type or climate creates unique habitat conditions that are independent of 
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vegetation structure and composition. Understanding if climate and soils create unique 

habitat conditions for wildlife, beyond the effects they have on vegetation, is important to 

managers charged with identifying critical habitat for several reasons. First, management 

strategies designed to maintain non-hunted species are often limited to policies that 

manage for optimal vegetation structure via different land-uses. If climate and soils are 

bigger drivers of wildlife use, there is less ability for managers to alter these conditions. 

Second, much of the variation between local studies may occur because vegetation 

models created in one region do not apply in a different climatic or soil regime. Blanket 

prescriptions that apply one definition of optimal vegetation structure across the entire 

range of a species may not be the best conservation practice. 

One example of the difficulties of defining critical habitat based on vegetation 

structure alone exists for the Burrowing Owl. Most studies have quantified fine-scale 

vegetation requirements for nest- and foraging-site selection in Burrowing Owls (third-

order selection; Johnson 1980). A perusal of the literature shows considerable variation 

in the conclusions drawn from these studies, making the qualitative descriptions that have 

been used thus far by the Burrowing Owl recovery team insufficient for planning 

purposes. For example, Burrowing Owls have been found to preferentially select nest 

burrows in grassland pastures and avoid crop fields in the Regina Plain (Poulin et al., 

2005). In Idaho, nests were closer to roads and irrigated crop fields than would be 

expected by chance (Rich, 1986; Beltoff and King, 2002). Some studies have shown that 

owls prefer to nest in areas with higher densities of fossorial mammal burrows but others 

have shown no effect (Beltoff and King, 2002; Poulin et al., 2005; Lantz et al., 2007; see 

Schmutz, 1997 for no difference). Burrowing Owls selected foraging sites in areas that 
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were low-lying, ephemeral wetlands and edges rather than intact grassland in the Eastern 

Irrigation District in southern Alberta (Sissons, 2003). A similar study within the 

heavily-cultivated region of Saskatchewan found that owls avoided cropland and fallow, 

and preferred foraging in the core of their nesting pastures (Sissons et al., 2001). Several 

years previous in the same province, pasture and crop areas were avoided by owls and 

selection was for human-modified grass-forb vegetation that is typical of road rights-of-

way (Haug and Oliphant, 1990). The one commonality of Burrowing Owl nest- and 

foraging-site selection studies is that the owls appear to be ambiguous to or possibly 

prefer landscape heterogeneity. An alternative hypothesis is that the variation in habitat 

selection seen across the range of the Burrowing Owl results from differences in abiotic 

processes at a larger scale, i.e. those processes that occur at a higher order of selection. 

In this chapter, I present logistic regression resource selection functions (RSFs) 

created over the current natural breeding range of the Burrowing Owl, representing ~18 

million hectares of mixed prairie grassland in Alberta and Saskatchewan. My objectives 

were to: 1) determine the relative importance of abiotic factors (i.e. soils, climate, and 

geography) relative to biotic vegetation factors (land-use and fragmentation) as predictors 

of second-order (home-range) habitat selection; and 2) evaluate whether owls selected the 

same vegetation conditions across a gradient of abiotic conditions. Specifically, I 

identified the most predictive set of environmental variables associated with Burrowing 

Owl home-range selection, and determined if the importance of vegetation factors 

changed in relation to the most predictive abiotic processes. To do this, I classified 37 

environmental predictor variables into five categories: geography, land-use, grassland 

fragmentation, soil, and climate. I created RSFs for each set of variables and evaluated 
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the predictive ability of each RSF. I then examined interaction effects to determine 

whether or not the relationship between vegetation variables and the probability of owl 

home-range selection varied within large-scale abiotic categories. 

3.2 METHODS 

3.2.1 Species Location Data 

I developed all models with data provided by provincial databases: the Alberta 

government's Fish and Wildlife Management Information System (FWMIS) and the 

Operation Burrowing Owl (OBO) program in Saskatchewan. I supplemented this data 

with observations from other independent sources and removed duplicates. These data 

were constrained to the study area extent, and only included points from 1987-2002. 

These data consist of presence-only observations (with no reference to absence), where 

observers detected Burrowing Owl presence either visually or indirectly (e.g., food 

pellets located near burrows). Data accuracy varied up to a maximum of a quarter-

section (800m x 800m or 64 ha); therefore, I randomly selected one 'used' point within 

each 'used' quarter section. To quantify the available landscape, I generated random 

points across the landscape, excluding any water bound areas. These 'available' points 

provided the set of comparison points for all statistical analyses. 

A second, temporally independent dataset of 'used' points was provided by the 

Canadian Wildlife Service and used for model evaluation. These data were collected 

from 2003-2006 for a Burrowing Owl nest monitoring project undertaken by T. 

Wellicome. Burrowing Owl nests and other incidental presence-only detections were 

located through surveys of known breeding areas, and by searching the surrounding 
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landscape. Additional locations were obtained through cooperation with other biologists, 

land owners and managers with knowledge of breeding Burrowing Owl locations. 

3.2.2 Environmental Data 

I measured 37 variables using ArcGIS 9.x (ESRI, 2004). I derived a spatial raster 

layer for each variable with a 30-m pixel resolution over the entire study area (see Table 

3.1 for a detailed summary of variables and data sources). Haug and Oliphant (1990) 

found that the maximum home-range size for a Burrowing Owl was approximately 4.8-

km2; therefore, I summarized all variables within a 1.2-km radius moving window across 

the landscape. 

I created five classes of variables to model the spatial distribution of Burrowing 

Owl home-range selection: geography, grassland fragmentation, land-use, soil 

characteristics, and climate. I created these classifications to examine the importance of 

land-use and grassland fragmentation (vegetation management factors) in comparison to 

abiotic factors that cannot be easily manipulated by managers - geography, climate, and 

soil characteristics. These five classifications also allowed for smaller sets of similar 

variables to be examined and simplified, in order to obtain the most parsimonious global 

model. 

Geography considers four variables: elevation, slope, and spatial location in terms 

of a false easting and northing. I used spatial location as a surrogate for unmeasured 

spatial gradients, scaling each variable down by a factor of 100,000 before inclusion. 

Burrowing Owl habitat is typically associated with low, flat areas (Wedgwood, 1978; 

Haug et al., 1993); I therefore included focal summaries of elevation and slope as 

covariates. 
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For grassland fragmentation, I examined four variables: overall edge density, 

area-to-edge ratio, number of patches, and mean patch size within the home-range radius. 

Within the land-use class, I included features such as water, wetland and tall woody 

vegetation (trees and shrubs). I created proportional rasters that quantified the amount of 

specified land-use within the home-range surrounding each focal cell. Previous studies 

have also looked at distance to land-use as variables; therefore, I included distance to tall 

woody vegetation, wetlands, and water. 

The importance of soil characteristics was demonstrated by Harris and Lamont 

(1985), who found that historical Burrowing Owl locations were correlated with land 

systems (soil groups and landforms). As their soil classification system differed slightly 

from the current Canadian Soil Classification System, I described soil in terms of the 

dominant soil orders and parent materials and texture found in the region, and quantified 

these characteristics using proportional rasters. 

Climate is considered to be one of the main drivers of overall landscape patterns 

(O'Neill et al., 1986; Turner, 1989), and subsequently, species distribution (Turner, 

2005). For climate, I considered average precipitation and minimum and maximum 

temperatures for the months of March, April, and May. This period coincides with 

Burrowing Owl migration into the study region. A recent analysis of habitat within the 

Regina Plain in Saskatchewan found that the average monthly precipitation in March was 

important to predicting owl distribution (E. Svendsen, pers. comm.). 

3.2.3 Statistical Modelling 

All statistical analyses were conducted in STATA 9.0 (STATA corp., 2005). 

Before multivariate analysis, I used Generalized Additive Models (GAMs) to determine 
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the shape of the relationship between each variable and owl use. Results were graphed 

and examined visually for non-linear relationships. If non-linear relationships were 

observed, I created univariate logistic regression models to compare the linear 

relationships with non-linear functional forms (quadratic, cubic, exponential, logistic, 

threshold breakpoints). A dichotomous variable was included when frequency 

distributions indicated a disproportionate amount of 0 values (d = 0 if x= 0, d = 1 if x > 0; 

Hosmer and Lemeshow, 2000). I compared these univariate relationships of each variable 

to previous knowledge of Burrowing Owl ecology, and incorporated different functional 

forms into the modelling framework. In Chapter 2,1 found that the inclusion of 

correlated variables up to a maximum of 0.90 did not significantly alter the predictive 

ability of logistic regression RSFs. Therefore, I calculated a Pearson correlation matrix 

between all variables to test for potential collinearities, and examined all models for 

inflated standard error estimates. 

I used a logistic regression Resource Selection Function (RSF; Manly et al., 2002) 

framework to model Burrowing Owl distribution as a function of the five classes of 

variables described above. I consider distribution to be the relative probability of 

Burrowing Owl home-range selection (second-order selection; Johnson, 1980). Used (1) 

and available (0) points were sampled at the population level (design I RSF), and 

compared using the logistic discriminant: 

W(x) = e x p (fijXj + P2X2 + ... + fan) 

where w(x) is the RSF estimating relative likelihoods, and Pi.. .pn represent the 

coefficients estimated from a logistic regression model (Manly et al., 2002; Johnson et 

al., 2006). 
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For each of the 5 classes of variables, I created two RSF models: the global 

(designated by subscript 'g') model that included all variables with appropriate different 

functional forms and a final reduced and simplified (designated by subscript 'rs') model. 

To create the simplified model, I used a backwards elimination process to systematically 

test global models for a reduction in the number of terms (removal of each variable in it's 

entirety) and a simplification of complex non-linear terms (e.g., from cubic to quadratic 

to linear). I employed an information-theoretic process (Burnham and Anderson, 2002) 

and examined Akaike's and Bayesian Information Criteria (AIC and BIC) values at each 

step, selecting models with a reduction >10 in AIC and BIC values. I also created one 

'all-inclusive' model that combined all 5 simplified models, for a total of 11 RSFs. I 

extrapolated each RSF to the study area using ArcQIS 9.x software (ESRI, 2004) to 

produce. Burrowing, Qwi distribution maps depicting the relative probability of home-

range selection. 

3.2.4 Model Evaluation 

Model evaluation was done as per methods outlined in Chapter 2. 

3.2.5 Interaction Assessment 

I determined that soil and climate variables produced the most predictive large-

scale models for Burrowing Owl selection. Therefore, I summed the RSF rasters for the 

simplified models for soil and climate, and created a soil/climate raster map. I re

classified the map using equal area breakpoints into 3 levels illustrating relative 

probabilities of owl home-range selection, as predicted by soil and climate conditions 

alone (low to high, 1-3). I intersected all used and available points with this raster to 
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create a soil/climate categorical variable, and I examined vegetation management 

variables in combination with the soil/climate variable for interactions. Specifically, I 

looked at variables that could be altered using common land-management practices in 

farming and ranching activities. To assess interaction effects, I created two models (one 

with, and one without, an interaction term) for each vegetation-management variable and 

examined the change in AIC and BIC values between models. Each (continuous) 

variable with the potential of an interaction was reclassified into a categorical variable. 

Selection ratios (Manly et al., 2002) were examined and graphed for a visual illustration 

of the relative probability of use at each of the three soil/climate levels. I calculated the 

selection ratios using the following formula: 

Wi = Oi/lCi 

where w; is the selection ratio for a given resource category i, expressed as the ratio of the 

sample proportion of used units, Oj, to the sample proportion of available units, 7tj. 

3.3 RESULTS 

I assembled 3689 Burrowing Owl locations from the provincial data from 1987 to 

2002, and generated a set of 70,783 points that described the available landscape. Using 

these data in univariate analyses, the GAMs showed that the relationship between 

Burrowing Owl home-range selection and 35 of the 36 continuous variables are described 

by non-linear relationships. These non-linear relationships were incorporated into all 11 

multivariate RSFs: two for each variable class set (global and simplified), and one all-

inclusive model that encompassed all sets of variables. I removed the cultivated land 

variable (pCrop) from all models because of the high correlation between proportion of 

cultivated land and grassland (r = -0.94). 
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According to model selection (Information Criteria, IC) scores, the all-inclusive 

model (k=62) received the most support out of all models (e.g., 2236 AIC units better 

than the second best model, Table 3.2). Model ranking changed for out-of-sample 

evaluation, which compared the spatial predictions of Burrowing Owl selection to the 

actual CWS dataset locations (n=558; Table 3.2 and Figure 3.1). Out of the isolated 

models, soil characteristics produced the most predictive models, followed by climate and 

then geography. Land-use and grassland fragmentation models had the least predictive 

power. Spatial predictions of Burrowing Owl home-range selection for all simplified 

models and the all-inclusive model are shown in Figure 3.2. 

I considered individual variables to be important descriptors of Burrowing Owl 

habitat selection when the p values remained at < 0.05 from the isolated to the final all-

inclusive model and when the parameter estimates were stable (Table 3.3). In summary, 

Burrowing Owls were associated with flat, low areas (p2Eiev = -5.098; Psiope= -0.352), 

lower grassland edge densities (PgEdge
= -0.169), and a moderate grassland patch size 

(quadratic relationship; Pgsize = 0.075 + p2
gsize = -0.039). Land-use distance variables 

were unimportant when all variables were considered. However, owls selected increasing 

proportions of grassland up to 0.25, which then stabilized based on a breakpoint 

functional form (PPGrasŝ 25bp = 6.309). Owls also selected areas with moderate amount of 

wetland as indicated by the better fit of a quadratic functional form (PPwet = 17.315 + 

P2pWet= -75.404). Most soil variables remained important within the all-inclusive model, 

with owls associated with moderate proportions of chernozemic soils (quadratic function; 

Pscher = 0.014 + p scher = -0.00015), decreasing levels of regosolic soils (P SRego = -

0.00027), increases in solonetzic soil up to 55% (breakpoint function; pssoio_55bP = 0.013), 
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slight increases in vertisolic soils (Psven = 0.018), and moderate associations with fluvial 

parent material (quadratic function; PpmFiuv = -0.011 + P°'5PmFiuv = 0.091). Coarser, sandy 

soils were the most preferred texture compared to finer, clay soils (PSText_6 = 0.665; 

categorical variable for texture 6 with reference to texture 1). In terms of climate, 

moderate minimum temperatures in March, April, and May, and moderate maximum 

temperatures in April and May were the variables most strongly associated with 

Burrowing Owl home-range selection (Table 3.3). 

Soil and climate predictions were combined to create the soil/climate variable 

(illustrated in Figure 3.3) to examine how specific vegetation management variables 

might vary among soil and climate conditions. Interaction effects were present for three 

of the five vegetation variables tested: pGrass, gEdge, and gSize (Table 3.4). Figure 3.4 

shows that pGrass had a strong interaction with soil/climate, gEdge had a very weak 

interaction, and gSize had a moderate interaction. For pGrass, trends in the selection 

ratios change from negative (for soil/climate = 1 and 2) to positive (at soil/climate = 3). 

In all instances, owls selected against the lowest proportions of grassland (< 0.1) and 

selected for higher proportions up to 0.7. However, owls only selected for grassland 

proportions above 0.7 when they are in ideal soil and climate conditions (soil/climate = 

3); otherwise, owls select against levels of grassland > 0.7. A similar trend is seen in 

gSize selection ratios, where there is a negative selection for the highest grassland patch 

sizes (above ~3.5 km2) when soil/climate = 1 and 2 and a switch to positive selection 

when soil/climate = 3. Selection for gSize switched from negative to positive at —0.110 

km (-2 on graph; Fig. 3.4) when soil/climate = 1 and 2, and ~ 0.343 km (-1 on graph; 

Fig. 3.4) when soil/climate = 3. For gEdge, a negative trend is consistent, as owls 
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selected against the highest (~ 5 km/km2 or greater) and lowest edge densities (> 0.1 

km/km ). The strongest selection for gEdge occurred at approximately 1-2 km/km . 

Note that 60% of all used points fall into the soil/climate = 3 category, so these points are 

driving the patterns seen over all soil/climate levels. 

3.4 DISCUSSION 

This study suggests that the best predictors of Burrowing Owl home-range 

selection in western Canada are large-scale abiotic factors. Soil characteristics produced 

the habitat selection model with the greatest predictive accuracy, followed closely by 

climate characteristics. Vegetation factors that can be more easily manipulated by 

managers (land-use and grassland fragmentation variables) had the least predictive 

power. As well, selection trends for 3 of the 5 vegetation variables changed depending 

on the soil and climate regime. These results indicate that the current habitat description -

open prairie grasslands that are flat and treeless with sparse vegetation and burrows -

does not fully encapsulate what owls truly require. 

There are several potential reasons why climate and soil characteristics play an 

important role in Burrowing Owl habitat selection. First, climate is thought to be one of 

the major abiotic drivers of bio-geographic landscape patterns (O'Neill et al., 1986; 

Turner 1989). Climate variables were the main drivers of multiple species distributions 

across Europe at coarse scale resolutions (Thuiller et al., 2004; Luoto et al., 2007). 

Thuiller et al. (2004) also showed that temperature and precipitation gradients accounted 

for most of the explanatory power and spatial variation of land cover. 

Climate and soil may also influence the agricultural practices and grassland 

distribution on the landscape, and subsequently dictate where owls obtain certain 
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resources. While my descriptions of the land-use cover types are coarse because of 

limited available data resolution (no information on species of grass for example), there is 

some evidence that cultivated areas can provide better foraging sites than non-cultivated 

sites. Prey biomass used by Burrowing Owls is dominated by vertebrates (Sissons, 2003; 

Poulin and Todd, 2006), and in Saskatchewan small mammals were more abundant in 

crops and right-of-way habitats than in pastures (Sissons et al., 2001; Poulin 2003). In 

Idaho, Burrowing Owls are thought to associate with irrigated cropland because of 

increased prey abundance and/or diversity compared to areas that are not cultivated 

(Rich, 1986; Moulton et al., 2006). It is unknown whether particular types of crops are 

more or less likely to have Burrowing Owl prey; however, certain soil conditions may 

allow for better production of seed-producing crops, which may then translate to higher 

densities of small mammals. As well, grassland species respond to differing soil 

conditions (Brown, 1943; Nixon and McMillan, 1964), and grassland structure and 

composition are known to influence small mammal populations (Rosenzweig and 

Winakur, 1969; Jones et al., 2003; Washburn and Seamans, 2007). However, exactly 

how this influences Burrowing Owl habitat selection remains untested. 

Alternatively, soil conditions may simply be a surrogate measure for burrow 

availability, which is critical in determining whether burrows can occur (Coulombe 1971; 

Thomsen 1971; Haug et al., 1993). Burrowing Owls are unique in North America as they 

nest in abandoned, underground burrows, most commonly created by prairie dogs, 

ground squirrels and badgers (Haug et al., 1993; Poulin et al., 2005). Previous studies 

indicated that soil type has significant effects on burrow survival and re-use by owls in 

the Columbia Basin in Oregon (Green and Anthony 1989; Holmes et al., 2003). 
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McCracken et al. (1985) found that nest burrows had greater sand content, less silt 

content, and equal clay content than adjacent non-nest burrows. Although their results 

were not statistically significant, McCracken et al. (1985) suggest that the difference may 

still be biologically relevant, because sandy soils may facilitate burrow enlargement and 

drainage during floods. My results demonstrate selection for coarse-textured, sandy soils, 

and avoidance of finer, clay-like soils. Most likely, the dense nature of clay and clay-like 

soils from their small particle size (Soil Classification Working Group, 1998) are not 

conducive to burrow construction by fossorial mammals. Soil conditions that allow for 

more burrow construction are beneficial from an owls' perspective, because owls have 

sometimes been found to select nest sites in areas with higher ground-squirrel and prairie 

dog burrow densities (Poulin et al. 2005; Lantz et al., 2007). Apps et al. (2002) also 

showed that soil parent material, order and texture are associated with American badger 

(Taxidea taxus) use. This further strengthens the argument for soil as a surrogate 

measure, because badgers are one of the main providers of suitable nest burrows for 

Burrowing Owls (Green and Anthony, 1989; Poulin et al., 2005). However, this 

relationship needs to be clarified further in terms of survival and reproductive success for 

Burrowing Owls, because badgers are also known to be major predators of owls and their 

nests (Green and Anthony, 1989; Haug et al , 1993; Wellicome et al., 1997). 

Historical Burrowing Owl declines have been attributed to loss and fragmentation 

of native grassland habitat in the Canadian Prairies (Haug et al., 1993; Wellicome and 

Haug, 1995; COSEWIC 2006). Therefore, I expected that land-use and grassland 

fragmentation would be important drivers of current owl distribution if owls are actively 

searching for and selecting the remaining parcels of intact grassland undisturbed by 
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farming. However, my results indicated that land-use and fragmentation were poor 

predictors of Burrowing Owl home-range selection across the Canadian Prairies. My 

objective was to define overall selection patterns, and I considered all covariates in 

Alberta and Saskatchewan to be equally available to all owls when I defined my available 

landscape. Though soil and climate regimes were evenly distributed across the 

landscape, vegetation patterns were not. Myerstud and Ims (1998) noted that habitat 

selection can be conditional on availability, and therefore, the importance of vegetation 

could be confounded by its availability on the landscape. Most of the intact, large parcels 

of grassland are found in Alberta in association with large-scale ranching. However, 

Saskatchewan is dominated by cultivated land, fragmenting the remaining grassland 

parcels and the entire landscape. The high degree of correlation found between the 

proportion of cultivated land (pCrop) variable and proportion of grassland (pGrass) 

variable illustrates this association. To explore this relationship more explicitly, it may be 

necessary to separate the available landscape according to the dominant land-use practice, 

and review habitat selection accordingly. However, Burrowing Owls have the ability to 

disperse large distances among years (e.g., from one province to another; Wellicome et 

al., 1997), so the assumption that all habitat is available to all owls may be a reasonable 

one. 

An interesting result of this study was that most relationships between owl habitat 

selection and vegetation factors were non-linear in form. The best approach to grassland 

management within the Canadian Prairies is highly debated when considering recovery 

policies for Burrowing Owls. A common theme in prairie conservation is the 

preservation and restoration of grasslands: protecting or creating the largest patches 
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possible and maximizing grass height (Prairie PIF, 2004). While logical, some studies 

indicate that owls forage at edges, suggesting that landscape heterogeneity may be 

important. I showed that Burrowing Owls selected increasing amounts of grassland and 

larger grassland patches, but only in areas where soil and climate conditions predicted 

high selection by owls. Larger grassland patches within a good soil and climate regime 

might allow for heterogeneity within the grassland patch itself (e.g., well-grazed sites 

combined with overgrown sites allowing for owls to forage for small mammals). When 

soil and climate regimes are not optimal, the larger grassland patches may not provide 

enough heterogeneity, and therefore owls select moderately-sized patches that allow for 

other land-use (e.g., cultivation, wetlands) and edges for maximum foraging value. These 

changes in selection among soil and climate regimes may also relate to variation in grass-

species composition and associated prey communities. Alternatively, owl nesting 

locations may reflect selection by burrowing mammals for landscape heterogeneity. 

Lastly, larger grassland patches could have greater burrow longevity that is dictated by 

the soil and climate regime as described above. 

Unlike previous research on nest-burrow associations (Poulin et al., 2005), I 

found that owls were more likely to select moderate proportions of grassland within a 

simulated home-range. This discrepancy is potentially linked to the differences in scale: 

nest-burrow habitat is a finer scale of selection than home-range selection (third vs. 

second order; Johnson, 1980). Burrowing Owls may be placing their nests within 

grassland patches where burrows are available (Wellicome et al., unpubl. data), but 

foraging in other areas within their home-range where prey availability and hunting 

success are high (Sissons, 2003). This observation would partially explain the 
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discrepancies in habitat selection among scales and supports the hypothesis that 

Burrowing Owls prefer landscapes that are heterogeneous, at least at the home-range 

scale. Previous foraging studies (Haug and Oliphant, 1990; Sissons, 2003) conducted on 

a local scale showed that Burrowing Owls avoided both grassland pastures and cropland; 

however, there is a need for a foraging study that accounts for changes in large-scale 

environmental processes across the species' range. 

3.5 CONCLUSIONS 

My results show that the large-scale, abiotic factors of soil and climate can predict 

Burrowing Owl home-range selection and create unique habitat conditions for the owls, 

independent of vegetation, across the Canadian prairie breeding range. Vegetation may 

be an important predictor for habitat selection studies on a finer scale within varying soil 

and climate regimes. These models can be used by the recovery team to help target areas 

for critical habitat designation, although more information is needed to prioritize habitat 

across a range of abiotic conditions. Regardless of scale, abiotic factors and vegetation 

management must be considered in terms of nesting success and fledgling production. In 

the final chapter of my thesis, I explore these potential relationships, to determine if 

Burrowing Owl home-range selection is linked to reproductive success. 
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Table 3.1. Environmental predictor variables used for Burrowing Owl habitat selection models in 
the grassland prairie region of Canada. The four letter codes identifying the five classes of 
variables are underlined in bold font. 
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grass edge density, km/km2 
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mean patch size, km2 
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database at 1:1 million 

scale). 

Worldclim database, 
version 1.4, 

http://worldclim.org 

Mean 

384597 

192285 

772.3 

1.775 

2.124 

5.70 

1.305 

42.64 

2318 
1744 
2599 
0.515 
0.400 
0.025 
0.015 
0.003 
0.020 
0.016 

0.666 
0.032 
0.045 
0.128 
0.074 
0.052 
0.079 
0.258 
0.494 

— 
177.8 
242.7 
421.8 
-101.7 
-21.7 
37.8 
12.5 

110.0 
183.8 

SD 

183006 

87757 

136.4 

1.784 

2.748 

12.45 

1.701 

84.23 

3440 
1593 
3986 
0.381 
0.374 
0.080 
0.043 
0.025 
0.080 
0.031 
0.326 
0.042 
0.135 
0.246 
0.209 
0.168 
0.164 
0.322 
0.364 

— 
24.0 
31.9 
63.5 
12.5 
5.9 
6.7 
15.9 
8.2 
6.6 

a Variables were scaled down by a factor for all statistical analyses: 100000 for East and North, 
10 for gRatio, and 10000 for dTVeg, dWater, and dWet. 
b The Swift Fox DEM project relied on four data sources: Saskatchewan National Topographic 
Series 1:50,000 (NTS50) 20m DEMs, Alberta NTS50 20m DEMs, US Shuttle Radar Topography 
Mission (SRTM) 26m (1 second arc), and SRTM 75m (3 second arc). 
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Table 3.2. Evaluation statistics of candidate models of Burrowing Owl home-range selection in the mixed grassland Canadian prairies, 
developed over the period 1987-2002. Model selection measures are presented for relative comparisons of model fit. Out-of-sample 
evaluation statistics evaluate predictive accuracy by comparing model predictions (expected values) with out-of-sample CWS data (observed 
values) collected from 2003-2006. Model selection rank is based on the lowest AAIC scores, while final rank of model predictive ability is 
based on Goodness-of-Fit tests, Spearman rank scores, and linear regression R2 values (shown in Figure 3.1). 

Model 

Null 

GeogG 

GeogRS 

FragG 

FragRS 

LandG 

LandRs 

SoilG 

SoilRs 

ClimG 

ClirriRs 

All 
Inclusive 

pR2 

-1 

9 

6 

8 

7 

16 

12 

23 

23 

21 

18 

62 

0.061 

0.061 

0.012 

0.012 

0.026 

0.026 

0.056 

0.057 

0.054 

0.054 

0.141 

MODEL SELECTION 
iw *-. 73»ip--:. 

AIC BIC AAIC ABIC 

29366 

27600 

27595 

29020 

29018 

28637 

28634 

27763 

27745 

27822 

27820 

25359 

29375 

27683 

27650 

29093 

29082 

28784 

28745 

27975 

27957 

28015 

27986 

25930 

4007 

2241 

2236 

3661 

3659 

3278 

3275 

2404 

2386 

2463 

2461 

0 

3444 

1753 

1720 

3163 

3152 

2854 

2815 

2044 

2027 

2085 

2055 

0 

Rank 

3 

2 

11 

10 

9 

8 

5 

4 

7 

6 

1 

i :r.£ : PUTSp&iSAMPUE EVALUATION 
Goodness-of-Fit Spearman (AAF) 

Y2 P Rs P 

158.60 

132.84 

51.32 

47.34 

53.86 

47.41 

14.35 

13.51 

80.75 

69.58 

31.87 

p<0.0001 

p<0.0001 

p<0.0001 

p<0.0001 

p<0.0001 

p<0.0001 

0.1104 

0.1409 

p<0.0001 

p<0.0001 

0.0002 

0.988 

0.988 

0.794 

0.818 

0.903 

0.903 

0.976 

0.988 

0.988 

0.988 

0.964 

0.000 

0.000 

0.006 

0.004 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

Rank 

8 

6 

11 

9 

10 

7 

2 

1 

5 

4 

3 

Note: G indicates the global model with no terms removed, RS indicates that the model was simplified using backwards elimination and IC 
scores. The 'All Inclusive' model includes all terms remaining from all isolated simplified models, with no further reductions. 
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Table 3.4. Model fit statistics determining whether or not interaction effects are present between 
vegetation management variables (continuous variables) and varying levels of large-scale 
soil/climate regimes (categorical variable; illustrated in Figure 3.3). Management variables were 
modelled with the soil/climate variable without interaction terms (w/ soil/climate) and with 
interaction terms (x soil/climate). A large change in AIC or BIC values (AAIC or ABIC >10) 
between models with and without interactions is highlighted in bold, italic font. * indicates 
variables with weak interaction effects, and ** indicates variables with strong interaction effects. 

Variable pR! AIC BIC AAIC ABIC 

pGrass ** 
w/ soil/climate 
x soil/climate 

pWet 
w/ soil/climate 
x soil/climate 

gEdge* 
w/ soil/climate 
x soil/climate 

gSize ** 
w/ soil/climate 
x soil/climate 

g Ratio 
w/ soil/climate 
x soil/climate 

4 
6 

4 
6 

4 
6 

4 
6 

4 
6 

0.062 
0.064 

0.062 
0.062 

0.062 
0.063 

0.062 
0.063 

0.064 
0.065 

27556 
27490 

27555 
27551 

27547 
27525 

27562 
27525 

27489 
27482 

27593 
27545 

27592 
27607 

27584 
27580 

27599 
27580 

27525 
27538 

66 

22 

37 

48 

-15 

19 

-12 

Vegetation management variables: proportion of grassland (pGrass), proportion of wetland 
(pWet), grassland edge density (gEdge), grassland patch size (gSize), and grassland edge-to-
area ratio (gRatio). 
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Figure 3.1. Expected versus observed proportion of evaluation data points for the temporally 
independent CWS data (n=558) for isolated candidate models (global, g, and simplified, rs) and 
the all-inclusive model. The fitted regression line is presented as a linear equation along with R2 

values. 
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Figure 3.1. Continued. 
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N Habitat Suitability Class 

a) Geography Model b) Grassland Fragmentation Model 

c) Land-use Model d) Soil Model 

e) Climate Model f) All-inclusive Model 

Figure 3.2. Relative indices of Burrowing Owl home-range selection in the grassland prairie 
region of Canada. These models were created using logistic regression resource selection 
functions (RSFs) and isolated variables sets (a-e) and all variable sets combined (f). Values 
range from low suitability class 1 (light) to highest suitability class 10 (dark green), where high 
suitability indicates where a Burrowing Owl is most likely to select its home-range. 
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Soil/Climate (SC| Levels * urban Centres 

1 I 1 " L o w Trans-Canada Highway 
• H i 2 - Medium 

3 - High 45 90 180 
I Kilometers 

Figure 3.3. Soil/climate levels corresponding with relative probabilities of Burrowing Owl home-
range selection within the study area. Soil/climate levels range from 1 to 3, where 1 = relatively 
low selection and 3 = high selection (as predicted by the simplified soil and climate models). 
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Figure 3.4. Burrowing Owl home-range selection ratios (Wj) at varying levels of vegetation management reclassified into categories (proportion of 
grassland, pG; grassland edge density, gE; and grassland patch size, gS) within different Soil/Climate (SC) conditions. Selection ratios > 1 
indicate selection for that category, while ratios < 1 indicate selection against. Ratios close to 1 (x-axis) indicate no selectivity. Linear and 
polynomial regression lines are provided as a visual aid for interpretation of selection ratio trends. 



CHAPTER 4. IS BURROWING OWL HOME-RANGE 
SELECTION LINKED TO REPRODUCTIVE SUCCESS? 

4.1 INTRODUCTION 

Knowledge of how individuals select habitat is crucial in determining wildlife 

conservation strategies (Murphy and Noon, 1992; Engler et al. 2004; Norris, 2004; 

Johnson and Gillingham, 2005). However, determining disproportionate use of a habitat 

relative to its availability (Manly et al., 2002) may be insufficient to effectively 

characterize suitable and essential habitat for a species. Using habitat selection models 

alone as indicators of high-quality habitat assumes that animals make habitat selection 

decisions that are ideal for their fitness, and that this maximization of reproduction or 

survival leads to population increases in those selected areas (Fretwell and Lucas, 1970). 

However, occurrence- or abundance-based habitat selection does not always describe the 

optimum habitat composition or configuration for a species (Van Home, 1983; Hobbs 

and Hanley, 1990). Therefore, before making any habitat management decisions based 

on habitat selection models, it is important to test whether or not habitat selection is 

related to a measure of habitat quality. 

The exact nature of the relationship between habitat selection and habitat quality 

can lead to divergent management decisions. If there is either a positive or neutral 

relationship, habitat selection indices can be used to guide which suitable and essential 

habitats are in need of protection or management. In contrast, if habitat selection indices 

are negatively related to habitat quality, then high numbers of individuals are using areas 

that do not result in population growth (i.e., sinks; Pulliam, 1988; Delibes et al., 2001). 
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Population sinks can occur when dominant individuals take over prime breeding habitats, 

forcing a large number of sub-ordinates to crowd into marginal areas (Van Home, 1983), 

or when an animal's ability to recognize and select high-quality habitat is impaired by 

anthropogenic disturbances (e.g., ecological traps; Bock and Jones 2004). If this negative 

relationship occurs, habitat selection indices should not be used to indicate high-priority 

habitats for species management (e.g. Remes 2003; Lloyd and Martin 2005; Weldon and 

Haddad 2005). 

Discriminating between these alternative scenarios is crucial for threatened or 

endangered species recovery. In Canada, recovery teams must try to piece together as 

much information as possible to make effective recommendations for defining critical 

habitat. However, the rarity of individual animals, the desire to minimize human 

disturbance, and other logistic considerations often prevent adequate measurement of 

reproductive success for many endangered species. For example, Clark and Shutler 

(1999) reviewed the literature on a wide variety of avian species and found that only 29% 

of studies on endangered or threatened species were able to test for differences between 

successful and unsuccessful nesting habitat. Without an examination of habitat quality 

(in this case indicated by reproductive success), occurrence-based habitat selection 

models can result in recommendations for habitat protection that do little to help or may 

even hinder recovery of a population, despite the endangered species being present in 

relatively high densities. 

To gain an understanding of the link between habitat use and habitat quality, it is 

important to consider large-scale factors that influence where a species can exist and also 

proximate factors that influence local reproductive success (e.g., nest survival and 
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number of fledglings produced). Habitat use and selection is often measured in terms of 

overall vegetation and other landscape qualities (e.g., soil, climate, geography) that are 

associated with potential resources for survival and reproduction that animals choose. 

However, reproductive success is often governed by dynamic fluctuations in the 

availability of resources, which at any given time may or may not correlate with overall 

vegetation and landscape characteristics that represent average resources. Simple models 

that relate overall reproductive success to habitat selection indices without accounting for 

other important proximate factors (e.g., temporal and weather dynamics) do not provide a 

thorough examination of how population persistence might be influenced by habitat use. 

In Chapter 3,1 created habitat selection models that predicted the distribution of 

Burrowing Owl home-ranges in the Canadian Prairies. In this chapter, my objective is to 

investigate if these habitat selection models and maps are useful tools for identifying 

high-quality habitat for Burrowing Owls. Specifically, I evaluate whether or not 

Burrowing Owl home-range selection is linked to reproductive success (i.e. nest survival 

and number of fledglings produced), accounting for proximate factors that influence 

productivity at a given point in time. I created nest-survival and fledgling production 

models that included the habitat selection indices generated in Chapter 3 as covariates, 

while accounting for breeding season temporal dynamics and short-term precipitation 

variables. High precipitation is one of the most common causes of nest failure and 

nestling mortality in Burrowing Owls (Wellicome 2000; Wellicome et al., unpubl. data) 

and needs to be considered when evaluating how large-scale selection covariates relate to 

reproductive success. 
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4.2 METHODS 

4.2.1 Nest Monitoring Data 

From 2003-2006, T. Wellicome from the Canadian Wildlife Service supervised a 

large-scale, multi-personnel project (hereafter 'CWS project') to assemble Burrowing 

Owl nest locations and associated reproductive information. The CWS project located 

nests throughout the study area by re-surveying known nesting sites and owl-occupied 

areas, and searching the surrounding landscape. Additional locations were obtained 

through cooperation with other biologists, land owners and managers with knowledge of 

breeding Burrowing Owl locations. Spatial coordinates of all monitored locations were 

recorded using Garmin GPS units. 

Each year, the monitoring period began between 24 April (recoded to Day 1) and 

2 May, and continued until the last nest was confirmed fledged or failed, between 30 July 

and 10 August. Therefore, the total monitoring period was standardized to 109 days (24 

April to 10 August) for all years. Each location was visited approximately once/week 

during this monitoring period to confirm nesting stage, determine frequency and causes 

of nest failures, and quantify fledgling production. Because Burrowing Owls nest 

underground, most of this data was collected using home-made versions of Peeper™ 

Video Probe systems (Sandpiper Technologies, 

www.sandpipertech.com/video inspection.html). The 'Peeper' system consists of a 

video-monitor headset, attached with a 4-meter fiber-optic cord to a video camera that 

has infrared sensors to view in total darkness (i.e., inside underground nest burrows). 

Nest chambers were monitored from the time of first detection until nest failure 

(destruction, depredation, flooding, or abandonment) or success could be determined. 
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Monitored locations were defined as nests based on evidence of reproduction: minimum 

of one egg or nestling in the burrow chamber, a brooding/incubating female, or two 

confirmed adults observed for at least one visit after the median egg laying date (May 9; 

Wellicome et al., unpubl. data). 

Once a nest was confirmed, lay dates and hatch dates were estimated using 

methods described in Wellicome (2000) and a photo reference guide showing known-age 

nestlings (R. Poulin and D. Todd, unpubl. data). Visual observation of either the first egg 

or the first hatchling within the nest burrow provided the most accurate estimates; 

otherwise, back-dating from two or more mid-clutch counts was used, using the laying 

rate of 1 egg per 1.5 days (Wellicome, 2005). If nests were found after mid-clutch or 

after the first hatchling, young owlets were compared to the photo reference guide and 

older juveniles were aged using feather lengths when captured. If these estimates were 

unavailable for successful nests, the median egg laying date was used (n = 29). The 

monitoring start date for each nest was defined as the later of either the 1) first visit to the 

nest (i.e. when it was found) or 2) the estimated lay date (for a defined nest). Juvenile 

Burrowing Owls often wander and leave the nest for brief periods before permanent 

dispersal (Davies and Restani, 2006; T. Wellicome, pers. coram.). Therefore, a nest is 

considered successful (defining my metric of nest survival) if at least 1 juvenile survived 

to be 35-days old after hatching, which is the approximate start of the post-fledging 

period (Davies and Restani, 2006). 

At successful nests, I estimated the maximum number of fledglings that reach 35 

days by using four counting techniques between 25 and 35 days of age: 1) observations 

using high-powered spotting scopes and binoculars to view the nests from a distance on 
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multiple visits, 2) the last peeper count within the nest burrow, 3) trapping nestlings in 

the nest burrow entrance, and 4) remote video cameras that record the area around the 

nest entrance for 20 consecutive hours, including sunset and sunrise. In 2003, only the 

first two methods were used, so these nests were excluded from the fledgling production 

analysis. From 2004 to 2006, all four methods were implemented to acquire maximum 

fledgling counts (see Gorman et al. 2003 for a comparison of less-intensive methods; 

also, T. Wellicome, pers. comm.). The target video date for overnight camera recording 

was set at 30 days post-hatch +/- 5 days (T. Wellicome, pers. comm.), to account for 

potential missed fledglings that use satellite burrows when broods split between different 

burrows (typically after 30 days). 

4.2.2 Model Covariates 

Six habitat selection models were created in Chapter 3 that defined Burrowing 

Owl home-range distribution in the Canadian prairies. These models were based on 

categories of geography (elevation, slope and spatial gradients; Geog), grassland 

fragmentation (Frag), land-use (proportions and distances; Land), soil characteristics 

(texture, soil orders and parent material; Soil), climate (multi-year averages of 

temperatures and precipitation; Clim), and one model that included all categories (All-

Inc). Habitat selection indices - equal-area bins ranging from 1 (low selection) to 10 

(high selection) - were created from each of these models, and were compared in relation 

to nest success and fledgling production. Note that while habitat selection indices varied 

in predictive ability (see Chapter 3), all indices showed an increasing trend in the number 

of nests per equal-area bin, from low to high. 

84 



Weather was one of the principal causes of owl nest failure and individual 

nestling mortality (Wellicome 2000; Wellicome et al., unpubl. data). In particular, 

precipitation may affect reproduction through 1) nest flooding, 2) ability to hunt, and 3) 

prey activity or abundance. Because burrows are underground, nests are susceptible to 

flooding events under high amounts of precipitation. Burrowing Owls stay within nest 

burrows during high precipitation events (pers. observ.; T. Wellicome, pers. comm.), and 

this could lead to a loss of foraging time and, therefore, starvation of youngest nestlings 

(Wellicome, 2005) or abandonment of nesting attempts by adults. Lastly, high levels of 

precipitation are correlated with high mortality within broods, possibly due to a reduction 

in prey ability leading to starvation (Wellicome, 2000), reducing the number of fledglings 

produced per successful nest. Accordingly, four precipitation covariates were included in 

this analysis: PPTmax (maximum 1-day precipitation amount, mm), PPTdur (binary 

variable indicating three or more sequential days of 7 mm or more of precipitation), 

PPTmean (mean daily precipitation amount over nesting period), and PPT_7d (the 

number of days in which precipitation amounts equalled 7 mm or more). These variables 

were tested for both a linear trend and a quadratic functional form, as optimum 

precipitation amounts could exist that balance any positive effects of precipitation and 

negative effects of flooding, starvation and abandonment. These precipitation variables 

were created using the closest weather station to each nest, using data provided by the 

Meteorological Service of Canada, Prairie and Northern Region, Environment Canada. 

Temporal variables included in the analysis were nest age, day in season, laying 

date/hatch day, and year. Nest age has the potential to affect nest survival rates because 

of differential predation risks caused by behavioural changes such as feeding and 

85 



visitation rates in altricial species (Dinsmore et al., 2002). The day in season (Date) 

could also affect nest survival as seasonal weather changes may occur, or predation risk 

may change later in the season when predator young are hungry and mobile. For similar 

reasons, laying date (represented by the 'age' of the nest at the start of the monitoring 

period; AgeDayl) and/or hatch day (Hatch) may affect both the nest survival and the 

number of fledglings produced. Year may be an important covariate for both nest 

survival and fledgling production analyses as weather patterns are dynamic from year to 

year, and there may be unmeasured gradients of predator and prey densities. Note that 

year was tested in all final models regardless of the univariate effect. Finally, interaction 

terms between precipitation, year, and habitat selection covariates were tested when 

appropriate. 

4.2.3 Nest Survival 

I used the nest survival module in Program MARK (White and Burnham, 1999; 

Dinsmore et al., 2002) to model the daily survival rates (DSR) of Burrowing Owl nests in 

relation to home-range habitat selection. Program MARK was first developed as free, 

easy to access statistical package for mark-recapture data. It currently hosts a number of 

options for modelling encounter-driven wildlife data, and allows for model evaluation 

using Akaike's Information Criterion (AIC) model selection techniques (Burnham and 

Anderson, 2002). The nest survival module uses a generalized linear modelling 

approach to model DSR using individual-, group- and time-specific covariates (Dinsmore 

et al., 2002; Rotella et al., 2004). 

I performed two separate data analyses to maximize use of the data. The first 

analysis only included selection and temporal indices. I used a modified forward-
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stepwise approach to build the models, using AIC corrected for small sample sizes (AICC; 

Burnham and Anderson, 2002) to rank the models at each step, and all models together. I 

first tested each individual covariate alone, and determined which variables explained 

more information than the constant (null; BO) model. I then combined those variables, 

and tested which combinations had the lowest AICC values. From this analysis, I was 

able to select the most appropriate temporal variables to include in the second analysis, 

and estimate if any of the habitat selection models had an effect on DSR. 

For the second analysis, I included precipitation variables, habitat selection 

indices, and temporal variables that were found in the top-ranked models from the first 

analysis, using a similar model-building approach. Each of the precipitation variables 

were tested individually as linear and quadratic forms. The precipitation variable(s) that 

explained the most variation was then tested in combination with all six habitat selection 

indices to find the precipitation/selection model with the lowest AICC value. This model 

was then examined in various forms with temporal variables and potential interactions 

between precipitation and other variables, to determine the best models of DSR. 

To evaluate the presence of a relationship between habitat selection models and 

DSR, I considered good evidence to be both 1) a strong positive/negative beta coefficient 

that was consistent among different model sets, and 2) a high model ranking with the 

inclusion of a habitat selection index. I also tested the predictive ability of the top-ranked 

nest survival model using a modified version of Johnson et al. (2006) K-fold cross 

validation evaluation methods for resource selection functions. I divided my dataset into 

5 sets of data, of approximately equal sample size. I then withheld one (test) set, and 

used the remaining datasets to re-build the top ranked model, and then used that model to 
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predict DSR values for all data. These predicted values were then binned into 5 

approximately equal-sized bins, ranked from lowest to highest DSR. From this point, I 

used the same methods described in Chapter 2 to compare the expected number of points 

per bin from the withheld dataset to the actual number of points in each bin using linear 

regression statistics (constant, p0; slope, Pi; and R value) and the % goodness-of-fit. I 

also included the Spearman rank correlation statistic (Boyce et al., 2002) as another 

measure of predictive performance, using a sample-size adjusted frequency compared to 

bin rank. This process was repeated for all K=5 sets of data, and averaged between all 

sets to evaluate predictive performance. 

4.2.4 Fledgling Production 

To evaluate fledgling production (number of owlets fledged) in relation to habitat 

selection indices, I used zero-truncated Poisson models. Total nest failure (number 

fledged = 0) was accounted for in the nest survival analysis and, therefore, excluded from 

this analysis. The response variable of number fledged was constrained between 1 and 10 

(the maximum number of fledglings). The zero-truncated Poisson models were preferred 

to the zero-truncated binomial as there was not significant evidence of over dispersion 

(G2 = 0.00, p = 1.0). I used a similar approach as with the nest survival data for analysis 

and model building. I performed two separate data analyses using AICC values to rank 

models and determine the best-fitting models. I performed all fledgling analyses in 

STATA 9.0 (STATA Corp., 2005). 
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4.3 RESULTS 

4.3.1 Nest Survival 

A total of 623 potential Burrowing Owl nesting sites were located from 2003-

2006. However, 143 sites had insufficient data for nest survival analysis; therefore, the 

sample size was reduced to 480 nests for the first analysis (without precipitation 

covariates). For this sample, apparent nest survival (proportion of successful nests) was 

78%, while Mayfield nest survival (l-[(number of nest losses)/(total exposure days)]; 

Mayfield, 1961) was 72%. When precipitation covariates were included, sample size was 

further reduced to 369 nests, as 111 nests did not have sufficient weather data for the total 

monitoring period. For this sample size, apparent nest survival was 82%, and Mayfield 

nest survival was 76%. 

For the first analysis, a quadratic function for nest age had the greatest single 

effect on daily survival rate, and the inclusion of nest initiation date (AgeDayl), year, 

land-use and soil habitat selection indices showed marginal improvements on the 

quadratic nest age model (Table 4.1; A AICC <8.3). When precipitation covariates were 

included in the second analysis, the top-ranked AICC model included the quadratic nest 

age term, a quadratic term for number of days with > 7mm of precipitation (PPT_7d), 

year, the land-use habitat selection index, and an interaction between year and 

precipitation (PPT*Year; Table 4.2). However, the land-use index was not strongly 

related (beta coefficient = 0.071; confidence interval: -0.026 to 0.168). 

Using K-fold cross validation (K=5) and a modified version of the Johnson et al. 

(2006) model evaluation methods, the top-ranked nest survival model was a weak 

predictor of nest survival for Burrowing Owls (mean R2 = 0.58, mean Rs = 0.36; Table 
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4.3). However, linear regression statistics indicated that the model was proportional to 

the probability of survival (mean intercept (|3o) of 0, mean slope ~ 1) and the mean %2 test 

was non-significant. This indicates that the top-ranked model of nest survival fit the 

given data well, but did not have high predictive ability. Model-averaging was used to 

illustrate an overall best model using the three top-ranked nest survival models (A AICC 

<1, Table 4.4; Figure 4.1). 

4.3.2 Fledgling Production 

For the first fledgling analysis, 246 monitored Burrowing Owl nests survived to 

produce at least one offspring at 35 days, from 2004-2006. Of these nests, 52 nests had 

insufficient weather data for the total monitoring period, producing a sample size of 194 

nests for the second analysis. The mean hatch day for all successful nests was 

approximately Day 44 of the monitoring period. Day 21 was the earliest hatch day, and 

Day 73 was the latest. 

Hatch day had the single greatest effect on the number of fledglings produced, 

when precipitation covariates were not included in the analysis. None of the other single 

covariates tested explained more variation than the constant model (Po; Table 4.5). When 

precipitation covariates were included in the analysis, the top ranked AICC model 

included hatch day and mean daily precipitation (PPTmean; Table 4.6). The top three 

ranked models included the fragmentation habitat selection index, its interaction with 

mean precipitation (PPT*Frag), hatch day, and mean daily precipitation. 

However, the top-ranked model had a pseudo-R2 value of 0.032, the second model 

was 0.0327, and the third model was 0.033, indicating that none of these models fit the 

data well. Therefore, I used model-averaging to illustrate an overall best model for 
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fledgling production using the three top-ranked models (A AICC <3.4, Table 4.7; Figure 

4.2). 

4.4 DISCUSSION 

Reproductive success of Burrowing Owls in Prairie Canada appears to be largely 

independent of home-range placement. The all-inclusive, soil, and climate selection 

indices were good predictors of Burrowing Owl use (see Chapter 3), yet none of the top 

models for nest survival or fledgling production included these indices as predictive 

variables. Instead, precipitation and temporal covariates were the most important factors. 

Bock and Jones (2004) found that, in most cases, high bird densities or high use of a 

particular habitat resulted in a greater recruitment per capita and per unit of land area. 

Though selection indices for both land-use and fragmentation were shown to have 

marginally positive influences on reproductive success, habitat selection indices were 

unrelated to reproductive success overall. Therefore, these results suggest that Burrowing 

Owl home-range habitat selection indices can be used as effective tools to help define 

areas for critical habitat. Each category of habitat selection described -10% of the 

available landscape (almost 2 million hectares), with a greater number of nests (hence an 

increased owl density) in the highest categories. Because each category of selection did 

not differ with respect to reproductive success, the protection of habitats with the highest 

densities of owls should facilitate the highest overall productivity per unit area. 

It is interesting that where Burrowing Owls selected home-range locations based 

on land-use and fragmentation attributes, they were more likely to experience slightly 

higher reproductive success. If land-use and grassland fragmentation were related to the 

historical population decline of Burrowing Owls in Canada (Haug et al., 1993; 
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Wellicome and Haug, 1995; COSEWIC 2006), perhaps these could be the most effective 

selection indices to guide conservation decisions. Simulated home-ranges in such areas 

are composed of at least 25% grassland with moderate patch sizes (e.g., not too small, but 

not encompassing the whole home-range), lower grassland edge densities but not below 

10 units of edge-to-area, less shrubs and trees, and some wetland areas (see Chapter 3). 

Home-ranges that meet these criteria may provide three potential benefits to reproductive 

success. First, these attributes could describe areas with optimal prey availability and 

diversity, for instance meadow voles (Microtus pennsylvanicus) and sage brush voles 

{Lemmiscus curtatus), both of which are major components of the owl's diet (Poulin, 

2003). Poulin (2003) related Burrowing Owl population fluctuations in south-central 

Saskatchewan to meadow vole population dynamics, and speculated that intensive 

cultivation for cereal farming may have negative impacts on vole irruptions. Grassland 

shows a strong negative correlation to cultivated land (Chapter 2 and 3), and meadow 

voles are related in the same manner (Poulin, 2003); therefore, the simulated home-range 

described above might provide optimum conditions for meadow vole populations. On 

the other hand, deer mice (Peromyscus maniculatus), another major component of the 

owl's diet are positively associated with cultivated land (Poulin, 2003). A second benefit 

of these optimum home-ranges may be a decreased predator presence, as areas with fewer 

shrubs and trees do not provide necessary nesting sites for most Burrowing Owl avian 

predators. Third, vegetation structure and landscape characteristics in these areas might 

mitigate the effects of high precipitation on Burrowing Owl productivity. For instance, 

grassland vegetation has different surface and root structure than cultivated vegetation, 

and these structures might ameliorate surface runoff and underground movement of 
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water, both of which lead to flooding of nest burrows. However, these hypotheses need 

to be tested to determine if any of these hypothesized benefits are actually conferred 

within the simulated home-range areas described above. 

The highest probabilities of home-range habitat selection, dictated by soil and 

climate variables, were not important to nest survival or fledgling production. This may 

be due to the scale at which these variables were examined. Both indices predicted 

habitat selection at the home-range scale of the owl itself, and not necessarily the scales 

that are important to reproductive success, such as predation and weather events 

(Wellicome et al., 1997; Wellicome, 2000). Weather events, particularly precipitation, 

are mainly stochastic, and can occur on many different scales on the prairies, from 

localized rain showers, to regional snow storms. Conversely, predation risk can be 

modelled based on habitat; however, the scale depends on the predator, and not the owl. 

For instance, the home-range of the American badger (Taxidea taxus), a common 

predator of owls, ranges from 30 to 70 km2 in British Columbia (Newhouse and Kinley, 

2001). In South Dakota, Ferruginous Hawk (Buteo regalis) density was approximately 1 

pair/17.4 km2 (Lokemoen and Duebbert, 1976), which is equivalent to a radius of 2.35 

km around a hawk nest. A multi-scale analysis incorporating ecologically-meaningful 

scales of potential predation events may show that habitat selection is actually correlated 

to reproductive success. 

Precipitation covariates were found to be the most influential factors on 

reproductive success, followed by the temporal variables of nest age, hatch day, and year. 

However, by examining Figures 4.1 and 4.2, we see that an increase in number of days 

with 7mm or more of precipitation marginally increased nest survival, while lower mean 
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daily precipitation values produced a slightly higher number of fledglings. While this 

appears to be counter-intuitive, it is important to remember that nest survival and 

fledgling production are separate measures. Nest survival indicates the probability that a 

nest will successfully produce at least one offspring, while fledgling production is the 

actual number of fledglings produced by successful nests. Burrowing Owls forage at 

ephemeral and seasonal wetlands (Sissons, 2003), and an increase in single rain events 

(indicated by increased PPT_7d) may allow some wetland habitats to stay moist. The 

associated wetland vegetation may then be able to support increased prey populations for 

Burrowing Owls, allowing them to continue with a breeding attempt and keep at least one 

chick alive. On the other hand, prolonged rain over the entire nesting period (indicated 

by higher mean daily precipitation values) can decrease foraging opportunities for adult 

owls and force them to abandon their breeding attempt. Food availability is especially 

important during the nestling period (Wellicome, 2000), and therefore, if there is less 

foraging opportunity, the youngest chicks may be more vulnerable to starvation and 

death, which decreases the number of fledglings produced, even if the nesting attempt is 

not abandoned. 

The importance of nest age and hatch day can be explained by behaviour and 

timing. In terms of nest age, daily survival rates decrease around the time of hatch, as 

activity around the nest increases (increased feeding rate; Poulin and Todd, 2006), which 

may allow for increased visual cues for predators. Once they pass the critical stage 

around hatching, daily survival rates begin to increase again. Possibly older, bigger 

chicks have a greater chance of survival, when they begin to feed themselves, learn to 

escape predators, and can sustain longer periods without food. Hatch days that occurred 
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earlier in the season produced a greater number of owl fledglings, similar to a study in 

South Dakota (Griebel and Savidge, 2007). This could be largely a reflection of avian 

predator dynamics. As the nestlings of predators hatch and grow later in the season, the 

adult predators need to hunt more often, and bring larger amounts of food back to the 

nest. Wellicome (2000) also showed a direct association between hatch date and 

fecundity, as Burrowing Owl clutch size was negatively correlated with estimated laying 

dates. 

Regardless, the predictive ability for both nest survival and fledgling production 

models were quite low. Though I attempted to account for unmeasured gradients of 

predator populations and prey availability by including year as a covariate, this is not 

necessarily a suitable surrogate. The unpredictable nature of individual rain events may 

affect not only Burrowing Owl productivity, but also prey and predator population 

dynamics. 

Future studies should quantify why certain habitats are used and selected by 

including direct measures of available resources (such as food) and limitations (predation 

risk), and also determine exactly what resources contribute to productivity and when this 

happens. For instance, foraging studies that define third-order habitat selection (Johnson, 

1980) within the home-range should incorporate what resource items are being used and 

when they are being used optimally and link these directly to reproductive success. To 

further assess habitat quality, more demographic terms, such as adult survival and 

juvenile post-fledging survival, should be related to habitat characteristics. 
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4.5 CONCLUSION 

The most predictive models of Burrowing Owl home-range habitat selection were 

not linked to nest survival or fledgling production. Instead, precipitation and temporal 

variables were the most important variables, and land-use and fragmentation habitat 

selection indices showed only a marginal effect. This indicates that it is sufficient for 

Burrowing Owl habitat protection and management efforts to focus on areas that are most 

likely to be selected for home-range use, as this selection neither increases nor decreases 

reproductive success. Alternatively, new models and maps can be created to predict nest 

survival and fledgling production using the original environmental predictor variables 

used to create the habitat selection indices. These maps could than be overlaid directly 

onto the habitat selection maps in order to delineate specific areas where high selection 

corresponds to high reproductive success (see similar work by Nielsen et al., 2006; 

Aldridge and Boyce, 2007). However, it is vital to look at foraging studies within 

breeding home-ranges, and also to incorporate measures of adult and juvenile survival 

within breeding grounds. 
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Table 4.1. Summary of selection results for models of daily nest survival rate for Burrowing Owls 
in the Canadian Prairie region of Alberta and Saskatchewan, 2003-2006 (n = 480), excluding 
precipitation variables. The number of model parameters (k), Akaike's Information Criterion 
corrected for small sample sizes (AlCc), AAlCc (AlCc model i - AlCc minimum), Akaike weights, 
and model likelihood values are shown. Models were ranked based on ascending AlCc values. 

Model 
No. Model Terms 

AlCc Model 
AlCc A AlCc Weights Likelihood 

NS19 

NS18 

NS16 

{B0 + NestAge + NestAge + AgeDayl 
+ Land + Soil + Year} 

{B0 + NestAge + NestAge2 + AgeDayl 
+ Land + Soil} 

{B0 + NestAge + NestAge2 + AgeDayl 
+ Land} 

823.40 

824.26 

826.81 

0.00 

0.86 

3.40 

0.48 

0.31 

0.09 

1.00 

0.65 

0.18 

NS17 

NS13 

NS14 

NS15 

NS11 

NS12 

NS05 

NS06 

NS01 

NS08 

NS10 

NS07 

NS04 

NS03 

NS02 

NS09 

{B0 + 

{B0 + 

{B0 

NestAge + NestAge + 
+ Soil} 

NestAge + NestAge2 + 

+ NestAge + NestAge2 

{B0 + NestAge + NestAge: 

AgeDayl 

AgeDayl} 

+ Land} 
2 + Soil} 

{B0 + NestAge + NestAge2} 

{B0 + AgeDayl} 

{B0 + Land} 

{B0 + Soil} 

{B0} 

{BO + Year} 

{B0 + NestAge} 

{B0 + Clim} 

{B0 + Frag} 

{B0 + Geog} 

{B0 + All-lnc} 

{B0 + Date} 

5 

4 

4 

4 

3 

2 

2 

2 

1 

4 

2 

2 

2 

2 

2 

2 

827.83 

828.58 

830.25 

830.88 

831.64 

850.36 

851.17 

851.89 

852.91 

853.06 

853.94 

854.31 

854.52 

854.67 

854.84 

854.90 

4.42 

5.18 

6.85 

7.48 

8.24 

26.95 

27.77 

28.49 

29.50 

29.66 

30.53 

30.91 

31.11 

31.27 

31.43 

31.49 

0.05 

0.04 

0.02 

0.01 

0.01 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.11 

0.08 

0.03 

0.02 

0.02 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 
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Table 4.2. Summary of selection results for models of daily nest survival rate for Burrowing Owls 
in the Canadian Prairie region of Alberta and Saskatchewan, 2003-2006 (n=369), accounting for 
precipitation conditions. The number of model parameters (k), Akaike's Information Criterion 
corrected for small sample sizes (AlCc), AAlCc (AlCc model i - AlCc minimum), Akaike weights, 
and model likelihood values are shown. Models were ranked based on ascending AlCc values. 

Model 
No. Model Terms 

AlCc Model 
AlCc A AlCc Weights Likelihood 

NSP21 
{BO + NestAge + NestAge + PPT_7d + 
PPTJd 2 + Year + Land + PPT*Year} 

15 497.42 0.00 

NSP24 {B0 + NestAge + NestAge2+PPT_7d + 
i\ibh^4 PPT_7(? + Year + PPT*Year} 1 4 4 y ' 4 ^ u u u 

0.32 

0.32 

1.00 

1.00 

{B0 + NestAge + NestAge2 + PPT_7d + 
NSP23 PPT_7d2 + Year + Land + PPT'Year + 

PPT*Land} 
17 497.94 0.52 0.25 0.77 

NSP19 

NSP18 

NSP22 

NSP20 

NSP16 

NSP17 

NSP15 

NSP12 

NSP08 

NSP05 

NSP10 

NSP09 

NSP13 

NSP11 

NSP14 

NSP07 

NSP06 

NSP02 

NSP01 

NSP04 

NSP03 

{B0 + NestAge + NestAge2 + PPTJd + 
PPT_7d2 + Year + Land} 

{B0 + NestAge + NestAge2 + PPTJd + 
PPT_7d2 + Year} 

{B0 + NestAge + NestAge2 + PPT_7d + 
PPT_7d2 + Year + Land + PPT*Land} 

{B0 + NestAge + NestAge2 + PPT_7d + 
PPT_7d2 + Year + AgeDayl} 

{B0 + NestAge + NestAge2 + PPT_7d + 
PPT_7d2 + Land} 

{B0 + NestAge + NestAge2 + PPT_7d + 
PPT_7d2 +AgeDayl} 

{B0 + NestAge + NestAge2 + PPT_7d + 
PPT_7d2} 

{B0 + PPT_7d + PPT_7d2 + Land} 

{B0 + PPT_7d + PPT_7d2} 

{B0 + PPT_7d} 

{B0 + PPT_7d + PPT_7d2 + Geog} 

{B0 + PPTJd + PPT_7d2 + All-lnc} 

{BO + PPT_7d + PPT_7d2 + Soil} 

{B0 + PPT_7d + PPTJd 2 + Frag} 

{B0 + PPT_7d + PPT_7d2 + Clim} 

{B0 + PPTjnean + PPTjnean2} 

{B0 + PPT_max + PPT_max2} 

{B0 + PPTjnax} 

{B0} 

{B0 + PPTjnean} 

{B0 + PPT_dur} 

501.90 4.49 

8 502.09 4.67 

11 502.78 

503.60 

5.37 

6.18 

525.94 28.53 

528.45 31.04 

528.89 31.48 

0.03 

0.03 

0.02 

0.01 

0.00 

0.00 

0.00 

0.11 

0.10 

0.07 

0.05 

0.00 

0.00 

0.00 

4 

3 

2 

4 

4 

4 

4 

4 

3 

3 

2 

1 

2 

2 

534.24 

537.28 

538.12 

538.36 

539.10 

539.23 

539.24 

539.27 

550.58 

553.38 

569.96 

575.46 

576.97 

576.99 

36.83 

39.86 

40.70 

40.94 

41.69 

41.82 

41.83 

41.85 

53.17 

55.96 

72.55 

78.04 

79.56 

79.57 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 
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Table 4.3. K-fold cross validation results of top-ranked nest survival model, NSP21, for Burrowing 
Owls in the Canadian Prairies, 2003-2006 (Table 4.2). Evaluation was performed using a 
modified version of Johnson et al. (2006) methods for evaluating Resource Selection Functions 
with linear regression and goodness-of-fit statistics (%2), and sample-size adjusted Spearman 
rank correlation statistics (Rs). 

Test Bin 

K=1 
K=2 
K=3 
K=4 
K=5 

Mean 

Linear Regression 

Po 

-0.05 
-0.02 
-0.09 
0.22 
-0.03 

0.00 

B1 

1.26 
1.10 
1.47 
-0.08 
1.17 

0.99 

R2 

0.86 
0.87 
0.56 
0.00 
0.63 

0.58 

Goodness-of-Fit 

x2 

0.00 
0.00 
0.00 
3.12 
0.00 

0.62 

P 

0.95 
0.98 
0.89 
0.54 
0.70 

0.81 

Spearman 

Rs 

0.20 
0.70 
0.10 
0.20 
0.60 

0.36 

P 

0.75 
0.19 
0.87 
0.75 
0.28 

0.57 
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Table 4.5. Summary of selection results for zero-truncated Poisson models of fledgling 
production for Burrowing Owls in the Canadian Prairie region of Alberta and Saskatchewan, 
2004-2006 (n=246), excluding precipitation variables. The number of model parameters (k), 
Akaike's Information Criterion corrected for small sample sizes (AlCc), AAlCc (AlCc model i -
AlCc minimum), Akaike weights, and model likelihood values are shown. Models were ranked 
based on ascending AlCc values. 

Model 
No. 

FP09 
FP01 
FP07 
FP04 

FP05 
FP03 
FP06 
FP02 
FP08 

Model Terms 

{BO + Hatch} 
{BO} 

{BO + Clim} 

{BO + Frag} 
{BO + Land} 
{BO + Geog} 
{BO + Soil} 

{BO + All-lnc} 
{BO + Year} 

k 

2 
1 
2 
2 

2 
2 
2 
2 
3 

AlCc 

1013.75 
1032.85 
1033.40 
1033.64 

1034.16 
1034.27 
1034.42 
1034.53 
1036.65 

A AlCc 

0.00 
19.10 
19.66 

19.89 
20.42 
20.52 
20.68 
20.79 
22.90 

AlCc 
Weights 

1.00 
0.00 
0.00 

0.00 

0.00 
0.00 
0.00 
0.00 
0.00 

Model 
Likelihoc 

1.00 
0.00 
0.00 

0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
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Table 4.6. Summary of selection results for zero-truncated Poisson models of fledgling 
production for Burrowing Owls in the Canadian Prairie region of Alberta and Saskatchewan, 
2004-2006 (n=194), accounting for precipitation. The number of model parameters (k), Akaike's 
Information Criterion corrected for small sample sizes (AlCc), AAlCc (AlCc model i - AlCc 
minimum), Akaike weights, and model likelihood values are shown. Models were ranked based 
on ascending AlCc values. 

Model 
No. 

FPP15 
FPP16 

FPP17 

FPP11 
FPP04 
FPP09 
FPP12 
FPP13 
FPP10 

FPP07 

FPP14 
FPP05 

FPP08 

FPP02 

FPP06 

FPP01 
FPP03 

Model Terms 

{BO + Hatch + PPT_mean} 
{BO + Hatch + PPTjnean + Frag} 

{BO + Hatch + PPT mean + Frag + 
PPTTrag} 

{BO + PPTjnean + Frag} 
{BO + PPTjnean} 

{BO + PPTjnean + All-lnc} 
{BO + PPTjnean + Land} 
{BO + PPTjnean + Soil} 

{BO + PPTjnean + Geog} 

{BO + PPTjnean + PPTjnean2} 

{BO + PPTjnean + Clim} 
{BO + PPT_7d} 

{BO + PPT_7d + PPT_7d2} 

{BO + PPTjnax} 

{BO + PPTjnax + PPTjnax2} 

{BO} 
{BO + PPT_dur} 

k 

3 

4 

5 

3 
2 
3 
3 
3 
3 

3 

3 
2 

3 

2 

3 

1 
2 

AlCc 

800.65 
802.17 

804.05 

814.47 
815.08 
816.05 
816.20 
816.34 
816.67 

817.04 

817.10 
820.20 

820.90 

820.96 

821.43 

822.78 
824.78 

A AlCc 

0.00 
1.52 

3.39 

13.82 
14.43 
15.40 
15.55 
15.69 
16.02 

16.39 

16.45 
19.55 

20.25 

20.31 

20.78 

22.13 
24.13 

AlCc 
Weights 

0.60 

0.28 

0.11 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 

0.00 
0.00 

0.00 

0.00 

0.00 

0.00 
0.00 

Model 
Likelihood 

1.00 
0.47 

0.18 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 

0.00 
0.00 

0.00 

0.00 

0.00 

0.00 
0.00 
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Table 4.7. Beta coefficient estimates and standard errors (SE) for the top three AlCc ranked models (FPP15, FPP16, FPP17) of fledgling 
production for Burrowing Owls in the Canadian Prairies, 2004-2006, from Table 4.4. Model averaging results for beta coefficients are presented as 
the unweighted average and the final weighted average model. 

Term 

BO 
Hatch 

PPT mean 
Frag 

mean*Frag 

AlCc Weight 

Coef. 

2.674 
-0.016 
-0.145 
0.000 
0.000 

SE 

0.209 
0.004 
0.047 

... 

... 

0.60 

FPP16 
Coef. SE 

2.582 
-0.016 
-0.147 
0.010 
0.000 

0.243 
0.004 
0.047 
0.013 

— 

0.28 

^%FRktj¥S^ 
Coef. SE 

2.397 
-0.015 
-0.078 
0.034 
-0.009 

O.t 

0.453 
0.004 
0.149 
0.053 
0.020 

1 

Unweighted 
Average 

2.551 
-0.016 
-0.124 

0.015 
-0.003 

Weighted 
Average 

2.618 
-0.016 
-0.138 
0.007 
-0.001 
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Land-Use Habitat Selection Index 

Figure 4.1. Estimated relationship between the land-use habitat selection index (created in 
Chapter 3) on daily survival rate (DSR) for Burrowing Owls in the Canadian prairies, 2003-2006, 
when accounting for the effects of precipitation (number of days with 7mm or more of rain). 
Estimates are taken from the model weighted average of the top 3 AlCc ranked models, shown in 
Table 4.6. Nest age was held constant at 30 days (approximate day in nesting period when the 
first egg hatches). 
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Fragmentation Habitat Selection Index 

Figure 4.2. Estimated relationship between the fragmentation habitat selection index (created in 
Chapter 3) on fledgling production (number of fledglings produced per successful nest) for 
Burrowing Owls in the Canadian prairies, 2004-2006, when accounting for mean daily 
precipitation over the nesting period. Estimates are taken from the model weighted average of the 
top 3 AlCc ranked models, shown in Table 4.7. Hatch day was held constant at Day 44 of 
monitoring period (mean hatch day over 3-year period where Day 1 = April 24). 
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CHAPTER 5. GENERAL CONCLUSIONS: SYNTHESIS 
AND RECOMMENDATIONS 

5.1 RESEARCH SUMMARY 

The purpose of this thesis was to investigate several technical and ecological 

aspects of defining potential critical habitat, based on home-range habitat selection by 

Burrowing Owls in the Canadian Prairies. Specifically, I compared two different species 

distribution modelling techniques, an Ecological Niche Factor Analysis (ENFA; Hirzel et 

al., 2002) and a logistic regression Resource Selection Function (RSF; Manly et al., 

2002). My comparison revealed that ENFA models can provide robust ecological 

indications of habitat suitability, while a carefully designed RSF model can provide better 

spatially explicit predictions. I then created six different RSFs describing home-range 

habitat selection, and determined that large-scale, abiotic factors of soil and climate can 

accurately predict Burrowing Owl home-range selection. These factors create unique 

habitat conditions that are independent of the vegetative characteristics of land-use. 

Finally, I examined the link between high-use areas and reproductive success, using the 

home-range habitat selection models as potential covariates. There was no relationship 

between home-range habitat selection and measures of reproductive success. Overall, my 

study provides one of the first spatially explicit descriptions of potential critical habitat 

for the Burrowing Owl recovery team. 
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5.2 LIMITATIONS AND RECOMMENDED RESEARCH 

My research fills an important knowledge gap required for identifying critical 

habitat for Burrowing Owls in Canada by evaluating home-range selection patterns and 

their relationships to reproductive success. However, this research was designed only to 

narrow the potential areas within which critical habitat should be designated, which is 

one of the first steps in the process. As well, there are some limitations to my study that 

need to be addressed, the first being the quality of the location dataset used to create all of 

my habitat selection models. 

To gather as much information as possible from such a large study area, I used a 

haphazard collection of Burrowing Owl location data that included data from biologists, 

landowners, oil and gas companies, and incidental observations from the general public. 

In an ideal scientific analysis, species presence data is gathered through systematic 

surveys conducted by trained biologists throughout the landscape to provide objective, 

unbiased sampling. However, because these data were collected without a specified 

random or stratified sampling scheme, biases may be present in the data that might 

influence conclusions that are drawn. For instance, Burrowing Owls are most likely to be 

observed by humans in areas that are frequented by humans. This may lead to a greater 

number of owls known to associate with human land-use, creating a positive habitat 

selection coefficient. Though I did include anthropogenic habitats, such as hayed land, I 

did not include many anthropogenic features, such as roads, buildings, and pipelines, in 

my analysis of home-range habitat selection. This means that I avoided any spurious 

associations with these features; however, I was also unable to account for their potential 

influences. In addition, an increase in the number of observers in certain areas leads to an 

increase in sample size, and potentially multiple counts of individual owls. I removed 
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extra counts of owls by screening my dataset before model building, removing multiple 

counts by different observers in the same year within the same area (i.e., a quarter-

section). On the other hand, this also introduces an error of omission, as I may have 

deleted counts that were actually separate within the same quarter-section. Ideally, 

systematic surveys would be performed across the entire study region. The model I 

provide should be used in any survey design for the owls, and could be used to stratify 

sampling effort to minimize costs of future sampling. 

When attempting to link habitat use to habitat quality, I related home-range 

selection patterns to only nest survival and fledgling production. These reproductive 

measures were a good starting point for a study of habitat quality in Burrowing Owls 

because the population on the Regina Plain was found to be most sensitive to the 

production of young as opposed to mortality at older adult stages (Franken and 

Wellicome, 2003). However, my study indicates the Burrowing Owl reproductive 

success within the Canadian Prairies is quite high (75-85% apparent nest success, with an 

average of 4.7 fledglings per successful nest; see Chapter 4). Therefore, other important 

demographic terms that were not measured in my study may be closely related to 

variations in environmental variables and affect population persistence and growth; 

specifically, adult or juvenile survival in breeding, wintering, or migration areas. I 

believe one of the most pressing knowledge gaps at the moment is research into the 

migratory patterns and survival mechanisms of the Canadian population of Burrowing 

Owls. 

I also emphasize that my results only provide insight into second-order selection 

patterns (Johnson, 1980). Though this was an area that was severely lacking in the 
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published literature, future studies also need to increase our understanding of third- and 

fourth-order selection processes. In particular, foraging studies within home-ranges 

should be useful for pinpointing a more definitive range of useful habitat characteristics, 

and how Burrowing Owls use resources when their availabilities differ under a variety of 

abiotic regimes. This future research may be facilitated by the current trend in avian 

habitat selection studies incorporating multi-scale or hierarchal selection patterns within 

one model (Kristan and Scott, 2006), and should be attempted for Burrowing Owls. 

5.3 MANAGEMENT IMPLICATIONS 

Effective critical habitat designations require: 1) quantitative methods capable of 

creating spatially-explicit predictions; 2) recognition of spatial and temporal scale when 

making decisions about what habitat is critical; and 3) ecologically based criteria of 

habitat needs that are linked to the main demographic factors that limit population growth 

in individual species. My study provides the first steps in this process, and fills this 

knowledge gap for Burrowing Owls in terms of second-order (Johnson, 1980) home-

range selection patterns. I also provide a spatially-explicit outline of potential areas 

within which critical habitat designations can include maximum productivity by the 

population per unit area. The recovery team can use these results to stratify future 

Burrowing Owl surveys and to make decisions on prioritizing habitat conservation among 

regions, as well as potential areas for future research on third- and fourth-order selection. 

These models are necessarily limited by currently available data, so to examine 

finer scales of selection, recovery teams need to address the need for more detailed and 

spatially-accurate data. In chapter 3,1 pointed out potential mechanisms that allow for 

some areas to be used more than their availability; however, these processes cannot be 
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examined in detail until we have the fine-scale data to address them. For instance, we 

may need to distinguish certain grass-species communities (e.g., pastures with native vs. 

introduced grass species) to determine which provide more available prey. As well, the 

pixel size of most of my datasets (30-m) may have played a role in the final inferences for 

my statistical comparison in chapter 2. Perhaps a smaller pixel size (5-10 m) will help 

differentiate important relationships from spurious ones. I recommend that all recovery 

teams and governments that are working in the same study region combine resources to 

create and provide accurate, detailed, and up-to-date spatial data within the grassland 

ecosystem. 

Finally, my results provide indications of large areas of potential critical habitat, 

but we still do not know how much of this land need be protected to ensure survival and 

recovery of the Burrowing Owl population. I examined two demographic measures, nest 

survival and fledgling production; however, a detailed population viability analysis 

should be combined with habitat selection models to provide a population estimate and 

growth rate. Aldridge and Boyce (2007) provide an example of such habitat population 

viability analysis using Resource Selection Functions, and I recommend that recovery 

teams use this as an approach to establish minimum land requirements. 
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