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Abstract

Many applications that use geographical databases (a.k.a. gazetteers) rely on

the accuracy of the information in the database. However, poor data quality is

an issue in gazetteers; often data is integrated from multiple sources with dif-

ferent quality constraints and there may not be much detail on the sources and

the quality of the data. One major consequence of this is that the geographical

scope of a location and/or its position may not be known or accurate.

In this thesis, we develop novel strategies to accurately derive the geograph-

ical scope of places. Our strategies use the spatial hierarchy of a gazetteer as

well as other public information (such as area) to construct a bounding box

for each place. We present a probabilistic model of our approach and demon-

strate the effectiveness of the bounding boxes in refining the spatial hierarchy

of a gazetteer and augmenting it with other public data. Experimental eval-

uation on two public-domain gazetteers show that the proposed approaches

significantly outperform, in terms of the accuracy of the bounding boxes, a

baseline that is based on the parent-child relationship of a gazetteer. More

specifically, our approaches outperform the baseline by 19-33% in terms of

accuracy in a wide range of settings. Among applications, we show how these

bounding boxes provide a generic way to improve the accuracy and usability

of a gazetteer.
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Chapter 1

Introduction

Online world geographical directories (a.k.a. gazetteers) contain information

of places such as latitude and longitude, alternative names, country or province

to which a place belongs and other geographical features. Gazetteers are ex-

tensively used in many different domains and applications because of their

wide coverage and detailed information about places. For example, an incom-

ing tweet may have the GPS coordinates of the capturing device, but to detect

a populated place the tweet is coming from, one may use a gazetteer such as

GeoNames [47] to map those coordinates to an actual location entity. With

an increasing number of different capturing devices equipped with GPS (e.g.

phones, cars, cameras, etc.), we often have the coordinates of an entity and

may want to find an administrative location or a populated place in which the

entity is located. Such a query can be important, for example, in dispatching

services such as ambulance, police, etc. The literature also reports numer-

ous domains where gazetteers are used, including toponym resolution in text

[14], geotagging tweets [51], documents [8] and entities [36], etc. To support

many of these applications, one needs to both effectively and efficiently join a

gazetteer with other geo-coded data.

However, there are a few challenges that hinder progress in this area: (1)

most public gazetteers either do not have bounding boxes for many of their

locations (e.g. GeoNames) or their bounding boxes are not accurate (e.g.

OSMNames1, see Section 5.1.3 for details). In the absence of a bounding box,

1http://osmnames.org/
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The problem to be studied in this work is if a bounding box can be ac-

curately constructed for each place based on incomplete and sometimes erro-

neous information that is available. We take, as a bounding box of a place in

a gazetteer, the minimum bounding rectangle (MBR) that can contain MBRs

of all locations which are geographically part of it; we refer such relationship

between places in the gazetteer as the parent-child constraints of the gazetteer.

Despite their imprecisions in some cases compared to, for example, polygons,

MBRs provide a simple abstraction of the boundaries of a location, and they

have been frequently used to represent sets of multi-dimensional points and

objects in spatial querying and indexing [3]; also, constraints can be easily

specified and enforced using MBRs [34]. In the remainder of this thesis, the

terms “MBR”, “minimum bounding rectangle” and “bounding box” are often

used interchangeably.

Sometimes, the stated constraints cannot all be satisfied when creating

MBRs. We formalize the search for an MBR as a probabilistic optimization,

which tries to find the most likely MBR by dropping the least likely constraints.

Our contributions can be summarized as follows:

(1) We provide a systematic study of the problem of enriching and improv-

ing a gazetteer using bounding boxes of places. To the best of our knowledge,

this is the first time such a study is conducted by approximating bounding

boxes of the places.

(2) We propose strategies for detecting and resolving inconsistencies in the

gazetteer.

(3) We evaluate our strategies and report their accuracy in detecting the

boundaries of places and in improving the hierarchy of places.

(4) We report on the effectiveness of our bounding boxes in refining the

places hierarchy and in augmenting the gazetteer with other data sources in-

cluding YFCC100M [46].
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Chapter 2

Background And Related Work

2.1 Background

In this section, we present some background material to provide context for

the topics we are presenting in this thesis. In particular, we present different

spatial footprints that are used to represent spatial objects and some rationals

on using a Minimum Bounding Rectangle to represent a place or set of places

in a gazetteer. We also review gazetteers and some of their applications as

well as the presence of uncertainty and inconsistencies in them.

Spatial abstractions of locations Applications use different spatial repre-

sentations for the geographical entities which are usually multi-dimensional.

Spatial footprints that are used in modelling spatial relationships between

such entities are mainly point, polygon, minimum bounding rectangle [16],

minimum bounding ellipse [28], minimum bounding circle [5] and convex hull

[25].

Chen et al. [12] provides a survey of qualitative spatial representations

where they discuss about convex hull as a powerful primitive in establishing

the topological relationship between spatial objects. However, construction of

an accurate convex hull (with smooth curves) in the absence of enough points

can be difficult. Furthermore, Frontiera et al. [16] have shown that a logistic

regression model to compute similarity between query-document pairs using

a minimum bounding box produces better results than a non-probabilistic

model using convex hull. The authors use minimum bounding rectangle and

convex hull as geometric approximations to spatially index the queries and the
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documents.

Cobb et al. [13] uses a graph model to represent the relationships between

spatial objects; the authors divide the MBR of a place to multiple smaller

rectangles and operate over these smaller regions to obtain a better represen-

tational accuracy.

Importance of Minimum bounding rectangles MBRs are widely used to

approximate the spatial scope of entities due to its computational efficiency

and ease of storage. Detecting bounding boxes of places have various appli-

cations in geo-referencing services such as HERE 1, Esri2, and in social media

websites such as Twitter3. For example, the minimum bounding box of a city

can be used to answer which administrative buildings are available in the city

and can provide precise geo-coordinates for the same. In addition, the geo-

graphical scope of a place has been found useful in solving complex problems

in geographical information science. Papadias et al. [30] define 169 topolog-

ical relations between MBRs of places to answer spatial queries on whether

one place contains, overlaps, covers or meets another place. MBRs of spatial

objects have been used in building spatial indexes using data structures such

as R-tree [20] and R`-tree [40]. Brisboa et al. [6] have further used MBRs to

answer interval based queries by efficiently encoding MBRs into a rank-grid

space.

Gazetteers As an open online geo-resource, gazetteers are often created by

merging geographical databases of countries (e.g. GeoBase in Canada, GNIS

in USA, etc., which may be maintained by respective government agencies)

and using place information from different sources such as travel advisories

and blogs. A dataset provided by an official source or governing body may be

more accurate especially if the data is collected and maintained by experts.

However, other sources including volunteered geographical information and

local place gazetteers contributed by public are generally less precise.

Gazetteers can be augmented with other rich knowledge bases. They can

1https://here.com/en
2http://www.esri.com/
3https://twitter.com/?lang=en
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be expanded horizontally, by adding more features or vertically, by adding

more places [42]. One general approach used to enrich gazetteers is to de-

tect a novel place name and search information for other features from ex-

ternal sources. The tuple with complete entity information is then added to

a gazetteer. There are different methods developed to detect a place name

including fuzzy string matching [32], toponym detection from tweets [29] and

named entity recognition [17].

Presence of uncertainties and inconsistencies Uncertainty in geographi-

cal information can be viewed as a difference in precision, scale and resolution

of the feature values with respect to a master data. Some of the reasons

for this uncertainty are variations in measuring instruments, data transforma-

tions, digitization errors, fuzziness of geographic concepts, etc. (Zhang et al.

[50]). Another source of ambiguity that one may notice is the use of different

geographical ontologies across different gazetteers. For example, water bodies

are classified as peat bog, water course and water body in CORINE land cover

while it is classified as canal, lake, bog, pond etc. in WordNet (Laurini et al.

[26]).

Different datasets may provide similar information but with varying ac-

curacy as one feature may be more relevant to one source than the other.

Thus, one approach to obtain a master record is extracting values of features

from different datasets based on a trust score of each source provided by data

stewards. One may perhaps build a new dataset by merging data from dif-

ferent sources. For example, the Open Street Map gazetteer contains precise

information for London city («6 meter distance [18]) but it doesn’t contain

spatial hierarchy of places as in GeoNames. However, using data from different

sources of varying reliability while modelling the task at hand is difficult. Few

of the work done to model the uncertainty in spatial datasets are probabilis-

tic skyline [31] and probabilistic spatial queries over existentially uncertain

objects [15].

Online free gazetteers such as GeoNames are publicly maintained and

therefore the presence of error is inevitable. Dirk [1] has explored different

inconsistencies in GeoNames by focusing on the data related to the countries
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in Central America. The author reports a loss of granularity in the coordinates

of places in converting the coordinates from a decimal system to a degree-

minute-second (DMS) format, and they find that often the field ‘second’ is

missing. Such truncated coordinate is mostly observed for underdeveloped

and developing countries. The author also notes that there are places with

wrong feature codes. For example, Florencia is assigned feature code of PPL

instead of PPLX even though it is in a neighbourhood of Honduras.

Bolstand et al. [4] identify the inaccuracy in the way data is collected,

stored, formatted and integrated as the main reason for inconsistency in a

spatial data. Generally, spatial data extracted from satellite images, digitiza-

tion of old maps and crowd sourcing follows different formats. Merging such

data from different sources often leads to a loss of precision. Ahlers et al. in [2]

find anomalies in online geocoders and propose combining multiple geocoders

to determine the coordinate of a textual address.

2.2 Related Work

The literature related to our work can be grouped into (1) estimation of the

spatial extent of geographic entities, (2) conflict resolution and data cleansing

techniques, and (3) automatic gazetteer expansion and enrichment. This sec-

tion discusses the work in each area along with the limitations and some of

the relationships to our work.

Estimation of the spatial extent of geographic entities The proposed

methods estimate the spatial extent of places in a gazetteer and use the bound-

ing boxes to improve and enrich the gazetteer. Hence the literature on obtain-

ing a bounding box of a place is relevant.

Chen et al. [11] develop a method to find the spatial extent of places with

vague boundaries. They define the geographical boundary of a place using

the density of images mapped to a region, therefore places with less images

may have undefined or vague boundaries. In their approach, the authors first

determine a set of clean points, which are not isolated and are within a cluster

of 95% of images, then they interpolate the boundary for remaining points

7



using Kernel Density Estimation. A limitation of their approach is that if a

place is widely spread and have disjoint regions (e.g. places containing islands

such as Hawaii), then each part forms its own boundary instead of forming

a boundary at a particular level such as country, province or district. While

the authors of paper used images from Flickr to estimate the boundaries, we

use a set of spatial points for a given location to construct the MBR with no

limitation on the landscape of each place.

Somodevilla et al. [44] design a fuzzy set approach to model the spatial

extent of a geographical location using spatial, thematic and temporal reason-

ing. They use point locations and build an inscribed rectangle, which is the

maximum rectangle inside the location, and a fuzzy minimum bounding rect-

angle that includes all points for a place. The region between fuzzy minimum

bounding rectangle and inscribed rectangle is considered as a fuzzy region and

a final MBR is approximated based on membership value of points in the fuzzy

region. While the authors use Euclidean distance between points and the near-

est edge of fuzzy MBR to include a point and expand MBR, we present an

efficient algorithm to include/exclude points based on probability measures.

The geographic boundary of a place can also be estimated using differ-

ent geotagged entities such as location specific tags [22], geotagged images,

and online documents. Although there are some work to determine an MBR

using above approaches, little attention has been given to model the spatial

extent using a probabilistic approach. The bottleneck that makes this task

challenging is the uncertainty and incompleteness of the spatial information

for locations in geographical databases, especially when it is created and main-

tained publicly.

Conflict resolution and data cleansing techniques This line of research

is relevant since it can benefit from the bounding boxes of places (as shown in

Section 5.2.1), hence we briefly review it here.

Conflict resolution can be viewed as making a decision between different

versions of data to determine a golden record. Different techniques have been

developed to cleanse redundant information including rule-based approaches,

heuristics and quantitative analysis. Prokoshyna et al. [35] combine logical

8



reasoning and quantitative method to develop a novel data cleansing approach.

This quantitative method involves setting some constraints based on the sta-

tistical properties of attribute values and flagging inconsistencies if such con-

straints are violated. The authors propose a minimal-set repair algorithm to

find attribute values that minimize a statistical distortion. Their work inspired

us in defining the topological constraints (see Section 4.3), more precisely soft

constraints, by determining the statistical property of overlap of MBRs.

Volha et al. [7] propose a framework for resolving conflicts by incorporat-

ing a learning-based algorithm, which learns a fusion function from a set of

functions for each attribute type. In particular, if attributes are numeric, then

the authors select a function which (1) minimizes the error between the given

and the true values of the attributes and (2) maximizes the count of attributes

such that their value does not deviate from the gold standard value by more

than a threshold. Similarly, for text fields, the authors maximize the number

of matches with a gold standard value. While the authors of the paper use

a supervised learning approach to resolve conflicts, we rely on the statistical

property of data in the gazetteer to build a probabilistic model which selects

an optimal MBR of a place from different possible MBRs.

Another line of work to filter objects which do not follow the general un-

derlying distribution of a dataset are outlier detection methods. A commonly

used technique in spatial domains is Boxplot [21], in which all points which

lie outside a boundary range are considered as outliers. This boundary is de-

termined based on statistical properties of the dataset. More precisely, one

can find the first and the third quartile of the distribution and determine the

boundaries on either side by multiplying the first and third quartile by some

factor (usually 1.5). Rousseeuw et al. [39] further propose a bivariate gener-

alization of Boxplot, known as Bagplot to determine outliers in a set of 2-D

points. In one of the proposed heuristic approaches, we also experiment with

Boxplot and Bagplot to remove outlier locations while constructing an MBR

of a place.

Automatic gazetteer expansion and enrichment This line of research

can also benefit from the bounding boxes of places; for the same reason, it is

9



briefly reviewed here.

Automatic gazetteer creation or enrichment involves adding places to a

gazetteer to make it complete or adding new features to make it more useful.

It is a challenging task as it requires one to efficiently merge data from hetero-

geneous sources, each with its own different storage format and representation.

Popescu et al. [32] devise an approach to automatically create a gazetteer us-

ing diverse information sources. Their paper provides different algorithms for

entity extraction, categorization, coordinate discovery and ranking. Entity

names and types are extracted from Wikipedia pages as well as any latitude

and longitude information when present. For entities with no latitude and

longitude in Wikipedia, geotagged images from Panoramia are used to find a

geo-coordinate. The authors use the AllTheWeb search engine to determine

the rank of each entity based on the count of pages returned for queries formed

using the entity name. This research provides an effective way to combine dif-

ferent data sources and their evaluation shows high precision (more than 90%)

for entity extraction and categorization.

Recently, Oliveira et al. [29] also attempt to enrich the gazetteer included

in GeoSEn [10] system using its geo-parser that utilizes the volunteered ge-

ographical information features. The authors augment the spatial hierarchy

of the gazetteer by adding places at the level of granularity which is similar

to district and streets. In our work, we refine the hierarchy of a gazetteer by

moving places deep in the hierarchy based on the containment relationships

between MBRs.

One application in which we demonstrate the usage of MBR is geotagging

photos and videos from Flickr, which can then be used to enrich places in

gazetteers with location specific photos. Related work in the literature in-

cludes the work of Serdyukov et al. [41] which proposes a language model to

map photos from Flickr to places on earth using user tags attached to images.

The authors use a grid based approach to divide the earth surface into cells of

equal sizes before predicting a particular cell for each photo. They apply sev-

eral smoothing techniques based on neighbouring places and location specific

tags to refine the cell prediction. This line of work may benefit from a more

10



descriptive geometric structure such as the MBR of places instead of using

cells with arbitrary boundaries.

Kordopatis et al. [24] propose a bag of tags approach where they determine

the probability of a tag being used by users to describe a region. They weigh

the tags in each cell based on spatial entropy which gives less weight to tags

that are either user specific or very general. We show that mapping images

from Flickr to locations in GeoNames, based on MBRs of places instead of

cells, can be an effective alternative.

11



Chapter 3

Bounding Box Construction

Given a set of containment relationships between places in a gazetteer, our

objective is to construct a bounding box for every place such that ideally all

stated or known constraints are satisfied. We take as the bounding box of

a place, any minimum bounding rectangle (MBR) that is parallel to latitude

and longitude axes and satisfy the constraints. This does not always give the

most accurate bounding box especially if the true bounding box is not convex;

however, it is easier to work with MBRs (rather than arbitrary polygons) for

checking containment relationships. A problem here is that there are often

relationships or constraints in a gazetteer that are conflicting or contradictory

and they cannot be all satisfied. For example, in Figure 3.1(a), it can be

observed from the bounding box of Hawaii, it is difficult to minimize the

distance between center of the MBR and the given center as the place consists

of disjoint islands. Also, in Figure 3.1(b), one can notice from a bounding box

returned by Google Maps (googleMBR) that there are no locations in south-

west region and it is difficult to conflate the bounding box based on locations

(childrenMBR) without using any external information.

We present two basic strategies to construct a bounding box: (1) a Hi-

erarchical approach or MBR of the children, which uses the set of contain-

ment relationships expressed in the spatial hierarchy of a gazetteer, and (2) a

Geometric approach or MBR of the center point, which constructs an MBR

using both the center point and the area information about each place. Fur-

thermore, we present a probabilistic approach that fuses two strategies and
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each place that is centered at the center point of the place and with an area

close to the known area of the MBR of the place.

3.2.1 Center MBR

Given a center point c and area a, one can construct an infinite number of

rectangles centered at c with an area a. Without additional information, we

don’t know which rectangle is more likely. However, our next statement gives

some evidence that maybe a square is a better choice.

Conjecture: Let R be the set of all rectangles with a center point c and

area a and r P R. Assuming that all rectangles are equally likely, the expected

area of overlap between R and r is maximized when r is a square.

Therefore, we construct a square of given area A from the given center C

of the place. The bounds of a MBR can be obtained by shifting the latitude

and the longitude of the center in either directions. The latitudes of north-east

(NElat) and south-west (SWlat) points are obtained by shifting the latitude of

the center in north and south by a factor F given as

NElat “ Clat ` F and SWlat “ Clat ´ F

where F “ p
?
Aq{p2 ˚ Lq, L is the distance between two consecutive latitude

(« 111 km) and Clat and Clong are the latitude and longitude of center C.

To calculate the longitude of the two end points, we first obtain the distance

between two longitudes at a given latitude (Dlat). This is required because the

distance between consecutive longitudes shrinks as we move toward the poles.

The longitudes of the end points is then obtained by shifting the longitude of

the center point by shift factors Fne and Fsw which are calculated as below:

Fne “ p
?
Aq{p2 ˚ Dnelatq

where Dnelat “ L ˚ cospnelatradianq (from [45]) and

nelatradian “ pNElat ˚ πq{180,

Fsw “ p
?
Aq{p2 ˚ Dswlatq

15



where Dswlat “ L ˚ cospswlatradianq (from [45]) and

swlatradian “ pSWlat ˚ πq{180.

∴ NElong “ Clong ` Fne and SWlong “ Clong ´ Fsw.

Note that the precision of coordinates of endpoints depends on the precise

value of L and the given center.

The bounding box estimated using this geometric approach, also referred

to as centerMBR in later sections, is expected to be accurate in cases when the

child locations are distributed uniformly around the given center. However,

this approach may not perform well when child locations include outliers or

the center of the place is away from the mass of child locations.

3.3 Probabilistic Approach

Geographic information for a place in a gazetteer can be inconsistent, inaccu-

rate, incomplete, obsolete or duplicate. One can apply traditional rule based

methods to filter the redundant information. However, it requires experts and

is time consuming. Moreover, the main challenge which still remains is to

handle the uncertainty in spatial data.

In this approach, we assume a probability can be assigned to each con-

straint (expressed in a gazetteer) or piece of information to indicate its degree

of certainty or accuracy, and model our task as a constraint optimization

problem. Later, we present an efficient algorithm which uses the model and

generates a bounding box of a place.

3.3.1 Model

A bounding box obtained from our baseline approach suffers from both in-

accuracies and inconsistencies. For example, inaccurate center information

may lead to many neighbouring places to be included or excluded in an MBR.

A childrenMBR can be smaller than expected if there are either not enough

points or the points are not widespread enough to form a larger bounding box.
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Also, a childrenMBR can be much larger than expected if a few locations are

wrongly placed as children.

Locations in a gazetteer are described by a latitude and a longitude; we

assume that a given coordinate of a place represents the center of its bounding

box with high certainty. Public gazetteers often do not provide much detail

on how the coordinates are obtained and if the given coordinate is actually

the center point of the MBR of the place. To test this, we randomly selected

1000 places each from GeoNames and OSMNames. The coordinates of these

places were checked against the center point of the bounding box obtained

from a different source (in our case MBR obtained from Google Maps referred

to as googleMBR). We found that only 63% of places in GeoNames and about

97% of the places in OSMNames had a coordinate within 10 km of the center

obtained from googleMBR.

Modeling center point: Let dc denote the distance between a given center

c of a place and its true MBR center. If we assume dc follows the normal

distribution with parameters µ and σ, then we can write

Prpdc|µ, σq “ 1

σ
?
2π

e´pdc´µq2{2σ2

(3.1)

where µ and σ are respectively the mean and the standard deviation of dc. Let

Pcenter denote this probability for fixed values of µ and σ. The parameters of

the distribution can be easily estimated from the data. In our random sample

of 1000 places, µ and σ are 88.894 and 408.760 for GeoNames and 2.057 and

7.09 for OSMNames, in km, respectively.

Modeling children: Let q be the probability that an arbitrary location is

placed under a correct parent in the gazetteer. The value of q can be estimated

by checking for each place in a sample whether its children are assigned a cor-

rect parent node. In our sample of 1000 places, the value of q is calculated as

0.968 for GeoNames and 0.882 for OSMNames respectively. One may observe

that the probability that an arbitrary location is placed under a correct par-

ent is relatively high; hence based on this empirical result and without much

additional knowledge of which places may be correct or incorrect children, it

is more desirable to include rather than exclude a child inside the MBR of its

17



listed parent. For a parent place with n children and an MBR that includes

i of its children, the probability that a random child location of the parent is

enclosed in the MBR (Pchildren) can be written as

Pchildren “ i

n
. (3.2)

Putting it together: Assuming independence of the center point and the

children listing, we can put together the two probabilities into an objective

function. Given a place with center c, MBR area A and a set of children

locations S, we want to find a set S 1 Ď S of children such that

argmax
S1ĎS

pPchildren ¨ Pcenterq

subject to areapMBRpS 1qq ď A
(3.3)

where area(MBR(S 1)) refers to the area of MBR formed from places in S 1.

Everything equal, the model selects an MBR with a center point closest to

the given center c. Equation 3.3 provides a way to model the inclusion and

exclusion of locations under an MBR and to estimate the center of the MBR

with high certainty. We refer to this approach as Probabilistic Optimization

Model (POM) in our experiments.

3.3.2 Optimization

Optimizing Eq. 3.3 can be computationally intensive since one needs to con-

sider all possible solution MBRs. The problem may be broken down into two

cases: (1) there is an MBR that includes all points and rectangles in S and

the area of the MBR is not larger than A, (2) there is an MBR that includes

all points and rectangles in S and has an area larger than A. For (1), the

MBR that includes all points in S with an area not exceeding A will maximize

the first term Pchildren. It can be noted (from our sample of 1000 places and

their given center) that there is more uncertainty in finding the center of an

MBR than that in including a correct child inside an MBR, hence one may

maximize the first term (Pchildren) before maximizing the second term (Pcenter).

This means the MBR that includes all points in S can simply be expanded (if
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needed), moving the center of the MBR to the given center and maximizing

the objective function, without violating the area constraint.

Algorithm 1 Find an optimal MBR (as per Equation 3.3) when child loca-
tions are all points.

1: procedure Maximum–Enclosing–Points

2: Inputs:

A Ð area of MBR of the place P

C Ð center of the place P

S Ð set of n unique locations tp1. . . pnu, under P
3: Initialize:

bestMBR Ð Nil

maxProbability Ð 0

4: (p1, p2 . . . pmqÐ InitialSolution(S) Ź Alg. 2

5: ptsOutsideMBR Ð pp1, p2 . . . pmq
6: for i = 0 to m do

7: for j = 0 to m-i do

8: for k = 0 to m-i-j do

9: for l = 0 to m-i-j-k do

10: currentMBR Ð FormCandidateMBR(i,j,k,l, S) Ź Alg. 3

11: if area(currentMBR) ą A then

12: continue

13: end if

14: x Ð (i+j+k+l) Ź # of excluded places.

15: currCenter Ð center of currentMBR

16: Calculate Pcenter using C and currCenter in Eq. 3.1

17: Pchildren = (n-x)/n (as in Eq. 3.2)

18: currProb Ð Pchildren ¨ Pcenter

19: if currProb ą maxProbability then

20: maxProbability Ð currProb

21: bestMBR Ð currentMBR

22: end if

23: end for

24: end for

25: end for

26: end for

27: return bestMBR

28: end procedure
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Algorithm 2 Find Initial Solution

1: procedure Initial–Solution

2: Inputs:

S Ð set of n unique locations tp1 . . . pnu, under P

3: Start dropping one point at a time from furthest end in each direction,

north, south, east and west.

4: At each exclusion, form MBR with remaining points and compare its

area with A.

5: Stop when area of the MBR is less than or equal to A.

6: Find all the points which are strictly outside the current MBR and

return it.
7: end procedure

Algorithm 3 Form Candidate MBR

1: procedure Form–Candidate–MBR

2: Inputs:

i, j, k, l Ð number of points to be dropped from north, east, west,

south direction.

S Ð set of n unique locations tp1 . . . pnu, under P

3: Using S, drop i, j, k, l points from north, east, west, south direction

respectively as shown in Fig. 3.3.

4: Form MBR with remaining point and return it.

5: end procedure

Now consider the case where there is no MBR that includes all data points

with an area less than or equal to A. Again with a high certainty in including a

correct child as compared to that in selecting a correct center, we can optimize

the first term before plugging in the second term.

Naive algorithm: A naive approach to perform this optimization is to enu-

merate all possible MBRs and select the one that maximizes the objective

function in Equation 3.3. This is equivalent to sweeping the complete search

space, selecting a point at a time from each direction and forming an MBR

that has the selected points on its sides. With n data points, there are n
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3.4.1 Outliers Removal

Gazetteers sometimes have locations that are wrongly placed. For instance,

Kemer is placed under the Antalya province of Turkey in GeoNames although

its geocoordinates falls under the Konya province of Turkey1. Such wrong

placements may show as an outlier especially if the wrong child is quite far

from other children listed under the same parent. Hence, an outlier detec-

tion method may be used to detect such places before constructing an MBR.

Outlier detection is extensively studied in the literature (e.g. [21, 38]). Two

approaches that are used in geographical contexts are Boxplot [48] and Bag-

plot [39].

Boxplot is a univariate method that can be applied across both latitude

and longitude dimensions. A point may be deemed an outlier if it is classified

as an outlier in any one of the two dimensions; such outliers can be removed

before constructing an MBR. Whereas, Bagplot is a bivariate extension of

Boxplot, which generates a convex hull with 50% of the points (called a ‘bag’)

and an outer loop (known as ‘fence’), which can vary in size depending on the

number of points one wants to include. We expand the outer loop till the area

of the MBR formed by enclosed points is closest or equal to the given area

of the place. All the points which are outside the outer loop are considered

as outliers and are excluded in the MBR construction. Figure 3.4 shows the

application of Bagplot to obtain accurate bounding box of Antalya.

Similar to our approach, removing outliers before constructing an MBR is

expected to generate an accurate MBR when the area of the children MBR

is greater than the given area. A difference is that our probabilistic approach

uses the center of the MBR, in addition to the set of child locations and the

given area, to select an MBR whose center is closest to the given center. This

may give a better MBR as compared to those generated from outlier removal

methods especially when the majority of child locations are away from the

given center.

We refer to MBR formed after removing outliers from childrenMBR as

1This example is from GeoNames and the geoname id for Kemer is 308213.
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‘childrenMBR woOutlier’ in later sections.

3.4.2 Hybrid MBR

An MBR of a place may be obtained using its center point and area; an MBR

of a place may also be obtained based on the children listed. If we treat each

MBR as a random variable which is 1 for points inside the MBR and 0 for

points that fall outside, the region where the two MBRs overlap is where both

random variables are taking the value of 1. The rectangle marked by the

intersection of the two MBRs is expected to give a more reliable description

of the boundary. However, the region of overlap can be much smaller than the

actual MBR. We next discuss how this intersection region can be expanded

such that its area matches the given area.

(1) Hybrid MBR with uniform enlargement (H-enlarge): Let l and w

denote the length and the width of an MBR. To enlarge the MBR, we may

enlarge both l and w by a constant s. Given an area a, we want pl ` sqpw ` sq
to be close to a. In other words, the value of s can be obtained by solving the

following quadratic equation:

s2 ` pl ` wqs ` plw ´ aq “ 0 where s ą 0.

The coordinates of the expanded MBR are obtained by shifting the latitude

and longitude of north-east and south-west region by degree equivalent to s{2
length in each direction. If C is the center of intersection region with latitude

Clat and longitude Clong respectively, the latitude of endpoints (NElat, SWlat)

are given as

NElat “ Clat ` F and SWlat “ Clat ´ F

where F “ s{p2 ˚ Lq and L is the distance between two consecutive latitude

(« 111 km). The longitude of endpoints (NElong, SWlong) are calculated in

similar way as in Section 3.2.1 with few changes. Modified equations are given

below:

Fne “ s{p2 ˚ Dnelatq
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where Dnelat “ L ˚ cospnelatradianq (from [45]) and

nelatradian “ pNElat ˚ πq{180,

Fsw “ s{p2 ˚ Dswlatq

where Dswlat “ L ˚ cospswlatradianq (from [45]) and

swlatradian “ pSWlat ˚ πq{180.

∴ NElong “ Clong ` Fne and SWlong “ Clong ´ Fsw.

(2) Hybrid MBR with scaling (H-scale): Under this strategy, sides of the

intersection region are scaled by a factor s such that the area of the expanded

MBR becomes a. Hence, the value of s can be obtained as

s “ ‘pa{lwq.

The endpoints of the expanded MBR are obtained in the same way as in

the previous case. In our experiments, we find the intersection of children-

MBR woOutlier with centerMBR and apply the above conflation technique.

In a case of no intersection region, we use childrenMBR as the default MBR.

Table 3.1 lists different approaches that are discussed in this chapter and

the MBRs created using a given input.

Methods Input Output MBR
Hierarchical child locations childrenMBR

Geometric center point and area of true
MBR

centerMBR

Probabilistic
center point, area of true
MBR, child locations

POM-based MBR

Heuristic

child locations and area of
true MBR

childrenMBR woOutlier

center point, area of true
MBR and child locations

hybridMBR

Table 3.1: List of different methods, input required and output MBRs.
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Chapter 4

Applications

A bounding box of points in a spatial dataset represents a level of abstraction

for grouping and to describe the common features of the points that fall inside

the box. Including such an abstraction in a gazetteer has a number of advan-

tages. In this chapter, we present a few application areas where the knowledge

of the geographical boundaries of places can be useful; these applications can

clearly benefit from maintaining such information in the spatial hierarchy of a

gazetteer.

4.1 Gazetteer Refinement

Gazetteers provide a spatial hierarchy of places based on their containment

or part-of relationships. However, such relationships are often described in

a coarser granularity than desired. For example, at the time of writing this

thesis, GeoNames places “University of Alberta” as a child under Alberta

instead of Edmonton. This is partly because places such as cities and towns

are represented by a point rather than with some geographical extent, which

in turn prevents locations such as localities, parks and hospitals to be placed

under it. This can adversely impact applications that query a gazetteer to

determine the next administrative division in the spatial hierarchy that can

contain a given place; an example query is “In which city a particular hospital

or library is located”.

One approach to refine the spatial relationships in a gazetteer is to use

the bounding boxes of places for restructuring the spatial hierarchy. This
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probable cell for a given photo or video. A problem with cells is that it is

possible that tags are spread over many neighbouring cells if the region it

covers is a province or a country. In other words, spatial scope of a place can

be distributed over different cells. On the other hand, MBRs of places are

expected to maintain the locality relationships and place boundaries as shown

in Fig. 4.31. Thus, a natural question is if using MBRs instead of grid cells

leads to a better geotagging.

Our approach to geotag photos and videos from Flickr using MBRs is

divided into two steps (1) MBR prediction in which we predict an MBR for

a photo or a video, and (2) coordinate estimation in which we determine the

coordinate of the photo or the video within the predicted MBR. The details

of the approach is discussed below:

(1) MBR prediction The relevance of a tag t to an MBR can be defined as

the probability that a user inside the MBR mj uses t to tag his/her photos.

This probability can be estimated for a single tag ti as

ppti|Mjq “ # of users who use tag ti in MBR mj

# of users in mbr mj

whereMj is the model of MBRmj. This formulation is based on the hypothesis

that different users in an MBR may use similar tags to describe a place. The

more a tag is used by users from the same location, the more location specific

the tag is. To avoid zeroing the score in case a tag is not seen in a training

phase, we apply the Jelinek-Mercer smoothing [49]. This changes the relevance

of a tag t to an MBR as

ppti|mjq “ αppti|Mjq ` p1 ´ αqppti|Mmbrsq

where α is the smoothing factor with a value in the range (0, 1) and ppti|Mmbrsq
is the model for all MBRs, defined as

ppti|Mmbrsq “ # of users who use tag ti over all MBRs

# of users over all MBRs
.

1The map of Alberta is obtained from www.canadah.com. Map and MBRs may not be
to the scale and accurate.
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In our experiment, we set the value of α at 0.8. Assuming independence

between the tags inside an MBR, the relevance score of a test instance T with

tags t1, . . . , tn is given as

ppT |mjq “
n

ź

i“1

ppti|mjq.

In our experiments, we use the log of ppT |mjq as our scoring function for

numerical stability; this changes the product on the right side to a sum as

given below

logpppT |mjqq “
n

ÿ

i“1

logpppti|mjqq.

One may note that the relevance score can be biased toward user-specific tags,

which often do not carry any location information (e.g. person name). To

avoid such ambiguity, we remove all tags which are used just by a single user.

Further, to allow a locality of the tags, the same user in different cells or

MBRs is considered as a new user. Finally, the MBR with the maximum score

is considered as a best MBR (mpredicted) for a given test instance i.e.

mpredicted = argmax
mjPM

plog (ppT |mjq)).

One limitation of this model is that it is only applicable for test instances

that contain at least one tag seen during the training phase. For test instances

with all unseen tags, one can employ different heuristics to predict an MBR.

One heuristic that we use is to predict the most popular MBR i.e. the MBR

which has the maximum number of photos or videos assigned.

(2) Geocoordinates estimation The strategy to estimate the geocoordi-

nates of a photo or a video is dependent on whether the MBR is predicted

using the probabilistic language model discussed above or using the most pop-

ular MBR. In the former case, one approach is to find the Jaccard Similarity

[23] between the tag set of the test instance and each of the training photo or

video in the predicted MBR. The geocoordinates of a training photo or video,

which gives the maximum value of the Jaccard Similarity, can be considered

as the geocoordinates of the test instance. In the other case when an MBR is
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predicted based on the most popular MBR the geocoordinates of the training

instance, which has the minimum Haversine distance [37] to other instances in

the MBR, can be considered as the geocoordinates of the test instance.

Our experiments in Section 5.2 show how the idea of using an MBR instead

of a grid cell can improve the performance of a geotagging application.

4.3 Topological Constraints

Topological constraints, when defined, between the objects in a spatial database

can ensure to some degree the accuracy or the correctness of the database.

Such constraints between places in a gazetteer may be defined using spatial

structures such as convex hull or polygon. However, enforcing the constraints

is computationally the simplest if the structure to represent a place is an

MBR [9]. Relationships such as containment, disjointness and overlap be-

tween MBRs can be harnessed to define a set of topological constraints. Such

constraints can further be classified into (1) soft constraints and (2) hard con-

straints. Soft constraints may be violated but the violations are expected to

be rare and may lead to a warning. Hard constraints are those that cannot

be violated; They are akin to referential integrity or foreign key constraint in

relational database. The following topological constraints may be defined to

maintain the data integrity of a gazetteer.

(1) Hierarchical : The following constraint may enforce the hierarchical

relationships between MBRs:

If a location A contains another location B, the MBR of location A must

contain the MBR of location B.

One example of it is shown in Fig. 4.42. This constraint is not true vice-

versa; for example, the MBR of Saudi Arabia contains the MBR of Qatar even

though both are different countries. This is of type hard constraint since a

violation can cause incorrect modification of a parent or a child MBR.

(2) Disjoint : The bounding boxes of places are expected to be disjoint

2The map of India is obtained from www.d-maps.com. Map and MBRs may not be to
the scale and accurate.
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Level # of places µ σ
Threshold

α = 0.05 α = 0.01
ADM1 2000 0.2756 0.1451 0.514 0.613
ADM2 2000 0.1819 0.1655 0.454 0.566
ADM3 2000 0.1634 0.1462 0.403 0.503

Table 4.1: Expected area of overlap between MBRs at each level (ADM1 =
province, ADM2 = district or large city, ADM3 = locality or small town) and
the respective thresholds at each level of significance.

then, calculate parameters to define a constraint. However, often we do not

have such information about places and their MBRs. To address this, (i) we

only consider the overlap between places at the same administrative levels,

and (ii) we ignore places when their MBR is fully contained in another MBR;

such overlaps can be (a) due to a parent-child relationship that may or may

not be correctly represented in GeoNames, or (b) because of an inaccuracy in

data.

Example 1 In three different random sample of 2000 locations obtained from

different levels (ADM1, ADM2 and ADM3) of the spatial hierarchy of GeoN-

ames, we find the overlap area of each place P with other places (except those

which can contain P or those which can be contained by P ) at the same

administrative level. The overlap area of a place P in a sample is further nor-

malized with the area of P . We can calculate parameters such as mean and

standard deviation of the normalized overlap area of these locations in each

sample as shown in Table 4.1. Based on the distribution parameters, different

basic constraints or rules can be defined. For example, if for any location at

ADM2 level, its average normalized overlap area with all other places is much

below or higher than the mean normalized overlap area (0.1819), then an as-

sertion may be triggered. This example, however does not provide a threshold

with which one can compare mean normalized overlap area of a place and can

decide with some certainty that whether an update is actually unusual.

Example 2 Consider the setting of the first example, but suppose we want

to calculate an upper bound on the mean normalized overlap area of a place

based on the mean normalized overlap area of a sample. In the absence of
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information for complete population, we assume the given sample as our pop-

ulation and its mean and standard deviation as mean and standard deviation

of the population. Given the mean µ and standard deviation σ of the popula-

tion, our null hypothesis (H0) may be defined as: the difference between the

population mean and the mean normalized overlap area of a place is zero. The

alternative hypothesis (H1) can be that the mean normalized overlap area of

a place is greater than the population mean. As our alternative hypothesis

is one-tailed, we calculate a threshold or upper bound on mean normalized

overlap area of a place (T) based on one-tailed critical values of z-score (Z =

1.645 and 2.326 corresponding to α = 0.05 and 0.01 respectively) at different

levels of significance and setting the sample size ‘n’ at one. Formally, it is

given as

Zα “ pT ´ µq
σ{?

n
.

In our case, n “ 1 as we want to find a mean normalized overlap area for a

place and therefore, T is given as

T “ pZα ˚ σq ` µ.

Table 4.1 presents for our sample an expected upper bound on the area of

overlap at different administrative levels and different levels of significance.

A soft constraint on this can be that if an update for a place P at ADM3

level makes its mean normalized overlap area greater than 0.403, then the null

hypothesis can be rejected at α “ 0.05.
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Chapter 5

Experimental Evaluation

In this chapter, we evaluate the proposed approaches in terms of both the

accuracy and the effectiveness of the bounding boxes that are constructed.

5.1 Accuracy of an MBR

The accuracy of an MBR of a place may be measured against published data

from authoritative sources such as government agencies and international or-

ganization bodies. We are not aware of any such source providing a compre-

hensive list of boundary regions, though there are sources that provide data

on a best-effort basis. As one such source, we use Google Reverse Geocoding

API1 to fetch the true bounding boxes for a location. Google Maps has been

used in similar context in the literature [19, 27].

5.1.1 Dataset and Evaluation Measures

Two gazetteers, namely GeoNames2 and OSMNames3, are used to evaluate

the proposed methods.

GeoNames : GeoNames contains 9 feature classes, 667 categories or feature

types and a total 11,031,666 geographical entities as of May, 2016. For each

place, it provides name, alternative names, latitude and longitude, feature

class, feature type, country code and administrative division code at different

1https://developers.google.com/maps/documentation/geocoding/intro
2http://www.geonames.org/
3http://osmnames.org/
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levels. In this work, we use latitude and longitude, feature classes and feature

types to construct our spatial hierarchy.

The testset for our experiments with GeoNames consists of three indepen-

dent datasets: 50 USA states, named as ‘Geo-50’, 540 randomly selected places

each with at least one child place, named as ‘Geo-540’ and another 140 ran-

domly selected places, named as ‘Geo-140’, such that each place has at least

one child and the area of the MBR of the children (childrenMBR) is larger than

that of the true MBR. We treat US states separately to study the behaviour

of the methods on places which are well-covered by GeoNames, even at lower

levels. The ground truth for evaluating Geo-50 is obtained by querying Google

Maps. Geo-140 is intended to test our probabilistic approach which is applied

for instances whose area of childrenMBR is larger than expected. The testsets

are created by randomly picking 2500 places in GeoNames with the constraint

that each place must have at least one child and then retrieving the ground

truth using Reverse Geo-coding API4 of Google Maps; this process retrieves

the bounding boxes for 680 places. Out of these 680 places, we obtain a set of

places whose area of childrenMBR is larger than that of the true MBR which

gives 140 places, with which we form Geo-140 testset, while the remaining

places are used to form Geo-540.

OSMNames : OSMNames is another open access gazetteer constructed from

the Open Street Map data, providing coordinates along with complete address

details for 21,055,841 geographical entities as of March 2017. For our evalu-

ation, we extracted two independent testsets, from OSMNames, consisting of

1500 places, named as ‘OSM-1500’, and another 160 places, named as ‘OSM-

160’. While OSM-1500 dataset consists of places having at least one child

location, OSM-160 is constructed based on the same extraction criteria as for

Geo-140. Both datasets are formed by randomly picking 2500 locations which

satisfy the stated criteria and invoking the Reverse Geocoding API to find the

4The bounding box of a place is obtained by invoking Geocoding API with latitude and
longitude of the place (using LatLong class of Geocoding API) as arguments. This returns a
list of places with their MBRs in JSON format. The bounding box of a place in the list whose
long name attribute value contains the given place name is returned as the googleMBR of
the place. To ensure the accuracy of the geocoding API, we further require the distance
between a query place and its returned match is less than 30 km.
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GeoNames
Geo-140
Geo-50
Geo-540

OSMNames
OSM-160
OSM-1500

Table 5.1: Different testsets and the methods evaluated on each testset.

(ground truth) bounding box for each place. OSMNames also provides the

bounding boxes for places it contains. We extracted the bounding boxes for

the places in our testsets (OSM-140 and OSM-1500) to evaluate their accuracy

with respect to the bounding boxes from Google Maps and also to compare

them with those generated by our methods. Table 5.1 lists all our testsets and

the strategies evaluated on each testset.

In our experiments, we use the given latitude and longitude of a place as the

center of the place. An MBR is represented as a curvilinear rectangle on the

spherical surface of earth. For our evaluation, we calculate the approximate

area of a curvilinear rectangle by finding the Haversine distance between the

endpoints to derive its length and width and use it to determine the area of

the minimum bounding rectangle. More precisely, we calculate the area of a

curvilinear rectangle as the product of its curvilinear length and width. This

approximation is justified here because (1) we use the same formulation to

calculate the area of true bounding box using the endpoints obtained from

Google Maps, and (2) the area of curvilinear rectangle and the area of an

MBR for a place is not expected to differ much unless the spatial extent of the

place is stretched along longitude axes or the place is located near the poles;

the number of such places is small.

Furthermore, in our calculations of area and the coordinates of an MBR, we

consider the radius of earth as 6371.0 km and the distance between consecutive

longitudes at equator as 111.0 km. We use an existing implementation of
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in intersection region of the true bounding box and a predicted MBR over

the number of points in the region formed by the union of the true and the

predicted MBR.

False Negative for point overlap (FNpoint): It is the ratio of the

number of points in the true MBR which are not covered by a predicted MBR

over the number of points covered by the true MBR.

False Positive for point overlap (FPpoint): It is the ratio of the num-

ber of points in a predicted MBR which are not covered by the true MBR over

the number of the points in the predicted MBR.

5.1.2 Data preprocessing

One redundancy observed in GeoNames is that it contains places with the same

coordinates but different names. This adds overhead to the construction of

the bounding box of a place. Therefore, we only use all unique child locations,

based on their geo-coordinates, to prepare a baseline MBR (childrenMBR) for

a place. Only those locations which follow a containment relationship with

their parent locations are considered as children.

Our experiments use the spatial hierarchy expressed in a gazetteer. As

an example from GeoNames, suppose we want to construct the relationships

that cities Edmonton and Calgary are part of the province of Alberta and that

is part of Canada. To build this hierarchy, we query GeoNames with name

‘Canada’, feature code ‘PCLI’ and feature class ‘A’ to obtain the attributes for

Canada such as country code (CA). Provinces in Canada can be obtained by

querying GeoNames using feature class ‘A’, feature code ‘ADM1’ and Country

code ‘CA’. The returned ADM1 code for the province of Alberta is ‘01’. Fur-

ther, populated places such as Edmonton and Calgary under Alberta can be

obtained by querying GeoNames using feature class ‘P’, feature code ‘PPL’,

country code ‘CA’ and ADM1 code ‘01’.

In case of OSMNames, the spatial hierarchy of places can be built using

‘display name’ attribute in the given data file. For example, the display name

for the Stanford University is “Stanford University, Santa Clara County, Cal-

ifornia, United States of America”, and this ordering of the place names gives
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the parent-child relationships. One problem in dealing with place names is

that two places at different locations can have the same name and sometimes

the same OSM IDs (for example, OSM ID 4807857 is assigned to both Lindsay

Place in Canada and Microrregio de Osasco in Brazil). Thus, we first assign a

unique ID to places with a duplicate OSM ID, then replace place names in the

display name field with their unique IDs and built the hierarchy thereafter.

5.1.3 Experimental Results and Discussions

In this section, we present our experiments on evaluating each of the pro-

posed methods across different testsets. We also study the changes in accu-

racy as we vary some of the parameters. In our graphs and tables, we use

abbreviations such as “Children”, “Center”, “Children woOutlier”, “POM”,

“H-enlarge” and “H-scale” to indicate ChildrenMBR, CenterMBR, Children-

MBR woOutlier and MBRs generated by probabilistic and heuristic approaches

respectively. We also specify the outlier detection technique used by alias ‘bag’

(i.e. Bagplot) and ‘box’ (i.e. Boxplot) when we present results for Children-

MBR woOutlier in the tables. The experiments are categorized as follows:

(1) Overall accuracy on Geo-140 and OSM-160: The goal of this experi-

ment is to determine the accuracy of each of the proposed methods on Geo-140

and OSM-160 testsets and to understand the factors or underlying data prop-

erties that affect the results. The results of the experiment are tabulated in

Tables 5.2 and 5.3 respectively.
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Children 44.43 53.66 7.02 91.32 8.67 0.71
Center 63.78 24.09 23.66 84.87 6.79 12.94
POM 78.16 9.42 17.29 92.89 6.79 2.12

Children woOutlier (bag) 67.12 9.30 27.95 87.10 6.44 7.56
H-enlarge 72.09 17.98 17.87 89.37 6.82 7.89
H-scale 72.16 17.96 17.85 89.98 6.85 7.23

Table 5.2: Evaluation result for Geo-140 dataset in (%)
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Children 36.33 59.86 18.85 60.99 39.0 3.75
Center 53.39 32.60 32.34 76.47 15.81 14.99
POM 43.98 39.57 46.20 64.20 34.15 19.52

Children woOutlier (box) 39.76 43.79 30.82 64.51 33.96 5.43
H-enlarge 55.33 31.03 30.98 77.41 17.18 12.18
H-scale 55.04 31.41 31.36 77.40 17.27 11.99

Table 5.3: Evaluation result for OSM-160 dataset in (%)

Table 5.2 shows that childrenMBR for locations in Geo-140 are inflated

due to wrong child locations placed under parent places. This can be seen

from the high false positive (53.66%) for this approach. Our probabilistic

approach performs the best as compared to other strategies, with around 33%

improvement over our baseline. It is because with the probabilistic approach

MBRs are shrunk by excluding outliers such that the area of each MBR that

is formed is close to a given area. This reduces false positives and therefore

improves the accuracy. CenterMBR performs better than childrenMBR as it

constructs a square of a given area from the given center and since the area

around the center is often included in the true MBR, it results in a better

MBR than the childrenMBR. Furthermore, due to large number of points (on

average « 2789 children per place, see Table 5.4), childrenMBR woOutlier

outperforms the baseline as it removes the outliers.

From Table 5.3, it is clearly observed that hybridMBR outperforms other

methods on the OSM-160 testset, with around 19% improvement over our

baseline. The reason for this is that the majority of the locations in OSM-160

have children which are away from the given center. Additionally, most of these

child locations are wrongly placed, which is evident from high value of FParea

and FPpoint for childrenMBR. Thus, in such cases where child locations are

less reliable and concentrated in a certain region, using conflation techniques

such as hybridMBR performs better as compared to other methods.

In both the Tables 5.2 and 5.3, the point overlap accuracy is seen to be

higher than the area overlap accuracy over all methods. It is because, a ma-
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Parameters G
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50
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G
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-5
0

child count (mean) 2789 1015 111 71 40,210

area (mean) 78672.95 81026.98 125.11 367.05 489,324.96

places with area
under 100 km2

21 76 144 1275 0

child count (mean) 53 19 96 54 NA

area (mean) 43.54 46.90 17.39 14.04 NA

places with child
count less than 25

11 379 35 889 0

child count (mean) 10 6 11 8 NA

area (mean) 683.35 7710.38 3.93 223.71 NA

Table 5.4: Statistics across different testsets.

jority of the points are part of a true MBR and this increases POA but the

number of points are not enough or the points are not spatially extended in

right directions to define the geographical boundary of the locations.

Since OSMNames provides bounding boxes of places, we calculate the area

overlap accuracy for the places in OSM-160 using their bounding boxes from

OSMNames. The area overlap accuracy of the MBRs obtained from OSM-

Names is 31.48% whereas our hybrid approach achieves 55.33%; this means

our methods can construct better MBRs than those in OSMNames.
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Children 68.03 29.06 3.25 97.95 2.04 2.0
Center 64.58 23.88 20.83 77.64 2.02 12.33

Children woOutlier (bag) 90.87 2.49 7.05 97.34 2.02 2.63
H-enlarge 76.24 14.32 13.85 91.97 2.02 8.00
H-scale 76.00 15.17 14.67 92.65 2.02 7.32

Table 5.5: Evaluation result for Geo-50 dataset in (%)

(2) Overall accuracy on Geo-50, Geo-540 and OSM-1500: In this
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experiment, we use Geo-50, Geo-540 and OSM-1500 testsets to evaluate each

of the proposed methods except POM which is only applicable to 43 places

in Geo-50 whose result is not mentioned in Table 5.5 but discussed when we

present the results of Geo-50. The probabilistic approach cannot be applied

to places in Geo-540, OSM-1500 and to few places in Geo-50 as the given

information of places do not satisfy the stated criteria of POM.

Our result on the US states dataset (Geo-50) in Table 5.5 shows that

childrenMBR woOutlier outperforms all other strategies with AOA and POA

respectively at 90.87% and 97.34%, producing the lowest number of false pos-

itives and negatives. This is due to a large number of child locations per

place in Geo-50 (see Table 5.4), which also results in high accuracy of chil-

drenMBR. On further applying bagplot on childrenMBR, outliers are removed

which results in more accurate bounding box; hence a high accuracy for chil-

drenMBR woOutlier. There are also 43 places in Geo-50 on which POM is

applied which gives an AOA and POA of 97.50% and 99.97% respectively.

Such high accuracy shows that POM performs best when the number of chil-

dren are high and can define the place boundary.

In the subsequent parts of this chapter, we will focus on discussing the

results from more diverse testsets, namely Geo-540, OSM-1500, Geo-140 and

OSM-160.
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Children 34.20 6.27 61.68 94.49 5.50 1.85
Center 65.39 22.71 22.23 91.73 4.29 7.49

Children woOutlier (box) 34.80 5.44 61.72 94.52 5.45 1.86
H-enlarge 71.86 17.95 17.85 94.28 4.75 4.28
H-scale 63.74 24.37 25.04 94.49 4.73 4.06

Table 5.6: Evaluation result for Geo-540 dataset in (%)

Tables 5.6 and 5.7 show that the center and area information play a vi-

tal role in Geo-540 and OSM-1500. For both testsets, childrenMBR has less

accuracy as most of the places do not contain enough spatial points to repre-
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Children 26.27 10.85 66.04 90.20 9.79 2.6
Center 63.25 24.71 24.43 91.87 4.56 6.76

Children woOutlier (box) 25.97 10.83 66.37 90.20 9.78 2.61
H-enlarge 64.29 23.79 23.63 94.15 4.90 4.08
H-scale 59.43 28.16 28.02 94.32 4.91 3.87

Table 5.7: Evaluation result for OSM-1500 dataset in (%)

sent the place boundary (« 70% of places have less than 25 children per place

in Geo-540 while it is « 59% in OSM-1500, see Table 5.4). Due to the same

reason childrenMBR woOutlier performs worse than the baseline. On the con-

trary, centerMBR covers major parts of places using the area information and

combining it with childrenMBR woOutlier improves the area overlap accuracy

remarkably to 71.86% on Geo-540 and 64.29% on OSM-1500.

We also calculated the area overlap accuracy for the places in OSM-1500

using their bounding boxes from OSMNames. The area overlap accuracy ob-

tained is 66.53% which shows that MBRs obtained from our methods are

pretty close to those in OSMNames. Note that our hybridMBR shows an

overlap accuracy of 64.29% on the same dataset.

The study of overall accuracy across different testsets suggest that the

factors which may affect the accuracy of an MBR of a place are number of child

locations, their distribution and area of the place. In terms of applicability

of our strategies, our heuristic approaches seems to perform better for places

which have area and number of children less than the average. For places with

comparatively larger area and number of children, our probabilistic approach

yields better result.

(3) Performance of the expansion strategies: In this experiment, we

study the performance of our expansion strategies. More specifically, we study

the effect of applying uniform scaling and uniform enlargement operations on

the accuracy of hybridMBR.

Figure 5.2 shows the number of instances in which a particular operation
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Figure 5.2: Success rate over Geo-540 varying the level of places in the spatial
hierarchy.

outperforms the other operation at different administrative levels in Geo-540.

One can observe that the performance of H-enlarge is comparable with H-

scale for places at a higher level (e.g. province) while it performs better than

the H-scale for lower level places (districts, cities and villages) in the spatial

hierarchy. It is because the scaling operation extends the intersection region

without changing the shape of the intersection region greatly. This seems to

work better for places whose MBRs are geometrically close to rectangle. In

case of uniform enlargement, the intersection region is equally incremented in

both horizontal and vertical direction which result in MBR shape closer to a

square. This seems to work better for places at coarser granularity since it

covers majority of area around the intersection region.

(4) Varying the MBR area of places: In this experiment, we aim to derive

a relationship (if any) between the MBR area of a place and the accuracy of

our proposed methods. More precisely, we want to (1) study the performance

of different methods across different testsets by varying MBR area, and (2)
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to work well. Fig. 5.3 (b), (c) and (d) shows that the MBRs generated using

our heuristic approaches, i.e. centerMBR and hybridMBR, outperform other

strategies in almost all area ranges. This is because generally smaller regions

are not covered well by gazetteers and the heuristic methods which uses the

area and the center information seems to generate a better MBR. One may

also notice that for spatially extended places such as territories or countries

(see Fig. 5.3 (c)), childrenMBR outperforms all other methods. This is mainly

due to number of child locations which is explained later.

Based on these empirical results, we can conclude that for smaller places

such as localities and neighbourhoods, the heuristic approaches give a better

result, and for places with large areas such as districts and states, the proba-

bilistic approach seems to perform the best. Although in this experiment we

observe the variation of area overlap accuracy with the area of MBR of the

place, we find that it is the child locations which actually affects the accuracy

of MBRs. Thus, we study the results by varying the number of child location

in the next experiment.

(5) Varying the number of children for places: In this experiment, we

perform a study similar to the previous one but instead of varying the area,

we analyze changes in the area overlap accuracy of the strategies over different

child count ranges.

From Fig. 5.4, it is seen that our probabilistic approach seems to perform

better in cases when the child count is large while hybridMBR performs bet-

ter when there are less number of children. Furthermore, for places with less

number of children in OSM-160 (as shown in Fig. 5.4(b)), centerMBR per-

forms better since it uses the area information to construct an MBR. However

as the child count increases, hybridMBR is seen to be best for majority of

locations as it is formed by using both child locations and area of MBR of

the place. It can also be noted that in range [252, 702], childrenMBR works

better than childrenMBR woOutlier and probabilistic approach even though

the child count is not large. This is because several places in child count

range [252, 702], contains children which are not evenly distributed around

the center. Thus, the child locations which are away from center and occur
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is a major factor that affects the accuracy of different methods. The results can

easily be understood by knowing the number of children and the way points

are distributed. Based on the empirical results, it is seen that our probabilistic

approach is the best choice for places which are moderately or well covered

by a gazetteer. However, if the number of child locations are very high as

in case of developed states or places at the country level, childrenMBR or

childrenMBR woOutliers may perform best. Lastly, in case of locations with

less number of children (often seen for sparsely populated regions), having

center and area information is useful and the heuristic methods can give a

better abstraction of a place.

5.1.4 Summary of the Results

The conclusions drawn from the experiments conducted in this section can be

summarized as follows:

• The overall accuracy of the proposed strategies exceeds that of a baseline

across testsets. Although the testsets are diverse, as seen in Table 5.4, the

empirical results show that the proposed methods are robust to changes

in parameters such as the number of children and the area of an MBR

of a place.

• Comparing the accuracy of the bounding boxes obtained using our meth-

ods with those in OSMNames shows that MBRs generated through our

methods are comparable for places in the OSM-1500 testset while they

are more accurate in case of the OSM-160 testset.

• A comparison of scaling and enlargement operations shows that enlarge-

ment works well for lower level places while scaling works better for

places up in the hierarchy.

• The area of a place can indicate how a particular strategy performs at

a given level in the hierarchy. But it does not help to understand why a

particular method works better in a given area range.
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• The accuracy of an MBR generated by the probabilistic and hierarchical

approaches is directly dependent on the number of children. It also

depends on how the points are distributed.

• For places with a large number of children (e.g. child count greater

than 553 as seen in Geo-140) such as a province, a capital city, or a

district, our probabilistic approach estimates a better MBR (more than

33% improvement as compared to the baseline). On the other hand,

if a place contains a very large number of children (e.g. child count

of order 105), the hierarchical approach generates an accurate MBR.

However, such places are less frequent in a gazetteer as they usually

represent a country or a territory. Finally, for a place with less number

of children, an MBR constructed using heuristic methods represents a

better abstraction of the geographical scope of a place.

5.2 Effectiveness of an MBR

Effectiveness of an MBR is measured in terms of its usability in some of the

applications discussed in chapter 4. In this section, we present our evaluation

setup and results on two applications: gazetteer refinement and enrichment.

5.2.1 Gazetteer Refinement

Our approach for refining a hierarchy requires as input (1) the spatial hierar-

chy expressed in a gazetteer, and (2) the MBR of the places. Each node in a

hierarchy is checked for a valid parent-child relationship based on the contain-

ment relationship between their MBRs, and if a node is positioned incorrectly,

then it is moved as per the two operations introduced in Section 4.1.

DataSet: The dataset used was GeoNames with its spatial hierarchy con-

structed as discussed in Section 5.1.2. We queried for places in GeoNames

having at least one child location and retrieved a total of 16,120 places. Out

of these 16,120 places, we filtered places which have no geographic extent due

to duplicate coordinates and this reduced the number of places to 14,635.
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Furthermore, we extracted a list of places along with their area from a pub-

lic domain site (in our case Wikipedia Infobox) and matched these places

with places in GeoNames based on both latitude/longitude and place name

and this returned 78,639 places. The intersection of the two aforementioned

sets gives 420 places that satisfy the applicable criteria of POM. Hence, we

constructed their MBRs using our probabilistic approach. For the remain-

ing places obtained earlier from GeoNames having at least one child location

(14,215 places), their MBR was constructed using our hierarchical approach.

For other set of places with no children but with area information i.e. 78,219

places, we obtained theirs MBRs using our geometric approach. In the end,

we had MBRs for 93,274 locations, and those MBRs were used to restructure

the hierarchy.

One point to observe here is that we used the area of each place, instead

of the area of MBR of the place; this is a more realistic setting since the MBR

area of a place is not available when the MBR is not known, whereas the area

of a place can be found easily in public domains.

Evaluation Measure: To evaluate the refined hierarchy, we obtained a ran-

dom sample of 100 places that were identified as inconsistent under Operation

1 and another 100 random sample of places that were moved deeper in the

hierarchy under Operation 2 (see Section 4.1). We manually verified the de-

tected inconsistencies and the moves using the information from Wikipedia

and Google Maps. More precisely, for Operation 1 we verified whether a place

which was identified as inconsistent was actually inconsistent and for Opera-

tion 2, we verified whether a location was part of another location. This was

done manually by looking into Wikipedia text or Google Maps.

Results and Discussions: The total number of places identified as wrongly

placed under Operation 1 was 67,820 while the total number of places moved

deeper in the hierarchy under Operation 2 was 2,081,709. It can be seen that

the number of locations to be moved deeper in the hierarchy is much higher

than the number of places found inconsistent under Operation 1. In the ab-

sence of a geographic scope, there are many places which are kept directly

below the root level. Furthermore, our evaluation result shows that 91% of
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places in our sample (91/100) are moved correctly down the hierarchy. This

provides a strong evidence in support of an accurate restructuring. For Oper-

ation 1, the fraction of places which were actually inconsistent was 3/100; this

empirically shows that the MBRs are robust enough to support the movement

of places deeper in the hierarchy (vertical movements) but inconsistent for

moving the nodes across the hierarchy (horizontal movements). The children

places which were identified as wrongly placed are often streams, forests or

places which lie near the geographical boundary of a parent. This is mainly

due to vague geographic scope of natural landscapes and mis-alignments of a

child MBR, which does not allow the MBR to fall completely under the parent

node.

5.2.2 Gazetteer Enrichment via Geotagging

In this experiment, we want to augment GeoNames with photos/videos from

Flickr by predicting the most likely MBR using the textual features such as

user tags. Once an MBR is predicted for an instance, the geo-coordinates of

the instance is obtained based on the geo-coordinates of the training instances

mapped to the predicted MBR, as explained in [43].

DataSet: The dataset used for training and testing was extracted from

the data provided in MediaEval Workshop 2016 for the ‘Placing task’, in

which the organizers extracted the train and testsets from a huge corpus

(YFCC100M) containing Flickr photos and videos. The extracted dataset

consisted of 5,016,634 locations for training and 500,000 locations for testing.

For each instance, title, description and user tags were preprocessed to remove

special characters and stopwords. Furthermore, the data was stemmed using

Snowball Stemmer[33]. The tag set for an instance consisted of the prepro-

cessed tags, if any. Otherwise, associated description and title were used as

tags. Instances which did not have any tags were removed. Thus, after pre-

processing, total training data consisted of 4,631,717 photos/videos while the

number of test instances remained the same.

To prepare the input for our experiment, we mapped each training instance

to an MBR; there were 52,294 MBRs each with at least one photo or video. As
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a baseline for comparison, we also divided the surface of earth into cells of size

0.3 degree latitude and longitude and mapped the training data to the cells;

there were 44,926 cells each with at least one training photo or video. The

reason for generating cells of size 0.3 degree was to keep the number of cells

comparable with the number of MBRs; otherwise an approach with large size

cells or MBRs is expected to perform better but is computationally expensive.

With this setup, we apply our approach, discussed in Section 4.2, to geotag

photos and videos using both MBRs and grid cells separately and compare

their error distance. The ground truth (i.e. geo-coordinates for test photos

and videos) were provided in the dataset.

Evaluation Measure: A predicted geo-coordinate for a photo or a video is

evaluated by calculating the Average Distance Error (ADE), defined as the

Haversine distance between the predicted coordinate and the true coordinate

of the photo or video. We also measured the prediction accuracy for MBRs

(and similarly for cells) defined as the ratio of the number of instances for

which a predicted MBR (cell) is the same as the true MBR (cell) to the total

number of instances in the testset.

Results and Discussions: The aim of our experiment is (1) to determine

how accurately a multimedia object is mapped to a gazetteer location using

MBRs, and (2) to study the impact of using MBRs instead of cells.

Our experiment gives an ADE of 2561.114 km for MBRs compared to

3039.674 km for cells, with a prediction accuracy of 41.23% for MBRs and

32.37% for cells. This clearly shows that geotagging using MBRs is more

accurate than the grid-based approach. The analysis of the results show two

major reasons for wrong MBR or cell prediction which leads to large distance

error; (1) There are several instances of photos or videos in the testset which

only contain tags which are general terms (e.g. ‘affect’, ‘ipad’) and they do

not carry any location-specific information. These tags can occur anywhere

on world map and therefore difficult to predict. (2) There are cells and MBRs

which are sparsely populated, i.e. they have very few users assigned (1 or 2).

Thus, even though there are several dense MBRs or cells containing multiple

tags of a test instance, a sparsely populated cell or MBR is predicted as best
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cell or MBR for the test instance. This is because such cells and MBRs have a

very few users assigned as compared to populated cells or MBRs which have a

number of users in the range of 105. Also, such cases are seen more often with

cells since cells are created randomly without any knowledge of geographical

scope of locations.

5.2.3 Summary of the Results

The conclusions drawn from the experiment in this section can be summarized

as follows:

• Publicly managed gazetteers have places usually positioned directly un-

der a country or a province. In our experiment on hierarchy refinement,

we move more than 2M places down the hierarchy i.e. under a province,

district or a city, with an accuracy of 91%. This determines the effec-

tiveness of using MBRs in refining and maintaining a gazetteer.

• While our experiment shows promising results for vertical movement of

places, it does not work well in identifying inconsistent child locations.

Based on the empirical results, we find that the number of places to

be moved deeper in the hierarchy are much higher than the number of

inconsistent places in a gazetteer and our approach works far better in

the former case.

• MBRs also show a great potential in joining external data with a gazetteer.

This is shown by our experiment under gazetteer enrichment where

GeoNames is augmented with photos and videos from Flickr using MBRs.

• Our methodology to geotag a photo or a video using MBRs yields less

distance error as compared to a grid-based approach.
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Chapter 6

Conclusions and Future Work

Gazetteers play a major role in geographic information retrieval applications.

Hence, it is important to build gazetteers with high data quality standards and

develop strategies to identify and possibly fix the inconsistencies. Integrating

data from various sources often introduce some degree of anomalies and this

seems to hold true in case of gazetteers.

In this thesis, we present different strategies to create the bounding boxes

of places using the spatial hierarchy of a gazetteer and information such as

the area of places, which are available in public domains. Our contributions

include (1) strategies to construct an MBR of a place including a probabilistic

optimization model and a few heuristic methods, and (2) an extensive evalu-

ation of our strategies.

Our experimental evaluation on two different gazetteers and on multiple

different testsets reveal that our probabilistic model captures the inconsisten-

cies accurately, which results in a significant improvement (more than 33%)

over the baseline. Furthermore our evaluation shows that our POM-based ap-

proach works best for places at district, provinces or higher level whereas our

geometric and heuristic approaches can be employed for places without enough

coverage in a gazetteer. Usually these places are sparsely populated regions

such as localities, villages and points of interests positioned at the lower levels

of the spatial hierarchy. Our experimental analysis shows that the number of

child locations and its distribution are the most important factor in estimating

an accurate MBR.
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We also demonstrate the effectiveness of MBRs in both gazetteer refine-

ment and gazetteer enrichment. A gazetteer refinement is done by restructur-

ing the spatial hierarchy based on the containment relationship between MBRs

of the places. Gazetteer enrichment is achieved through geotagging, where we

build a probabilistic language model to geotag images and videos from Flickr

using MBRs. Experimental analysis in this thesis shows that our MBRs are

accurate for moving places deeper in the hierarchy but not accurate in moving

places across siblings in the spatial hierarchy. The results of geotagging shows

that our methods outperform grid based approach in terms of average distance

error. We also provide a set of topological constraints based on MBRs that

can be used to prevent dirty updates to gazetteers.

As possible directions for future research, one can improve on the accuracy

of bounding boxes using local features such as landscape of places in close

proximity, population density, etc. A limitation of our probabilistic model is

that it is not applicable when the area of a childrenMBR is smaller than a given

area. Also, as seen in our experimental results, our heuristic approach which

remove outliers, does not work well when the center of a place is away from

its child locations. These are some areas to improve the models or to build

better models. Additionally, we believe that using other information such as

location specific tags, geotagged images from location aware websites can fur-

ther help in constructing robust bounding boxes and a better spatial hierarchy.
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