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ABSTRACT

The behavior of thin steel cylinders under transverse
shear is investigated using a 16-node three dimensional
degenerated plate shell element in the context of the
nonlinear finite element analysis program NISA80, with an
elastic-perfectly plastic material model.

The analysis is carried out along the prebuckling and
the postbuckling equilibrium paths for cylinders with
initial measured imperfections, initial residual stresses
due to longitudinal seam weld shrinkage and initial
locked-in stresses due to the cold‘forming.

The presence of an ultimate strength plastic mechanism
in the postbuckling range is investigated. The ultimate
strength mechanism is analogous to a truss panel with the
diagonal fully yielded. The top and bottom parts of the
cylinder are the chords of the truss panel and the tension
field is the diagonal. An analytical theory for the tension
field contribution to the total shear is developed. An upper
and a lower bound are defined for the extent of the
development of the tension field on the chinder under
transverse shear as well as the éffectAof cross bending

moments within the buckles.
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1. Introduction

1.1 Background

The use of fabricated thin walled tubular steel members
and structures is growing in civil engineering applications.-
Structural specifications do not give complete design
information on the buckling of these members. This study
focuses on one particular aspect which is the behavior of
these shell structures under transverse shear. Tests on the
shear behavior of large diameter fabricated steel tubes were
carried out by Bailey and Kulak(1984). Numerical
investigation of the behavior of cylinders under transverse
shear was initiated by Mok and Elwi(1986). The study
reported, herein, is a continuation of the numerical
investigation. This phase focuses on the effects of the
measured imperfections, residual stresses and locked-in
stresses on the critical loads and on the response of the

shell in the pre- and postbuckling ranges.

1.2 Stability Concepts of Shells

Since the 1800's a large effort has been dedicated to
the study of thin cylindrical shells. Lorentz(1911)
presented a solution for axially loaded cylinders. Southwell
(1913) and Von Mises(1914) published solutions for buckling
of cylinders under uniform lateral pressure. In 1932, Flugge
developed a treatment of cylindrical shells under axial

loading, pure bending and combined loading. Response to



torsion was studied by Schwerrin (1925) and Donnell(1833),

Bushnell(1985) gives an extended description of the
instabilty phenomena related to shells. A general feature of
thin shells is that because of the curvature,'the membrane
stiffness is much larger than the bending stiffness. Shell
action implies that most of the strain is due to membrane
compression. Shell failure by buckling is attributed to loss
of membrane carrying capacity. The process results in large
deflection patterns called buckling configurations.

The behavior of a structure is well described by the
load-deflection plots which are obtained by increasing the
external load slowly from zero. Each point represents an
equilibrium configuration of the structure. Load deflection
plots are representations of the stucture's equilibrium
path, Fig. 1.1. The point on the equilibrium path at which
the load is a relative maximum is a limit point and the
point at which two or more equilibrium paths intersect is
called a bifurcation point.

At early stages of loading a geometrically perfect
structure is in a prebuckled state of equilibrium
characterized by a single primary path on a load
displacement plot (Fig. 1.1b). With the increase of loading
the structure reaches a bifurcation point after which it
follows the secondary path because the primary path is no
longer stable. The nature of the equilibrium on the
secondary path is described by the stiffness. Depending upon

whether the stiffness is positive or negative the equilbrium



1s stable or unstable, respectively, and if the stiffness is
zero the equilibrium is neutral.

Prior to and at bifurcation the displacements are
relatively small and a theory based on infinitesimal
displacements is usually appropriate to predict the behavior
up to and including the bifurcation point.

If the primary equilibrium path reaches a relative
maximum before a secondary path is intersected one can say
that the structure is at the limit point corresponding to a
limit load, Fig. 1.1a. After the limit load is reached the
structural deformation involves finite displacements. In
this case, only a large displacement theory is able to
describe the equilibrium on the postbuckling path. The
possibility of bifurcation from a nonlinear primary path is
not excluded (Fig. 1.1a).

Having defined the concepts of equilibrium path,
bifurcation points and limit points one can define the
critical load as the smallest load on the primary
equilibrium path at which the equilibrium of the structure

fails to be stable.

1.2.1 Behavior of Perfect Shells

Von Karman and Tsien (1941) described the behavior of
an axially loaded perfect cylinder (Fig. 1.2). When the
axial load P increases gradually from zero the equilibrium
path follows a straight line, At load level P, of Fig. 1.2,

the elastic buckling load is reached and an adjacent



equilibrium configuration exists with infinitesimal lateral
deflections but with the same end shortening. However, for
smaller postbuckling loads there exists an elastic
equilibrium configuration involving finite lateral
deflections. In the deflected configuration the total
potential energy of the shell can be smaller than that in
the undeflected configufation. The equilibrium of the shell
is highly unstable and small perturbations can cause the
shell to change into a configuration of lower energy (Flugge
1973).

Brush and Almroth (1975) affirmed that the equilibium
path for an axially compressed cylinder (Fig. 1.2) is
similar for other methods of loading, namely, torsion,

uniform lateral pressure, and hydrostatic pressure.

1.2.2 Behavior of Imperfect Shell

Imperfect shells are those with small deviations from
the assumed initial shape. Brush and Almroth (1975) state
the following characteristics of loaded cylindrical shells:

1. The limit load represents the ultimate strength of the
structure.

2. The limit load of the imperfect shell may be
substantially lower than the bifurcation point load of
the perfect one.

These characteristics, shown in Fig. 1.2 are applicable to

different loading models, namgly, axial compression,

torsion, uniform lateral pressure, and hydrostatic pressure.



In general, whether the limit load of the imperfect
structure is close to the bifurcation load of the perfect
structure depends on the shape of the secondary equilibrium
path and the magnitude of the imperfections (Brush and
Almroth 1975).

Bushnell (1985) also maintains that in the case of a
real (imperfect) structure, there is no such thing as
bifurcation buckling. The actual structure follows a load

deflection path with a limit point (Fig. 1.2).

1.2.3 Pre- and Postbuckling States of Shells

Many shell - loading combinations are found to exhibit
a small displacement linear (or nearly linear) prebuckling
path. On this basis early theoretical studies treated the
buckling of these shells as a linear eigenvalue problem.
This analysis leads to the value P, of the Fig. 1.1b., The
value of P, is refered to as the classical buckling load.

Hutchinson and Koiter(1970) in their review of-buckling
theory have shown that the classical buckling load is a
reasonably good approximation of the load level at which an
imperfect structure begins to undergo significant buckling
deflection, only if the structure has a fully stable
postbuckling regime, Fig. 1.3b. Later work focused on
finding the minimum load in the buckled state on the
secondary path, Fig. 1.2, because this load was held to be
significant as a possible design load on the grounds that

the structure could always support at least this load and



that even imperfections would not reduce the buckling load
below this value. This concept is not universal because a
minimum may not exist (Hutchinson and Koiter 1970, Esslinger
and Geir 1975).

The buckling behavior of elasto - plastic structures
under loading is the result of a complex interaction between
geometric and material nonlinearities. Hutchinson and Koiter
(1970) published a survey related to the buckling analysis

in the elasto - plastic range.

1.2.4 Imperfection Sensitivity

Koiter (1945) explained the discrepancies between
experiments and theoretical predictions of the buckling load
by the introduction of the imperfections in the mathematical
buckling formulations. Perfect shell - loading combinations
having a linear elastic response and possessing a unigue
postbuckling path exhibit one of three types of initial
postbuckling behavior (Fig. 1.3). In Fig. 1.3 § represents a
measure of the buckling mode amplitude, t is the shell
thickness, and P., the classical buckling load. In the
symmetrical cases (a) and (b) the postbuckling response is
independent of the sign of the initial imperfections. Many
shell loading combinations pertain to this category. The
path AB can be represented in an asymptotic sense (%

approaches zero) by the series

—=1+a%+b(%)2+......., [1.1]



where "a" is a measure of asymmetric response, Fig. 1.3c.
For symmetric buckling behavior, where the sign of the

”

imperfections is of no importance, "a" is zero. The
coefficient "b" is a measure of imperfection sensitivity. If
"b" is positive, postbuckling behavior is stable, Fig. 1.3b.
If "b" is negative, postbuckling behavior is imperfection
sensitive, Fig. 1.3a. Koiter used the modal buckling shape,
with an amplitude &, to describe the imperfections. For this
description of the imperfection and for the symmetrical case
(a) of Fig. 1.3, Koiter derived the following asymptotic
relation (Brush and Almroth, 1975)
(1--?,—5)3/2=§%3‘/:T>’3—t-‘§—:- [1.2]

c

wvhere P, is the critical load, P, is the classical buckling
load, § is the amplitude of the imperfection, and, t is the
thickness of the shell.

Roiter showed that a value "b" approximately equal to
-1 simulates the experimental behavior of axially loaded
cylinders successfully. Therefore, it can be said that a
shell-loading combination having a value of "b" near -1.0
implies that it is as imperfection sensitive as the axially
loaded cylinder. It is recognized that the axially loaded
cylinder is a severe imperfection sensitive shell-loading

combination.



1.3 Behavior of thin Cylinders under Transverse Shear
The only theoretical bifurcation solution for curved
panels subjected to pure shear has been developed by Batdorf

et al (1947). The critical shear stress is given by
T, = Ky 7 [1.3]

where b is the axial or circumferential dimension of the
panel, t is the thickness and D is the classical flexural
plate stiffness per unit length. The parameter k, is a

buckling coefficient which Batdorf derived as
k, = £(2) [1.4]

where Z is a function dependent on the radius, thickness and
panel dimensions as well as Poisson's ratio of the cylinder
material. Batdorf's solution compares well with the
experimental work done by Chiarito (1945), Rafael (1943),
Rafael and Sandlin (1945), and Kuhn and Levin (1945). These
experiments were practically free of initial imperfections.
Lundquist (1932,1933,1935) conducted tests on thin
aluminum cylindrical shells under pure torsion, pure
bending, and combined transverse shear and bending. In his
study on combined transverse shear and bending, it is
assumed that ordinary beam theory applies. From pufely
physical considerations the shear and the moment relative to

the size of the cylinder was considered in the analysis of



the results. Lundquist has shown that for large values of ﬁ%
(3<§%<12), failure occurs in a bending buckling mode similar
to that of pure bending buckling mode, and the bending
strength approaches that of a cylinder of the same
dimensions in pure bending. For small values of %% (0<§%<2)
failure occurs in a shear buckling mode by the formation of
diagonal buckles on the sides of the cylinder. The size and
form of the buckles are the same with those buckles due to
pure torsion for a cylinder of the same dimension. At the
limit when %% approaches zero the calculated shear stress by
ordinary beam theory is approximately 1.25 times the
allowable shear stress in torsion. This is due to the
gradient effect present in transverse shear and absent in
torsional shear. For intermediate values of M/RV, there is a
transition from failure by bending to failure by shear
buckling that is accompanied by a reduction in strength.
Lundquist (1935) developed a design chart for the strength
of the thin - walled cylinders in combined transverse shear
and bending.

Schilling (1965) investigated a considerable number of
tubes under combined loading conditions. He suggested that
for elastic buckling, the critical shear stress in
transverse shear be taken as 1.25 times the critical shear
stress in pure torsion.

Yamaki et al (1979) conducted studies on the elastic

buckling loads of thin cylinders made of polyester sheets

loaded laterally as well as with internal pressures. The



10

load deflection curves showed shear bifurcation buckling,
followed by a drop in load and increased displacements. The
range of Batdorf's Z values for the test cylinders was
between 20 and 20,000. He suggested that a good
approximation to the maximum elastic critical shear stress
under lateral load would be the elastic critical stress

under torsion. The critical shear stress is given as

e, = 0.7 E (H)F (5" [1.5]
where E is Young's modulus, L is the panel length, and R and
t are the radius and thickness respectivelly.

Galletly and Blachut (1985) carried out investigations
of short thin cylindrical shells under lateral loading. They
reported that the plastic buckling load is not imperfection

sensitive. They suggested a critical plastic shear stress

(1 + (=22 )77 ©[1.6]

cr

To = Ty
where 7, is the shear yield stress and 7, is the critical
shear stress of a perfect cylinder in pure torsion given by
Eq. (1.5)

Bailey and Kulak (1984) tested two cylinders under
lateral loading. They reported the possibility of a
developed tension field similar to that developed by flat
plates in shear and suggested an approach similar to that of

Basler (1961) as well as the main frame for future
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developement of design specifications of cylinders under
lateral loading. The load deflection curves obtained show
the behavior of the impérfect shell. As a limit point is
reached the shell buckles, showing finite displacements.

Mok and Elwi (1986) carried out a numerical
investigation of thin cylinders under lateral loading with a
radius to thickness ratio equal to 250 and a length to
radius ratio equal to 2. The investigation was carried out
in the nonlinear range with various sizes of imperfections.
The imperfections were modeled using the first mode buckling
shape obtained for the perfect shell in shear.

The bifurcation buckling results are in good agreement
with the theoretical values obtained from Batdorf's graphs
for small sizes of the imperfections (1/100 of the thickness
of the shell). The linear buckling analysis carried out
parallel to the numerical analysis showed that it is a good
approximation for the bifurcation point. For bigger wvalues
of the imperfections the bifurcation load is smaller. In
this case the linear buckling analysis is not a good
approximation of the limit loads. In all cases with
different sizes of imperfections the structure showed
practically the same stiffness for the vertical displacement

of the top middle point of the cylinder.
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1.4 Statement of the Prbblem and Objectives

The numerical investigation of Elwi and Mok (1986) is
clearly limited to modelling the imperfections using
buckling modes of perfect shells. In addition the effects of
residual stresses are entirely neglected. There are two
types of residual sresses involved in these cylinders. The
first is the residual stress due to cold rolling while the
second is due to welding. Rolling stresses may or may not
result in yielding of the shell plate. The yielded stress
pattern may or may not be released before welding is
applied. If the former, a pattern of residual stresses is
developed. If the latter, the stress pattern is locked in.

There are, also, two types of welds, longitudinal seam welds

and cicumferential welds. Weld shrinkage and local heating

cause different patterns of residual stresses in the
neighbourhood of the weld seam.
The objectives of this study, then, are summarized as,

1. To study the influence of measured imperfections on the
transverse critical shear.

2. To investigate the influence of different residual
stress distributions combined with different degrees of
measured imperfection on the transverse critical shear.

3. To investigate the behavior of laterally loaded thin
cylinders beyond the critical load and to investigate
the existence and the developement of the tension fields

after buckling occcurs.
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2. Effect of Modelling Imperfections on Buckling and Limit

Loads

2.1 Introduction

There are different approaches in the implementation of
the initial imperfection in buckling analysis or nonlinear
analysis. Koiter (1945) used the first buckling mode shape
to model the imperfection in the mathematical model of
cylindrical shell buckling. The minimum eigenvalue obtained
is supposed to be an "upper bound" for the critical load
parameter.

Arbocz and Babcock (1976) used Fourier series
containing both axisymmetric and nonsymmetric components to
describe the measured imperfection. Their conclusion is that
using multimode analysis makes it possible to predict, with
a good approximation, the buckling load of axially
compressed cylinders.

Esslinger and Geir (1975) conducted experimenté on
cylinders loaded under external pressure. They identified
different postbuckling patterns of stable equilibrium by
inducing patterns with a smaller number of circumferential
waves. Concomitantly with finding different stable patterns
they found a minimum load in the postbuckling region,
smaller than that obtained spontaneously in experiments. The
theoretical development of these experiments has shown that
the buckling load obtained for a smaller number of

circumferential waves is bigger than that obtained for a

15
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higher number of circumferential waves. Their conclusion is
that cylinders with small imperfections buckle following the
postbuckling characteristics of a perfect cylinder, obtained
spontaneously, and cylinders with large imperfections buckle
following the postbuckling pattern of a perfect cylinder
with a smaller number of circumferential waves. In the case
of deep imperfections, it is possible not to get buckling at
all and the total load carrying capacity is determined by
the material yielding. Also in the postbuckling region the
deformations are so large that the initial imperfection is
negligible by comparison and the equilibrium path follows
the postbuckling path of the perfect cylinder.

Fersht (1974) used a random description of the small
initial imperfection in the buckling analysis of the axially
loaded cylinders.

Morton, et. al. (1979) performed experiments on spheres
under external pressure with different induced imperfection
shapes. Parallel to the experiment, a numerical analysis was
carried out. Three different types of imperfection described
as a local flat, increased radius, and a bulge were used.
The range of the ratio of the maximum imperfection to shell
thickness is large (up to 55). It was concluded that
Koiter's imperfection sensitivity equation (Eq 1.2) is good
enough to predict the buckling load well outside the
imperfection range of the shell thickness but only for flat
and increased radius types of imperfection. For the bulge

type of imperfection the values of the experimental buckling
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load cannot be explained by Koiter's treatment. The same
observation was made by Sabir (1964). The buckling loads are
lower than those predicted by Koiter's equation,
particularly for imperfection to thickness ratios under 10.
Although different meshes were tried it was not possible to
reproauce the experimental buckling loads for the bulge
imperfection shape.

One can infer that there may be other imperfection
shapes, different from the buckling shapes, able to give
lower buckling loads for the same imperfection to thickness
ratio.

In this study two types of analyses have been
attempted. The first is based on flute type imperfections
such as those that may result.from a rolling process. The
second is based on the actual imperfections measured by

‘Bailey and Kulak (1984).

2.2 Description of the Models

The geometry of the Bailey and Kulak (1984) first shear
test specimen forms the base of the analysis presented
herein and in subsequent chapters. The same overall geometry
formed the basis of series S (Mok and Elwi, 1986). The
models presented here are referred to as series SR. The
basic model simulates half of the test specimen and consists
of a cylinder formed by three cans. The shell is 808.5 mm
long and has a mﬁdsurface radiﬁs of 190 mm. Each model is

made up of two end portions and a test span. The test span
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is 0.76 mm thick and, consequently the radius to thickness
ratio is 250. The end portions are two times thicker than
the test span, see Fig. 2.1. The cylinder is fixed at the
left end. At the right end translations in the Z and X
directions are separately coupled to simulate a

gliding - fixed plane of symmetry condition. All other
degrees of freedom are free. At the loading edge the
displacements in the 2 direction are coupled to avoid the
distortion of the cylinder due to the concentrated loads.
The vertical external load is equally distributed to the
mesh nodes at the loading edge(Fig. 2.1).

The material considered is rolled sheet steel with an
elasticity modulus E = 204,400 MPa, a Poisson's ratio
v = 0.33, static yielding stress o, = 301 MPa and a thermal
expansion coefficient a = 11.7 X 1077/ °c.

The test series differ by the size and shape of the
imperfection. The imperfection used in this study is that
measured by Bailey and Kulak(1984) on the first shear
specimen. The test cylinder was rotated about the
longitudinal axis and, using a gauge installed on a fixed
straight channel, readings were taken along the arcs. The
arc distance was 37 mm, corresponding to an arc of 11.25
degrees and gave 32 radial measurements. These readings were
taken at 25 mm intervals along the length of the test spans,
except in the vicinity of the circumferential welds where
the readings were taken at a smaller distance. The

measurements were taken at 41 longitudinal arc locations
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giving a total of 1312 measurements of initial imperfection.
The finite element mesh used is a 6 X 6 nonuniform mesh
as shown in Fig. 2.1. The elements are 16 node Lagrangian 3D
degenerated shell elements (Ramm 1977). The numbering of the
elements and the nodes is given in a developed view of the
mesh, Fig. 2.2. The analysis shown in this chapter and in
subsequent chapters was carried oﬁt using the Program
NI S A (Ramm, 1977, Hafner et al, 1981, Stegmuller, 1984).
A brief description of the program and the solution strategy

adopted in this study are included in Appendix A.

2.3 Analysis with Flute Imperfections

First attempt to model the imperfections was to
consider the arc with the maximum radial deviation and
assign the same shape to all arcs. Thus the imperfection
takes the form of longitudinal flutes, superimposed on the
cylinder. The imperfeétion is scaled as a function of the
shell thickness.

First series of analyses are designated SR1, SR2 and
SR3, with the maximum size of the imperfection equal to
1/100 t, 1/10 t and t, where t is the shell thickness.

All three models have practically the same load
deflection curve and the same critical load in spite of the
different size of the imperfections (see Fig. 2.3). The
prebuckling path is linear up to 33.0 kN. The analysis of
the SR1 model was continued after reaching the critical load

and first plastifications occured in the elements located on
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the tension diagonal of the test span. A stable equilibrium
path in postbuckling at a lower load level was attained. In
far postbuckling range of the SR1 model an elastic unloading
to 17.45kN followed by a reloading on the same path was
obtained. The stiffness of the cylinder on this unloading
and reloading path is 5.78kN/mm. This value of the stiffness
is close to the stiffness value, 5.03kN/mm, obtained on the
ascending equilibrium path by Bailey and Kulak (1984) on
their first shear experiment. The buckling load calculated
at a low load level is a good approximation of the critical
load. Practically all the models behaved like perfect shells
showing no imperfection sensitivity for the range of the
flute imperfection less than or equal to the shell
thickness.

At a load level of 33.95 kN the cylinder buckles in a
shear mode shape.AThe buckling modal shape and the deformed
mesh are plotted in Fig. 2.4 a,b respectively. One can see
the configurations are similar showing a shear buckling mode
shape. The load level of 33.95 kN is the critical load
because the lateral displacements at the points located in
the buckled region have relatively large displacements for
small increases in the load level (Fig. 2.5) and the
equilibrium path at the loading edge shows an abrupt descent
(Fig. 2.3), indicating the incapacity of the structure to

sustain the load.



2.4 Analysis with Measured Imperfection

The data related to the imperfection are the data
obtained by Bailey and Kulak (1984) from the first shear
specimen. The following procedure was used to get the
average of the measurements along each arc. The average was
considered to be the perfect cylinder. The radial deviations
from the average were determined at each node of the mesh.
The mesh used to measure the imperfection was close to the
mesh used in the finite element analysis and the mapping did
not need interpolation. The average over the arcs only was
used to avoid the false imperfection which might be induced
by the nonparallelism of the test cylinder centerline and
the measuring datum. The resulting imperfect mesh is plotted
together with the perfect mesh at a magnified scale in
Fig. 2.6. The imperfection was scaled to give different
ratios of the maximum size of the radial deviation to the
shell thickness. Two analyses were carried out; the first
with small imperfections of the order of the shell
thickness, and the second has large imperfections of the

full magnitude of measured imperfections.

2.5 Small Measured Imperfection Analysis

The model used in this analysis is refered to
hereinafter as SR4 and the size of the scaled imperfection
is one times the thickness of the thinner part of the
cylinder. The load response is practically linear up to

32.0 kN as one can see in Fig. 2.7., reaching the critical
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load at 33.18 kN and following a sharp descending path
thereafter. At the maximum load the cylinder fails in a
shear buckling mode. The presence of buckling can be seen
also in Fig. 2.8 which shows the lateral (Y) displacement
versus load of the points located in the buckled area. The
displacements at the maximum load show a jump and are
considerably larger than the previous displacements. The
loading was continued beyond 33.18 kN when first
plastifications appeared on the elements located on the test
span diagonal and the lateral displacements in this region
showed that buckling took place. Maximum load attained at
33.18 kKN is smaller than that of the model SR1 due to the
shape of the imperfection used in the model SR4. The
deflected shape at maximum load is similar to the modal
shape obtained by buckling analysis at the load levels
3,02 kN and 15.10 kN, as one can see in Fig. 2.9.

No bending compreséion buckles were noticed at the top

of the cylinder in the compression areas.

2.6 Large Measured Imperfection Analysis

Model SR5, used in this analysis, contains the full
size measured imperfection. The maximum deviation from the
perfect cylinder is 6.5 times the cylinder thickness.

The load response is practically linear up to 25.0 kN.
Maximum attained load level is 29.61 kN (see Fig. 2.10). At
29.61 kN buckling takes place and is associated with the

first plastifications on the elements located on the main
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diagonal of the thinner cylinder.

The numerical analysis was carried out further in the
postbuckling range. A significant stress redistribution
takes place concomitant with a reduction in the external
load and an increase in vertical and lateral displacements.
After buckle formation on the lateral side of the test span
the tensioned membrane diminishes in area, because the
valleys of the buckles move inwards and shorten, thereby
unloading the tensile stresses.

In Figs. 2.11 to 2.14 one can see from the shape of the
equilibrium paths and from the size of the deflections at
some nodal points on the side of the test span that buckling
takes place. The most representative is the equilibrium path
of node 217 which is similar in shape to the dotted line of
Fig. 1.1a.

Another area of interest is the compressed top part of
the shell as a result of bending. By plotting the
equilibrium path of the points located in that area oné can
find out if bending buckling is present from the relative
displacements of the points. In Fig. 2.15 one can see that
bending buckling starts developing well in the postbuckling
branch. There is a clear trend of moving up and down for the
points in the compressed area.

The deflected shapes and the buckling modes on the
prebuckling equilibrium path are plotted in Fig. 2.16.

The similarity of shapes between the buckling mode and the

deformed shape at the critical load can be easily seen.



24

In the postbuckling branch the lateral deflection
increases much faster than the vertical deflection at the
top middle point of the cylinder. The deformed meshes look
almost identical to those obtained for the buckling mode
shape in the analysis carried out on the prebuckling branch

(Fig. 2.17).
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ELEMENT AND NODE NUMBERING
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Figure 2.2 Element and Node Numbering for the SR Models
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Figure 2.6 Perfect and Measured Imperfect Meshes
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3. Effect of Cold Forming

3.1 Introduction

Cold forming is possible only with plastic or
elasto-plastic materials. Lay (1982) gives indications and
examples related to the evaluation of residual stresses
resulting from cold rolling used in pipe manufacturing. Chen
and Han (1985) present distributions of residual stresses
caused by longitudinal welds and cold bending used to
fabricate tubular columns. Their results were used in an
investigation of the behavior of fabricated tubes under
axial forces and bending moments.

Queener and De Angelis (1968) and Bushnell (1985) show
analytical techniques to calculate the radius of bending of
a flat sheet metal to get a final cylinder of a particular
radius. Concomitantly, the evaluation of the residual stress
distribution over the thickness and how these results are
used in computer programs to evaluate the buckling loads are
also given.

It was determined that bending residual stresses have
the greatest weakening effect for cylindrical shells in
which the effective stress is close to the proportional
limit. The reduction in the buckling load could be over 30%
(Bushnell 1985).

Cold forming creates a permanent strain field
distributed over the structure. In this chapter the cold

forming process, used to manufacture the cylinder under

37
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consideration, is simulated by using suitable temperature
gradients across the cylinder thickness. Model SR5TS used in
-this analysis has the geometry, mesh, boundary conditions
and external load described in Section 2.2 for the SR

series. It also has the full imperfection of model SRS5.

3.2 Cold Forming Stresses

For a tube with a thickness t and radius R , an element
on the surface of the tube has the local directions s and r
shown in Fig. 3.1,

Bending of a flat plate to form a cylinder introduces a

strain gradient in the s direction such that

€, = g, [3.1]
t

esmax = _Z—R" [3'2]

€, = - V €, [3.3]

Eq. 3.3 implies that as the plate is bent to form a circle,
a curvature is developed in thebr direction if the plate is
narrow (Fig. 3.2).

But if the plate is wide enough, a state of plain
strain is enforced in the r direction. Therefore, barring
some end effects, suppression of the longitudinal strain,

e, results in longitudinally constant self-equilibrating

r?

moments.
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The values of the stress are derived from a yield

condition. Assuming a von Mises yield condition,

o§+02-oo=o [3.4]

E

05 = eSY 1 _ Vz [3.5]
_ E
0!‘ = p Gsy - vz [3.6]
in which e,, is the yield strain in the s direction.
Substituting for o, and for o, from Egs. 3.5 and 3.6,
Eg. 3.4 is written as
1 2 2 2 2 2 2 2 2
(1—_1}—2)2 (esyE v oe, BT - esyE) =0, [{3.7]
or,
gy 2 2y-1/2

ey = (1 = 27) (1 = » + ) , [3.8]
and,
Ogy = Oy (1 - » + Vz)-‘/z, [3.9]
g, =vo, (1 - »p + Vz)-‘/z, [3.10]



40

0. are the stresses in the circumferential and

where o0,,, 0y

longitudinal directions respectively at yield, o, is the
uniaxial yielding stress, e is the value of
circumferential strain at yield, v is Poisson's ratio, and E
is Young's modulus. It is important to note that o, and o,
(Egqs. 3.5, 3.6) have the same sign.

For the material used in the SR models (having
E = 204,400 MPa, o, = 301 MPa and » = 0.33), the yield

strain, e equals 0.001486.

sy’
The stresses which would be achieved if a springback is
not allowed and, consequently there is a locked - in state

of stress in the tube, are

341.1 MPa

Q
H

sy
112.5 MPa

Q
1]

ry

For a plate with t = 0.76 mm, and R = 190 mm, the maximum
circumferential strain e , equals 0.002. The stress énd
strain distributions are those shown in Fig. 3.3, second
row. The values of M, and M, calculated using these
distributions are 13.3 N.mm/mm and 40.2 N.mm/mm,
respectively, where M, is the edge moment used to induce the
curvature, Fig. 3.1, and M, are longitudinal internal
moments resulting from suppressing e, gradient. For a plate
with t = 1.52 mm, and R = 190 mm, the maximum
circumferential strain is 0.004, and the stress and strain

distributions are those shown in Fig. 3.3, first row. The
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calculated values for M, and M, are 62.0 N.mm/mm and
188.0 N.mm/mm. These values are summarized in Table 3.1.

In the manufacturing process of cold formed tubes the
plates are cold bent using rollers at a smaller radius than
the desired radius, and, then, are allowed to springback.
This procedure is repeated until the desired cylinder radius
is obtained after springback. It is assumed that this
procedure has been used in the manufacturing process of the
Bailey and Kulak(1984) first shear specimen and the
following development is restricted to this specimen which
has the same geometry as the SR series.

Queener and De Angelis (1968) show how to calculate the
bending radius of sheet metal to get a desired cylinder

radius after springback. According to their formula,

R, = ' T Bz () U () }ox
3(1‘V2)3+n _ (1‘V2)3
{(2+n)(3/4)(1+n)/2(1_p+y2)(2+n)/2 - (1-V+v2)3/2 } [3.1‘]]

where R, is the die radius plus half-thickness of sheet, R,
is the radius of curvature of sheet mid-section after
springback, t is the thickness of sheet, E is the elasticity
modulus, » is Poisson's ratio (elastic case), and K, n are
empirical constants in the power law relationship between
the true stress and the true strain in a simple tension test
(stress=K(strain)"), for a 1.52 mm thick plate and for a

0.76 mm thick plate, (made of steel with the material
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characteristics previously described, and K=341.1 MPa, and
n=0.08) the necessary bending radii are 135 mm and 84 mm,
respectively.

The elastic springback moment for the thick plate is 8
times bigger than that of the thin plate and, therefore, one
can consider that the thin part plate follows the
displacements of the thick part plate. In this situation the
welded plate, composed of both the thick and thin parts, is
bent to a radius equal to 134 mm and allowed to freely
springback to the desired radius equal to 190 mm.

For the thick part the strain and stress distribution
(in the condition of plain strain problem) are those shown
in Fig. 3.4a,b,c, first row. The maximum moment needed to
bend the thick plate at a radius equal to 134 mm is equal to
192.47 N.mm/mm based on the stress distribution of
Fig. 3.4b, first row. The springback is equivalent to the
action of an egual and opposite bending moment and the
residual stress distribution (Fig. 3.4e, first row) is that
obtained by superposition of the stresses of Figs. 3.4b and
d, first row.

The stresses due to the springback moment are
calculated using the elementary elastic plate theory.
According to the elementary plate theory (plain strain
problem, Timoshenko and Woinowsky (1959)) the bending moment

is

M=2 —E— (37 [3.12]
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where E is Young's modulus, v is Poisson's ratio, R is the
bending radius and t is the plate thickness. Consequently

the maximum elastic stress due to this moment is

max =%Tt/MT)2 [3.13]
where M is the elastic bending moment and t is the plate
thickness. Using this eguation one may obtain the
distribution shown in Fig. 3.4d, first row. Adding the
stress diagram due to rolling and that due to springback,
the residual stress distributions of Fig 3.4e, first row are
obtained.

The thin part is bent at the same radius, 134 mm, which
is larger than the radius of 84 mm needed to get free
springback at the 190 mm radius. For this case the stress
and strain distributions before springback are those shown
in Fig. 3.4a,b,c, secohd row. The back movement from a
radius equal to 134 mm to a radius equal to 190 mm éives a
strain variation Ae shown in Fig. 3.4d, second row. By
superposition of the stresses of Figs.3.4b and 3.4e, second
row, the locked-in stress distribution of Fig. 3.4f, second
row, is obtained. Since the bound of the behavior of the
cylinder is provided by the thin part and because the
difference between the partially released stresses of
Figs. 3.4f and g, second row and the locked-in stresses of
Figs. 3.3c and d, second row, it was decided to simulate the

more severe case of Figs. 3.3c and d.
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In the analysis of the model SR5TS only the locked-in
state of stress was considered together with an imperfection
equal to 6.5 times the shell thickness (equal to the
measured imperfections). This initial state of stress was
simulated using a temperature distribution which is active
only in the s direction, has a linear gradient across the
thickness t, and is constant along the r difection of the
tube.

Using Eq. 3.2, one can derive the value of the max imum
strain to be achieved in a cylinder over the circumferential
direction, s, when a flat plate is transformed to a cylinder
of radius R, without springback. For the thin part
(thickness t = 0.76 mm) and for the thick part (thickness
t = 1.52 mm) the values for the maximum strains, using a
radius, R, of 190.00 mm, are 0.002 and 0.004, respectively.
These values are considerably larger than the yield strain

€ Consequently, for the expansion coefficient of steel

sy*
a = 11.7 X 107 / °C, the maximum temperatures needed to
simulate the initial strains are 171 % and 342 °C for the
thin part and for the thick parts, respectively. The
temperature distribution gradients used are described in
Fig. 3.5 both for the thin and for the thick tube parts.

In Fig. 3.6 are shown the locked-in stress distribution
of Fig 3.3c, second row, the obtained initial stress
distribution using NISA80 with temperature gradient alone,

and the locked-in stress distribution obtained in the thin

part as a result of the forming process of the cylinder with
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both the thick and the thin plates welded together before

rolling, and with free springback.

3.3 Analysis with Locked - in Transversal Stresses and Full

Imperfections |

Model SR5TS used in this analysis contains full size
measured imperfections (6.5 times the thickness) and a
locked - in transverse stress distribution due to cold
rolling without springback allowed (Fig. 3.3). Due to cold
forming, 62.8% and 25.8% of the shell thickness is
plaétified in the thick and in the thin parts, respectively.
These locked-in transverse stresses were obtained by using
the temperature distribution shown in Fig. 3.5 in an initial
step without any external load. After the locked - in state
of stress of Fig. 3.3c,d was obtained, the process of
loading with external forces was started.

The loading response is linear up to 9 kN, as one can
see in Fig. 3.7 where the load deflection curve is plotted
for node 58 located at the top of the loading edge. An
important reduction in stiffness takes place above 18.73 kN
and the structure attains its critical load at 19.80 kN. At
this level of loading the structure buckles in a shear mode
as one can see in the deformed mesh plots of Fig. 3.8. The
deformed mesh in the postbuckling range is shown in
Fig. 3.9. Along the postbuckling path the buckles

increasingly deepen.
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In the postbuckling range the lateral displacements
increase at a larger rate than the vertical displacement at
the loading edge and the level of tensile principal stresses
in the thin test span increases at some Gaussian points in
spite of the reduced external load level. This aspect is
fully discused in chapter 5.

At a very small load level local unloading and
increasing strains are observed at many Gaussian points.
With the increase of the load level, the degree of
plastification increases at many Gaussian points. It is
interesting to note that full plastification is attained
only in the postbuckling range in elements located on the
diagonals of the thin shell both in tension and compression.

Lateral displacements in the shear buckled area plotted
in Fig. 3.10 to 3.12, show that buckling takes place. The
most representative plot is the lateral displacement (the
amplitude of a buckle) at node 217 which is very similar to
the buckling path for imperfect structures plotted in
Fig. 1.3a.

The top compressed area was investigated to see the
presence of the bending buckles (compression buckles). The
plots of Fig. 3.13 show the start of the development of the
compression buckles in the postbuckling range. This is
inferred from the fact that the points in a small area have
up and down relative displacements.

The load deflection path in the postbuckling range

(Fig. 3.7), shows a constant load at a lower level. A very



small relative increase in load was noted in the

postbuckling range.
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Figure 3.1 Coordinate Description for a Surface Element

i s

Figure 3.2 Coordinate Description and Strain Distribution
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Figure 3.5 Temperature Gradients used in Model SRS5TS

[
E
E ]
- o
: ~
o g ~ §
o| o|o
! - Yy_yv - _ ) .
\ Legend
e - = = Obtained with Nisa 85
£ 4 —.e=-= QObtained analytically for
@ /. | Ro= 190 mm
o d Obtained analytically with
- Ro= 134 mm and M
[] to R =190 mm

Figure 3.6 Stress Distribution in the Thin Cylinder
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Def. Shape at 18.73kN

Magn Factor=50

Def. Shape at 19.80kN

Magn Factor=50

Figure 3.8 Deformed Meshes at Different Load Levels on the

Prebuckling Path of the Model SR5TS
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Def. Shape at 18.70kN
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Figure 3.9 Deformed Meshes in

Model SR5TS
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4, Effect of Weld Residual Stresses

4.1 Introduction

Residual stresses are induced in fabricated steel
structures by various causes such as welding, cold forming,
machining, local heating, and differential cooling after hot
rolling.

Strong variable temperature gradients induced in
structures and plasticity of the materials are the cause of
residual stresses due to welding. Masubuchi (1980) published
an ample survey related to the residual stresses induced by
welding. He described several analytical and experimental
procedures to evaluate the residual stress patterns. The
results presented by Masubuchi (1980) are generally obtained
by using sophisticated programs and a good experimental data
base.

For a reliable analysis of residual stresses and
distortion in welds, Masubuchi suggests the following steps
in analysis:

1. Heat flow analysis,

2. Analysis of transient thermal stresses during welding,

3. Determination of the incompatible strains after the
weldments cool to the initial temperature,

4. Determination of the residual stresses and distortion
due to the enforcement of strain compatibility. The
incompatible strains are confined to small regions near

the weld zone. Therefore, using simple distributions of
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incompatible strains may provide reasonably-accurate
results (Masubuchi 1960, 1980).

The welds used in the fabrication of the cylinders are
longitudinal and cicumferential. Weld shrinkage gives a
tensile stress equal or close to the yield stress in the
weld and in a small area of the base metal, and compressive
stresses over the rest of the cross section,

Bushnell (1985) states that the residual stresses due
to circumferential shrinkage are able to reduce the buckling
load by about 10%. An explanation is that the
circumferential weld induces an axisymmetric imperfection
besides the initial stress.

Model SR6LS used in this analysis has the geometry,
boundary conditions, and the external load of series SR,
described in Section 2.2. The mesh is also 6 X 6, but
irregular in both the x and z directions. In the x direction
the mesh has the same pattern of the SR series, but in the z
direction it has the pattern shown in Fig. 4.2. A narrow row
of elements was used at the top cylinder to allow describing
of the tension yield stress in the longitudinal weld and the
adjacent base metal. The model contains also the full

imperfection of model SR5.

4.2 Longitudinal Welding Residual Stresses
Masubuchi (1960) described the procedure used to derive
the residual stresses due to welding shrinkage. The core of

this procedure is to approximate the distribution of the
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incompatible strains produced in a region near the weld due
to the weld shrinkage.

Model SR6LS considered in this analysis has a
longitudinal seam at the top meridian. The width of the
affected zone, where there is yield in weld and base metal,
is found to be 0.13 R, where R is the tube radius, according
to the plot of Fig. 2.15 of Chen and Han (1985). Nagaraja
and Tall (1961) conducted experiments on the residual stress
in welded plates. According to their findings for a steel
plate having a thickness of 6 mm the width of the yielded
zone along the welding is approximately 25 mm.

It is assumed in this study that considering an
incompatible longitudinal strain over this width is close to
the real conditions. Consequently, a constant distribution
of the incompatible strain was considered along the s
direction on a width equal to 25.4 mm.

Once more this is a plain strain problem. Therefore, to
have yielding in the weld and adjacent base metal it is
necessary to consider a yield strain value of 0.001486 as
given by Eg. 3.8. Fig. 4.1 shows the assumed distribution of
the incompatible strain.

According to Masubuchi (1960) the residual stress can

be obtained using the equation

a=-Ee+Iz+; [4.1]

in which x, y, and z are the global axes, o, is the residual
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stress, E is the Young's modulus, e; is the incompatible
strain in the x direction, A is the cross sectional area, I,
is the moment of inertia of the section around the neutral

axis, P: is the apparent shrinkage force given by
P, = /I E e, dy dz , [4.2]

and M; is the apparent shrinkage moment given by

*

My = /{ E e, 2 dy dz [4.3]

For the thick part of the cylinder (for half the section)
the area, A, equals 911 mm’ and the moment of inertia, I,
equals 16,574 X 10° mm*.

Using all the above data and eguations one obtains the
residual stress distribution of Fig. 4.1. These initial
residual stresses were implemented in the calculation using
initial strains due to a constant unidirectional temperature
along the r direction and a stepped variation along the s
direction as can be seen in Fig. 4.2.

The numerical analysis gives the residual stress
distribution shown in Fig. 4.3 for the thin part as well as
for the thick part. It can be seen that there is a good
correlation between the analytical and numerical

distributions, especially in the thin part of the cylinder

which is of interest in the analysis.
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4.3 Analysis with Longitudinal Residual Stresses and Full

Imperfections

Model SR6LS used in this analysis contains full size
measured imperfections and a longitudinal residual stress
induced by the longitudinal weld shrinkage. The distribution
of the residual stress is shown in Fig. 4.2 together with
the temperature distribution used to simulate the
longitudinal residual stress in the cylinder. The first run,
with only longitudinal temperature, resulted in the stress
distribution in the cylinder shown in Fig. 4.3. It is noted
that the magnitude of the displacements due to the
temperature distribution is of the order of the shell
thickness and that the initial imperfection pattern was
changed. The stress distribution obtained by numerical
analysis is close to that obtained analytically (Fig. 4.2).
The external load was then applied and the attained critical
load was 31.83 kN, which is bigger than the critical load of
model SR5, which has only the full imperfection. This is due
to the change in the initial imperfection distribution
caused by the assumed temperature distribution. The
equilibrium path of the top loading edge (node 58) is
practically linear up to 31.0 kN (Fig. 4.4) in spite of the
first plastification appearance at 29.61 kN load level, on
one of the diagonal elements.

A buckling analysis carried out at an advanced load
level (18 kN) gave a buckling load equal to 28.28 kN, which

is lower than the achieved critical load (31.83 kN). This
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reduction in the calculated buckling load is due to the
residual stress and the initial imperfection. The structure
was able to carry a larger load than the buckling load,
though. The buckling shape (Fig. 4.5) shows a failure by
local bending buckling at the middle top of the test
cylinder. In spite of this predicted failure mechanism the
deformed shape at the critical load (Fig. 4.5) shows a
failure by shear buckling, which is more emphasized in the
postbuckling range (Fig. 4.6). The lateral displacements in
the shear buckling zone show clearly that buckling takes
place, especially the equilibrium path of node 219

(Figs. 4.7 and 4.8).

The equilibrium paths of the top nodes are shown in
Figs. 4.9 to 4.12, These figures show the vertical
displacements of the nodes at top of the cylinder and at
successive longitudinal rows. Because of the absence of a
clear wave formation with inward and outward motion one can
infer that local bending buckling does not take plaéé. This
may be explained by the high level of tension stress induced
by the weld shrinkage in this area, which allows a higher
level of loading in compression due to the external loading
and consequently postpones the bending buckling to a higher

level of deformation in the postbuckling range.
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4.4 Circumferential Welding Residual Stresses

The weld shrinkage is thought in literature to be
around two times the yielding strain (Lay, 1982). Unlike the
case of longitudinal shrinkage the resistance of the
cylinder to circumferential shrinkage is small. In this
situation, larger initial axisymmetrical deformations can be
expected with their conseguences on the critical load level.
The same approach used for longitudinal welds can be
applied. A constant unidirectional negative temperature
(constant over the thickness) over the s direction would be
able to simulate the circumferential weld shrinkage. This

feature was not investigated in this study.
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Figure 4.5 Deformed Shapes and Buckling Modes of Model SR6LS

on the Prebuckling Path
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5. Discussion

5.1 Introduction
In this study, the effect of measured imperfections on
the shear response of large diameter steel cylinders has
been investigated by itself as well as in the presence of
cold bend fabrication stresses and longitudinal seam weld
residual stresses. In all cases it was found that shear
buckling occurs followed by sharp unlcading, except in the
case of cold bend locked-in stresses; model SRS5TS,
section 3.3. The postbuckling behavior, however, for all
models is characterized by a load deformation response which
maintains a constant load at large deformations; three or
four times the buckling deformation.
Determination of the postbuckling stable locad level and
its carrying mechanism is important for design purposes as
well as for determination of the ultimate failure
mechanisms.
Bailey and Kulak (1984) suggested the presence of a
tension field in cylinders under transverse shear in the
postbuckling range provided the following assumptions hold:
1. The longitudinal stress in the tension field is that
corresponding to the stress at which the cylinder would
buckle in flexure.

2. The angle of the tension field inclination is found
using plate girder equations.

3. The shape of the tension strips is assumed to be
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elliptical.
4. The stress in the tension field strips is constant.

They considered a continuum tension field, and using
Basler's hypotheses (Basler, 1961) and procedures, an
expression for the angle of the tension field was obtained.

Elwi and Mok (1986) carried out an investigation of the
tension field development using the available data from
prebuckling analyses of the cylinders under shear. Their
develcpment is based on Basler's hypotheses and procedures,
considering an elliptic shape for the continuum tension
field strips. They obtained an expression for the allowable
tension stress in the tension field, based on the von Mises'
yield criterion, and the critical shear expression given by
Batdorf(1947). Their process is not unlike that of Bailey
and Kulak (1984).

In this chapter a similar approach is developed but
based on slightly different assumptions, and on postbuckling

behavior of the cylinders under shear.

5.2 Summary of the Behavior of the Cylinders under Shear
The dominant features of the behavior of the cylinders
under transverse shear based on the numerical analyses of
the SR models, described in detail in chapters 2,3, and 4,
are summarized in the following.
The stiffness of the prebuckling paths for all models,
regardless of the size or shape of the initial

imperfections, and of the residual or locked-in initial
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stresses, are practically the same as one can see in

Fig. 5.1. After reaching the critical load sharp unloading
takes place, except for the model SR5TS, which simulates the
behavior of a locked-in state of stress.

The postbuckling paths tend to follow a common path in
the postbuckling range. The model SR5TS, with locked-in
stresses, shows a soft peak. The postbuckling path deéreases
with rapid stabilization on a practically constant lower
load level, Fig. 5.1,

At the critical load a shear buckling mode is displayed
by all SR models. The best description of buckling is given
by the equilibrium paths of the points located on the shear
waves. In Fig. 5.2 the lateral displacements versus loads
for these characteristic points (node 217 for models SR1,
SR4, SR5, SR5TS, and node 215 for SR6LS), are plotted. From
these equilibrium paths, which practically describe the
variation of the buckie amplitude versus load, one can infer
that the postbuckling response of the cylinder under shear
is that described by Fig. 1.3a. It is largely accepted
(Brush and Almroth, 1975) that imperfect shells follow the
postbuckling path of the perfect shell in the postbuckling
range. In Fig. 5.2 one can see that the equilibrium path of
the nearly perfect shell SR1(0.01t initial imperfection)
(dotted line) is closely followed by all the other models
which have initial imperfections only. The initial measured
imperfections have a moderate inf;uence on the magnitude of

the critical loads. Galletly and Blachut (1985) carried out
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experiments on buckling of cylinders under shear and
obtained a similar(conclusion. In Fig. 5.3 the ratio of the
critical load, obtained by numerical analysis, to the
classical buckling load (obtained by buckling analysis of
the cylinder with very small initial imperfections and with
low load level) is plotted versus the maximum size of the
imperfections scaled to shell thickness. The minimum load in
the postbuckling range is not sensitive to imperfections or
initial longitudinal seam weld residual stresses.

The variation of the ratio of principal tension stress
to the principal compression stress is plotted for some
Gauss points located in the middle of the thin cylinder,
Figs. 5.4 and 5.5. One can see that the ratio, calculated
for model SR5, is almost constant, from zero load to a close
range of the critical load. This means that the behavior is
linear or almost linear up to the critical load and that the
shells in the prebuckling path behave like beams. After the
critical load is reached and buckling takes place the
tension stress for the Gauss points located on the tension
bands increases rapidly. Similar conlusions may be drawn
from Figs. 5.6 and 5.7 where the ratio of principal stresses
is plotted for SR5TS model. One can also see that the
initial locked-in stress changes the ratio only at low load
levels,

Prebuckling deformations continue to grow under
decreasing load at almost all points of the thin cylinder

part, except at some of the points located in the shear
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buckling area where the buckles deepen and the motion is
reversed. Beyond the critical point a significant stress
redistribution takes place, especially in the thin part of
the cylinder. The principal stresses and membrane forces
separate into tensile bands roughly parallel to the buckles.
The buckle crests continue to load in tension, while the
valleys unload as the buckles deepen. Plastification across
the thickness takes place at most points located on the

tension bands.

5.3 Tension Field Investigation

The tension field‘concept is related to the behavior of
plate girders under shear. Plate girders under shear develop
stable postbuckling equilibrium configurations at higher
loads than the critcal loads. Their postbuckling behavior is
well described by Fig. 1.3b. The explanation for this
favorable behavior is that buckling helps develop a carrying
mechanism based on a tensioned membrane which forms the
diagonal of a truss panel bounded by the flanges and
vertical stiffeners. The load carried in the postbuckling
range is much larger than the critical load and is limited
by the material yield stress, geometry, and the strength
capacity of the flanges and vertical stiffeners.

As mentioned in section 5.1 a similar tension field may
appear in cylinders, after shear buckling takes place. The
principal stress or membrane force trajectories are close to

helix shapes on the prebuckling paths, including the
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critical points, for all models as one can see in Figs. 5.8,
and 5.10 to 5.13, top plots. One can imagine as a supporting
structure, for a thin cylinder in the prebuckling range the
helix strips in compression and those in tension, anchored
in the vertical sides, created by the thick part of the
cylinder. Buckling takes place in the compressed strips and
as a consequence, the length of the tension strips
diminishes where the inward buckles develop. Consequently,
the tension strips are divided into parallel tension bands
separated by unloaded bands. This phenomenon is obvious for
all models as one can see in all postbuckling stress plots
of Figs. 5.8, and 5.10 to 5.13, bottom plots. The angle of
of the tension bands changes along the postbuckling path and
is not the same as the angle of the buckles. From an initial
angle equal to 45°, before and at the critical load, it
reduces to about 25° to 29°, in the postbuckling range. The
tension strips cross 6hly the outward buckles.

The presence of a truss carrying capacity can be
conceived, by using a simple truss panel, shown in
Fig. 5.14, with boundary conditions and loads resulting in
shear and bending moment diagrams, in an equivalent beam,
similar to those of the SR models.

According to a static analysis of this truss panel, the

internal forces and the total shear are,

V = T sin{ + C tany, [5.1]
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c M, C

= - 02
T (M -M;) cosy ’ [5.2]
c M, C

B - (M_-Mp) cosy’ [5.3]
where C, is the horizontal projection of the tensile
diagonal force, T, such that

Mg-M,

C =T cos§ = [5.4]

L (tanf+tany) '

V is the panel shear, M, and M; are the bending moments, C,,
C,, and T are the internal forces, y is the angle of the top
and bottom chords with the horizontal, and § is the angle of
the diagonal with the horizontal. The variation of internal
forces in the top and bottom chords is very sensitive to the
variation of tan§. ‘

This analysis is developed to show that the horizontal
projection of the diagonal tension is shared by the
compressed top and bottom parts of the cylinder. In the
numerical analysis this is shown by the shifting of the zero
membrane forces at the section of zero bending moment
towards the right handside of thé top part of the cylinder,.
previously subject to tensile flexural stresses and towards
the left handside of the bottom part of the cylinder, also
previously subject to tensile flexural stresses, Figs. 5.8

to 5.13, bottom part.
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5.4 The Tension Field Description

An important aspect that can be noted from all
principal membrane force plots, Figs. 5.8 to 5.13, is that
the shape of the tension strips is helical. In these plots
the principal stresses or principal membrane forces are
represented on the developed cylinder surface and the
tension strips appear as straight lines (only a helix line

appears as a straight line on the developed surface of a

cylinder). The angle of the tension strips stays almost

constant on the horizontal postbuckling equilibrium path.

Starting from this observation, an analytical approach is

developed considering a helix as the shape of the tension

strips.
Other assumptions considered in the development are as
follows:

1. The beam shear strength capacity is completely disabled.

2. The top and bottom parts of the cylinder are able to
carry the compressive stress resulting from a truss
supporting mechanism.

3. The top and bottom parts of the cylinder are not able to
carry any transverse stress, or in other words, cannot
offer anchorage for the tension strips.

4. The vertical, circumferential thick rings are able to
carry the compression induced by a diagonal tension
field (i.e., can offer anchorage to the tension strips).

In Fig. 5.15 the elements of the tension field are

described by §, which is the angle of the tension field,
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measured on the cylinder surface, x, which is the angle due
to the helix form of the tension strip, R , which is the
radius, dW, which is the elementary width of the tension
strip, ¢ and d¢, which are the angle and the elementary
angle, and t, the cylinder thickness.

From the parametric equations of a helix on a cylinder

(Love, 1944) the angle x is equal to

= L '
x = g tan§, (5.5]
and, conseguently

%tang. [5.6]

a =T~ X=7T-
For an elementary tension strip the component along the

7 axis, the vertical direction, is

dv, = o, t AW cos§ sin§ sing = % o, R t sin2§ sing d¢. [5.7]
Further, one may assume that o, is constant over the
width of the tension field which leads to an upper bound on
the tension field capacity in terms of material yielding.
However, the carrying mechanism in a stable postbuckling
range is complex. After buckling of the compression strip
heliées, some of the tension strip helices are unloaded. The
outward shear buckles help develop the tension membrane

forces, but the inward buckles reduce the forces in the



81

tension strips, because their length is reduced. This leads
to a significant reduction of the beam carrying capacity of
the cylinder, but with the increase of deformations along
the practically horizontal postbuckling path a stabilization
of the equilibrium at lower load levels takes place.

It appears that a separation of the compression strips
in compréssion bands also takes place and the supporting
structure can be represented by the complex truss of
Fig. 5.16. The compression bands are not as clearly defined
as the tension bands. However, they influence the value of
the yield stress in tension and compression at the points of
band intersections, and they also have their contribution to
shear capacity.

Assuming that, the increase of the deformations and the
deepening of the buckles along the postbuckling path, may
cause the disappearance of the inclined compression bands,
the ultimate truss supporting structure may be that
represented by Fig. 5.17. This banding phenomenon gi§es rise
to a lower bound on the tension field capacity. The lower
bound character is achieved by allowing a continued motion
at a constant load such that the crests are continually
loading at a constant yield stress and the valleys are
continually unloading. Thus one may assume a step wave
distribution of o, with the crests at o, and the valleys
constantly at zero stress. Alternativelly, one can assume a
sinusoidal o, distribution with zero at valleys and o, at

the crests. Both distributions have an average o, of 0,/2
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over the full width of the tension band. Thus Eq. 5.7 may be
rewritten as

av, =

. % n g, R t sin2§ sin¢ d¢, [5.8]

in which 7 1 for an upper bound and

n 0.5 for a lower bound.
For half the cylinder section, the shear capacity due to the

tension field 1is

a

v, = % n o, R t sin2§ (~cos¢)
0
or
v, = % n o, R t sin2§ (1 - cosa). [5.9]

For an elementary helical tension strip the horizontal

projection is
dC = dW cos§ n g, t cos§ = 7 oy, R t cos’s do¢. (5.10]
For half the cylinder cross section the horizontal

projection of the tension field is,

C = J aC = n o, R ¢t cos’t ¢ [5.11]
0 0 _
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Assumming that the angle § takes a value such that Vv,
becomes an extremum, one can find the value of the angle §

from the identity

%? (1 + cos(gtang)) {sin(étans) secit)'. [5.12]

tan2§ R R

For L = 381.,0mm, and R = 190.0mm, § is found equal to 272
which is not far from the measured average values (25° for

sr1, 27° for sre, 28°

for SRS, SR5TS) on the principal
stress plots. The corresponding "a" value is 122°. This
value is very close to the measured value on all principal

stress or membrane force plots, which is 125°.

5.5 Effect of the Cross Bending Moments

As the degree of deformation increases in the
postbuckling range, the buckles deepen and the crests become
sharp, having a large curvature. According to the numerical
analysis the local cross bending moments that take place
accross the buckles are in the range of the plate yield
bending moment or bigger. Assuming that the tension bands
have the same inclination as the buckles, a biaxial stress
states results, which may impose a limitation on the
development of the tension stress across the thickness of
the tension bands. With the increase of the cross bending
moments due to the folding of the buckles a uniform uniaxial
tension ¢, across the thickness cannot be developed

(Fig. 5.19).
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The banded tension field stress, o, is the stress that
can be added to the state of cross bending stress ¢, such
that unreétricted yielding takes place in the tension bands.
Under these assumptions the von Mises yield condition

assumes the form
2 2
o, + o, - 0, 0y, -~ 0y = 0.0 . : [5.13]

In the postbuckling range of model SR1 the cross
~bending moments along the buckle crests are close to the
yield moment and do not vary significantly. For example at
element 22, Gauss point 2/2 the bending moment is equal to
29.39N.mm/mm, which is the yield bending moment for the thin
part of the cylinder. Using von Mises yield criterion

(Eg. 5.13) one obtains the yield tension stress distribution
across the thickness shown in Fig. 5.20b. The maximum
allowable average tension stress across the thickness is
equal to 226MPa (Fig. 5.20c). The yield bending moment is
present at all buckle crests and valleys.

It is reasonable to consider that far in the
postbuckling range the folding continues and that along the
buckle crests a plastic bending moment is obtained. Using
von Mises yield criterion (Eq. 5.13) one obtains the yield
tension stress distribution across the thickness shown in
Fig. 5.21b. In this situation the maximum allowable average

tension stress across the thickness is 150MPa (Fig. 5.21c).
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The variation of the cross bending‘moments across the
buckles is that of Figs. 5.22, which has plastic moments or
yield moments at crests and valleys. In this case the
average tension field yield stress varies periodically
across the width of the tension field. The average is
- 225MPa(0.750,) for cross plastic moments and 261MPa(C.8750,)
for cross yield moments. Thus it is suggested that Eg. 5.9
be multiplied by a new factor, u, to account for the cross

bending moment effect,

V., =

N % uno, Rt sin2§ (1 - cosa). [5.14]

Similarly Eg. 5.12, assumes the form,
C=uno,Rtoa coszs, [5.15]
with n varying from 0.5 to 1 and u from 0.875 to 0.75.

The compressive force, C, is carried by two helix
compression struts, top and bottom, inclined at an angle ¢
to the generator, as one can see in Fig. 5.23. The vertical
projections of these struts are inclined at an angle y to
the horizontal, having the value,

y = atan{§(1 + cosa)}. . [5.16]

If C is the horizontal projection of the force in the
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tension bands along the X axis, described by Eg. 5.15, then
C, and C,, the strut forces projection on the X-Z plane,

have similar expressions to those of Egs. 5.2 and 5.3,

M, C
Cr = 7 TM,-M,) cosy ' [5.17]
and,
M, C
G = (M, -Mp) cosy ° [5.18]

The inclined struts contribute to the total shear, such that

V = T sin§ + C tany. [5.19]

The banding takes place at the begining of the
horizontal postbuckling path and at this stage according to
the numerical analyses, the yield cross bending moment is
present at crests and valleys.

For the upper bound n is equal to 1.0 and & is equal to
0.75, which corresponds to fully active tension field and
plastic cross bending moments at the buckle crests and
valleys. In this case using o, equal to to 301MPa, a equal
to 1220, § equal to 27°, y equal to 13.230, and the values ot
L and R used to calculate §, Vv, according to Eq. 5.14 equals
20200N and the horizontal projection C equals 55100N. Thus
the total shear for half the cross section equals 33100N

according to Eg. 5.19. The corresponding values of the
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compression top and bottom forces, calculated using

Egs. 5.17 and 5.18, with y equal to 13.23° are 32800N and
23700N respectively, which correspond to an average
compression stress of 290MPa at the top compressive strut,
averaged over a width equal to 1/4 of half the
circumference.

The lower bound corresponds to n equal to 0.5 and u
equal to 0.875 i.e., banded tension field and yield cross
bending moments. In this case using the same values for Oy,
a, t, R, L, used in this chapter, and y equal to 13.230, A
is equal to 11767N and C is equal to 32140N. Thus, the total
shear according to Eq. 5.19 is 19500N. The values of C, and
Cg, using Egs. 5.17 and 5.18, are 19157N and 13834N,
respectively. The average compressive stress at the top
strut is 169MPa, considering 1/4 of half the circumference
in compression.

The value of observed total shear, V, equal to 20270N
for half a cylinder is clearly close to that of the lower
bound. According to Stephens et al (1982) the local buckling
stress for an axially loaded cylinder, having the geometry
of model SR1, is 168 MPa. This reference suggests the use of
the same procedures to predict bending buckling of
thin-walled cylinders. In the finite element analysis
performed on model SR1 the maximum observed compression
stress is 280 MPa at the left top of the thin cylinder,
element 25 (see Fig. 2.1), which is significantly higher

than the local buckling under axial load value of 168MPa,
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predicted by Mok and Elwi (1986), according to Stephens et
al (1982). However, model SR! is practically a perfect
shell, and the local buckling axial compressive stress is
very sensitive to the level of the initial imperfections. In
the case of transverse shear loading there are stress
gradients in both the circumferential direction and along
the generator. These gradients may increase the local
compression buckling stress value. Thus, at this level of

the stress no sign of local buckling is present.

5.6 Existing Banded Tension Field Capacity of the SRI Model
To evaluate the contribution of the banded tension

field to shear capacity Eq.5.7 is directly integrated

considering different yielding tension stresses across three

different tension bands,

1 0.327a 0.758a
v, =3 {Ro, t sin2g (-cos¢) +R 0,, t sin2§ (-cose)
0.164a 0.471a
1.02a
+ R o, t sin2g (-cos¢)l }, [5.20]

0.815¢

where o,, are the average principal tension stresses across
the tension bands.

The horizontal projection of the diagonal tension band
forces is calculated using a modified form of Eg. 5.12 with
different values of tension stresses across the tension

bands, as follows,
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: ) 0.327q 2 0.758a
C=Ro, tcos§o +Ro, t cos’§ ¢
0.164a C.471a
1.02a
+ R o, t cos’§ ¢ (5.21]
0.815¢

The evaluation of the shear V, was carried out, for the SR
model, along the third column of the Gauss points of
elements 13 to 18 at the postbuckling load levels 20.27 kN
and 20.50 kN, respectively. The first value, corresponds to
the begining of the horizontal postbuckling path and the
last one is the last performed analysis in postbuckling. It
is noted that the tension bands are fully plastified at a
level lower than the uniaxial yield stress of 301 MPa, due
to the presence of a compression stress component. From the
outputs o¢., is equal to 134.5 MPa, o0,, is equal to 230 MPa,
and o,; is equal to 207 MPa. These values represent the
average tension stress across the tension bands. The same
values of R, t, § as those used above are used in the
evaluation of Vv, and C.

For both load points V., for half the cylinder is equal
to 14100 N and the total horizontal projection, C for half
the cylinder is around 30316 N. The rest of the shear up to
20.27kN is carried by the inclined compression bands. Using
Egs. 5.17 to 5.18 and the values of bending moments from
. Fig. 5.18, the value of top compression force, C, is 20281N,
the value of the bottom compression force, C, is 14643N, and
the corresponding compressive stresses are 179MPa, 129MPa,

respectively, (only from existing tension field) for a top



or bottom compression area equal to 1/4 of half the

circumference.
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MODEL SR1 PRINC MEMBRANE FORCES AT LOAD=33.90 KN
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MODEL SR4 MEDIAN PRINC. STRESS PLOT AT LOAD=33.18 KN
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MODEL SR6LS MEDIAN PRINC. MEMBRANE FORCES AT LOAD=31.85 KN
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Figure 5.13 Principal Membrane Forces for SR6LS Model
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6. Summary and Conclusions

The equilibrium path of the cylinders under transverse
shear was investigated both in the prebuckling and
postbuckling range taking into consideration initial
measured imperfections, initial residual stresses due to
longitudinal seam weld shrinkage, and initial locked-in
stresses due to the cold forming. The numerical analyses
were performed using the finite element program NISA80.

Boundary conditions, the geometry, and the mesh are similar

for all analyses.

Based on the results obtained from numerical analysis
the following observations are made,

1. The stiffness of the prebuckling path is independent of
the magnitude of the initial measured imperfection (in
the limits of 0.01 to 6.5 times the cylinder thickness),
the initial residual stress due to the longitudinal weld
shrinkage and the locked-in state of stress due to the
cold forming.

2. The magnitude of the initial imperfections has a small,
about 10% influence on the magnitude of the critical
load.

3. A locked-in stress has a significant influence on the
magnitude of the critical load.

4. Unloading after reaching the critical load is very
sharp, except for the model with initial locked-in
circumferetial stress due to the cold forming. For this

case the unloading is mild.
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For all effects the postbuckling paths converge to a
common postbuckling path, which decreases and stabilizes
rapidly on a constant lower load level. This means that
in the postbuckling range the equilibrium is stable at a
lower load level than the critical load.

The magnitude of the load on the stable postbuckling
equilibrium path is independent of the size of the
initial measured imperfections, and initial residual
stresses., The initial locked-in stresses reduce slightly
the load level of the stable postbuckling path.

A shear buckling mode is displayed at the critical load
by all models, regardless of the size of the initial
measured imperfections or the distribution of the
initial residual or locked-in stress.

The begining of the local buckling of the compressed
areas of the cylinder due to the bending moments and the
tension field development is noted only in models with
relatively large initial measured imperfections (6.5

times the cylinder thickness).

Based on an investigation of the carrying capacity of
postbuckling path the following is stipulated,

In the postbuckling range a supporting capacity similar
to a truss panel is developed. A diagonal tension field
develops, having a helical shape on the cylinder. The
lower bound of the tension field is defined by a banded

tension field, composed by yielded tension bands
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separated by unloaded bands due to the shear buckling
occurence. The contribution to the total shear of the
inclined compressive struts must be considered. The
upper bound of the tension field is defined by a
sinusoidal yield stress variation across the whole
tension field width.

The horizontal projection of the_tension field is shared
by the top and bottom parts of the cylinder, which are
the top and bottom chords of an analogue truss panel.
The sharing ratio is a function of the panel end
moments.

The tension stress which develops on the diagonal
tension field is limited by the cross bending moments
developed by the buckle formation, and by the
compression capacity of the top or bottom parts of the
cylinder which share the horizontal projection of the
tension field resultant.

Equations have been developed to describe the helix
angles ¢ and a in terms of R, radius, and L, length and
the tension field capacity as well. Total shear capacity
was also derived in terms of the tension field capacity
and the contribution of the.corresponding compression

struts.
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Appendix A. Notes on Program NISA

Program NISA80 (Ramm, 1977, Hafner et al, 1981,
Stegmuller, 1984) is a general nonlinear incremental
structural analysis program using finite elements. It has a
small displacement infinitesimal strain formulation
capability as well as large displacement large strain
formulations. The latter are reflected in total and updated
Lagrangian formulations.

Material models include an elastic, an
elastic-perfectly plastic, an elastic-plastic with strain
hardening and a concrete orthotropic biaxial model.

The program can also perform continuous eigenvalue
analysis on nonlinear element groups based on the current
deformed configuration and stress state using the subspace
iterative technique.

Incremental solution strategies are standard and
modified Newton-Raphson (Zienkiewicz and Iron, 1970) and
Riks-Wempner or constant-arc-length-method (Wempner, 13971,
Riks, 1979, Crisfield, 1980, Ramm, 1980). Newton-Raphson
(load control) methods diverge in the neighbourhood of limit
or critical points, due to the singularity of the stiffness
matrix at these points. The Riks-Wempner method (constant
arc length) overcomes this problem allowing the equilibrium
path to be traced beyond the limit point.

The program evaluates the length of the arc, based on
initial displacement increments. However, this parameter can
also be controlled by the user. This is important because in
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the neighbourhood of the limit or critical points the
calculated initial arc length (DS0I) is not suitable and
must be reduced to account for the sever increase in the
degree of nonlinearity of the problem investigated in this
study. Another parameter which is helpful in tracing the
equilibrium path is the relative tolerance (RTOL) used to
measure equilibrium convergence.

In this investigation a total Lagrangian formulation
with a 16 node degenarated shell element and an
elastic-perfectly plastic material model were used.

The solution strategy varied with the movement along
the equilibrium path. A modified Newton-Raphson method was
generally suitable up to 70% of the limit load. Above this
level standard Newton-Raphson method was used due to the
nonlinear behavior of the structure. Close to and beyond the
critical or limit point the constant-arc-length-method
combined wifh standard Newton-Raphson was used. In addition
to controlling the arc length (DSOI), the tolerance of
convergence of the equilibrium equations (RTOL) was changed
in order to reduce the number of the iteration for a
displacement step. The convergence criterion compares the
magnitude of the change in displacement increment with the
magnitude of the accumulated displacement increment. On the
prebuckling path the tolerance used was 0.001; giving
convergence after ! to 3 iterations. On the postbuckling
path direct control of the arc length, in the sense of

reducing it, and increasing the tolerance to a maximum value



of 0.02 gave a reasonable number of iterations per

displacement step (4 to 10).
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Appendix B. Comment on Comparison with Test Results

There are few experiments related to the thin cylinders

under shear. Using Egs. 5.14 to 5.16 and 5.19 to evaluate

the postbuckling strength of different experiments one

obtains the following results:

1‘

For the second shear specimen of Bailey and Kulak (13884)
the total predicted shear force is 580kN which
represents 85% of the experimental value, 680kN.

For the first shear experiment of Bailey and Kulak
(1984) the total predicted shear capacity is 38kN which
is 152% of the experimental value, 24kN. However, if the
contribution to the shear of the compression struts is
not considered the predicted shear capacity is close to
the experimental value.

For the Galletly and Blachut (1985) experiment S3 the
total predicted shear is 38kN which is 90% of the

estimated experimental wvalue, 41KkN.

It must also be noted that:
The ultimate strength observed by Bailey and Kulak
(1984) for the first shear specimen having the value of
29.4kN, is 74% of the limit load predicted by the
numerical analysis of model SRS5TS with locked-in
stresses.
The stiffness of the first shear experiment of Bailey
and Kulak (1984) is much less than that of the finite
element model but matches the unloading and reloading
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stiffness from the postbuckling path of the SR1 model,
shown in Fig. 5.1. Therefore it is possible that the
specimen was prebuckled in local compression due to the
manufacturing procedure (weld succession and internal

vacuum due to locking of hot air in a confined space).





