
University of Alberta

Enhancing Space Modeling and Mobile Resources Planning in

Construction Operations Through A Simulation Driven

Visualization Framework

by

Amr A. ElNimr

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Construction Engineering and Management

Department of Civil and Environmental Engineering

©Amr A. ElNimr

Fall 2011

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis

and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users

of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or

otherwise reproduced in any material form whatsoever without the author's prior written permission.

Dedication

To my mother Nazek whom without her efforts, love, sacrifice and dedication I wouldn’t

be the man I am today. To my late dad; Dr. Abdel Khalek ElNimr; whose last words

before I was leaving to Canada 5 years ago “only God knows if we will meet again or

not”, and you were right dad we never met again. To my wife Maysoun who has been

through a lot with me without even complaining, never thought one day that I will meet a

lady with such strength, passion, kindness and forgiveness. To my baby Taliah, whom

her laughter makes me feel how much God blessed me. To my friend whom I never met

yet his image never escapes my memory; Al-Sayed Belal who was tortured to death by

the Egyptian regime in January 2011. To the gentleman who is for me more than a

professor or supervisor and to whom I have so much respect and admiration; Dr. Yasser

Mohammed. To Dr.Simaan Abourizk, thanks for your support. To my friends Ahmed

Taha, Ayman Shabana, Ismail Abdo, Mohammed Khalaf, Ahmed Nabih and Ahmed

Elmekwad; you are the best guys. To my uncles and cousins.

Abstract

Simulation modeling is a strong tool that has not been utilized to its expected potential in

day to day construction industry activities. One of the reasons contributing to that is the

inability of simulation models to depict changes in site space in an intuitive way. This

research tries to address this limitation in simulation modeling by developing a

simulation driven visualization (SDV) framework which helps in modeling changes in

both: site space geometry and site layout, throughout a simulated construction project.

This framework makes use of the robustness inherited in simulation techniques and 3D

modeling to provide a powerful tool that addresses the inability of simulation models to

represent construction sites’ spatial data in an intuitive way. The framework’s pathfinding

mechanism extension (PME) builds on the framework ability to model changes in space,

through performing tempo-spatial planning for resources mobilization in a dynamically

changing site layout throughout the lifecycle of a construction project. This is done

through the site mesh generation mechanism and the A* search algorithm implemented

inside the framework. Simulation driven visualization is a relatively new area of research

in the construction management field. This area of research integrates Computer-Aided

Design (CAD) modeling with animation and simulation techniques to create SDV

frameworks or mechanisms that build on the strengths of each of those individual

components. Although the prominent of those frameworks have contributed much to this

area of research in the construction management field, they do have some limitations. To

achieve the aforementioned aims, this developed framework had to address some of the

technical limitations that exist in the current construction research state of the art SDV

mechanisms. This research presents a new SDV framework which uses distributed

simulation as its foundation. In addition to using this framework to achieve the

aforementioned goals, the framework is also used to validate construction logic and

validate simulation models. The research also makes use of visual analytics and display

design principles in the framework’s visualization component conceptual design and the

transformation of the simulation’s object classes’ statuses into visualization behaviors,

respectively.

Acknowledgement

I would like to thank Dr. Yasser Mohammed for his efforts in this research. Also, I would

like to thank Dr. Simaan Abourizk for his guidance and help during this research. I would

like to thank Dr. Mohammed Al-Hussein for his guidance and support during this

research. I acknowledge and appreciate the efforts of our research partners at PCL

namely Mr. Rick Hermann, for participating in this research. Also, I acknowledge the

efforts of Mr. Stephen Hague for helping in this research.

Table of Contents

Chapter 1: Introduction………………………………………………………………...1

1.1 Problem Statement………………………………………………………………….....2

1.2 Research Objectives…………………………………………………………………...4

1.3 Thesis outline……………………………………………………………………….....4

Chapter 2: Research Background: Site Space Modeling, Simulation Driven

Visualization and General Visualization……………………………………………….7

2.1 Introduction……………………………………………………………………………7

2.2 Dynamic Site Space Changes Modeling Methods and Mobile Equipment Motion

Planning in Construction Research ……..8

2.3 Simulation Driven Visualization (SDV) Mechanisms in the Construction

Research……………………………………………………………………………..11

2.4 Visualization in Construction Research and Conceptual Design of Visualization

Based on Visual Analytics and Display Design Principles………………………….13

2.4.1 General Visualization research in construction…………………………………...15

2.4.2 Visualization Component Screens Conceptual Design Methodology…………….17

2.4.2.1 Visualization Component: Conceptual Design In Light Of Visual Analytics

Design Fundamentals …………………………………………………………...18

2.4.2.2 Visualization Behaviors Choices In Light Of the 13 Display Design

Principles………………………………………………………………………..19

2.4.3 General Comments ………………………………………………………………..24

Chapter 3: Problem Solving Methodology, Framework and Pathfinding Mechanism

Extension Developments…………………………………………..................................25

3.1 Introduction and Problem Definition ………………………………………………..25

3.2 Search Algorithms and the A* Algorithm…………………………………………...27

3.2.1 Formulating Construction Sites Pathfinding Problem as a Search Problem……….27

3.2.2 The Choice of A* Search Algorithm: Reasons and Proof ………………………...29

3.3 HSV Framework Development ……………...34

3.3.1 HSV Framework and Underlying Distributed Simulation Standards……………...35

3.3.2 The Two-Way Communication between the Simulation and Visualization

Components and Framework Time Management……………................................37

3.4 Implementation and Operation of Pathfinding Mechanism Extension (PME)….…...40

3.4.1 Phase 1: Mesh Generation Mechanism…………………………………………….48

3.4.2 Phase 2: A* Algorithm Application ……………………………………………….51

3.4.3 PME Limitations and Assumptions……………..…………………………………53

3.5 The HSV Framework Implementation……………………………………………….54

Chapter 4: Case Study: Using HSV Framework and its PME for Tempo-Spatial

Planning of Heavy Lift Cranes ………………………………………………………..55

4.1 Introduction and Case Study Explanation……………………………………………55

4.1.1 Case Study Definition and Project Specifics………………………………………55

4.1.2 Case Study Problem Definition and Solving………………………………………56

4.1.3 Case Study Chapter Flow and Problem Solving Mechanism……………………...58

4.2 Site Space Modeling and Heavy Lift Cranes Mobilization Planning in Industrial

Construction Simulation Case using HSV Framework and its PME..........................59

4.2.1 Main Elements of the Industrial Construction Federation…………………………62

4.2.2 Connection between BGE and Simulation…………………...................................64

4.2.3 Mapping Simulation Product Classes Attributes to Visual Behaviors…………….66

4.2.4 Generating Visual Behaviors in BGE and Modeling Site Spaces Based on

Permanent Structures……………………………………………………………...68

4.2.5 Classifying Site Space based on Spaces’ Occupation using Mesh Generation

Mechanism Generation……………………………………………………………71

4.2.6 Mapping Different Cranes’ Simulation States into Visualization Behaviors and

Application of Resources’ Tempo-Spatial Planning Mechanisms………………..75

4.2.7 Demonstrations and Screenshots…………………………………………………..80

4.3 Framework’s Visualization Screen Conceptual Design Based on Visual Analytics and

Display Design Principals...85

4.3.1 Site Visualization Screen: Conceptual Design In Light Of Visual Analytics Design

Fundamentals.…………………………………..86

4.3.1.1 Site Visualization Screen: Data Representation Based On Visual Analytics

Purpose..87

4.3.1.2 Site Visualization Screen: Designing interactions and Visual

Representations………………………………………………………………….88

4.3.2 Site Visualization Behaviors Choices In Light Of the 13 Display Design

Principles…………………………………………………………………………..89

4.4 Stochastic versus Deterministic Data Modeling of Cranes’ Shortest Travelling

Distance in a Dynamically Changing Site Layout…………………………………..96

4.4.1 Used calculations and notes about Experiment…………………………………....96

4.4.2 Best Fit Distributions: Evaluations and Analysis………………………………….97

4.4.2.1 Log-Pearson 3 Distribution………………………………………………………98

4.4.2.2 Generalized Extreme Value Distribution……………………………….............101

4.4.3 Validity of Using Stochastic Distribution to Estimate Heavy Lift Mobile Resources’

shortest Paths…..103

Chapter 5: Conclusion and Further Research……………………………................105

5.1 Conclusion………………………………………………………………………….105

5.2 Research Contributions………………………………………………………..........107

5.3 Further Research..…………………………………………......................................107

Bibliography…………………………………………………………………...............108

Appendix I……………………………………………………………………………..112

Appendix II…...116

Appendix III…………………………………………………………………………...128

Appendix IV………………………………………………………………...................143

Appendix V…...148

List of Tables

Table 4-1: Conceptually formulating the purpose of visual analytics in HSV framework

and the simulation data to be visually represented to achieve that................87

Table 4-2: Visual analytics design guides and how they were applied in the conceptual

development of visualization component’s screens………..........................89

Table 4-3: Goodness of fit values and the critical values at the corresponding

significance levels for Log-Pearson 3 distribution……………………......100

Table 4-4: Goodness of fit values and the critical values at the corresponding

significance levels for Generalized Extreme Value Distribution…………103

List of Figures

Figure 2-1: The relation between framework’s conceptual design, technical design and

framework’s utilization, together with the chapter discussing these

areas……………………………………………………………………....18

Figure 2-2: Conceptual relation between the visualization perceptual design

principles…………………………………………………………………20

Figure 3-1: An extract of the node mesh (grid) generated by mesh generation

mechanism covering a site to prove that the A* algorithm will give

optimal results for this search problem…………………………………..32

Figure 3-2: HSV framework concept and communication……………………………36

Figure 3-3: The fundamental concept behind the Network UDP……………..............38

Figure 3-4: Different ports which could be on different workstations or on the same

local host…………………………………………………………………39

Figure 3-5: Conceptual data exchange between simulation and visualization

components of the frameworks and inputs and outputs to the pathfinding

mechanism…………………………………………..................................41

Figure 3-6: HSV pathfinding process Parent Flowchart showing interoperability

between the mesh generation mechanism and the A*

algorithm………………………………………………………………...42

Figure 3-7: Child Flowchart explaining the concept of the mesh generation

mechanism………………………………………………………………43

Figure 3-8: Grandchild Flowchart: A* algorithm……………………………………..45

Figure 3-9: Mesh covering the construction site’s RASS at simulation time

zero……………………………………………………………………...48

Figure 4-1: PCL-Shell Ft. Saskatchewan site…………………………………………56

Figure 4-2: Screen from Visualization screen Blender Game Engine (BGE) showing

the 10 yellow marker 3D objects marking the 10 potential lifting locations

inside the site layout plan………………………………………………...57

Figure 4-3: Framework used in simulation and visualization of pipe modules’ assembly

and their site installation…………………………………………………62

Figure 4-4: Screens from Site Viewer Federate showing messages and Site

Visualization using Blender Gaming Engine screen during simulation

run………………………………………………………………………..67

Figure 4-5: Screens from Yard Viewer Federate and Yard Visualization BGE during

simulation run…………………………………………………………….68

Figure 4-6: Logic bricks for the server object………………………………..............69

Figure 4-7: Logic bricks of bound objects in the site visualizer……………………....70

Figure 4-8: Bay Object logic bricks in the Yard BGE………………………………...71

Figure 4-9: Logic bricks inside BGE site screen showing update message logical

sequence………………………………………………………………...73

Figure 4-10: Logic bricks inside BGE site screen showing the update message

triggering steps due to temporary structure block movement…..............74

Figure 4-11: The BGE depicts the simulation of installing modules to their final set

point using the heavy-lift cranes………………………………………...76

Figure 4-12: Screen from site visualization BGE showing the logic bricks that are put

on object markers………………………………………………………..77

Figure 4-13: Screen from BGE showing the second layer of the logic bricks

implemented on each of the 4 crane’s 3D models………………………78

Figure 4-14: The path chosen by the A* algorithm marked on the site visualization

user interface screen based on the current site layout…………………...79

Figure 4-15: Simulation Federates interface screen and BGE-based visualization

screen at simulation time T=0…………………………………………...80

Figure 4-16: The A* algorithm decides on shortest, safe travel distance for Crane 2

avoiding temporary and permanent structures on the current site

layout……………………………………………………………………82

Figure 4-17: Screen shots showing the A* algorithm at a later simulation time deciding

on shortest safest travel distance for Crane 4 after a change in site layout

due to an addition of a temporary construction facility.………………...84

Figure 4-18: Crane 2 route (in green) moving between Locations 2 and 7 at simulation

time T (left) and at simulatyion time T+t where (T+t >T)

(right)……………………………………………………….…………...85

Figure 4-19: Shortest resources’ travel distance samples given by the pathfinding

mechanisms for a complete project simulation run…………………......98

Figure 4-20: CDF for the Log-Pearson 3 distribution versus the sample data………..99

Figure 4-21: P-P plot for the theoretical Log-Pearson distribution CDF values versus

their empirical CDF values……………………………………………...99

Figure 4-22: CDF for the Generalized Extreme Value Distribution versus the sample

data…………………………………………………………………….101

Figure 4-23: P-P plot for the theoretical Generalized Extreme Value CDF values

versus their empirical CDF values……………………………………..102

 List of Symbols/Formulas

����
A* evaluation function which represents estimated cost of the

cheapest solution through node	�

����

A* evaluation function: The cost to reach the current node � from

start node.

����

A* evaluation function: Estimated cost of the cheapest path from node

N to the goal node �	

�
�����

Euclidian distances (straight line distance) are used inside the A*

algorithm

���

Euclidian Distance Equation: X-Coordinate value of Node ���

����

Euclidian Distance Equation: X-Coordinate value of Goal Node �	

����

Euclidian Distance Equation: Y-Coordinate value of Node ���

�����

Euclidian Distance Equation: Y-Coordinate value of Goal Node �	

����

Mesh Generation Mechanism: minimum coordinates defining the

borders of the mesh covering site spaces on one side along the x axes

����

Mesh Generation Mechanism: minimum coordinates defining the

borders of the mesh covering site spaces on one side along the y axes

���

Mesh Generation Mechanism: maximum coordinates defining the

borders of the mesh covering site spaces on one side along the x axes

���

Mesh Generation Mechanism: maximum coordinates defining the

borders of the mesh covering site spaces on one side along the y axes

��

Mesh Generation Mechanism: define the center coordinates of the

mesh covering site spaces in the direction parallel to the x axes

��

Mesh Generation Mechanism: define the center coordinates of the

mesh covering site spaces in the direction parallel to the y axes

��	

Mesh Generation Mechanism: the site plot dimensions along the x

axes of the mesh covering site spaces

��	

Mesh Generation Mechanism: the site plot dimensions along the y

axes of the mesh covering site spaces

α

Statistical significance

γ CDF of Log-Pearson 3 Distribution: γ is a continuous parameter

β CDF of Log-Pearson 3 Distribution: β is a continuous parameter such

that β≠0

α

CDF of Log-Pearson 3 Distribution: is a continuous parameter where

α>0

K

CDF of the Generalized Extreme Value Distribution: is continuous

shape parameter

µ

CDF of the Generalized Extreme Value Distribution: is continuous

shape parameter

σ

CDF of the Generalized Extreme Value Distribution: is continuous

shape parameter such that (σ>0)

List of Abbreviations

2D 2-Dimensional

3D

3-Dimensional

4D

4-Dimensional

A* Algorithm

A-Star Algorithm

API

Application Programming Interface

BIM

Building Information Modeling

BGE

Blender Game Engine

CAD

Computer Aided Design

CDF

Cumulative Distribution Function

COTS

Commercial Off The Shelf

DCV

Dynamic Construction Visualizer

DES

Discrete Event Simulation

FOM

Federation Object Model

GA

Genetic Algorithm

GPS

Global Positioning System

HLA

High Level Architecture

HSV

HLA based framework for construction operations Simulation

Visualization

IEEE

Institute of Electrical and Electronics Engineers

IPO

Interpolated Animation Curve (in Blender Game Engine)

K-S Test

Kolmogorov-Smirnov Test

P-P Plot

Probability-Probability Plot

PME

Pathfinding Mechanism Extension

RASS

Resources Admissible Site Space

RFSS

Resources Forbidden Site Space

RTI

Runtime Infrastructure

SDV

Simulation Driven Visualization

UDP

User Datagram Protocol

VITASCOPE

Visualization of Simulated Construction Operations

1

Chapter 1: Introduction

Simulation modelling is an effective approach for analysing construction operations, yet

it is not widely used by construction practitioners. Simulation models are usually unable

to represent site space in an intuitive way. This research is trying to address the problem

of simulation models inability to model site space in an intuitive way through simulation

driven visualization. Visualization in general, and particularly in construction projects, is

a convenient and intuitive way of conveying project information among various project

parties. Recently, construction management researchers have been investigating adding a

visualization component to construction simulation models in order to make these models

more intuitive and appealing to decision-makers. These researchers argue that enhancing

visualization and spatial representation of construction operations in a simulation

environment can improve the adoption of simulation techniques by the industry.

3D modeling has been utilized in the construction industry due to its ability to represent

prototypes of construction processes and the changes in site geometry. This research is

trying to provide a new and intuitive way for modeling site’s spatial data and then

building on this space modeling ability through solving the shortest safe travel paths on a

dynamically changing site layout with changing geometries problem. The research is

trying to do that through a new concurrent Simulation Driven Visualization (SDV)

framework in which a 3D modeling component is integrated with a discrete event

simulation (DES) engine. The framework, which is also developed through this research,

is based on distributed simulation High Level Architecture (HLA) Institute of Electrical

and Electronics Engineers (IEEE) standards and allows for hooking different

visualization components to the simulation environment with a great deal of flexibility.

The framework provides concurrent simulation visualization. It also provides two-way

data communication between the simulation and visualization components for data

transformation.

The HLA based framework for construction operations simulation visualization (HSV

framework), utilizes 3D modeling strengths to model and depict future changes in both:

site layout geometry and site space that take place throughout the project’s simulation.

The framework has a pathfinding mechanism extension which evaluates various site

layout geometries in terms of the resources mobilization durations throughout the

project’s lifecycle simulation. This pathfinding mechanism also automates the costly and

2

time consuming planning process of the mobilization (movement) of onsite mobile

resources. The HSV framework integrates an A* search algorithms inside its

visualization component. This algorithm assists the construction team in achieving the

shortest, obstacle-free paths for moving mobile resources in a dynamically changing site

layout geometry modeled by the framework. The framework’s ability to model changes

in site space that couldn’t otherwise be addressed by mere simulation models, in addition

to the framework’s pathfinding mechanism extension, both components interoperate to

help the decision-makers to plan ahead for the following at any stage of the project’s

lifecycle:

• Modeling and experimenting with various site layout scenarios.

• Testing existing resources’ paths, clearing obstacles from the predefined

resources’ paths.

• Minimizing the expensive heavy lift resources mobilizations time.

• Accurately calculating the expected heavy lift resources mobilization durations

to incorporate them in the project’s schedule.

1.1 Problem Statement

This research is trying to address the problem of simulation models inability to model site

space changes in an intuitive way through the development of a simulation driven

visualization based framework which can help in modeling changes in site space

geometry throughout the project’s simulation run. It is worth mentioning that other

techniques which are implemented to model changes in site space and perform dynamic

site layout planning in current construction research have their own limitations. These

limitations pertaining to the current dynamic site layout planning techniques which will

be explained in detail in Chapter 2 can be summarized in the following points:

• Provide only snapshots in time at the beginning of each site layout geometrical

change. This can be counter intuitive to the various decision-makers in the

project.

• Do not model future changes in site spaces; they only try to optimize the site

layout based on certain criteria.

• Do not link the changes in site layout to changes in mobile resources paths and

do not take these paths in consideration while planning/modeling the dynamic

changes in site layout.

3

• Does not convey a better understanding of the various layout geometries to the

decision-making team.

The HSV framework can be classified as a tool that helps to model expected changes in

site space while enhancing resources’ paths planning rather than an ultimate tool for

dynamic site layout planning. This distinction will be explained further in Chapter 2.

The limitations in the current state of the art Construction Operations’ SDV research

prevent the construction industry from benefiting from such strong tool to enhance any of

the following aspects of construction projects: modeling changes in site space and

dynamic site layout planning/modeling. More details on these limitations will be

discussed in Chapter 2. This explains why this HSV framework is being developed rather

than relying on any of the existing tools to achieve the research objectives mentioned

earlier. The limitations that restrict the utilization of existing construction visualization

mechanisms/frameworks in achieving the goals mentioned earlier can be summarized in

the following points:

• The existing SDV frameworks do not represent changes in a construction site

space (spatial data); this in turn does not make them a reliable tool to use in the

construction site layout modeling.

• The existing construction visualization mechanisms/frameworks whether being

schedule-based or simulation-based, concentrate on visualizing the final

construction product development rather than simulating and visualizing the

construction processes.

• The existing SDV mechanisms do not allow information to be sent back from the

visualization to simulation. The simulation scenarios can’t be evaluated or

adjusted based on the visualization output (one way data flow only). This makes

it complicated for a construction team to use the current SDV mechanisms to try

various construction processes and site layout scenarios.

• The existing SDV mechanisms are tight coupled; this means that the simulation

and visualization components of those mechanisms are only able to work with

each other. This limits the ability of the existing frameworks to be implemented

to plan for a wider spectrum of construction processes or projects.

4

1.2 Research Objectives

Earlier phases of construction projects lifecycles are usually clouded with many

uncertainties. Simulation modeling is usually a robust way for addressing these

uncertainties. It is useful for a project management team to have a tool at earlier phases of

construction projects that could help the team achieve the following: interactively

depicting the expected changes in site space geometry through the project duration,

modeling future changes in site layout and planning heavy resources movement

(mobilization) based on this dynamically changing site geometry. This helps to reach a

more educated decision on the various aspects of the project. The objectives of this

research can be summarized as:

• Enhancing spatial data representation in construction processes simulation.

• Extending simulation visualization to model mobile resources movement on

construction site.

Achieving these objectives can lead to more expert adoption of simulation modeling in

the construction industry.

1.3 Thesis outline

This research is trying to achieve the objectives mentioned earlier. This thesis starts by a

critical literature review of site space modeling research and SDV research in

construction. Generic visualization research and visualization research in construction is

also discussed. Visual analytics and display design principles used in the conceptual

design of the framework’s visualization component are discussed. The HSV framework

development and its technical aspects are then discussed together with the way the

framework models changes in site space that take place during a project. The

framework’s Pathfinding Mechanism Extension (PME) is then explained with its

interoperating A* pathfinding mechanism and mesh generation mechanism. Finally, the

HSV framework’s application to a real construction industry case to model expected site

spatial changes, and plan heavy lift cranes mobilization in a dynamically changing site

layout geometry is shown. Chapter 1 gives the reader a general idea of what this research

is about, its objectives, and the thesis structure.

Chapter 2 is dedicated to discussing and critically reviewing the construction literature

related to the objectives and tools used in this research. The chapter starts by a critical

5

literature review on site space modeling and dynamic site layout planning research. The

chapter then gives a thorough critical literature review of the SDV research done in the

construction domain. This review of SDV research in the construction domain was

necessary to explain the reasons behind choosing to develop a new HSV framework

based on High Level Architecture (HLA) distributed simulation standards to solve the

space modeling and resources pathfinding problem rather than using any of the existing

state of the art SDV mechanisms. The background of visualization research in the

construction domain and the conceptual design of the HSV framework’s simulation

visualization screen based on display design and visual analytics design principles is

discussed. Some of these principles were utilized as guides to choose the various

visualization behaviors which represent the various construction projects object classes’

simulation states. These guides were utilized later in the case study as an attempt to

standardize this transformation of simulation states into visualization behavior in the

construction simulation visualization research.

Chapter 3 discusses the technical details of the HSV framework and its PME

development. The chapter discusses the HLA distributed simulation standards that the

framework’s design is based on. Chapter 3 also explains how the concurrent DES

visualization was achieved and describes the various components of the framework. The

chapter also explains how the framework is able to model changes in site spaces

throughout the project’s lifecycle simulation and the framework’s two-way

communication ability. Also, the chapter discusses the search algorithms implemented

inside the framework’s PME. It is the first time that Search Algorithms are utilized in

construction research. These algorithms build on the framework’s ability to model

changes in site space and are used to find the resources’ shortest paths in a dynamically

changing site layout where the information pertaining to these paths are sent to the

running discrete event simulation component.

Chapter 4 is the case study application chapter of this thesis. The framework with its

PME is utilized in a real construction project site (Ft. Saskatchewan oil upgrader site) to

depict changes in the project’s site space geometry throughout the project’s lifecycle

simulation. This tests the framework’s ability to model changes in both: site space and

various site layout geometries. The case study also shows how the framework’s PME

builds on the framework’s ability to model changes in site space by solving the heavy lift

cranes shortest safe pathfinding in a changing site geometry problem. The chapter also

6

discusses the framework’s visualization screens conceptual design based on the visual

analytics and display design principles discussed in Chapter 2. The chapter finally

discusses the estimation of resources mobilizations durations and distances on shortest

paths through stochastic modeling, instead of deterministically estimating them through

the HSV framework’s pathfinding mechanism extension.

Finally, overall conclusive comments regarding this research’s ability to address the issue

of modeling of site space in simulation and solving the pathfinding problem of resources

in dynamically changing construction sites are discussed in Chapter 5. The contributions

of this research to both: the construction industry and construction research are explained.

Potential future research to enhance the automation of resources mobilization pathfinding

planning in dynamically changing site layouts is suggested.

7

Chapter 2: Research Background: Site Space Modeling,

Simulation Driven Visualization and General Visualization

2.1 Introduction

This research is trying to address the problem of simulation models inability to represent

site space in an intuitive way. To do that a Simulation Driven Visualization (SDV)

framework which can use its visualization modeling ability to depict and model changes

in site space that occur due to construction processes simulation was developed. The

framework use its ability to model site spaces to address various resource mobilization

issues related to a resource’s need of a certain space at a certain scheduled project time in

order to perform its scheduled event. The framework’s Pathfinding Mechanism Extension

(PME) invests in the framework ability to model changes in site space in solving the

resources pathfinding problem in dynamically changing site geometry.

This chapter is dedicated to discussing and critically reviewing the construction literature

related to the objectives and tools used in this research. The chapter begins by critically

reviewing construction research related to dynamic site space modeling. The limitations

in this reviewed research are discussed. Researchers have used various methods to model

changes in site space with time. Although these methods are different from this novel

approach of using SDV to model site space changes, it is worth summarizing those

research efforts to demonstrate the novelty of the approach followed here.

State of the art SDV research in the construction domain is then critically reviewed.

Existing construction SDV mechanisms developed in recent construction research

together with their shortcomings are reviewed. The limitations in the current SDV

mechanisms that were developed through this research and addressed through developing

a new SDV framework based on High Level Architecture (HLA) distributed simulation

standards to utilize in solving the space modeling and resources pathfinding problem are

discussed.

Finally, the literature related to both: generic and construction visualization researches is

discussed. This part of the review will be focusing on explaining the qualitative guides

from the literature that were utilized to conceptually design the visualization component

of the HLA based framework for construction operations Simulation Visualization (HSV

framework) that were used to design the visualization component of the framework used

8

to solve the resources tempo-spatial management problem discussed in Chapter 4 (case

study chapter). These design guides were utilized from the literature on visual analytics

design and display design. The technical details pertaining to the development of the

HSV framework and the framework’s applications in construction research will be

explained in chapter 3.

2.2 Dynamic Site Space Changes Modeling Methods and Mobile Equipment

Motion Planning in Construction Research

Site layout planning is an important task that involves the positioning of temporary

facilities and structures onsite to minimize the site layout costs and correspondingly

overall project costs (El-Rayes and Said, 2009). Site layout planning can be categorized

into static and dynamic categories. Static site layout planning models produce a single

site layout that identifies static locations for a project’s temporary facilities. Those

facilities are not allowed to move over the project’s lifecycle; accordingly, this type of

layout planning does not consider changes in site space availability (El-Rayes and Said,

2009). Simulation has been one of the methodologies adopted for static layout modeling

(Dawood and Marasini, 2002; Zhou et al., 2009).

Dynamic layout planning is a similar technique to what this research present

methodology proposes. It involves the changes in a site’s available space throughout the

project duration (El-Rayes and Said, 2009). These changes usually occur due to moving

of temporary facilities throughout the lifecycle of the project. The models that deal with

dynamic site layout planning in construction are limited (El-Beltagi et al., 2004); among

the most common of these are genetic algorithms (El-Beltagi et al., 2004), 4D modeling

(Zhang et al., 2000; Ma et al., 2005), dynamic programming (El-Rayes and Said, 2009)

and Computer Aided Design (Sadeghpour et al., 2006). It is worth mentioning that

Sadeghpour et al. (2006) attempted to add a visualization component (through CAD

modeling) to allow for better representation of site to the user.

Despite the contributions of previous research to modeling changes in site space over a

project’s duration, the following shortcomings can be noticed:

• Those models provide screenshots of different optimal site layouts for each stage

of the project. These models adopt a chronological procedure to identify a local

optimal solution for each of the identified stages of the project duration (El-

Rayes and Said, 2009). In reference to models utilizing genetic algorithm (GA)

9

and 4D modeling, El-Rayes and Said (2009) said that producing local optimal

solutions for each identified stage of the project duration means that this layout’s

efficiency at later project stages is greatly affected by decisions taken in early

layouts, which does not guarantee a global optimal solution. Also, these

approaches may provide infeasible solutions when early-located facilities may

cause insufficient space for future facilities (El-Rayes and Said, 2009). It is worth

mention that Sadeghpour et al. (2005) tried to” tackle this “screenshots issue” by

providing a set of consecutive layouts throughout the project. Although this

research attempt showed a creative way of solving this problem, yet it lacked the

concurrent visualization component to depict both: the changes in site space and

the dynamicity of these layout changes.

• Both GA and 4D-based models study changes in site space that result from

changes in locations/numbers of movable temporary facilities, according to the

literal definition in Dynamic Site Layout Planning. These models ignore the

changes in site space that happen as the building structure (fixed facility) itself

evolves. For example, the footings excavation of a certain group of buildings

starts at a later date in a residential complex project, so the site space where the

future excavations will be can be utilized during early stages of the project. 4D-

based dynamic site layout models inherit the limitation associated with 4D

modeling; this means that these models depict changes in site space only on the

basis of overall construction product progress. They do not consider the effects of

site space changes on mobile resource movement throughout the project duration.

Also, 4D-based models consider space changes inside the constructed product

itself, for example the layout inside each constructed floor (Ma et al., 2005).

Another recent study employed dynamic programming in modeling dynamic changes in

site layout (El-Rayes and Said, 2009). This research had a significant contribution in

terms of trying to address the “Local Optimal site layout problem” mentioned earlier, by

using dynamic programming epochs (rules) for producing an overall optimal site layout

plan that takes into consideration changes in temporary facilities at future project dates.

In spite of these advances, the model exhibits the following drawbacks:

• As is the case for models utilizing 4D modeling and GA, it takes into

consideration only temporary facilities, without allowing for cases where

structures or fixed facilities might cause changes in site space.

10

• It lacks an intuitive depiction of changes in site space with time and the effects of

site space changes on resources. El-Rayes and Said (2009) commented on this

shortcoming by suggesting their model can be expanded in future research to

support 3D modeling of site layouts, detailed planning of resource travel paths,

and considering the dynamic impact of material procurement decisions on site

storage and layout planning.

• The model does not have an integrated layout cost calculation mechanism; in

fact, it relies only on rate calculation for temporary facilities’ movement based on

Manhattan distance. This has two shortcomings:

o The resources’ shortest paths are not taken into account (especially if

they carry expensive operating costs as in the case of heavy-lift mobile

cranes). The effects of site space change on heavy mobile resource

operation costs can be significant.

o Manhattan distance is not necessarily the shortest distance that a

temporary facility would take to move between two points onsite. This

may not make the changes in measured moved distance of temporary

facilities sensitive to changes in site layout. The overall minimum cost is

affected by this parameter.

• Safety planning is not taken into consideration when planning the dynamic site

layout using this model.

In recent research site space modeling was used to address the various resources (mainly

equipment) site spatial needs (Gominuka and Sadeghpour, 2008). This research focused

on classifying resources and setting their choice criteria based on their space needs in

comparison to the modeled site spatial data. Another more relevant research was done by

Albahnassi et al. (2009) relates space geometry to heavy mobile equipment motion

(mobilization) planning. This research however concentrated more on finding general

safe routes for equipment.

It is worth mentioning that static layout planning is not the focus of this research, as this

research is about modeling changes in site space over the project duration using a SDV

framework and not producing a snapshot in time of an optimal site layout.

Since it was decided to use SDV based framework in modeling changes in site space and

solving the pathfinding problem in this research, the state of the art SDV research in the

11

construction domain is now critically reviewed. The limitations in the current SDV

research that were addressed through developing a new SDV framework based on High

Level Architecture (HLA) distributed simulation standards, to utilize in solving the space

modeling and resources pathfinding problem are discussed.

2.3 Simulation Driven Visualization (SDV) Mechanisms in the Construction

Research

The tool that is employed to model changes in site space with time is an HLA-based SDV

framework. Before exploring the development of this framework and its pathfinding

mechanism, it is appropriate to look at the background of SDV in construction research.

A critical literature review of SDV research in construction and the limitations of existing

simulation visualization package, frameworks and mechanisms (both commercial and

research-oriented) are now discussed.

Simulation is defined as the process of designing a model of a real system and conducting

experiments with this model for the purpose of either understanding the behavior of the

system or evaluating various strategies for the operation of the system (Shannon, 1975).

The strength of simulation approaches emanates from their ability to examine various

scenarios of the simulated system, rather than giving a mathematically optimum result as

is the case in mathematical optimizations. Most researches stress the fact that simulation

is not used to its maximum potential in the construction industry (Ioannou and Martinez,

1996; Kamat and Martinez, 2001; Huang and Halpin, 1994; Tucker et. al., 1998). There

are two major reasons for this lack of use:

• Most simulation models show results in statistical and text formats, which

causes simulation to be perceived by the construction industry as a “black

box.”

• The current simulation models do not consider the transformation of space

that result from the evolution of the constructed product (Kamat and

Martinez, 2001).

There are SDV commercial, off the shelf (COTS) packages that exist in the market.

These include Delmia’s Quest® and Brooks Software AutoMod®. However, these COTS

are generally concentrated on manufacturing operations. They are usually unable to

effectively handle the additional complications introduced by the changes in the

12

geometry of the construction site as work progresses, and their use to model and animate

construction operations requires a radical change in the model conceptualization and

thought process followed by construction model developers (Oloufa, 1993 and Kamat

and Martinez, 2008). Another visualization and CAD package that is used in the

construction industry is CATIA®. Although powerful on the CAD side, it is limited on

the simulation side of processes as it lacks the DES engine. CATIA can be a better

solution for 4D modeling—final product development modeling—but not for simulation

of construction processes.

The first construction simulation tools to adopt graphics did so in the early 80s (Rohrer,

2000). This was done through attempts to link construction simulation packages to

animation to achieve a post-process playback of the simulation (Halpin and Woodhead,

1976; Kalk and Douglas, 1980; Paulson et al., 1983). The “Utopian Framework” for earth

moving operations was a good example (Oloufa and Crandall, 1992). Another attempt to

extract product information from a CAD design into a simulation was done through the

PSE (Product-oriented Simulation Environment) (Xu and AbouRizk, 1999). Recent

research in construction operations SDV involves the use of simulation trace files to

invoke post-simulation animation (replay) of the simulation. This includes the Dynamic

Construction Visualizer (DCV) and Visualization of Simulated Construction Operations

(VITASCOPE) by Kamat and Martinez, 2001, Kamat and Martinez, 2004 and Kamat and

Martinez, 2008 respectively.

The above simulation visualization packages (both commercial and research oriented)

provide advanced visualization capabilities. However, they inherit some characteristics

that limit their use in visualizing simulation behaviors of construction operations. Some

of these characteristics include:

• Post-processing visualization: After a simulation is complete, visualization

is produced as a replayed record of what took place during the simulation

run. It does not allow the decision-maker to interact with the simulation.

This causes the visualization component also to rely on simulation trace

statements produced by the simulation engine exclusively for visualization

purposes. Recent efforts by Rekapalli and Martinez, 2009 and Rekapalli and

Martinez, 2011 has focused on achieving two-way communication and user

interaction with the visualization component of a DES visualization.

13

• Tight coupling between simulation and visualization engines: Existing SDV

mechanisms and COTS packages are usually tightly coupled with whatever

simulation engine they serve. A particular visualization component will

usually work perfectly with a particular simulation engine but will be very

time consuming or knowledgably demanding to tailor it to work with other

simulation engines. This leads to compromises on the strengths of both the

simulation and visualization components. Also, this makes the two tightly

coupled components strong in depicting certain applications and weak when

it comes to depicting others. Finally this decreases the reusability these

tightly coupled frameworks or COTS packages and limits their use in day to

day construction operations.

• Compromising the power of the visualization components: Graphics usually

demands specialized and high computer processing power. Running

simulation models is also a demanding task on computer processors.

Running the two in parallel significantly increases the demand on computer

hardware and may be deemed infeasible in case of highly detailed

simulation and visualization models. In addition, there have been significant

advancements and optimization of software specially developed for handling

graphics and visualization tasks. Capitalizing on these advancements

requires the development of a mechanism to allow different specialized

simulation and visualization components to interoperate without limiting or

compromising the strengths of each.

Next, the pure visualization research in construction is reviewed. Also, the qualitative

guides from the literature that were utilized to conceptually design the visualization

component of the HSV framework that were used to design the visualization component

of the framework used to solve the resources tempo-spatial management problem

discussed in Chapter 4 (case study chapter).

2.4 Visualization in Construction Research and Conceptual Design of

Visualization Based on Visual Analytics and Display Design Principles

Data analysis through visualization has its appeal in the construction industry. The

representation of data in its visual format amplifies cognitive ability and reduces complex

cognitive work (Card et. al, 1999; Russell and Udaipurwala, 2004). Researchers have

14

proven that humans can derive an overview of information from data better and faster if it

is presented in a suitable visual format other than numerical scripts or tables (Russell et

al., 2009). Also, that visual information can be processed by the human perception

system in parallel as opposed to serial processing for textural information (Russell et al.,

2009). That is why using non-visual formats to display simulation results has contributed

to lack of simulation techniques utilization in the industry. This will be discussed later.

Visualization in construction engineering research can fall into one of the following

categories; construction processes simulation visualization, 4D modeling of construction

product with time, abstract construction management data visualization, 3D CAD

modeling or Building Information Modeling (BIM). This research is concerned more

with the first of these categories (SDV), as it introduces a new simulation visualization

framework based on HLA standards (HSV framework). The literature pertaining to this

category (SDV) was critically reviewed earlier.

Visualization was generally added to construction research to assist the decision-makers

in achieving faster insights and better understanding of information than representing in a

tabular or text format. This research goes beyond that by making use of the visualization

component of the HSV framework in solving both: the dynamic changes in site spaces

modeling and heavy lift resources mobilization pathfinding problem. The visualization

inside the framework does not exist merely to help the user understand the simulation; it

is mainly a tool to evaluate the various simulation scenarios and aid the decision making

process. Visual data exploration was also implemented in the design of the visualization

component of the HSV framework allowing the user to explore the depicted simulation

processes and changes in site layout while the simulation is running.

This section will start by reviewing the literature related to construction visualization

research in general. This will be followed by explaining the qualitative guides that could

be utilized to conceptually design the visualization component of the HSV framework.

These guides were used to design the visualization component of the framework used to

solve the resources tempo-spatial management problem discussed in Chapter 4 (case

study chapter). These design guides were utilized from the literature on visual analytics

design and display design. The technical details pertaining to the development of the

HSV framework and the framework’s applications in construction research will be

explained in chapter 3.

15

2.4.1 General Visualization research in construction

Visualization in construction is a way to analyze data. This can be referred to as Visual

Analytics; which is the science of analytical reasoning facilitated by interactive visual

interfaces (Russell et. al, 2009; Cook, 2005). Limited studies in the construction domain

discussed the good design practices of visualization in the industry. Other visualization

literature in the construction domain was focused on the technical aspects of visualization

design, whether it is depicting simulation of construction operations (SDV) or the end

product progress with project time (4D Modeling). From these studies, the ones

pertaining to SDV were critically reviewed earlier. The focus of this section is the

literature pertaining to generic visualization and visualization design in the construction

domain.

A rich literature has been developed over many years concentrating on 4D modeling of

the end product to be constructed and its progress over project duration. This is referred

to as 4D visualization. This research includes Mckinney and Fischer, 1998, Hessom and

Mahdjoubi, 2004, and other literature related to 4D modeling and Building Information

Modeling (BIM). The difference between 4D modeling and SDV is explained by Kamat

and Martinez, 2002. 4D modeling is related more to depicting the completion of the

constructed product or artifact to be constructed. The visualization in 4D modeling is

derived by the percentage completion of the project schedule. 4D modeling in

construction does not get into the details of resources interactions and depiction of the

construction processes itself. On the other hand, SDV depicts the various interactions that

take place in the simulated construction processes. These interactions could be between

various resources, resources and constructed product or resources and site spatial

representation. This HSV framework depicts the last 2 type of interactions which are the

essences of its use in resource mobilization planning in a dynamically changing site

layout. It is also worth mentioning that the visualization in SDV is simulation based and

not scheduling based. 4D modeling was also utilized to minimize the potential for design

and construction errors in the construction product, to determine the most suitable

construction sequence, and to monitor the project’s progress (Dawood et al., 2003;

Sirprasert et al., 2005).

Songer et al., 2004, focused on using visual analytics as a means to abstract construction

management data and make it more informative to the decision-maker or what he calls:

“solving data-rich-information poor problem”. Song et al., 2005, proposed a model for

16

displaying project’s data on the 3D building model itself (Song et al., 2005). They used

visual aids to assess project performance, while Zeb et al., 2008 used linear planning

charts to assess the project’s schedule quality. Zhang et al., 2009 used digital images with

a building information system to automate the calculation of project progress. A

comprehensive study pertaining to visualization design and visual analytics in the

construction domain was Russell et al., 2009. Russell et al. discussed the principles of

good visual analytic design which they borrowed from generic computer visualization

research. The guides that Russell et al., 2009 set for visual analytics design were utilized

in the conceptual design phases of the visualization component of the HSV framework

used to solve the heavy lift cranes pathfinding problem in the PCL Ft. Saskatchewan case

study discussed in Chapter 4. In that study, the authors proved a hypothesis that the

application of visual analytics to construction management functions improves the

various construction management processes, improves communication between the

various project parties, and improves decision making (Russell et al., 2009).

The design of visualizations to act as a form of visual analytics in the construction

industry is not an arbitrary process; however, there should be design criteria utilized to

carry out the conceptual design of the visualization. Substantive research and design

challenges must be addressed in formulating data representations and crafting them into

visual representations (Russell et al., 2009). Although Russell et al. discuss these criteria

in terms of construction management data analysis design, not an SDV design, yet still it

proved useful when conceptually designing the HSV framework’s visualization

component. Russell et al., 2009, go on to state these criteria which will be explained

further in the next section. The conceptual design of the visualization component of the

HSV framework used to solve the heavy lift cranes pathfinding problem in the PCL Ft.

Saskatchewan case study will be discussed in Chapter 4 (case study and implementation

chapter).

Among the design criteria that were utilized to conceptually design this framework’s

visualization component are the 13 display design principles (Wickens and Holland,

2000; Boff et al., 1986) which are summarized by Wickens et al. in their textbook on

human factors in Engineering (Wickens et al., 2004)
1
. These 13 generic principles are

1
 For a comprehensive summary of the 13 principles of display design, please see “An

Introduction to Human Factors Engineering” by Wickens et al., 2
nd

 edition, 2004, published by

Pearson Prentice Hall.

17

related to designing displays in general. The principles are related to strengths and

weakness in human perception and humans’ ability to process information. Although the

visualization component of this HSV framework goes beyond displaying the simulated

construction processes to also being an interface tool between the HSV framework and

the decision-maker, the visualization still basically depicts the simulated construction

processes. The decision-maker can use this interface tool to try different simulation

scenarios and assess various site layouts to decide on shortest resource mobilization

routes. This means that those display design principles can be applied to the design of this

visualization. It is through the careful application of these principles to the output of

information analysis that the best display emerges (Wickens et al., 2004). The principles

will be explained further in the next section.

2.4.2 Visualization Conceptual Design Methodology

The HSV framework’s visualization screens conceptual design together with the choice

of visualization behaviors that depict the various construction elements’ simulation states

was based on certain qualitative display design guides. These guides are established in

the literature of visual analytics and display designs. The design of visualizations is a new

area in the construction research as mentioned earlier in Section 2.2. The development of

the visualization component of the HSV framework was thought to be a good opportunity

to utilize these guides in the construction management research. It was important to

explain to the reader the basis on which the visualization component was conceptually

developed before applying these guides for visualization screen design in Chapter 4 and

before getting into the technical aspects of the framework’s design in Chapter 3. The

conceptual design of the visualization component of the HSV framework used to solve

the heavy lift cranes pathfinding problem in the PCL Ft. Saskatchewan case study

(Chapter 4) followed what is referred to as “the pillars of visual analytics effective

display design” (Russell et al., 2009). Then, the 13 principles of human perception

applied to display design (Wickens et al., 2004) were utilized in the translations of the

chosen simulation’s object classes attributes’ states into corresponding visualization

behaviors.

Figure 2-1 shows the iterative nature of conceptual design, the visualization literature

design guides and principles used in this visualization component conceptual design

process together with its relation to the framework’s technical design and utilization. The

figure also shows the logical link between the chapters of this thesis.

18

Figure 2-1 The relation between framework’s conceptual design, technical design and

framework’s utilization, together with the chapters discussing these areas

2.4.2.1 Visualization Component: Conceptual Design In Light Of Visual Analytics

Design Fundamentals

The term visual analytics environment refers to an information system that treats scenes

of one or more visual representations and accompanying user interaction features that

allows the decision-maker to interact with data and representations for analytic reasoning

purposes (Russell et al., 2009). It is important to draw a line between the difference

between the terms data visualization and visual analytics, where the former is considered

only a part of the latter.

The main concern of designing such visualization for the construction engineering

simulated process is the type of audience in the construction management decision-

making field who will try to comprehend certain facts from the visually depicted

processes. Heterogeneous user audiences with variable education backgrounds can exist

Visual Analytics: Decide on the purpose of

the framework

Display Design 13 Principles: For

represented data decide on ways of

transforming the simulation states to

visualization behaviors

Visual Analytics: Decide on the simulation

data to be represented

Framework’s visualization component

Technical Development, (Chapter 3)

Chapter 4

Framework Utilization in Ft. Saskatchewan site case study:

• Modeling future changes in site space and dynamic changes in Site layout.

• Finding resources’ safe shortest routes throughout the project’s lifecycle using the

framework’s extension.

• Validating simulation model and construction logic.

• Checking final product progress as simulation progresses.

• Depicting dynamic changes in site layout.

Conceptual

Design Phase

(Chapter 2)

19

in the same construction management team (Russell et al., 2009). Add to that the

variations in the type of visual representations that these audiences are used to (for

example 2D or 3D). Also, many construction data representation dimensions need to be

translated to visual representation for a better depiction of the processes (Russell et al.,

2009).

In addition to the above mentioned factors, an effective visual analytics design process is

based on the following pillars (main steps) which were gleaned from a review of various

visualization literatures by Russell et al., 2009:

• Understanding the purpose of design of visual analytics.

• Deciding on data to be represented (data representation) and the way to be

represented (data transformation).

• Designing the representation and decision-maker interactions with the

visualization.

These steps will be now explained before applying them to the conceptual design the

visualization in the case study (Chapter 4). First the purpose of having the visualization

should be known. Understanding the reasons behind the framework’s visualization

development is the key to which simulation object classes’ states need to be represented

in the visualization (data representation) and how they will be represented (data

transformation). Once the data to be represented based on the visual analytics purpose has

been chosen, it will be time to decide on the way that this simulation object classes’

attribute values will be transformed into visual behaviors. For the remaining aspects of

transforming the chosen represented simulation data to visualization behaviors, the 13

design principles of display design mentioned earlier will be utilized as guides for

creating these visual behaviors. This will be explained in section 2.3.2 of this chapter.

2.4.2.2 Visualization Behaviors Choices In Light Of the 13 Display Design Principles

When the framework was utilized in the Ft. Saskatchewan site case study to solve the

heavy lifting cranes pathfinding problem, (Chapter 4), the 13 display design principles

were conceptually used as guides to map the various Discrete Event Simulation (DES)

object classes’ attributes states into corresponding visual behaviors. This section contains

a briefing of those display design principles and the way they were utilized in the

20

translation processes of the simulation’s resources and products’ attributes values into

visual behaviors.

The HSV framework’s simulation visualization can be classified along 3 different

dimensions: the visualization physical properties, the tasks the visualization is designed

to support and the framework’s user properties (decision-makers’ attributes). Physical

properties of the HSV visualization screen include its classification as multi-coloured 3D

visualization. The link between the visualization’s display physical properties and

achieving the tasks it was designed for can be built by what is known in the literature as

the 13 display design principles. The link is made through building into the strengths of

the decision-makers’ perception, cognition and performance. The author thinks that the

application of these principles in building the visualization component of this framework

can act as a small initial step towards standardizing the simulation visualization

developments in the construction engineering research.

The principles can be broken down into 4 categories:

A- Perceptual Principles:

1. The visualization should be legible or understandable and easy to

comprehend by the decision-maker. Once the visualization design is

legible, the remaining design principles that fall in the perceptual category

can be applied to the design process. Figure 2-2 explains this conceptually.

Figure 2-2 Conceptual relation between the visualization perceptual design principles

Is the visualization

design making it more

legible to the decision-

makers?

2) Apply Avoid

Absolute

Judgment

principle to the

designing process

3) Apply Top-

Down processing

principle to the

designing process

4) Apply

Redundancy Gain

principle to the

designing process

5) Apply

Discriminability

principle to the

designing process

 Yes

21

2. The principle of avoiding absolute judgment limits states that nothing

should bound the judgment of the decision-maker when interpreting a

visualization behavior. For example, to require greater precision in color-

coded map with nine hues is to invite errors of judgment.

3. Top-down processing or the principle of immediate context of a display is

one other principle that was utilized when translating the simulation states

into visualization behaviors. This implies that all the similar simulation

events involving various object classes should be grouped and translated to

similar visualization behaviors.

4. The translation also followed the principle of redundancy gain. For

example, when the simulation triggers an event it should usually be

mapped into two simultaneous visualization behaviors on the visualization

display. This means that two different visualization behaviors represent a

single simulation event. This is not considered a repetition but it is an

application of the redundancy gain principle to stress the simulation event

translation inside the decision-maker’s mind.

5. Another principle used is the principle of discriminability. When different

instances of the same object class have their simulation states translated

into similar visualization behaviors, this can be confusing for the decision-

maker.

B. Mental Model Principles:

6. Visualization components should support the principle of pictorial realism

(Roscoe, 1968). The visualization should show a realistic picture of the

simulation.

7. Inside the framework, moving Object Classes’ 3D representations should

follow the principle of moving parts. This principle indicates that inside a

display, the elements that are involved in any type of movement should

follow a certain spatial pattern that is compatible with the user's mental

model of how this same element moves in the represented physical system.

To get a clearer perspective on how this principle can be applied to

construction operations SDV, one can say that; when a certain object is

transformed during a construction process, either this movement is a

22

translation or rotation, the simulation of this process should have an object

class that mimics how this object behaves in a real construction site. The

visualization of this simulated process will in turn have a model that

represents this object class, and the transformation(s) of this representation

should correspond to its simulated movement.

C. Principles Based on Attention:

Simulation driven visualization falls within the category of a complex,

multi-element display. Multi-element displays are characterized by the

need for three different categories of attention: selective attention, focused

attention and divided attention (Parasuraman et. al, 1984). The HSV

framework can have multiple displays (which will be explained in the

coming chapters). This means that a multiple simulated construction

operation can be visualized simultaneously. Before getting into the

application of these principles, it is worth explaining the various types of

attentions that will be considered in the visualization display design:

• Selective Attention: When multiple simulated construction operations

are depicted in a single or multi visualization screens in the HSV

framework, the user can select to only concentrate on the

visualization of a certain simulated construction operation.

• Focused Attention: The visual depiction of a selected simulated

construction operation should be clear to the viewer without

distractions from other construction processes being visualized.

• Divided Attention: This means that the HSV framework display

design took in consideration the possibility that the decision-makers’

judgement can also be based on divided attention between depicted

simulated construction operations taking place on the same

visualization screen.

The following 4 attention based principles were taken in consideration

when designing the visualization screens of the HSV framework

implemented in the Ft. Saskatchewan case study (Chapter 4) to solve the

heavy lift cranes pathfinding problem. These 4 principles help to capitalize

on the various categories of attention strengths mentioned earlier:

23

8. Minimizing the information access cost of the simulation visualization is

another principle used in the visualization display design. There is

typically a cost in time or effort for the decision-maker to move through

multiple visualization screens in a single project’s simulation. That is a

cost to move the decision-maker’s selective attention between different

depicted simulated construction processes.

9. The HSV framework visualization’s display design followed the principle

of proximity compatibility. The application of this principle meant that if a

simulation event is to be mapped into a visualization behavior, and this

event involves interactions of more than one type of the simulation’s object

classes, then the 3D models representing those different object classes

should be located in close proximity on the same display screen

(visualization).

10. The principle of multiple resources: This principle implies that the

visualization should be divided among various resources; for example, the

use of audio plus visual formats to create certain visualization.

D. Memory principles:

The visualization of the simulated processes should always address the

short and long term memory of the decision-makers. The last 3 display

design principles will address this matter.

11. The principle of replacing memory with visual information (Norman, 1988)

was utilized in the visualization design. In other words, the decision-maker

using the HSV framework should not be left to rely on his/her memory to

retrieve any data he/she uses to analyze a certain construction scenario

being simulated and visualized.

12. The visualization should help the user in predicting the expected outcome

of the simulated scenario. This is in accordance with the principle of

predictive aiding (supporting proactive behavior). This helps the decision-

maker using the framework to be proactive rather than reactive which adds

more to the importance of the visualization component of the framework.

24

13. The visualizations inside the framework should be consistent. Hence, old

habits from other displays (visualizations in our case) will transfer

positively to support processing of the new displays (Wickens et. al; 2004).

2.4.3 General Comments

This section discussed the visual analytics and display design principles that will be used

as guides in the conceptual design of the simulation visualization screens and simulation

states translations into visualization behaviors. These guides were gathered from various

visualization literatures. Although the visual analytics design guides were mainly used in

the construction research to enhance construction management data visualization, they

proved to be resourceful guides in the conceptual design process of the visualization

screens in this framework. In addition, the 13 principles of display design which will be

used in the mapping of simulation states into visualization behaviors inside the

framework were defined. These principles were the output of a through literature review

on the guides of computer visualization interface and display designs. In the following

chapters, the technical details of the framework development, together with the

framework’s utilization to improve both: heavy lift resources mobilization planning and

site space modeling in construction projects will be discussed. The implementation of the

discussed visualization and display design principles in the conceptual design of the

framework’s visualization components will be discussed in the case study chapter

(Chapter 4).

25

Chapter 3: Problem Solving Methodology, Framework and

Pathfinding Mechanism Extension Developments

3.1 Introduction and Problem Definition

Simulation models fail to model site spaces in an intuitive way. On the other hand 3D

modeling has proved to be a valuable tool when it comes to modeling geometry of

shapes. In order to build on the simulation’s modeling capabilities and 3D modeling’s

geometry depiction capabilities, and to overcome the limitations of simulation mentioned

in Chapter 2, researchers turned to SDV as a tool that could better model the changes in

site space. The shortcomings in current site space modeling research were discussed

earlier in Chapter 2. SDV incorporates 2D and 3D depictions and animation to provide

the end user with better representation and understanding of construction operations and

space. Also, SDV addresses the limitations of using stand-alone animation or simulation

systems where graphical representations of construction operations and simulation of

activity timing and resource interactions are separate and independent of each other.

To overcome the limitations in state of the art construction operations SDV mechanisms

that were developed through recent construction research (discussed in Chapter 2), a

loosely coupled simulation visualization framework was developed (ElNimr and

Mohamed, 2010; 2011). The HSV framework (ElNimr and Mohamed, 2010; 2011) is

employed to model changes in site space with time and study their effects on resource

paths onsite using a pathfinding mechanism implemented inside the visualization

component.

This developed HSV framework does not produce single or multi-optimal site layouts,

but simulates and depicts the changes in site space with time through each stage of the

project. This is done by integrating a Discrete Event Simulation (DES) engine with a 3D

engine in the developed SDV framework. The HSV framework depicts a changing site

layout as at a real site. The framework takes models changes in site space due to both

temporary facilities’ and permanent structural elements’ locations when depicting layouts

and calculating shortest resource routes throughout the project’s lifecycle.

The developed HSV framework provides an intuitive depiction of changes in site space

throughout the entire project lifecycle. The heavy lift resources shortest safe pathfinding

task performed by the framework’s pathfinding extension is based on the changes in site

space (changes in site layout). This is done through the framework’s visualization

26

component connected to the simulation model and the pathfinding mechanism developed

inside this component for mobile resources pathfinding. Also, the HSV framework takes

into consideration the safety factor when planning resources mobilizations given the

changes in site space.

Based on that HSV framework can be a strong tool in modeling site space geometry. An

application of modeling changes in site space geometry that result from dynamic changes

in site layout, is modeling the changes in the geometry of mobile resources paths in a

changing site layout.

Throughout a project’s development, there are various objects with variant geometries

occupying the spaces in a construction area. These objects can be; permanent structures

(for example structural elements) which occupies more site space monotonically as the

project time proceeds, or temporary site facilities which can be mobile and/or change

their geometry as project time proceeds. All these objects cause changes in both; the site

space geometry and mobile resources paths on site. Modeling a site’s spatial data in an

intuitive way inside simulation and then finding the heavy lift resources’ shortest safe

travel paths on a dynamically changing site layout with changing geometries is the

problem this research is trying to address. This chapter explains the solution suggested by

this research for this problem. The research presents a SDV framework based on

distributed simulation High Level Architecture (HLA) standards with a Pathfinding

Mechanism Extension (PME) to model site spaces geometry and find the shortest safe

routes based on changes in these spaces. This chapter explains this generic framework

and the methodological development steps for this framework.

The chapter starts by explaining and analyzing the general mobile resources pathfinding

problem in a continually changing site layout and formulating it as an intelligent agent

search problem. The chapter then explains the algorithms implemented in the PME of the

framework to find the mobile objects shortest safe paths in dynamically changing site

geometry. The choice of this pathfinding algorithm is also explained. Next, the SDV

framework developed to depict simulated construction operations and model sites’ spatial

data geometries accordingly is explained. The development of this framework; HLA

based Framework for Construction Operations Simulation Visualization (HSV); is then

described. The pathfinding mechanism implemented in the framework’s PME is then

explained. The mechanism which is made up of 2 interoperable components; mesh

27

generation mechanism and A* pathfinding algorithm finds the shortest safe routes in a

continually changing site geometry based on changes in site’s spatial data. Modeling of

changes in site space based on construction processes simulation depictions is explained

prior to the PME of the framework because modeling changes in site geometry and site

space is a prerequisite to applying the pathfinding search mechanism as it will be

explained later. The next chapter will showcase a comprehensive case study in which the

HSV framework and its PME component are utilized to model changes in site space and

plan resources mobilizations throughout the project’s simulated lifecycle.

3.2 Search Algorithms and the A* Algorithm
2

This section will discuss search algorithms, focusing on the A* algorithm implemented

inside the HSV framework to solve the pathfinding problem in a site with changing

geometrical layout. It will begin by discussing search problems, their formulation, and

how the resource pathfinding problem in a dynamically changing site falls in this

category of problems. Then the section will explain the reasons for choosing the A*

search algorithm to use in the visualization component’s PME of this framework in order

to solve this search problem.

3.2.1 Formulating Construction Sites Pathfinding Problem as a Search Problem

Resources paths can generally be used for labor or heavy lift mobile resources

mobilization. Expensive operating costs are usually associated with heavy lift mobile

resources as it will be shown in Chapter 4 (case study chapter). In order to find these

paths in a continually changing site geometry (dynamically changing site layout), there is

a need for a solution that models future changes in site space throughout the project

duration and then search for, and find the shortest safe mobile objects paths on the current

site geometry, depending on site space availability.

Search in artificial intelligence refers to an object (agent) examining different possible

sequences of actions that lead to states of known values, then choosing the best sequence

based on the desired search criteria. A search algorithm returns a solution in the form of

an action sequence. The first step in employing a search algorithm is to formulate this

pathfinding problem as one that can be solved by implementing a search algorithm.

2
 Russell and Norvig’s Artificial Intelligence: A Modern Approach 2

nd
 Edition (2003), Chapters 2,

3 and 4 are the source of much of the information included in this section. For more information

and derivation please check the aforementioned textbook.

28

The site resources’ shortest path search problem can be formulated in terms of the

following, as per search problems classification of Russell and Norvig (2003):

• Initial State: The object’s initial location at the current site geometry. Can be

expressed as “In<LocationID>”. For example, if a resource is at Location 5 on

the current site layout geometry, then its initial state is “In<5>”.

• Goal State: The object’s goal location. For example, if a resource needs to be

moved from Location 5 to a certain lifting location, Location 9, the Goal State

can be formulated as “In<9>”.

• State Space: The set of all states reachable by an object from the initial state. For

example, if a resource is at certain site location represented by certain

coordinates, the State Space is all the other locations (states) that can be reached

from this location. The State Space (reachable states) can be connected through a

graph; this graph could be represented by a tree or grid. In our case the grid was

chosen to cover modeled site spaces. The grid was chosen to cover the site layout

(Figure 3-9) for the following reasons:

o In this type of problem, a search algorithm has a high possibility of going

through states (positions onsite) that have been already processed and

considered not to fall on the shortest path between Initial and Goal

States. This is called the “repeated states problem” (Russell and Norvig,

2003). Such a problem can cause a solvable search problem to become

unsolvable if the algorithm cannot detect these repeated states. To avoid

this problem, a graph-search algorithm rather than a tree-search

algorithm is implemented. Graph-search algorithms (such as various

forms of best-first search algorithms) are much more efficient than tree-

search algorithms (such as breadth-first, uniform-cost and depth-first

algorithms) in solving problems with expected many repeated searches

(Russell and Norvig, 2003). A graph-search algorithm uses a grid rather

than a tree to search the State Space.

o A grid is the most intuitive way to cover the site area and accommodate

for changes in site space geometry, as shown in Figure 3-9. Hence, each

object path can be represented as a network of edges forming the grid. In

other words, the nodes are the object’s new locations (states), while the

edges connecting them are the actions to reach those states. An algorithm

29

was implemented that utilizes nodes and edges to find the least-

expensive, obstacle-free path onsite for mobile objects.

o The grid (mesh) best models the objects’ movement states, as it covers

more possible mobile objects’ states on the site space, allowing the

object to move between any two states. The tree on the other hand would

have limited the states that a resource can move on.

o A grid is ideal to use with the mesh generation mechanism to depict

changes in site space as will be explained later.

• Path Cost: The function that assigns cost to each object path. This will be the A*

function, which will be explained in the next section. The Path Cost function in

this case gives a distance, as the pathfinding mechanism is trying to obtain the

shortest path for the movements of site’s mobile objects.

• Actions: The set of actions that an object can take in order to move from one

state to another before ultimately reaching the Goal State if a solution is found.

For example, a resource needs to travel from one location to another taking the

shortest alternative until reaching its intended lift location (Goal State).

• Goal Test: Tests if the object has reached its Goal State or not.

Now that the shortest resource paths search problem in a dynamically changing site

layout is formulated in terms of the above elements, it is time to discuss the reasons

behind the choice of the A* search algorithm to solve this problem.

3.2.2 The Choice of A* Search Algorithm: Reasons and Proof

The search algorithm used here is the A* algorithm. A* is a widely used graph-search

algorithm, invented in 1968 by Peter Hart, Nils Nillson, and Bertram Raphael. It is an

informed search algorithm, meaning that the algorithm can differentiate if any of the

states of an object are better (more promising) than others in reaching the goal state.

The A* algorithm depends on an evaluation function ����	to decide on the mesh or

graph node to expand to next. This ���� function measures the distance to the goal, and

the lowest evaluation is selected for expansion. The ����	 function is achieved by adding

two functions: 	����	and		ℎ���. The	���� function measures the exact distance from the

start node to current processed node on a graph. The ℎ���	is a heuristic function	and a

key component of this algorithm. It estimates the distance from the current node to the

goal node on the site mesh. This heuristic function contributed to the choice of this

30

algorithm rather than other search algorithms to solve the pathfinding problem. This will

be explained in detail later in this section. Also, the A* algorithm takes into consideration

the distance from the start node to the current node, in addition to the heuristic

component of the equation as illustrated in Equation 1 below. The way in which this

algorithm solves the resources’ pathfinding problem inside the HSV framework will be

explained in section 3.4.

The A* algorithm uses the following evaluation function:

���� = ���� + ℎ���........ (1)

Where,

						�	 : Node being processed by the algorithm

���� : A* evaluation function that represents estimated cost of the shortest solution

through node	�.

����	: The cost to reach the current node � from start node.

ℎ���	: Estimated cost of the shortest path from node N to the goal node �	

There are a number of search algorithms that find the shortest accessible path employing

edges and nodes (either graph or tree search). The choice of the A* algorithm rather than

other pathfinding algorithms was based on several research steps. The research steps will

be analyzed in a systematic way to show how the decision to use the A* algorithm was

ultimately reached:

• An informed search algorithm (such as A*) was preferred over an un-informed

search algorithm (such as depth-first and breadth-first) for the following reasons:

o Un-informed search algorithms (also called blind search) can’t tell if any

state of the searching object is more promising than another in terms of

reaching the goal state (lifting location for resource).

o Un-informed search strategies can be computationally expensive yet not

reach an optimum solution. Russell and Norvig (2003) set out with 4

criteria to assess the various search algorithms: (1) Completeness—does

the algorithm find a solution when there is one, (2) Optimality—does it

find the optimal solution (the shortest path in our case), (3) Time

complexity—how long does it take to find a solution in terms of

31

processing time, and (4) Space complexity—how much memory is

needed to perform the search. The major types of un-informed search

algorithms were evaluated based on these criteria.
3
Un-informed

algorithms usually have high time and space complexities that can hinder

(slow down) the communication and time management between the

simulation and visualization components of the framework. The un-

informed algorithms that might be low on time and space complexity are

not guaranteed to be complete or optimal in finding the shortest path.

o Informed search algorithms, on the other hand, are complete and optimal,

provided that the heuristic part of the evaluation equation, ℎ���, does not

overestimate the distance to the target.

o Un-informed search techniques usually use an explicit search tree as their

State Space; on the other hand, informed search algorithms (like A*

algorithm) have the ability to use graphs as their search space. The

advantages of using graph search were explained earlier.

• Now, the reasons behind choosing the A* algorithm rather than other types of

informed search algorithms are discussed:

o The A* algorithm has an exact cost function ���� in addition to its

heuristic function		ℎ���. Thus it is able to avoid the shortcomings of

informed algorithms that depend only on heuristic functions which

usually underestimate the path cost (Russell and Norvig, 2003).

o The A* algorithm takes into consideration the distance already travelled

by the resource. This is ideal to resource travelling problems since an

educated estimate of a resource’s total movement is needed, not only a

segment of the movement.

o Among all the algorithms that are considered optimal, there is no other

algorithm that is guaranteed to expand to fewer nodes before reaching

the shortest path than the A* algorithm (Russell and Norvig, 2003). This

provides fast processing of shortest paths, sending timely feedback on

resource movement planning to the simulation component of the

framework.

3
For further information on how these criteria are applied please see Russell and Norvig’s

Artificial Intelligence: A Modern Approach 2
nd

 Edition, chapter 3.

32

o The A* algorithm is a typical single-pair shortest-path problem solving

algorithm. The resources’ shortest path problem falls in this category of

problems. Each resource in a construction site has only a single origin

point and a single destination that it moves between.

It is worth mentioning that since a graph (mesh grid) rather than a tree is being utilized

here as the State Space, the A* algorithm is guaranteed to discover the shortest(optimal)

paths onsite if, and only if, its heuristic function ℎ���	is both admissible and monotonic

(Russell and Norvig, 2003). To show that	ℎ���, which is equivalent to ℎ���, would give

the optimal problem solution, the following proof is demonstrated:

Figure 3-1 shows an extract of the mesh generated by the mesh generation mechanism to

capture and model changes in a site’s spaces. This extract is used to prove that the A*

search algorithm will always give a resource’s shortest path regardless of the current site

layout.

Figure 3-1 An extract of the node mesh (grid) generated by mesh generation mechanism

covering a site to prove that the A* algorithm will give optimal results for this search

problem

Since the A* algorithm is used here for a node mesh (Figure 3-1 and Figure 3-9), it will

produce only optimum results (real shortest resource route) if and only if ℎ���	satisfies

the requirement of monotonicity (consistency) (Russell and Norvig, 2003).

The ℎ���	function satisfies the requirement of monotonicity if for every node �� � and

every successor node ���� of node �� �, the estimated cost of reaching the goal node �	

from � is not greater than the step cost of getting to ���� from �� � plus the cost of

reaching �	 from ��.

That is	∀" , ℎ���	 is consistent if	∀":

33

ℎ�� � ≤ $�� , ��� + ℎ���� ……. (2)

Therefore, to prove that the A* search algorithm, will give the shortest path for any

mobile object in any given site layout, inequality (2) has to be proven true for the chosen

mesh.

To prove that, Euclidian distances (straight line distance) are used inside the A*

algorithm implemented in the HSV framework to estimate	ℎ���, ℎ��� in this case

becomes the ℎ������	which is equal to:

ℎ������ = %&��'� − �	�'�)*	 + &��+� − �	�+�)*
 …… (3)

Where,

��'�		: X-Coordinate value of Node ���

�	�'�: X-Coordinate value of Goal Node �	

��+�		: Y-Coordinate value of Node ���

�	�+�: Y-Coordinate value of Goal Node �	

This makes inequality (2) a simple triangle inequality that will be satisfied for any node

��� on the mesh node covering the site. To demonstrate that in Figure 3-1 (above) the

dotted line represents	ℎ�����,�, or the heuristic distance of node �, to the goal node.

Further, 	according to inequality (2) the following should be true:

	ℎ�����,�,≤ $��,, �-� + ℎ��-�

But, ℎ��-� = ℎ�����-�		since Euclidian distance is used inside the implemented A*

algorithm; therefore, it can be represented as:

ℎ�����,� ≤ $��,, �-� +	ℎ�����-�		
Hence, from Figure 3-1,	ℎ�����-� = 	.��-, �	�. Therefore,

	ℎ�����,� ≤ $��,, �-� + 	.��-, �	�, which can be shown as true from Figure 3-1.

Therefore, ℎ���	is Consistent	∀", and the A* algorithm implemented inside the

visualization component of this framework will produce the shortest paths for the various

project resources given different site layouts.

34

It is worth mentioning that the A* search algorithm will give the shortest paths, but it will

not search for the obstacle-free paths when the site layout changes. To overcome this,

another mechanism was implemented to work hand-in-hand with the A* search algorithm

 the mesh generation mechanism. This mechanism will change the generated node

mesh every time a site’s geometry is changed through an update to the site’s spaces or

layout by the project’s simulation component, as it will be explained later in this chapter.

3.3 HSV Framework Development

As it was mentioned earlier, the representation of site’s geometry is a prerequisite to the

operation of the pathfinding mechanism. The site geometry changes are based on the

project’s progress. There is always a change in the site geometry due to: (1) Changes in

site space which happen because of permanent structures monotonic addition to the site

area, and (2) Changes in the locations and geometry of objects representing temporary

site facilities. A project’s progress is simulated through simulation based modeling;

however this type of modeling does not have the ability to depict/model changes in site

geometry. A visualization component that concurrently depicts the simulated project

processes with corresponding changes in a site layout is added to this simulation

modeling to model these changes in site geometry. That is, SDV is used here to enhance

the site spatial data and geometry modeling.

In Chapter 2, some state of the art construction SDV mechanisms and frameworks that

were explained in recent research were reviewed. Although these frameworks and

mechanism have contributed towards SDV construction research, they have their

limitations which were discussed in Chapter 2. These limitations prevent the effective

utilization of these SDV frameworks in modeling the changes in site spaces that result

from the simulation.

To effectively model the changes in site space that result from the simulation, this

research proposes a loosely coupled simulation visualization framework. In this

framework, the execution of the visualization components is parallel and independent

from the simulation engine. Execution of these components can also be carried by

completely separate and dedicated computer systems allowing the utilization of the

strength of each component independently and exclusively. In addition, the framework

capitalizes on existing high-level 3D graphic engines to reduce the effort required to

customize and develop the visualization components.

35

This section discusses the proposed framework. The framework capitalizes on gaming

technologies in the search for an effective method to visualize simulated construction

operations and model both; the changes in site geometry and site space based on that.

This section also presents the architecture of the framework and the incorporation of the

3D engines as the core of the visualization component of this framework. In addition, it

discusses the benefits and challenges experienced during development.

The following sections will discuss further extension of the framework to utilize it in: (1)

Solving the resources pathfinding problem, and (2) Planning onsite resources

mobilization. This is based on the framework’s ability to model changes in both site’s

geometry and site’s spatial data.

Therefore, this initially develops the tool (framework) that:

• Depicts simulated construction processes, the final construction product

development and the construction resources interactions on site together with

their respective positions based on the project’s simulation scenario.

• Depicts changes in site layout and site geometry based on the project’s

simulation. The current site geometry (spatial data and layout) are then used by

the framework’s PME to solve the pathfinding problem.

This section will explain the development of this new HSV framework.

3.3.1 HSV Framework and Underlying Distributed Simulation Standards

The proposed High Level Architecture (HLA)- based Simulation Visualization

framework which can be referred to as HSV framework for short is based on the

distributed simulation standard known as HLA (IEEE 1516.2000). Distributed simulation

is a technology that enables models to be linked together over computer networks so that

they work together (or interoperate) during a simulation run. HLA is a set of standards

that regulates distributed simulation development (Taylor et al., 2003). In HLA, each

simulation is connected with the others through Runtime Infrastructure (RTI) software.

The simulations or models connected to the RTI are called Federates and a collection of

them working together to simulate the same system is known as a Federation. A federate

is not required to be a simulation model, but can be any piece of software or hardware, or

even an interface to human user (user-in-the-loop), as long as each federate complies with

36

HLA standards (Rycerz et al., 2007). RTI facilitates communication between federates

and performs time management of the simulation. A key component of a Federation

(collection of federates) is the Federation Object Model (FOM) which defines all the

entities produced by the various federates during the simulation run, states the attributes

of those entities and information about which federates will update those entities'

attributes (i.e. publish them), and which federates will read them (i.e., subscribe to them).

For example, in the proposed HSV framework, federates responsible for the visualization

may only subscribe to some attributes, while federates responsible for simulation

behaviors generation can write and read (publish and subscribe) these attributes.

Figure 3-2 shows the HSV concept, typical components and communications between the

visualization federate(s) on one hand and other functional/simulation federates on the

other hand.

Figure 3-2 HSV framework concept and communication

As shown in Figure 3-2, the following are typical components that are part of the

framework or can be connected to it:

• Visualization Federate(s): Communicates with the source simulation or any

other federate. It depicts the construction operation simulation concurrently as

the simulation time advances to reflect what is going on in the simulation

instantly. The visualization federate has a 3D engine such as Blender Game

Engine (BGE) or TrueVision3D® at its core. Chapter 4 will showcase a

37

comprehensive case study which involves the implementation of the HSV

framework with a BGE based visualization component. Another smaller case

study will have the visualization component of the HSV framework based on a

TrueVision3D® engine will be discussed later in this chapter.

• Source Simulation Federate(s): That is where the simulation of the various

construction processes takes place. Also, simulation time is usually advanced

by these federates. They connect to their respective Viewer Federate through

the RTI.

• Other Functional Federates: Any other federates that may provide supporting

services to the federation. For example, a database federate or a CAD Model

federate used to extract simulated objects' attributes values from external

information systems or CAD systems to update them during the simulation run.

It is worth mentioning that the framework’s development is a collective research team

effort. The main components that were done through this research are the visualization

federates, visualization engines and their connections, other developments such as the

simulation components of the framework are beyond the scope of this research. All

communications between the various federates go through the RTI using standard HLA

protocols. Federates simulating various construction processes can be added or removed

from the federation. Visualization Federate(s) can be connected to allow simultaneous

visualization of various simulated construction operations. The visualization is concurrent

with the simulation, which allows the user to see the simulation as it is happening and

provides a better representation of the changes in a construction site’s spatial aspects and

the logic of the construction process.

The following section will discuss the development of the 2-way data communication

between the simulation and visualization components of the framework.

3.3.2 The Two-Way Communication between the Simulation and Visualization

Components and Framework Time Management

The communications between the simulation and visualization components of the

framework are done through several layers. The visualization federates reflect the

simulation’s object classes attributes values as they are updated by the simulation models.

These reflections are communicated between the two federates through the RTI of the

HLA configuration. On the other hand, the viewer federates and the 3D visualization

38

engine(s) communicate through a network User Datagram Protocol (UDP), which

provides language-independent communications between the .NET based HLA

federation and 3D engine.

This UDP connection allows communication in both ways, where each of the Viewer

Federates and the 3D engine act as both servers and clients. The Visualization Federate

does not act only as a client to send simulation messages to the 3D engine, but also acts

simultaneously as a server to receive information from the 3D engine. The same goes for

the 3D engine, which acts as a client to send information to the running simulation, and at

the same times acts as a server to receive the changing values of the simulation object

class attributes. This 2-way communication development was necessary in order for the

3D engine to depict and model an updated site layout (geometry), which changes as the

simulation is running (dynamic site layout), and in turn send the site pathfinding analysis

results to the running simulation as it will be described in the next case study chapter.

Figure 3-3 below explains the simple concept behind this two-way communication

Network UDP connection used in the HSV framework.

 Figure 3-3 The fundamental concept behind the Network UDP

Different ports have to be assigned for sending and receiving per application. The use of

a network UDP method as a means of two-way communication has built on the strength

already inherent in distributed simulation HLA standards, by allowing the site

visualization 3D Engine component and the construction simulation component to

physically work—exist on—different terminals connected through networks. This is an

asset in itself, as it allows different members of a construction team to assess the

39

outcomes of running the framework from different physical locations, evaluating

different simulation scenarios. Operating the framework using federates which are

distributed to different physical locations was already tested and proven successful. In

this case, the connection takes place on different ports with different IP addresses instead

of having all ports on the local host. The sending and receiving ports on each side are

conceptually explained in Figure 3-4 below.

Figure 3-4 Different ports could be on different workstations or on the same local host

It was necessary to make the visualization component talk back to the simulation

component in order to send the results of running the pathfinding mechanism on the

current site’s layout geometry back to the construction simulation during its run as it will

be shown in the next Chapter.

Another interesting aspect of this framework is how the simulation time is synchronized

between the simulation and visualization components of the framework. Time

management inside the framework is organized through strict HLA IEEE standards.

These standards set certain federates to be time-regulating and others to be time-

constrained. This means that the overall simulation time of the federation is controlled

through time regulating federates which do not allow the global simulation time of the

federation to advance unless they send a “Time Advancement Grant” to the RTI. The

grant is sent once all the simulation events that should be processed before the requested

advancement time (time the federation will advance to) are fired.

On the other hand, time-constrained federates, such as the Visualization Federate(s);

advance their times according to the messages from the Time Regulating Federates

(Simulation Federates).

PORT X

PORT Y

Viewer

Federates

& Discrete

Event

Simulation

Component

3D engine

based

Visualization

Send Receive

Send Receive

LocalHost or IP Address

LocalHost or IP Address

40

The next chapter (Chapter 4) will showcase a comprehensive case study that implements

the integrated HSV framework with its PME and applies them to a real construction

problem putting both; the framework’s ability to model sites’ spatial data, and its PME’s

ability to solve a complicated construction pathfinding problem to use. However, it was

necessary, before implementing the pathfinding mechanism into the framework, to make

sure that the suggested framework architecture will allow the various simulation and

visualization components to interoperate and function in the desired way. In order to do

that, a testing development in which various simulation and visualization federates are

connected through the HLA standards and UDPs to create a construction bidding

simulation game was done. This bidding simulation game development is explained in

Appendix I.

3.4 Implementation and Operation of Pathfinding Mechanism Extension

(PME)

In this section the overall pathfinding mechanism consisting of the mesh generation

mechanism and the A* algorithm will be detailed. The pathfinding mechanism is the core

of the PME that will be implemented inside the 3D engine of the HSV’s visualization

component. The next chapter will showcase a comprehensive example that explains the

pathfinding process and how the construction industry benefits from it.

A set of flow charts below, Figures 3-5 to 3-8, explain the pathfinding mechanism

implemented inside the HSV framework’s visualization component 3D engine.

Figure 3-5 conceptually explains the data exchange between the simulation and

visualization components during the simulation run, together with the inputs and outputs

to the pathfinding mechanism.

41

Figure 3-5 Conceptual data exchange between simulation and visualization components of the

framework and inputs and outputs to the pathfinding mechanism

Figure 3-6 explains the overall operation of the pathfinding mechanism. It explains the

interoperability between the mesh generation mechanism and the A* algorithm.

Therefore, this is referred to as the pathfinding mechanism Parent Flowchart since it is at

the top of the hierarchy. This Parent Flowchart provides a graphical representation for the

overall process explained in this section.

 From

Simulation
Component

of the HSV

Framework

To Simulation
Component

Simulation Time
(T)

3D Visualization Engine (Visualization Component)

Constructed
Element

Completion

(Progress)

Constructed

Element Location
(Permanent

Structure

Geometry)

Requested
Resoure

Resource Initial

Location (Start
Node)

Pathfinding

Mechanism

Into

Flowchart
hierarchy

(Figures 3-6,

3-7 and 3-8)

Resource Final
Location (Target

Node)

Site 3D

Visualization

Model

(Dynamically
Changing Site

Layout-Different

site Space
geometry)

Key Resources 3D
Models (Resource

Geometry)

Temporary Structures Locations
(Temporary Facilities Geometry)

Resources Obstacle-

Free Path (Avoid

Collisions)

Resource Shortest Path

Resource Minimum

Mobilization Time

Visual Depiction of

site at time T

INPUTS

Outputs

42

Figure 3-6 HSV pathfinding process Parent Flowchart showing interoperability between the mesh

generation mechanism and the A* algorithm

Initial Mesh Generation Mechanism

Check if terrain

is admissible

Draw a mesh dividing Resources

Admissible Site Space (RASS) into

edges and nodes

Resources Forbidden Site

Space (RFSS) occupied by

a temporary facility or
permanent structure object

at start of simulation (no

mesh in it)

Translate start and target locations of
resource into start and target node

Site Layout &
Geometry from 3D

visualization at time T

Resource movement

published by
simulation at time T

Yes

A* Pathfinding

Algorithm

Into Grandchild

Flowchart (Figure 3-8:

A* algorithm)

Resource movement
Initial location and

targeted location

from simulation

Simulation Federate: Simulation

run complete

No

Into Child Flowchart

(Figure 3-7: Mesh

Generation Mechanism)

No

Yes

43

Figure 3-7 explains the mesh generation part of the pathfinding mechanism. It is the

Child Flowchart since the mesh generated by the mesh generation mechanism is a

prerequisite to the operability of the A* algorithm. This Child Flowchart provides a

graphical representation for the process explained in Section 3.4.1 of this chapter.

Changes to site

layout due to

permanent
structures objects

added to site layout

at simulation time
Tp where Tp<T

Draw a new mesh on RASS based on new

permanent structure and temporary facilities
occupation of site areas that were free at

simulation time Tp

Draw a new mesh dividing RASS into

edges and nodes based on new temporary

facilities objects occupation of site areas

Site layout &

Objects Geometry

from 3D

 Yes

Check if any
temporary

facilities objects

have been moved /
installed at new

site areas

Draw a new mesh on RASS based on new

permanent structure occupation of site areas

that were free at simulation time Tp No

Site layout &

Geometry from 3D

visualization at time T

No

Check if any

temporary

facilities objects
have been

moved /

installed at new
site areas

 No

To Parent

Flowchart

Figure 3-6

No new mesh needed;
same mesh will be

used for the current

simulation time (T)

Figure 3-7 Child Flowchart explaining the concept of the mesh generation mechanism

From Parent Level Flowchart (Figure 3-6)

 Yes

 Yes

44

Figure 3-8 explains the A* algorithm part of the pathfinding mechanism. It is the

Grandchild Flowchart since its operation depends on the mesh generation mechanism

dividing the Resources Admissible Site Space (RASS) into nodes and edges. This

Grandchild Flowchart provides a graphical representation for the process explained in

Section 3.4.2 of this chapter.

45

 No

 No

 Yes

 No

Yes

Yes

No

 Yes

 Yes

 No

 No

Figure 3-8 Grandchild Flowchart: A* algorithm

 Yes

 No

 No

 Yes

Yes

Add nodes on

RASS to Open

List and Make
start node their

Parent
For nodes
in Open

List, check

for the one
with lowest

F Score

Add to Closed
List, Mark as

current Node

Keep

node in
open list

Check each

adjacent node to
current node. Is it

on RASS?

Ignore it

Check each adjacent

Node to current
node. Is it on Closed

List?

Is it in Open List?

Calculate new G
score for each

node of those

passing through
current node

Add to Open List

Make current node its

parent

Calculate the F score for each
node with current node as its

parent and update their scores

in the Open List

Check if new

G Score < Last

G score, (the
path is

shortest)

Keep in Open List, with original
parent and, and original F score

Move resource on specified route and mark

route on the 3D visualization screen

Check if all

adjacent nodes on
the RASS are on

Closed List

Work backward from child to parent to define resource shortest safe path

Tell the simulation
no feasible route

for requested

resource

Reached target

node

Send simulation the expected travel time

for resource, & distance based on
average resource speed from DB

Updated Open List

Resources’
3D models

Add start node to Closed List

For each
adjacent Node

to start node,

check if it is
on RASS

Ignore it

To Parent Flowchart (Figure 3-6)

From

Parent

Flowchart

(Figure 3-6)

46

The overall pathfinding mechanism will be explained first in this section with its inputs

and outputs from and to simulation components respectively. After that, the two main

components (mesh generation mechanism and A* algorithm) integrated to make up the

mechanism will be explained in separate sub-sections.

Before the simulation run starts, a complete 3D prototype of the construction site is

produced inside the visualization component’s 3D engine. This prototype, which can be

imported from AutoCAD 3D or other, drafting packages, contains the initial layout and

geometry of the construction site at time zero (i.e., before the mobilization phase of the

key mobile resources commences or any objects representing permanent structures

geometry added). Also, a repository containing CAD models representing; key mobile

resources, products and permanent structures should exist for the simulation visualization

of the construction processes. The key mobile resources are those characterized by the

following:

• Used to perform critical project activities

• Expensive to mobilize in terms of time and rental costs.

A construction decision-maker plans ahead for the utilization of resources. Also, these are

the resources that are affected by the dynamic changes in site layout that result from

changes in site objects (temporary and permanent facilities representations) geometry.

In this initial site prototype, the decision-maker starts to assign locations to the 3D

objects representing temporary site facilities such as engineering offices or rebar

workshops. These 3D objects’ locations and geometry can change throughout the course

of the project, although these changes are not part of the inputs that usually come from

the project’s Construction Simulation Federate. The HSV framework gives the decision-

maker the ability to continuously update temporary site facilities representations through

the visualization screen during the course of the simulation run.

Once the initial site plot at construction time zero is produced and temporary site

facilities 3D object representations’ locations and geometry are represented, the

visualization component depicts the initial site layout. Once the simulation starts running,

the visualization component will start to depict the various construction processes as well

as the changes in site space that happen as a result of these processes and the work

progress.

47

The visualization component’s 3D engine depicts the changes in site layout and site

geometry by receiving updates on the following from the Construction Simulation

Federate(s) (inputs shown in Figure 3-5):

• Changes in Product Class attributes (permanent structural elements):

o Updates on the product progress.

o Updates on the product’s location and geometry onsite.

• Changes in Mobile Resources Class attributes:

o Resource to be utilized during certain periods of the project.

o Resources’ site locations during a certain period of the project.

• Interactions between the object classes mentioned above:

o Interactions of elements of the final product with mobile

resources during the construction process. For example, a

module being in lift by a crane before getting it to its final set

point.

• The simulation time.

The visualization component receives these messages concurrently as the simulation is

running. The pathfinding mechanism then uses these inputs from the simulation

component to find the least-expensive, safe path for each resource mobilization event and

sends a feedback analysis of the mobilization event to simulation. The outputs are shown

in Figure 3-5.

The operation of the pathfinding mechanism inside the Visualization Federate can be

divided into two major phases:

• The mesh generation mechanism phase: The mesh generation mechanism

categorizes the modeled site spaces into: Resources Admissible Site Space

(RASS), and Resources Forbidden Site Space (RFSS). The RASS is the site

space that is not occupied by objects representing temporary facilities or

permanent structures and can be used by mobile objects (depending on these

objects geometry and the space geometry) for manoeuvring and/or form a part of

the object’s road geometry. On the other hand RFSS is the site space that is

occupied by objects representing temporary facilities or permanent structures and

cannot be used by mobile objects for manoeuvring and does not form a part of

the object’s road geometry. Section 3.4.1 explains the operation of the mesh

48

generation mechanism. The way the mechanism uses the HSV framework’s

ability to model site spaces’ geometry changes occurring during the project’s

simulation to continually changes spaces from RASS to RFSS or vice versa is

also explained. The mechanism’s operation is illustrated in Figure 3-7.

• The A* algorithm phase: The algorithm uses the mesh generation mechanism’s

output. Section 3.4.2 explains the operation of the algorithm. The algorithm’s

operation is illustrated in Figure 3-8.

Both the mesh generation mechanism and the A* algorithm are part of the PME to be

implemented inside the 3D engine of the visualization component, Figure 3-6 illustrates

the interoperability between both components to solve the pathfinding problem in a

continually changing site geometry.

3.4.1 Phase 1: Mesh Generation Mechanism
4

The mesh generation mechanism is the basis of the application of the A* algorithm. The

A* algorithm makes use of the nodes and edges to mark the RASS that will be processed

by the algorithm to find the least-expensive, safe path for a certain mobile resource 3D

object representation. Figure 3-9 shows the mesh covering a site layout’s RASS. This

same site will be used in next chapter as a case study for the HSV framework

implementation.

 Figure 3-9 Mesh covering the construction site’s RASS at simulation time zero

4
Appendix IV contains the code for implementing the Mesh Generation Mechanism in the HSV

framework’s visualization component

49

The mesh covers the space of the site that can be utilized for mobile resources

mobilization. Hence in Figure 3-9, the areas that are occupied by the footings and other

representations of temporary structures are not covered by the grid. As a construction site

dynamically evolves throughout the various stages of the project, and the site space

geometry changes, the mesh continuously changes to accommodate these site changes. In

other words, the site’s space changes state between admissible and forbidden (RASS and

RFSS).

The initial mesh generation takes place at simulation time zero based on the initial site

layout. The programming code to produce the mesh is implemented inside the 3D

component and is triggered once the visualization starts.

The mesh updates the available site spaces’ categorization (either RASS or RFSS) once

the project simulation component updates the project progress by adding permanent

structural elements to the site plot which in turn adds 3D object representations of these

elements to the site layout on the visualization screen. Also, the mesh is updated

automatically when the decision-maker changes/experiments with various temporary

facilities 3D object representations’ geometry or locations during the simulation run.

Next, the application of the mesh generation algorithm inside the HSV framework’s

visualization component will be explored. The algorithm for mesh generation can be

utilized for covering 2D and 3D spaces. Managing tempo-spatial aspects of resource

mobilization and deciding on shortest paths geometry is only a 2D problem. Therefore,

the site’s spatial data are defined by only the x and y axes. Then the site layout and its

limits are defined in terms of the global coordinates (on the x and y axes). The center

coordinates are calculated and the user inputs the number of nodes along each axis. The

more nodes covering the site space in each direction, the more complicated the A*

algorithm calculations will be with each resource movement. The external borders of the

site space are then defined for the x and y coordinates as follows:

/0 1 = /2 − /�	/2…… (4)

/056 = /2 + /�	/2…… (5)

70 1 = 72 − 7�	/2…….. (6)

7056 = 72 + 7�	/2…….. (7)

50

Where /0 1 and 70 1 are the minimum coordinates defining the borders of the site on

one side along the x and y axes, respectively. /056 and 7056 are coordinates defining the

borders of the site lot from the other side along the x and y axes, respectively. /2 and 72

define the center coordinates parallel to the x and y axes, respectively. /�	 and 7�	
represent the site plot dimensions along the x and y axes, respectively.

Once the site lot is defined and the number of nodes along each axis is defined, it is time

to create the initial mesh. First and for the sake of constructing the mesh, the algorithm

gets the coordinates of each node forming the mesh covering the site, so each node

becomes an [x,y,z] space coordinate node. Also, each node’s adjacent nodes (to the north,

south, east and west) are defined and stored as coordinates. Then the site spaces that are

occupied by temporary site facilities are subtracted from the initial mesh. The mesh

generation mechanism does this through the mechanism’s code.

When the mesh generation code is processing a certain node, it checks if there are any

objects representing permanent structures or temporary facilities on this node itself or in

the distance between this node and its neighbor nodes. If an object exists, then this space

is labeled as RFSS. This means that this space will not be covered by the mesh and

subsequently will not be considered by the A* pathfinding algorithm when trying to find

the shortest resources mobilization path on this site layout.

Now the mesh is ready to generate in the form of nodes and neighboring nodes’

coordinates that cover only the RASS. This mesh code stores the mesh data in a global

variable so that other modules and functions inside the HSV framework can access it

during the simulation run. This covers the basics of the initial mesh generation shown in

the Parent Flowchart (Figure 3-6).

In the following paragraphs, the way the node mesh changes during the simulation run

itself, to accommodate dynamic changes in site layout during a simulation run, will be

explained (Figure 3-7 Child Flowchart).

First, for permanent structural elements, the simulation time advances from simulation

time (Tp) to current simulation time (T) on the DES timeline (where Time Tp precedes

Time T). This means that the project has progressed. Consequently, new structural

elements might now be occupying site spaces that were marked as RASS before reaching

simulation time Tp. This means that those spaces now (at current simulation time T)

51

should be marked as RFSS. Once a 3D object is added to the site spaces modeled by the

HSV framework on the visualization screen, mesh is automatically regenerated to

accommodate the changes in the site space geometry as a result of the permanent

structures objects representations added to these spaces.

Unlike permanent structural elements, temporary facilities are not accounted for during

the simulation. In other words, mobilizing or demobilizing a temporary facility is not an

event that is triggered by the Construction Simulation Federate(s). In real construction

sites, however, changes to temporary site facilities might occur due to certain issued

change orders or unforeseen project conditions. On the visualization screen, certain 3D

block representations with changing dimensions are first added to the site layout. These

blocks—representing temporary construction facilities—can be manually controlled in

terms of their dimensions and their site locations by the decision-maker throughout the

project’s simulation lifecycle. Once the block representation(s) of a temporary facility is

moved or has its geometry changed, this automates a mesh re-generation code that

regnerates the node mesh to accommodate the changes in the site space geometry as a

result of the temporary facilities added to the site spaces.

The way the mesh generation codes and modules operate will be further clarified in the

next case study chapter.

3.4.2 Phase 2: A* Algorithm Application
5

Once the site layout is covered by an imaginary mesh of nodes and edges after Phase 1,

the A* algorithm can be applied to plan and analyze the triggered simulation’s resource

mobilization events.

The nodes (vertices) of this mesh represent the travelling points, while the edges

represent the feasible paths between these nodes. The A* algorithm goes through these

nodes and edges to find the shortest path and yield the distance between a resource’s

original and destination points as part of the resource’s road geometry details when the

simulation schedules a resource mobilization event. In this section, the way the A*

algorithm operates inside the visualization component of the HSV will be explained

(Grandchild Flowchart, Figure 3-8).

5
 Appendix V contains the code for implementing the A* Search Algorithm in the HSV

framework’s visualization component

52

The A* algorithm now has all the inputs it needs: the current site layout mesh (from mesh

generation mechanism output) and the various site elements 3D models (from the 3D

engine), along with a resource’s start and target nodes or locations (from simulation

federate). The way the algorithm finds the obstacle-free, shortest path is through the

following typical steps:

1) The algorithm adds the resource’s start node to a list of nodes called Closed List.

2) It then processes the start node’s neighboring nodes as follows:

a) Look for nodes adjacent to the start node and add them to a node list called Open

List. Make the start node their parent. In the Open List look for the node that has the

lowest travel cost based on the ���� evaluation function.

b) Move the node with the lowest ����	to the Closed List and call it the current node.

Leave the other adjacent nodes in the Open List.

3) The following steps are repeated until the target node (resource’s target location on

site) is reached:

a) For each of the nodes adjacent to the current node:

• If the node is in the RFSS or if it is in the Closed List, it is ignored.

Otherwise:

o If the adjacent node is not on the Open List, it is added to the Open List.

The current node is made the parent of this node. The	����, ���) and

ℎ���costs of the added node are recorded.

o If the adjacent node is already on the Open List, the algorithm checks to

see if the path to that node going through the current node is better, using

���) cost as the measure. A lower ���) cost means that this is a better

path. If the ���) is lower going through the current node, the algorithm

changes the parent of the node to the current node, and recalculates the

���) and ����	scores of this child node.

b) The A* algorithm stops when:

53

• The resource’s target node is reached and added to the Closed List, in which

case the path has been found.

• The algorithm has gone through the maximum number of nodes defined by

the user of the framework or the Open List becomes empty after going

through all the nodes on the current site layout mesh, yet failing to reach the

target node. This means that there is no feasible route for the requested

resource mobilization given the current site layout. In this case the decision-

maker has to remove the obstacles from the resource’s way or find another

means of performing the wanted construction operation.

4) Saves the chosen path: If a path is found, working backwards from the target node, the

algorithm goes from each node to its parent node until the starting node is reached. Once

the route is known it is marked on the site layout and all the route information is sent

back to the simulation.

3.4.3 PME Limitations and Assumptions

The Mesh Generation Mechanism and A* algorithm implemented in this framework have

their limitations when it comes to searching for the mobile resources shortest paths. The

following limitations can be summarized as follows:

• The mesh generation mechanism does not take in consideration the change in

terrain that result from changes in site topography during its operation. A terrain

with steep slope can hinder the mobilization of heavy lift mobile resources and

should be represented as a RFSS. The PME implemented here does not consider

such a space to be a RFSS.

• The mesh generation mechanism leaves a safety buffer zone marked as RFSS

around permanent structures to assure that the shortest path chosen by the A*

algorithm would not cause any collisions for the resource when mobilized on it.

This method assumes that the travelling mobile resources have a uniform shaped

print (for example square or rectangular print). This method does not allow full

collision detection when it comes to resources with irregular shaped prints.

54

3.5 The HSV Framework Implementation

This chapter introduced the HSV framework and focused on its role in modeling changes

in site space that could not be modeled by typical simulation modeling. Once the

interoperability between simulation and visualization components of the framework was

proved to be functioning, a further step was taken to build on this framework’s ability to

model changes in both: site spaces, and layout that occur as a result of the construction

processes that take place in a project. This was through a PME that is implemented in the

visualization component of this HSV framework. This PME has a pathfinding mechanism

that uses the aforementioned ability of the framework to find the resources’ shortest safe

paths on site. This is an application of a typical intelligent agent’s pathfinding problem in

the construction research.

To demonstrate how the HSV framework and its PME interoperate, a comprehensive

case study that implements the HSV framework with its PME and applies them to a real

construction problem will be demonstrated in the next chapter. The case study puts both;

the framework’s ability to model sites’ spatial data based on construction operations

simulation, and its PME’s ability to solve a complicated construction pathfinding

problem to use. The case study shows how the framework was used to solve a heavy lift

mobile resources tempo-spatial management problem in a real construction site.

55

Chapter 4: Case Study: Using HSV Framework and its PME for

Tempo-Spatial Planning of Heavy Lift Cranes

4.1 Introduction and Case Study Explanation

To explain and test the developed framework, it was applied to the spatial management of

heavy lift cranes at a real construction site. A real industrial construction project

(Constructing Crude Oil Upgrader in Alberta) was used for implementing the integrated

HSV framework with its Pathfinding Mechanism Extension (PME) to demonstrate how

the framework can contribute to planning heavy lift resources mobilizations in a

dynamically changing site layout. This case study will show how the HSV framework

and its PME solve the heavy lift cranes tempo-spatial management problem in a real

construction site.

4.1.1 Case Study Definition and Project Specifics

In order to model the changes in site spaces and site layout that occur as the project

progresses, and to plan heavy lift cranes’ mobilizations in the oil upgrader project site

through the PME, the HSV framework firstly has to provide a 3D visual representation of

simulation behaviors generated by an industrial construction federation. The industrial

construction federation models industrial construction operations in general and was used

to model the oil upgrader project. The site involved in this case study is shown in Figure

4-1. The project represents the construction of an upgrader for crude oil. It is built using

preassembled pipe spool modules. Pipe spools are manufactured off-site in a fabrication

shop and completed spools are then passed to a module assembly yard. In the module

yard, each module is allocated a space (bay) for completing its assembly. The pipe spools

that comprise a module are moved to the bay where the assembly will take place. Once

modules are assembled, they are shipped to the site and placed into position using mobile

cranes. The site construction sequence depends on the module installation schedule and

whether its predecessor has already been installed in its final location on site.

56

Figure 4-1 PCL-Shell Ft. Saskatchewan site

4.1.2 Case Study Problem Definition and Solving

The contractor wanted to find a way to study/model future changes in both: site’s space

availability and layout that happen due to changes in permanent structures and temporary

facilities as the project progresses. Also, the contractor wanted to study the effects of

these changes in site layout/spaces and their effect on the heavy lift cranes mobilization

activities durations. The scheduled heavy lift crane mobilization events take place when a

heavy lift crane is scheduled to perform a module lift at a certain location on site. Each

lift involves a heavy-lift crane mobilization process preceding it. Four different heavy-lift

mobile cranes (two 880-ton, one 660-ton, and one 400-ton) were used to lift the modules

to their final set points. There are more than 50 heavy lifts to take place which requires

more than 50 crane mobilization events throughout the project. These heavy lift crane

mobilization events are expensive and have to be accounted for in the overall project

schedule towards the overall project duration. It is a difficult task to ascertain the shortest

and at the same time obstacle-free mobilization route for each of these cranes in a

changing dynamic site layout. It is also hard to estimate the mobilization duration

required for each of the module’s lifting activity. The contractor wants to make sure that

the duration and costs of heavy lift cranes mobilization events are minimized through

finding the shortest safe crane paths (in terms of activity cost and activity duration) in the

continually changing site layout (geometry).

A planning tool was needed to predict these changes in site space and to choose and

evaluate the various mobilization routes for each of the cranes. This tool can help in

57

decreasing the overall project duration and save money in terms of the cranes’ rental

costs, eventually leading to savings in the total project costs. This case study chapter

describes how the framework described in Chapter 3 solved this heavy lift cranes tempo-

spatial management problem and act as an accurate estimation tool for the resource

mobilization durations.

The specific location of any of the heavy-lift cranes or modules onsite is depicted through

the Visualization Federate of the framework. The lifting event involves the mobilization

of a crane from an initial to final point. The lift locations are predefined onsite for each

set of modules. Figure 4-2 shows the site layout on the visualization screen, where yellow

ring markers show these predefined potential lift locations. Once the Discrete Event

Simulation (DES) component of the framework triggers a lifting event and chooses a

crane, the crane moves on the visualization screen from its initial location to its lifting

location (final location), where it will install the modules. The pathfinding mechanism

will find the shortest, safe path for each crane and the expected duration of this

mobilization. The framework’s PME will look for the shortest paths in a site prototype

created by the simulation visualization. This prototype has changing layout that mimics

the expected changes in the real site layout as the project progresses. The path for each

lifting process will vary depending on the current site layout during the project’s

lifecycle.

Figure 4-2 Screen from Visualization screen Blender Game Engine (BGE) showing the 10

yellow marker 3D objects marking the 10 potential lifting locations inside the site layout

plan

58

4.1.3 Case Study Chapter Flow and Problem Solving Mechanism

To solve this problem, the HSV framework with its PME was applied to this site through

the steps described in Chapter 3. The solution presented in this chapter follows the steps

taken to solve the problem. Firstly, the generic architecture of the HSV framework

presented in Chapter 3 was modified to be implemented in this problem. The

framework’s architecture is presented. The framework then needs to visualize the

simulated construction processes. To do that the various simulation object classes

attributes changes are transformed from their respective simulation states to visual

behaviors in the Blender Game Engine (BGE) of the framework’s visualization

component. The ways the construction elements’ various simulation states are mapped

into visual behaviors using the visualization component are explained. Also, the ways the

heavy lift cranes’ various simulation states are mapped into visual behaviors will be

explained. The chapter then describes the way the various simulated construction

processes that cause changes in site space geometry and/or site layout are visualized.

Next, the way the BGE based visualization models changes in site’s spaces that happen

as a result of these simulated construction processes is described. This modeling of site

space depicts the dynamic changes in both: site layout and site geometry. These change

in site’s layout and geometry act as an input to the framework’s pathfinding mechanism.

The way the visualization component’s pathfinding mechanism uses these modeled site

spaces to find the heavy lift cranes shortest safe paths is then explained.

Finally, screen shots and numerical demonstrations which showcase how the pathfinding

mechanism finds paths for various crane mobilization events triggered by the simulation

is shown. These screen shots and numerical demonstration will show how the pathfinding

mechanism explained earlier in Chapter 3 is applied to find different shortest paths for

various crane mobilization events. To demonstrate the pathfinding mechanism abilities, it

will be used to give numerical evaluation of different crane routes defined for the same

crane mobilization event given different site layouts resulting from geometrical changes

in any of the site’s permanent structures or temporary facilities. The way the pathfinding

mechanism sends numerical assessments of each resource’s mobilization shortest feasible

route to the simulation component during the simulation run is also explained. All of

these visualizations and pathfinding processes are carried concurrently during the

simulation run as it will be shown. Also, the way that the decision maker can try various

layout scenarios during the simulation run is explained.

59

4.2 Site Space Modeling and Heavy Lift Cranes Mobilization Planning in

Industrial Construction Simulation Case Using HSV Framework and its

PME

A federation was built based on the architecture explained earlier in Chapter 3 to model

the whole operation from spool fabrication to site construction. The visualization of the

following simulated construction operations takes place:

• Assembly of modules at assigned bays: Each module is built out of number of

pipe spools at its assigned bay. The HSV framework depicts the processes of

modules' assignment to bays in addition to the building of modules inside bays.

A specific module's assignment and its progress at any time during the

simulation run (project duration) is shown through the Visualization Federate.

The way that this depiction is achieved will be explained further in the

following sections.

• Modules installation on construction site: This involves the use of cranes to

install modules at their final location based on predefined construction logic as

will be explained below. The specific location of any of the heavy lift cranes or

modules on site is shown through the Visualization Federate. The

corresponding lift location of a module and its placement time (to its final set

point) can be known through the visualization. The mechanism behind this

depiction is explained in the following sections. The changes in site space based

on the modules’ installation are also depicted.

• Crane mobilization events: In order to preform the modules lift (installation),

the crane has to be mobilized from its current location to the new location to

start the module lifting process. Once the crane mobilization event is fired by

the construction site DES component, the pathfinding mechanism will calculate

the safe, shortest path for the crane to mobilize to its target location. The

pathfinding mechanism then sends the expected travel time and distance for this

route back to the Site Construction Simulation Federate.

• Modeling changes in project’s site space based on these simulated operations:

The BGE based visualization screen depicts the changes in the site space (site

layout) that occur because of adding modules or other permanent structures.

Also it depicts changes in site space that occur because of changes in temporary

facilities representations geometry. The decision maker controls temporary

60

facilities geometry on the visualization (BGE) screen through an interface as

explained earlier in Chapter 3. Once a module or other permanent structure like

a vessel or footing is added to its location onsite, the mesh generation

mechanism changes the site space which was free and is now occupied by the

module(s) or other permanent site structures from a Resources Admissible Site

Space (RASS) to a Resources Forbidden Site Space (RFSS) as it was explained

earlier in Chapter 3. The way the mesh generation mechanism does this in this

case study will be more detailed later in this chapter.

It is worth mentioning that the changes in the state of the resources involved in the above

mentioned operations can be represented in tabular data forms during the simulation run,

however this does not provide an intuitive view of the simulation scenario and the logical

sequence of the construction process. Tabular data forms representation is also limited in

terms of representing the interaction and dynamic relationship between modules, space,

and cranes as resources on the construction site.

As mentioned earlier, one of the challenges of construction simulation models is

representing site space limitations (spatial data). A typical solution is by representing

space as resource, yet this can be counter intuitive and is not easy to visualize by project

team. For example, the simulation model, in this case, would only depict a crane as a

resource with certain quantity without showing the crane maneuverability space or the

crane routes. Also, the simulation of such a project might have flaws and errors especially

when it comes to site installation sequence and the spatial conflicts that may arise from

that. A 3D visualization component would be able to depict spatial conflicts better than

textual output.

A flexible visualization component was sought after as the solution to detect spatial

conflicts in the module assembly and site installation sequences of the modules. The HSV

framework would be able to depict the spaces on the construction site as an initial step

towards solving this case study’s contractor cranes’ tempo-spatial planning problem.

Along the way, the framework will also show the module yard's occupied and free bays

during the modules assembly operations as the project time (simulation time) advances in

a more intuitive way. The pathfinding mechanism implemented in the visualization

component of the framework will build on the framework’s ability to depict these

changes in site space (model dynamic changes in site layout), and then find the cranes

61

shortest paths along with the expected cranes mobilization activities durations on these

paths.

In this implementation of the HSV framework, the game engine for Blender (an open

source digital content creation environment) was utilized. The Blender Game Engine

(BGE) provides a graphical interface that enables the development of interactive

behaviors for 3D objects without the need for programming knowledge.

Two Visualization Federates are developed in this case, one for representing the

utilization of space by different modules during their building processes on the module

assembly yard, and the other for showing the on-site construction sequence of the

modules and modeling site space changes on site, depicting also the dynamic changes in

site layout. The PME (pathfinding mechanism) is implemented in the site visualization

BGE. Both federates run simultaneously with other Simulation Federates and

concurrently map the behaviors generated from the other federates to 3D worlds that

represent the yard and the site. The architecture of these federates in relation to the whole

federation is represented in Figure 4-3 and explained in the following sections.

62

HLA Based Simulation Visualization (HSV) Framework

Figure 4-3 Framework used in simulation and visualization of pipe modules’ assembly and their

site installation

4.2.1 Main Elements of the Industrial Construction Federation

Communication between the BGE and the federation is enabled through a number of

layers as shown in Figure 4-3. The first layer consists of the following:

• Simulation Federates: Where all the simulation of the various spool

fabrications and spool assembly takes place. These federates produce the

statistics needed by the decision-maker. Each federate represents not only a

phase of the construction process but also work done in separate areas;

namely the PCL Fabrication Shop (Spool Fabrication Federate), the PCL

2
nd

 Layer of

HSV

Framework

Replaceable

Components

3D

Gaming

Engine

Layer

End of 1
st

Layer

HLA

Communication

Spool Fabrication

Simulation Federate
Site Construction

Simulation Federate

Resource

Allocation

Federate

Runtime Infrastructure (RTI)

Module Yard

Simulation Federate

e

Site Visualization

Federate

Yard Visualization

Federate

UDP Messages Layer

Python UDP Network Client

Blender Gaming Engine (BGE) logic

bricks

+

Pathfinding Mechanism (A* Algorithm &

Mesh Generation Mechanism)

3D Object Behaviors (Site and Yard

Visualization Screens)

 HLA Messages

Windows Sockets/Ports

63

Module Yard (Module Yard Simulation Federate) and the Construction Site

(Site Construction Simulation Federate).

• Other Federates: The Resource Allocation Federate is responsible for

allocating the various cranes to lift/move certain modules to their final

location on site. Cranes are assigned to modules based on the cranes’

availability and their fitness to handle certain module sizes and weights.

• Visualization Federates: Federates that read (subscribe to) the objects’

(cranes and Modules) attributes and communicate these attribute values with

a secondary layer of the framework that contains the visualization engines.

The second layer consists of the visualization engines, which are based on the BGE. Two

visualization BGE screens are provided for the user; one showing installation of modules

at their final location on site and the other showing module assembly progress with

simulation time in module yard before transporting it to the site. The Visualization

Federates provides the following to the decision-maker:

• The logical sequence of the modules’ installation on site during the modules

site installation operations. For example, the top module cannot be installed

before the bottom one is installed, and a middle module cannot be installed

after the left and right modules are installed. This provides a check for the

logic of the construction schedule.

• Depiction of the dynamic changes in site layout and site spaces changes that

result from the adding modules and other permanent structures to the site

areas throughout the project’s simulation run. This will be the basis of the

framework’s utilization in solving heavy lift cranes pathfinding problem in a

dynamically changing site layout, as it will be explained later in this chapter.

• The progress of a module’s assembly together with the bay it is assigned to, so

the user can see bay occupancy during the course of the assembly process.

This gives the user a depiction of the module yard bays' utilization and the

distribution of the modules’ assembly work load. The user can also pause the

simulation and/or visualization to visually check the utilization of the bays at a

given period of the project. Also, the user can make use of this visualization to

test their construction schedule logic and make sure that there is no module

installed before its predecessors are set in their final locations.

The developments of the visualization federates on the first layer of the framework in

addition to the complete second layer of the framework together with the connections

64

between the first and second layers were done as part of this research. Other

developments (namely Site Construction Simulation and Yard Simulation federates) were

developed by other members of the research team. The way that each of the two BGE

visualizations is connected to its respective viewer federate will be explained in the

following section.

4.2.2 Connection between BGE and Simulation

The two Visualization Federates subscribe to different attributes published by Simulation

Federates during simulation.

The Site Viewer Federate subscribes to the following attributes:

• Module Name: this attribute helps identify the prototype 3D model that

represents the module from a hidden layer inside the Site Visualization BGE.

• Module's Field Location: this attribute describes the state of the module on

site and can take one of three values: "Delivered At Site", indicating that the

module has arrived to the site; "In Lift", indicating that the module is currently

being placed by a crane; and "At Set Point", indicating that the module is

installed at its final location on site. These enumerations are predefined inside

the federation's FOM and are produced during simulation by the site

Simulation Federate to mark the location of each module instance at any point

in of simulation time.

• Crane Availability State: As the site simulation run changes the state of each

crane availability during the simulation run, the Site Visualization Federate

reflects the changes to these attribute values in order to depict them to the

decision-maker.

• Crane ID: Each of the 4 heavy-lift mobile cranes has a unique ID. Each crane is

responsible for lifting certain modules based on its availability, capacity,

proximity, and a module’s lifting specifications. A different 3D model represents

each of the cranes. The visualization needs to call the right 3D model to represent

a particular crane whenever the simulation triggers a scheduled event that utilizes

this crane. Each of the 4 cranes might be at different locations of the site at any

one moment, and each of these cranes’ movements needs to be planned

simultaneously by the pathfinding mechanism built inside the site visualization

BGE.

65

• Crane Location ID: Each of the predefined modules lifting locations has a unique

ID. These locations are well known before the construction commences and

marked on the site plans.

The Yard Viewer Federate subscribes to the following attributes:

• Module Name: this attribute identifies the prototype of the module from a

hidden layer inside the Yard Visualization BGE.

• Module-Bay: This is published by the Module Yard federate and defines the

bay allocated to each module inside the module yard at any point in time

where the module assembly will take place.

• Module Progress: A percentage showing the completion of the module

assembly.

Once the attributes are published, the viewer federates read them and sends a message

containing the module unique identifier (module ID) and the module assembly’s percent

complete or its on-site state to the BGE. Same goes for the cranes, where each message

sent from the Site Viewer Federate to the BGE has a crane unique identifier (crane ID).

These messages contain the changes in the aforementioned attribute values of the

modules and cranes as the site simulation proceeds. The execution of the BGE takes

place as a completely independent execution thread and therefore, the communication

between the viewer federates and the BGE is achieved through a network User Datagram

Protocol (UDP), which provides language-independent communications between the

.NET based HLA federation and the Python based BGE as explained earlier in Chapter 3.

The Site and Yard Viewer Federates on the second layer of the HSV framework

architecture shown, in Figure 4-3, act as both clients/servers to send/receive messages

respectively to/from their respective BGE based visualizers. The client and server part on

the BGE' side is based on a Python API, which sends and receives messages respectively

from site or Yard Viewer Federates. The received messages are converted to BGE

internal messages. The internal BGE messages are delivered to the corresponding 3D

objects using BGEs through BGE graphical logic bricks as it will be explained in the

following sections. This connection is a two-way communication (as explained earlier in

Chapter 3) where each of the Viewer Federates and the BGE act as both servers and

clients.

66

4.2.3 Mapping Simulation Product Classes Attributes to Visual Behaviors

Product class inside the Site Simulation’s FOM includes the final construction product

models such as modules and vessels. The visual behaviors of the 3D objects are

customized differently inside the Yard and Site Visualization BGEs. As the simulation

runs the Site Viewer Federate reads the changes in the Module Field Location value for

each module and sends messages through the UDP connection to the site visualization

BGE. The BGE recalls the prototype of the module from a hidden layer and places it at

its final location if the module's field location is set to be "At Set Point". This indicates

that the module is lifted and installed in its final location based on the planned

construction logic. On the assembly yard side, once a module is assigned to a bay through

the Module-Bay attribute, this is reflected to the Yard Viewer Federate through the RTI

and consequently, messages are sent from the Yard Viewer Federate to the yard

visualization BGE stating the module's bay assignment. In addition, subsequent messages

that update a module's assembly progress are also sent.

Once the yard visualization BGE receives these messages, it performs the following

visual behaviors as the simulation time advances:

• Assigns a module to its bay in the yard 3D model once it is allocated one by

the simulation

• Shows the change in modules' progress inside its respective bay as the

simulation runs. This behavior is depicted by building the module prototype

inside its bay till reaching the typical complete prototype of the module once

the assembly progress is set to 100% by the Yard Simulation Federate.

The following Figures show screen shots of the viewer federates of the site and yard and

their corresponding BGE visualizations. Figure 4-4(left) shows the messages in the list

box which are sent to the BGE. These messages simply tell the BGE to recall a certain

module using its module unique identifier, followed by its location on site. Once a

module is "At Set Point" then it appears in its predefined location based on the design

drawings. Figure 4-4(right) shows the BGE screen displaying modules at their predefined

set points based on the messages received from the Site Viewer Federate.

The changes in site spaces geometry and site layout are automatically modeled on the

BGE based site visualization screen based on these modules additions. Once a module

67

(permanent structure) is added to an originally empty site space, this space classification

changes using the mesh generation mechanism as it will be explained later in this chapter.

These changes from RASS to RFSS will determine if the A* pathfinding algorithm can

take this space in consideration when finding the shortest crane path once the site’s DES

triggers a resource mobilization event.

Figure 4-4 Screens from Site Viewer Federate showing messages and Site Visualization using

Blender Gaming Engine screen during simulation run

Figure 4-5(left) shows messages sent to the visualization BGE. One type of message in

the list box called "Module-Bay" tells the visualization engine which module goes to

which bay based on the simulation. The other message type contains the changes in

percent completion of a module during the simulation run. The other message type is

called "Module-progress" as explained earlier. Figure 4-5(right) shows the BGE yard

screen assigning some modules to their respective bays using a real photo of the module

yard and its bays as the texture for the site layout. One can observe that some modules are

100% complete while others are still building, indicating different progress percentage

values received from the Yard Simulation Federate inside the "Module-Progress"

message for each module.

68

Figure 4-5 Screens from Yard Viewer Federate and Yard Visualization BGE during simulation run

The way BGE receives these reflections and performs this animation through the

simulation run will be explained in the following section.

4.2.4 Generating Visual Behaviors in BGE and Modeling Site Spaces Based on

Permanent Structures

Generation and customization of the behaviors of 3D objects inside BGE is done using

graphical logic bricks. These logic bricks are built-in constructs in the Blender

environment that allow developers create interactive game environments. Any object in

the Blender environment can be equipped with these bricks, which allow it to respond to

different events happening in the environment or generated by user activities. The logic

bricks are broken down into three main types: “sensors”, “controllers”, and “actuators”.

Sensors have different types and their main function is to sense a certain action or event

that happens in the environment. Once a sensor is triggered, it sends a signal its

controller. Controllers can be connected to different sensors and act as logical gates (e.g.

“AND”, “OR”) to actuators. When all conditions of a controller are met, it fires one or

more actuators. Actuators are the producers of visual behaviors in the game environment.

A set of actuators owned by a certain 3D object will trigger it to produce different

transformations according to the type of these actuators and the controller they are

connected to. The following sections describe some of the logic bricks used to produce

the visual behaviors of the site and yard visualization BGEs.

As an entry point to the game environment in Blender, a hidden object inside each of the

BGEs acts as a server that receives messages during the simulation run and re-route them

69

to trigger different logic bricks to produce the behaviors of 3D objects. A Python script

on each of the two server objects does the following:

• Receives the messages from the respective viewer federate through a

predefined port.

• Parses messages to pieces and sends them to the BGEs’ logic bricks.

Figure 4-6 shows the logic bricks of the server object. In this case the server object is

forced to signal a Python controller (i.e. execute the script in the controller) every certain

number of animation frames. The script listens to the port, and routes the messages as

described above.

 Figure 4-6 Logic bricks for the server object

A 3D game environment is created for each visualizer (i.e. site and yard visualizers).

These environments contain different 3D objects. Some objects are static and they are

mainly to enhance realism of the environment. Dynamic objects are equipped with logic

bricks to react to simulation messages. The dynamic objects inside the site visualization

BGE are:

• Module prototype models: these represent 3D models of the actual modules

and were imported from CAD files of the project.

• Bound objects: these represent markers of the final set-points of the different

modules and help manage the placement of module prototypes at their final

locations on site.

The logic bricks of the bound objects are shown in Figure 4-7. A sensor is created to

listen to messages with a subject equal to the string “SET”. When such a message is sent

to the object, it triggers two actuators. The first actuator adds the prototype model of the

module to the scene at its final location. The second one deletes the bound object itself

from the scene as it is no longer required.

70

Figure 4-7 Logic bricks of bound objects in the site visualizer

The dynamic objects inside the yard visualization BGE are:

• Module prototypes

• Bay objects

Figure 4-8 shows the logic bricks for a bay object. The object is equipped with three

sensors for messages with subjects “ASSGN”, “PRGRS”, and “SHP”. These messages

instruct the object to produce three different visual behaviors that represent 1) assignment

of a bay to a module, 2) a certain progress of the module, or 3) shipping of a module out

of the yard. An “ASSGN” message will trigger four actuators: the first one adds the

module to the bay that is receiving this message, the second and third resets progress

properties to 0, and the fourth resets an interpolated animation curve (IPO) to its original

state, which represents 0 progress of the module.

A “PRGRS” message will first signal its controller to read the percentage of progress sent

from the federate. Then, the message will trigger two actuators. The first actuator will

calculate an animation frame to represent the percentage of progress sent. The second

actuator uses the calculated frame number to change the look of the 3D object that

represent the module. The change is based on a predefined IPO that represent different

states of the module from 0% complete to 100% complete.

The last message (“SHIP”) triggers three actuators that reset progress properties and

remove the 3D module prototype from the scene.

71

Figure 4-8 Bay Object logic bricks in the Yard BGE

4.2.5 Classifying Site Space based on Spaces’ Occupation using Mesh

Generation Mechanism

The mesh generation mechanism which was generically explained earlier in Chapter 3 is

used here to classify the modeled site spaces into RASS and RFSS. Now that the way the

site BGE visualization component has modeled the changes in site space that result from

the simulation adding permanent structures to the site, these spaces has to be classified

into RASS or RFSS as explained earlier. The way the mesh generation mechanism is also

used to classify modeled site spaces based on changes in temporary facilities geometry

changes is also explained. This classification is essential so the A* pathfinding algorithm

operation, since the algorithm needs to identify which spaces to consider in its process of

finding the shortest heavy lift cranes path, once a lift event is triggered by the site

simulation component during the simulation run.

The initial mesh generation takes place at simulation time zero based on the initial site

layout and is triggered once the visualization starts. The code is fired inside the BGE by

connecting it to an Always sensor, meaning that the code is always fired as long as the

simulation component is running to accommodate any changes done in the site layout by

the simulation run.

The mesh generation code checks if there are any objects representing permanent

structures or temporary facilities on this node itself or in the distance between this node

and its neighbor nodes as explained earlier in Chapter 3. The code does this specifically

in this case study by using a ray cast (Raycast) function, which is built into the BGE,

meaning that an imaginary ray is cast from each node to its neighboring nodes. If the ray

hits an object on the node itself or before it reaches the neighboring nodes, it means a

72

structure, either permanent or temporary, is occupying this node. The way this is coded

inside the BGE is as follows:

hit,p,n=ob.rayCast(a,node,0,"collision",0,1)

Where, hit is any structure occupying the neighboring node site space

p and n are the points from where the imaginary ray is cast and the imaginary ray normal

direction

a is the neighboring node around the current node called “node”

“Collision” is a given property to any structure that occupies a site space and will change

this site space from an RASS to an RFSS, making this site space un-processable by the

A* algorithm. For example, every object in the site visualization screen that represents

pipe modules carry a property called “Collision”, so the mesh generation mechanism can

lable the space it occupies RFSS.

Now, as the simulation runs, the node mesh changes to accommodate for dynamic

changes in site space and layout (permanent structures added to site spaces as explained

earlier). This means that the node mesh update code discussed earlier in Chapter 3 need

to be triggered every time the changes in site space geometry occur due to addition of

permanent structures by the simulation. The updating of the node mesh algorithm is

triggered through an Update message that is sent to the algorithm inside the BGE. Once a

permanent structure is installed on those spaces, a message actuator is triggered sending

an Update message in order to let the HSV framework update its already created node

mesh. Figure 4-9 shows the logic bricks inside the BGE that trigger the Update message.

The autonomy in creating RASS is now achieved inside the BGE.

73

Figure 4-9 Logic bricks inside BGE site screen showing update message logical sequence

As shown in Figure 4-9 (left), the Update message is sent every time a structural element

occupies a site space as the project’s simulation time proceeds. Then, the Update message

fires an Update.py module that calls the Update function inside the node mesh creation

module and updates the RASS accordingly, as shown in Figure 4-9 (right).

On the other hand, temporary site facilities are not accounted for during the simulation. In

other words, mobilizing or demobilizing a temporary facility is not an event that is

triggered by the Site Construction Simulation Federate. Blocks—representing temporary

construction facilities—can be controlled through keyboard interface by the decision-

maker throughout the project’s simulation lifecycle. The decision-maker can change

these blocks’ dimensions and their site locations on the site visualization screen during

the simulation run (no need to interrupt the simulation). The user interacts with these

blocks by simply moving them on the project plot with the arrow keys as the simulation

is running. Every time the user changes the location of any of these temporary structures

on the site plot displayed on the visualization screen, this automatically triggers an

Update message similar to that produced when a permanent structural element is added to

the site space by the simulation. This again triggers the node mesh update algorithm.

Figure 4-10 shows how this is implemented in the BGE inside the visualization

component of the HSV framework.

74

Figure 4-10 Logic bricks inside BGE site screen showing the update message triggering steps due

to temporary structure block movement

As shown in Figure 4-10 (left), once the decision-maker moves the 3D blocks

representing temporary site facilities by using the arrow keys, this triggers (with each

move) an Update message. This message recalls the Update function that regnerates the

node mesh to accommodate the different scenarios of spatial avaliability due to changes

in temporary site facilities as shown in Figure 4-10 (right).

Section 4.2.7 will show screen shots and numerical examples from this case study that

better explains the way these permanent and temporary facilities changes affect the site

spaces and site layout, and the way the pathfinding mechanism accommodates these

changes when calculating the cranes’ shortest safe paths as the simulation is running.

3D blocks representing Temporary facilities location controlled (moved) by user as the simulation’s

visualization is running

75

4.2.6 Mapping Different Cranes’ Simulation States into Visualization Behaviors and

Application of Resources’ Tempo-Spatial Planning Mechanisms

Now that the way that construction products simulation classes (modules) have their

simulation states, that affect site’s spatial data and layout, mapped to visual behaviors, it

is time to do the same for simulation resources class (cranes) states. The Site

Visualization Federates subscribe to the simulation’s cranes object class attributes

published by Simulation Federates during simulation. The Site Visualization Federate

subscribes to the mobile crane object class attributes mentioned earlier in Section 4.2.2.

As the simulation runs, the Site Visualization Federate reads the changes in crane

attribute (Crane ID and Location ID) values. It sends messages through the UDP

connection to the site visualization BGE. The BGE recalls the 3D model that represents

the crane from its current location onsite. Once the Location ID values for a certain

heavy-lift crane change, the crane has to be mobilized from its current location to the new

location to start the module lifting process. The pathfinding mechanism, which was

explained in Chapter 3, starts to calculate the safe, shortest path for the crane to mobilize

to its target location. The pathfinding mechanism then sends the expected travel time and

distance for this route back to the Site Construction Simulation Federate.

This section will explain how the message is transferred inside the BGE once it is

received from the simulation component, triggering the pathfinding algorithm. The way

the BGE depicts the changes in the site space (site layout) by adding modules and other

permanent structures were explained in earlier. Once a module is added to its location

onsite, the site space which was free and is now occupied by the module(s) changes from

a Resources Admissible Site Space (RASS) to a Resources Forbidden Site Space (RFSS),

so that this space is not considered in mobilization planning. This change of the site’s

spatial state data is done through the site’s mesh generation mechanism, which will be

explained earlier in Section 4.2.5. Figure 4-11 shows the depiction inside the BGE of the

modules (final construction elements) being installed at their final set points by the

cranes.

76

Figure 4-11 The BGE depicts the simulation of installing modules to their final set

point using the heavy-lift cranes

The same logic brick mechanism that was explained in earlier is used here to create the

visual behaviors for mobile cranes from their respective simulation states. These changes

in crane simulation state also trigger the pathfinding algorithm for each crane

mobilization. The server object first receives messages from the simulation. The message

is time-stamped and fired when the project’s simulation scenario schedules a lift activity

involving a certain heavy-lift mobile crane. The parsed message then triggers the various

crane visualization behaviors and the pathfinding mechanism.

The message carries the Crane ID and the Location ID. The server then extracts this

parsed information and assigns it to different variables. Now the parsed Move Crane

message goes through a series of built-in constructs (logic bricks similar to those used to

create the visualization behavior of modules). This triggers various scripts including the

A* algorithm to find the least-expensive, obstacle-free travel route from this crane’s

current Location ID coordinates to the target Location ID coordinates. Figure 4-12 shows

the initial logic bricks that are put on each of the 10 marker 3D objects.

77

Figure 4-12 Screen from site visualization BGE showing the logic bricks that are

put on object markers

The Move Crane message (MOV) that was sent by the Site Construction Simulation

Federate is re-routed by the server to the object inside the BGE marking this Location ID.

As shown in Figure 4-12, once the MOV message is received at the specified Location ID

marker object, it starts a Python script (RLSCrane.py). This script does the following:

• It sends a Release Crane message (RLS), which is directed to the crane whose ID

was mentioned in the MOV message. This message also contains the Location ID

the crane should be heading to.

• It ends the crane’s existence at its current location in order to move it to the new

location using the route that will be decided by the A* algorithm.

Next the RLS message triggers the Python scripts containing the A* algorithm. This is

done through a second layer of constructs (logic bricks) that are mounted on each crane

3D model. Figure 4-13 shows the second layer of the logic bricks implemented on each

of the four cranes’ 3D models inside the BGE.

78

Figure 4-13 Screen from BGE showing the second layer of the logic

bricks implemented on each of the 4 cranes’ 3D model

As shown in Figure 4-13, the RLS message activates the GetPath.py script that in turn

calls the A* algorithm to execute (Figure 3-7 Grandchild Flowchart and Section 3.4). The

script passes on the following parameters to the algorithm:

• Start: The current location of the crane model to which the RLS message was

sent. The position is determined by the coordinates of the crane in the format

(x,y,z) in the current site layout.

• Target: The Location ID the crane should be mobilized to in order to start the

scheduled lift operation. The location is also given in the (x,y,z) coordinates

format. The script returns the coordinates of the Location ID marker object that

was part of the RLS message body.

• Nodemesh.nodes variable: The variable where all the information pertaining to

the current node mesh covering the RASS is stored. The information is stored as

sets of node coordinates that makeup the current node mesh, together with lists of

coordinates for each node’s neighboring nodes that form travelable edges. This

variable decides on the RASS and constantly updates as the site layout changes.

• Own: The crane 3D model representing the current crane that is assigned for the

scheduled lifting operation. Here the crane object itself is used as part of the

built-in Blender ray-casting function. The pathfinding algorithm uses the crane

object to cast imaginary rays before it moves from one node to a neighbouring

one on the node mesh, in order to choose the obstacle-free path and make sure

that there are no collisions with other models representing temporary facilities or

permanent structures on the site layout. Together with the node mesh mechanism,

this guarantees that the chosen shortest path is obstacle-free and ensures that the

manoeuvrability distance of cranes is taken into consideration.

79

• Number of Steps before the Pathfinding Algorithm quits (variable): The

maximum number of steps the A* algorithm will iterate through (move on nodes)

before telling the decision-maker that there is no feasible route for the scheduled

crane movement given the current site layout.

Once the algorithm is done running, it passes the following information back to the

decision-maker as the simulation continues its run:

• Marks the shortest path of the given crane on the screen (Figure 4-14). The object

representing the heavy-lift mobile crane with ID 2 moved from its start position

to another using the green path which was generated by the A* algorithm to mark

the resulting least-expensive, obstacle-free path.

• Sends the expected travel time (based on travel distance and average heavy-lift

mobile crane speed) back to the simulation model.

• Confirms that the simulated crane movement took place using the least-

expensive, obstacle-free route by messaging back the simulation.

Figure 4-14 The path chosen by the A* algorithm marked on the site

visualization user interface screen based on the current site layout

Next section will show screen shots and numerical examples from this case study that

better explains the way the permanent and temporary facilities changes affect the site

spaces and site layout, and the way the pathfinding mechanism accommodates these

changes when calculating the cranes’ shortest safe paths as the simulation is running.

80

4.2.7 Demonstrations and Screenshots

In this section, a comprehensive demonstration showing how the framework operates will

be shown. This demonstration is a way of comprehending and summarizing all the

information already explained throughout this case study chapter to show how the

simulations, translations to visual behaviors, and the pathfinding mechanism interoperate

to produce resource tempo-spatial management in this construction site. The example

will be followed through a series of screen shots from the framework implementation in

this case study with explanations.

Figure 4-15 shows the intial screens of the simulation and visualization before the start of

the simulation run. One can notice the list of federates on the simulation user interface

screen. The visualization screen also shows the initial site layout with the expected lift

locations. Also, the area that will be excavated for footings is shown as being occupied

by white blocks representing the foundation. This area constitutes a RFSS. A small

rectangular representing temporary construction facilities is also shown. At simulation

time zero the site is empty, i.e., there is no work progress.

Various tabs showing all Simulation
Federates and Visualization

Federate linking visualization and

simulation components

Rectangular area representing

temporary site facilities

White area representing excavation
and footings locations

Heavy lift mobile cranes
predefined lifting locations

81

Figure 4-15 Simulation Federates interface screen and BGE-based visualization screen at

simulation time T=0

Once the simulation starts, the visualization component initializes concurrently

generating the first mesh to cover the initial site layout. The initial site layout is divided

into RASS or RFSS. Once the simulation starts, the Site Construction Simulation

Federate starts to send messages to the visualization screen, which the visualization

screen translates into visualization behavior and changes the site layout accordingly,

updating the mesh covering the RASS. The A* algorithm built inside the visualization

BGE analyzes each requested crane mobilization event and sends the simulation

component a feedback containing its expected mobilization time and distance, ID of

resource on the move, its original location, and final mobilization location; it also

displays the route it will take on the visualization screen. All this information is

calculated based on the layout of the site at the very moment the simulation component

schedules the crane mobilization event. All this information is displayed to the decision-

maker on the simulation user interface screen. The screenshots of the framework shown

in Figure 4-16 illustrates this sequence of events.

82

Figure 4-16 The A* algorithm decides on least-expensive, safe travel distance for Crane 2

avoiding temporary and permanent structures on the current site layout

As shown in Figure 4-16, a message was sent by the Site Construction Simulation

Federate to move Crane 2 from Location 8 to Location 3 in order to start a lift operation.

Crane 2, represented by the red cube on the Visualization Federate, was already at

Location 8 at an earlier simulation time. Based on this layout, the A* algorithm shows the

shortest path to move Crane 2 from Location 8 to Location 3 in green, and the

visualization completes the movement operation and sends its feedback to the simulation

confirming that Crane 2 can move from Location 8 to Location 3 and the least-expensive,

obstacle-free route was found, its expected distance being 351.4 meters based on the

current site layout.

Temporary site facility at this
simulation time located here

Red object representing Crane 2
moving to Location 3

The visualization component sends the simulation a
feedback (during the simulation run) that a path was

found and crane travel distance of 351.4 m is expected

Simulation message to

move Crane 2 to
Location 3

Green path marked by

A* algorithm showing

shortest obstacle free
path to move crane 2

from location 8 to

location 3

83

What if the user changes the location and size of a temporary construction facility at any

stage of the project? This can be simply tested by moving/resizing the white rectangular

representation and moving it on the site layout (shown on Figure 4-16) as indicated

earlier. To demonstrate, a temporary construction facility will block this chosen path

between Locations 8 and 3 as shown in Figure 4-17 below. As the simulation runs, it

schedules another crane (Crane 4) to move between Locations 8 and 3. Crane 4 is

supposed to follow the same path that was followed earlier by Crane 2 to move between

these two locations (path marked by green line in Figure 4-16); however, now there is a

temporary structure blocking this path changing part of the site space from RASS to

RFSS. Therefore, Crane 4 (whose dimensions are not that different from the dimensions

of Crane 2) is given a different path by the A* algorithm to move between the same

locations. This is demonstrated in Figure 4-17 below.

84

Figure 4-17 Screen shots showing the A* algorithm at a later simulation time deciding on shortest

safe travel distance for Crane 4 after a change in site layout due to an addition of a temporary

construction facility

Although Figure 4-17 shows only an extra 30 meters of travel onsite, which might not be

a significant increase in the crane travelling distances, however this is only for

demonstration of the resource pathfinding that can be done by this framework using its

implemented pathfinding mechanism.

Simulation now scheduling Crane

4 to Location 3

New green path marked by A*
pathfinding algorithm showing

the new path between

Locations 3 and 8.

The Visualization Component sends the simulation a
feedback (during the simulation run) that a path was found

but now the travel distance is 381 m instead of 351 m due to

the temporary facility that the decision-maker has added

Temporary site facility at this simulation

time moved here by the decision-maker

85

Figure 4-18 Crane 2 route (in green) moving between Locations 2 and 7 at simulation time T (left)

and at simulation time T+t, where (T+t >T) (right)

Figure 4-18 demonstrates the way the A* algorithm accounts for changes in site layout

due to installation of permanent structural elements to the site space by the simulation

run. The green path the A* algorithm gave for Crane 2 movement between the same lift

locations was different when the events were scheduled at simulation times T and T+t,

respectively (where T+t>T). This is because as the simulation reached simulation time

T+t and the project progressed, the simulation had already installed several modules

(permanent structural elements) in place as shown on the site layout (Figure 4-18). All

this is done conccurently as the simulation is running.

4.3 Framework’s Visualization Screen Conceptual Design Based on Visual

Analytics and Display Design Principals

Conceptual design of the framework’s visualization screens used to solve the heavy lift

cranes pathfinding problem in the Ft. Saskatchewan site had to take place before and

during its technical development. In this section of the case study chapter, the guides used

A* algorithm marking path for Crane 2
@ simulation time T

A* algorithm marking different path for Crane 2 @ a later
simulation time (T+t) avoiding installed structures and

temporary facilities

Modules at simulation time T

still not installed @ their final

Location

Modules at simulation time T+t

installed @ their final Location

as the project progresses

86

in developing the visualization component of the HSV framework implemented in this

case study are discussed. These guides were discussed earlier in Chapter 2. It is also

worth mentioning that this is the first time in construction research that visual analytics

and display design guides are used in the conceptual design of a visualization based

mechanism which is used in solving a construction problem. The guides that Russell et

al., 2009 set for visual analytics design explained earlier in Chapter 2 were utilized in the

conceptual design phases of the visualization component of the HSV framework

implemented in this case study. Then, the 13 principles of human perception applied to

display design (Chapter 2) were utilized in the translations of the chosen simulation’s

object classes attributes’ states into corresponding visualization behaviors.

4.3.1 Site Visualization Screen: Conceptual Design In Light Of Visual Analytics

Design Fundamentals

To account for heterogonous user audiences that will use this framework for heavy lift

crane movement decision making in this case study, it was decided to design the

visualization in a way to make it simple to comprehend by a heterogeneous audience of

decision-makers using a common visual representation. This was achieved by showing

the complete site layout as the terrain or global environment of the visualization. It is

more of a map-like representation of the site layout, where the dynamic changes, which

are triggered by the DES component of the framework, are mapped directly on this site

layout map to reflect the changes in site space. Since humans read and comprehend with

maps in their day to day activities, it was thought that the simplest way to depict changes

in site layout would be through the method mentioned above. In addition, the least-

expensive, safe cranes paths which are defined by the pathfinding mechanism

implemented in the visualization component of this framework are marked on this

dynamically changing site layout with eye-catching colour in a similar way that a GPS

device marks a car route to its destination. For decision-makers who would rather see

these shortest paths expressed quantitatively in the form of expected travel distances and

time, the visualization’s pathfinding mechanism send its output, which consists of

analysis of the various cranes’ paths, to the simulation component concurrently as it is

running. This also enables the decision-maker to see the results in a tabular format not

just visually. The visualization screen also has a visual data exploration feature, adding

more simplicity to the users’ interaction with the visualization screen. This simplicity can

make it more comprehensive for a wider spectrum of heterogeneous decision-makers in

the construction industry. It was also decided to choose 3D representation for the

87

visualization space as it is most appealing and intuitive for decision-makers. 3D

visualization can also be easily adjusted to 2D visualization.

4.3.1.1 Site Visualization Screen: Data Representation Based On Visual Analytics

Purpose

As mentioned in Chapter 2, the first step to design the visualization screen based on

visual analytics, is understanding the reasons behind the framework’s visualization

development. This was the key to choosing the published site simulation’s resources and

products object classes attributes’ values that were translated to visual behaviors by the

Site Visualization Federate.

Table 4-1 shows the reasons behind the development of the framework and the areas in

which it is expected to be used as a visual analytics system. The second column of the

table describes the simulation data (objects classes’ attributes) that needs to be

represented by the visualization to provide the analytical perspective to the decision-

maker. These visual representations will aid the decision-maker in achieving the visual

analytics purposes in the first column.

Visual Analytics Purpose Generic Simulation Data To Be

Represented By Visualization Component

Depicting construction logic and flaws in

simulation process

Simulation’s products object classes’

attributes (e.g. Modules completion date,

Modules installation date, Module lift state)

Depicting changes in site spaces throughout

the project and dynamic site layout changes

Simulation’s resources classes’ location

attributes and Product classes’ attributes (e.g.

Crane location, module set point location,

Crane state attributes, Module field location,

Module state)

Finding the shortest cranes paths together with

expected cranes onsite mobilization times

using the pathfinding mechanism

implemented in HSV framework visualization

component

All the simulation’s object classes’ attributes

that makes the visualization depict (predict)

the changes in site layout

Table 4-1 conceptually formulating the purpose of visual analytics in HSV framework and the

simulation data to be visually represented to achieve it

88

4.3.1.2 Site Visualization Screen: Designing interactions and Visual Representations

Now that the data to be represented based on the visual analytics purpose has been

chosen, it was time to decide on the way that this simulation object classes’ attribute

values will be transformed into visual behaviors. A dilemma for representing these

qualitative attributes, like changes in site space for example, was the level of granularity

or level of details it will be visualized at. Since the purposes (goals) of this visual

analytics (shown in Table 4-1) are at the overall site level and non-detailed categorical

construction processes level, (both at a lower level of details), it was decided to represent

the overall site at a lower level of details. For example, show the overall changes in a

site’s spaces on a visual representation of the overall site layout.

For the remaining aspects of transforming the chosen represented simulation data to

visualization behaviors, the 13 design principles of display design mentioned earlier will

be utilized as guides for creating these visual behaviors. This will be explained in section

4.3.2 of this chapter.

Finally, other visual analytics guides that were used in the visualization component

conceptual design are shown in Table 4-2.

89

Visual Analytics Guide Application in HSV Visualization Display

Design

Follow conventions and good practices of

graphics data which have formed people basic

graphics literacy over the years (Schmid,1978)

For example, the least-expensive, safe

resource paths were represented only by a

single simple straight line on the site layout

visualization screen as they are more

conventional for viewers

For example, Resources to be represented on

site by simple geometrical 3D shapes

Address the various visual analytics purposes

on one screen rather than multiple screens; this

reduces the time needed to analyze

multidimensional data as it prolongs users’

patience keeping decision-makers more

attentive and engaged (Cawthon and Moere,

2007)

In the visualization component’s design, the

various visual analytics depictions that the

visualization screen is trying to show (Table

4-1) can be achieved through a single

construction site visualization screen rather

than multiple screens. If construction projects

are made up of unconnected locations, then

each location’s simulation visualization can

be represented by its own screen as it will be

shown in Chapter 3.

Use interaction features that allow users to

interact with data’s visualization (Russell et

al.,2009)

Features were implemented in the

visualization component to allow users to

interact with the simulation visualization

screens by changing /adding or removing

temporary site facilities to site layout during

the run of the simulation itself as it will be

shown in Chapter 4.

Table 4-2 Visual analytics design guides and how they were applied in the conceptual development

of visualization component’s screens

4.3.2 Site Visualization Behaviors Choices In Light Of the 13 Display Design

Principles

The 13 display design principles explained earlier in Chapter 2 were conceptually used as

guides to map the various chosen site DES object classes’ attributes states into

corresponding visual behaviors. This section contains a briefing on the way these

principles were utilized in the translation processes of the simulation’s cranes and

products’ attributes values into visual behaviors.

The principles were broken down into 4 categories and explained from a generic

perspective in Chapter 2. The way that they are applied to map the various chosen site

DES object classes’ attributes states into corresponding visual behaviors will be

90

explained here following the same organization that was used to explain the principles

earlier in Chapter 2.

A- Perceptual Principles:

1. The visualization legibility principle: Based on this principle, the following

was taken into consideration when designing the HSV visualization

component’s display:

• The display clearly mapped abstracts of the changes in represented

site’s construction DES object classes’ attributes’ values into

comprehendible visual behaviors.

• The decision-makers looking at the site visualization screens were

able to comprehend the meanings of those visual behaviors on their

own or with minimal explanation.

• The users of the framework were able comprehend the reasons for

developing this visual analytics HSV framework (solving the heavy

cranes pathfinding problems and modeling changes in site’s spatial

data) on their own or with minimal explanation.

As mentioned earlier, a resource’s shortest distance is represented on the

site visualization screen by a line similar to that which is drawn on a car

GPS to show the route to its destination. Using common sense, a decision-

maker will understand that the line shown on the current site layout display

screen represents the requested resource’s shortest travel distance. That is

because it is well established on various pathfinding devices that routes are

represented by coloured lines. This is an example of how the site screen

visualization used here was legible.

2. The principle of avoiding absolute judgment: Limitation of judgment

should be avoided when representing the simulation object classes’ models

inside the visualization. According to this principle, the 3D visualization

models representing similar entities of the simulation’s products or cranes

object classes were not coloured using different degrees of the same colour

or different colours which are indistinguishable. For example, the different

3D models which represent the different pipe modules and cranes were

91

represented by independent colours, not degrees of the same colour. For

example, red, green and blue are independent colours.

Also, the changes in an object class during the simulation run was not

represented through a variable that has unlimited levels. For example, the

placement of modules at a set point by the simulation model is represented

as disappearing and re-appearing of the modules in its place, and not by

mere change of colour of this module. The same can be said for the

depiction of a simulation’s cranes mobilization event. The cranes’

mobilizations from origin to destination are depicted by appearing at a

destination site position and disappearing from its original site position.

This is in harmony with this principle since the appearing –disappearing

action has only 2 levels or states (appearing state and disappearing state)

rather than representing the above mentioned simulation events with a

variable like colour which has unlimited levels.

On the other hand, when the depiction of modules building simulation

events takes place, lines are added to the 3D models representing these

modules on the visualization screen, depicting the modules’ development

states. This depiction does not allow the user to judge exactly the

development stage of the module and this is in violation of the principle of

avoiding absolute judgment limits.

3. Top-down processing or the principle of immediate context of a display: It

implies that all the similar simulation events involving various object

classes were grouped and translated to similar visualization behaviors. For

example, in the HSV framework’s implementation in the industrial

construction case study, the decision-maker will expect that all the

simulation events of modules’ installation to their respective set points, to

be represented by the disappearing and re-appearing visualization behavior

of the modules’ 3D representations. Also, similar simulation events

involving different cranes were mapped into similar visualization

behaviors.

92

4. The principle of redundancy gain: In this case study; when the simulation

triggers an event which sends a module to its set point, it is mapped into

two simultaneous visualization behaviors on the visualization display; the

appearing and disappearing of the module representations in the

visualization, simultaneously with a crane’s representation movement to

the lifting location on the site layout. This means that two different

visualization behaviors represent a single simulation event. This is not

considered a repetition but it is an application of the redundancy gain

principle to stress the simulation event translation inside the decision-

maker’s mind.

Another example of the use of the redundancy gain in the above mentioned

implementation is the visualization of the simulation states of modules

being built in the module yard. To represent a module’s building as being

completed (progress=100%), two visual representations take place; first the

lines are added to the module’s 3D models to represent the 100%

completion of the module’s building, then the completed module

disappears from the bay. This is another example of the application of the

redundancy gain principle in translating a single simulation state to two

visualization behaviors inside the HSV framework visualization design.

It is worth mentioning that not all the simulation events translations into

visualization behaviors followed the principle of redundancy gain. Some

simulation events were translated to a single visualization behavior. These

simulation events translations are not in accordance with the principle of

redundancy gain.

5. Principle of discriminability: Although the different instances of 3D

representations experience the same visualization behavior throughout the

simulation run, their different colours make them distinctive. Although

these instances are distinguishable through their different colors, yet that is

not enough to satisfy this discriminability design principle. The design of

the simulation visualization did not strictly follow this principle. Hence, the

choice of object classes’ 3D representations colours does not contradict

93

with the absolute judgment principle (principle Number 2) discussed

earlier.

B- Mental Model Principles:

6. Principle of pictorial realism: For example, the simulation’s crane object

class visualization prototypes were built in accordance with the concept of

pictorial realism rather than representing these cranes in an iconic way.

This is one of the strengths of this HSV framework; it allows typical

realistic representation of simulated object classes instead of the old iconic

representation of simulated elements. However, it is fair to say that some

represented object classes in the HSV framework were represented in an

iconic way. The author thought that such higher level of details in the

object classes’ representations in the visualization was not significant to

the decision-makers.

7. The principle of moving parts: When a certain object is transformed during

a construction process, either this movement is a translation or rotation, the

simulation of this process should have an object class that mimics how this

object behaves in a real construction site. The visualization of this

simulated process will in turn have a model that represents this object

class, and the transformation(s) of this representation should correspond to

its simulated movement. For instance, in the HSV framework, the

simulation events of the cranes’ mobilization from a lift location to the

other on site constitute a form of object translation. On the site

visualization screen, the shortest route that this crane model will follow

(Chapter 4) is published through the pathfinding mechanism built inside

the visualization component of the framework, and the crane model is

translated to its destination lift location on this path.

C- Principles Based on Attention:

The HSV framework allows for the three types of attentions discussed in

Chapter 2 to be present in the site simulation visualization concurrently.

When it comes to Selective Attention, the decision-maker can use the site

visualization screen to only concentrate on the depiction of a certain

simulated construction operation. Focused Attention is also another point

94

of strength of this framework, since the framework gives the decision-

maker the ability to view the processes on single or multiple visualization

screens, building on the focused attention of the decision-maker. For

example in this case study, separate visualization screens were used to

depict the simulated module yard processes and site construction processes.

Also, in the HSV framework’s implementation in this case study; although

different viewers were used to depict various construction operations

taking place at different geographical locations of the project, however

processes taking place at the same location are depicted on the same

viewer. This builds on the decision-makers’ Divided Attention.

The following 4 attention based principles explained earlier in Chapter 2,

were taken in consideration when designing the visualization screens of the

HSV framework used in this case study:

8. Minimizing the information access cost principle: It was mentioned earlier

that the multiple-visualization screens inside the HSV framework

capitalize on both the focused attention and divided attention of the

decision-maker. Yet, according to this principle it is always better for the

visualization component design to keep the number of those screens as

minimal as possible. Usually, 2 to 3 screens at most are used for each

project’s simulation visualization. This is done to minimize the cost to

move the decision-maker’s selective attention between different depicted

simulated construction processes.

9. The principle of proximity compatibility: In the HSV framework’s

implementation in this case study, the models representing the object

classes, "Cranes" and "Modules" are located on the same visualization

screen to depict the simulated event of lifting and installing a module.

Exceptions to this principle could happen when the framework has

multiple visualization screens depicting various simulated processes taking

places concurrently at different physical locations of the project.

10. The principle of multiple resources: The displaying of pathfinding

mechanism findings followed this principle. The pathfinding mechanism

implemented inside the visualization component found the shortest path for

95

each heavy lift crane mobilization event triggered by the simulation. The

visualization depicts this shortest path using two formats; a graphical

format and text format. This use of multiple formats for creating the

visualization of these paths is a demonstration of the multiple resources

principle.

D- Memory principles:

11. The principle of replacing memory with visual information: In the HSV

framework’s implementation in this case study, the shortest path

parameters calculated throughout the project’s life cycle simulation for the

mobilization of crane events, are displayed to the decision-maker in a

tabular text format, so he/she can retrieve any of this data at a later time of

the simulation run. Also, the visualization screens in the HSV framework

was not crowded with unnecessary or secondary information that is not

related to the visualized simulated construction operation.

12. The principle of predictive aiding: The use of a game engine inside the

framework helps in this matter due to its loose coupling to the simulation

component and its ability to establish two-way communications with the

simulation. This allows the decision-maker to visualize various

construction scenarios. This will be discussed further in Chapter 3. This

makes the decision-maker more proactive.

13. The visualizations inside the framework should be consistent: One of the

strengths of this HSV framework is that it allows for more than one

visualization screen to concurrently depict various construction operations.

This was the case in this case study where two visualizations were working

concurrently to depict the simulated operations taking place at the module

yard and on site. Both visualizations screen designs should be consistent,

with no major discrepancies between them. For instance, modules should

be represented using the same 3D representations in the module yard and

the site construction visualization screens.

This section discussed the means by which the visual analytics and display design

principles discussed earlier in Chapter 2 aided in the conceptual design of the simulation

96

visualization screens and simulation states translations into visualization behaviors. The

full set of display design principles was not strictly utilized in the mapping of every

simulation state into its corresponding visualization behavior; however each mapping was

based on some of those principles.

4.4 Stochastic versus Deterministic Data Modeling of Cranes’ Shortest

Travelling Distance in a Dynamically Changing Site Layout

In this section, the HSV framework’s PME output (cranes’ shortest routes travel

distances throughout this case study implementation) is modeled into probabilistic

distribution functions. This is done to test if probabilistic distributions can used to

stochastically estimate a resource’s minimum travel duration given a certain site layout

instead of the proposed HSV framework.

The output from implementing the HSV framework and its PME in this Ft. Saskatchewan

site, (which contains the cranes’ travel distances on feasible and least- expensive paths)

was modeled into different distributions. Goodness of fit tests were used to assess the

fitness of the theoretical distribution to the minimum travelling distance data at various

significance levels.

The Cumulative Distribution Functions (CDF) for the fittest distributions will be shown

together with the results of running the goodness of fit tests on those distributions. In

light of that, the following sections will discuss the reasons for using the pathfinding

mechanism rather than stochastic probabilistic distributions when calculating/estimating

the shortest resource travelling distances in a dynamically changing site layout.

4.4.1 Used calculations and notes about Experiment

The theoretical and the empirical CDFs were compared at a range of relatively lower

significance levels. The cranes’ travel distances on shortest paths do not need to be tested

at higher significance levels, as these distances are more of an approximation of the

actual expected travel distance. The significance level is represented by the symbol

gamma (α). Τhe goodness of fit statistic values were compared to their critical statistic

values at gammas equivalent to .2 and .1, corresponding to significant levels of 80% and

90%, respectively.

97

Three tests were used to assess the best CDF fit for modeling resource travel distance on

site: the Visual test, Kolmogorov-Smirnov (K-S) test and Chi Squared test. The Visual

test is a visual comparison between the travelled distance sample CDF curve and the

theoretical curve of the specified distribution, also comparing the empirical data to the

theoretical data using a P-P plot.

Once the statistic of each test is calculated for the travel distances data, they are

compared to the critical values provided by the software based on the significance levels

mentioned earlier. If the test statistic is greater than the critical values provided by the

software at a given significance level, then the hypothesis that the travel distances data

follow the distribution is rejected.

Next, the fittest distributions will be shown, together with their equations, CDF plots, and

P-P plots. A discussion will follow on whether to use the stochastic estimate from these

distributions or the deterministic values from the HSV framework’s implemented

pathfinding mechanism.

4.4.2 Best Fit Distributions: Evaluations and Analysis

Figure 4-19 shows a sample of the shortest cranes’ travel distances which were calculated

by the pathfinding mechanism after a complete simulation run of the project. This is the

data to be fit to a probabilistic distribution.

98

Figure 4-19 Shortest cranes’ travel distance samples given by the pathfinding

mechanism for a complete project simulation run

Based on the aforementioned goodness of fit tests, the distributions that fit best for this

sample data will now be discussed.

4.4.2.1 Log-Pearson 3 Distribution

Figures 4-20 and 4-21 show the CDF and P-P plot for the Log-Pearson 3 distribution

versus the sample data respectively.

99

Figure 4-20 CDF for the Log-Pearson 3 distribution versus the sample data

Figure 4-21 P-P plot for the theoretical Log-Pearson distribution CDF values versus their

empirical CDF values

P-P Plot

Log-Pearson 3

P (Empirical)

10.90.80.70.60.50.40.30.20.1

P
 (
M
o
d
e
l)

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

100

The CDF of this distribution is represented as,

Where, α is a continuous parameter where α>0

 β is a continuous parameter such that β≠0

 γ is a continuous parameter

The parameters for this sample distribution were as follows;

α = 2.09

β = -.4

γ = 6.4

As shown in Figure 4-20, the data sample is around the Log-Pearson 3 theoretical CDF

distribution. Figure 4-21 (P-P plot) shows a clearer comparison: the 27 CDF value points

against their theoretical CDF values. This plot should be approximately linear if the

specified theoretical distribution is the correct model. As shown in Figure 4-21, the

linearity is not clear, although according to the K-S and Chi-Squared statistics obtained,

this was one of the best fitting distributions.

Table 4-3 shows the K-S and Chi-Squared test results for the Log-Pearson 3 distribution.

Kolmogorov-Smirnov

Sample Size

Statistic

27

0.15657

α 0.2 0.1

Critical Value 0.2003 0.22898

Reject? No No

Chi-Squared

Deg. of freedom

Statistic

3

0.0594

α 0.2 0.1

Critical Value 4.6416 6.2514

Reject? No No

Table 4-3 Goodness of fit values and the critical values at the corresponding significance levels for

Log-Pearson 3 distribution

…… (8)

101

As shown in Table 4-3, both test statistics are less than their corresponding critical values

at both significance levels. To the contrary of visual testing the test statistics showed that

this distribution should not be rejected.

4.4.2.2 Generalized Extreme Value Distribution

Figures 4-22 and 4-23 show the Generalized Extreme Value Distribution versus the

sample data CDF and P-P plot respectively.

Figure 4-22 CDF for the Generalized Extreme Value Distribution versus the sample data

Cumulative Distribution Function

Sample Gen. Extreme Value

x

48044040036032028024020016012080

F
(x
)

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

102

Figure 4-23 P-P plot for the theoretical Generalized Extreme Value Distribution CDF values

versus their empirical CDF values

The CDF of this distribution is represented as,

Where, K is continuous shape parameter

 µ is continuous shape parameter

 σ is continuous shape parameter such that (σ>0)

The parameters for this sample distribution were as follows:

K = -.54

µ = 289.8

σ = 148.9

Figure 4-23 (P-P plot) shows, yet again, a clearer comparison of the 27 CDF value points

against their theoretical CDF values. As was the case with the P-P diagram of the Log-

Pearson 3 Distribution, the linearity is not clear; however there is more linearity in this

…… (9)

.…………. (10)

103

case than in the Log-Pearson 3 Distribution. Also the K-S statistic of the Generalized

Extreme Value Distribution (shown in Table 4-4) is lower than that of the Log-Pearson 3

(shown in Table 4-3).

Kolmogorov-Smirnov

Sample Size

Statistic

27

0.10033

α 0.2 0.1

Critical Value 0.2003 0.22898

Reject? No No

Chi-Squared

Deg. of freedom

Statistic

3

0.47627

α 0.2 0.1

Critical Value 4.6416 6.2514

Reject? No No

Table 4-4 Goodness of fit values and the critical values at the corresponding significance levels for

Generalized Extreme Value Distribution

To summarize, the two best fitting distributions from a number of distributions were

discussed above. Among the distributions, the Generalized Extreme Value Distribution

seems to fit best, yet the fit is not perfect. The next section will discuss the validity of

using this distribution to estimate cranes’ shortest paths in a dynamically changing site

layout.

4.4.3 Validity of Using Stochastic Distribution to Estimate Heavy Lift Mobile

Resources’ Shortest Paths

It is important to note that estimating the shortest resource paths from the stochastic

Generalized Extreme Value Distribution can be misleading for a number of reasons:

• Although the K-S test statistic was satisfactory, the visual assessment of the

distribution fit was not. Overall, one can still be hesitant to model heavy lift

mobile resources’ estimated shortest paths travel distance using this stochastic

distribution.

• The shortest distance is estimated here, not the average travelling distance of

mobile resources onsite. If the travel distance is estimated randomly from this

stochastic distribution, there is a high probability that the result will exceed the

104

distance of the shortest path. The HSV framework uses a pathfinding mechanism

to estimate the shortest distance for the least- expensive path rather than an

average distance that is modeled based on past experience and observations.

• Bearing in mind that no construction sites have identical layouts, a stochastic

distribution (Generalized Extreme Value Distribution) that is sampled based on

observations from one site will not be indicative of mobile resources’ shortest

paths in a different site. Therefore, it is misleading to use this stochastic

distribution in estimating shortest paths in other sites.

• The fitted distributions do not consider the time effect at all. This means that as

the project time progresses, site spaces become more congested and occupied.

This congestion factor has to be taken in consideration (modeled) when

estimating the heavy lift mobile resources (heavy lift cranes) mobilization times

at later stages of a project.

• Estimating heavy lift mobile resources shortest path distances from stochastic

distributions is “static” in nature, meaning that such distributions do not take the

dynamic changes in a site layout into consideration. The pathfinding mechanism

inside the framework considers the continuous changes in a site layout and

arrives at a deterministic value. The deterministic values calculated by the

pathfinding mechanism inside the HSV framework take into consideration the

safety factor. That is because the calculated resources’ shortest paths must also

be obstacle-free.

Based on the above arguments, none of the tested distributions can perfectly replace the

detailed approach using the HSV framework to find the heavy lift cranes mobilization

durations. The best way to plan for minimizing and finding resource mobilization

durations in a dynamically changing site layout is through the combination of simulation

driven visualization and search algorithms (HSV framework), rather than the use of

stochastic distributions. Consequently, the pathfinding mechanism was implemented

inside the HSV framework to achieve this target as described earlier.

105

Chapter 5: Conclusion and Further Research

5.1 Conclusion

This research presented a new way of addressing the simulation modeling limitation

when it comes to spatial data representation. It presented a new HSV framework to

address this problem. The framework used the distributed simulation HLA standards. It

built on the inherent strengths of both simulation and visualization that resulted in an

automated and novel way of solving heavy lift resources pathfinding problem in a

dynamic site layout based on modeling the spatial changes in this site. The HSV

framework showed good potential as an interactive dynamic site layout planning tool in

terms of modeling dynamic changes in site layout and modeling changes in sites’

geometries. Also it was a useful tool in solving the heavy lift resources pathfinding

problem.

The framework’s ability to depict changes in construction site’s spaces geometry was

utilized in the construction industry to achieve the following:

• Models both: changes in site space and the dynamic changes in site layout.

• Acts as a planning tool for calculating the heavy lift resources shortest safe paths’

distances and expected durations for those resources mobilizations on those

paths.

Decision-makers can use the framework’s pathfinding mechanism outputs to make

educated decisions based on the following:

• Finding shortest resource paths onsite.

• Modeling future changes in site space and layout.

• Minimizing the total heavy lift resources’ mobilization events duration.

• Testing whether the already existing heavy lift resources’ paths are the shortest,

obstacle-free ones.

• Clearing the predefined paths for heavy lift resources mobilization throughout the

project lifecycle.

In order for the HSV framework to achieve the above mentioned goals, it had to address

some limitations that exist in the current state of the art construction SDV mechanisms.

106

The HSV framework has the following advantages over other construction SDV

frameworks:

• Two-way communication between the simulation and visualization components

of the framework allowing the information to flow in both directions between the

components. This enhances the use of the framework in the decision making

process.

• Loose coupling between the simulation and visualization components. This

enhances the re-usability of the framework and its application to various

construction processes and projects.

• The HSV framework’s underlying distributed simulation architecture allowed for

multiple concurrent construction process simulations and visualizations to be

used for the same project. This allows the decision-makers to concentrate on

various aspects and processes of the project. It also allows multiple decision-

makers who physically exist in various locations to concurrently experiment with

various simulation scenarios and/or site layout scenarios inside the framework.

• The HSV framework is robust in terms of its ability to build on the strengths of

both its visualization and DES components. There was no need to make any

compromises on the strengths of any of the simulation or visualization

components to achieve interoperability and concurrent two-way simulation

visualization.

This thesis started by a critical review of the construction literature related to the

objectives and tools used in this research. The Visual analytics and display design

principles used in the conceptual design of the framework’s visualization component in

the Ft. Saskatchewan case study (Chapter 4) were also discussed. Chapter 3 discussed the

complete technical developments of the framework with its PME. The chapter also

explained how the framework with its PME will be utilized in modeling a construction

site’s spatial changes and heavy lift mobile resources’ tempo-spatial planning. The mesh

generation mechanism and A* algorithm implemented inside the framework to perform

resources’ tempo-spatial planning were also explained in this chapter. In Chapter 4, the

HSV framework with its full technical developments and pathfinding mechanism was

applied to a real construction project case study (Ft. Saskatchewan oil upgrader site) to

judge and demonstrate its ability to depict/model future changes in site spaces and

perform heavy lift cranes tempo-spatial planning. This case study implementation

107

showed that the HSV framework can be utilized to validate the simulation’s logic and

chosen construction sequence. The conceptual design process of the visualization

component of the HSV framework that was utilized in this case study, according to visual

analytics and display design principles, was also explained

5.2 Research Contributions

The proposed HSV framework will contribute towards the construction industry through

integrating site space management and resources’ pathfinding capabilities. The

framework makes use of the SDV ability to model future changes in site space and

layout. The framework makes use of this integration to act as a planning tool for

calculating the heavy lift resources shortest safe paths’ distances and expected durations

for those resources mobilizations on those paths.

5.3 Further Research

The limitations mentioned earlier in Section 3.4.3 should be addressed, for example; the

safety buffer zone should be adjusted based on the movable resource’s print shape. Also,

the HSV framework’s 2-way interaction can be further enhanced to act like a site

management tool in a game-like environment. Also, the resource path problems can be

treated as “Robot Navigation” problems, where the resource has an infinite rather than a

discrete set of routes to move in a dynamic site layout. The framework can also be

applied to other construction problems other than resources’ mobilizations planning. A

graphical user interface can be added to the framework to allow the decision-makers to

customize the framework visualization in order to adapt to the construction problem they

want to solve. This interface would make the framework more customizable to solve

more space modeling problems in construction projects/sites of various categories.

108

Bibliography

Al-Hussein M., Niaz M., Yu H. and Kim H. (2006). Integrating 3D visualization and

simulation for tower crane operations on construction sites, Journal of Automation

in Construction, Vol. 15, No.5, September 2006.

AlBahnassi, H., Hammad, A., and Zhang, C. (2009). Accurate heavy equipment motion

planning considering local and global constraints, Proceedings of Annual

Conference - Canadian Society for Civil Engineering, St. Johns, NL, Canada, May

2009.

Blender Foundation. (2010). Help and Education [Online] Available at:

http://www.blender.org/education-help/.

Boff K., Kaufman L. and Thomas J. (1986). Handbook of perception and human

performance, Wiley, NY, USA.

Card S., Mackinlay J. and Shneiderman B. (1999). Readings in information visualization:

Using vision to think, Morgan Kuffman Publishers Inc., San Francisco, CA, USA.

Cawthon N., and Moore A. (2007). The effect of aesthetic on the usability of data

visualization, Proceedings of the International Conference on Information

Visualization, Zurich, Switzerland, July 2007.

Dawood N. and Marasini R. (2003). Visualization of stockyard layout simulator

“Simstock”: A case study in precast concrete products industry, Journal of

Automation in Construction, Vol. 12, No.2, March 2003.

Dawood N., Scott D., Sirprasert E., and Mallasi Z. (2005). The virtual construction site

(VIRCON) tools: An industrial evaluation, Journal of Information Technology in

Construction, Vol.10, 2005.

El-Rayes K. and Said H. (2009). Dynamic site layout planning using approximate

dynamic programming, Journal of Computing in Civil Engineering, Vol. 23, No.2,

2009.

Elbeltagi E., Hegazy T. and Eldosouky A. (2004). Dynamic site layout of construction

temporary facilities considering safety, Journal of Construction Engineering and

Management, Vol.130, No.4, July-August 2004.

ElNimr A. and Mohamed Y. (2010). A simulation driven visualization framework for

construction operations: Development and operation, Proceedings of the

Construction Research Congress, Banff, AB, Canada, May 2010.

ElNimr A. and Mohamed Y. (2011). Application of gaming engines in simulation driven

visualization of construction operations, Journal of Information Technology in

Construction, Vol.16, January 2011.

Gominuka, T. and Sadeghpour, F. (2008). A framework for activity-based identification

of space requirements for construction equipment, Proceedings of the Annual

109

Conference of the Canadian Society for Civil Engineering 2008 ''Partnership for

Innovation'', Quebec City, QC, Canada, June 2008.

Hajjar D. and Abourizk S. (1999). Simphony: an environment for building special

purpose construction simulation tools, Proceedings of the Winter Simulation

Conference , Phoenix, USA, December 1999.

Halpin D. and Woodhead R. (1976). Design of construction and process operations, John

Wiley and Sons, New York, N.Y., USA.

Hessom D., and Mahdjoubi L. (2004). Trends of 4D CAD applications for construction

planning, Journal of Construction Management and Economics, Vol.22, No.2,

February 2004.

Huang R. and Halpin D. (1994). Simulation of cable stayed bridges using DISCO,

Proceedings of the Winter Simulation conference, Buena Vista, USA, December

1994.

Ioannu P. and Martinez J. (1996). Animation of complex construction simulation

models, Proceedings of the Congress of Computer in Civil Engineering, New

York, USA, 1996.

Kalk A. and Douglas S. (1980). Insight: Interactive simulation of construction operations

using graphical techniques, Technical Report No. 283, Construction Institution,

Department of Civil Engineering, Stanford Univ., Stanford, California, USA.

Kamat V. and Matrinez J. (2001). Visualizing simulated construction operations in 3D,

Journal of Computing in Civil Engineering, Vol. 15, No.4, October 2001.

Kamat V. and Martinez J. (2002). Comparison of simulation-driven construction

operations visualization and 4D CAD, Proceedings of the Winter Simulation

Conference, San Diego, CA, USA, December 2002.

Kamat V. and Matrinez J. (2004). General Purpose 3D-Animation with VITASCOPE,

Proceedings of the Winter Simulation Conference, Washington, DC, USA,

December 2004.

Kamat V. and Matrinez J. (2008). Software mechanisms for extensible and scalable 3D

visualization of construction operations, Journal of Advances in Engineering

Software, Vol. 39, No.8, August 2008.

Ma Z., Shen Q. and Zhang J. (2005). Application of 4D for dynamic site layout and

management of construction projects, Journal of Automation in Construction, Vol.

14, No.3, June 2005.

Mckinney K., and Fischer M. (1998). Generating, evaluating and visualizing construction

schedules with CAD tools, Journal of Automation in Construction, Vol.7, No.6,

September 1998.

Norman D. (1988). The psychology of everyday things, Harper &Row, NY, USA.

110

Oloufa A. (1993). Modelling and simulation of construction operations, Journal of

Automation in Construction, Vol. 1, No.4, March 1993.

Oloufa A.A. and Crandall K.C. (1992). Feedback mechanism for operational simulation,

Journal of Computing in Civil Engineering, Vol. 6, No. 2 , April 1992.

Parasuraman R., Davies R. and Beatty J. (1984). Varieties of attention, Academic Press,

NY ,USA.

Paulson B.C., Douglas S.A., Kalk A., Touran A. and Victor G. (1983). Simulation and

analysis of construction operations, Journal of Technical Topics in Civil

Engineering, Vol. 109, No. 2 , August 1983.

Rekapalli P. and Martinez J. (2009). Runtime user interaction in concurrent simulation-

animations of construction operations, Journal of Computing in Civil Engieering,

Vol.23, No.6, December 2009.

Rekapalli P. and Martinez J. (2011). Runtime user interaction in concurrent simulation-

animations of construction operations, Journal of Construction Engineering and

Management, Vol.137, No.3, March 2011.

Rohrer M. and McGregor I. (2002). Simulating reality using Auto-Mod, Proceedings of

the Winter Simulation Conference, San Diego, USA, December 2002.

Rosceo S. (1968). Airborne displays for flight and navigation. Human Factors, Vol.10,

No.4, August 1968.

Russell A. and Udaipurawla A. (2004). Using multiple views to model construction,

Proceedings of CIB World Congress Building, Toronto, ON, Canada, May 2004.

Russell A., Chiu C. and Korde T. (2009). Visual representation of construction

management data, Journal of Automation in Construction, Vol.18, No.8, December

2009.

Russell S. and Norvig P. Artificial intelligence a modern approach, 2nd edition, Prentice-

Hall, Upper Saddle River, N.J., USA.

Sadeghpour F., Moselhi O. and Alkass S. (2006). Computer aided site layout planning,

Journal of Construction Engineering and Management, Vol. 132, No.2.

Sadeghpour, F., Moselhi, O. and Alkass, S. (2005). Modeling the time factor in site

planning, Proceedings of the Annual Conference of Canadian Society for Civil

Engineering, Toronto, ON, Canada, June 2005.

Schmid C. (1978). The role of standards in graphic presentation, Proceedings of the

Annual Meeting of the American Statistical Association, USA, 1978.

Shannon R.E. (1975). System Simulation: The Art and Science, Prentice-Hall, Englewood

Cliffs, N.J., USA.

Sirprasert E. and Dawood N. (2003). Multi-constraint information management and

visualization for collaborative planning and control in construction, Journal of

Information Technology in Construction, Vol.8, 2003.

111

Song K., Pollalis S. and Pena-Mora F. (2005). Project dashboard: concurrent visual

representation method of project metrics on 3D building models, Proceedings of

ASCE International Conference on Computing in Civil Engineering, Reston, VA,

USA, 2005.

Songer A., Hays B. and North C. (2004). Multidimensional visualization of project

control data, Journal of Construction and Innovation, Vol.4 , No.3, 2004.

Thomas J. and Cook K. (2005). Illuminating the path: The research and development

agenda for visual analytics, IEEE Computer Society Press, Los Alamitos, CA,

USA.

Truevision3D. (2010). 3D Engine and Game Development SDK by Truevision3D

[Online] Available at: http://www.truevision3d.com/.

Wickens C. and Hollands J. (2000). Engineering psychology and human performance,

3
rd

 edition, Prentice-Hall, Upper Saddle River, NJ, USA.

Wickens C., Lee J., Liu Y. and Becker S. (2004). An introduction to human factors

engineering, 2
nd

 edition, Prentice-Hall, Upper Saddle River, NJ, USA.

Xu J. and Abourizk S. (1999). Product-based model representation for integrating 3D

CAD with computer simulation, Proceedings of the Winter Simulation Conference,

Phoenix, USA, December 1999.

Zeb J., Chiu C. and Russell A. (2008). Designing a construction data visualization

environment, Proceedings of the 1
st
 Forum on Construction Innovation, Montreal,

Quebec, Canada, 2008.

Zhang J., Anson M. and Wang Q. (2000). A new 4D management approach to

construction planning and site space utilization, Proceedings of the International

Conference on Computing in Civil and Building Engineering, August 2000.

Zhang X., Bakis. N.,Lukins T., Ibrahim Y., Wu S., Kagioglou M., Aouad G., Kaka A.

and Trucco E. (2009). Automating progress measurement of construction projects,

Journal of Automation in Construction, Vol. 18, No. 3, 2009.

Zhou F., Abourizk S. and Al-Battaineh H. (2009). Optimization of Construction site

layout using a hybrid simulation-based system, Simulation Modeling Practice and

Theory, Vol.17, No.2, February 2009.

112

Appendix I: Visualization of Construction Projects Bidding

Game Simulation

A first sample small implementation was carried out in order to make sure that the

proposed framework architecture is interoperating properly and integration is enabled

using this architecture. The implementation was aimed at providing some visual output to

a bidding game developed as a training tool for construction students to learn how the

bidding process in the construction industry takes place. Players take the roles of general

contractors, who bid on projects published by a Market Simulator Federate. The players

can compete against each other and/or against virtual players driven by computer

algorithms. The bidding game federation is composed of the federates shown in Figure 3-

5; Table 3-1 explains the functions of the federates.

The objective of the visualization component in this federation is to provide visual clues

to the locations and natures of existing and upcoming projects in the game. The

Visualization Federate was developed using TureVision 3D® (a commercial game

engine) as the graphics engine. This engine provides a set of libraries to manipulate 3D

graphics and an advanced Application Programming Interface (API) for Microsoft .NET.

This API allows developers to load 3D models and manipulate them without the need for

extensive programming experience. Although this implementation does not map detailed

resource interaction of construction operations, it demonstrates the use of a gaming

engine to provide some visual output to a bidding game

 Figure 1 Federates forming the Bidding Game Federation

113

 Federate Function

Market Simulates a construction market and generates projects with attributes for

bidding. Generates subcontractors bids

Bank Simulates the bank for human players, giving them loans, lines of credit, etc.

Simulator 1) Advances game time (simulation time); 2) Collects bids; 3) Awards bids;

4) Deposits money to each player’s account at the end of each period,

according to the pre-defined payment schedule of each project type; 5) Tracks

actual progress of each project. Compares the actual schedule and cost to

what was planned in the bids and publish that information.

Info bank 1) Records the historical performance of each Subcontractor; 2) Records

projects from past or current periods. 3) Publishes project information in the

next period for the players (general contractors)

Viewer

Federate based

on TureVision

Gaming

Engine

Displays project attributes and locations to inform human players and the

administrator of the projects available for bidding during the simulation run

Human player 1) Acquires loan; 2) Submits bid; 3) Selects subcontractors; 4) Requests

information from information bank.

Virtual player Same as the human player

Access

Database

Stores a standard project warehouse, and defines the properties of each

project category, including the area of building, the actual cost of each period

for each project type, the unit cost for each sub-trade, and so on.

Table 1 The function of each federate in the Bidding Game federation

The focus of this case study is only on the Viewer Federate and how it will interoperate

with the Discrete Event Simulation (DES) component in the framework. A 3D display

surface is developed through the TureVision engine and embedded inside the Viewer

Federate window, which connects to the RTI once simulation starts. The development is

all carried out using Visual Basic .NET code. The Viewer Federate in this

implementation acts as a listener to interactions and attribute updates produced by other

federates in the federation. Once the Viewer Federate is connected to the simulation, and

the simulation starts, the Market Federate starts to generate projects and their attributes at

different times during the simulation.

The Viewer Federate listens (subscribes) to a number of attributes of a project. These

attributes are:

• Project location: Each project is generated at a certain location defined in the

form of (X, Y) coordinates. This (X, Y) location is read by the Viewer Federate

114

and scaled to fit the dimensions of a map of the province of Alberta (the

province for which the market is simulated). Once the project is published in

the federation, the Viewer Federate displays its location on the map using a

generic 3D model of a building.

• Project title and category: The Viewer Federate displays the title and category

for each project. These attributes are displayed using a 3D font in front of each

project on the display surface.

Human players use the visualization to pick projects for bidding and to know when

projects are generated during the simulation run. Figure 3-6 shows a screen shot of the

Viewer Federate during the simulation while Figure 3-7 shows the logic behind the code

used for utilizing the gaming engine in the development of the Viewer Federate.

Figure 2Viewer Federate showing projects, their locations and project information during

the simulation

Figure 3 TureVision 3D engine coding logic inside the Viewer Federate

The gaming engine pseudo-code shown in Figure 3-7 starts with the declaration of all the

TureVision 3D elements; the various game engine components are declared here, for

115

example, the TV Engine itself, scenes, meshes, cameras and the scene atmosphere. The

code is then set to subscribe to the project's attributes mentioned earlier and read the

changes in these attributes’ values by connecting to the RTI. This subscription part

includes the code to display projects based on their actual locations on the viewer screen.

Then the code creates the various screen elements which were set in the declaration

phase. These various elements (including meshes with their various textures representing

different projects) are displayed to the players based on the simulation scenario. The last

portion of the code sets the user interface, for example the user controlling the viewer

screen through mouse movements or changing the scene's camera.

The use of a game engine in this implementation allowed for the development of the

Viewer Federate in a relatively short time. It also allowed for integrating naturally with

other components of the federation (i.e. other federates and the RTI) through the VB

.NET API. However, it still required some programming knowledge for customizing the

behaviors of the 3D objects on the display surface. Despite the advanced services

provided by the engine, this programming knowledge grows significantly with the

complexity of the behaviors required for the 3D objects.

This first implementation using the TureVision 3D engine enabled seamless integration

with the HLA framework as both are .NET based. However, generating visual behaviors

in response to simulation interactions using code required significant programming

background despite the high level functionality that the engine provides. In addition, the

engine provides functions to manipulate an existing set of objects but does not help much

with the creation (modeling) of the 3D world, which is not a trivial task.

As a result of this experiment, a search for a more effective and flexible way to provide

visual behaviors and interaction with 3D objects took place. The search resulted in the

utilization of another gaming engine; Blender Game Engine (BGE) inside the

visualization component of the framework applied in the main case study (Chapter 4).

Now that the HSV framework interoperability succeeded in this first implementation, it

was time to add the generic Pathfinding Mechanism Extension (PME) to the HSV

framework.

116

Appendix II: Site Visualization Manual

The development of the site visualization federate and the industrial federation was done

using Cosye framework which is a C# framework that allows developers to develop

interoperable simulations using HLA standards. Cosy was developed by programming

team at the University of Alberta’s Hole School of Construction Engineering and it can

be downloaded from http://irc.construction.ualberta.ca/cosye. The site and yard

interactive visualization screens were developed through Blender©, which is an open

source 3D engine with a gaming engine known as Blender Game Engine (BGE). Blender

can be downloaded from this website: www.blender.org .

This manual is to further explain the technical details of the site visualization federate and

site visualization Blender Game engine (BGE) important developments. The manual does

not include all the developments’ details; however it includes enough to put the reader on

the right track to follow through this development for future simulation visualization

developments using the HSV framework’s components.

The way the logic is designed is such that a certain object inside the scene of the game

acts as the Server to receive the message from the site visualization federate. The object

is called: Federate HUB and it is the server which has the Server.py on its controller.

While the Client in this case is the Siteviewer.vb (Site Viewer Federate). This Client (Site

Viewer Federate) which sends reflections of Module.Name, Module.Fieldlocation ,

among other FOM resources object classes’ attributes. The way it goes is as follows:

Cosye.Industrial

Federation

Module.Name

Module.fieldLocati

on

Crane.ID

Crane.FieldLocatio

nID

Site Viewer Federate:

Show on ListBox:

Module.Name

Module.fieldLocation

Private Sub

SendMsg(ByVal Msg As

String)

Port=10000

If Module @Setpoint

txtMsg =

mymodule.Name.ToStri

ng + "_SET"

Site Viewer .blend

BGE:

Server.py :

1)Opens

Port=10000

2)Read Data:
mymodule.Name.

ToString +

"_SET"

3)Calls Object

4)Sends Msg

(OB:421H-

R203_bound;SET

)

117

Figure 1 The logical flow of one way of the HSV framework pipeline

1st: The Cosye Industrial Federation

It has to be designed to publish whatever attributes that you want your client federate

(Site Viewer in this case) to read and reflect to the BGE. In this case 4 attributes are read:

1. Module.Name

2. Module.FieldLocation

3. Crane.ID

4. Crane.FieldLocationID

The Federate Host which has Cosye.Industrial Federation has to be set on the following

settings:

• IP of RTI : The computer which has the Site Viewer federate on it

• Federation Name: The Cosye.Industrial and Site Viewer Federates should have

the same name in the "Federation name" field.

• Port Number: The client (Site Viewer Fed) and Cosye Industrial federation

should read from the same port on the Fed Host form.

Figure 2 shows snapshots of federate host for both the Site Viewer Client Federate and

the Cosye.Insustrial Federate:

118

Figure 2 the Site Viewer Federate (Client) and the Cosye.Industrial Federation Federate Hosts

119

2nd: The Site Viewer Federate-Client

Now we are sure that the source simulation on the Cosye.Industrial. SiteConstruction is

publishing both attributes the FieldLocation and Name; we need the Site Viewer Federate

to receive reflections from the Industrial Federation (which may run on same or different

terminal with a different IP address). The receiving of reflections here will be through the

COSYE.RTI not through messages. The Site.viewer is only sending message to the

BGE's Federation.HUB object, which acts as a server to the site.viewer client. This is

very important to understand, that federates contacts are through the RTI on the same

terminal as the Site.Viewer client.

Two questions that need to be answered when developing a viewer federate in this

framework:

How do we connect to the federation portion through RTI?

The site viewer is built inside a federate host, by simply following the federate

development example on: http://irc.construction.ualberta.ca/cosye. However, instead of

inheriting a federate form with create; go for a "Controlled federate form" which comes

with the downloadable Cosye package.

The viewer federate is not time regulating or constrained .See Figure 3 below.

Figure 3 Site Viewer Federate Time Management Implementation

Now, make sure to add the list box (LbxModules in this case) which is generically there

to display the messages coming from the source simulation federate (Cosye.Industrial

120

Federation in this case). The listbox is just there to show what the Viewer Federate

receive from the federation, hence Figure 4 .Now once the list box is added , start adding

the factories for the simulation objects that the site viewer will be subscribing to (in our

case Module Factories –MyModuleFactory- and subscribe to the object's attributes that

you will be receiving from the source simulation (see figure 4).Of course, a Factory needs

to be added for each Object that the Viewer subscribes to its attributes (receives

reflections from the Source Simulation Federation-RTI).

Figure 4 Site Viewer List Box to show msgs from Cosye.Industrial plus subscribing in various

attributes in MyModuleFactory

As shown in Figure 4 that a copy of the FOM is part of the site.viewer solution (called

Cosye.Industrial.xml). Now, once the time regulation and public/subscribe to

simulation’s objects classes’ attributes is complete, it is time to develop the VB.Net code

for reflecting the messages of updated attribute values from the Source Simulation.

121

Figure 5 The Imports part and Declarations before getting into the coding

As show in figure 5:

• mymodule as module to declare an instance of the modules published by the

Cosye.Industrial federation.

• S as socket in Port = Port which reads from a certain IP address (broadcast) ,

which is set here to Localhost, this IP address can change based on the IP address

of the terminal where the Site Viewer federate is located.

• txtMsg is the message that this Site.Viewer will be sending to the BGE.

How do we connect the Site Viewer (Client) to the BGE (server)?

Figure 6 The Send Message function

The SendMsg function simply sends the message to the BGE, the msg in this case will be

the mymodle.name plus it’s FieldLocation, which is basically the reflection that the Site

Viewer receives from the Cosye.Industrial Federation. The SendMsg function uses

Port=10000 (Port was declared in Figure 5), the IP address (broadcast = localhost), and

the port 10000 inside an address (EndPoint) called ep. Now socket (s) sends the msg to

this address (ep) using this sendbuf (buffer). Now, after the entire send message was set,

the message has to be defined (to represent module name and Field location) in this case.

122

Figure 7 sending a message (txtMsg) each time a reflection is received from the RTI

Figure 7 shows what happens when there is a reflection from the Cosye.Industrial

Federation through the RTI, first setting the instance we have (mymodule) to the object

of which its attributes are reflected:

mymodule= mymodulefactory(e.theobject)

Next it is the filtering of the modules such that a message is only sent using the sendmsg

function if a module is AtSetPoint, and it is not one of two modules that are not

represented in the BGE site model with an object. The txtMsg is then set to Module

Name + “SET”, this will be truncated at the receiver's end (BGE) through the slicing

function to send a message called (“SET”) inside the BGE model, hence the case

sensitivity of the BGE python scripts. The sendmsg function with its parameters set

earlier in Figure 6, can be used to send this message on the specified IP and Port

(Localhost & 10000 respectively in this case), the BGE model will take it from there as a

receiver.

Now it is time to move to the last component of the HSV framework which is the BGE

model with its graphical and python interface, which is where:

1. The sent message will be received

123

2. Based on this message the modules will be demonstrated at their respective site

location and the cranes will move to their respective locations.

3rd: BGE Site Model:

The logic inside the gaming engine is built in general using 3 blocks:

• sensors : That is usually where it receives a message

• controllers: where the python code lays

• actuators: starts certain action

The BGE interface will be broken down into 2 major components:

• BGE site model acting as a server to receive and send)messages to the Site

Viewer Federate

• Internal BGE logic through Logic Bricks and Python scripts to insert the action

based on messages received from Site Viewer Federate.

We start in the logical order from receiving messages from the Site Viewer Federate

BGE site model acting as a server to receive and send messages to the Site Viewer

Federate

In order to do that a new logic cube was created and called "Federate HUB". The

Federate HUB had a property which is called active which was given the type integer

(Int) and always set to 1, to act like an always sensor so as to remain active all the time of

the simulation run. We want the federate HUB object to remain active all the time

because simply you don't know when the message will be sent from the site Viewer so

you want always your Federate HUB object to stay on alert all the time. Now, this being

active all the time activates the Server.py script on the controller block of the Federate

HUB object. See Figure 8 below.

This Server.py is simply the "bottle neck" for all this HSV framework, that is where the

BGE Site Model acts as a server and client, it activates the gaming logic by sending the

SET msg to send the specified modules defined by Cosye.Industrial to go to their Set

Point.

How this happens? Let’s examine the server.py python script.

124

Figure 8 Federate HUB logic bricks and activating the Server.py script

Now for the server.py, let’s analyze the code step by step. The server.py performs

basically two functions:

1. Receives the message from the Site Viewer federate(Figure 9):

Figure 9 Server.py; receiving message and server connection

Always start with cont = GameLogic.getCurrentController() that is where you

get the controller of the object you are ''standing on". This should always again

be followed by getting the Owner of this controller through obj=cont.getOwner (

)

Set the port to the value you specified earlier in the Site Viewer, so that is the

port of exchange between the two components. Define the socket as

GameLogic.sServer and then bind this socket to the Host and the ServerPort.

Host is automatically chosen based on where the message is received that is why

it is left blank; Host=' '. Once the connection is set, it is time to define the

125

message we need to send (instead of putting it on a message actuator) and define

who should receive this message.

2. Send message to the site viewer federate (Please refer to Chapter 4).

3. Send the message to the predefined object (message = SET , Message Receptor =

Bound Object in this case-Figure 10).

Figure 10 Server.py; Composing Message and sending it

Now the port is known, so as the IP and the socket is ready. This guarantees that

the message will be received from Site Viewer with the Module Name & its Field

Location as described earlier. Now this message needs to be send to a specific

object inside the BGE Site Model (Module Bound Object in this case). First we

define the object name by doing the following:

obname= 'OB'+Data[:9]+'_bound'

This simply sets the object to receive the msg to be equal the Bound Name which

starts with OB then the message received from site viewer w/o the (SET) portion,

hence the [:9] slicing plus the word bound , add this up and it matched the bound

object name.(Figure 11).

Figure 11 Bound Object Name (The OB421H-M402_bound)

For example in Figure 11, the module 421H-M402_SET message will be sliced

before the 9th position to result :421H-M402, then add to that the OB as a prefix

126

and the _bound as a suffix and you get the bound object's name where the

message SET (in this case) is sent.

N.B. The semicolons in BGE Python don't count as a space after OB:

After that only sending the message is left, so the message (Called Data in Figure

10.) is sliced after 10 to yield the command message “SET” which is sent to the

'obname' which as explained earlier.

Now the message is sent to each bound object so what next ? It is all now up to BGE site

model game scene, what will be triggered inside, this moves us to the second part.

3-2: Internal BGE logic through Logic Bricks and Python scripts to insert the action

based on messages received

Now the message is send to the Bound Object for each module respectively that is where

we stopped, nd we take it from the same point here. Figure 12 explains that.

Figure 12 Logic inside the BGE after receiving the respective msg from Viewer Federate through

the Server.py

The “SET” message is received from Federate HUB object and fires the SFederate sensor

as shown in Figure 12. This in turn starts the FederateToSet.py which (through the

FederateToSet.py script) fires 2 actuators:

1. actAddObject : Adds the specified module to its bound

2. actDelete : Deletes the Module's respective bound object to minimize the

cluttering and suspends the physics engine dynamics.

So the FederateToSet.py script is the corner stone here; but how does the code in this

script work.

127

 Fig 13: FederateToSet.py script

This script basically does 2 things:

1. Finds the module from the first hidden layer with the OB prefix to module name

[slice the bound object :11], this gets the module name with “ob” and recalls it

from hidden layer. Next, the code adds this object to the current scene by

activating the 'actAddObject' and defining the module name w/o the OB to be the

object added (NxtMod with ModName sliced after 2) as the object to be added.

2. This is followed by removing this Bound Object to reduce cluttering.

N.B. This FederateToSet.py is developed with the help of the ToSetPoint.py script.

N.B The resources (e.g. cranes objects...etc.) objects’ simulation statuses to visualization

behavior developments were done through the same steps mentioned above for the

modules.

128

Appendix III: Yard Visualization Manual

The development of the yard visualization federate and the industrial federation was done

using Cosye framework which is a C# framework that allows developers to develop

interoperable simulations using HLA standards. Cosy was developed by programming

team at the University of Alberta’s Hole School of Construction Engineering and it can

be downloaded from http://irc.construction.ualberta.ca/cosye. The site and yard

interactive visualization screens were developed through Blender©, which is an open

source 3D engine with a gaming engine known as Blender Game Engine (BGE). Blender

can be downloaded from this website: www.blender.org .

This manual is to further explain the technical details of the yard visualization federate

and site visualization Blender Game engine (BGE) important developments. The manual

does not include all the developments’ details; however it includes enough to put the

reader on the right track to follow through this development for future simulation

visualization developments using the HSV framework’s components.

Visualization Pipeline Mechanism:

The way the logic is designed is such that a certain object inside the scene of the game

(yard blend file) acts as a the Server. The object is: “Server”-an invisible object-and it is

the server which has the Server.py on its controller. While the Client in this case is the

Yard Viewer VB.NET solution (Yard Viewer Federate). This client (Yard Viewer

Federate) sends reflections of Module.BayModule , Module.Name & Module.Progress

from the Construction Industrial federation. The way it goes is as follows:

129

Figure 1 The logical flow of one way of the HSV framework pipeline

1st: The Cosye.Industrial Federation:

As it was explained in Site Viewer Federate manual (Appendix II), except that it

publishes other attributes that are read by the Yard Viewer Federate:

Module.Name: Has a format of : NNNC-CNNN , For Example: 421B-M401

Module.BayModule: Has a format of : ModuleNNNC-CNNN @ Bay CN, for example :

Module421C-M201 @ Bay A1

Module.Progress: NN , for example 70

where N = Integer

 C= Alphabetic Character

Cosye.Industrial

Federation: (Source

Safe):

Module.Name

Module.BayModule

Module.Progress

Site Viewer:

Show on 2 info display List Boxes:

lbxBayModule.Items.Add(CSt

r(mymodule.BayModule))

lbxModuleProgress.Items.Ad

d(CStr(mymodule.Name) +

"Progress is" +

mymodule.Progress.ToString

+ "%")

Show on 2 Msgs List boxes:

txtMsgModAssi = "ASSGN_" +

BMod

SendMsg(txtMsgModAssi)

lbxTxtMsgAssiTest.Items.Ad

d(txtMsgModAssi)

txtMsgModProg = "PRGRS_" +
BMod + "_" +

mymodule.Progress.ToString

lbxTxtMsgProgTest.Items.Ad

d(txtMsgModProg)

SendMsg(txtMsgModProg)

BGE: .blend:

Server.py :

1)Opens

Port=10005

(One from the

textbox in the

yard viewer

sln (design)

2)Send 3 Msgs

(ASSGN,PRGRS

,SHIP) with the

msg bodies

130

Figure 2 the Site Viewer Federate (Client) and the Cosye.Industrial Federation Federate Hosts

131

2nd: The Yard Viewer Federate-Client:

The Site Viewer Federate is now to receive reflections from the Industrial Federation

(which may run on same or different terminal with a different IP address). The receiving

of reflections here will be through the COSYE.RTI not through messages. The

YardViewer is only sending message to the BGE's Server object, which acts as a server

to the Yard Viewer client. This is very important to understand, that federates contacts

are through the RTI on the same terminal as the Yard Viewer client.

Please check the Site Viewer Federate Manual (Appendix II) for:

1. Creating the host federate and connecting it to the RTI

2. Imports portion of the YardViewer code.

Now for the messages part; there are 2 messages that are sent with the following formats:

txtMsgModAssi:

 ASSGN_ NNNC-CNNN@CN

 Truncated BayModule attribute of original format: ModuleNNNC-CNNN @

Bay CN

Truncation to reach this form is through the following code:

BMod = mymodule.BayModule.ToString

BMod = BMod.Remove(0, 7)

This line removes the "Module" portion from ModuleNNNC-CNNN @ Bay CN, so the

result is NNNC-CNNN @ Bay CN.

BMod = BMod.Remove(9, 1)

This line removes the "space" portion from NNNC-CNNN @ Bay CN, so the result is

NNNC-CNNN@ Bay CN. It reads from index # 9 which is the N character (last N in

CNNN).

BMod = BMod.Remove(10, 5)

This line removes the "space after @+Bay+space after Bay" from NNNC-CNNN@ Bay

CN, so the result is NNNC-CNNN@CN. It reads from index # 10 which is the @

character and counts 5 after it.

txtMsgModAssi = "ASSGN_" + BMod

132

Now resulting : ''ASSGN_NNNC-CNNN@CN'' to the port # 10005 or the one defined in

the code (Port = PortSpinBox.Value)

 txtMsgModProg:

txtMsgModProg = "PRGRS_" + BMod + "_" +

mymodule.Progress.ToString

This line results in:PRGRS_ added to the resulting BMod (NNNC-

CNNN@CN)+_+NN

Now, the 2 messages are sent to the BGE which has both the module and the bay objects.

Let's see the code that would recall the Module from a hidden layer and make it move to

Bay then grow there based on its percentage growth coming from the txtMsgModProg

message

3rd: The Yard Viewer Model in the BGE:

Figure 3 the Yard Federate with a real picture as background before the modules are assigned to

the bay objects through the BGE.

Now the 2 messages are sent from the Yard Viewer f federate will be received through the

server.py :

133

Figure 4 Server.py sending messages and assigning names

The message subject is first extracted by slicing at 5: msgSbjct=Data[:5] which results in

two types of msgSbjct: ASSGN & PRGRS based on slicing ASSGN_NNNC-

CNNN@CN and PRGRS_ NNNC-CNNN_NN.

Now the server.py code on will issue two things from the any message it receives

(ASSGN or PRGRS):

ModName=NNNC-CNNN [6:15]

BayName= CN [16:18], then add OBBay_ to it

code: ModName=Data[6:15]; BayName='OBBay_'+Data[16:18]

Now after extracting the 3 elements we need ; msgsbjct, ModName & BayName we need

to filter the messages based on their type to get the progress % from the PRGRS message

then check it should be shipped out in case the progress =100 (SHIP) or it should stay on

its respective bay and animate its growth if the progress is less than 100% (PRGRS).

Properties set in Model

Before getting into the 3 types of messages produced, the properties which will be used to

animate the progress of a certain module in its respective bay will be discussed.

134

1
st
 Properties set for Modules:

Figure 5 below shows the property (ZDim) assigned to each and every module in the

hidden layer. The value of the property (6.402 in this example) is assigned through the

python script; GetHeight.py (Figure 6).

Figure 5 property of module height ZDim

135

Figure 6 GetHeight.py to calculate the ZDim property value for each module

getDims function is used to calculate the height of each object, then set its data =z.

Now this property for modules in layers 1 & 2 will be used when a module os in PRGRS

or SHIP, now let's check the properties in the small bay objects.

2
nd

 Properties set for Bay Objects:

Figure 7 shows the properties that the bay objects carry and the way that 2 of these

properties are assigned values through Property Actuators.

136

Figure 7 The typical properties that the Bay Objects are assigned and the Property Actuator setting

the values for the prgrss & Pfrm properties

Each Bay Object is assigned 4 properties as shown in the example in figure 7. The Start

& End properties had a default value of 11 & 100 respectively, however they do change

to match each module's height, through this code in AddModule.py:

Figure 8 AddModule.py setting the start & end properties for each module respectively

The ZDim property calculated for each module using the script shown earlier in Figure 6

is used here in the equation to calculate the halfHeight. Once this is calculated a start &

end properties for the animation is set as conceptually shown in figure 9.

137

Figure 9 Conceptual Idea behind start level & Finish Level

For the other 2 properties (Prgrss & Pfrm), they both have default values of 0. However,

the Prgrss value is adjusted through the Property Actuator called "act4" which fires when

a module is placed in its bay for the first time set the prgrss value= 0. In this case the

Pfrm value is calculated as follows:

= Start (calculated using AddModule.py as in Figure 7) + [prgrss (=0, since the

Property Actuator act4 is fired when module is added for first time) *(end(calculated

using AddModule.py as in fig. 7)-Start)/100]

= Start (since prgrss is equal to 0)

Now, let's see how these properties values are played around with to make a module

assigned and disappear when it is 100% complete.

Messages and final logic in the BGE:

There are 3 cases with 3 messages "ASSGN","PRGRS" & "SHIP"

Case 1 the message coming is of the ASSGN & SHIP type:

Figure 10 ASSGN msg from server.py

Now the ASSGN msg is sent to continue with the add module to bay object, so the

pipeline is followed as shown in figure 11:

Module

Start

End Level

End Level Module

Start

Start Level

138

Figure 11 The ASSGN msg pipeline

The ASSGN msg is received through the AssgnMsg sensor which then goes to a python

controller called cont which has the script AddModule.py (Figure 12), and another AND

controller (cont3) that controllers the properties mentioned earlier.

Figure 12AddModule.py part for adding module

This code (script) is very similar to the ToSet.py script in the which is part of the Site

Viewer and explained in the Site Viewer manual, so please refer to site viewer manual to

139

understand this part (the only difference here is that this AddModule.py script had a

message body containing the Module Name in it). Now, the second part of the

AddModule.py script will assign values to the start & end properties as shown in figure 7

and explained earlier. These 2 properties will be needed to calculate the Pfrm property

which calculates the frame number on which the IPO (animation) will stop based on the

prgrss of each module. The equation to decide the frame is as follows in the case that the

module is just added:

Pfrm Value= start(from AddModule.py)+ [prgrss(from Property Actuator = 0)*(end-

start)/100] = Start

So that is why the ASSGN sensor (AssgnMsg) connects to the AND controller which

fires additional three actuators when the module is added to a bay. These 3 actuators are

used to calculate the above Pfrm value and start the IPO:

1) Propperty Actuator (act 4) which sets the prgrss to 0 so the value of the Pfrm is = start

2)Property Actuator (actMapPrgrs) which calculates the Pfrm Value as indicated above

3)IPO actuator (actIpo) which starts the IPO and ends at frame# = Pfrm.value = start,

based on the above calculation, so the IPO starts and the module is not showing from the

picture terrain since its Pfrm (frame number where it stops) is = 0.

when the module is just Assigned or shipped the animation is the same and follows the

same concpet, in other words when the prgrss is 0 or 100 then the SHIP message is fired

as shown in Figure13 below.

Figure 13 the SHIP & PRGRS messages sent

So when it is set for shipment i.e. progress =100, then there are 3 messages sent, 2 SHIP

msgs and 1 regular PRGRS message. The SHIP messages are connected to the same 3

Property and IPO actuators as it was the case with the ASSGN msg pipeline. This means

that it also follows the same logic by setting the prgrs property to 0 and then calculates

140

the pfrm using the pfrm equation above. This sets the pfrm value = start again as it was

the case when the module was first added to the bay and had prgrss=0. This simply

makes the module disappear as if it is shipped to site. (So it is exactly the same as

ASSGN except for the actAddModule actuator that the ASSGN msg pipeline has extra).

Now what does the SHIP msg sent to the module do?

Figure 14 SHIP msg logic pipe

On the other hand there is a PRGRS message also sent with prgrss =100 as explained, so

what does this msg do? let's see.

Case 2 the message coming is of the PRGRS type:

This msg as shown in figure 12 triggers the PRGRS pipeline shown below in Figure 15.

141

Figure 15 PRGRS Msg pipeline

Now, the PRGRS is connected to a script :ReadProgressMsg.py which simply shown in

Figure 15 below. Hence we don't need here to set the prgrss property to 0 through the

property actuator (act 4) as it was the case in both the ASSGN and SHIP msgs since here

there is a progress value calculated.

Figure 16 ReadProgressMsg.py script

This script simply sets the prgrss property of the module and its parent bay object to be

equal to the value that is included in the PRGRS msg body through the ; progress =

float(msgsnsr.bodies[0]) ; and it is then connected to the Pfrm Property actuator

(actMapPrgrs) to calculate the value of the Pfrm (frame number when the animation

should stop). Then it connects to the IPO actuator to trigger the animation.

That is currently how it looks like when building:

142

Figure 17 Final look at the building blocks inside the Yard simulation visualization

143

Appendix IV: Mesh Generation Mechanism Python Code

This appendix shows how the mesh generation python code which was explained in

Chapter 4. The code is developed inside the site visualization BGE, and its coding

language is Python which is an open source language.

Code:

means a comment

Path Space Module

Defines the available space for path nodes

1- Must be initialized with:

- Whether we are dealing with 2D or 3D space (default to 2D)

- Overall space limits in global world coordinates

Centre, X, Y, Z limits (if 3D)

defaults (center[0,0,0], 30 for Max X,Y,Z

- Number of nodes in each axis direction (default 10)

this defines the level of resolution required and affects speed of calculations

2- Populate the SpaceMesh variable with a complete grid

3- Subtract nodes from the space mesh that lie inside objects in the model

4- Update nodemesh variable with the reduced space mesh

5- Store it in a global variable to make it accissible outside the module

#==

============

import Blender

from Blender import *

import GameLogic as gl

144

#me=gl.getCurrentController().owner

ob=gl.getCurrentScene().objects["OBLogicBrick"]

Initialization flag

Intit=0

path=None

number of dimensions (2D/3D)

ND=2

Center and X, Y, Z limits

Center=[150,150,0]

LimitX=300

LimitY=300

LimitZ=60

number of nodes in each direction

NX= 30

NY= 20

NZ= 10

nodemesh=[]

def generateSpace():

 SpaceMesh=[]

145

 XMin=Center[0]-LimitX/2

 XStep=LimitX/NX

 XMax=Center[0]+LimitX/2

 YMin=Center[1]-LimitY/2

 YStep=LimitY/NY

 YMax=Center[1]+LimitY/2

 ZMin=Center[2]-LimitZ/2

 ZStep=LimitZ/NZ

 ZMax=Center[2]+LimitZ/2

 for x in range(XMin,XMax+XStep,XStep):

 for y in range(YMin,YMax+YStep,YStep):

 adjacent=[]

 if ND==2 :

 z=Center[2]

 node=[x,y,z]

 fr=[x,y+YStep,z]

 bk=[x,y-YStep,z]

 rt=[x+XStep,y,z]

 lt=[x-XStep,y,z]

146

 # normal nodes

 around=[lt,rt,bk,fr]

 # remove adjacents to special boundary nodes

 i=4

 if x==XMin:

 around.pop(i-4)

 i-=1

 if x==XMax:

 around.pop(i-3)

 i-=1

 if y==YMin:

 around.pop(i-2)

 i-=1

 if y==YMax:

 around.pop(i-1)

 i-=1

 for a in around:

 hit,p,n=ob.rayCast(a,node,0,"collision",0,1)

 if not hit:

 adjacent.append(a)

 if len(adjacent) >1:

 nodeInfo=[node,adjacent]

 SpaceMesh.append(nodeInfo)

147

 #print nodeInfo

 else:

 # 3D (to do)

 pass

 return SpaceMesh

Generate nodemesh (the clear path space)

def update():

 global nodemesh

 nodemesh = generateSpace()

update()

#print nodemesh

Remove nodes that lies inside objects in the scene from the path space

Store the remaining clear path space in the node mesh

148

Appendix V: A* Algorithm Python Code

This appendix shows how the A* Algorithm python code which was explained in

Chapter 4. The code is developed inside the site visualization BGE, and its coding

language is Python which is an open source language.

Code:

means a comment

This contains the PATHFINDER class,

which contains classes for NODE and PATH.

It's for A* pathfinding.

INIT = 0

class PATHFINDER:

 import math

 class NODE:

 def __init__(self, PATHFINDER, position, adjacentpos):

 self.PATHFINDER = PATHFINDER

 self.position = position

 self.adjacentpos = adjacentpos

 self.parent = None

 self.adjacent = []

 self.G = 0

 self.H = 0

 self.F = 0

149

 def getG(self):

 PATHFINDER = self.PATHFINDER

 node = self

 G = 0.0

 run = 1

 while run:

 if node.parent:

 G += PATHFINDER.getRealDistance(node.position, node.parent.position)

 node = node.parent

 else:

 run = 0

 return G

 def evaluate(self, targetNode):

 PATHFINDER = self.PATHFINDER

 G = self.getG()

 H = PATHFINDER.getRealDistance(self.position, targetNode.position)

 F = G+H

 self.G = G

 self.H = H

 self.F = F

 return F, G, H

150

 def fastEvaluate(self, startNode, targetNode):

 PATHFINDER = self.PATHFINDER

 G = PATHFINDER.getRealDistance(startNode.position, self.position)

 H = PATHFINDER.getRealDistance(self.position, targetNode.position)

 F = G+H

 self.G = G

 self.H = H

 self.F = F

 return F, G, H

 class PATH:

 def __init__(self, startpos, targetpos, startNode, targetNode, OPEN, CLOSED):

 self.OPEN = OPEN

 self.CLOSED = CLOSED

 self.startpos = startpos

 self.targetpos = targetpos

 self.nodes = []

 self.nodes.append(targetNode)

 node = targetNode

151

 run = 1

 while run == 1:

 if node.parent:

 node = node.parent

 self.nodes.append(node)

 else:

 run = 0

 self.nodes.reverse()

 self.path = self.getPath()

 def getPath(self):

 path = []

 path.append(self.startpos)

 for node in self.nodes:

 path.append(node.position)

 path.append(self.targetpos)

 return path

 #GETS THE TRAVELLEDDISTANCE

 # Compiles the adjacents for each node in a list.

 def compileAdjacents(self, nodes):

 for node in nodes:

 adjacent = []

152

 for targetnode in nodes:

 if targetnode.position in node.adjacentpos:

 adjacent.append(targetnode)

 node.adjacent = adjacent

 # Takes in a vertinfolist and converts it into a list of node objects.

 def NodemeshToNodes(self, nodemesh):

 nodes = []

 for vertinfo in nodemesh:

 position = vertinfo[0]

 adjacentpos = vertinfo[1]

 node = self.NODE(self, position, adjacentpos)

 nodes.append(node)

 self.compileAdjacents(nodes)

 return nodes

 def makeNodes(self, nodelist):

 nodemesh = nodelist

 nodes = self.NodemeshToNodes(nodemesh)

 return nodes

 def cleanNodes(self, nodes):

 for node in nodes:

 node.parent = None

 node.G = 0

153

 node.H = 0

 node.F = 0

 # Gets the distance between positions A and B.

 def getRealDistance(self, A, B):

 math = self.math

 X = abs(A[0] - B[0])

 Y = abs(A[1] - B[1])

 Z = abs(A[2] - B[2])

 Ds = (X*X)+(Y*Y)+(Z*Z)

 D = math.sqrt(Ds)

 return D

 def getManhattanDistance(self, A, B):

 math = self.math

 X = abs(A[0] - B[0])

 Y = abs(A[1] - B[1])

 Z = abs(A[2] - B[2])

 D = X+Y+Z

 return D

 # Returns the nearest node, given a position and a list of nodes.

 def getNearestNode(self, position, nodes):

 best = []

 for node in nodes:

 if best:

 bestnode = best[0]

154

 bestdistance = best[1]

 distance = self.getRealDistance(position, node.position)

 if distance < bestdistance:

 best = [node, distance]

 else:

 distance = self.getRealDistance(position, node.position)

 best = [node, distance]

 return best[0]

 # Returns the nearest visible node, given a position, list of nodes, and a gameobj (for

raycasting)

 # btw, this is pretty expensive, it does a lot of raycasting (to each node).

 def getNearestVisibleNode(self, position, nodes, gameobj):

 best = []

 for node in nodes:

 if best:

 bestnode = best[0]

 bestdistance = best[1]

 obj, point, normal = gameobj.rayCast(node.position, position)

 # If the position can see the node...

 if not obj:

 # And the distance is less then the current best's distance...

 distance = self.getRealDistance(position, node.position)

 if distance < bestdistance:

 # Then this node is the new bestest node!

 best = [node, distance]

155

 # If there is no current best

 else:

 obj, point, normal = gameobj.rayCast(node.position, position)

 # If the position can see the node...

 if not obj:

 # Then this node is our best so far.

 distance = self.getRealDistance(position, node.position)

 best = [node, distance]

 # This must mean there are no visible nodes!?

 if not best:

 print "No visible nodes!"

 # We'll just go with the nearest one then.

 best = [self.getNearestNode(position, nodes), None]

 return best[0]

 # Returns the node with the best F score: doesn't evaluate F.

 def getBestF(self, nodes):

 best = []

 for node in nodes:

 if best:

 bestnode = best[0]

 bestF = best[1]

156

 if node.F < bestF:

 best = [node, node.F]

 else:

 best = [node, node.F]

 return best[0]

 ############

 #findPath

 # Given a list of nodes, start position, target position, gameobject,

 # and max number of steps, this method will return a path object.

 # This will find a more accurate path, but at the expense of computation speed.

 def findPath(self, nodes, start, target, gameobj, steps=500):

 self.cleanNodes(nodes)

 PATHFOUND = 0

 startNode = self.getNearestVisibleNode(start, nodes, gameobj)

 targetNode = self.getNearestVisibleNode(target, nodes, gameobj)

 OPEN = [startNode]

 CLOSED = []

 for i in range(steps):

 # Get node in OPEN with lowest F

 currentNode = self.getBestF(OPEN)

157

 # Switch it to CLOSED

 OPEN.remove(currentNode)

 CLOSED.append(currentNode)

 # For each adjacent node

 adjacentNodes = currentNode.adjacent

 for node in adjacentNodes:

 # If it's not in CLOSED

 if not (node in CLOSED):

 # Get F Score

 origParent = node.parent

 node.parent = currentNode

 F, G, H = node.evaluate(targetNode)

 if not (node in OPEN):

 node.parent = currentNode

 OPEN.append(node)

 else:

 if node.G < currentNode.G:

 # Already in the OPEN list, revert to origParent

 node.parent = origParent

 else:

 node.parent = currentNode

158

 # Stop when we found the target node or if there are no more open nodes.

 if targetNode in OPEN:

 targetNode.parent = currentNode

 PATHFOUND = 1

 break

 if not OPEN:

 break

 if PATHFOUND:

 path = self.PATH(start, target, startNode, targetNode, OPEN, CLOSED)

 return path

 else:

 return 0

 ###############

 #fastFindPath

 # Given a list of nodes, start position, target position, and

 # max number of steps, this method will return a path object.

 # This will usually find a path faster, but at the expense of accuracy.

 def fastFindPath(self, nodes, start, target, steps=500):

 self.cleanNodes(nodes)

 PATHFOUND = 0

 startNode = self.getNearestNode(start, nodes)

159

 targetNode = self.getNearestNode(target, nodes)

 OPEN = [startNode]

 CLOSED = []

 for i in range(steps):

 # Get node in OPEN with lowest F

 currentNode = self.getBestF(OPEN)

 # Switch it to CLOSED

 OPEN.remove(currentNode)

 CLOSED.append(currentNode)

 # For each adjacent node

 adjacentNodes = currentNode.adjacent

 for node in adjacentNodes:

 # If it's not in CLOSED

 if not (node in CLOSED):

 # Get F Score

 F, G, H = node.fastEvaluate(startNode, targetNode)

 if not (node in OPEN):

 node.parent = currentNode

 OPEN.append(node)

160

 else:

 if node.G < currentNode.G:

 # No change to parent, and already in the OPEN list.

 pass

 else:

 node.parent = currentNode

 # Stop when we found the target node or if there are no more open nodes.

 if targetNode in OPEN:

 targetNode.parent = currentNode

 PATHFOUND = 1

 break

 if not OPEN:

 break

 if PATHFOUND:

 path = self.PATH(start, target, startNode, targetNode, OPEN, CLOSED)

 return path

 else:

 return 0

Pathfinder = PATHFINDER

