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Abstract

[n this study, a thermodynamic automaton model is constructed and
used to simulate a number of physical processes associated with
diffusion, one phase flow, and dispersion. In addition, megascopic
concentration and capillary pressure in porous media are considered

from a theoretical point of view.

In Chapter 2, a thermodynamic automaton model is constructed
which allows for a continuous distribution of particle velocities and

thus yields a clear definition of temperature.

[n Chapter 3, the validity of the thermodynamic automaton model is
checked by modeling the thermal equilibrium state, initialization of a
thermal equilibrium state and diffusion in a tube. The simulation

results are found to be consistent with theoretical predictions.

In Chapter 4, the automaton model is used to simulate plane
Poiseuille flow with no-slip (insulator) and thermal boundary (heat

bath) conditions. Two distinc thermodynamic processes of the flow



with the two boundary conditions are observed. The simulation
results are consistent to the predictions of the kinetic theory of gases.
[n Chapter 5, the automaton model is utilized to simulate one phase
flow. diffusion and dispersion in porous media at the megascopic
scale. The simulation results show that (1) one phase flow
simulations in porous media are consistent with Darcy's law; (2) the
apparent  diffusion coefficient decreases with a decrease in
permeability; (3) small scale heterogeneity did not affect diffusion
and dispersion processes significantly; (4) dispersion increases with

an increase in flow velocity.

[n Chapter 6, dispersion in porous media is simulated at both the
pore scale and the mega-scale with enhanced rules. The enhanced
rules allow for large scale phase separation. Also they reflect pore
scale information that the solid has a higher probability to collide
with the displaced fluid, and incorporate pore structure and pressure
difference between the displacing and displaced fluids. The

simulation results are consistent with both theoretical predictions

and experimental results.



[n Chapter 7, a megascopic capillary pressure equation is derived by
starting from the complete system of equations for compressible

phases and taking the incompressible limit.
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CHAPTER 1
INTRODUCTION

This dissertation includes automata simulations and a discussion of
the associated physical theory. The automata section of this study
consists of three parts: (1) construction of a thermodynamic
automaton model; (2) writing the associated computer program in
C: and (3) simulations of physical processes such as fluid flow in
porous media using the automaton model. The theoretical study
consists of a derivation of megascopic capillary pressure in porous

media.

With the advent of powerful computers, cellular automata
simulations, with simple collision and propagation rules for particles
on a lattice, have been applied extensively to simulate
hydrodynamics processes (Kadanoff, 1985; D'Humicres et al., 1986;
Frisch et al, 1987; Rothman, 1988; Hayot, 1991; Boghosian, 1993; Gao
and Sharma, 1994a and 1994b; and Gutfraind and Hansen, 1995).
Cellular automata models are ideal for parallel computing and are
able to model nonlinear processes and complicated boundaries. Since
the first cellular automaton model was constructed by Von Neumann
(1966), many variant automata models including lattice gas models
(Hardy, et al., 1976; Frisch, et al., 1986; and D'Humiéres, et al., 1986)
were developed. However, for these conventional lattice gas models,
thermal effects are difficult to incorporate due to discrete particle

velocities used in the simulations.
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A primary concern of this thesis is to construct a thermodynamic
automaton model using continuous particle velocities. This model has
a clear definition of temperature (Maxwell-Boltzmann distribution).
is able to model thermodynamic boundaries and maintains isotropy
in any lattice geometry. The construction of such models is not only
of academic but also of practical importance. For instance, this model
is able to simulate physical processes such as the motion of ground

water contaminants and oil recovery by miscible flooding.

After constructing the thermodynamic automaton model, the model
is applied to simulate the following physical processes:

(1) thermal equilibrium state for one phase;

(2) initialization of a thermal equilibrium state;

(3) diffusion in a tube;

(4) plane Poiseuille flow;

(5) fluid flow, diffusion and dispersion in porous media; and

(6) dispersion in porous media with enhanced rules.

Note, diffusion is caused by random motion of molecular particles
and dispersion is caused by molecular diffusion and mechanical

mixing due to fluid velocity gradients.

The purpose of modeling simple physical processes where analytical
solutions are available is to compare the simulation results with
analytical results, thus providing a check on the validity of the
model. Once exhaustive comparisons strongly support the validity of
the model, processes where analytic solutions do not exist are

modelled.
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The thermal equilibrium state for one phase is first simulated by
allowing the particle velocities to evolve naturally. The objectives of
this simulation are two-fold: (1) checking the validity of the model
and (2) examining if temperature is an internal property of the
model. A related issue is to initialize a thermal equilibrium state
prior to modeling a physical process, since many physical processes
start from a thermal equilibrium state. The initialization of a thermal
equilibrium state can be accomplished by initializing the particle
velocity distribution to fit the Maxwell-Boltzmann distribution.
Subsequently, simulation of diffusion in a tube is considered. This
simulation allows one to check the validity of the model by
comparing the simulation results with analytic solutions and to

determine the diffusion coefficient.

In the second simulation, plane Poiseuille flow with two different
boundary conditions is considered. The no-slip boundary condition
used in standard lattice gas models is compared to a thermodynamic
boundary condition developed for the current model. Fluid viscosity
is determined from a steady state flow and the effect of

temperature on viscosity is investigated.

In the third simulation, mega-scale one-phase fluid flow and miscible
flow in porous media are investigated. The porous medium is
introduced into the model by allowing fluid-solid collisions. The
effect of permeability on flow, diffusion and dispersion processes is
studied. The effect of heterogeneity of the porous medium on

diffusion and dispersion as well as the influence of flow rates on



dispersion is studied. For the dispersion simulations, both no-slip and
thermal boundary conditions are utilized for fluid-solid collisions and

a comparison of the simulation results is made.

[n the fourth simulation, both macro-scale (pore scale) and mega-
scale dispersion incorporating pore structure effects are studied. The
main purpose of the macro-scale dispersion simulations is to
illustrate the pore structure effect on dispersion. To include the pore
structure effects in a mega-scale dispersion simulation, some
additional rules must be added. The justification for these additional
rules is discussed and the mega-scale dispersion is modeled with the

enhanced rules.



1.1 Thesis Organization

Chapter 1 of this thesis provides an introduction and outline to the
entire thesis. Chapter 2 provides a detailed description of the
evolution of automaton models and the construction of the
thermodynamic automaton model. Chapter 3 presents detailed
simulations of (1) the thermal equilibrium state for one phase; (2)
initialization of the thermal equilibrium state; and (3) diffusion in
one dimension. These simulations all use the same periodic boundary
conditions and simulation results can be compared with analytic
solutions. Chapter 4 presents simulations of channel flow with the
standard no-slip boundaries (which act as an insulator) and
thermodynamic boundaries (which act as a heat bath). Two distinct
processes are observed and a comparison of the two processes is
discussed. Fluid viscosity is determined from channel flow with the
thermodynamic boundary condition where a steady-state flow is
obtained. The effect of temperature on fluid viscosity is examined. In
Chapter 5, simulations of single-phase and miscible fluid flow in
porous media are presented. For one phase flow in porous media, the
simulation results are compared with Darcy's law (Darcy, 1856). For
the diffusion simulation, the effect of permeability and
heterogeneity on the apparent diffusion coefficients is discussed. For
the dispersion simulations, the effect of flow rate on dispersion is
analyzed. In Chapter 6, a simulation of macro-scale and mega-scale
dispersion is presented. In Chapter 7, a theoretical study of
megascopic capillary pressure is presented and, finally, Chapter 8

provides general discussion and the conclusions of this study.
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CHAPTER 2
EVOLUTION OF CELLULAR AUTOMATA AND CONSTRUCTION

OF A THERMODYNAMIC AUTOMATON

2.1 Introduction

Cellular automata were originally constructed by Von Neumann
(1966) as self-reproducing cellular arrays of computers. They can be
regarded as an alternative or complementary approach to the use of
mathematical equations for modeling physical systems (Toffoli.
1984). The lattice gas automaton is based on cellular automaton rules

and is a variant of cellular automata.

Recently, cellular automata lattice gas models have emerged as a
very powerful tool for simulating complex dynamic systems. These
models are conceptually simple and ideally suited for parallel
computing. They are able to model and provide solutions for
nonlinear processes with complicated boundaries, for example, fluid
flow through porous media. In those cases where non-unique
solutions exist, the output of the cellular automata is also non-

unique.
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Many advances have been made in the use of lattice gas automata
since the first lattice gas model (HPP model) was constructed by
Hardy, Pazzis and Pomeau (1976). However, most of these models did
not incorporate thermal effects (Hardy, et al., 1976; Wolfram, 1986;
Frisch, et al., 1986; and D'Humiéres, et al., 1986) and those that did
include temperature (D'Humiéres, et al., 1986; Chopard, and Droz,
1987: and Chen, et al., 1989) were severely constrained by discrete
particle velocities. Also, a specific lattice (triangular lattice for 2D
modeling and face-centered-hypercubic lattice for 3D modeling) had

to be used in order to maintain isotropy.

The primary objective of this study was to design a thermodynamic
automaton model which is capable of integrating thermal effects into
the simulation processes, and to apply the new model to simulate
physical processes such as diffusion and dispersion in porous media
(as discussed in the following chapters). The new model was
constructed by allowing a continuous distribution of particle
velocities and using Lorentz invariant elastic collision rules for very
high temperatures and non-relativistic elastic scattering for lower

temperatures.
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2.2 Concepts of Cellular Automata and

Lattice Gas Models

The word automaton has been used to refer to mathematical models
of devices which provide responses by processing and synthesizing
given inputs (Salomaa, 1969). Cellular automata have been referred
to as the computer scientists counterpart to the physicist's concept of
"field" (Toffoli and Margolus, 1987). Boghosian (1989) defined
cellular automata as dynamic systems with discretization in space,
time and dependent variables. They differ from partial differential
equations in that space, time and the dependent variables are
discrete. They differ from finite difference approximations in which
space and time are discretized but the dependent variables are
continuous (Boghosian and Levermore, 1987). A cellular automaton
model is specified by initializing arrays of cells and the associated
cell states on a lattice in conjunction with rules. These rules govern
the evolution of cell states at a specific time interval as a function of

its own states and the states of its neighbours at the initial time.

Deterministic cellular automata have a single initial state with a
deterministic rule which yields a unique evolution of each state. In

contrast. probabilistic cellular automata use a probability distribution



to determine the evolution of each state. Deterministic automata can

be regarded as a special case of probabilistic cellular automata.

Lattice gas models also called lattice gas automata, are a special class
of cellular automata with particles initialized in cells on a lattice
(triangular or square lattice, etc.). The evolution of such a system is
associated with the interaction (or collision) of particles within the
same cell and in their neighbouring cells, and the propagation of
particles. For the simulation of incompressible fluids, a lattice gas
can be made to evolve according to the incompressible Navier-Stokes
equation in the limit of a large lattice size and low particle velocity

(Frisch, et al., 1986).

Since lattice gases are sufficiently interesting and useful to be
regarded separately (Boghosian, 1989), there has been a plea to stop
referring to lattice gases as cellular automata (Henon, 1988).
Therefore, it is not surprising to find various terminology in the
literature, such as cellular automata, lattice gases or lattice gas

automata, to refer to the same system.



2.3 Literature Review

Cellular automata were first introduced in the late forties by John
Von Neumann. He was stimulated by Stan Ulam (1952) to provide a
cellular model of self-reproduction for the behaviour of complex
systems (Von Neumann, 1966). John Conway's "game of life" which
is introduced by Gardner (1971) had a major impact on cellular
automata research and rendered the word cellular automata very

popular.

Cellular automata have been applied in various fields such as
mathematics, computer  science, biology, communication and
engineering. At present, they are becoming increasingly popular for
modeling  physical systems (Wolfram, 1986) and particularly in
hydrodynamics (Kadanoff, 1985; D'Humigres et al., 1986; Frisch et al..
1987: Ladd et al., 1988; Rothman, 1988a, 1988b and 1989; Apert and
Zaleski, 1990; Vianney and Koelman, 1990; Appert et al.. 1991: Chen
et. al, 1991a; Hayot, 1991; Boghosian, 1993; Gao and Sharma, 1994a

and 1994b: and Gutfraind and Hansen, 1995).

Hardy et al. (1976) constructed a lattice gas model which is the so-

called HPP model. One of its most important properties is the
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existence of an equilibrium state. Based on the HPP model, Frish.
Hasslacher and Pomeau (1986) developed a modified lattice gas
model which is the so-called FHP model. They gave a concrete
example of how cellular automata could be utilized to simulate

classical nonlinear fields.

Wolfram (1984) used cellular automata for the description of
mathematical systems. He suggested four qualitative classes of
cellular automata. They are (1) the spatially homogeneous state; (2) a
sequence with a simple stable or periodic structure; (3) chaotic
aperiodic behaviour; and (4) complicated localized structure with

some propagation.

Later on, Wolfram (1986) conducted a thorough study of the basic
theory for cellular automaton fluids. He used kinetic theory to
demonstrate that the macroscopic behavior of certain cellular
automata  corresponded to the Navier-Stokes equation  for

hydrodynamics.

Kadanoff (1985) used a 2D lattice model to simulate Hele-Shaw
experiments for hydrodynamic instability, using a discretized version

of hydrodynamic equations implemented in terms of the motion of
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so-called "random walkers”. His simulation results are in qualitative

agreement with the results of Hele-Shaw experiments.

Rothman (1988a) used the cellular automaton FHP model to estimate
numerically permeability and verify Darcy's law for 2D fluid flow in
porous media. Later on, Rothman and Keller (1988) introduced
deterministic collision rules for a lattice gas model and successfully
demonstrated the separation of two immiscible fluids. The rule is
based on a minimization law and conservation of mass, momentum
and particle type. Their numerical results indicated that the surface

tension coefficient obeyed Laplace's equation.

Rothman (1988b) applied a lattice gas model to two-phase flow in
porous media and Rayleigh-Taylor instability. His numerical results
showed the existence of a critical capillary pressure in simulations of
two-phase flow in a channel and that predictions of linear stability

theory were observed in a simulation of Rayleigh-Taylor instability.

Rothman (1989) extended his studies to macroscopic laws for
immiscible two phase flow in porous media, using a lattice gas model.

The results indicated that the macroscopic flow is a nonlinear
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function of the applied forces for a small applied force but linear

thereafter.

Somers and Rem (1991) developed a coloured particle scheme
(Rothman and Keller, 1988) by introducing coloured holes in the
lattice model. This new model extended the original nearest-
neighbour particle interaction to several lattice lengths. Their
programming codes for all features of the processes including
collision and propagation were optimized for a parallel machine,

which improved the computational efficiency.

Chen et al. (1991b) modified the model of Somers and Rem by
permitting the coloured particles to move only along the opposite
direction of the local colored hole flux. They applied their model to
simulate phase separation, surface tension and the contact angle

between the fluids and the solid wall.

Gunstensen (1989) extended the two-phase immiscible lattice gas
model to a model for three immiscible phases, for instance, oil, gas
and water. Two examples of a phase separation of three fluids in 2D

were provided. One case was characterized by the three surface
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tensions being equal, and in the other case, one surface tension was

greater than the sum of the other two.

Gunstensen (1991) used a 3D lattice model to study two phase flow
in porous media. He found that the usual description of flow is
applicable under conditions of high pressure gradients but is not

applicable at low pressure gradients.

Cheng and Ebner (1993) carried out a study of the dynamics of
liquid-droplet spreading, using a Monte Carlo simulation based on an
[sing lattice gas model. They found that there existed a precursor
film with microscopic thickness and a cross-over from a regime
where spreading rates relied on the strength of the long-range

potential to one where it didn't.

Gao and Sharma (1994a and 1994b) proposed a lattice gas automaton
to simulate fluid flow, and flow with dispersion and diffusion in
heterogeneous porous media. They demonstrated that effective
permeability and the local fluid flow field can be obtained and the
longitudinal  dispersion  coefficient ~can  be computed for

heterogeneous porous media.
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Gutfraind and Hansen (1995) investigated the problem of flow
permeability of fracture joints using lattice gas automata simulations.
They further pointed out that a natural extension of their work, i.e..
seeking a solution of boundary value problems in the presence of
surface roughness and investigating tracer dispersion in a channel
with rough walls, can best be attacked by a lattice gas automaton

model.

More recently, a lattice Boltzmann model has been used widely to
study hydrodynamic properties (McNamara and Zanetti, 1988;
Higuera and Succi, 1989; Higuera et al., 1989; Succi et al., 1991:
Lavallée et al., 1991; Gunstensen and Rothman, 1991; Gunstensen.
1991; Gunstensen et al., 1991; Benzi et al., 1992; Grunau et al., 1993:
Rybka et al.,, 1993; Martinez et al., 1993; and Sone and Takata, 1994).
This model is based on the Boltzmann transport equation and has the
advantage of by-passing the averaging step utilized in the lattice gas
model and thus eliminating statistical fluctuation or noise. A further
advantage has been demonstrated by Rybka et al. (1993) in studies
of flow in a confined geometry. The disadvantage of the lattice
Boltzmann model is its round-off error due to the floating point

arithmetic.
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Adler, D'Humiéres and Rothman (1994) wused a Boltzmann
approximation to calculate surface tension as a function of population
density in a 2D lattice gas model of immiscible fluids. They found
that generally good agreement exists between the theory and the

data calculation for surface tension.

[n summary, the cellular automaton lattice gas model has been
applied to diverse subjects, particularly in fluid flow in porous
media. Recent studies have been advanced to 3D modeling of

immiscible fluid displacement in porous media.



2.4 Description and Evolution of the Cellular

Automata Lattice Gas Models

In this section, the common core characteristics of cellular automata
lattice gas models are presented and descriptions of the specific
models are provided. The differences among those models are

emphasized and the evolution of these models is highlighted.

The lattice gas model, as its name indicates, consists of a lattice
(triangular, square, hexagonal), cells, and "gas particles". The particles
reside in cells on the lattice. The main simulation processes include
(1) initialization of particles, cells, lattice, and boundary conditions
for lattice;

(2) particle collision;

(3) particle propagation;

(4) iterations in discrete time steps; and

(5) averaging procedures in order to obtain a macroscopic
description.

All the lattice gas models possess most of these characteristics but

differ in the rules used to incorporate the above five processes.



2.4.1 HPP Model

The regular, square, 2D lattice with unit link lengths was utilized in
the HPP model (Hardy, Pazzis and Pomeau, 1976). Up to four
indistinguishable particles lie on each vertex. The particles have
equal mass, unit speed, unit velocity and a direction coinciding with
one of the four link directions, i.e., east, south, west, or north. The
simultaneous occupation of a vertex by identical particles is not

allowed.

Evolution of the system includes two steps, e.g., binary (two particle)
collisions and propagation. The conservation of the number of
particles and momentum are respected throughout the whole
process. At each time step, the particle moves to the neighbouring
site to which its velocity was pointing. When two particles with
opposite directions collide (head on collisions) at a site, the
configuration is replaced by another one at a right angle to the

original one. In all the other cases, the configurations remain

unchanged.

The HPP model is a deterministic model. The collision and

propagation rules obey conservation of particle number, mass and
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momentum. The total energy is also conserved but is associated with
conservation of mass since velocity is constant. Thus, it does not play

any dynamic role.

One of the main flaws of the HPP model is its lack of isotropy because
of the square lattice symmetry. This renders the HPP automaton
invariant under 90 degree rotations but is insufficient to guarantee
the isotropy of the fourth degree tensor relating the momentum flux
to quadratic terms in the velocity. It is noted that in the descrete
model, the structure of the lattice effects the direction of the
propagation of the particles. Thus, the only 2D lattice able to
maintain isotropy is a triangular lattice (Frish et al., 1986). However.
in the probabilistic model (see Section 2.5), the lattice only records
the position of particles and the structure of the lattice has no effect

on particle motions after sufficiently large distance.

2.4.2 FHP Model

A triangular instead of square lattice is employed in the FHP model
(Frish et al., 1986) to ensure isotropy. The site at the centre of each
cell is connected to its six hexagonal neighbouring cells and the

particle velocities point in one of the six link directions. The particles
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on the six links at each site are arranged according to rules which
conserve the number and total momentum of the particles. The

Fermi exclusion rule also applies.

The set-up is similar to the HPP lattice gas model with modified

collisions, and both binary and triple collisions being allowed. For
example, two particles meeting head on might rotate through 60" and

a triple of particles through 120°. These collision features are
important in determining some parameters such as viscosity. This
model can be regarded as a non-deterministic model since the
collision rule is non-deterministic. Again, there is no independent
energy conservation law as in the HPP model. Since the particle
speed is discrete, i.e., O or 1, this model did not incorporate thermal

effects.

2.4.3 FCHC Model

The above HPP and FHP models are used for 2D modelling. Since
there is no regular lattice with enough symmetry (o maintain
macroscopic isotropy in three dimensions, D'Humiéres, Lallemand and

Frisch (1986) introduced a pseudo-three-dimensional model for 3D
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simulations. That is the so-called face-centred-hypercubic (FCHC)
model. It resides on a general cubic lattice with a unit lattice
constant. The residing lattice is a three-dimensional projection of a
FCHC model with unit periodicity in the fourth direction. This model

extends the 2D FHP model to 3D and retains the isotropic property.

2.4.4 Multi-Speed Model

In order to incorporate thermal effects, D'Humiéres et al. (1986).
Chopard and Droz (1987), and Chen et al. (1989) introduced multi-
speed models. In these models, particles have discrete speeds of 0.1.
or vZ. Mass, momentum and energy are conserved during the

collisions. Furthermore, energy conservation is independent of mass

conservation.
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2.5 Construction of a Thermodynamic Automaton Model

To integrate temperature, a thermodynamic automaton model which
allows a continuous distribution of particle velocities is constructed.
The model can be constructed using the following procedures:

l. One proceeds from the premise that one can introduce physical
laws such as conservation of momentum, energy and particle types
at the particle level.

2. The particles are allowed to populate a discretized space with a
lattice connecting discrete positions.

3. The particles undergo elastic collisions and propagate along the
lattice  probabilistically.  Effectively, particles carry out free
movement on lattice space.

4. The particle velocities evolve to the Maxwell-Boltzmann
distribution very quickly, yielding a clear definition of temperature.
5. The boundary conditions of simulation are set up to be
thermodynamic quantities.

6. A porous medium may be introduced into the model by allowing a
probability for a fluid-solid collision at each point iIn space.
Permeability is adjusted by changing that probability. Heterogeneity

is introduced by allowing that probability to change in space.
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7. Additional fluid phases are introduced by allowing different
particle types. Fluid viscosity can be changed by adjusting the
probability of fluid particle collisions.

8. Body forces and surface tension are introduced through the
collision rules. For instance, to model surface tension, when two
different types of particles collide with each other, the particles have
a tendency to move towards neighbouring particles of their own
type. Body forces can be simulated by defining different probabilities

for particles moving downward.

The main features and consequences of the model are :

(1) The lattice simply acts as a book keeper to keep track of particle
positions and to enforce rules. Thus, no restriction for lattice
geometry exists. The model is compatible with virtually any lattice
without losing isotropy.

(2) A site in a lattice represents an area (or in three dimensions a
volume of space). No exclusion principle is applied. Thus a large
number of particles can be initialized, which provides a better
representation of the statistics.

(3) Particle momentum is continuous, allowing thermal effects to be

captured.



(4) Isotropy is maintained and it is straightforward to extend to 3D
modelling.

(5) Collision and propagation rules are probabilistic rather than
deterministic as in the previous models. Since "gas particles” undergo
elastic collisions, probabilistic rules which represent the nature of
the particle collision and propagation are used in the model. Only
binary elastic collisions are applied. Since binary collisions are the
prominent collisions, it is felt that the simulation should not be
affected significantly by the absence of triple collision modelling.

(6) Relativistic effects can be incorporated. In the relativistic case.
Lorentz invariant elastic collision rules are applied and the particle
velocity consists of a speed between 0.0 to 1.0 which corresponds to

the speed of light.

The thermodynamic automaton simulation proceeds from the initial
configuration through a series of evolution processes including a
collision step and a propagation step. The detailed procedures of the
thermodynamic automaton simulation are as follows:

(1) Initialization of cells and lattice (either triangular or square)
with boundary conditions (periodic, no-slip or thermal boundaries).
(2) Using a random number generator (see Recipe C) to generate

stochastically additional random number generators which are
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assigned to each cell, respectively. Note, when a single random
number generator was used in a systematic fashion across the lattice
for the description of collision and propagation, an asymmetric flow
profile was obtained. Whereas a new random number generator was
generated at each lattice site, the profile became symmetric.
Therefore, it is important to use a different random number
generator in each cell.

(3) Initialization of a set of particles (say 100 particles in each cell).
the particle speed and direction of which can be randomly assigned
by the random number generator in each cell. The particles can also
be initialized such that their velocities fit a Maxwell-Boltzmann
distribution.

(4) Pairs of particles in each cell are randomly picked up and
removed from the cell until no more than two particles are left in the
cell. The selected pair of particles then collide in the centre mass
frame according to either a Lorentz invariant elastic collision rule or
a non-relativistic elastic scattering rule. The outcome of this collision
is found by generating a random deflection angle, ranging from O to
360 degrees in the centre mass frame, and then transforming the
results back to the lab frame or lattice frame.

(5) After a collision, and with the definition of probabilities (P)

Po=(1-va)(1-vp), Pa=va(l-vp), Pp=vp(l-va) and Pyp=vavh, Where a
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and b represent the two principal directions which correspond to the
x and/or y axes for a square lattice; particles propagate according to
the following rules:

(a) the particle does not move if P<Pq.

(b) the particle moves along a if Pg<P<Pg+Pj;

(c) the particle moves along b if Pg+Pa<P<Pg+Pa+Pp;

(d) the particle moves along a and b if Pg+P,+Pp<P.

Note that the sum of all the probabilities is one and particles move as
"random walkers" and drunkman’s walk is an automaton. The
position of a particle is x=Naa+Npb+Njp(a+b) where Np=N*Py,
Np=N*Pp, Nyp=N*Pyp and N is the total number of iterations. After a
large time elapses, the average motion of the particle is a straight
line since, on average, N, = NP, etc.., and <x >= vt. It should be
noted that this propagation rule requires that a particle’s velocity
cannot be greater than I.

(6) iterate in time and repeat the collision and propagation cycles.

(7) output results and the macroscopic values can be obtained by

averaging procedures.

Table 2.1 shows the classification of different types of models

according to their characterizations in space and momentum phases.
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A lattice gas automaton model is discrete in both the space and the
momentum domains, a thermodynamic automaton is discrete in the
space domain but continuous in the momentum domain. and a
molecular dynamics model is continuous in both the space and the

momentum domains.

Table 2.1 Classification of model types.

DP Cp
DS lattice gas automaton thermodynamic automaton
(O ? molecular dynamics

Where D=discrete, P=momentum, C=continuous, and S=space.

It is emphasized that the automaton models are quite distinct from
molecular dynamics simulations (cf. Koplick et al., 1988 and 1989) in
that they make no attempt to simulate the actual microscopic fields
associated with the particles in a real fluid. Molecular dynamics
simulations attempt to model faithfully the microscopic behaviour of
a real fluid including molecular interactions, while automaton models
extract only the minimal amount of microscopic properties required

to obtain the desired macroscopic properties. The particle in the
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automaton model is not a "molecular particle” but can be regarded as

an information carrier.

Another important issue is the scale at which the physical processes
are modelled. In the context of this study, unless otherwise specified,
the molecular scale is defined as the microscopic scale, the scale at
which single continuum equations (such as the Navier-Stokes
equation) hold as the macroscopic scale, the scale at which porous
media equations hold as the megascopic scale, and the automaton
scale as the intermediate scale or meso-scale which is either
between the microscopic scale and the macroscopic scale, or between

the macroscopic scale and the megascopic scale.
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2.6 Summary and Conclusions

[n summary, a thermodynamic automaton model has been
constructed which allows for a continuous particle velocity
distribution. The advantages of the model over previous ones are:
(1) capturing thermal effects;

(2) integrating relativistic effects;

(3) no lattice gas constraint or isotropy problem;

(4) no exclusion principle and a better representation of the
statistics; and

(5) it can be easily extended to 3D modelling. That is, a cubic lattice

can be used.

The disadvantage of this model is the relatively slow computational
speed because of the substitution of Boolean (interger) operations by
floating-point operations and the use of continuous particle speed
distribution. However, this problem can be alleviated or solved by a
sufficiently powerful computer such as the Scalable Power Parallel

Computer (SP2) located at the University of Alberta, Edmonton.



L)
(9]

2.7 Bibliography

Adler, C., D'Humiéres, D. and Rothman, DH. 1994. Surface Tension
and Interface Fluctuations in Immiscible Lattice Gases. J. Phys. I

France 4; 29-46.

Appert, C., Rothman, D.H. and Zaleski, S., 1991. A Liquid-Gas Model on

a Lattice. Physica D 47, 85-96.

Appert, C. and Zaleski, S., 1990. Lattice Gas with a Liquid-Gas

Transition. Phys. Rev. Lett., Vol. 64, No. 1, 1-4.

Benzi. R., Succi, S. and Vergassola, M., 1992. The Lattice Boltzmann

Equation: Theory and Applications. Physics Reports, Vol. 222, No. 3.

145-197.

Boghosian, B. M., 1989. Lattice Gases. 295-307. 1989 Lectures in

Complex Systems. Edited by Erica J. Addision-Wesley, 1990.

Boghosian, B. M., 1993. Lattice Gas Hydrodynamics. Nuclear Physics B

(Proc. Suppl.) 30, 204-210.



34
Boghosian, B. M. and Levermore, C.D., 1987. Complex Systems. Vol.l.

1-17.

Chen, S., Diemer, K., Doolen, G.D., Eggert, K., Fu, C., Gutman, S. and
Travis, B.J., 1991a. Lattice Gas Automata for Flow through Porous

Media. Physica D 47, 72-84.

Chen, S., Doolen, G.D., Eggert, K., Grunau, D. and Loh, E.Y., 1991b. Local
Lattice-Gas Model for Immiscible Fluids. Physical Review A. Vol. 43.

No. 12, 7053-7056.

Chen. S., Lee, M., Zhao, K.H. and Doolen, G.D., 1989. A Lattice Gas

Model with Temperature. Physica D 37, 42-59.

Cheng E. and Ebner, C., 1993. Dynamics of Liquid-Droplet Spreading:

A Monte Carlo Study. Physical Review B, Vol. 47, No. 20, 13808-

13811.

Chopard, B. and Droz, M., 1987. Cellular  Automata Model for
Thermo-Hydrodynamics. 302-306. Chaos and Complexity, edited by
Livi. R., Ruffo, S., Ciliberto, S. and Buiatti, M. World Scientific

Publishing Co Pte Lid.



LI
(¥ ]}

D'Humieéres, D., Lallemand, P. and Frisch, U., 1986. Lattice Gas Model

for 3D Hydrodynamics. Europhys. Lett., Vol. 2, No. 4, 291-297.

Frisch, U., D'Humiéres, D., Hasslacher, B., Lallemand, P., Pomeau, Y.
and Rivet, J.P., 1987. Lattice Gas Hydrodynamics in Two and Three

Dimensions. Complex Systems, Vol. 1, 649-707.

Frisch, U., Hasslacher, B. and Pomeau, Y., 1986. Lattice-Gas Automata
for the Navier-Stokes Equation. Physical Review Letters, Vol. 56, No.

14, 1505-1508.

Gao, Y. and Sharma, M.M., 1994a. A LGA Model for Fluid Flow in

Heterogeneous Porous Media. Transport in Porous Media. V. 17, 1-17.

Gao. Y. and Sharma, MM, 1994b. A LGA Model for Dispersion in
Heterogeneous Porous Media. Transport in Porous Media. Vol. 17, 19-

32.

Gardner, M., 1971. On Cellular Automata, Self-Reproduction, the
Garden of Eden and the Game of 'Life’. Sci. Amer. Vol. 224, No. 2,

112-117.



36
Grunau, D., Chen, S. and Eggert, K., 1993. A Lattice Boltzmann Model

for Multiphase Fluid Flow. Phys. Fluids A, Vol. 5, No. 10, 2557-2562.

Gunstensen, A.K., 1989. A Three-Phase Immiscible Lattice Gas. MIT

Porous Flow Project, Report No. 2, 33-48.

Gunstensen, A.K., 1991. Lattice-Boltzmann Studies of Two-Phase Flow
through Three-Dimensional Models of Porous Media. MIT Porous

Flow Project, Report No. 4, 1-19.

Gunstensen, A.K. and Rothman, D. H., 1991. Microscopic Modelling of
Immiscible Fluids in Three Dimensions by a Lattice-Boltzmann

Method. MIT Porous Flow Project, Report No. 4, 20-29.

Gunstensen, A.K., Rothman, D.H., Zaleski, S. and Zanetti, G., 1991.
Lattice Boltzmann Model of Immiscible Fluids. Physical Review A,

Vol. 43, No. 8, 4320-4327.

Gutfraind, R. and Hansen, A. 1995. Study of Fracture Permeability

Using Lattice Gas Automata. Transport in Porous Media. V. 18, 131-

149.



37
Hardy, J., de Pazzis, O. and Pomeau, Y., 1976. Molecular Dynamics of

a Classical Lattice Gas Transport Properties and Time Correlation

Functions. Physical Review A, Vol. 13, No. 5, 1949-1961.

Hayot, F., 1991. Fingering Instability in a Lattice Gas. Physica D 47.

64-71.

Henon, M., 1988. On the Relation between Lattice Gases and Cellular
Automata. Proceedings of the Workshop on Discrete Kinetic Theory.
Lattice Gas Dynamics and Foundations of Hydrodynamics. Torino,

[taly. 160-161.

Higurea, F.J. and Succi, S., 1989. Simulating the Flow around a Circular
Cylinder with a Lattice Boltzmann Equation. Europhys. Lett., Vol. 8,

No. 6, 517-521.

Higurea, F.J., Succi, S. and Benzi, R, 1989. Lattice Gas Dynamics with

Enhanced Collisions. Europhys. Lett., Vol. 9, No. 4, 345-349.

Kadanoff, L.P., 1985. Simulating Hydrodynamics: A Pedestrian Model.

Journal of Statistical Physics, Vol. 39, Nos. 3-4, 267-283.



Koplick, J., Banavar, J.R. and Willemsen, J.F., 1988. Molecular
Dynamics of Poiseuille Flow and Moving Contact Lines. Physical

Review Letters, Vol. 60, No. 13, 1282-1285.

Koplick, J., Banavar, J.R. and Willemsen, J.F., 1989. Molecular
Dynamics of Fluid Flow at Solid Surfaces. Phys. Fluids A, Vol. 1, No. 5.

781-794.

Ladd. A.J.C., Colvin, M.E. and Frenkel, D., 1988. Application of Lattice-
Gas Cellular Automata to the Brownian Motion of Solid in Suspension.

Phys. Rev. Lett., Vol. 60, No. 11, 975-978.

Lavallée, P., Boon, J.P. and Noullez, A., 1991. Boundaries in Lattice Gas

Flows. Physica D 47, 233-240.

Martinez, D.O., Matthaeus, W.H., Chen, S. and Montgomery, D.C., 1993.
Comparison of Spectral Method and Lattice Boltzmann Simulations of
Two-Dimensional Hydrodynamics. Phys. Fluids, Vol. 6, No. 3. 1285-

1298.



39

McNamara, G.R. and Zanetti, G, 1988. Use of the Boltzmann Equation
to Simulate Lattice-Gas Automata. Physical Review Letters. Vol. 61,

No. 20, 2332-2335.

Rothman, D.H., 1988a. Cellular-Automata Fluids: A Model for Flow in

Porous Media. Geophysics, Vol. 53, No. 4, 509-518.

Rothman, D.H., 1988b. Lattice-Gas Automata for Immiscible Two-

Phase Flow. MIT Porous Flow Project. Report No. I, 11-25.

Rothman, D.H., 1989. Macroscopic Laws for Immiscible Two-Phase
Flow in Porous Media: Results from Numerical Experiments. MIT

Porous Flow Project. Report No. 2, 1-32.1-33.

Rothman, D.H. and Keller, J.M., 1988. Immiscible Cellular-Automaton

Fluids. MIT Porous Flow Project, Report No. 1, 1-10.

Rybka, R.B., Cieplak, M., D'Ortona, U., Salin, D. and Banavar, J.R., 1993.
Cellular-Automata Studies of Circular Couette Flows and Chaotic

Mixing. Physical Review E, Vol. 48, No. 2, 757-766.



40

Salomaa, A., 1969. Theory of Automata. Pergamon Press. L-6.

Somers, J. A. and Rem, P.C., 1991. Analysis of Surface Tension in Two-

Phase Lattice Gases. Physica D 47, 39-46.

Sone, Y. and Takata, S., 1994. Numerical Analysis of a Rarefied Gas
Flow past a Volatile Particle Using the Boltzmann Equation for Hard-

Sphere Molecules. Phys. Fluids, Vol. 6, No. 5, 1914-1928.

Succi, S., Benzi, R. and Higuera, F., 1991. The Lattice Boltzmann
Equation: A New Tool for Computational Fluid Dynamics. Physica D

47. 219-230.

Toffoli, T., 1984. Cellular Automata as An Alternative to (Rather Than
An Approximation of) Differential Equations in Modeling Physics.

Physica 10D. 117-127.

Toffoli, T. and Margolus, N., 1987. Cellular Automata Machines. The

MIT Press, Cambridge, Massachusetts. 5-11.

Ulam. S.. 1952. Random Process and Transformations. Proc. Int.

Congr. Mathem. 264-275.



41

Viannes, J.M. and Koelman, A., 1990. Cellular-Automaton-Based
Simulation of 2D Polymer Dynamics. Phys. Rev. Lett. Vol. 64, No. 16,

1915-1918.

Von Neumann, J., 1966. Theory of Self-Reproducing Automata (edited
and completed by Burks, A.), University of Illinois Press, Urbana.

[llinois.

Wolfram, S., 1984. Cellular Automata as Models of Complexity.

Review Article, Nature, Vol. 311, 419-424.

Wolfram, S., 1986. Cellular Automaton Fluids 1: Basic Theory. Journal

of Statistical Physics, Vol. 45, Nos. 3-4, 471-526.



CHAPTER 3
THERMODYNAMIC AUTOMATON SIMULATION OF THERMAL

EQUILIBRIUM STATE AND DIFFUSION IN A TUBE

3.1 Introduction

[n Chapter 2, a thermodynamic automaton model was constructed.
Here, the model is used to simulate the thermal equilibrium state for
one phase, the initialization of a thermal equilibrium state, and
diffusion in a tube. The overall objective of the simulations is to

check the validity of the model.

As an initial step, the speed distribution of a single type of gas
molecule in a thermal equilibrium state is simulated. One objective of
this work is to compare the simulation results against analytic
solutions for both relativistic and non-relativistic collision rules at
different particle velocities. The other objective of this simulation is

to determine the temperature of a given equilibrium state.

Next. initialization of a thermal equilibrium state prior to modeling a

physical process is demonstrated. This is important since the physical
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processes analyzed in this study start from a thermai equilibrium
state. For example, when hot and cold objects are put in contact, heat
will be transferred from the hot object to the cold object. However,
before the hot object touches the cold one, each object is in a thermal
equilibrium state. Thus, in order to model the heat transfer process.
the hot and cold objects must be initialized with thermal equilibrium

states.

Finally, diffusion in a tube is simulated. The simulation results can be
compared with analytical results. Also, the diffusion coefficient can

be determined.

[t should be noted that the following unit specification rules were

adopted:
(1) variables and parameters are specified by SI units for analytical
results;
(2) for automata simulations, length is specified by lattice units, time
by iteration units, and mass by the mass of a single particle. All the

other quantities are derived from these basic units.
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3.2 Theoretical Background

The speed distribution of gas molecules in thermal equilibrium obeys
the relativistic Boltzmann distribution for particle speeds close to the

speed of light and the non-relativistic Maxwell-Boltzmann

distribution for much lower particle speeds.

In the non-relativistic case, the probability density P(E) of finding a
particle in the energy range E+dE is related to B (beta) and E by the
following formula:
PEE)y=Ce *F 3.1)

where Cis a constant that can be determined by the normalization
condition

[PEE=1 (3.2)
Upon substituting Equation 3.1 into Equation 3.2, one has

C=p 33)
Thus, Equation (3.1) becomes

P(E)=PBe?E (3.4)
Taking the natural logarithm on both sides, one gets

In(P(E)) = In(B) - B E (3.5
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Equation (3.5) is linear and a plot of In(P(E)) vs. E is a straight line
with slope -B and intercept In(B). In this model, temperature is
defined as T=1/ B by letting Boltzmann’s constant k=l. Thus, T can

be immediately determined once P is known.

For a closed system, the average energy should remain constant and

is the average kinetic energy in our simulation. The average kinetic
energy is
<E>= j:EP(E)dE=1/B (3.6)

When particles are initialized with the same mass m and the same
particle velocity v,, the average energy is

<E>=0.5mv,’ 3.7
Comparing Equations (3.6) with (3.7), one gets

B = 2/m v,’ (3.8)

Table 3.1 lists the theoretical values for beta, T, intercept In(B) and

slope - p for m=1.00 and 2.00 and v, = 0.10 and 0.20.
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Table 3.1 Theoretical values for B, T, In(8) and - B.

m Vo B T In(B) -B
1.00 0.10 200.00 0.005 5.30 -200.00
1.00 0.20 50.00 0.02 391 -50.00
2.00 0.10 100.00 0.01 4.61 -100.00
2.00 0.20 25.00 0.04 3.22 -25.00

A thermal equilibrium state is constructed by initializing the

Maxwell-Boltzmann distribution (exponential function Be®). From

Numerical Recipes in C(Press et al., 1992), a relationship between a
univariate random variable x and an exponential variable E can be
established by requiring that their corresponding areas under their

curves are the same. That is

[[utoyar = [veta*exp(-bera*nr  (xin[01))  (39)

where u(t) is a uniform distribution in [0, 1) and satisfies
[ utnyar =1 (3.10)

From Equation (3.9), one has

x=1-ePE (3.11)

Thus
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E = - In(1-x)/ B (3.12)

Diffusion is the equalization of concentration by a direct change in
composition of every small portion of a fluid (Landau and Lifshitz,
1959). In a diffusion process, a change in composition occurs due to
the molecular transfer of the phases. When there is macroscopic
motion of the fluids. small portions may move without a change in
composition of these portions. This change in the macroscopic
composition is due purely to the mechanical mixing of the phases.
The interaction of these two processes which is dispersion will be

considered in Chapter 5.

For a given diffusion system without external pressure, the diffusion
coefficient is a function of temperature only. If the temperature is
not altered, then the diffusion coefficient is constant for a given

ditfusion process.

Consider a liquid in a narrow tube of infinite length with a tracer
concentrated in the centre of the tube (10<x<l2), at time t=0. In the

course of time, the distribution of the concentration of the tracer will

change.
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From the equation of the continuity for one component, one obtains
%-f-w-vc:-@-? (3.13)

where C is the concentration of the component, i.e., the mass of that
component in a unit volume and i is the diffusion flux, i.e., the
amount of that component which is transferred through a unit area

and in a unit time by diffusion.

Landau and Lifshitz (1959) argued that if no macroscopic motion
occurs in the fluid except that which may be caused by
concentration, then the velocity of this motion is proportional to the
gradient. Thus the term containing the velocity in Equation (3.13) is
a quantity of second order, and can be neglected if a small

concentration gradient is assumed. The continuity equation (Equation

(3.13)) becomes

%%=_\‘7.? (3.14)

The first quantitative study of diffusion was made by the

physiologist Adolf Fick in 1855, by adapting Fourier’s heat equation
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in order to describe diffusion processes. He determined
experimentally that the flux of one component in a mixture is
directly proportional to its concentration gradient, and is given by

the phenomenological relation which is called Fick’s law

i =-DVC (3.15)

Substituting Equation (3.15) into Equation (3.14), and considering
only one dimension with constant D, one obtains the diffusion

equation in the form

2

N9
a

=0 (3.16)

19
d’x Dot
where C = concentration of the tracer (kg/m’ or particle number/unit
volume, if all particles are of equal mass),
D = diffusion coefficient (m?/s).
Since the diffusion equation is of exactly the same form as the
equation of heat flow (Carslaw and Jaeger, 1959, P. 50), the solution
(Carslaw and Jaeger, 1959, P. 54) to the equation of heat flow can be
directly applied to the diffusion equation. If the region 10 <x <12 is

initially at constant tracer concentration, C,, and the other region is
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initially at zero, the solution to Equation (3.16) is associated with the

Gauss-error function. That is,

l—x l+x
C =0.5C + ,—o0 oo .
o(e'wa/—D_t e'f?.\/E;) <x< G3.17)

where C and D are defined as in Eq. (3.16)
x = distance away from the center of the tracer along the tube (m).
t = time (s),

C,= initial concentration of the tracer (particle number/unit volume).

Using Mathematica (version 2.2) and for the given values of the
parameter Dt of 0.01, 0.02, 0.03, 0.05, 0.07, 0.09, 0.1, 0.2, 0.3, 0.5, 0.7.
09.1.2,3,5,7 and 9, the above analytical solutions of concentration
profiles were plotted (see Figure 3.1). Figure 3.1 indicates that for a
given diffusion process i.e. constant D, the concentration profile of the

tracer., which has a bell shape, flattens out with time.



Concentration C
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Figure 3.1 Analytic solution to the evolution of concentration Cwith
the parameter Dt being 0.01, 0.02, 0.03, 0.05, 0.07, 0.09, 0.1, 0.2. 0.3.
0.5. 0.7, 09, 1, 2, 3, 5, 7, and 9. Furthermore, the bell shape
concentration profile flattens out with time during the diffusion

process.
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3.3 The Model and Simulation Experiments

A detailed description of this model is given in Chapter 2. Three
main types of simulation experiments were conducted.

l. thermal equilibrium state for one phase.

2. initialization of the thermal equilibrium state.

3. diffusion in a tube.

For Experiment [, an initial configuration is constructed with a
random initialization of particles with the same speed and mass
(m=1.00). The lattice size was 100x100. Each cell was populated by 6

particles, so that the total number of particles was 60000.

Periodic boundary conditions were employed at the top, bottom, left
and right lattice boundaries. That is, when a particle moves out of the
lattice from the left or the top end, it will wrap around and come
back from the right or the bottom end and vice versa. The
simulations were run for different initial particle speeds, i.e.. 0.1. 0.2.
0.3, using Lorentz invariant elastic collision and non-relativistic
elastic scattering rules, respectively. After 1000 time iterations, the

configuration evolved to a thermal equilibrium state.
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For Experiment 2, a thermal equilibrium state is obtained by
initializing particles with random energies, -In(l1-x)/B, random
angles and constant mass (note that particle velocity can be
calculated from energy, angle and mass). Since the total energy
should not be larger than that obtained by initializing all particles
with a speed v (note that v can be calculated from beta by Equation
(3.8)), the total enmergy was monitored and once it reached the
required total energy, all the remaining particles were initialized
with zero energy. In this simulation, a total number of 6000 particles
was initialized. The simulations were run for the following four sets
of parameters:

(1) m = 1, B = 200, corresponding to average velocity v=0.l.
(2) m=1, B = 50, corresponding to v=0.2.
(3) m=2.0, B = 100, corresponding to v=0.l.

(4) m=2.0, B = 25, corresponding to v=0.2.

For Experiment 3, a 23x12 lattice was divided into three parts, i.c.. a
left part (Columns 0 to 9), a middle part (Columns 10O to 12) and a
right part (Columns 13 to 22). A total of 100 particles (mass=1) was
assigned to each cell. The particles in the left and right parts of the

cell were given the colour blue and the particles in the middle part
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were given the colour red. Note that here the red particles act as a
tracer. The initial configuration was such that the particles in each
part were initialized in the thermal equilibrium state. Periodic
boundary conditions were applied. After each iteration, in modelling
the diffusion process, an average (accumulative or time average) of
the red particle (tracer) number in each cell was calculated and the
column average was determined from the cell average. The
evolution of the tracer concentration along one dimension (Xx) was

monitored.

The diffusion simulations were run with two different temperatures,
0.005 and 0.00005. Using Mathematica 2.2 (Wolfram Research,
1994), the evolution of concentration profiles from the simulations
can be plotted. Also, the nonlinear best fit curves for the profiles
and a parameter (Dt) related to the best fit function were
determined. Note that since it is a nonlinear fit, the Statistical
‘NonlinearFit’ package (refer to Mathematical Technical Report-Guide
to Standard Mathematical Packages, Version 2.2, 1993, P. 396-399)

was input before calculating the curves.

The simulation codes were written in the C programming language

due to its flexibility and portability. In particular, using the structure
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variables in the C language, the particles (containing information on
mass, momentum and so on), cell and lattice (containing particles)
can be coded readily. The programs were initially tested and run on
a Sun Sparc Station S5 with small particle numbers and a small
lattice size. For a large number of particles and a large lattice size,
the SP2 was used. Generally, each simulation takes less than 120 CPU

minutes.



3.4 Results and Discussion

In this section, simulation results for Experiment 1 is first presented.
The simulation results are checked with the theoretical predictions.
Also., temperature is computed. Then, simulation results for
Experiment 2 is provided. The initialization of the particle velocity
distribution is discussed. Finally, the simulation results for
Experiment 3 is presented. The simulation results are compared with

the analytical solutions and the diffusion coefficient is determined.

3.4.1 Simulation of Thermal Equilibrium State

The simulation results after 1000 iterations are shown in Figures 3.2.
33, 3.4, 35 and 3.6. Figures 3.2 and 3.3 illustrate the speed
distribution of the particles at thermal equilibrium states for
relativistic and non-relativistic cases, respectively. The simulation
results (the dot points in Figures 3.2 and 3.3) are checked against the
relativistic Boltzmann (the curves in Figure3.2) and the non-
relativistic Maxwell-Boltzmann distribution (the curves in Figure3.3).
It is found that the simulation results are consistent with the

theoretical predictions.
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For velocities much less than the speed of light, the two collision
rules should provide identical results. As a check. the
Boltzmann distributions in the relativistic and non-relativistic cases
are compared. When overlaying Figure 3.3 on Figure 3.2, it is found
that the distribution curves are identical for v=0.1 and start to differ
for v=0.2. This indicates that our collision rules for both relativistic
and non-relativistic cases are consistent. The isotropy in the model is
also maintained, i.e., the speed distribution is invariant with angle
(Figures 3.4 and 3.5) for both the relativistic and the non-relativistic

cases.

Figure 3.6 illustrates simulation results for m=1.00 and v =0.1 and
0.2, respectively, in the non-relativistic case. The plots of In(P(E)) vs.
E are straight lines as predicted. However, at very high energy.
scattered points were observed. Such is the case because only a few
particles reach these high energies, but a large number of particles
are required for a valid statistical analysis. The corresponding

simulation values for the intercept In(B), slope -B, B and T were

computed (listed in Table 3.2) and were very close to the theoretical

predictions (Table 3.1).



Table 3.2 Simulation values for beta, T, In(beta) and -beta.

m v, beta T In(beta) -beta
1.00 0.10 208.51 0.0048 5.34 -208.51
1.00 0.20 54.60 0.018 4.00 -54.60

The simulation results not only provide support for the validity of
the model, but also indicate that thermal effects are incorporated in
the model. Temperature can be altered by changing the particle
velocities and determined from the particle velocities. Furthermore.
the simulation results demonstrate that the relativistic and non-
relativistic collision rules are consistent. Since the cases considered
in the following analyses involve much lower velocities, the non-
relativistic rules are adequate and are used in all the following
simulations. It is emphasized that when the non-relativistic rules are
used. 1 is no longer taken as the speed of light and the restriction for
v<=l is lifted. However, it is noted that the present propagation rules
require particle velocities to be not greater than 1. From the
Boltzmann distribution simulation, it is found that, when initialized
v<= 0.2, the probability of a particle with a velocity larger than 1 is
so remote that such events can be ignored. In most simulations not a
single event of this type occurs and thus the chopping of such events

is not required. It is also important to note that. in these simulations.
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particle velocities are given in terms of lattice distance per time step.
Since these distance and time steps are not specified and the velocity
is in the dimensionless form, it is free to associate the simulation
particle velocity, say v=0.1, with any physical velocity that one

chooses.

3.4.2 Simulation of Initialization of Thermal

Equilibrium State

The simulation results are shown in Figures 3.7, 3.8, 39 and 3.10.

Figures 3.7 shows the speed distribution of particles with m=1 and
B=200 and 50 (corresponding to v=0.1 and 0.2). To compare this

distribution with the thermal equilibrium distribution, Figure 3.7 is
compared with Figure 3.3. It is observed that the distribution curves
in Figure 3.7 are very close to, although not as smooth as, the
thermal equilibrium distribution curves in Figure 3.3. The noise in
Figure 3.7 is expected because this is a “snapshot” of an equilibrium
distribution. Figure 3.8 shows the speed distribution of particles with
m=2. The distribution curves are identical to those in Figure 3.7, as
expected, since m is not a factor affecting the distribution curves.

Figure 3.9 shows the corresponding plots of In(P(E)) vs. E for the
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speed distribution curves in Figure 3.7. The plots are straight lines.
as expected. Also, the plots in Figures 39 and 3.6 are in close

agreement (note the scale is different).

Figure 3.10 shows the corresponding plots of In(P(E)) vs. E for the
speed distribution curves in Figure 3.8. When comparing Figure 3.10
and 3.9, it is observed that the slopes of the plots in Figure 3.10 are
lower than those in Figure 3.9. The reason for this is that for the
same v, a larger mass generates a larger enmergy which results in a

higher temperature and thus a smaller B. Again, these figures are

plotted using different scales.

The simulation results indicate that the initialization of a thermal
equilibrium state can be generated by the thermodynamic
automaton model. The initialized speed distribution represents a

“snapshot” of a thermal equilibrium distribution.

3.4.3 Simulation of Diffusion in a Tube

Figure 3.11 indicates the evolution of concentration profiles at

iterations of 0, 40, 80, 200, 400 and 700 for self-diffusion at a
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temperature of 0.005. Figure 3.12 shows nonlinear best fits of the
evolution of the concentration profiles in Figure 3.11. When
compared with the analytical solution (Figure 3.1), a close agreement

can be noted.

Concentration C

100 g
8o |
6o r /‘\
e —
| d

20 |

5 10 15 20
Figure 3.12 Nonlinear error function best fits of the evolution of

concentration profiles in Figure 3.11.

The parameter (Dt) was computed and is listed in Table 3.3. Knowing
t, The diffusion coefficient of the diffusion process was calculated
from the parameter Dt and is also listed in Table 3.3. The diffusion
coefficient (0.021+0.004) was constant and agreed with the
theoretical prediction. Note that in the simulations, the unit of

distance is specified by a lattice unit, the umit of time is specified by
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an iteration unit and thus for the diffusion coefficient. the unit is

lattice unit¥/iteration unit.

Table 3.3 Diffusion coefficients of a diffusion process at different

time steps at a temperature of 0.005.

Dt t D
(Lattice unit ?) (Iteration unit) (Lattice

unit?/Iteration unit)

0.81 40 0.020
1.50 80 0.019
4.29 200 0.021
8.30 400 0.021
16.00 700 0.023

When the temperature was changed to 0.00005, the following
simulation results were obtained. Figure 3.13 indicates the evolution
of tracer concentration profiles at iterations of 0, 400, 700, 1000,
1180 and 2000 for self-diffusion at a temperature of 0.00005. Figure
3.14 shows the nonlinear best fits of the evolution of the
concentration profiles in Figure 3.13. Again, when compared with the

analytical solution (Figure 3.1), a close agreement is found.
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Figure 3.14 Nonlinear best fits of evolution of tracer concentration

profiles in Figure 3.13.

The diffusion coefficient listed in Table 3.4 is also constant at
different time steps. Due to the lower temperature, this coefficient
(0.0016+0.0004) is smaller than that (0.021+0.004) in the previous
modelling. It can be seen that the diffusion coefficient is controlled

by temperature, i.e., it increases with an increase in temperature.



Table 3.4 Diffusion coefficients of the diffusion process at

different time steps at a temperature of 0.00005.

Dt t D
(Lattice unit ?) (Tteration unit) (Lattice

unit®*/Iteration unit)

0.65 400 0.0016
1.07 700 0.0015
1.66 1000 0.0017
1.96 1180 0.0017

2.67 2000 0.0013
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3.5 Conclusions

1. The thermal equilibrium state, initialization of thermal equilibrium
state and diffusion in a tube were simulated by the thermodynamic
automaton model. The simulation results were consistent with the
theoretical predictions, thus providing support for the validity of the

model.

2. Temperature is an internal property of the model, and can be
determined from the particle velocity distribution by simulating the

thermal equilibrium state.

3. The thermodynamic model is able to initialize a thermal
equilibrium state. The initialized speed distribution represents a

“snapshot” of a thermal equilibrium distribution.

4. The diffusion coefficient of a fluid can be determined by

simulating diffusion in a tube.
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CHAPTER 4
FLOW SIMULATION USING A THERMODYNAMIC

AUTOMATON MODEL

4.1 Introduction

Plane Poiseuille flow is driven by an externally imposed pressure
drop between two stationary flat walls. This flow process has been
modeled by the conventional lattice gas FHP model (Frisch et al.
1986), with particle reversing applied to simulate an external force
and no-slip boundary conditions employed at the walls (e.g.
Rothman, 1988). Since the conventional model did not incorporate
thermal effects, the influence of heat generated by viscous
dissipation could not be addressed. Chen et al. (1989) utilized a
multi-speed  lattice model, an extension of the HLF model
(D'Humiéreset al., 1986), to conduct an isothermal channel flow
simulation with a no-slip boundary. Although temperature was
included in their model, the effect of viscous heating was not
observed. The objective of this study is to simulate a
thermodynamic process of plane flow with a similar insulating no-
slip boundary condition and to demonstrate the effect of viscous

heat on the temperature of the fluid and thus the fluid viscosity.
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Thermal boundary conditions which can be considered as a heat bath
have been used in both molecular dynamics (Tenenbaum et al., 1982:
and Trozzi and Ciccotti, 1984) and in a lattice gas simulation for heat

conduction processes (Chopard and Droz, 1988; and Chen et al., 1989).

In this study, a new thermodynamic automaton model is used to
simulate the channel flow with insulating and thermal boundary

conditions. The coefficient of fluid viscosity is then determined.

In Section 4.2, the relevant theoretical background is provided. In
Section 4.3, details of the model and simulation experiments are
given. In Section 4.4, the simulation results are presented and

discussed. Section 4.5 is devoted to conclusions.
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4.2 Theoretical Background

During fluid flow processes, the shear viscosity, p,is defined as the
ratio of the shearing stress to the rate of change of the shear strain.
h=g (4.1)
dy
When flow occurs between two parallel plates at a separation
distance of 2h, the equation of motion for this flow is governed by

the Navier-Stokes equation

Du ap 2 l a
A L B V— +—— V i 4.2
P2 = il 1 L2 (V)| @2)
where u_ is the fluid flow velocity in x direction, p is the pressure, u

is the fluid viscosity and p is the fluid density.

For an incompressible fluid, the continuity equation is
Veu=0 4.3)
Substituting Equation (4.3) into (4.2), the Navier-Stokes equation

reduces to

Du, _

=-Vp +uVu_ 4.4)
Dr

P

Assuming steady flow and a no-slip boundary condition, one obtains

the plane Poiseuille flow equation
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", = —Tp(yh A (4.5)

The negative sign offsets the negative value of Vp. Equation (4.5)
indicates that the Poiseuille flow velocity under steady state
conditions is a symmetric parabolic profile.

The flux of fluid is

0= Iu dy= (4.6)
and the mean velocity is
hZ
=-—1V, 4.7
ta =3, VP 4.7)

The concept of viscous dissipation during flow can be understood
readily from the energy equation (c.f. Kundu, 1990). In the above

flow case, the energy equation is

P () ‘}97(“ t)-0 (4.8)

where

D=2pe.e,, (4.9)
The quantity @, which is proportional to u, represents the viscous
dissipation of kinetic energy. Equation (4.8) dictates that there is a
kinetic energy loss due to viscous dissipation. This loss is

compensated by the pump action. When the plate boundaries serve
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as insulators, viscous dissipation causes an increase in the fluid
temperature. When the boundaries act as a heat bath, the heat
generated by viscous dissipation is removed from the thermal

boundary.

On the microscopic (molecular) scale, if particles in a system undergo
random motion only, the net average random velocity of the particles
is zero and this indicates no flow at the macroscopic scale. The
thermal energy induced by the random motion defines temperature
in the system, i.e., E=kT (in 2D). If flow occurs in a certain direction,
the net average velocity of the particles is no longer zero and a flow
results at the macroscopic scale. In this case, a “flowing energy”
caused by flow is superimposed on the thermal energy of the
particles; thus the total energy is the sum of the “flowing energy” and

the thermal energy.

The thermodynamic automata represent a “particle like” construction
at an intermediate scale (meso-scale). Here the particles are packets
of information which obey basic physical theory (e.g. conservation of
momentum) at the meso-scale and this is found to be sufficient to
yield consistency with the Boltzmann distribution and the Navier-

Stokes equation at the macro-scale.



4.3 The Model and Simulation Experiments

The detailed description of the basic model is given in Chapter 2. One
of the main features of the model is that, in contrast to the
conventional lattice gas model, the particle velocities are not discrete

but continuous.

To model plane flow, one requires pump action to generate the flow
with boundary conditions. In order to mimic pump action (a pressure
gradient), a constant momentum is added to each particle at each
iteration. Furthermore, to facilitate the simulation process, the pump
action is installed in every cell. No-slip boundary conditions can be
attained as usual, ie., by reversing the particle velocity when a
particle hits the boundary. There are two ways of implementing
thermal boundary conditions upon particles colliding with the
boundary: (1) the particles are returned such that the particle
velocities fit a characteristic Boltzmann distribution, and the particle
velocity direction points to the interior of the lattice, ranging from 0
to 180 degrees; (2) all particles are returned with the same fixed

velocity. The first method is adopted here.
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Two main types of simulation experiments were performed:

1. Poiseuille flow with all conditions identical except the boundary
conditions, i.., no-slip boundary and thermodynamic boundary
conditions.

2. fluid flow with thermal boundary conditions and the same

pressure drop but different temperatures.

Experiment | was necessary to observe the difference between the
boundary conditions. Experiment 2 was used to determine the fluid
viscosity and the effects of temperature on fluid viscosity. The fluid
viscosity can be computed in the conventional way (Rothman. 1988)
by knowing the velocity profile and pressure drop. However, here.
fluid viscosity is calculated by employing Equation (4.7). These
experimental results were compared with theoretical predictions

(Sears and Salinger, 1974).

In all the simulation experiments, 100 particles were initialized in
each cell of a 101x1l lattice with a thermal equilibrium state at a
temperature of 0.005 (ie. average velocity of particles is 0.1).
Periodic boundary conditions were applied in the left and right
boundaries of the lattice and no-slip or thermal boundaries were

employed in the top and bottom boundaries. The pressure drops
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were adjusted by the amount of momentum added to the particles at
each of the iterations and the temperature by the average particle
velocity of particles returned back from the top and bottom
boundaries. For each row of the lattice, the flow velocity, mean flow
velocity, total energy, thermal energy, and density of the particles
were recorded at every other 200 iterations. Mathematica 2.2 was

used for plotting.

The simulation codes were written in the C programming language
and the simulation experiments were run with a super computer SP2
(Scalable Powerful Parallel Machine) located at the University of
Alberta, Edmonton. In general, each experiment takes about 800 CPU

minutes.
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4.4 Results and Discussion

In this section, simulation results for Experiment 1 is first presented.
The two distinct thermal processes with insulating and
thermodynamic boundary conditions are then compared. The fluid
viscosity is calculated and the effect of temperature on fluid viscosity

is discussed.

4.4.1 Simulation of the Thermal Dynamic Process of Plane

Poiseuille Flow

Simulation results for plane Poiseuille flow with no-slip (left
column) and thermal boundary conditions (right column) are shown
in Figure 4.1. Figure 4.1 indicates that, under no-slip boundary
conditions (left column), the thermal energy (i.e. temperature)
increases with time (top left graph), the mean flow velocity initially
increases from zero to 1000 iterations and then decreases with
increasing  viscosity (middle left graph). However, for the
thermodynamic boundary conditions (right column), the fluid
thermal energy (i.e., temperature) initially decreases to a thermal
equilibrium temperature at about 2000 iterations and then remains

constant (top right graph) afterwards. The mean flow velocity
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Figure 4.1 Simulation and comparison of thermal dynamic processes
of plane Poiseuille flow with no-slip boundary conditions, ie.,
thermal insulator (left column) and thermodynamic boundary

conditions, i.e., heat bath (right column).

initially increases from zero to 1000 iterations and then keeps
constant (middle right graph). Symmetric parabolic velocity
distribution profiles for both conditions were observed, as expected.

Row average velocities of particles vs. plate width (y) at 5000



33

iterations were also shown in Figure 4.1 (bottom graphs) for

illustration purposes.

The above processes can be explained as follows. The pumping action
heats the fluid if the boundary is an insulator. The increase in
temperature causes an increase of the fluid viscosity. Therefore, the
mean flow velocity decreases with time. However, when the
boundary is a heat bath, the extra heat caused by the pumping action
is removed by the heat bath. Hence, the temperature does not
change, so the fluid viscosity and the mean fluid flow velocity are

constant.

In summary, the simulated thermodynamic processes are consistent
with theoretical predictions and the implemented thermodynamic

boundary appears to function very well

4.4.2 Fluid Viscosity Determination

Fluid viscosity was determined from Equation (4.7) only for the
thermodynamic boundary conditions where a steady state can be
established. To make the computation more accurate, the averages of

the mean flow velocity and the temperature from 2000 to 5000
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iterations were calculated. The results for Experiment 2 are shown
in Table 4.1 which lists the values of fluid viscosity against

temperature (T) and sqrt(T) as well as the associated parameters.

Table 4.1 Calculated fluid viscosity based on Experiment 2.

mean flow pressure dynamic T sqrt(T)
velocity drop viscosity

(lu/it) mu/(lu*it)*2 (mu/(lu*it)

0.03245 0.0001 0.02568 0.003672 0.06059
0.02322 0.0001 0.03588 0.006793 0.08242
0.01586 0.0001 0.0525 0.01336 0.1155

where lu=lattice unit, it=iteration unit and mu=mass unit.
Temperature (T) were determined from the thermal energy by

assuming the Boltzmann constant k=1.

Figure 4.2 is the corresponding plot of the fluid viscosity vs. sqrt(T).
It illustrates that the fluid dynamic viscosity is proportional to

sqrt(T).
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Figure 4.2 Fluid viscosity vs. sqrt(T). Viscosity is proportional to

sqrt(T).

Existing physical theory (Sears and Salinger, 1974) indicates that
shear viscosity is a strong function of temperature. For gases, the
dynamic viscosity is proportional to sqrt(T) since the random
thermal speed is proportional to the sqrt(T), and so is the momentum
transport. However, for liquids, the viscosity decreases with
temperature since the shear stress is caused mainly by the cohesive
forces between the liquid molecules. The thermodynamic automaton
model is a gas model, thus the shear viscosity should be proportional
to sqrt(T). The simulation experimental results (Figure 4.2) are
consistent with these theoretical predictions. Note, a gas and a liquid

both obey the Navier-stokes equation. If a gas behaves in an
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incompressible fashion and the temperature is held constant, then

both gas and liquid’s behaviour is identical.



4.5 Conclusions

1. The thermodynamic automaton model simulates thermal processes

in plane Poiseuille flow.

2. The simulation results clearly demonstrated that (1) for the no-
slip boundary conditions, the excess heat generated by viscous
dissipation causes the fluid temperature to increase, thus altering the
fluid viscosity; (2) for the thermal boundary conditions, the viscous
heat is removed by the thermal boundary and a steady state is

achieved.

3. Fluid viscosity determined from the simulation is approximately
proportional to sqrt(T). This finding is consistent with theoretical
predictions for a gas. Furthermore, this temperature dependence of
viscosity is identical to the predictions of physical theory (Sears and

Salinger, 1974).
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CHAPTER 5§
THERMODYNAMIC AUTOMATON SIMULATIONS OF FLUID
FLOW, DIFFUSION AND DISPERSION IN POROUS MEDIA

5.1 INTRODUCTION

Fluid flow, diffusion and dispersion in porous media are important
processes in fields such as hydrogeology, biology, soil science.
petroleum engineering and geophysics. The practical importance of
these processes in oil production and ground water contamination is

the primary reason for this study.

With the aid of a powerful computer, automata simulations can be a
useful tool for the investigation of these flow phenomena. Some
recent studies on this topic are described by Gutfraind and Hansen

(1995), Gao and Sharma (1994 a and b) and Somers (1993).

In the description given in this thesis, a thermodynamic automaton
which incorporates fluid-solid collisions to mimic a porous medium is
developed, and fluid flow, diffusion and dispersion in a porous

medium are simulated with this model.

Section 5.2 contains the relevant theoretical background. Section 5.3
provides details of the model and simulation experiments. Section 5.4
presents the simulation results and associated discussion. Section 5.5

provides the conclusions.
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5.2 Theoretical Background

By performing experiments of single phase fluid flow in a vertical
column of sand, the French engineer Henry Darcy (1856) first
discovered that the volumetric flow rate of fluid through a porous
medium is directly proportional to the applied pressure drop and is
inversely proportional to the fluid viscosity. This empirical
relationship is the so-called Darcy's law. Later on, theoretical
derivations of Darcy's law were provided by a number of researchers
(e.g. Newman, 1977 and Whitaker, 1986a). In one dimension, Darcy's

law is given by the simple equation

q=-—— (5.1)

where
q = volumetric flow rate/unit area,
K = permeability of the porous medium,
4

dp _ applied pressure drop,
dx

u = fluid viscosity.

The permeability K of the porous medium is defined as the capability
of porous media to allow a fluid to flow through. It is a fundamental

property of the geometry of a porous medium.

Balasubramanian et al. (1987) made a detailed study of Darcy's law

using lattice-gas hydrodynamics. They obtained an effective Darcy's
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law by allowing a damping term (a function of velocity) in the
Navier-Stokes equation. That is,

2

d’u_p,_Ldp

T 7 o 52
Hae k" ooy (-2

Here, u is the flow velocity, p is the density, p is the pressure, LU is
the fluid viscosity, and Kis the permeability of the medium. Using
the Boltzmann approximation, they showed that the permeability is

inversely proportional to the density of the solid scatterers.

For steady two-phase flow in homogeneous porous media, the
governing equations of motion are given by de la Cruz and Spanos

(1983), Whitaker (1986b), Kalaydjian (1987) and Eastwood (1992).
0.4~ Q9. = —ﬁpl +p08 (5.3)
Ond, — g, = —§P2 + 0.8 (5.4)

where Qis the mobility ratio, q is the flow rate, Vp is the pressure

gradient, p is the density of a fluid, and subscripts 1 and 2 refer to

phases 1 and 2, respectively.

Diffusion occurs from high to low concentration areas due to

molecular motion. For a fluid diffusing in a long tube, the diffusion

equation 1is
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(5.5)

aC 2*C
=D
ot ax’

where, C = concentration of the tracer,

D = diffusion coefficient.

Solutions of this equation are related to the symmetric Gauss
function. The diffusion coefficient can be determined from a plot of

concentration profiles at various times.

When diffusion occurs in a porous medium, the apparent diffusion

coefficient D, is used in the diffusion equation (Equation (5.5)). The
permeability K of the porous medium and the apparent diffusion

coefficient, D, are related (Barrer, 1951) by

a

K=-—Dafl—c- (5.6)
dx

The apparent diffusion coefficient D, measured in porous media is

less than the molecular coefficient D as measured in a tube.

Perkins and Johnston (1963) reviewed diffusion and dispersion in
porous media and pointed out that the ratio of —%‘— is approximately

0.6 to 0.7 for packs of unconsolidated granular material. For both
cemented and unconsolidated porous rock, the ratio can be expressed

as



% - L (5.7)

where F is the formation electrical resistivity factor, and n is the

porosity of the porous medium.

Dispersion has been referred to as the spreading of a tracer released
into a flowing fluid (Bear, 1988; and Baudet et al., 1989). Cyr et al.
(1988) used "dispersion” to describe the broadening of the transition
zone (immiscible displacements) and mixing zone (miscible
displacements) in porous media. Dispersion includes two important
mechanisms, i.e., molecular diffusion and mechanical mixing due to
fluid velocity gradients. Dispersion in porous media is traditionally
modeled by a conventional convection-diffusion equation where the
molecular diffusion coefficient is replaced by a dispersion tensor. For

one-dimensional flow, it is given by

at +VI ax =Dl &2 (5.8)
where v, = mean velocity in the x direction,
D, = longitudinal dispersion coefficient.

Solutions of this equation are available for various initial and
boundary conditions (Bear, 1972). Usually, the solution of this
equation is related to the Gauss-error function. The longitudinal
dispersion coefficient, generally assumed to be constant, may be

determined using the breakthrough times for concentration values
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of. for example, 0.16 and 0.84 (note, usually the width of the
transition zone is defined by the distance between x at concentration

0.84 and x at concentration 0.16).

Udey and Spanos (1993) used a new approach to describe dispersion
by demanding consistency with the equations for immiscible two
phase flow with zero surface tension. Under a high flow rate regime
where diffusion is negligible, they obtained a concentration equation
which differs from the standard convection-diffusion equation in
that non-constant apparent dispersion coefficients were used. They

found that their analysis fits experimental data better.

When the porous medium is heterogeneous, the dispersion coefficient
is space dependent. Thus a Fokker Planck equation (Risken, 1984).
which contains non-constant drift and dispersion coefficients, should

be used to model the dispersion process.
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5.3 The Model and Simulation Experiments

The basic model was described in Chapter 2. Simulations of thermal
boundary conditions and pump action to generate flow were

described in Chapter 4.

The porous medium can now be introduced into the model in a
straightforward fashion. When details of the effect of pore structure
are important (for instance, the effect of pore structure on the
distribution of the wetting and non-wetting phases in porous media).
a pore-scale model can be constructed by introducing actual solid
structures into the lattice. When a fluid particle encounters the solid
matrix, a no-slip boundary is applied. Rothman (1988) applied this
method to construct pore structure in a conventional lattice gas
model and thus integrated the microstructure of the porous medium
into his permeability calculation. However, it has been shown by
Stauffer (1991) that massive computation is needed for realistic

implementation of the pore-scale model.

When viewing porous media at a much larger scale (megascopic
scale), the porous media can be modeled by allowing a probability
for a solid collision at each cell in the lattice. The permeability is
adjusted by changing that probability, and heterogeneity can be
incorporated by allowing that probability to change in space.
Although this approach does not allow us to see the details of the
pore structure, it does permit us to simulate flow at the megascopic

scale without computational difficulty. Gao and Sharma (1994a and
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b) adopted this method in a conventional lattice gas automaton to
simulate fluid flow and dispersion in heterogeneous porous media.
However, a no-slip boundary condition was applied in their
simulations. In this study, the porous medium at the megascopic
scale is modelled. In the programming, for each particle in a cell. a
random number is generated. If the random number is larger than
the solid probability in that cell, the fluid particle is allowed to
undergo a solid collision; moreover, that particle is not permitted
another collision until it moves out of that cell. The rest of the fluid
particles which do not collide with the solid randomly collide with

each other.

Three main types of simulation experiments were conducted:
1. one-phase flow in porous media.
2. diffusion in porous media.

3. dispersion in porous media.

As a first step, Darcy flow is simulated and the simulation results is
compared with theoretical predictions. Also, the effects of
permeability and flow velocity on flow types, i.e., from Darcy flow
(flat velocity profile) to plane Poiseuille flow (parabolic velocity
profile) is investigated. The simulation experiments were performed

by changing the permeability (solid probability) or pressure drop.

Simulations of Experiment 2 are carried out with different
permeabilities to investigate the effects of permeability on the

apparent diffusion coefficient. To ascertain the effects of the solid
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probability (SP, the probability of collision with a solid object)
distribution on diffusion, four different types of solid distribution but
with the same mean SP (0.5) were employed. They are (1)
homogeneous, ie., the SP is the same (0.5) at every cell; (2) a
Boltzmann distribution, the SP distribution fits a Boltzmann function
at the range of 0.1 to 0.9; (3) a step function distribution, the SP
distribution fits the step function from 0.1 to 0.9 and (4) a double
Boltzmann distribution, the SP distribution fits a function obtained

by adding two Boltzmann functions with peaks at 0.385 and 0.588.

Experiment 3 is performed by combining fluid flow and diffusion
experiments in porous media. Different flow rates and SP distribution
are applied in order to observe the effect of flow rate and SP
distribution on dispersion. For fluid-solid collisions, both the no-slip
boundary and thermal boundary conditions were applied. In
addition, to check if a different SP distribution changes the gross
permeability of a porous medium, one-phase flow experiments are
conducted with both a homogeneous SP and the double Boltzmann

distribution.

The initial set up of the simulations was almost the same for each
experiment; that is, 100 particles were initialized in each cell of a
101x11 lattice with a thermal equilibrium state at a temperature of
0.005 (particle velocity being 0.1). For the diffusion simulation,
periodic boundary conditions were applied at the top, bottom, left
and right boundaries of the lattice. For Darcy flow and dispersion

modeling, thermal boundaries were utilized at the top and bottom
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boundaries of the lattice to remove the extra heat caused by pump
action. A tracer is initialized at the centre (3 columns) of the lattice
for diffusion and dispersion modeling. The average flow velocity of
each row of the lattice over 2000 to 5000 iterations was computed
and the distribution of particle numbers for each column was

recorded at 100 iteration intervals.

The simulation codes were written in Cand simulation experiments

were run with the SP2. Generally, it takes about 6 CPU hours to run a

simulation.
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5.4 Results and Discussion

[n this section, the experimental results for one-phase flow is first
presented, and the simulation results are compared with theoretical
predictions. Then, the simulation results for diffusion in porous
media is presented, and the effect of permeability and heterogeneity
on apparent diffusion coefficients is discussed. Finally, the simulation
results for dispersion in porous media is presented, and the effects of
flow rates and different boundary conditions on dispersion are

analyzed.

5.4.1 One Phase Flow in Porous Media

Figure 5.1 shows the simulation results for Darcy flow. It can be seen
that for the same pressure drop (0.0005), a decrease in the SP (solid
probability) results in an increase in the flow rate and thus an
increase in permeability. The velocity profile for plane Poiseuille
flow is parabolic, but for Darcy flow (Figure 5.1) it is flat due to the
solid collisions. Balasubramanian et al. (1987) also obtained a flat

velocity profile for Darcy flow from their numerical experiments.

Table 5.1 shows simulation results for Darcy flow with the same
permeability (SP=0.1) but different pressure drops. A straight line
(Figure 5.2) is obtained when the simulation data points are plotted
and connected in Table 5.1. These simulation results were consistent

with the predictions of Darcy's law.
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Table 5.1 Average flow rate vs. pressure drop.

pressure average
drop flow rate
0.0001 0.0010
0.0002 0.0018
0.0003 0.0026
0.0004 0.0033
0.0005 0.0040

PRI e ettt gl g i it

Figure 5.3 illustrates that an increase in permeability (decrease in
SP) results in a flow velocity profile change from flat to parabolic. At
the limit of SP being zero, Plane Poiseuille Flow (Figure 5.4) is
obtained. Figures 5.5 and 5.6 demonstrate that when the flow
velocity is reduced to a small value, the velocity profiles are erratic.
These simulation results can be explained as follows. From Equation
(5.2). when the permeability K is small, the second term on the LHS
of the equation is the dominant term and thus the velocity profile is
flat. However, when K is large, the first term is the dominant term
so the velocity profile is parabolic. When K is fixed and the flow
velocity u is very small, the two terms are of the same order of
magnitude; thus, the interaction of the two terms causes the velocity

profile to be erratic.
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5.4.2 Diffusion in Porous Media

As mentioned in Section 5.3, the initial configuration for the diffusion
simulation is that the tracer (100 particle/cell) is initialized in the
centre of the lattice (Columns 49, 50 and 51). The tracer then spreads
sideways with time. Figure 5.7 shows the simulation results at 200
iterations for a homogeneous porous medium (SP is the same in
every cell on the lattice) with different permeabilities or SP. Figure
5.7 indicates that the larger the SP, the lower the permeability and
the lower the diffusion coefficient. This is consistent with the
predictions of Perkins and Johnston (1963). The concentration
profiles with a symmetric Gaussian distribution centered on the

lattice agree with the solution of the diffusion equation (Equation

(5.5)).

Figure 5.8 shows the simulation results after 500 iterations for
porous media with different SP distributions (i.e. heterogeneity) but
the same mean SP. Figure 5.8 indicates that the diffusion process for
porous media with the SP distribution of a Boltzmann function, a step
function and a double Boltzmann function is similar to that for
homogeneous media. It is expected that a threshold may exist where
the diffusion process for heterogeneous porous media starts (o differ
from that for the homogeneous porous media. The effects of

heterogeneity are also constrained by the 2D modeling.
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5.4.3 Dispersion in Porous Media

Figure 5.9 illustrates the simulation results at 1500 iterations for
dispersion in both homogeneous and heterogeneous porous media.
where no-slip boundary conditions are applied for fluid-solid
collisions. The figure illustrates that with an increase in the flow
velocity from O to 0.012, the tracer spreads faster and the centre of
the concentration profiles shifts further to the right. The simulation
result of a dispersion increase with an increase in fluid velocity is
consistent with theoretical predictions. Gao and Sharma (1994b)
obtained similar simulation results by using a conventional lattice

gas model.

Figure S5.10 shows the simulation results at 1500 iterations for
dispersion in both homogeneous and heterogeneous porous media.
where thermal boundary conditions are applied for fluid-solid
collisions. One-phase flow in both homogeneous and heterogeneous
porous media was conducted with the same pressure drop (0.005). [t
was observed that the same flow rate (0.020) is generated. Thus,
both homogeneous and heterogeneous porous media have the same
permeability. When comparing Figures 5.9 and 5.10, it is found that.
at a low flow rate due to a small pressure drop (dp/dx=0.0005).
there is no significant difference between the concentration profiles
under both no-slip and thermal boundary conditions. However.
when a high pressure drop is applied (0.005), the concentration
profiles under thermal boundary conditions move faster but are less

flattened than those obtained using no-slip boundaries. The



117

‘uosijjoo pios e jo Anfiqeqoid a1 Jo SUOHNQLISIP JUAIYJIP pue sAel MO[)
ualo P Yim suoneidt g0si 1oye panord ose soqyoid uONENUIIUOD YL °UOISI[[OD
prjos oy 10 uonipuod Kmpunoq drjs-ou e yum eipow snolod ul uoistadsiq 6's 2andig

eduels|g
0L 09

uojiouny gQ ‘2L0°0=A —a—
snosusBowoy ‘210°'0=A —+—
uopoun} g4 ‘2200°0=A —v— ] | ot
snoeusBowoy ‘2200°0=A —x—
snoeusBowoy ‘0°'0=A —e—

G'0=dS Uee| ‘suopese| Q0S|

YIQ3W SNOHOd NI NOISH3dSIa

siequinp ojoed




118

‘uoIsI[[0d pIfos e jo Aijiqeqoid oY) JO SUONINQLIISIP JUSISJJIP Put SIJBI MO[J JUIIIJIP
Yum suonesdl QS| Ioye panojd are soqijoid UONBNUIIUOD Y[, ‘UOISI[[0D PI[OS
ay; Joj uonipuod Kiepunoq [eway) e yum eipaw snosod ur uorsiadsiq Qr's 2inSig

eouelsiqg

uogoun} 8@ ‘S00°0=dp —a—
snoesuebowoy ‘s00°0=dp —+— | } ot
uojiounj ga ‘s000°0=dp —v~—
snosusBowoy ‘s000°0=dp —¢—

002=8 PIIOS ‘S'0=dS Uee ‘005 1=}

0S

VIG3N SNOYHOJ NI NOISH3dSIA

siequinN ejoiued




119

justification is as follows. As in the case of plane Poiseuille flow
under both the no-slip and thermal boundary conditions, when a
small pressure drop is applied, i.e., a small amount of momentum is
added to each particle at each iteration, the viscous dissipation effect
is small and the temperature is relatively constant. The diffusion
coefficient and flow rates of the fluid under both boundary
conditions are almost the same. This results in the same dispersion.
In contrast, when a high pressure drop is applied, i.e., a large amount
of momentum is added to each particle at each iteration, the fluid
temperature  increases for the no-slip boundary condition but
remains constant for the thermal boundary condition. The
temperature increase results in a low flow rate of the fluid (high
viscosity) and a large diffusion coefficient. That is why the
concentration profiles with the no-slip boundary condition move
slower but spread faster than those with the thermal boundary

condition.

Figures 5.9 and 5.10 also indicate that the SP distribution (i.e.
heterogeneity) of the porous medium did not affect the dispersion
process significantly. Again, the effects of heterogeneity on
dispersion may be limited by the threshold below which the effects
of heterogeneity are negligible, and by 2D modeling. Also, this
appears to be associated with the restriction that macroscopic phase
separation is not allowed and that the pore structure effect is not
simulated properly. This final point is analyzed in more detail in the

next chapter (Chapter 6).



5.5. Conclusions

1. A thermodynamic automaton model for modeling fluid flow.
diffusion and dispersion in porous media was constructed. This
model included fluid solid collisions to mimic a porous medium and
thermal boundary conditions for the solid matrix in the porous

medium.

2. Darcy flow was simulated. The simulation results are consistent
with the predictions of Darcy's law. The change of types of velocity
profile (flat, parabolic and erratic) is affected by permeability and

flow velocity and is consistent with theoretical predictions.

3. Diffusion in porous media was modeled. The simulation results
indicate that (1) the apparent diffusion coefficients decrease with a
decrease in permeability; (2) small scale heterogeneity did not affect

the diffusion process significantly.

4. Dispersion in porous media was modeled. The simulation results
indicate that (1) dispersion increases with an increase in flow
velocity; (2) thermal boundary conditions for a solid should be used
to model dispersion processes in order to maintain a constant
temperature; and (3) small scale heterogeneity did not affect the
dispersion process significantly, It may be limited by the threshold
and 2D modeling. Also, it may be related to the constraint that
macroscopic phase separation is not allowed, and that the pore

structure is not properly simulated.
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CHAPTER 6
AUTOMATON SIMULATION OF DISPERSION IN POROUS
MEDIA WITH ENHANCED RULES

6.1 Introduction

Dispersion in porous media is simulated at two different scales i.e.
the macroscopic scale (pore scale) and the megascopic scale (scale of
hundreds of pores). Pore scale modeling requires massive
computation but does allow us to see the details of the pore structure
and its effect on dispersion. In contrast, large scale modeling
overcomes some of the computational difficulties but does not
provide the details of the pore structure. Nevertheless, the two scales
should provide consistent results. That is, large scale simulation
should integrate pore structure effects on dispersion and reflect the

"message" imbedded at the pore scale.

Gao and Sharma (1994) carried out a large scale simulation on
dispersion with a no-slip boundary for the solid. Large scale
modeling on dispersion has been modelled in this study (see Chapter
5) with both a no-slip and a thermal boundary for the solid. [t
appears that pore structure was not properly incorporated in the
previous modeling. Also, some information was missing. For example,
the displacing and displaced fluid were assumed to be totally mixed
at the "particle level” and thus macroscopic phase separation was
not allowed. Also, like the case of immiscible displacement, the
wetting phase surrounds and collides with the solid matrix. The

displaced fluid in miscible flooding behaves as a wetting phase and



collides with the solid matrix unless it is totally mixed with the
displacing fluid at the particle level. In addition, when the invading
and invaded fluids have different viscosities, the mixing zone will
have a different viscosity. To reflect the viscosity effect on
dispersion, the fluid particle can be indexed as to whether it is in the
mixing zone or not, and the particle collision probability can be
adjusted accordingly. Since a tracer used in a dispersion simulation
has the same viscosity as the displaced fluid, the effect of viscosity
on dispersion does not arise. Finally, a theoretical study (see Chapter
7) indicates that there 1is a pressure difference between the
displacing and the displaced fluids at the same megascopic volume
elements represented by a lattice site. However, the pressure

difference was zero in our previous modeling was assumed.

In this study, simulate dispersion in porous media at the pore scale is
first simulated and the pore structure effect on dispersion 1is
demonstrated. Then the rules in the large scale modeling are
modifies to incorporate pore scale information, including phase
separation, pore structure effects and the pressure difference

between the displacing and displaced fluids.

Section 6.2 contains the relevant theoretical background. Section 6.3
provides details of the models at the pore scale and megascopic scale
with the enhanced rules as well as simulation experiments. Section
6.4 presents the simulation results and associated discussion.

Section 6.5 provides the conclusions.



6.2 Theoretical Background

Dispersion and theories accounting for dispersion in porous media
are presented in Section 5.2. Recently, the laboratory experimental
results of Sternberg et al. (1996) provided evidence indicating that
the conventional convection diffusion equation fails to adequately

predict dispersion in porous media.

Theoretically, two approaches (equations) have been used to replace
the convection diffusion equation when describing dispersion. One
approach involves the use of nonlocal equations (Edelen, 1976) which
allow information from the whole region to be included to determine
the effect at any particular point in the system. This approach
incorporates memory of the past history of the flow. The other
approach is the equation derived by Udey and Spanos (1993) wunder
the condition of negligible diffusion. The Buckley Levertt solution

provides a simple analytical solution (Spanos et al., 1988).



6.3 The Model and Simulation Experiments

A large scale (mega-scale) model for dispersion simulation is given in
Chapter 5. Here, a pore scale model is first constructed. Then the
mega-scale model with enhanced rules are modified to incorporate

the pore scale information.

The pore scale model can be constructed by introducing actual solid
structures into the lattice. When a fluid particle encounters the solid
matrix, a thermal solid boundary condition is applied. That is, when
fluid particles collide with the solid, they simply bounce back under
the condition that particle speeds fit a characteristic Boltzmann
distribution. Here, the fluid particles are not allowed to stay in solid
cells. Following conventional practice, a “tube model”, i.e., a bundle of
tubes is used to represent porous media. The tube model is chosen so
that one can control permeability by adjusting tube radii. These
models, although simple, do reflect some effects of pore structure on
dispersion. Two “tube models” with the same gross permeability
(41.67) but different pore structures (channel thicknesses) are

designed as illustrated in Figure 6.1.

Model A consists of five tubes with the same diameter (10). It is
homogeneous at both the macro-scale and the mega-scale. Model B
consists of six tubes with different diameters (3x5, 2x10, 15). It has
the same permeability as that of Model A at the mega-scale. The two
models are used to represent two cores with the same permeability

but different pore structures. For simplicity, model A is called a
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Figure 6.1 Schematic diagram of tube models A and B.
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homogeneous model (HO) and model B a heterogeneous model (HE).

For a thermodynamic automaton model constructed to simulate a
porous medium at the mega-scale, viscosity related effects can be
introduced through the collision rules. Namely, an increase in the
number of fluid-fluid particle collisions results in an increase in
momentum transfer. Pore structure effects can be introduced by
adjusting the particle velocity directions after collisions. To
incorporate the pore scale information in the large (mega) scale
modeling, previous rules for the simulation are modified as follow:
(1) B (blue) and R (red) are used to represent displacing and
displaced particles. Further, B, and B, are used to represent the
displacing fluid particle in the segregated and mixing zones
respectively, and the same for R, and R,.

(2) since B, and R, are in a segregated region, B, is not allowed to
collide with R, Thus, B, can only collide with By, B, and R,
Moreover, B, becomes B, when B, collides with R,. The same rules
are applied to R, accordingly.

(3) when B, collides with R, and in the central mass frame, if the
rotation angle is greater than 90 degrees but less than 270 degrees. a
random number is generated. When the random number is less than
a flipping probability, the direction of the two particles are reversed.
The pore structure effect can be incorporated by changing the
flipping probability. In this model, the flipping probability is set to
be either 0 or I.

(4) for fluid-solid collisions, the distribution of displacing (B) and

displaced (R) fluids, i.e., displaced fluid surrounding the solid matrix
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(and thus colliding with the solid), is reflected by setting the priority
of the fluid-solid collision as R, >R, > B, > B, .
(5) to maintain the same permeability, in each cell, the total number
of fluid particles colliding with the solid should be the total number
of fluid particles N (R, + R, + B, + B), multiplied by the solid collision
probability P in that cell.
(6) to implement the pressure difference between the displacing and
displaced fluids, instead of adding the same amount of momentum to
both of the displacing and displaced particles, different amounts of
momentum are partitioned to the different types of particles
according to the following equations:

m,v,-m,v,=B’(n,-n,") 6.1)

n, m,v,+n, mv,=( n, + n,)mv (6.2)
Here m is the mass, v is the velocity, n is the particle number at the
present time in a cell and n’ is the particle number at the previous
time. The parameter f’ is the beta factor (BF) which can be
determined experimentally. The subscripts 1 and 2 refer to fluid I
and 2, respectively. Equation (6.1) comes from the dynamic pressure
difference between the displacing and displaced fluids (see Equation
(7.36) in Chapter 7). That pressure difference is associated with the
concentration (particle number) changing with time. Equation (6.2)
indicates that the total momentum added in a cell is the same as if

only one phase existed in the cell.

Two main types of simulation experiments were conducted:
L. dispersion in pore scale models (tube models).

2. dispersion in mega-scale models with the enhanced rules.



131

Simulations of Experiment | are carried out to analyze the effects of
pore structure and temperature on dispersion. Four simulations are
run at the same pressure drop (dp/dx=0.005), and the same
permeability (41.67) but at a different initial particle velocity (v,).
temperature (1/B) and with models having different pore structures.
The parameters of the simulations are as follows:

(1.1) v, = 0.1, B=200, HO.

(1.2) v, = 0.1, B=200, HE.

(1.3) v, = 0.01, B=20000, HO.

(1.4) v, = 0.01, B=20000, HE.

The initial set up for the above runs was the same ie. a 500x350
lattice was used with 20 particles in each cell. Blue particles were
assigned to the left part (Columns O to 199) and the right part
(Columns 301 to 500) and red particles to the middle part (Columans
200 to 300). Thermal boundary conditions were applied for the solid

boundary (tube walls).

For Experiment 2, eight simulations are run at the same pressure
drop (Dp=0.005), temperature (T=1/200), initial particle velocity
(v,=0.1) and mean solid probability (SP=0.5) but with different
values of BF, flipping probabilities (FP) and with models having
homogeneous (HO) and heterogeneous (HE) SP distributions. The
parameters of the simulations are as follows:

(2.1) FP=0, BF=0, HO.

(2.2) FP=0, BF=0, HE (DB function).

(2.3) FP=0, BF=0.001, HO.



(2.4) FP=0, BF=0.001, HE (DB function).
(2.5) FP=0, BF=0.01, HO.

(2.6) FP=0, BF=0.01, HE (DB function).
(2.7) FP=1, BF=0.01, HO.

(2.8) FP=l, BF=0.01, HE (DB function).

The initial configuration for Experiment 2 was the same, ie., a
200x10 lattice was used with 100 particles in each cell. The B,
particles were assigned to Columns O to 85 and 115 to 200, and the
R, particles to Columns 94 to 106. In order to mimic the mixing zone.
the B, particles were assigned to Columns 86 to 89 and Il1 to 114
and the R, particles to Columns 90 to 93 and 107 to [10. Thermal

boundary conditions were applied when fluid particles hit a solid.

The simulation codes were written in C and the simulation
experiments were run with the SP2. Generally, it takes several CPU
hours to run a simulation. The structure of the automaton model
allows it to be solved efficiently on parallel computers. This will
enable large three dimensional simulations to be accomplished in the

future.



6.4 Results and Discussion

[n this section, the simulation results for dispersion at the pore scale
is first presented and discussed. Then, the simulation results for

dispersion at mega-scale is presented and discussed.

6.4.1 Pore Scale Dispersion Simulation

Figure 6.2 depicts the simulation results at 300 iterations for
Experiment 1. The four curves in Figure 6.2 show the distribution of
particle numbers of tracer for Experiments (1.1), (1.2), (1.3) and (l.4)
respectively. [t is observed that under the same temperature
condition, dispersion in a heterogeneous model is larger than that in
a homogeneous model. The reason for this is that in the
heterogeneous model, the tracer moves faster in the larger tubes and
slower in the smaller tubes. This causes more dispersion in the
heterogeneous model than in the homogeneous model because of the
different local fluid flow velocities in the heterogeneous model. The
double peaks observed in the concentration profiles for the
heterogeneous model results from the separation of the flow in the
high permeability tubes from those in the low permeability tubes. [f

a gradual change in tube diameters is used, then this effect should

vanish.

When comparing the simulation results at different temperatures
(Figure 6.2), it is observed that the tracer moves faster at the low

temperature (high beta (B)) due to the low fluid viscosities. However.
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the tracer at the high temperature (low B) spreads more because of
the high diffusion coefficient. = These simulation results are as

expected.

In summary, pore scale dispersion simulations clearly demonstrate
the pore structure effects on dispersion. That is, a core with
continuous paths connecting large pores “promotes” dispersion. [t
also indicates that dispersion is affected by the diffusion coefficient

and flow rates.

6.4.2 Mega-Scale Dispersion Simulation

As mentioned in Section 6.3, the initial configuration for the
dispersion experiments is that the red particles (tracer) are
initialized in the centre of the lattice (Columns 90 to 110) and the
blue particles in the rest of the cells of the lattice. When flow starts.
there are two miscible displacement fronts, i.e., a left front with blue
particles displacing red particle, and a right front with red particles

displacing blue particles.

Figures 6.3, 6.4 , 6.5 and 6.6 show the simulation results (distribution
of red particle number at 1500 iterations) for Experiments (2.1) and
(2.2). (2.3) and (2.4), (2.5) and (2.6), and (2.7) and (2.8), respectively.
[t can be seen that dispersion in the heterogeneous model is larger

than that in the homogeneous model.
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To study the effects of the value of beta factor (BF) on the
dispersion, Figure 6.3 is compared with Figures 6.4 and 6.5. It is
observed that an increase in the value of BF, increases dispersion.
Moreover, when the value of BF is increased to 0.0l, the
concentration profiles are not symmetric around the displacement
velocity which indicates an asymmetry in the breakthrough curves
and an early breakthrough. This simulation result is consistent
with both the theoretical predictions (Udey and Spanos, 1993)

and experimental results (Brigham, 1974).

A comparison of Figures 6.5 and 6.6 indicates that the value of the
flipping probability did not play an important role in reflecting the
pore structure. That is, the effect of flipping probability was
suppressed by some unknown factors or may be limited by 2D

modelling or the nature of the gas model.
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6. 5 Conclusions

l. Dispersion in porous media was simulated at both the pore scale

and the mega-scale with enhanced rules.

2. Pore structure effects on dispersion are clearly demonstrated by
pore scale modeling. That is, dispersion increases in a porous medium

which consists of continuous paths connected by large pores.

3. Additional rules were added in mega-scale modeling to allow
macroscopic phase separation, to reflect the fact that the solid has a
preference to collide with the displaced fluid, to incorporate pore
structure in porous media and to allow for pressure difference
between the displacing and displaced fluids. The simulations results
indicate dispersion in the heterogencous model is larger than that in
the homogeneous model. Further, when the value of BF is properly
chosen (BF=0.01), the concentration profile is not symmetric which
indicates an early breakthrough. This simulation result is consistent
with both theoretical predictions (Udey and Spanos, 1993) and

experimental results (Brigham, 1974).
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CHAPTER 7
MEGASCOPIC CAPILLARY PRESSURE'

7.1 Introduction

One of the problems that must be overcome in communicating
information about transport processes in porous media is to
assure that the terminology being used is clearly defined.
Certainly two of the most inconsistently defined terms in relation
to porous media are concentration and capillary pressure. The
origin of the confusion with these terms is associated with the fact
that in both cases one has pore scale and megascopic scale (scale
of hundreds of pores) quantities with the same name yet
distinctly different physical origins. The pore scale concentration
refers to the mass fractions of phases mixed at the molecular scale
whereas megascopic concentration refers to the mass fractions of
phases mixed at larger scales as well. The pore scale capillary
pressure describes the pressure difference across actual fluid
interfaces whereas megascopic capillary pressure describes the
difference between the megascopic (ie., averaged) pressures of
the fluid phases. In this Chapter the concept of megascopic
capillary pressure is discussed. These definitions of capillary
pressure and megascopic capillary pressure have been presented

previously by Bear and Bachmat (1990). They use the term

A version of this chapter has been published, de la Cruz, Spanos and Yang.

1995. Transport in Porous Media, 19: 67-77.
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capillary pressure to describe the pressure difference across
actual fluid interfaces at the pore scale and the term macroscopic
capillary pressure to describe what we refer to here as
megascopic capillary pressure, i.e., the difference between volume
averaged pressures of the fluid phases. In this study the
discussion is restricted to a megascopically homogeneous and

isotropic porous medium in which all pores are connected.

The concept of capillary pressure in porous media as defined
above has been thoroughly reviewed by a number of authors (e.g..
Dullien, 1991; Barenblatt et al., 1990; Bear and Bachmatt, 1990;
Lenormand and Zarcone, 1983; and de Gennes, 1983). Megascopic
capillary pressure, however, depends on the megascopic variables
and thus its connection to the pore scale capillary pressure is
sometimes difficult to delineate (cf. Barenblatt et al., 1990, Bear
and Bachmatt, 1990, and Bentsen, 1994). In the present analysis
we attempt to obtain an understanding of megascopic capillary
pressure by considering the incompressible limit of the equations
of compressible fluid flow through porous media. Here the
equations for compressible fluid flow through porous media have
been constructed from the well understood equations and
boundary conditions at the pore scale. Furthermore, one may
make use of the thermodynamic understanding (de la Cruz et al.
1993) of the parameters and variables which describe such
compressible deformations when considering this limit. This turns
out to be an important consideration because the pressure

equations for each of the fluid phases takes on an indeterminate
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form in this limit, and the equation which defines the process
under consideration is not independent of the continuity
equations in this limit. It is observed that these three equations
can be combined, when taking the incompressible limit of the
system of equations describing the fluid motions, to yield a single
process dependent relation. This new equation is a dynamical
capillary pressure equation which completes the system of

equations for incompressible multiphase flow.

[n section 7.2 we write out a complete system of equations for the
flow of two compressible fluids through a porous medium. It is
assumed that both phases are completely connected and
thermomechanical coupling is unimportant. The incompressible
limit of these equations is observed to remove one first-order
saturation constraint, and to yield an indeterminate form for the
pressure equation for each fluid. For incompressible phases one
loses two densities as variables; thus, when considering each of
the equations in isolation, one ends up one equation short of a

complete system.

[n section 7.3 the incompressible limit of the pressure equations is
considered in more detail. It is demonstrated that the limit of the
difference of these two equations yields an equation which
completes the system. In the appendix a more general

construction of this equation is discussed.
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7.2 The Flow of Two Compressible Fluids

The megascopic parameters which are considered in this paper
are associated with steady flow in rigid porous media. A porous
medium is envisaged here as a rigid incompressible matrix whose
pores are fully connected and are filled with viscous compressible
fluids. For ease of reference we collect together the system of
equations proposed by de la Cruz and Spanos (1983 and 1989), on
which the following analysis is based. The equations presented
here are generalized to include bulk viscosity (Hickey et al., 1995)

and inertial terms are ignored.

Equations of motion

[ Vv +( & + Vs p)V(Vev)l + V[%aﬂ} -(Qii 91 - Q12G2)=Vpi
Ny ot (7.1)

and

[H2V v +( &2 + 13 p2)V(Vev)] + V l:é—(z, &12_} -(Q232-Qu q1)=Vp2
N2 (7.2)

Equations of continuity

1 9 1 o
p—?—a:p, +—r—‘?--5[-nl +Vev, =0 (7.3)
1 9 1 0

—_—p,+—=—mn, +Vev,=0 74
Pl e 74
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Pressure equations

I d 1 o
Kl =-Vev, -n—?-a;m (7.5)
I d 1 d
——p,=-VevV, ———1, .
K, dt P2 e n3 at T (7.6)

Saturation equation

M _ §,Vevy - 5,Vov;
ot (7_7)

The variables Vi are megascopic average quantities. [t is
important to understand that Vev, for instance, does not
represent solely the rate of solid dilation, as in the case of a single
fluid component. It also incorporates the net flux of a fluid phase
into a volume element due to a change in saturation. Here the
continuity equation (7.3) describes how this causes (dynamical)
changes in the proportioning of materials by mass. The porosity
equation (7.7) describes the specific process which is being
considered (c.f. de la Cruz et al., 1993). Thus in general the
parameters o1 and 92 for drainage like processes can differ from
those for imbibition like processes. It is also possible that 91 and
% given by (7.24) and (7.25) for quasi-static compression are
different from the imbibition and drainage sets. In the present
analysis it will be assumed that when the effect of surface tension
can be neglected these three sets of &'s for quasi-static processes

coincide.
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[f one now restricts the analysis to the case of incompressible.
slow. steady flow then one can eliminate the Brinkman term and
the bulk viscosity terms from the equations of motion. In this
case the saturation equation can be constructed from the
continuity equations and thus it is no longer an independent
equation. Also the pressure equations each take an indeterminate
form. As a result, one is now left with eight equations ((7.1), (7.2),
(7.3) and (7.4)) and nine unknowns (Vi, V2, P1, P2, and M1). An
empirical solution to this problem has been supplied by the
Leverett (1941) J function.

1) =%c(%)”2 (7.8)

When this relation is plotted against the saturation of the wetting
fluid it is observed that imbibition and drainage data yield two
distinctly different curves (c.f. Scheidegger, 1974). A physical
explanation of the type of dynamical relation required has been
given by a number of authors (e.g. Marle 1982, and Eastwood.
1992) based on the grounds that the static capillary pressure
equation is a zeroth order constraint rather than a first order
equation which is required to make the system complete. These
authors have attempted to write out the most general form for the
dynamic pressure relationship between incompressible phases
which  includes parameters which must be determined
experimentally. In the present analysis we take a different

approach: since the system of equations for compressible phases
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is complete the incompressible limit of these equations is

considered.

The following system of equations

Equations of motion

(Qui @1 - Q12 92) =-Vpy (7.9)
and
(Q2232- Q21 41) =-Vp2 (7.10)

along with equations (7.3), (7.4), (7.5), (7.6) and (7.7), describe the

motion of two compressible fluids very close to the incompressible

limit described above.



7.3 A Megascopic Capillary Pressure Equation

Now using equation (7.7) to eliminate from the

o My
3 24 5

pressure equations (7.5) and (7.6) one obtains

1 4 o 9,
m"*=(a?“)‘7"“‘—§"'“ 10
1 4 3 9,
—Kz —a[pzz—n(';Vovl+[-—n§:—l)Vov2 (7.12)

Now let K,,K,—e, but keeping K%Q: fixed (this assumption

assures that the fluids are interacting phases in the
incompressible limit as opposed to the solid phase, say. which

simply imposes external constraints in this limit by virtue of the
conditions K%(l_)m’ u, —e). Then from (7.5) and (7.6)

1 d 1

I d 1

=1, —-Vev,=0 — 7.14
wa Ve O(K) 719

From (7.13) and (7.14) one obtains

nVev,+nVev, =O(—Il<—) (7.15)



and from (7.15) and (7.7) one obtains

o 9 . & 1
—=-1 —§+ﬁ Vov[+qﬁ)

ot n2 (7.16)
Now comparing (7.13) and (7.16) one obtains

P 8[ 1

=+ —=1+Q=

n3 n I (7.17)

[f one uses these equations to describe a static compression of the

fluids with zero surface tension then one obtains (setting u.=0 in

the analysis of Hickey, 1994, and Hickey et al., 1995)

K
o e
ny M3 (7.18)
K,
5= 2
nf n% (7.19)

As stated previously, it will be assumed that the values of §, and

5, are the same for quasi-static flow processes if surface tension

(a) is zero. Then

8["[&-"[(2 +8|
LFEE] (7.20)
and
__ Ky a
82-[[(' +K2]+82
T ng (7.21)
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where &%, 8%, which=0, when aa=0 are the pieces which distinguish
a drainage like process from an imbibition like process. Upon

substituting (7.20) and (7.21) into (7.17) one obtains

& & i
—_— e = —_
n 0} O(K) (7.22)

Equation (7.22) is now interpreted to mean [the more general

interpretation of equation (7.22) is considered in the appendix]

a ot~
8[982"qK) (7.23)
which yields
- Ky A L
81--K_[+K_2.+K[+ Kz)
ny  n3j (7.24)

=Ky ]

nt  n3) (7.25)

Note that both incompressible fluid flow and local flow associated
with fluid compressions were not present when relationships
(7.18) and (7.19) were determined. Equation (7.23) is assumed to
represent the process of incompressible fluid flow in the body of

this Chapter and this assumption is evaluated in the appendix.

From (7.11), (7.24) and (7.25)



(7 2 b
P _ KK, [n{’Vov,+n§Vov2]+f%Vov,—K—(;“- Vev,
a ool Ky K m m K,
Ml 5%t %
m
(7.26)
Here the first term is an indeterminate form since

[n?V-vl+ngVov2]=O(—[[(-) and its coefficient is O(K). However this

term also appears in

P __ KK, [n:’Vovl+n2Vov,]+a—§V-v2—K§ Vv,
or ool Ki L K ) i 2 n. K,
Th r".’ 0 + 6
n m
(7.27)

Subtracting (7.27) from (7.26) one obtains

I (p, pz)za([) [l+n‘0K2JV0V1‘a§[l+n3K1)V‘Vz (7.28)
ot m n. K, M MK,

Now define

o= K_;+K_§ 8| - K[
n M (7.29)
(0 %) :I:K_(:+£(—‘%} 82 - K2
M2 (7.30)
and one may write
a(p'-pZ)za,VOVl-agv'Vz (7.31)

Jt
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Note «, and o, are of O(l); however, to measure them via § and 4.
would pose difficult experimental problems because of the
indeterminate forms of (7.24) and (7.25). It therefore appears
that &, and 5, have served their purpose in formally leading us to

(7.31). Furthermore using (7.15) one may reduce (7.31) to

_ 0
a(plat p) =[al Ly JV' v, (7.32)

-

or finally (from the continuity equation)

d(p -pa) __ Easl
ot ot (1.33)

1]
i 2

where B=(n—ga,+i’-az) may be taken as the new single parameter

replacing the pair § and §,. Here the parameter J which is a
linear combination of &, and o, vanishes when o=0, and is in
general different for different processes. Equation (7.33)
completes the system of equations for slow, incompressible, two

phase flow.

If the assumption of quasi-static flow is relaxed and acceleration
2
S

terms are allowed then a term of the form B'—atzl may also

appear in Equation (7.33) yielding

ap, - &, IS
(P, pz)=_B gl

P . 52 (7.34)



Thus in the case of miscible flow, p=0 and one obtains

a(pl —pz) aZCI
—_—=f 7.35
=B (7.35)
or integrating with respect to time
pr 21 (7.36)
P —Py= T .

Note that in this case, saturation of phasse 1 (S,) has been
replaced by the concentration of phase 1 (C,). The physical origins
of Equation (7.36) are clear. If the concentration of one phase is
increasing in a volume element during segregated, incompressible
flow then an average pressure gradient must exist between the
displacing and displaced phase. As a result the average pressure
of the displacing phase must be greater than that of the displaced
phase. The automata version of this equation for miscible flow is

given by Equation (6.1) (see Chapter 6).



7.4 Conclusions

A process-dependent equation constraining megascopic capillary
pressure, along with the equations of motion and the continuity
equations is found to form a complete system of equations
describing the immiscible flow of two incompressible fluid phases
through porous media. A similar equation has been argued for in
the case of miscible flow when the motion cannot be assumed to

be quasi-static.

[t has been observed in this analysis that each of the pressure
equations for the component phases becomes indeterminate in the
incompressible limit and the saturation equation (7.7) is not
independent of the continuity equations in this limit. Thus the
complete system of equations for compressible fluid flow through
porous media appears to become incomplete in the incompressible
limit. However, when the two pressure equations are combined
with the saturation equation prior to taking the limit the resulting
equation may be evaluated subject to the constraint that one
specifies whether the phases are interacting (such as two fluid
phases) or non interacting (such as a fluid and a rigid matrix). In
the first case each phase still affects the other’s motion in this
limit and in the second case one phase simply imposes an external

constraint on the other.

The requirement that one incorporate the process-dependent

equation (7.7) into the pressure equations in order to evaluate
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the incompressible limit, which yields equation (7.33), means that
in specifying the parameter P one is selecting a specific process.
Thus it appears that one must assign different values to B for
imbibition and drainage if the nature of the connectivity of the
non-wetting phase (at the pore scale) is different in the two

processes.
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CHAPTER 8
CONCLUSIONS

[n Chapter 2, a thermodynamic automaton model has been
constructed. This model allows for a continuous distribution of
particle velocities instead of the discrete particle velocities
implemented in the conventional lattice gas models (Hardy. Pazzis
and Pomeau, 1976 and Frisch, Hasslacher and Pomeau, 1986). The
main advantages of this model are (1) it captures thermal effects; (2)
relativistic effects can be incorporated; (3) there is no isotropy
problem: and (4) it can be easily extended to 3D modeling. The
disadvantage of this model is the relatively slow computational

speed. Therefore, an extremely powerful computer is required.

[n Chapter 3, the validity of the thermodynamic automaton model is
checked by modeling the thermal equilibrium state and diffusion in a
tube. The simulation results were consistent with the theoretical
predictions, thus providing support for the validity of the model.
Moreover, it is demonstrated that temperature is an internal
property of the model and can be determined from the particle
velocity distribution. The diffusion coefficient of a fluid can be

determined by simulating diffusion in a tube.

In Chapter 4, some new functions such as "pump” and "thermal
boundary” were added to the automaton model. Then the automaton
model is used to simulate plane Poiseuille flow with a no-slip

(insulator) and a thermal boundary (heat bath) condition. The
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simulation results indicate that for the no-slip boundary. viscous
dissipation causes the fluid temperature to increase and thus alter
the fluid viscosity, and that for the thermal boundary condition, the
viscous heat is removed by the thermal boundary and a steady state
is achieved. Fluid viscosity determined from the simulation is
proportional to sqrt(temperature). This result is identical to the
predictions of physical theory (Sears and Salinger, 1974). Also. it

clearly indicates that the automaton model is a gas model.

[n Chapter 5. porous media, fluid-solid collisions and a thermal
boundary for the solid matrix were introduced into the automaton
model. Then the model is utilized to simulate one-phase flow.
diffusion and dispersion in porous media at the megascopic scale. The
simulation results show that (1) one-phase flow in porous media is
consistent with the predictions of Darcy's law (1856); (2) the
apparent  diffusion coefficient decreases with a decrease in
permeability; (3) small scale heterogeneity did not affect the
diffusion process significantly; (4) dispersion increases with an
increase in flow velocity; (5) thermal boundary conditions for the
solid should be used to model dispersion processes in order to
maintain a constant temperature; and (6) small scale heterogeneity
did not affect the dispersion process significantly; it may be limited
by the threshold below which the effect of heterogeneity are
negligible, and by 2D modeling. Also, it may be related to the
constraints that macroscopic phase separation is not allowed, and

that pore structure is not properly simulated.
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[n Chapter 6, dispersion in porous media is simulated at both the
pore scale and the mega-scale with enhanced rules which allow for
macroscopic phase separation. These rules reflect the observation
that the solid has a preference to collide with the displaced fluid.
Also they incorporate pore structure through the propagation rules
and pressure difference between the displacing and displaced fluids.
Pore scale modeling clearly indicates the effects of pore structure on
dispersion. That is, a pore structure with continuous paths connected
by large pores increases dispersion. Mega-scale dispersion simulation
indicates that when the beta factor (BF) from Equation (7.36) is
properly chosen, the simulation results are consistent with both

theoretical predictions and experimental results.

[n Chapter 7, megascopic concentration and capillary pressure in
porous media are discussed. It is found that megascopic
concentration and capillary pressure have pore scale and megascopic
quantities with the same name but different physical origins. A
megascopic capillary pressure equation is derived, starting from the
system of equations for compressible two-phase flow and taking the

incompressible limit.

[n this study, it has been demonstrated that automata simulation is a
robust tool for modeling physical processes. Also, the power of the
thermodynamic automaton in modeling physical processes including
diffusion, fluid flow and dispersion in porous media has been
illustrated. The potential application of this model can be extended to

simulate immiscible flow including foamy oil flow (Boghosian et al.,
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1996) and oil spreading where surface tension (Rothman and Keller.
1988) should be considered. However, a phase transition is required

before the thermodynamic properties of liquids can be considered.

This model may also be extended to 3D modeling. At present. the

potential of the thermodynamic automaton seems to be very great.
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APPENDIX
A more general interpretation of Equation (7.22) yields
a _ o(o)a 1!
5t = 8%+ ofgy) (A1)

1o 30" ol -

where
(o)a (o)
LE R IR
nz ni (A3)
Thus
= Ki s, a of L
o [El_+£(__2:+6l +K1+O(K2)
ny  n3j (A4)

=Ky g, b ol
82'[&,,&'*52 &%)

ni  ma. (AS)

Upon substituting Equations (A4) and (AS5) into Equations (7.11)

and (7.12) one obtains

ap K;K
1 172 [n?Vovl-i-ngVovz]

o o ol Kt _K_z_
mn2l 9%t o
m 02
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K, K
XM s@e , a _ M| g0)a | G2
0 [8' " Kn]v. Vim0 [82 * Kz]v. v (A©)
m ™
ap‘) - VKIKZ [ThOV oV, + ngv ' VZ]
ot 0.0 K K
Mo+t o
m m
K—g[sf”“ + ﬂ}v ov, - —K—OZ—[S.%")“ + “—Z]V oV, (A7)
M K 0] K )

m m

K, K, a
[——(‘)-+—5j|[3'-vov, +—2—Vov2] (AB)
m LIPS K, K,

but from Equation (A3)

5% I]_%_ g0
i (A9)
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and thus the first term in Equation (A8) becomes

K, K 5(0)a
['%*%]{’TPV"H +13V e v, } =5 (A10)
1 n, i

which is an indeterminate form since

[&4\.5_2.]:0([()
7T n2 (All)
and
1
{nivev, +n3v-v2}=o(ﬁ) (A12)

Thus. it is quite possible for 81 and 82 to contain terms of O(l), but
unless such terms vanish, the sought for equation remains in an
indeterminate form. The additional complication which arises is
that one must now evaluate the limit as K, K,—e of the
indeterminate form (A10). These terms could be required, for
example, to account for flow processes which occur in seismic
deformations but are not present in static compressions.
However, in the incompressible limit, it must be kept in mind that
when one specifies nlVev,+n}Vev, one cannot make both (A6)
and (A7) determinate to O(l) and independent without making the

system of equations overdetermined. Thus it is possible that this
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generalization would not alter the form of the pressure equation

(7.33) obtained previously, just the value of B.



