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Abstract

Battery Energy Storage System (BESS) provides a fast and high power capability,

making them an ideal solution for residential and industrial application. However,

given today’s high investment costs of BESS, a well-matched design and adequate

sizing of the storage systems are prerequisites to allow profitability for the end-user.

The economic viability of a BESS depends also on the battery operation, storage

technology, and aging of the system. For instance, BESS coupled with residential

photovoltaic (PV) generation, designed as PV-BESS, can reduce the energy de-

pendency of individual households while mitigating the impact of the intermittent

renewable energy sources on the electric power grid. However, to maximize the

benefits, efficient operational strategies must be defined to manage flows of energy

in such systems.

In this thesis, a general method for comprehensive PV-BESS techno-economic

analysis and optimization is presented and applied to the state-of-art PV-BESS to

determine its optimal parameters. Then, it shows two cases of how the optimal

power flows can be used to develop advanced energy management systems. In the

first case, the time series of the optimal flows, determined using linear programming,

are used to set the parameters of the controller for the next time window. In the

second case, an energy management system is designed in the form of a fuzzy rule

based system, and the time series of the optimal power flows are used to set the

parameters of a Takagi-Sugeno fuzzy controller through differential evolution.

Similarly to the desire to apply BESS in residential areas, the interest in BESSs

for industrial peak shaving application has drastically increased. There have been

several reports examining the optimal sizing of storage systems. Because most
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such works make significant assumptions about the key factors that affect battery

degradation, this thesis proposes a linear aging model that considers a state of charge

dependent calendric aging, and verifies that the depth of discharge cycling aging

dependency is not relevant to peak shaving application. The linear model reveals

that considering a SOC-aware charge control strategy for peak shaving applications

the battery storage system lifetime could be significantly prolonged. To verify the

applicability of the linear aging model, this work proposes a general framework for

cost-optimal sizing of the battery and power electronics in peak shaving application.

A case study conducted with real-world industrial profiles shows the applicability of

the approach and reveals the best storage operation patterns when considering the

trade-offs between energy purchase, peak-power tariff, and battery aging. However,

the deployment of BESS for industrial peak shaving applications can substantially

reduce the peak power, it is noticed that the storage system is underused, staying

idle most of the time. Motivated by that, this thesis proposes a new business model

where battery energy storage is offered as a service by a new stakeholder. This new

model allows sharing a single battery storage system among multiple clients. The

results show that sharing batteries in peak shaving applications for multiple clients

shortens the payback period.

The results show that the best economic performances require specific storage

technology and component sizing which change depending on the scenario of load

demand and PV generation. At the same time, it confirms the operational and eco-

nomic benefits of using the proposed energy management systems. The results also

show that while batteries used in peak shaving applications are sensitive to calendric

aging, the depth of discharge cycling is much less relevant. This is an important

observation that will simplify relevant optimization studies and thus contribute to

more widespread application of industrial peak shaving systems.

Each of these topics is justified with experimental case studies, using real-world

data sets, demonstrating the feasibility of the proposed models as compared to

existing methodologies.
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the fuzzy rule base. Pavel Krömer designed and implemented the controller and

described the controller interpretation. Petr Musilek took on this study in a su-

pervisory role, aiding in the initial formation of the research topic and manuscript

composition.

iv



Chapter 6 of this thesis has been published as “Linear Battery Aging Model

for Industrial Peak Shaving Applications” [70]. Rodrigo Martins conceived and de-

signed the optimization model of energy storage system, the implementation of ex-

perimental code and manuscript composition. Holger Hesse and Johanna Jungbauer

contributed to the result analysis. Thomas Vorbuchner developed the linearization

of the aging model. Petr Musilek took on this study in a supervisory role, aiding in

the initial formation of the research topic and having meaningful contributions to

the manuscript composition and refinement process.

Chapter 7 of this thesis has been published as “Optimal component sizing for

peak shaving in battery energy storage system for industrial applications” [71]. Ro-

drigo Martins conceived and designed the optimization model of energy storage

system, and executed the simulation experiments. Holger Hesse contributed to

the result analysis. Johanna Jungbauer contributed to the regulatory framework.

Thomas Vorbuchner developed the linearization of the aging model. Petr Musilek

provided overall guidance for the study and contributed with many fruitful discus-

sions on the methodology. Rodrigo Martins and Petr Musilek wrote the paper with

contributions of all co-authors.

Chapter 8 of this thesis has been submitted to Applied Energy Journal as “Bat-

tery Energy Storage as a Service for Peak Shaving in Multiple Industrial Clients”.

Rodrigo Martins conceived and designed the optimization model of energy stor-

age system, the implementation of experimental code and manuscript composition.

Alexandre Nassif contributed to the regulatory framework and the analysis of the

intermediate results. Petr Musilek took on this study in a supervisory role, aiding

in the initial formation of the research topic, and having meaningful contributions

to the manuscript composition and refinement process.

v



Once you stop learning, you start dying.

– Albert Einstein.

vi



Acknowledgements

I want to thank my supervisor, Prof. Petr Musilek, for the patient guidance, encour-

agement, and advice he has provided throughout my time as his student. I want to

thank you for encouraging my research and for allowing me to grow as a researcher.

Your advice on both research as well as on my career, have been invaluable. I would

also like to thank my committee members for letting my defense be an enjoyable

moment, and for your brilliant comments and suggestions, thanks to you. I would

also like to thank all the members of Prof. Musilek’s research group. In particular,

I would like to thank Tomas Barton for all the fruitful discussions.

I must express my gratitude to Tallitha, my wife, for her support. I was contin-

ually amazed by her willingness to proofread countless pages, and by her patience

for experienced all of the ups and downs of my research. I am also extremely grate-

ful for all the continued encouragement I received from my family in Brazil. Your

motivation was what sustained me thus far.

Finally, I would like to thank the Science Without Border project from CAPES,

for providing the funding which allowed me to undertake this research.

vii



Contents

1 Introduction 1
1.1 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Originality . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 State of the Art and Theoretical Background 10
2.1 Economic Value of Residential Battery Storage Systems . . . . . . . 10
2.2 Battery Energy Storage System (BESS) . . . . . . . . . . . . . . . . 12
2.3 Energy Management System for Residential PV-BESS . . . . . . . . 14
2.4 Fuzzy Rule-Based Control Systems . . . . . . . . . . . . . . . . . . . 15
2.5 Differential Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Economic Optimization of Component Sizing for Residential BESS 18
3.1 PV-BESS’s Layout, Storage Model and Parametrization . . . . . . . 20

3.1.1 System Layout . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Technical Parameters, Cost Assumptions, and Aging Model . 20
3.1.3 Economic and Legal Framework for BESSs . . . . . . . . . . 24

3.2 Linear Optimization of PV-BESSs . . . . . . . . . . . . . . . . . . . 25
3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 LP-based Predictive EMS for Residential PV-BESS 38
4.1 System Description and Power Flow Optimization . . . . . . . . . . 39

4.1.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.2 Evaluation criteria . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.3 Determination of Optimal Power Flows . . . . . . . . . . . . 42
4.1.4 Operational Strategies . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Linear Programming Controller . . . . . . . . . . . . . . . . . . . . . 44
4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Optimal EMS of Residential PV-BESS Using Evolutionary Fuzzy
Controller 50
5.1 System Description and Power Flow Optimization . . . . . . . . . . 51

5.1.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1.2 Determination of Optimal Power Flows . . . . . . . . . . . . 53

5.2 Fuzzy Logic Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.1 Input and Output Variables . . . . . . . . . . . . . . . . . . . 54
5.2.2 Baseline Controller . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.3 Controller Evolution . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.1 Controller Interpretation . . . . . . . . . . . . . . . . . . . . . 58
5.3.2 Controller Evaluation . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

viii



6 Linear Aging Model for Industrial Peak Shaving Applications 64
6.1 System Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Battery Aging Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3.1 Case Description . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3.2 Effect of Calendric and Cyclic Aging . . . . . . . . . . . . . . 72

6.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Component Sizing for Peak Shaving for Industrial Applications 75
7.1 System Layout and Storage Model . . . . . . . . . . . . . . . . . . . 76

7.1.1 System Layout . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.1.2 Economic and Legal Framework for Industrial Customers . . 77

7.2 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.2.1 Linear Optimization of BESSs . . . . . . . . . . . . . . . . . 81
7.2.2 Case Description . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.2.3 Effect of Sizing, Considering BESS Degradation Costs . . . . 85

7.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8 BESS as a Service for Peak Shaving Applications 94
8.1 Economic and Legal Framework for Industrial Customers . . . . . . 96
8.2 Battery Energy Storage Model . . . . . . . . . . . . . . . . . . . . . 100
8.3 Linear Optimization of BESS . . . . . . . . . . . . . . . . . . . . . . 100
8.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.4.1 Case Description for Multiple Industrial Customers . . . . . . 104
8.4.2 Effect of Sizing and Degradation of the BESS . . . . . . . . . 105
8.4.3 Economic Analysis . . . . . . . . . . . . . . . . . . . . . . . . 108

8.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9 Conclusion and Future Studies 115
9.1 Future Research Direction . . . . . . . . . . . . . . . . . . . . . . . . 117

References 119

Appendix Literature Survey 132

Appendix Battery Power Profiles 133

Appendix Power flows in the examined PV/BESS 135

ix



List of Tables

2.1 BESS literature review. . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Performance parameters of BESS (PbA, LFP, and NMC). . . . . . . 22
3.2 Inverter performance and price information . . . . . . . . . . . . . . 24
3.3 Remuneration and retail energy prices for households in Germany . . 25
3.4 Variables and parameters for BESS optimization . . . . . . . . . . . 26
3.5 ROI optimal sizing of BESS for an average household . . . . . . . . 36

4.1 Comparison of system performance . . . . . . . . . . . . . . . . . . . 46

5.1 Fuzzy rule base of the proposed controller . . . . . . . . . . . . . . . 56
5.2 Values of output fuzzy singletons (best evolved controller) . . . . . . 58
5.3 Comparison of system performance . . . . . . . . . . . . . . . . . . . 62

6.1 BESS/Inverter Performance Parameters and Price Information . . . 71

7.1 Electricity price for exemplary industrial customer in Germany . . . 79
7.2 Variables and parameters for BESS modeling and optimization. . . . 82
7.3 BESS performance parameters and price information . . . . . . . . . 86
7.4 Economical and technical comparison of system optimization results. 86
7.5 Operation cost (OPEX) composition. . . . . . . . . . . . . . . . . . . 87
7.6 Profile A with yearly billing scheme . . . . . . . . . . . . . . . . . . 91
7.7 Profile A wich peak load capping variating from 1% to 25%. . . . . . 93

8.1 Electricity price for exemplary industrial customer . . . . . . . . . . 98
8.2 BESS/inverter performance parameters and price information . . . . 100
8.3 Variables and parameters used for the battery modeling and opti-

mization routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.4 BESS sizing and degradation comparison of system optimization results.105
8.5 Profile A and profile B simulations. . . . . . . . . . . . . . . . . . . . 107
8.6 Profile A, profile B and profile C economic comparison . . . . . . . . 108
8.7 Operation cost (OPEX) composition. . . . . . . . . . . . . . . . . . . 109
8.8 BESaS economic comparison from the provider point of view . . . . 111

A.1 Literature review for battery performance parameters. . . . . . . . . 132

x



List of Figures

2.1 Gain factor in the C-rate, and cyclic aging stress factor . . . . . . . 14

3.1 Schematic of the topology PV-BESS coupling . . . . . . . . . . . . . 21
3.2 PV generation and load profile used for this simulation study . . . . 30
3.3 Power flow analysis for a three-day period. . . . . . . . . . . . . . . . 31
3.4 Graphical representation of the optimization results. . . . . . . . . . 34
3.5 ROI comparison of optimally sized BESS at varying PV size. . . . . 35

4.1 System configuration and power flows considered . . . . . . . . . . . 39
4.2 Power flows in the examined PV-BESS - greedy strategy . . . . . . . 43
4.3 Power flows in the examined PV-BESS - schedule mode strategy . . 43
4.4 Power flows in the examined PV-BESS - feed damping strategy . . . 44
4.5 Linear programming controller schematic in high level . . . . . . . . 45
4.6 3 iterations with a 10 days operation window iteration . . . . . . . . 46
4.7 Operation of LP-PEMS (three days in 2014) . . . . . . . . . . . . . . 49
4.8 Composition of PV energy generated and served to the load. . . . . 49

5.1 Fuzzy partition of rLoad and soc. . . . . . . . . . . . . . . . . . . . . 54
5.2 Control surface of the baseline controller. . . . . . . . . . . . . . . . 57
5.3 RMSE of the evolved FLC controllers in time. . . . . . . . . . . . . . 58
5.4 Control surface of the best evolved controller. . . . . . . . . . . . . . 59
5.5 Control surface of the best evolved controller. . . . . . . . . . . . . . 59
5.6 Control surface of the best evolved controller (control of Pbatt−load). 60
5.7 Composition of PV energy generated and served to the load. . . . . 62

6.1 System configuration and power flows considered. . . . . . . . . . . . 65
6.2 Calendric - Linearisation @ t=10 years . . . . . . . . . . . . . . . . . 67
6.3 C-fade(C-Rate,DoD) - Linearized @ C-fade(EOL) = 20% . . . . . . 68
6.4 Industrial load profile (top), and battery SoC and SoH (bottom) . . 69
6.5 Cyclic capacity fade after 10 years - Comparison of DoD and FEC . 69
6.6 Industrial load profile. . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.7 Time correlated evolution for the naive and optimal strategies. . . . 73

7.1 System configuration: power flows and price components . . . . . . . 77
7.2 Network cost vs. duration factor. . . . . . . . . . . . . . . . . . . . . 79
7.3 Static ROI of peak shaving storage systems and ROI projection. . . 80
7.4 Load profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.5 Load profile A with yearly billing scheme and battery SoC and SoH. 87
7.6 Load profile A with monthly billing scheme and battery SoC and SoH. 87
7.7 Degradation after 10 years of usage for Profile A. . . . . . . . . . . . 88
7.8 Power flow analysis and evolution of battery SoC and SoH. . . . . . 89
7.9 Battery power profile analysis and resulting SoH decline. . . . . . . . 89
7.10 Load profiles with yearly billing scheme and battery SoC and SoH . 90
7.11 Load profiles with monthly billing scheme and battery SoC and SoH 91
7.12 Impacts of peak capping variation. . . . . . . . . . . . . . . . . . . . 92

8.1 Power flows considered. . . . . . . . . . . . . . . . . . . . . . . . . . 96

xi



8.2 Customer load curve . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.3 Virtual net metering model . . . . . . . . . . . . . . . . . . . . . . . 97
8.4 Measured kW vs Billed at 85% Ratchet (started in July) . . . . . . . 99
8.5 Load profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.6 Time correlated evolution for the optimal and naive strategies. . . . 106
8.7 Power flow analysis and evolution of battery power profile. . . . . . . 108
8.8 Economic analysis of the selected scenarios. . . . . . . . . . . . . . . 111
8.9 Payback margin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.10 Break even point analysis of the selected scenarios. . . . . . . . . . . 113

B.1 Battery profile with yearly billing scheme and resulting SoH decline. 133
B.2 Battery profile with monthly billing scheme and resulting SoH decline.134

C.1 Power flows in the examined PV/BESS for different time periods. . . 135

xii



Chapter 1

Introduction

Smart grid technologies aim to improve the efficiency, reliability, economics, and

sustainability of the production and distribution of electricity [25]. The smart grid

is capable of effectively responding to changes in demand which helps balance the

consumption and supply of electricity, supporting the integration of renewable en-

ergy sources in the power grid. Hassan et al. [40] review the basic concepts of smart

grid and corresponding technologies. Rohjans et al. [114] discuss in their paper re-

lated standardization issues, while Fang et al. [24] have surveyed the protection,

management and infrastructure aspects of the smart grid technology

Further improvements of renewable energy integration can be attained through

the deployment of sustainable power sources. An important example of fast-growing

renewable technologies is Photo-Voltaic (PV) generation systems. Such PV systems

installed locally at individual households can provide significant cost savings by

avoiding purchasing energy from the grid. However, studies have shown that high

PV penetration may cause voltage level issues in the distribution grid, especially at

light load [110], [116]. The main concern is the over-voltage due to reverse power

flow in distribution networks [133]. A simple way used by the utilities to avoid this

problem is to limit the amount of power injected from the clients back to the grid.

However, this approach causes significant underutilization of potentially available

PV power generation that might be otherwise beneficial for the system. In addition,

this approach may not be sustainable in the long term given the growing interest of

consumers in PV installations.

An important alternative to maximize the local generation can be obtained by

coupling the PV sources with the use of Energy Storage (ES) systems. These tech-

nologies also increase grid reliability and economy compared to single source gener-
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ation without storage. In addition, such systems may contribute to better balancing

of the entire power grid by smoothing out peaks in power demand. They generate

power when the solar radiation is higher than demand and store it for later usage

when the demand increases.

ES systems are not limited to only augmenting the local generation. For instance,

battery energy storage systems (BESS) are considered for a variety of applications

in modern power grids [59]. As the cost of these systems declines, commercial and

residential consumer interest for this type of storage grows. Integrating BESS in

the power system offers many benefits. For instance, BESS can support Distribu-

tion System Operators (DSO) to diminish the challenges created when increasing

complex distribution network. At the same time, storage system can integrate and

manage the fluctuating and uncertain generation from Renewable Energy Sources

(RESs) such as PV generation [45]. In addition, BESS is well suited as a solution

for improving power quality, voltage regulation, renewable penetration, and peak

load shaving [62], [74], [108], [146].

This thesis examines the role of BESS in residential applications and for indus-

trial customers. However, renewable generation can also be used in other sectors,

e.g. in agricultural or commercial applications [54]. Although the principles outlined

in this work can be extended outside the residential sector and industry, feasibility

of using BESS must be analyzed for each application individually. For example,

standalone photovoltaic generation is well suited to rural and natural areas, where

the costs and environmental impacts of power lines are relatively high [16]. However,

BESS is usually not applied in these scenarios because the variability of production

and demand would require significant oversizing of the system to guarantee supply.

As a result, the cost of the long-term storage may exceed the savings.

1.1 Research Objectives

The key objectives of the presented research can be organized in the following three

groups:

Optimal component sizing for battery system and power electronics:

• To define a power flow optimization1 model and use it to identify the best

storage operation patterns considering a trade-off between energy purchase,

1The reader must note that power flow in the context of this research is related to the flows within
a residential or industrial facility, not as usually considering ”power flow” in power engineering.
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feed-in remuneration, and battery aging.

• To conduct a comprehensive power flow analysis and to present a highly re-

producible and easily adaptable linear optimization approach to assess both

the cost and the maximum profit attainable for a residential BESS.

• To evaluate the linear optimization model using up to date technology-specific

aging information and the investment cost of battery and inverter systems of

diverse mature battery chemistries.

• To design a general framework for sizing of BESS in peak shaving applications.

• To propose a new business model where battery energy storage is offered as a

peak shaving service; this model should allow sharing a single battery storage

system among multiple industrial clients.

Energy management system:

• To design an advanced energy management system in the form of a rule-based

controller where the time series of the optimal flows, determined using linear

programming, are used to set the parameters of the controller.

• To use the optimal power flows to develop an advanced energy management

system in the form of a fuzzy control system.

The impact of battery degradation:

• To propose a model of BESS aging processes that can be reductively applied

to obtain a linearized degradation function.

• To propose a linear aging model that considers state of charge-dependent cal-

endric aging; verify whether the depth of discharge cycling aging dependency

is relevant for peak shaving applications.

• To show the applicability of the developed approaches using case studies with

real-world generation and demand profiles. At the same time, to demonstrate

the return on investment and battery aging dependencies.
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1.2 Research Originality

All topics covered in this thesis show notable novelty in their particular areas of

research and indicate new opportunities for study. They make use of existing work

and well-known methodologies, but with essential aspects of originality. The pro-

posed cost model that considers storage degradation instead of storage purchasing

cost is of the most significant novelty, with no other work having been developed in

this field to our knowledge. No other study addresses the use of the optimal power

flow to determine the parameters of the energy management controller. The critical

factors impacting the aging model for industrial clients have not been previously

investigated. The application of a BESS as a service is, to our knowledge, unique

and demonstrates a significant improvement in peak shaving applications. Addi-

tionally, this work raises further questions, providing opportunities for expanding

the presented topics in future studies.

Chapter 3 conducts a comprehensive power flow analysis, implements technology-

specific battery degradation algorithm, and presents a highly reproducible and easily

adaptable linear optimization approach to assess both the cost and the maximum

profit attainable for residential BESS. This approach allows the most suitable storage

type and power electronics size to be selected for households with rooftop-mounted

PV generators.

Responding to the necessity of having an energy management system, Chapter 4

proposes an advanced energy management system in form of a rule-based controller.

The model developed in Chapter 3 is used to iteratively generate the optimal power

flows among the components of the PV/HESS and the grid, for a selected time

window. The optimal power flows are then used by the rule-based system to direct

power through the system in an optimal way. This forms a general predictive energy

management strategy that can be implemented to control power flows in other PV-

BESS or similar hybrid energy systems. The performance of the proposed controller

is thoroughly tested using simulations and compared with three different strategies:

greedy strategy, schedule mode, and feed-in damping.

Similarly, Chapter 5 builds on the optimal power flows to develop an advanced

energy management system in the form of a fuzzy controller. The model in the pre-

vious study is used to determine the parameters of a Takagi-Sugeno fuzzy controller

using an evolutionary computing approach.
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The necessity of proper BESS sizing has been highlighted in several studies.

Most reports also recognize that aging of BESS cannot be neglected and point out

battery deterioration as a major cost driver during the storage operation. To gain

a better understanding of peak-shaving battery aging, Chapter 6 proposes a linear

aging model that considers state of charge (SoC) dependent calendric aging suitable

for BESS sizing for peak shaving applications in industrial settings. It also reveals

the potential of an SOC-aware charge control strategy for peak shaving applications.

Therefore, Chapter 8 proposes a new business model where battery energy stor-

age is offered as a service by a new stakeholder. This model allows sharing a single

battery storage system among multiple clients. This chapter also presents a case

study conducted with industrial load profiles, a techno-economic analysis evaluat-

ing the ROI of the system and battery degradation, and a linear programming(LP)

approach allowing an exact solution determination for BESS sizing and operation

strategy. In addition, break even point, to which a balance between the BESS

charges and clients expenses, is discussed.

1.3 Thesis Organization

The chapters of this document are structured as follows:

Chapter 2: State of the Art and Theoretical Background

This chapter offers a focused literature review and background knowledge on the

relevant topics to the research presented in this thesis. It also provides details

of established algorithms and processes which are used in the construction of the

models presented in later sections. The topics covered include fuzzy rule-based

control systems, differential evolution, linear programming, energy storage system,

aging models, component sizing for PV-BESS, and energy management system.

Chapter 3: Economic Optimization of Component Sizing for Residential
Battery Storage Systems

Battery energy storage systems (BESSs) coupled with rooftop-mounted residen-

tial Photo-Voltaic (PV) generation, designated as PV-BESS, have been drawing

increasing attention and market penetration as more and more of such systems be-

come available. The manifold BESS deployed to date rely on a variety of different

battery technologies, showing a significant variation of battery size, and power elec-
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tronics dimensioning. However, given today’s high investment costs of BESS, a

well-matched design and adequate sizing of the storage systems are prerequisites to

allow profitability for the end-user. The economic viability of a PV-BESS depends

also on the battery operation, storage technology, and aging of the system. In this

chapter, a general method for comprehensive PV-BESS techno-economic analysis

and optimization is presented and applied to the state-of-art PV-BESS to deter-

mine its optimal parameters. Using a linear optimization method, a cost-optimal

sizing of the battery and power electronics is derived based on solar energy avail-

ability and local demand. At the same time, the power flow optimization reveals

the best storage operation patterns considering a trade-off between energy purchase,

feed-in remuneration, and battery aging. Using up to date technology-specific aging

information and the investment cost of battery and inverter systems, three mature

battery chemistries are compared; one lead-acid (PbA) system and two lithium-ion

systems; of the two lithium-ion systems, one uses lithium-iron-phosphate (LFP) and

the other uses lithium-nickel-manganese-cobalt (NMC) for the cathode respectively.

The results show that different storage technology and component sizing can provide

the best economic performances depending on the scenario of load demand and PV

generation.

Chapter 4: LP-based Predictive Energy Management System for Resi-
dential PV-BESS

The deployment of solar energy generation combined with energy storage systems

can reduce the energy dependency of individual households while mitigating the

impact of the intermittent renewable energy sources on the electric power grid.

However, to maximize the benefits, efficient operational strategies must be defined

to manage flows of energy in such systems. The first step towards the development

of such energy management system, described in previous work, is the determina-

tion of the optimal power flows that reflects the current and future solar energy

availability and household load, as well as the state of the energy storage system.

This chapter builds on the optimal power flows to develop an advanced energy man-

agement system. The time series of the optimal flows, determined using Linear

Programming (LP), are used to set the parameters of the controller for the next

time window. The results confirm the operational and economic benefits of using

the proposed LP-based predictive energy management. It also compares favorably
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with other commonly used strategies.

Chapter 5: Optimal Energy Management of Residential PV-BESS Using
Evolutionary Fuzzy Control

The adoption of residential Photo-Voltaic (PV) power generators combined with

energy storage system can reduce the energy dependency of individual households

while alleviating the impact of intermittent solar energy on the electric power grid;

however, to maximize the benefits, energy in such systems must be carefully man-

aged. This chapter builds on the optimal power flows to develop an advanced

energy management system in form of a fuzzy rule-based system. The time series

of the optimal flows, determined using LP, are used to determine the parameters

of a Takagi-Sugeno fuzzy controller through differential evolution. The resulting

system can be implemented to control power flows in other systems composed of

PV generation and energy storage. The results confirm the operational and eco-

nomic benefits of using the optimal operational strategy, while allowing its in-depth

analysis through the evolved fuzzy rule base.

Chapter 6: Linear Battery Aging Model for Industrial Peak Shaving
Applications

Recent attention to industrial peak shaving applications sparked an increased in-

terest in BESSs. Among other studies, there have been several reports examining

optimal sizing of such storage systems. Most such works make significant assump-

tions about the key factors that affect battery degradation. This work examines

these assumptions using a linear aging model that considers a state of charge (SOC)

dependent calendric aging. The linear model reveals the potential of an SOC-aware

charge control strategy for peak shaving applications: with adequate forecasting, the

battery storage system lifetime could be significantly prolonged. The results also

show that while batteries used in peak shaving applications are sensitive to calendric

aging, the depth of discharge cycling is much less relevant. This is an important

observation that will simplify relevant optimization studies and thus contribute to

more widespread application of industrial peak shaving systems.
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Chapter 7: Optimal Component Sizing for Peak Shaving in Battery En-
ergy Storage Systems for Industrial Applications

Batteries provide a fast and high power capability, making them an ideal solution

for industrial peak shaving application. This work proposes a general framework for

sizing of BESS in peak shaving applications. A cost-optimal sizing of the battery and

power electronics is derived using LP based on a local demand and billing scheme.

A case study conducted with real-world industrial profiles shows the applicability

of the approach as well as the return on investment dependence on the load profile.

At the same time, the power flow optimization reveals the best storage operation

patterns considering a trade-off between energy purchase, peak-power tariff, and

battery aging. This underlines the need for a general mathematical optimization

approach to efficiently tackle the challenge of peak shaving using an energy storage

system. The case study also compares the applicability of yearly and monthly billing

schemes, where the highest load of the year/month is the base for the price per kW.

The results demonstrate that batteries in peak shaving applications can shorten the

payback period when used for large industrial loads. They also show the impacts of

peak shaving variation on the return of investment and battery aging of the system.

Chapter 8: Battery Energy Storage as a Service for Peak Shaving Appli-
cations With Multiple Industrial Clients

The usage of battery energy storage system in industrial peak shaving application

has increased in recent years. Among other studies, there have been several reports

examining optimal sizing of these storage systems for individual clients. However

such individual applications result in the battery energy storage system standing

idle most of the time. Concerning the under-utilization of BESS in such cases, this

chapter proposes a new business model where battery energy storage is offered as

a service by a new stakeholder. This new model allows sharing a single battery

storage system among multiple clients. The results show that sharing batteries in

peak shaving applications for multiple clients shortens the payback period. Herein,

a general framework for the sizing of BESS in peak shaving application is presented.

A case study shows the effectiveness of the approach, the strong dependence of the

battery energy storage system dispatch, and resulting return on investment on the

industry load profile. At the same time, the results show a sensitivity analysis of

the profit margin variance in the studied scenarios.
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Chapter 9: Conclusion and Future Studies

The work presented in this thesis is summarized in Chapter 9 The limitation of the

current work is identified. In addition to that, this chapter shows possible directions

for future research on the topics presented in this thesis.
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Chapter 2

State of the Art and Theoretical
Background

This chapter provides the complete necessary background knowledge for the research

topics presented in Chapters 3 through 8. It also offers a focused literature review

on those topics fully relevant to the research presented in this thesis.

2.1 Economic Value of Residential Battery Storage Sys-
tems

While most existing studies assess the economic value of residential battery storage

using sensitivity analysis, there is lack of system size optimization studies considering

technology specific parameters and aging information [46]. Nevertheless, numerous

significant contributions in the literature describe the usage of optimization routines

for storage dispatch and size optimization in a distinct, but related context. Their

overview is presented in Table 2.1.

Complex optimization approaches can be applied to storage dispatch optimiza-

tion in various use cases. Although this helps to reveal possible operation modes of

a system, such approaches often require extensive computational resources and may

fail to find a globally optimal solution.

Geth et al. [32] show an optimization method for the best positioning and sizing

of energy storage in distribution grids. Using a multi-objective optimization method,

the authors find an optimized dispatch operation strategy for multiple households

with respect to BESS profit generation via energy market trading. They also provide

a detailed discussion of concerns of distribution system operators related to security

of the energy service, e.g . using voltage control.
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Table 2.1: Non-comprehensive overview of literature in the field of battery energy
storage system (BESS) analysis and optimization.

Application Type/Focus of Research References

Vehicle Economic analysis [97]

Residential

Market analysis [30], [51]

Techno-economic analysis
[31], [46], [87],

[134]

Online economic estimation tools
[9], [35], [103],

[106]
Size optimization (genetic algorithm) [64]

Optimization of power flow (dynamic programming) [82]
Inverter size (sensitivity analysis) [140]

Co-optimization of electricity and thermal energy flow [56]

Commercial Techno-economic analysis [77]

Other/grid level
BESS for distribution grid support [32], [129]

BESS microgrid support [76]

Various/comparison of applications
Technical review [60]

Economic value assessment [27]

In a subsequent work, Tant et al. [129] demonstrated how complex optimiza-

tion methods can be applied to find the best-suited battery storage system for PV

integration in a given distribution grid. The authors analyze in detail the storage

dispatch optimization using PbA and lithium-ion batteries. However, this work

focuses on multi-objective optimization for peak shaving and voltage regulation,

rather than on aspects relevant to a single household cost optimization.

Recent work by Merei et al. [77] concentrates on commercial applications of

BESS. The authors use sensitivity analysis to study the maximization of energy

self-consumption via storage integration. The techno-economic analysis reveals that,

for most commercial applications, BESS is not favored economically when battery

degradation is taken into account.

Interestingly, currently available and announced PV-BESS rely on different bat-

tery technologies. At a first glance, there appears to be a market trend towards

lithium-ion based systems with storage capacity above 5 kWh coupled with inverter

sizes of Nominal Power, often exceeding 3 kW [52]. Nevertheless, lead-acid (PbA)

systems still hold an appreciable market share of over 10% for new system installa-

tions, and there is a strong competition within the category of lithium-ion batteries

to which the various cell chemistries have significantly different performance, cost,

and aging [52].

Despite the market availability of these various systems, there is still an obvious

lack of accurate quantitative assessment tools to determine Return On Investment

(ROI)-optimal storage solutions for individual households with particular PV gen-
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eration and load demand. While most existing studies assess the economic value

of residential battery storage using sensitivity analysis, there is lack of system size

optimization studies considering technology specific parameters and aging informa-

tion [47]. For instance, Geth et al. show an optimization method for the best

positioning and sizing of energy storage in distribution grids [33]. Using a multi-

objective optimization method, the authors found an optimized dispatch operation

strategy for multiple households with respect to BESS profit generation via energy

market trading. In a subsequent work, Tant et al. demonstrate how complex op-

timization methods can be applied to find the best-suited battery storage system,

focusing on multi-objective optimization for peak shaving and voltage regulation,

rather than on aspects relevant to a single household cost optimization [131]. Other

previous work by Magnor and Sauer, and Merei et al. analyzed the optimal sizing

of storage in the context of island grids and home storage systems [65], [78]. The

solver considers a genetic algorithm-based method. Therefore, it may not find a

globally optimal solution to the described problem, and the studies do not provide

design rules for future storage systems.

2.2 Battery Energy Storage System (BESS)

In response to the need to properly size BESS, several studies aiming to find the op-

timal sizing of BESS have been conducted. Previous work by Magnor and Sauer [64]

and Merei et al. [76] analyzed the optimal sizing of storage in the context of island

grids and home storage systems. A genetic algorithm-based method allows the mod-

eling of a non-linear set of equations including battery-aging models. However, the

solver results may not find a globally optimal solution to the described problem,

and the studies do not provide design rules for future storage systems.

A sophisticated optimization method applied to find the best-suited battery

storage system located in a residential suburban area has been described by Tant

et al. [130]. A multi-objective function is used to find the balance between voltage

regulation, peak power reduction, and annual cost. A grid operator can use this

method to support the decision of temporarily installing a BESS in problematic

feeders to postpone grid upgrades in the short term due to work planning issues.

By comparing the cost of grid upgrades, the grid operator may conclude that the

BESS is also a valuable alternative in the long term. Recent work by Rahmann

et al. [108] proposed an approach to determine the break-even points for different
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BESS considering a wide range of life cycles, efficiency, energy price, and power price.

The results presented in this work show that depending on the values of round trip

efficiency, life cycles, and power price, there are BESS technologies that are already

profitable when considering only peak shaving applications. Although the authors

model an optimization algorithm used for the sizing of the storage system, only the

distribution company perspective is considered.

Storage deterioration is a significant cost driver during storage operation. As a

result, the aging of storage devices must be taken into consideration when simulating

BESS operations. Lithium-ion batteries [41] suffer from continuous aging. For most

batteries of this type, it is possible to separate the degradation into a pure time-

dependent irreversible loss of battery capacity called calendric aging, and an energy

throughput dependent cyclic aging [128].

The battery cyclic and calendric lifetime define the remaining State of Health

(SoH ) until a certain capacity fade for a battery cell becomes evident. In this work,

we assume that the BESS must be replaced when SoH drops to 80% of the nominal

capacity. The overall aging can be estimated using the superposition principle [120]:

agingtot ≈ agingcyc + agingcal. (2.1)

Value agingtot = 0 represents a new, unused battery, while agingtot = 1 cor-

responds to a situation when the remaining capacity of the battery is 80% of its

original capacity. However, it is important to note that additional use of the storage

system with agingtot > 1 may be allowed if the replacement of storage is set to

below 80% of the SoH. A detailed analysis and validation of battery performance

and aging models is provided in [37].

Calendric aging

The analytical term for the calendar capacity fade Cfade,cal as a function of battery

SoC (%), temperature T (◦C), and time ∆t, takes the following form:

Cfade,cal(SOC, T,∆t). (2.2)

Cycling aging

The stress factors that influence the cycling lifetime are the C-rate, depth of dis-

charge (DoD) and charge throughput Q. Cycling aging can be calculated as:
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Cfade,cyc = f(C-rate) · f(DoD) ·Q0.5562 (2.3)

For a better understanding of the cyclic aging model, the functions for the stress

factors C-rate and DoD are shown in Figure 2.1. It can be seen that variation of

the C-rate between −0.5C and 0.5C does not affect cyclic capacity fade. Battery

discharging corresponds to the negative values of the C-rate factor, limited to −2C

according to manufacturer specifications. For charging, there is a steeper impact of

cell degradation compared to discharging, limited to 1C.
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Figure 2.1: Gain factor in the current rate range of -2 C-rate in discharge direction
to 1 C-rate in charge direction (left), and pure cyclic aging stress factor in the ∆
DoD range from 0% to 100% (right) [13]

2.3 Energy Management System for Residential PV-
BESS

Integration of intermittent, renewable energy sources into existing electric power

grids is a difficult task. The most important approaches include demand control

and energy storage [61]. Demand control requires shifting significant energy loads

in time to coincide with periods of large energy production. Energy storage systems

maximize local self-consumption of energy and smooth out the amount of energy

supplied to and drawn from the grid.

The combination of Active Demand-Side Management (ADSM) and BESS is

described by Castillo-Cagigal et al. [17]. The proposed system maximizes the use

of the local PV generation by displacing deferrable loads. The experiments show
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that the proposed energy management strategy improves the self-consumption and

reduces the electricity transport and overall costs.

Senjyu et al. [123] present an approach to define the optimal configuration of

residential renewable generation systems using GA as the optimization method.

The goal of their approach is to minimize the initial costs with the annual operation

and maintenance costs. The model considers different power sources such as PV

systems and wind turbines. The developed algorithm finds the optimum energy

system configuration for each household, minimizing the total cost and maximizing

the overall self-consumption.

Taking advantage of historical data on energy production and consumption,

Martins et al. [69] determined that optimal power flows in a residential PV-BESS can

be used to minimize the overall energy costs. Using linear programming, the authors

obtained optimal distribution of PV energy production and optimal composition of

sources to satisfy energy demand. Considering data for a period of one year, the

resulting time series represent ideal distribution of power flows taking into account

not only solar energy harvestable at the current time, but also energy available in

all future time steps. However, this approach cannot be used to manage energy in

real time, as the future energy availability is not available with sufficient confidence.

In addition, the optimal power flows obtained for a particular PV-BESS cannot be

effectively analyzed or formalized for use in other, albeit similar systems.

Musilek et al. [85] proposed an advanced energy management system in the

form of a fuzzy control system. The optimal power flows were scheduled using

linear programming and used to determine the parameters of a Takagi-Sugeno fuzzy

controller through evolutionary computing approach. The controller performance is

comparable to the optimized system and can be effectively implemented to control

power flows in other systems composed of PV and BESS.

2.4 Fuzzy Rule-Based Control Systems

Fuzzy rule-based control is an approach to deal with nonlinear relationships, and

to analyse and control complex systems by capturing human knowledge in form

of rules [23], [53], [83]. A fuzzy rule represents knowledge in continuous space,

between 0 and 1, as a grouping of membership functions. It can be represented as

a conditional statement in the following form
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IF x is A THEN y is B,

where x and y are linguistics variables; and A and B are linguistics values determined

by fuzzy sets in the universes of discourseX and Y , respectively [89]. A fuzzy control

system specifies the input parameters in natural language and uses the fuzzy rules to

define the relationships among different inputs with the output. The steps performed

by a fuzzy control system during inference are: fuzzification of input variables, rule

evaluation, aggregation of the rule outputs, and defuzzification [63], [95], [101].

2.5 Differential Evolution

Differential Evolution (DE) is an evolutionary optimization algorithm [105]. It is a

real–valued optimizer that evolves a population of candidate solutions (vectors of

floating point values) by iterative modification of the candidates through differential

mutation and crossover. In each iteration, differential mutation is applied to the

current population to form so called trial vectors. These vectors are further modified

by various crossover operators. At the end of each iteration, the trial vectors compete

with existing candidate solutions for survival in the population.

The basic operation of the traditional DE can be summarized as follows [105].

The i-th vector of N parameters is randomly initialized by:

x⃗i[j] = rand(bLj , b
U
j ), j ∈ {0, . . . , N − 1}, (2.4)

where bLj and bUj are, respectively, the lower and upper bound of the j-th parameter,

and rand(a, b) is a function generating a random number from the interval [a, b]. A

fundamental differential mutation, DE/rand/1, can be described as:

v⃗i = v⃗r1 + F (v⃗r2 − v⃗r3), (2.5)

where F is a scaling factor, and v⃗r1, v⃗r2 and v⃗r3 are three vectors (i ̸= r1 ̸= r2 ̸= r3)

randomly selected from the population. Vector v⃗r1 is the base vector, v⃗r2 and v⃗r3

are the difference vectors, and v⃗i is the target vector.

The target vector is combined with the trial vector using a uniform crossover

operator:

l = rand(0, N − 1), (2.6)

v⃗i[m] =

{︄
v⃗i[m] if (rand(0, 1) < C) or m = l

x⃗i[m]
(2.7)

16



for each m ∈ {1, . . . , N}. The operator replaces the parameters of v⃗i by the param-

eters from the target vector x⃗i, with probability 1− C.

2.6 Linear Programming

Linear Programming (LP), also called linear optimization, is a method to determine

the best outcome in a mathematical model whose requirements are represented by

linear relationships. It aims to optimize an objective function subjected to linear

equality and inequality constraints [144]. Its general form can be express as follows:

min
x

(cTx) (2.8)

subject to: Ax ≤ b (inequality constraints), (2.9)

Aeqx = beq (equality constraints), (2.10)

lb ≤x ≤ ub (bound constraints), (2.11)

where x represents the vector of decision variables; c, b, and beq are vectors of known

coefficients; A and Aeq are matrices of known coefficients; and lb and ub are the lower

and upper bound, respectively. The objective function (cTx) is the expression to

be minimized or maximized. The inequalities Ax ≤ b, lb ≤ x ≤ ub and equalities

Aeqx = beq are the constraints over which the objective function is to be optimized.

Linear programming can be applied to industries as transportation, energy,

telecommunications, and manufacturing. Also, it has proven useful in modeling

diverse types of problems in planning, routing, scheduling, assignment, and design.
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Chapter 3

Economic Optimization of
Component Sizing for
Residential Battery Storage
Systems

Battery energy storage systems (BESS) are considered for a variety of applications

in modern power grids [60]. As these systems decline drastically in cost, commercial

and customer interest for this type of storage grows. As a result, the combination

of residential Photo-Voltaic (PV) systems with battery storage (PV-Battery Energy

Storage Systems; PV-BESS) and grid connection (grid-connected PV-BESS) have

attained significant growth rates [27], [51], [97].

Such systems enable customers to avoid the retail electricity tariff for all energy

fostered by surplus PV generation via buffering in the BESS as an alternative to

selling surplus power at the feed-in tariff. This is a potentially profitable scenario in

locations such as Australia, Canada, regions in the USA, and a number of countries

in Europe where the electricity retail tariff exceeds PV feed-in tariffs. Academia

has analyzed the economic value of PV-BESS for various individual systems [31],

[87] for which small but positive business cases seem to be in reach for specific

usage scenarios. In addition, several online tools are available, free of charge, and

capable of analyzing the benefit for specific BESS with respect to load and PV size

variation [9], [35], [103], [106]. Each of these approaches provide a sensitivity analysis

for given BESS systems, but are unable to guide residential customers to find the

economically best-suited storage and inverter combination for their specific needs.

Despite the fact that PV-BESS is still a niche market at present, various automo-

tive companies have started to enter the market and have announced products with
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drastically lower price tags, e.g . Tesla, Mercedes-Benz, and Nissan [75], [81], [93],

making PV-BESS potentially economic in multiple regions around the world [27].

Interestingly, currently available and announced PV-BESS rely on different bat-

tery technologies and show a strong variation of storage size [30]. At a first glance,

there appears to be a market trend towards lithium-ion based systems with stor-

age capacity above 5 kWh coupled with inverter sizes of nominal power (PN ) often

exceeding PN = 3 kW [51]. Nevertheless, lead-acid (PbA) systems still hold an ap-

preciable market share of over 10% for new system installations, and there is a strong

competition within the category of lithium-ion batteries within which different cell

chemistries differ significantly in performance, cost, and aging [51].

In contrast, others have used sensitivity studies to reveal the optimal size of

storage system components. For example, Weniger et al. [140] provide a detailed

analysis of power conversion efficiency of state-of-the-art battery home storage in-

verters. However, this work does not consider the economic impact of component

sizing. Muenzel et al. [82] investigate the economics of residential storage systems

with a dynamic programming derived operation strategy and screen payback periods

achievable for several storage system sizes in Australia. Using generalized param-

eters for the inverter, cost, and degradation of an unspecified lithium-ion battery

type, they anticipate a positive return on investment in the near future. In general,

such sensitivity analyses commonly fail if various parameters are to be screened and

optimized at the same time.

This issue can be effectively resolved using linear optimization approaches, which

have been successfully applied to energy storage optimization. For example, Lauingera

et al. provide a framework for electrical and thermal storage integration in house-

holds [56]. Based on linear programming, the energy dispatch of a residential build-

ing is optimized. However, this work does not consider the sizing optimization

of storage and peripheral components, and battery storage aging is not part of

the model.

In contrast to the aforementioned publications, this chapter conducts a compre-

hensive power flow analysis, implements technology-specific battery degradation,

and presents a highly reproducible and easily adaptable linear optimization ap-

proach to assess both the cost and the maximum profit attainable for residential

BESS. Parameterized with conditions matching the German regulatory framework

as well as detailed cost and aging information for three commonly deployed battery
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technologies (one PbA and two lithium-ion systems), this approach allows the best

storage type and power electronics size to be selected for households with rooftop-

mounted PV generators. The presented results also provide design rules applicable

to residential PV-BESS around the world.

3.1 PV-BESS’s Layout, Storage Model and Parametriza-
tion

This section summarizes all parameters relevant for BESS optimization. It describes

the system layout, overviews technical parameters of the storage systems under

investigation, and specifies the economic framework considered in this study.

3.1.1 System Layout

The schematic diagram of Figure 3.1 shows the system configuration as well as

electrical connections and power flows for the PV-BESS system under study. All

variables necessary for subsequent modeling are explained in more detail later, along

with the definition of the optimization problem. The arrows in Figure 3.1 indicate

the directions of power flow permitted for all component links. For this work, the

optimization approach is confined to an Alternating Current (AC) coupling of bat-

tery storage, which offers the broadest flexibility in system design and is also suitable

for the retrofitting of existent PV installations [134]. It is worth mentioning that a

variety of different direct current (DC) system coupling topologies (e.g . generator

coupled or converter link topology) have also been proposed for PV-BESS. Although

such differing topologies have their individual strengths and weaknesses, an over-

all consistent trend in the choice of best technology and storage system sizing is

expected [134].

3.1.2 Storage System Technical Parameters, Cost Assumptions,
and Battery Aging Model

This study analyzes the economic potential and technical capabilities of three com-

monly used battery technologies for PV-BESS; a typical vented PbA system and two

lithium-ion systems with lithium-iron-phosphate (LFP) and lithium-nickel-manganese-

cobalt (NMC) cathodes respectively.

Table 3.1 provides an overview of the characteristic parameters for the individ-

ual technologies under investigation. Appendix A provides a more detailed survey
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Table 2 provides an overview of the characteristic parameters for the individual technologies 
under investigation (Appendix A provides a more detailed survey of common performance data and 
citations to literature references for all battery technologies under consideration). It is worth 
mentioning here that data on aging and lifetime predictions are highly sensitive to various 
influencing factors (e.g., cell construction type, sealing quality, electrolyte additives) and test 
conditions. Furthermore, the values are likely to vary between batteries of individual manufacturers. 
However, it is not the focus of this work to question the correctness of the available lifetime data. The 
trends are well in accordance with the literature, and lifetime estimations derived in this work match 
well with the expert knowledge of BESS manufacturers. 

The battery efficiency ( ) is given as an averaged number of round trip Watt-hour retention 
using typical low charge and discharge rates of 0.1 C (capacity-rate) and ambient temperature 
(approximately 25 °C). These conditions correspond well to the scenarios commonly present for a 
typical home storage system. Self-discharge ( ) values considered in the optimization model are 
also listed in Table 1 and taken into account during simulations. However, having relatively small 
values, self-discharge plays a minor role, especially for the lithium-ion based battery chemistries. 

Figure 3.1: Schematic illustration of the investigated alternate current (AC) topol-
ogy photovoltaic-battery energy storage systems coupling. Arrows indicate the di-
rection of possible power flows between the individual components.

of common performance data and citations to literature references for all battery

technologies under consideration. It is worth mentioning here that data on aging

and lifetime predictions are highly sensitive to various influencing factors (e.g . cell

construction type, sealing quality, and electrolyte additives) and test conditions.

Furthermore, the values are likely to vary between batteries of individual manufac-

turers. However, questioning the correctness of the available lifetime data is not

the focus of this work. The trends are well in accordance with the literature, and

lifetime estimations derived in this work match well with the expert knowledge of

BESS manufacturers.

The battery efficiency (ηbatt) is given as an averaged number of round trip Watt-

hour retention using typical low charge and discharge rates of 0.1 C (capacity-rate)

and ambient temperature (approximately 25 ◦C). These conditions correspond well

to the scenarios commonly present for a typical home storage system. Self-discharge

(SDbatt) values considered in the optimization model are also listed in Table 2.1 and

taken into account during simulations. However, having relatively small values, self-

discharge plays a minor role, especially for the lithium-ion based battery chemistries.

In contrast, the aging of storage devices cannot be neglected. In fact, the deteri-

oration of storage is a major cost driver during storage operation. It is common to

differentiate between cyclic and calendric aging processes for battery degradation,
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Table 3.1: Performance parameters of BESS using three different battery technolo-
gies. The data was derived from a literature survey (see Appendix A). Terms state
of charge (SoC) and full equivalent cycles (FEC) are further explained in the text.

Parameter Unit
Battery Technology

PbA LFP NMC

ηbatt : Battery round-trip efficiency % 85 98 95
SDbatt: Self-discharge per day % 0.17 0.02 0.02

(SoCmin − SoCmax): Usable SoC % 50–100% 5–95% 5–95%

Life80%Cal : Calendric life indicator in years (years) 10 15 13

Life80%Cyc : Cycle life indicator in FEC (FEC) 1500 10,000 4500

Cvar,bat: Variable battery price e/kWh 271 752 982
Cfix : Fixed price for storage (price for

housing, cooling, and periphery)
e 1182 1723 580

as described in detail for PbA [117] and lithium-ion batteries [137]. The battery

cyclic and calendric lifetime indicators (Life80%Cyc ;Life
80%
Cal ) specify a battery usage

scenario, until a certain capacity fade for a battery cell becomes evident. As obvi-

ous from the nomenclature, values provided in the table are linked to the remaining

state of health (SoH) of 80% nominal capacity, matching a typical replacement cri-

terion for automotive applications. In this paper, we use a simple estimate solely for

time-dependent calendric aging processes as well as a charge throughput-dependent

cyclic aging model. The values of calendric lifetime (Life80%Cal ) provide a reference

value for storage degradation to 80% SoH at 20 ◦C temperature, when no charge

throughput is applied. To describe the cyclic aging (Life80%Cyc ) caused by energy

throughput in the battery storage, a correlation with Full Equivalent Cycles (FEC),

based on the definition by Fuchs et al. [28], is used:

FEC = 0.5× 1

t

∫︂
SoC (t) dt ≈ 0.5×

∫︁
|Pbatt| dt
Enom

batt

. (3.1)

The factor of 0.5 results from the conversion of charge throughput to full cycle

counting consisting of one charging and one discharging process. SoC denotes the

state of charge, Pbatt is the power flow via the battery, and Enom
batt is the nominal

energy capacity of the battery. A theoretical maximum charge throughput is defined

via Life80%Cyc , i.e. the number of FEC until 80% capacity is reached if there is no

calendric aging. To formulate battery aging for subsequent modeling, the following

equations are derived:

agingcal =
∆t

Life80%Cal

. (3.2)

agingcyc =
0.5×

∫︁
|Pbatt| dt

Life80%Cyc × Enom
batt

. (3.3)
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In accordance with Schmalstieg et al. [119], a superposition principle is used to

estimate the overall aging:

agingtot = agingcal + agingcyc. (3.4)

As such, a parameter value of agingtot = 0 corresponds to a fresh, unused battery,

whereas at agingtot = 1, the remaining capacity of the battery is 80% of its original

value as a result of calendric time and battery use. Further use of the storage system

with agingtot > 1 might be allowed if the replacement of storage is set to a remaining

capacity below 80%, as further described below. A detailed analysis and validation

of battery performance and aging models in the context of such techno-economic

applications is given by Goebel et al. [36].

Table 3.1 also summarizes the economic parameters of the storage system. In

this study, the investment costs of different battery types for BESS and the inverter

coupling are analyzed independently. The values listed in the table are derived from

a recent detailed market survey with n = 445 storage systems [30]. These values are

discussed in more detail in a separate publication [44]. We attribute the lower fixed

price for NMC storage, compared to the price offset determined for LFP and PbA

systems, mainly to synergy effects attainable with storage systems that have been

developed for the electric vehicle automotive market (relying mostly on NMC-based

battery chemistry).

For the sole battery storage investment without an inverter, the following price

structure is considered:

CBatt (E
nom
batt ) = Cfix + Cvar,Bat × Enom

batt . (3.5)

where CBatt represents the price of the battery, Cfix is the fixed price including all

peripheries and housing of the storage system, and Cvar,Bat is the energy specific

price of a storage system. The storage maintenance cost within the battery lifetime

is negligible and not considered herein. Furthermore, the separate installation cost of

the storage system is not taken into account; such costs are strongly linked to the PV

installation cost and may vary strongly for individual households. For the inverter

systems, the following assumptions are made: one way conversion efficiency ηinv =

97.5%, calendric life of 20 years, and a variable cost of approximately Cvar,inv =

155 /kW (see also Table 3.2). Data used was derived from an internet market survey

on standalone DC/AC inverters and expert interviews with leading brand inverter
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manufacturers [30], [102]. As most PV-BESS package batteries and inverters are in

one casing, no separate fixed costs for inverters are assumed but are given as part

of the overall storage fixed cost Cfix.

Table 3.2: Inverter performance and price information derived from literature survey
[30], [102].

Inverter Data Unit Value

ηinv: Average one way inverter efficiency % 97.5
Tinv: Assumed inverter lifetime in years (years) 20

Cvar,inv: Cost of inverter per nominal power e/kW 155

As such, the overall cost Cstorage for the energy storage system including bat-

tery storage with energy content Enom
batt , inverter with nominal power Pnom

inv , and all

peripherals cost Cfix totals to:

Cstorage (E
nom
batt , P

nom
inv ) = Cbattery (E

nom
batt ) + Cinverter (P

nom
inv )

= Cfix + Cvar,batt × Enom
batt + Cvar,inv × Pnom

inv .
(3.6)

3.1.3 Economic and Legal Framework for BESSs

For the economic framework refer to Table 3.3. A retail energy price of 28.69

cte/kWh and feed-in tariff of 12.31 cte/kWh are assumed, in accordance with a

retail price analysis and EEG (“Erneuerbare Energien Gesetz”—German renew-

able energies act), which granted feed-in tariffs for PV installations in Germany for

2016 [6], [12]. Furthermore, in accordance with German regulations, a feed-in limit

of fnoEES = 70% has to be taken into account for all residential PV installations.

This means that power exceeding the feed-in limit Pfeed,max = fnoEES × Ppeak,PV

may not be injected from the household back to the grid. Instead, this additional

power can be either stored in a battery or an unfavorable curtailment becomes effec-

tive (i.e. regulatory forced dissipative energy loss at the PV generator/inverter). It

is worth mentioning that, for storage installations taking advantage of a government

funded subsidy program on home storage systems, the PV grid feed-in regulation

is enforced with a more strict curtailment rate of 50% [3]. For such partially subsi-

dized systems, a discount of storage system investment may be obtained. As such,

for subsidized systems with discount rate rsubsidy, the storage investment cost is

given as:

Csubsidy
storage = Cstorage × (1− rsubsidy) . (3.7)
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Table 3.3: Remuneration and retail energy prices for households in Germany (2016),
and legal framework for PV-grid feed-in.

Economic and Legal Framework Variable Value

Retail energy price cbuy 28.69 cte/kWh
Feed-in energy reimbursement tariff csell 12.31 cte/kWh

Maximum feed-in ratio (without BESS subsidy) fnoEES 0.7
Maximum feed-in ratio (with BESS subsidy) fEES 0.5
Government subsidy rate for storage systems rsubsidy 0.22

3.2 Linear Optimization of PV-BESSs

The structure of the optimization problem addressed in this study can be represented

by a mathematical model. The objective function and the constraints have linear

relationships, meaning that the effect of changing a decision variable is proportional

to its magnitude. This makes Linear Programming (LP) well suited to solve the

optimization problem considered here due to the linearity of the decision variable on

electricity price, feed-in tariff, and other parameters. While some aspects of battery

system operation are not linear, they can be linearized to fit the requirements of

LP. e.g . models of Battery Energy Storage System (BESS) aging processes can be

reductively applied to obtain a linearized degradation function. In addition, linear

optimization provides unambiguous, repeatable results with modes and controllable

computational effort as compared to other optimization methods which are typically

based on heuristics or meta-heuristics.

The economically optimal battery storage component sizing for a household

equipped with PV and an energy storage system is obtained using LP. The load

demand and PV-generation profiles considered in this study cover one full year so

as to capture all seasons with their characteristic patterns of PV-generation, storage,

and grid energy transfers. As the intent is to minimize electricity cost and maximize

the revenue generation on the profit side, two types of profits are considered: the

profit attainable by feeding energy into the grid, and the avoided cost stemming

from the reduced need to purchase energy when a storage system is installed. On

the annual cost side, a fraction of the total cost of the energy storage system Ctot

is considered. This fraction is determined based on a battery storage technology-

specific aging analysis as further described below. The presented cost flow analysis

takes into account the discounted storage cost caused by degradation.

The data used for simulations was averaged with a resolution of ∆tres = 15 min,
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which is a value that provides a reasonable compromise between the accuracy of

the obtained results and computational speed [7]. As such, the one-year simulation

time frame covers a total of 35,040 time intervals, indexed with variable i.

All variables and parameters considered in this study are described in Table 3.4.

The locally generated PV power (Ppvi) is first used to satisfy the local demand.

When the local power production is greater than the demand, the surplus power is

preferably transferred to the battery (Ppv−batti) and stored for later use. If there is

still additional energy available, the surplus power is injected into the grid (Ppv−gridi)

or curtailed via a a feed-in limitation (Pcurtaili). The following equation considers

all power flows from the PV generator:

Ppvi = Ppv−loadi + Ppv−batti + Ppv−gridi + Pcurtaili . (3.8)

Table 3.4: Variables and parameters used for the battery modeling and optimiza-
tion routines.

Battery Modelling Parameter Variable Unit Constraints/Comments

Load demand (historical data) Ploadi kW ≥0; input data
PV power generated (historical data) Ppvi kW ≥0; input data
Nominal power of the battery inverter Pnom

inv kW subject to optimization
Nominal battery capacity Enom

batt kWh subject to optimization
Bidirectional power flow from/to the battery Pbatti kW result of optimization

PV power fed to the load Ppv−loadi kW ≥0; see Equations 3.8 and 3.10
PV power stored in the battery Ppv−batti kW ≥0; see Equation 3.8
PV power exported to the grid Ppv−gridi kW ≥0; see Equation 3.8

Power transferred from the battery to the load Pbatt−loadi kW see Equation 3.10
Power exported from the battery to the grid Pbatt−gridi kW ≥0; see Equation 3.13
Power imported from the grid to the load Pgrid−loadi kW ≥0; see Equation 3.10

Surplus power-curtailed according to regulations Pcurtaili kW ≥0; see Equation 3.9
State of health SoHi p.u. see Equations 3.18 and 3.19

Battery energy content at time i Ebatti kWh see Equations 3.14 and 3.15
State of charge SoCi p.u. [SoCmin; SoCmax]

To avoid back-feeding of power injected into the grid from PV system owners,

a a feed-in limitation is enforced. Any power above the limitation threshold value

must be discarded as a curtailment loss, i.e.:

Ppv−gridi + Pcurtaili ≤ Pfeed,max. (3.9)

To meet the electrical demand (Ploadi) the system first attempts to use power

from local generation (Ppv−loadi). If this is not sufficient, power is drained from the

battery (Pbatt−loadi). As the last resource, the system draws power from the grid

(Pgrid−loadi). Consequently, demand is comprised of the following three components:

Ploadi = Ppv−loadi + Pbatt−loadi + Pgrid−loadi . (3.10)
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The bidirectional power flow from the storage inverter to the battery is stored

in an auxiliary variable (Pbatti) and correlated with the inverter efficiency ηinv:

Pbatti = (ηinv × Ppv−batti)−
1

η inv

× (Pbatt−loadi + Pbatt−gridi). (3.11)

where ηinv is the average one-way efficiency of the inverter. The reciprocal efficien-

cies are the battery charge power Ppv−batti and the discharge power Pbatt−loadi +

Pbatt−gridi , both being limited by the nominal power flow from the inverter to the

battery:

0 ≤ Ppv−batti ≤ Pnom
inv . (3.12)

0 ≤ Pbatt−loadi + Pbatt−grid ≤ Pnom
inv . (3.13)

where Pnom
inv corresponds to the inverter nominal size. The battery energy content

at time step i (Ebatti) satisfies the recurrence relation:

Ebatti =

(︃
Ebatti−1

× SDbatt

d

)︃
+

(︃
ηbatt × Pbatti ×

1h

∆tres

)︃
. (3.14)

where SDbatt represents the self-discharge factor of the battery and d = 96 is a

conversion factor of the number of time steps per day. The energy content of the

storage system is further confined by an upper boundary that decreases upon usage

and aging according to the State of Health (SoH):

Ebatti ≤ Euseable
batt × SoHi. (3.15)

The SoH is defined as the irreversible capacity fade over time, related to the

nominal battery capacity, and Euseable
batt is a fraction of the total energy content of

the battery installed:

Euseable
batt = Enom

batt × (SoCmax − SoCmin). (3.16)

For battery usage in stationary and automotive applications, it is useful to define

an End of Life (EOL) criterion, which is often linked to the SoH with a certain per-

centage value αReplace [143]. This percentage value also defines the time of battery

replacement:

EOL → SoHt=EOL ≤ αReplace. (3.17)

In many cases, αReplace varies between 80% and 70% for automotive applica-

tions. However, lower values are often stated for less demanding residential storage

applications [5]. In this study, αReplace = 60% is used as the replacement parameter,
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matching e.g . the warranty conditions of the Tesla R⃝ Powerwall product. Using the

definition of agingtot = 1 at SoH = 80%, the SoH condition reads:

SoH = 1− agingtot × 0.2. (3.18)

The time evolution of SoH also satisfies the recurrence relation:

SoHi = SoHi−1 − (agingcali + agingcyci)× 0.2. (3.19)

Using Equations 3.1 and 3.2, the calendric and cyclic aging can be estimated

as:

agingcali =
i×∆tres

Life80%Cal

. (3.20)

agingcyci = agingcyci−1 + 0.5× |Pbatti ×∆tres|
Ebatti

× 1

Life80%Cyc

. (3.21)

As such, the additional cyclic aging degradation of time step i is estimated by the

energy throughput in that time step (Pbattj ×∆tres) divided by the energy content

of the system Ebatti . Additionally, it is normalized with the factor 0.5 and the

technology specific cycle life indicator Life80%Cyc . Similarly, the SoC can be expressed

as:

SoCi =
Ebatti

Euseable
batt × SoHi

. (3.22)

The optimal solution must satisfy all constraints described above. The optimiza-

tion process aims to reduce the overall cost by minimizing the expenses for energy

purchase and the implicit cost caused by battery degradation. This cost model is

divided into three components, i.e.:

minimize Ctot = Cbuy energy −Rsell energy + Csubsidy
storage deg . (3.23)

subject to constraints in equations 3.8– 3.22.

The first component Cbuy energy comprises the cost of energy purchased from

the grid, while the second component Rsell energy is the revenue from PV energy

generation exported to the grid. These two components are evaluated as follows:

Cbuy energy =
∑︂
i

Cbuy × Pgrid−loadi . (3.24)

Rsell energy =
∑︂
i

Csell × (Ppv−gridi + Pbatt−grid). (3.25)
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where Cbuy and Csell are the retail electricity price and feed-in tariff, respectively.

The third component estimates the home storage system degradation cost that can

be represented as:

Csubsidy
storage deg = ∆SoH/(1− αReplace)× Csubsidy

battery (Enom
batt ) + Csubsidy

inverter (P
nom
inv )×∆t/Tinv

(3.26)

where ∆t denotes the timespan covered with the simulation (one year for this work)

and ∆SoH is the total battery aging. The full battery related cost is then calculated

in consideration of the initial installation investment cost and the 22% subsidy

scheme available in the German market.

For economic assessment, the cash flow for a household with the best-sized PV-

BESS installed is compared against the cash flow for a household with the same

PV-generation but no storage system. This is done because, the energy expenses,

feed-in remuneration, and storage degradation cost for a PV-BESS household is

related to the energy expenses and feed-in remuneration for a household with no

storage:

RBESS
savings =

(︂
−CBESS

buyenergy
+RBESS

sellenergy
− Csubsidy

storage deg

)︂
−
(︂
−CnoStorage

buyEnergy
+RnoStorage

sellenergy

)︂
.

(3.27)

For profitability analysis, the yearly Return on Investment (ROI) can be calcu-

lated considering the battery’s savings in each year of operation, the initial invest-

ment cost, and the storage system life:

ROI =
RBESS

savings − Csubsidy
storage

Csubsidy
storage

. (3.28)

3.3 Results and Discussion

Optimization was performed for the three battery technologies (PbA, LFP, and

NMC) with the parameters listed in Table 3.1. The load profiles were based on a

reference smart meter-recorded dataset obtained from HTW Berlin and averaged

to 15 min intervals [107]. The PV-generation data was acquired for one full year

(2014) using a rooftop-mounted solar generator in downtown Munich, Germany (the

profile data is shown in Figure 3.2). The one second resolution PV-generator output

power data was normalized to the peak power of the system and preprocessed by

averaging over the time frames of 15 min. To obtain a variation of load demand and

PV-generation profiles, both time series were linearly scaled to the desired values.
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Table A1. Literature review for battery performance parameters used in this study. For all table fields 
the value used for simulations is given first. In some cases, other values are given in brackets—these 
are for information to the reader only, but not further used in the paper. 

Parameter Variable Unit PbA LFP NMC
Battery round trip 

efficiency 
 % 85 [41,42] * 

(80 [43]) 
98 [41,42] * 

(95 [43]) 
95 [43] ** 

Battery self-discharge  %/day 
0.17 [41] 

(0.2 [1,44] 
0.1 [1]) 

0.02 [41,42] * 
(0.33 [44] 
0.1 [1,44]) 

0.02 [45] 

Calendric lifetime % (years) 
10 [41] 
(5 [1] 

8 [46]) 

15 [1] 
(12–20+ [42]) 

13 [44,45] 

Cyclic lifetime % FEC 
1500 [46] *** 

(200–1300 [1,41]) 

10,000 [45] **** 
(6000 [42,47] 

1000–10,000+ [1,48]) 

4500 [29] 
(700–1000 [49]) 

* Experiments conducted at the following parameters: 1/10 C, 25 °C, 50% SOC; ** Experiments 
conducted at the following parameters: 1 C, 25 °C, 50% SOC; *** Derived at 50% DoD; **** Tested at 
60–100% DoD. 
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Figure A1. PV generation and load profile used for this simulation study. Both profiles are scaled 
according to the scenarios described in the paper. The load profile was taken from [38]. 
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Figure 3.2: PV generation and load profile used for this simulation study. Both
profiles are scaled according to the scenarios described in the paper. The load
profile was taken from [107].

The linear optimization was implemented in MATLAB R⃝ (MathWorks, Natick,

MA, USA) code using a dual-simplex algorithm, which is based on a conventional

simplex algorithm on the dual problem [94]. Each one year system simulation (with

co-optimization of storage and inverter size, and a 15-min time resolution for all

power flows in the system) took approximately 300–800 s on a Dell R⃝ (Dell Inc,

Round Rock, TX, USA) XPS 15 system with Intel i7, depending on the number of

iterations necessary for the linear optimization.

A detailed analysis is conducted for an exemplary PV-BESS system using LFP

battery chemistry for a typical four-person household (annual load of 6 MWh) and a

small size PV-generator (PV size of 4 kWp). For this case, the one-year optimization

calculates the optimal storage size of Enom
batt = 7.5 kWh and inverter nominal power

of Pnom
inv = 1.6 kW. Figure 3.3 shows the power flows for an exemplary three-day

period during summer (first week of June) within the system using these optimally

sized components. The top panel shows the local household consumption (grey area

below zero), the PV generated power (yellow area above zero), as well as power

flow covered by the storage system (green area). The second and third panels

show the evolution of SoC and SoH during the same time span, clearly showing the

periodically changing charge level of the storage system and its gradual degradation.

It can be seen that the optimization process maximizes profit using the full

capacity of the storage system: it charges the battery up to the maximum allowed

SoC during daytime and fully drains it over night. For almost all tested scenarios,
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4. Results and Discussion 
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Figure 3.3: Power flow analysis for a three-day period using lithium-iron-phosphate
(LFP) battery chemistry: load and power flows within the system (top); time cor-
related evolution of battery state of charge (middle); and resulting state of health
(SoH) decline (bottom).

linear programming using a complete load and generation data set successfully avoids

curtailment losses. To achieve this optimal operation of BESS, the generated power

is sometimes split. This can be observed during the second day shown in Figure 3.3;

power is partly fed to the grid (pPV−grid ≤ 2 kW) and partly used to charge

the battery at a rate limited by the inverter size (pbattin−out
≤ 1.6 kW). At all

times, the resulting storage charging strategy favors the lowest cost, i.e. it prefers

battery usage over curtailment of energy or power exchange with the grid, whenever

possible. Furthermore, self-discharge losses are kept at a minimum by charging the

battery in the later period of the day (except when a feed-in limitations would induce

curtailment). A closer look at the spiky loads for the second day shown in the figure

reveals that there are short time periods when power is drawn from the grid despite

the fact that the battery is still above its minimal SoC. This can be explained by

the limited size of the inverter (here Pnom
inv = 1.6 kW) that does not allow full load
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saturation from the battery. In fact, a more powerful inverter would allow further

reduction of the amount of energy drawn from the grid, but these small savings

would not justify the additional cost of a larger inverter.

The third plot in Figure 3.3 shows the evolution of battery degradation during

the three-day timespan; a continuous degradation progress (calendric aging) super-

imposed to additional charge throughput dependent degradation (cyclic aging) is

apparent, albeit at a very slow rate.

Over the course of one year, the investigated storage system executes 202 FEC

and provides electricity cost savings of about 238 e, when compared to a household

with no storage system installed. It should be noted that the storage system does

not execute a full cycle each day, a fact that is common to all storage systems and

that can be mainly attributed to seasonal patterns.

Using Equation 3.7 for this optimally sized system, the cost of the subsidized

storage system can be estimated as:

Csubsidy
storage (LFP, 7.5 kWh, 1.6 kW)

= (Cfix,LFP +Cvar,LFP × 7.5 kWh)× (1− rsubsidy)

+ (Cvar,inv × 1.6 kW)× (1− rsubsidy)

≈ 5743e + 193e = 5936e . (3.29)

At the same time, due to the continuous calendric aging and daily cycling of the

battery system, the SoH is reduced by 1.79% over the course of one year. When

considering this degradation, the value of the storage system is reduced according

to Equation 3.26:

Csubsidy
storage deg =

∆SoH

(1− αReplace)
× Csubsidy

battery (Enom
batt)

+
∆t

Tinv
× Csubsidy

inverter (P
nom
inv )

=
1.79%

40%
× 5743e+ 193e× 1

20
≈ 267e. (3.30)

As a result, the overall ROI of the system is:

ROI =
RBESS

savings

Csubsidy
storage deg

=
238e− 267e

267e
= −10.86%. (3.31)

This calculation reveals that, for the example parameter setting chosen here (4

kWp PV and 6 MWh annual load demand), even the optimally sized LFP storage
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system does not provide positive ROI. A closer look at the literature on the eco-

nomics of PV-BESS systems confirms that such negative ROI is well in line with

other studies based on similar parameters [87], [134]. It should be noted that, in

contrast to this work, most other studies discuss the scenario of future rising elec-

tricity retail prices resulting in positive ROI numbers. To achieve positive ROI for

this specific storage system, the price for the 7.5 kWh battery would need to drop

by about 12% at below 5100 e (instead of the 5743 eassumed here).

For a more systematic comparison of the three examined battery technologies,

consider the group of contour plots shown in Figure 3.4. Optimization runs were

performed for a variety of load demand and PV-generation values using all three

battery systems (PbA on the left, LFP in the middle, and NMC on the right). The

upper row of plots show the optimal size of the respective battery, whereas the three

plots in the middle row reveal the optimal inverter size for each storage system. The

bottom row depicts the resulting maximum attainable ROI for the three systems.

They compare the profit attainable for a household with a PV-BESS against the

cost and revenue for a household with a PV system only.

As an overall trend, homes with large load and PV size require BESS with

increased storage and inverter size. For the PbA technology, significantly larger

systems are economically favored in comparison to lithium-ion based systems. This

can be attributed to a lower average price per kWh of PbA batteries compared

to the alternatives. However, it should be noted that only 50% of the installed

battery capacity is usable for PbA systems due to a smaller usable SoC range for

this technology (see also Table 3.1).

Interestingly, the optimal nominal power of the inverter systems remains low.

With the cost assumed in this work, the ratio between storage capacity and nominal

inverter size should be chosen at values as low as 0.25 kW/kWh for optimal ROI

results. Currently, ratios of 1 kW/kWh are often used in commercial systems. Thus,

this finding can be used as a guideline for cost reduction of future residential BESS.

A general trend of better ROI for large PV and high load demand can also be

observed. This can be explained when analyzing the cost structure of storage with a

fixed offset price for the battery housing and periphery. As such, larger installations

reduce the overall cost per installed kWh of storage.

In direct comparison, and using the battery parameters chosen herein, the LFP

storage systems appear to be economically superior to both NMC and PbA systems
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Figure 3.4: Graphical representation of the optimization results using contour plots:
from top to bottom, the panels show optimum battery size, inverter size, and corre-
sponding maximum attainable return on investment (ROI) for a variation of yearly
load demand and local PV generation. From left to right, three battery technologies
(lead-acid (PbA), LFP, and lithium-nickel-manganese-cobalt (NMC)) are depicted.

for most tested scenarios. In fact, there is a small area, for PV systems larger than

6 kWp and a yearly load greater than 6 MWh, where slightly positive ROI values

can be achieved with today’s costs. This shows that there is a good chance of BESS

becoming economically viable with PV systems in the near future. Potentially, an

increase in retail electricity tariffs may further improve the ROI of a residential

storage system installed in 2016. A more important fact is that the prices of stor-

age systems are rapidly declining. A recent report listed 20% annual reduction in

2015 [51], and this cost decline is expected to continue in the following years, likely

making future BESS more economically feasible. As a result, the ROI values shown

here will likely turn positive within the next few years.

Refer to Figure 3.5 and Table 3.5 for a detailed comparison among the examined
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battery storage technologies. The three graphs depict the economically most favored

settings in example cases with 1, 2.5, and 4 MWh annual load demand. The inset

numbers in the right panel indicate the optimum sizing of battery and inverter for

each simulation scenario (the first number indicates the optimum size of the storage

system in kWh and the second number is the nominal size of the inverter in kW).

The overall shape of the ROI curves reveals the existence of scenario specific peaks.

When a small PV generator is used, most generated power is used directly by local

consumption. As the amounts of grid feed-in are small, storage cannot add much

value to the system, and aging related costs clearly dominate the overall price of the

storage systems. On the other hand, for very large PV installations, a significant

portion of the local demand can be covered from PV-generation without storage. As

self-supply levels are high, storage provides only small additional benefits. Interest-

ingly, for different combinations of PV size and household power demand, PbA and

NMC storage might be favored over a LFP storage solution. While, for very small

households, the NMC system operates at the lowest cost, LFP surpasses PbA and

NMC for households at 4 MWh annual load demand. For loads of 2.5 MWh, LFP

or PbA storage can be economically most viable, depending on the PV system size.
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Figure 3.5: ROI comparison of optimally sized battery energy storage systems at
varying PV size for three battery technologies (NMC, PbA, and LFP). Depending
on the annual household load demand (left: 1 MWh/a, center: 2.5 MWh/a, right:
4 MWh/a) different technologies are favored. The inset numbers in the right panel
indicate the optimum sizing of battery and inverter for each simulation scenario.

The fact that NMC performs best for small load demands and PV-generation

can be attributed to the significantly lower fixed battery cost of NMC-based BESS
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Table 3.5: Return on investment (ROI) optimal sizing of battery and inverter for
an average four person household (load demand of 4 MWh/a).

PV Size (kWp) 1 2.5 4 5.5 7 8.5 10

PbA battery (kWh) 3.51 6.61 9.57 11.76 12.46 12.10 11.82
Inverter for PbA system (kW) 0.67 1.18 1.55 1.69 1.73 1.72 1.69

LFP battery (kWh) 2.23 4.18 6.12 7.50 7.94 7.68 7.56
Inverter for LFP system (kW) 0.69 1.26 1.66 1.75 1.80 1.78 1.76

NMC battery (kWh) 1.52 3.10 4.51 5.27 5.60 5.63 4.89
Inverter for NMC system (kW) 0.56 0.95 1.19 1.32 1.38 1.46 1.41

systems. This advantage is most prominent for small storage system sizes (≤2 kWh

). Despite the more than 2.5-fold higher specific cost of the LFP system compared to

PbA (752 e/kWh vs. 271 e/kWh), its better aging performance, higher conversion

efficiency, and the increased usable SoC range makes it superior in most cases,

especially if the battery has to withstand an increased number of FEC. Only for

cases where the optimally sized PbA systems undergo less than or equal to 100

FEC per year, PbA may out perform LFP. Such a scenario is found where ratios of

PV-generation to local demand are 2 kWp/MWh or higher.

To validate the optimization results presented in this study, we conducted 1-s

resolved time series analyses of power flows using an in house developed storage

assessment tool SimSES [87]. All performed comparisons matched well, confirming

the validity of results and analysis presented in this paper. For example, for LFP cell

chemistry, the results of one year simulations for all tested load and PV generation

cases differ by less than 0.5% for SoH and less than 3% for ROI. Such small deviations

can be attributed to coarser discretization of validation points within the tool (0.5

kW inverter size and 0.5 kWh storage size) and to slight differences in the storage

operational strategy, which was not optimized when using the validation tool.

3.4 Final Remarks

This chapter describes a linear optimization approach to find the most cost-effective

BESS dimensioning, matching a variety of residential load demand and local PV

generation profiles. To allow a direct comparison of one PbA and two lithium-ion

batteries, the optimization problem formulated in this work maximizes the electricity

cost savings while minimizing the storage specific degradation costs.

The optimization provides unambiguous, repeatable results with controllable

computational effort and reveals the best suited sizing of the battery storage and
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inverter based on present retail price information. Within the tested scenarios, the

best economical results have been attained using LFP storage systems at high load

demand (>6 MWh annual demand) and local generation (>6 kWp PV generation).

However, it must be clearly stated that, considering the storage degradation and

price information as presented in this work, the profit attainable remains very small

and peaks at ROI = 5% per anum. In fact, the ROI values remain negative for

most considered scenarios. Nevertheless, a comparison of the three storage systems

reveals that different storage technologies perform best for specific combinations of

PV generation and local demand. Optimally sized NMC storage systems appear

most economical for households with very small local demand (2 MWh/a), whereas

PbA-based systems show some advantages for a mid-scale demand (2.5 MWh) and

high PV generation (>7.5 kWp). At a higher local electricity demand (≥4 MWh)

coincident with higher PV generation (≥ 3 kWp), LFP batteries provide better

results than PbA and NMC.

The obtained results can be used also to determine the optimal ratio of power

electronics sizing (rated power of the inverter) to the installed battery capacity. An

example would be that, for a typical residential scenario of 4 kWp PV and annual

local demand of 6 MWh, about 0.25 kW rated power per 1 kWh installed battery

capacity shows optimal performance. This detailed analysis of optimal power-to-

energy ratio could also be taken as a guideline for designing new, more cost-effective

BESS products. In many actual cases, power electronic components appear to be

over-sized and do not properly match the needs of typical residential customers. This

aspect will be of significant importance in other BESS applications, e.g . the provision

of primary control reserves, industrial peak-shaving, and storage integration to micro

grids.

As a general remark, it is important to note that, considering the current typical

cost of a storage system and the retail energy tariff valid in Germany for 2016,

most scenarios do not favor storage system installation over a sole PV system.

Nevertheless, future electricity price evolution is likely to reverse this trend. The

increased customer independence achieved using BESS may be profitable only in

the long run under the assumption of rising retail electricity tariffs. In general,

storage may provide additional value by stacking other applications, e.g . provision

of uninterrupted power supply or energy market trading via cloud based pooling of

battery storage systems.
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Chapter 4

LP-based Predictive Energy
Management System for
Residential PV-BESS

The share of energy provided from renewable sources, such as Photo-Voltaic (PV)

systems, has been increasing in the residential sector [57]. Renewable energy inte-

gration can be further improved through the deployment and integration of energy

storage systems [84]. The goal of a PV generation system combined with Battery

Energy Storage Systems (BESS) is to improve the efficiency and sustainability of the

power grid [2], [39]. These technologies also increase grid reliability and economic

efficiency, compared to single-source generation without storage.

Such PV-BESS installed locally at individual households can provide significant

cost savings by consuming self-produced energy and reducing the need to purchase

energy from the grid [141]. In addition, such systems contribute to better balancing

of the entire power grid by smoothing out peaks in power demand and production.

They produce extra power when the solar radiation is higher than local demand, and

store the energy for later usage when solar radiation weakens or demand increases.

The operation of PV-BESS requires the use of sophisticated control strategies.

Weniger et al. [142] analyzed forecast-based operation strategies for residential PV-

BESS, and showed that such systems can improve self-sufficiency and provide feed-

in peak shaving. A look-ahead energy management system for a grid-connected

residential PV-BESS, based on Kalman Filtering, was proposed by Yoo et al. [145].

Other studies took into account the lifetime costs of hybrid renewable energy systems

and optimized their operation using genetic algorithms [22].

This chapter proposes an advanced energy management system in the form of
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a rule-based controller. A previously developed model [69] is used to iteratively

generate the optimal power flows among the components of the PV-BESS and the

grid, for a selected time window. The optimal power flows are then used by the rule-

based system to direct power through the system in an optimal way. This forms a

general predictive energy management strategy that can be implemented to control

power flows in other PV-BESS or similar hybrid energy systems. The performance

of the proposed controller is thoroughly tested using simulations and compared with

three different strategies: greedy, schedule mode, and feed-in damping.

4.1 System Description and Power Flow Optimization

This section summarizes all parameters relevant for the PV-BESS optimization.

It describes the system layout, introduces the evaluation criteria for measure the

performance of a PV-BESS, specifies the cost model and constraints of the linear

model, and presents the three operational strategies considered for comparison.

4.1.1 System Description

The energy management system proposed in this study is derived from measured

and simulated data for an exemplar PV-BESS. The modeled system consists of a

solar panel with nominal power of 10 kWp, LFP battery-based BESS with capacity

of 10 kWh, 3 kW inverter, and annual demand of 6MWh. The simulations involve

a grid-connected system shown in a block diagram in Figure 4.1, along with all

considered power flows.

Figure 4.1: System configuration and power flows considered
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Data used for simulations was averaged with a resolution of ∆tres = 15 min,

a value that provides a reasonable compromise between accuracy of the obtained

results and computational speed [8]. Thus, the one-year simulation period covers

an overall of 35,040 time intervals, indexed with variable i. The analysis presented

here takes into account the discounted storage cost caused by cyclic and calendric

aging. As such, it allows realistic assessment of BESS operation, including battery

degradation [85]. The operation of the entire PV-BESS system is governed by the

following principles.

Any locally generated PV power, Ppvi , is first used to satisfy the local demand,

Ppv−loadi . When the local power production is greater than the demand, the surplus

power is preferably transferred and stored in the battery for later use, Ppv−batti . If

there is still additional surplus, it is injected into the grid, Ppv−gridi , or curtailed via

a a feed-in limitation. Thus, the actual flows of power from the PV-generator must

satisfy the following inequality:

Ppvi ≥ Ppv−loadi + Ppv−batti + Ppv−gridi , (4.1)

and any power above the feed-in limit, Pmax
pv−grid, must be discarded as a curtailment

loss, Pcurtaili .

To meet the electrical demand, Ploadi , the system first attempts to use power

from local generation. If this is not sufficient, power is drained from the battery,

Pbatt−loadi . As the last resource, the system draws power from the grid, Pgrid−loadi .

Thus, demand is comprised of the following three components:

Ploadi = Ppv−loadi + Pbatt−loadi + Pgrid−loadi (4.2)

The battery energy content at the i-th time step, Ebatti , satisfies the following

recurrent relation:

Ebatti =

(︃
Ebatti−1

· SDbatt

d

)︃
+

(︃
ηbatt · Pbatti ·

1h

∆tres

)︃
, (4.3)

where Pbatti represents the bidirectional power flow between the BESS inverter and

the battery, SDbatt is the self-discharge factor of the battery, d = 96 is the conversion

factor of time steps per day, and ηbatt is the averaged number of round trip Watt-hour

retentions for the battery. Auxiliary variable Pbatti reflects the inverter efficiency:

Pbatti =ηinv · Ppv−batti

− 1

ηinv
· (Pbatt−loadi + Pbatt−gridi),

(4.4)
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where ηinv is the average one-way efficiency of the inverter. The reciprocal efficien-

cies are the battery charge power Ppv−batti and the discharge power Pbatt−loadi +

Pbatt−gridi , both limited by the maximal power flow from the inverter to the battery,

Pmax
inv , corresponding to the inverter size.

The remaining parameters used for the simulations are self-discharge SDbatt =

0.02%/day, usable state of charge between 5% and 95%, and battery life cycle

indicators Life80%calendric = 15 per year and Life80%cyclic = 10000 full equivalent cycles.

The average one-way inverter efficiency is considered η = 0.975, and the battery

round trip efficiency is ηbatt = 0.98. The reference cost scenario, based on the current

situation in Germany, considers Cbuy = 28.96¢/kWh, feed-in energy reimbursement

tariff Cbuy = 12.31¢/kWh, and maximum feed-in ratio fmax
pv−grid = 0.5.

4.1.2 Evaluation criteria

The performance of a PV-BESS operation strategy can be evaluated through sev-

eral metrics related to the and operation of the system. In this contribution, the

economic activity is gauged by the total cost of energy purchased from and sold to

the grid. From the annual operational perspective, three energy-related factors are

defined [111], [142]. Self-sufficiency factor, ξ, describes how much of the total load

can be attended by the PV-BESS:

ξ =
Epv−load + Ebatt−load

Eload
, (4.5)

i.e. ξ = 0 represents a household with no local generation or storage, and ξ = 1

correspond to a situation when the PV-BESS system supplies the total local demand.

Self-consumption factor, ν, specifies how much of the total PV production is directly

used or stored in the battery:

ν =
Epv−load + Epv−batt

Epv
. (4.6)

Restriction in the feed-in power can lead to curtailment of PV power and thus result

in energy losses. The curtailment loss factor, κ, indicates how much loss is due to

curtailment:

κ =
Ecurtail

Epv
. (4.7)

These metrics indicate the operational strategy performance [10]. The objectives of

the strategies compared in this chapter are to maximize ξ and ν and minimize κ.

41



4.1.3 Determination of Optimal Power Flows

The optimal solution aims to reduce the overall cost by minimizing the expenses for

energy purchase and the implicit cost caused by the battery degradation [42]. The

optimal solution must also satisfy all constraints described in Section 4.1.1. The

cost model can be divided into three components, i.e.:

minimize Ctot = Cbuy E +Rsell E + Cdiscount
storage deg (4.8)

The first component Cbuy E comprises the cost of energy purchased from the grid,

while the second component Rsell E is the revenue from PV energy generation ex-

ported to the grid. These two components are evaluated as follows:

Cbuy E =
∑︂
i

Cbuy · Pgrid−loadi , (4.9)

Rsell E =
∑︂
i

Csell · (Ppv−gridi + Pbatt−gridi), (4.10)

where Cbuy and Csell are the retail electricity price and feed-in tariff, respectively.

The third component, Cdiscount
storage deg, is the discounted storage cost caused by cyclic

and calendric aging that can be represented as:

Cdiscount
storage deg =

∆SoH

(1− αSoH)
· (Enom

batt ) + (P nom
inv ) · ∆t

Tinv
, (4.11)

where ∆t denotes the time span covered with the simulation (here one year), Tinv

represent the initial investment, P nom
inv and Enom

batt are respectively the nominal power

of the battery inverter and the nominal battery capacity, and ∆SoH the total battery

aging.

4.1.4 Operational Strategies

PV-BESS can be managed using different algorithms that focus on distinct objec-

tives and result in distinct power flows. These algorithms, or operational strategies,

have the objective of maximizing the self-sufficiency of a household equipped with

a PV-BESS. This is achieved by storing the surplus PV energy produced during

the day, and using it later when the residual load is positive. For comparison pur-

poses, three strategies are considered: greedy strategy, schedule mode, and feed-in

damping.

The greedy strategy only focuses to maximize the self-consumption. The locally

generated PV power is first used to satisfy the local demand. When local power
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Greedy strategy
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Figure 4.2: Power flows in the examined PV-BESS for June 2014 with high avail-
ability of solar energy, and greedy controller strategy

production is greater than the demand, the surplus energy is stored in the battery

for later use. In the case of additional energy surplus, the extra power is injected

into the grid. Unfortunately, this strategy usually charges the battery and reaches

the SoC limit before the peak of production in the middle of the day. Figure 4.2

illustrates this for a day with high PV production: the battery charging is high

in the first few hours of the PV production, and the storage system achieves its

maximum SoC before noon. As a result, the curtailment losses increase because the

surplus power cannot be exported to the grid given the a feed-in limitation.

Schedule Mode
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Figure 4.3: Power flows in the examined PV-BESS for June 2014 with high avail-
ability of solar energy, and schedule mode controller strategy

In contrast to the greedy strategy, the schedule mode strategy focuses on mini-

mizing the curtailment losses [127], [135]. In this strategy, the battery is typically
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charged at a predefined time, typically when there is high solar radiation. The

residual PV production is exported to the grid until the activation of the charging

mode instead of directly charging the battery with the surplus energy. Although

this strategy avoids curtailment losses, the battery may not be totally charged at the

sunset during days with low solar irradiation. The principle operation of this strat-

egy is shown in Figure 4.3. In this example, the charging occurs between 10:00 a.m.

and 3:00 p.m. This results in decreasing the curtailment losses when compared to

the greedy strategy.

Feed-in damping
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Figure 4.4: Power flows in the examined PV-BESS for June 2014 with high avail-
ability of solar energy, and feed damping controller strategy

A modification in the schedule mode strategy allowing constant charging power

leads to the feed-in damping strategy [111]. This strategy uses a rough prediction of

the PV production to define the charging time and decreases the curtailment losses

in days with high solar radiation. Figure 4.4 depicts the feed-in damping strategy.

It relies on the predicted duration of the residual power. It is possible that the

actual residual power is not the same as the predicted value. For this reason, the

battery may not be at the desired SoC at the end of the day.

4.2 Linear Programming Controller

To manage power flows in the PV-BESS system, a linear programming–based predic-

tive energy manager (LP-PEMS) has been developed. Its operation, whose high-level

description is shown in Figure 4.5, is based on the results of the LP simulations. At

the beginning, the LP-PEMS is provided with the PV-BESS parameters (described
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in Section 4.1.1), including the size-of optimization window. This window represents

the time interval to run the optimization. The optimal power flows are determined

using LP and then used at the time of control intervention.

Figure 4.5: Linear programming controller schematic in high level

To facilitate the understanding, Figure 4.6 shows the steps executed in each iter-

ation for three subsequent time windows. This example uses the electrical demand

signal and a 10 days operation window. The historical signal (in blue) is known

before the optimization starts, and it is used to generate the forecast signal (in red)

that must be at least as long as the optimization window. The optimal power flows

are then used to operate with the real signal (in black) that has in this example

length of one day. After executing all determined operations on the PV-BESS, the

controller updates the historical signal and shifts the optimization window before

starting the next iteration.

The input variables, used by the controller to devise an efficient PV-BESS op-

eration, reflect the state of the system and environmental conditions at the time of

control intervention i. The first group of inputs, the optimal power flows, is defined

during the LP run executed w.r.t. the optimization window. The second group of

inputs is the electrical demand and the PV production at the same time step i.

In order to manage the PV-BESS power flows, the control strategy implemented

45



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

P
ow

er

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

P
ow

er

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Days

0

2

4

6

8

P
ow

er

Current Optimization Window (10 days) Historical Signal Forecast signal Controlled Signal

Figure 4.6: 3 iterations with a 10 days operation window iteration

by LP-PEMS makes the following assumptions:

i) all available PV energy is used to satisfy the electrical demand;

ii) extra PV energy is either stored into the battery or sent to the grid;

iii) outstanding electrical demand is satisfied either from the battery or the grid;

and

iv) no power is transferred between the power grid and the battery (i.e. Pgrid−batt =

0).

These assumptions correspond to the LP–based solution of the optimal power flow

problem.

Table 4.1: Comparison of system performance

– Greedy
Schedule
mode

Feed-in
damping

Optimal
LP-PEMS
with perfect

forecast

LP-PEMS
with flat load

(mean)

Self sufficiency(%) 65.99 58.56 62.93 68.40 68.39 54.50

Self consumption(%) 64.34 56.42 60.97 61.90 61.90 48.98

Curtailment Loss (%) 1.04 0.27 0.26 0.01 0.01 0.73

Energy purchased - Energy sold 334.36 407.38 364.39 219.06 219.06 354.20

Total Cost (equation (4.8)) 482.25 548.27 509.45 366.23 366.22 489.26

The operation of the proposed linear programming controller can be formally

46



described as follows:

IF Ppv ≥ Pload THEN (4.12)

Pbatt−load = 0,

Ppv−load = Pload,

Ppv−battfactor =
Ppv−battopt

Ppvopt − Ploadopt

,

Ppv−batt = min{Ppv−battfactor · (Ppv − Pload), PBmax},

Ppv−grid = min{Ppv − Pload − Ppv−batt, P
max
feed },

Pgrid−load = 0,

IF Ppv < Pload THEN (4.13)

Ppv−load = Ppv,

Pbatt−load = min{Ppv − Ppv−load, Pbatt−loadopt , BLmax},

Ppv−batt = 0,

Ppv−grid = 0,

Pgrid−load = max{Pload − Ppv − Pbatt−load, 0},

Pbatt−grid = Pbatt−gridopt , (4.14)

where Ppv−battfactor describes the fraction of the PV production stored in the battery

during the LP optimization; BLmax and PBmax are coefficients representing the

maximum possible power flow between the battery and load, and between the PV

generation systems and battery respectively. Subscript opt represents the optimal

power flow results defined during the LP execution (i.e. Ppv−battopt , Ploadopt , Ppvopt).

4.3 Results and Discussion

As described in section 4.2, the goal of the proposed LP-PEMS is to develop an

operational strategy that is based on the solution of the optimal power flow problem.

In addition, the designed strategy should be effective to implement and easy to

understand. At the same time, a significant performance improvement is expected

w.r.t. to the alternative operational strategies (greedy, schedule mode, and feed-in

damping).

The main advantage of the proposed LP-PEMS is the use of sort-term energy

production and consumption forecasts. However, it is important to note that the
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development of the (load and generation) forecasting is outside the scope of this

work. Two default forecast signals are used instead: perfect forecast (known his-

torical values of generation and load) and flat signal (means of the historical load

data).

Operational strategies aim to improve the operational efficiency of the entire

PV-BESS, and their success or failure can be gauged by examining the values of

the previously introduced technical and economical metrics reported in Table 4.1.

In the following analysis, the proposed LP-PEMS is compared to the three alter-

native strategies and to the optimal results reported earlier [69]. The values in the

last column of the table correspond to the case of flat load that will be compared

separately at the end of this section.

The increase of the self-sufficiency factor indicates that LP-PEMS provides more

energy to the load compared to the other three strategies. On the other hand, in

terms of self-consumption factor, LP-PEMS is surpassed by the greedy strategy.

This strategy charges the battery as fast as possible, achieving full charge during

the days with high solar radiation sometimes starting the next charging cycle before

fully discharging the battery. In contrast, LP-PEMS only charges the battery so

that the amount of stored energy can supply demand during the next few hours

before PV production starts again. This way, LP-PEMS can increase the revenue

from the PV generation exported directly to the grid. This desirable behavior is

captured by the remaining three metrics that attain their optimal values for the

proposed LP-PEMS. The fact that all metrics evaluate very close to the optimal

results [69] indicates that the selected time window of 10 days is fully sufficient,

providing the same results as when the entire year of data is considered.

To show the value of forecasts in predictive energy management, the load forecast

was replaced by a flat signal representing the average historical load for a given

household. As shown in the last column of Table 4.1, this simplification causes

significant deterioration of system performance.

A more detailed look at the operation of LP-PEMS is provided in Figure 4.7

showing the time series of all involved power flows. Figure 4.8 offers a comparison

of the distribution of PV energy in the systems among the load, battery, grid (left),

and composition of the sources of energy used to satisfy demand(right), over the

one year simulation period.
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Figure 4.7: Operation of LP-PEMS (three days in 2014)
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Figure 4.8: Composition of energy [kWh] generated by the PV system (left) and
served to the load (right) over the one year period, comparing all the operational
strategies

4.4 Final Remarks

This chapter introduces a linear programming-based predictive energy management

system (LP-PEMS) for hybrid residential PV-BESS. Its operation is rooted in linear

optimization of power flows within the system, based on forecast values of load and

PV energy production. The resulting controller provides superior technical and

economical performance compared to other common operational strategies.

49



Chapter 5

Optimal Energy Management of
Residential PV-BESS Using
Evolutionary Fuzzy Controller

The goal of smart grid is to improve the efficiency, economics, sustainability and

reliability of the production and delivery of electricity [2]. It can effectively re-

spond to changes in demand, help balancing electricity consumption and supply,

and support integration of renewable energy sources in the power grid [39]. Renew-

able energy integration can be further improved through the deployment of hybrid

energy sources [84] and the use of energy storage systems. These technologies also

increase grid reliability and economic efficiency, compared to single-source genera-

tion without storage.

An important example of hybrid technologies with rapid uptake in the residential

market are Photo-Voltaic (PV) generation systems combined with home Battery

Energy Storage Systems (BESSs). Such PV-BESS installed locally at individual

households can provide significant cost savings by reducing the need to purchase

energy from the grid. In addition, such systems contribute to better balancing of

the entire power grid by smoothing out peaks in power demand and production.

They produce extra power when the solar radiation is higher than local demand,

and store the energy for later usage when the solar radiation weakens or the demand

increases.

Operation of PV-BESS hybrids requires use of sophisticated control strategies.

Weniger et al. [142] analyzed forecast-based operation strategies for residential

PV-BESS. They showed that such systems can improve self-sufficiency and provide

feed-in peak shaving. A look-ahead energy management system for a grid-connected
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residential PV-BESS, based on Kalman Filtering, was proposed by Yoo et al. [145].

Other studies took into account the lifetime costs of hybrid renewable energy systems

and optimized their operation using genetic algorithms [22].

This chapter builds on the optimal power flows to develop an advanced energy

management system in the form of a fuzzy control system. The model in the previous

study [69] is used to determine the parameters of a Takagi-Sugeno fuzzy controller

using an evolutionary computing approach. The resulting system is general and can

be implemented to control power flows in other PV-BESS. In addition, owing to

the transparent nature of fuzzy rules, it allows an in-depth analysis of the optimal

operation strategies that would be impossible by direct examination of the power

flows obtained using conventional optimization methods.

5.1 System Description and Power Flow Optimization

This section summarizes the system description, describe the constraints of the linear

model, and the cost model that must be minimized to determinate the optimal power

flows.

5.1.1 System Description

The energy management system proposed in this study is derived from measured and

simulated data for an exemplar PV-BESS. The modeled system consisted of a solar

panel with nominal power of 10 kWp, LFP battery-based BESS with capacity of

12 kWh, inverter size of 3.4 kW, and annual demand of 7MWh. The measurements

include time series of load and PV generation collected at sites in Germany between

January 1 and December 31, 2014. The simulations involve a grid-connected system

shown in a block diagram in Figure 4.1. The diagram also depicts all power flows

considered in the simulation and optimization studies described below.

Data used for simulations was averaged with a resolution of ∆tres = 15 min,

a value that provides a reasonable compromise between accuracy of the obtained

results and computational speed [8]. Thus, the one-year simulation period covers

an overall of 35,040 time intervals, indexed with variable i. The operation of the

entire PV-BESS system is governed by the following principles.

Any locally generated PV power, Ppvi , is first used to satisfy the local demand,

Ppv−loadi . When the local power production is greater than the demand, the surplus

power is preferably transferred to the battery, Ppv−batti , and stored for later use. If
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there is still additional surplus, it is injected into the grid, Ppv−gridi , or curtailed via

a feed-in limitation. Thus, the actual flows of power from the PV-generator must

satisfy the following inequality:

Ppvi ≥ Ppv−loadi + Ppv−batti + Ppv−gridi , (5.1)

and any power above the feed-in limit, Pmax
pv−grid, must be discarded as a curtailment

loss, Pcurtaili .

To meet the electrical demand, Ploadi , the system first attempts to use power

from local generation. If this is not sufficient, power is drained from the battery,

Pbatt−loadi . As the last resource, the system draws power from the grid, Pgrid−loadi .

Thus, demand is comprised of the following three components:

Ploadi = Ppv−loadi + Pbatt−loadi + Pgrid−loadi (5.2)

The battery energy content at the i-th time step, Ebatti , satisfies the following

recurrent relation:

Ebatti = (Ebatti−1
· SDbatt

d
) + (ηbatt · Pbatti ·

1h

∆tres
) (5.3)

where Pbatti represents the bidirectional power flow between the BESS inverter to

the battery, SDbatt is the self-discharge factor of the battery, and d = 96 is the

conversion factor of time steps per day.

Pbatti is an auxiliary variable that reflects the inverter efficiency:

Pbatti =ηinv · Ppv−batti

− 1

ηinv
· (Pbatt−loadi + Pbatt−gridi),

(5.4)

where ηinv is the average one-way efficiency of the inverter. The reciprocal efficien-

cies are the battery charge power Ppv−batti and the discharge power Pbatt−loadi +

Pbatt−gridi , both limited by the maximal power flow from the inverter to the battery,

Pmax
inv , corresponding to the inverter size.

The remaining parameters used for the simulations were battery round trip ef-

ficiency ηbatt = 0.98, self-discharge SDbatt = 0.02%/day, usable state of charge

between 5% and 95%, and battery life cycle indicators Life80%calendric = 15 per year

and Life80%cyclic = 10000 full equivalent cycles. The average one-way inverter efficiency

was considered η = 0.975. The economic and legal framework was based on the
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current situation in Germany, i.e. retail energy price Cbuy = 28.96¢/kWh, feed-

in energy reimbursement tariff Cbuy = 12.31¢/kWh, and maximum feed-in ratio

fmax
pv−grid = 0.5.

The performance of a PV-BESS operation strategy can be evaluated through

a number of metrics related to the economic feasibility and self-sufficiency of the

system. In this contribution, economic applicability is gauged by the total cost of

energy purchases from and sold to the grid, while the self-sufficiency of the household

by the self-consumption factor, ξ, calculated as follows:

ξ =
Ppv−load + Pbat−load

Pload
, (5.5)

i.e. ξ = 0 represents a household with no local generation or storage, and ξ = 1

correspond to a situation when the PV-BESS system supplies the total local demand.

5.1.2 Determination of Optimal Power Flows

The optimal solution must satisfy all constraints described above. It aims to reduce

the overall cost by minimizing the expenses for energy purchase and implicit cost

caused by the battery degradation. This cost model is divided into three compo-

nents, i.e.:

minimize Ctot = Cbuy E +Rsell E. (5.6)

The first component Cbuy E comprises the cost of energy purchased from the

grid, while the second component, Rsell E, is the revenue from PV energy generation

exported to the grid. These two components are evaluated as follows:

Cbuy E =
∑︂
i

Cbuy · Pgrid−loadi (5.7)

and

Rsell E =
∑︂
i

Csell · (Ppv−gridi + Pbatt−gridi). (5.8)

5.2 Fuzzy Logic Controller

To manage power flows in the PV-BESS system, a fuzzy logic controller has been

developed based on the results of the Linear Programming (LP) optimization. This

allows to transfer the optimization results based on available data to other time

periods and possibly other locations with similar PV-BESS systems. In addition,
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and more importantly, formalizing the optimal operation of such a system in the

form of a rule-based system allows its in-depth analysis and understanding.

To facilitate the understanding, the goal of the study presented here was to sim-

plify the structure of the fuzzy rule base. In addition to parsimony of the resulting

model, a simplified rule base mitigates the curse of dimensionality problem. The

current fuzzy logic controller uses two input variables, one output variable, and a

rule base of 15 fuzzy rules.

5.2.1 Input and Output Variables

The input variables, used by the controller to devise efficient PV-BESS system

operations, reflect the state of the system and environmental conditions at the time

of control intervention i. The first input variable, residual load, is defined as the

difference between electrical demand and locally generated PV power,

rLoad i = norm(Ploadi − Ppvi), (5.9)

normalized to the range [−1, 1]. Its domain is partitioned into five triangular fuzzy

sets named Negative Large (NL), Negative Small (NS), Zero (Z), Positive Small

(PS), and Positive Large (PL). The shape of the fuzzy sets was defined according to

the distribution of actual rLoad values during the observed period (1 year) so that

each set covers 20% of the values. The second input variable is the state of charge

of the BESS normalized to the interval [0, 1], i.e.:

soc =
SoCi + SoCmin

SoCmax − SoCmin
. (5.10)

It is covered by three fuzzy sets, Low (L), Medium (M), and High (H) that were

again spread across the input domain with respect to the actual distribution of soc

values. The partitioning of both input universes is illustrated in fig. 5.1.

rLoad

µ

0
-1

1

1

NL NS Z PS PL

soc [%]

µ

0
0

1

1

L M H

Figure 5.1: Fuzzy partition of rLoad and soc.

The controller has a single output, flow , that determines the volume of power

flow between the PV generator, BESS, load, and power grid. The output variable

is composed of 15 fuzzy singletons {F1}, . . . , {F15}.
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In order to manage the PV-BESS power flows with just a single output variable,

the control strategy implemented by the controller makes the following assumptions:

i) all available PV energy is used to satisfy the electrical demand;

ii) extra PV energy is either stored into the battery or sent to the grid;

iii) outstanding electrical demand is satisfied either from the battery or the grid;

and

iv) no power is transferred between the power grid and the battery.

These assumptions correspond to the LP–based solution of the power flow optimiza-

tion problem. They neglect the power flows that represented only a small fraction

of the overall power exchange in the PV-BESS system (i.e. Pbatt−grid) and allow

splitting of power between the battery and grid when there is extra PV energy pro-

duction. When the PV production is scarce, it splits the residual load between the

battery and grid, prioritizing the local energy storage.

The operation of the proposed fuzzy logic controller can be formally described

as follows

if rLoad ≤ 0 : (i.e. Ppv ≥ Pload) (5.11)

Pbatt−load = 0,

Ppv−load = Pload,

Ppv−batt = min{flow · (Ppv − Pload), PBmax},

Ppv−grid = min{Ppv − Pload − Ppv−batt, P
max
feed },

Pgrid−load = 0,

if rLoad > 0 : (i.e. Ppv < Pload) (5.12)

Pbatt−load = flow ·BLmax,

Ppv−load = Ppv,

Ppv−batt = 0,

Ppv−grid = 0,

Pgrid−load = max{Pload − Ppv − Pbatt−load, 0},

Pbatt−grid = 0, (5.13)
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where BLmax and PBmax are coefficients representing the maximum possible power

flow between the battery and load, and between the PV generation systems and

battery respectively.

The fuzzy rule base consists of 15 IF-THEN rules that correspond to all possible

combinations of the input variables

IF rLoad is NL and soc is L THEN flow is {F1},
...

IF rLoad is PL and soc is H THEN flow is {F15}.

The complete fuzzy rule base is summarized in table 5.1.

Table 5.1: Fuzzy rule base of the proposed controller

soc
H F11 F12 F13 F14 F15

M F6 F7 F8 F9 F10

L F1 F2 F3 F4 F5

NL NS Z PS PL
rLoad

5.2.2 Baseline Controller

The optimum values of the output fuzzy sets, F1, . . . , F15, are not known and must

be found. However, a baseline control strategy can be obtained by setting

F1 = F2 = . . . = F15 = 0. (5.14)

It completely eliminates the use of local energy storage, and is thus called zero

control. The control surface for the baseline strategy is shown in fig. 5.2.

5.2.3 Controller Evolution

To produce power flows similar to those obtained by linear programming, the fuzzy

logic controller described in the previous section needs to be adjusted. In this work,

the structure of the controller is retained to take advantage of its parsimony and

thus ease of understanding. The optimum values of the output fuzzy singletons,

{Fi}, are found by differential evolution.

The output fuzzy singletons are for the optimization procedure encoded into

candidate vectors in a straightforward way so that:

x⃗i = ({F1}, . . . , {F15}), (5.15)
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Figure 5.2: Control surface of the baseline controller.

and the controller optimization is cast as 15-dimensional real-parameter optimiza-

tion problem. The candidate controllers are assessed according to the similarity of

power flows they initiate to the optimum power flows determined by the IP. The

similarity is evaluated as total RMSE between the power flows, which is used as the

fitness function during the evolution.

The evolution uses the DE/rand/1 variant of the algorithm with scaling factor

F = 0.9, crossover probability C = 0.9, population size 20, and maximum number

of 1500 generations. The parameters of the algorithm were set according to the best

practices, past experience, and initial trials. Because the DE is a stochastic method,

the evolution was executed 30 times independently.

5.3 Results and Discussion

The process of the FLC evolution is illustrated in Figure 5.3 depicting the mean

RMSE and the 95% confidence intervals around it for each DE generation. It can

be seen that the algorithm was able to find similar FLC configurations in all inde-

pendent runs, i.e. the proposed approach is robust. Figure 5.3 also demonstrates

that all DE runs converged to a stable solution in approx. 250 generations. The

average final value of fitness (RMSE) was 13202.9 with the standard deviation of

142.4. The maximum and minimum fitness values over the 30 trials were 13933.9

and 13153.3, respectively.

The values of the output fuzzy singletons of the best evolved FLC controller
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Figure 5.3: RMSE of the evolved FLC controllers in time. Note the logarithmic
scale of the x axis.

(with the lowest RMSE, 13153.3) are listed in Table 5.2. The corresponding control

surface is shown in Figure 5.4. It is composed of two half-surfaces that engage

depending on the value of residual load, rLoad : when there is excess PV energy

available (i.e. rLoad ≤ 0, or Ppv ≥ Pload), the controller charges the battery or sells

energy to the grid, as shown in Figure 5.5, directing the available power according

to the sequence in condition (5.12); when there is less PV power available than

required by the load, i.e. rLoad > 0 or Ppv < Pload, the controller provides energy

from the battery or from the grid, as shown in Figure 5.6, drawing the required

power according to the sequence in condition (5.13).

Table 5.2: Values of output fuzzy singletons (best evolved controller)

soc
H 1 1 0.0083 0.3002 1
M 0.9999 1 0.0670 0.2350 1
L 0 0 0 0 0

NL NS Z PS PL
rLoad

5.3.1 Controller Interpretation

The evolved controller implements the control surface depicted in Figure 5.4. For

negative values of residual load, the controller directs all available PV power to

the battery (Ppv−batt) and to the grid (Ppv−grid). This is controlled by the single

output variable flow . The selection between battery and grid is made based on

priority corresponding to the sequence of flows listed in equation (5.12). This means
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Figure 5.4: Control surface of the best evolved controller.

Figure 5.5: Control surface of the best evolved controller (control of Ppv−batt +
Ppv−gird).

that surplus energy will be first fed to the battery, subject to the constraints of

battery capacity SoC ≤ 95% and the maximal charging power PBmax. Due to the

smoothing effect of the even fuzzy partition (cf. section 5.2), the control signal

changes gradually from 0 (for rLoad = 0) to 1 (for rLoad = −0.117) and then

remains at the plateau until the boundary (rLoad = −1). For positive residual load,

the controller directly draws all the power required by the load from the battery
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Figure 5.6: Control surface of the best evolved controller (control of Pbatt−load).

(Pbatt−load) and from the grid (Pgrid−load). In this case, flow controls only Pbatt−load,

while the value of Pgrid−load is calculated as max{Pload − Ppv − Pbatt−load, 0}. This

means that the energy short-fall will be first satisfied by the battery, subject to the

constraints of usable battery capacity SoC > 5% and the maximal discharging power

BLmax. Compared to the the previous case, the character of the control surface is

different, gradually changing between the values of rLoad = −0.025 and 1.0.

Another possible interpretation of the evolved controller involves merging the

rules with (approximately) equal antecedents and replacing the values of fuzzy sin-

gletons {Fi} by suitable linguistic labels. After applying these operations, the con-

troller can be described as follows:

IF rLoad is negative and soc is medium or high THEN

flow from PV to battery (or grid) is high ,

IF rLoad is zero THEN

flow from PV to battery (or grid) is zero ,
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IF rLoad is positive small and soc is medium or high THEN

flow from battery to load is small ,

IF rLoad is positive large and soc is medium or high THEN

flow from battery; to load is large .

The last row of the control matrix (cf. Table 5.2), corresponding to low soc, con-

tains all zero values of flow . This is likely a consequence of training data points

corresponding to days with high values of current and near future PV energy pro-

duction. In these cases, the optimal solution prioritizes to sell the surplus energy to

the grid rather than to store it. Only after reaching the feed-in limit is the surplus

energy stored in the battery. This behavior occurs mostly during the summer, but

the current controller cannot differentiate between different seasons. As these situa-

tions are rather rare, the corresponding rule is omitted from the simplified rule base

listed above. Future work will explore this aspect of PV-BESS energy management

strategy by including additional inputs to deal with the seasonality of the data.

5.3.2 Controller Evaluation

The evolved controller mimics the performance of the system with optimal power

flows determined using linear programming. As described earlier in section 5.2, the

main goal of designing the fuzzy logic controller was to develop a simple controller

that would be easy to implement and understand. Therefore, deterioration of per-

formance relative to the original optimized system was expected. At the same time,

a significant improvement w.r.t. the baseline (zero) controller was presumed.

Results of simulations involving all three systems confirm these assumptions

and show that the evolved fuzzy controller performs comparably well w.r.t. the

LP-optimized system, as can be seen from the economical and self-consumption

indicators listed in Table 5.3. Although the deterioration of performance of the

evolved fuzzy controller is obvious, the gap between the optimal performance is not

very large. The advantage of using the simple controller is that it does not require

the use of energy production forecasts. In addition, the performance of the LP-

optimized system cannot be attained in practice as it would require prior knowledge

of all values of load and PV generation for the entire period of operation (1 year).
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Table 5.3: Comparison of system performance
System LP-optimized zero-control evo-control

RMSE 0 43691.6 13151.5

Cbuy E $547.79 $1275.15 $792.75

Rsell E $624.80 $955.53 $543.33

ξ 75.72% 36.51% 64.52%

On the other hand, in comparison with the baseline controller, the evolved fuzzy

logic controller reduced the total RMSE of the power flows by 55.82% and increased

the self-consumption factor by 42.43%.

Figure 5.7 offers another view of how the three systems compare. The distri-

bution of PV energy in the system among the load, battery, grid (left hand side),

and composition of the sources of energy used to satisfy demand (right hand side)

over the one year simulation period are shown. A simple visual inspection confirms

a comparable performance of the LP-optimized system and evolved fuzzy logic con-

troller proposed in this work. A more detailed look at the performance of the three

systems is provided in the form of time series of all involved power flows in Ap-

pendix C.

LP
-o

pt
im

ize
d

Zer
o 

co
nt

ro
l

  E
vo

lve
d 

  

   
   

   
   

LP
-o

pt
im

ize
d

Zer
o 

co
nt

ro
l

  E
vo

lve
d 

  
0

1

2

3

4

5

6

7

8

9

10

C
om

po
si

tio
n 

of
 e

ne
rg

y 
(k

W
h)

PV-load PV-batt PV-grid Batt-load Grid-load

Figure 5.7: Composition of energy [kWh] generated by the PV system (left) and
served to the load (right) over the one year period, comparing the three described
approaches
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5.4 Final Remarks

This chapter introduces a fuzzy logic controller implementing PV-BESS energy man-

agement based on optimal power flows determined for a real system using linear

programming. The resulting controller, designed by differential evolution, offers

performance comparable to the optimized system, At the same time, it is easy to

implement for other systems, and can be interpreted to aid understanding of the

PV-BESS behavior.
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Chapter 6

Linear Battery Aging Model for
Industrial Peak Shaving
Applications

In power systems, the load profile can be characterized by the “peak load times” of

the system – short periods of time when large amounts of power are required [108].

The peak load times can occur at different moments during the day, depending

on the season of the year and the load composition (residential, commercial, or

industrial). Peaks of demand impact the network planning because the electrical

infrastructure of transmission and distribution systems must be designed to support

the maximal demand of the system [139]. For this reason, the electrical power grid

infrastructure may be underutilized most of the time, reaching its loading capacity

limit only a few moments of the year. Consequently, commercial and industrial

customers are charged not only by their total energy consumption but also by their

highest power demand that dominates the line construction costs.

In this context, energy storage can be used to help customers flatten their de-

mand profile by storing energy during off-peak periods and releasing this energy

during peak load periods. Although the improvements of Battery Energy Storage

System (BESS) efficiency and life cycle are increasing the interest in this type of

storage [34], the high investment necessary for BESS installation still raises concerns

about the economic viability of the use of this technology in power system appli-

cations. Therefore, an important aspect of the deployment of any BESS project is

their proper power and energy sizing [42].

If a BESS is not sized properly, it can generate negative results from an eco-

nomic perspective. While over-sizing of BESS may result in excessive aging-related
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depreciation cost, small systems may not attain optimal cost-benefit ratio due to

high initial investment cost.

In response to the need to size BESS properly, several studies aiming to find the

optimal sizing of BESS have been conducted [66], [79], [80].

The necessity of proper BESS sizing has been highlighted in several studies.

Most reports also recognize that aging of BESS cannot be neglected and point out

battery deterioration as a major cost driver during the storage operation. To gain

a better understanding of peak-shaving battery aging, this chapter proposes a new

aging model suitable for BESS sizing for peak shaving applications in industrial

settings and quantifies the battery aging for both naive and aging aware (LP based)

operation strategies.

6.1 System Layout

The energy management system proposed in this study is derived from measured and

simulated data for an exemplary BESS. The simulations involve a grid-connected

system shown in a schematic diagram in Figure 6.1. The arrows in this figure

illustrate the power flow direction for all component links.

Figure 6.1: System configuration and power flows considered.

The electricity price in the commercial and industrial (C&I) sector is assumed

to have the following components:

• Electricity generation (wholesale prices and retail costs); prices depend on

negotiations between the customer and the utility company

• The network costs (transmission and distribution) is subdivided into two cat-
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egories. First, power price per kW, based on the maximum power peak in the

billing period; this is the only power specific price component. Prices vary

with connected voltage level, billing period, distribution system operator and

duration factor. Second, energy price per kWh, based on the total energy

consumption.

• The total for industrial customer includes taxes, fees, surcharges (including

renewable energy surcharge, electricity tax, CHP surcharge, etc.).

The overall cost Cstorage for the energy storage system with energy capacity

Enom
batt , and inverter with nominal power Pnom

inv can be expressed as:

Cstorage(E
nom
batt ,P

nom
inv ) = Cfix +COPEX,batt

+ (Cvar,batt ∗ Enom
batt)

+ (Cvar,inv ∗ Pnom
inv ).

(6.1)

where Cfix corresponds to the fixed cost including the housing of storage and all

the peripheries, COPEX,batt is the storage operation and maintenance (OPEX) cost

within the battery lifetime, Cvar,batt denotes the energy specific cost of a storage

system, and Cvar,inv represents the power specific cost of a storage system.

6.2 Battery Aging Model

Storage deterioration is a significant cost driver during storage operation. As a

result, the aging of storage devices must be taken into consideration when simulating

BESS operations. Lithium-ion batteries suffer from continuous aging. For most

batteries of this type, it is possible to separate the degradation into a pure time-

dependent irreversible loss of battery capacity called calendric aging, and an energy

throughput dependent cyclic aging [128].

Accelerated aging tests performed at the Technical University Munich were used

to build an equivalent circuit based aging model coupled with a thermic model [13]

for a cell with graphite anode and nickel manganese cobalt (NMC). The maximum

allowed C-rate of the cell is 1C for charging and -2C for discharging. The key factors

that make this model appropriate are the analytic equations for estimating the cell

degradation and the superposition of calendric and cyclic aging. Both are essential

for an implementation of a linear model. The aging model and its linearization can

be described as follows:
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Calendric Aging

Considering that a BESS enclosure can maintain the temperature constant, it is pos-

sible to obtain a linear capacity fade for each time step. This is shown in Figure 6.2

where the piecewise line represents the calendric aging per time step dependent of

the SoC, and the straight line shows its linearization with tstep = 15 minutes.
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Figure 6.2: Calendric - Linearisation @ t=10 years

The linearization of the calendric aging for each time step i can be expressed as

follows:

Cfade,cal,lin(SoC)i = 3.676 · 10−7 · SoC + 6.246 · 10−6 (6.2)

Cyclic Aging

For linearization of the cyclic aging, the C-rate dependency could be ignored for

charging and discharging by averaging the C-rate factor. Consequently, the charge

throughput can be linearized by evaluating it at a capacity fade of 20% under varia-

tion of C-rate and Depth of Discharge (DoD). After scaling it down to the capacity

fade for each time step, the dependency of C-rate and DoD can now be quantified

as shown in Figure 6.3.

An attempt to further linearize the cyclic aging would lead to a loss of parametric

dependency of either C-rate or DoD. In the following, this model for accounting

cyclic aging is named “DoD-cycle model.” Another alternative is to consider the

number of full equivalent cycles (FEC) that provides the overall energy throughput

(counting only in either the charge or discharge direction) with any DoD per cycle
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Figure 6.3: C-fade(C-Rate,DoD) - Linearized @ C-fade(EOL) = 20%

divided by the available capacity (in the following this model will be named the

“FEC-cycle model”) [29]. The number of FEC can be defined as:

FEC = 0.5 · 1
t

∫︂
SoC(t)dt ≈ 0.5 ·

∫︁
|Pbatt| dt
Enom

batt

(6.3)

The factor of 0.5 results from the conversion of charge throughput to full cycle

counting. SoC denotes the state of charge, Pbatt the power flow via the battery, and

Enom
batt the nominal energy capacity of the battery. The maximum charge/discharge

throughput is achieved at 80% of the SoH if there is no calendric aging.

As already mentioned, the use of BESS for peak shaving is a particular appli-

cation which aims to reduce the cost of electricity by reducing the peak power. For

instance, Figure 6.4 shows an industrial customer with 214.27 MWh annual load.

Assuming a storage system with a nominal capacity of 57 kWh and inverter with

nominal power of 171 kW, it is possible to reduce 30% of the annual peak power.

In this example, the storage system is used in only 3 short moments during one

year, meaning that the cycling aging has a minimal impact in peak shaving appli-

cations while the calendric aging is the most important factor. Figure 6.5 extends

the battery operation to 10 years and confirms this assumption. It can be seen

that the divergence between the capacity fade with DoD dependency and the ca-

pacity fade considering FEC is very small. At the end of the 10 year period, the

DoD dependency and the FEC degradation represent only 0.51% and 0.54% of the

SoH, respectively. On the other hand, the calendar aging with SoC dependency

(equation (2.2)) represents 3.42% of the SoH.
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Figure 6.4: Industrial load profile (top), and battery SoC and SoH (bottom)

1 2 3 4 5 6 7 8 9 10

Years

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

S
oH

 (
%

)

0

0.2

0.4

0.6

0.8

1

S
oC

 (
%

)

DoD-cycle model FEC-cycle model C-fade-cal SoC

Figure 6.5: Cyclic capacity fade after 10 years - Comparison of depth of discharge
dependency and number of full equivalent cycles

Although the cycling aging plays a minor role in the storage degradation for

peak shaving, it cannot be neglected. For this reason, the next section introduces

a sensitivity analysis to evaluate the cycling and calendric degradation for the peak

shaving.
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6.3 Case Study

6.3.1 Case Description

The structure of demand based energy tariffs is presented based on German elec-

tricity costs, where some customers have seen a rise of demand charge by up to

150% in the last five years evoking interest in demand charge management. Data

used for simulations was adapted from real measurements in Germany and was av-

eraged with a resolution of ∆tres = 15 min. This time discretization results from

the fact that in the model region the 15 minutes demand average is registered and

its maximum value is used for tariff calculation over a period of one month or one

year [49].

The constraints considered in this model can be described as follows:

Ploadi =Pbatt−loadi+Pgrid−loadi

Pgrid−loadi+Pgrid−batti ≤Ppeak−shave

Pbatti = ηinv ·Pgrid−batti−
1

ηinv
· Pbatt−loadi

Ebatti =(Ebatti−1
·SDbatt

d
)+(ηbatt ·Pbatti ·

1h

∆tres
)

Eusable
batt ≤Enom

batt ·(SoCmax−SoCmin)

Ebatti ≤Eusable
batti

·SoHi

SoHi=SoHi−1−(agingcali+agingcyci)·0.2

(6.4)

To meet the electrical demand Ploadi , the system is allowed to drain power from the

battery or the grid. In the same way, the power imported from the grid in each time

step i is restricted to the highest point of demand Ppeak−shave. The bidirectional

power flow from the inverter to the battery is stored in an auxiliary variable Pbatt

and is subjected to the average one-way efficiency of the inverter ηinv. The battery

energy content Ebatti at i-th time step satisfies a recurrence relation, and Eusable
batti

is

the total energy content of the battery installed which is confined by an upper and

lower boundary (SoCmax and SoCmin). The energy content of the storage system is

also restricted by an upper boundary that decreases upon usage and aging according

to the SoH which also satisfies a recurrence relation. Subsequently, theSoC can be

expressed as:

SoCi =
Ebatti

Eusable
batt ∗ SoHi

. (6.5)

The calendric aging agingcali is defined according to eq. (6.2) and can be estimated
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as:

agingcali = 3.676·10−7 ·SoCi+6.246·10−6. (6.6)

As such, the cyclic aging degradation agingcyci is a function depending of Crate and

DoD :

agingcyci =
0.5.

∫︁
|Pbatt| dt

Life80%cyc .E
nom
batt

. (6.7)

where Life80%cyc represents a reference value for storage degradation to 80% SoH at

20◦C temperature, when no calendric aging is applied.

Table 6.1: BESS/Inverter Performance Parameters and Price Information
Variable Parameter Unit Value

ηinv Average one way inverter efficiency % 97.5

Tinv Assumed inverter lifetime in years years 20

ηbatt Battery round-trip efficiency % 95

SDbatt Self-discharge per day % 0.02

Usable SoC % 5-95

Life80%cal Battery calendric life indicator years 13

Life80%cyc Cycle life indicator in FEC FEC 4500

P nom
inv Nominal power of the battery inverter kW 117

Enom
batt Nominal battery capacity kWh 39

Cbuy Retail electricity price e/kWh 0.18

Cpower Power peak penalty price e/kW 12.75

Full equivalent cycles per years # 5.28

This study considers a NMC BESS. Assuming that temperature is kept stable

(approximately 20◦C), the battery round trip efficiency (ηbatt) and self-discharge per

day (SDbatt) are 95% and 0.02% respectively. Table 6.1 provides an overview of the

parameters and price information for the BESS/inverter system taken into account

during simulations. Figure 6.6 shows the load profile considered in this study. This

load profile is peak shaved at 2,112 kW which represents 5.05% of the total peak

power without a battery installed.

Two battery usage strategies are considered to better understand the impacts

of calendric and cycling degradation. The first strategy is naive and assumes that

the BESS is always at full SoC capacity, as the battery is drained to provide enough

power to peak shave, is fully charged again, and stays idle until the next peak of

load. The second strategy is based in the optimal solution which is achieved through

a linear programming (LP) algorithm. The LP solution respects all the constrains

in Section 6.3 and aims to reduce the overall cost by minimizing the expenses for
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Figure 6.6: Industrial load profile - 9,350.8 MWh/a; Storage system: 39kWh 117kW.
Peak shave at 2,112kW

energy purchase, as well as reducing the power peak penalty, i.e.:

minimize Cenergy tot + Cpower max. (6.8)

The first component Cenergy tot comprises the cost of energy purchased from

the grid, while the second component Cpower max is the penalty cost based on the

highest point of demand (or peak) within the billing period. These two components

are evaluated as follows:

Cenergy tot =
∑︂
i

Cbuy ∗ (Pgrid−loadi + Pgrid−batti) (6.9)

Cpower max = Cpower ∗ Ppeak−shave (6.10)

where Cbuy and Cpower are the retail electricity price and the power peak penalty

price respectively.

6.3.2 Effect of Calendric and Cyclic Aging

Figure 6.7 illustrates the periodically changing charge level of the storage system

(SoC), and the evolution of battery degradation (SoH) for cycling and calendar

aging for a ten-year period. The upper image shows the variation when the naive

strategy is followed. That means, the battery is kept at full nominal capacity and

is drained when the load overcomes the peak shave limit of 2,112 kW to avoid the

peaks of demand. Figure 6.7b (bottom) shows the SoC and SoH considering an

optimal strategy. It can be noticed that the number of times that the battery needs

to intervene to avoid peaks are the same. For this reason, the cycling aging is

precisely the same in both cases.
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Figure 6.7: Time correlated evolution of battery state of charge (SoC) and resulting
state of health (SoH) decline for the naive strategy (top) and optimal strategy
(bottom).

In contrast, the calendric aging features distinctly because of the SoC depen-

dency described in equation (2.2). As a result, the naive strategy depleted the

battery 5 times faster than the optimal strategy. The optimal strategy also shows

that the battery cycles can be short, meaning that the battery can be charged to

the maximum necessary level just before being drained; but, a prediction algorithm

needs to be implemented to guarantee the battery is going to have the required

energy to avoid the peaks of demand.

6.4 Final Remarks

This chapter describes a linear model of BESS degradation for peak shaving appli-

cations. The obtained results show that the BESS is more susceptible to calendric

aging than cyclic aging. The linear programming reveals the potential of reducing

the calendric aging by five times when comparing with the naive strategy. Cyclic
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aging is not determinant in peak shaving applications because the BESS has only

a small number of charging/discharging cycles and energy is never stored in the

battery for a long time. For this reason, the DoD dependency can be easily substi-

tuted by the FEC calculation to have an acceptable degradation estimate for BESS.

However, it is important to notice that this chapter proposes a linear model that

gives an approximation of the real degradation, and small variations will be present

when compared with a real system.
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Chapter 7

Optimal Component Sizing for
Peak Shaving in Battery Energy
Storage Systems for Industrial
Applications

In power systems, the load profile can be characterized by the “peak load times” of

the system—short periods of time when large amounts of power are required [108].

The peak load periods can occur at different times during the day, depending on the

season of the year and the load composition (residential, commercial, or industrial).

Peaks of demand impact the network planning because the electrical infrastructure

of transmission and distribution systems must be designed to support the maximal

demand of the system [139]. For this reason, the electrical power grid infrastructure

may be underutilized most of the time, reaching its loading capacity limit at only

a few moments of the year. Consequently, commercial and industrial customers are

charged not only by their total energy consumption but also by their highest power

demand that dominates the grid construction costs. The electricity charge can be

discriminated in subcomponents like the generation cost, taxes, and fees which rep-

resent a small portion of the total electricity payment of the customers. Accordingly,

commercial and industrial customers are interested in decreasing energy and power

costs, which are the most significant part of the total charges, without lowering their

energy consumption. In this context, Energy Storage Systems (ESS) can be used

to help customers flatten their demand profile by storing energy during off-peak

periods and releasing it during peak load periods.

The deployment of ESS can achieve another benefit besides the reduction of

demand charges for customers. For instance, system operators can reduce the need
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of network reinforcement by sizing the infrastructure for a more flat profile coupled

with ESS, instead of designing it for the highest power demand [96]. Depending

on the market conditions, other benefits can be achieved. The customers can take

advantage of time of use energy price [147] by discharging the ESS when the energy

price at the peak load periods is more expensive than the price during the off-peak

periods. This can lead to an additional electricity bill reduction [136].

ESS technologies are used for a variety of applications [43], [61]. They can be

classified in many different ways, according to the application area [38], based on

the energy conversion [18], or depending on the quantity of energy that the ESS

can provide [72]. For “power-type” applications like peak shaving, the ESS must

maintain a constant delivery of power [67].

Although the improvements of Battery Energy Storage System (BESS) efficiency

and life cycle are increasing the interest for this type of storage [34], the high in-

vestment costs necessary for BESS solutions still raise concerns about the economic

viability of this technology in power system applications [52], [88], [98], [125]. There-

fore, an important aspect of the deployment of any BESS project is their proper

power and energy sizing. If a BESS is not sized properly, it can generate negative

results from an economic perspective. While small BESS may result in excessive

aging-related depreciation costs, over-sized systems may not attain an optimal cost-

benefit ratio due to their relatively high initial investment cost.

This chapter proposes a linear optimization method to define a cost-optimal siz-

ing of the battery and power electronics for peak shaving application in industrial

settings. In addition, this chapter also presents a case study conducted with real

industrial profiles, a techno-economic analysis evaluating the Return on Investment

(ROI) of the system and battery degradation, and a linear programming (LP) ap-

proach allowing exact solution determination for BESS sizing. At the same time,

the power flow optimization reveals the best storage operation considering energy

purchase, peaks of consumption, and battery aging.

7.1 System Layout and Storage Model

This section summarizes all parameters relevant for the optimization of the compo-

nents for peak shaving in BESS for industrial application. It describes the system

layout, overviews technical parameters of the storage system, and specifies the eco-

nomic and legal framework considered in this study.
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7.1.1 System Layout

The energy management system proposed in this study is derived from measured and

simulated data for an exemplary BESS. The simulations involve a grid-connected

system shown in a schematic diagram in Figure 7.1a. The arrows in this figure il-

lustrate the power flow direction for all component links. Additionally, Figure 7.1b

illustrates all price components for industrial customers: the total energy consump-

tion Etotal =
∑︁

loadi where i denotes an averaged time segment of 15 min, the

maximum power peak in the billing period Pmax, and the maximum power peak

after peak shaving PPS. Other variables necessary for subsequent modeling are

explained in more detail later along with the optimization problem definition.
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Figure 7.1: System configuration showing: (a) all considered power flows and (b)
all customer load curves with price components.

7.1.2 Economic and Legal Framework for Industrial Customers

BESS are very flexible devices that can be used for many different applications [61].

Depending on the application, several factors influence the attractiveness for ESSs.

Particularly in behind-the-meter-scenarios (BTM), the economic attractiveness of

ESSs depends not so much on the electricity price itself, but on the pricing struc-

ture [19].

Peak shaving is a typical BTM application that concentrates on the reduction of

the peak demand of consumers. Peak shaving systems are only attractive in markets

where demand charges amount to a proportionally large part of the electricity price.

Already at a very early stage of electricity system development, system operators
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introduced electricity tariffs that included a demand based part added to the usage

based part of electricity costs [26]. This scheme has been established to provide

an incentive for efficient grid usage. This is a so-called cost reflective tariff, since

the level of demand is the main driver of network costs, i.e. grid reinforcement and

transformer overloading [90].

Battery storage is still a new technology associated with high perceived invest-

ment risk. This is likely the reason why most storage projects are currently con-

ducted in well-developed countries [48]. According to a study by Azure Interna-

tional, the most attractive countries for demand charge management in the com-

mercial and industrial (C&I) sector are Australia, France, the USA (California),

Japan and Germany.

Electricity costs are paid via the utility company selected by the consumer. The

utility company keeps a small percentage for itself to cover generation and retail

costs; transfers taxes, fees, and surcharges to the relevant authorities; and trans-

fers network costs to the system operator responsible for the corresponding system.

Therefore, the location of the network connection point defines network costs. For

instance, the two eastern transmission system operators (TSOs) in Germany charge

significantly higher prices than the two western TSOs, but prices also differ from one

distribution system operator to the next inside the same regulation zone. Specif-

ically, commercial and industrial customers who (typically) exceed 100,000 kWh

energy consumption per year or 500 kW of average power demand pay an addi-

tional power price per kW to the energy price per kWh. The electricity price in the

C&I sector typically has the following components:

• Electricity generation (wholesale prices and retail costs); prices depend on ne-

gotiations between customer and utility company.

• The network costs (transmission and distribution) are subdivided into two cat-

egories. First, power price per kilowatt, based on the maximum power peak in

the billing period; this is the only power-specific price component; prices vary

with connected voltage level, billing period, distribution system operator and

duration factor. Second, energy price per kilowatt hour, based on the total

energy consumption.

• The total for standard rates including taxes, fees, surcharges (including renew-

able energy surcharge, electricity tax, CHP surcharge etc.).
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These prices are based on a load profile considering a duration factor calculated as:

∆feh =

∑︁
i Pgrid-loadi ·∆tres

Ppeak
, (7.1)

where ∆feh is equal to the full load equivalent hours,
∑︁

i Pgrid-loadi is the total energy

consumption per year, and Ppeak is the yearly peak power at network connection

point.

Table 7.1: Electricity price for exemplary industrial customer in Germany [19], [73].

Full Load Equivalent Hours (∆feh) <2500 h/a >= 2500 h/a

Electricity generation 0.035 e/kWh
Network-energy price 0.055 e/kWh 0.005 e/kWh
Network-power price 12.78 e/kW 139.12 e/kW
Taxes, fees, surcharges 0.09 e/kWh

Total
12.78 e/kW

+ 0.18 e/kWh
139.12 e/kW

+ 0.13 e/kWh

Table 7.1 summarizes the costs of electricity for industrial customers in Germany.

For customers with ∆feh ≤ 2, 500 hours per year, the energy price of 0.18 e/kWh

and power price of 12.78 e/kW are assumed. Customers with ∆feh ≥ 2, 500 hours

per year are charged an energy price of 0.13 e/kWh and a power price of 139.12

e/kW. This pricing scheme produces a dependence of cost versus duration factor

as shown in Figure 7.2. The total cost decreases as the duration factor increases.
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Figure 7.2: Network cost vs. duration factor at constant total energy consumption
of 100 MWh in a given network area, medium voltage tariff, 2017.

A typical lithium-ion battery available on the market can provide up to 3 C

(i.e. a 50 kWh battery can be discharged with 150 kW or in 1/3 h). As specific

capacity costs are higher than specific power costs, load profiles with peaks below

79



1 hour are ideal for peak shaving with BESS. Typical loads producing steep peaks

are power intensive plants and machinery with short start-up times or heat-up pe-

riods, like furnaces in the steel industry. Another precondition for the feasibility of

peak shaving is periodic, predictable behavior of the load. Forecasting algorithms

ensure that the storage system will be able to discharge its maximum energy when

needed [113]. Although such prediction tasks are indispensable for achieving the

best BESS operation, they are outside the scope of this work.

A non-representative study of nearly 300 industrial load profiles, conducted by

Smart Power GmbH(www.smart-power.net) in 2017, showed that about 10% of all

load profiles result in a static ROI of five years or less, and thus can be directly

considered for peak shaving application (cf. Figure 7.3). Under the assumption that

storage system prices will decrease by about 30% and demand rate will rise by about

30%, the number of loads applicable for peak shaving will rise to about 33% in the

next few years [98].
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Figure 7.3: Static return on invest (ROI) of peak shaving storage systems in years
based on 288 industrial load profiles analyzed by Smart Power in 2017 (blue), and
the static ROI projection where the investment is reduced by 30% and the energy
rate is raised by 30% (yellow).

Interestingly, Schmidt et al. [121] construct a comparative study for promising

electrical energy storage technologies. The authors also investigate how the derived

rates of future cost reduction influence when storage becomes economically compet-

itive in transport and residential applications. In terms of price per energy capacity,

the technology that brings the most energy density to market is likely to become

the most cost-competitive. For instance, lithium-ion batteries can be used in multi-

ple applications and secure high-capacity markets such as battery packs for electric

vehicles.

For the sole battery storage investment without an inverter, the following price
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structure is considered:

Cbatt(E
nom
batt) = Cfix +Copex,batt + (Cvar,batt · Enom

batt), (7.2)

where Cbatt represents the total battery investment cost, Cfix corresponds to the

fixed cost including the housing of storage and all the peripheries, Cvar,batt denotes

the energy specific cost of a storage system, and Copex,batt is the storage operation

and maintenance (OPEX) cost within the battery lifetime. As such, the overall cost

Cstorage for the energy storage system can be expressed as:

Cstorage(E
nom
batt ,P

nom
inv ) = Cfix +Copex,batt + (Cvar,batt · Enom

batt) + (Cvar,inv · Pnom
inv ) (7.3)

which includes battery storage with energy content Enom
batt , and inverter with nominal

power Pnom
inv . As container storage systems predominantly have battery racks and

inverter units assembled to the same casing, no separate fixed costs for inverters are

assumed, but are given as part of the overall storage fixed cost Cfix.

7.2 Case Study

This section presents the application of the introduced model for dimensioning BESS

for industrial peak shaving application. The industrial customer is responsible for

buying, installing, maintaining, and operating the storage system. In this model, the

energy used to charge the battery and the energy used for immediate consumption

have the same cost, and both are considered in the industrial customer peak power

calculation. As a result, the usage of a storage system is transparent from the point

of view of the utility company.

7.2.1 Linear Optimization of BESSs

The economically optimal battery storage component sizing for an industrial cus-

tomer equipped with a storage system is obtained using LP. The load demand pro-

files considered in this study cover one full year to capture all seasons with their

characteristics. As the intent is to minimize the overall electricity cost, three types

of costs are considered: the energy cost Cenergy tot, the power cost Cpower max, and

the battery degradation cost Cstorage deg. The energy cost is composed of the base

energy price, fees, taxes, and stock exchange price. The power cost is charged by

the network operator on the basis of the duration factor. The battery degradation
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cost, also called aging cost, is the major cost driver during storage operation, caused

by cyclic and calendric aging.

The annual cost flow analysis presented here takes into account the discounted

storage cost caused by degradation. As such, this simulation allows to estimate the

profitability of a BESS for the full life of the battery. All variables and parameters

considered in this study are described in Table 7.2.

Table 7.2: Variables and parameters used for the battery modeling and optimization
routines.
Variable Description (At the Time Slot i) Unit Constraints/Comments

Ploadi load demand (historical data) kW ≥0; input data
P nom
inv Nominal power of the battery inverter kW Subject to optimization

Enom
batt Nominal battery capacity kWh Subject to optimization

Ppeak−shave Maximum power for the full year kW Subject to optimization
Pbatt Bidirectional power flow to the battery kW Result of optimization
Pbatt-loadi Power transferred from the battery to the load kW See Equation (7.4)
Pgrid-loadi Power imported from the grid to the load kW ≥0; see Equations (7.4) and (7.5)
Pgrid-batti Power imported from the grid to the battery kW ≥0; see Equation (7.5)
SoHi State of health p.u. [0 . . . 1]; see Equation (7.10)
Ebatti Battery energy content at time i kWh See Equations (7.8) and (7.9)
SoCi State of charge p.u. [SoCmin . . . SoCmax]

To meet the electrical demand, Ploadi , the system attempts to use power from

the battery, Pbatt-loadi , or draws power from the grid, Pgrid-loadi , i.e.:

Ploadi = Pbatt−loadi + Pgrid−loadi . (7.4)

In the same way, the power imported from the grid (Pgrid−loadi +Pgrid−batti) in each

time step i is restricted to the maximum power for the period. The two constraints

can be represented as:

Pgrid−loadi + Pgrid−batti ≤ Ppeak−shavej , (7.5)

where Ppeak−shavej represents the highest point of demand in the billing period j.

For instance, considering only the highest load of the year, all data points i should

be limited to the same maximum annual limit Ppeak−shavej . However, if we consider

the seasonal billing period where there are two independent thresholds, each season

is limited to its own limit. The peak power is used to calculate the optimal solution

power cost.

The bidirectional power flow from the storage inverter to the battery is stored

in an auxiliary variable, Pbatti , and correlated with the inverter efficiency, ηinv, as

follows:

Pbatti = (ηinv · Pgrid−batti) + (− 1

ηinv
· Pbatt−loadi), (7.6)

82



where ηinv is the average one-way efficiency of the inverter. The reciprocal efficiencies

are the battery charge power Pgrid−batti and the discharge power Pbatt−loadi , both of

which are limited by the nominal power flow from the inverter to the battery:

0 ≤Pgrid−batti ≤ P nom
inv ,

0 ≤Pbatt−loadi ≤ P nom
inv ,

(7.7)

where P nom
inv corresponds to the inverter size. The battery energy content at time

step i (Ebatti) satisfies the recurrence relation:

Ebatti = (Ebatti−1
· SDbatt

d
) + (ηbatt · Pbatti ·∆tres), (7.8)

where SDbatt represents the self-discharge factor of the battery and d = 96 the

conversion factor of time steps per day. The energy content of the storage system is

furthermore confined by an upper boundary, that decreases upon usage and aging

according to the State of Health (SoH). The SoH is defined as the irreversible

capacity fade over time, related to the nominal battery capacity, and Ebatti is a

fraction of the total energy content of the battery installed:

Ebatti ≤ Enom
batt · SoHi. (7.9)

The SoH of the storage system at time step i also satisfies the recurrence relation:

SoHi = SoHi−1 − 0.2 · (agingcali + agingcyci). (7.10)

Using Equations (6.2) and (6.3), the calendric and cyclic aging can be estimated as:

agingcali =(3.676× 10−7 · SoC + 6.246× 10−6) · (i ·∆tres) (7.11)

and

agingcyci = agingcyci−1
+ 0.5 · |Pbatti ·∆tres|

Ebatti

· 1

Life80%Cyc

. (7.12)

The calendric aging is affected by the storage temperature and its SoC level

according to Swierczynski et al. [128]. Despite the fact that the charge/discharge

process leads to dissipative heat generation and unavoidable temperature changes

within the battery, the very low utilization ratio of the storage system and the

restriction to a maximum C-rate of 3 limits the effects of temperature variations

significantly.

As a result, the additional cyclic aging degradation of time step i is estimated by

the energy throughput in time step i (Pbattj ·∆tres) divided by the energy content
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of the system Ebatti and is normalized with the factor of 0.5 and the technology

specific cycle life indicator Life80%Cyc . Similarly, the SoC can be expressed as:

SoCi =
Ebatti

Eusable
batt · SoHi

. (7.13)

The inverter nominal power is limited to three times the battery nominal capacity:

Enom
batt ≥ 3 · P nom

inv . (7.14)

The optimal solution must satisfy all constraints described above, aiming to reduce

the overall cost by minimizing the expenses for energy purchase and implicit cost

caused by battery degradation. This cost model is divided into three components,

i.e.:

minimize Cenergy tot + Cpower max + Cstorage deg. (7.15)

The first component Cenergy tot comprises the cost of energy purchased from the

grid, while the second component Cpower max is the peak induced cost based on the

highest point of demand (or peak) within the billing period (monthly or annually).

These two components are evaluated as follows:

Cenergy tot =
∑︂
i

Cbuy · (Pgrid-loadi + Pgrid-batti), (7.16)

Cpower max = Cpower · Ppeak−shave, (7.17)

where Cbuy and Cpower are the retail electricity price and peak-power tariff respec-

tively. The third component estimates the storage system degradation cost that can

be represented as:

Cstorage deg =
∆SoH

(1− αReplace)
· Enom

batt + P nom
inv · ∆t

Tinv
, (7.18)

where ∆t denotes the time span covered with the simulation (one year) and ∆SoH

is the total battery aging. The full battery related cost is then calculated in consid-

eration of the initial installation investment cost.

7.2.2 Case Description

Four industrial load profiles (A–D) shown in Figure 7.4 are used to verify the ef-

fectiveness of the proposed model. Data used for the simulations was adapted from

real measurements and averaged with a resolution of ∆tres = 15 min [8]. This time
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Figure 7.4: Load profiles.

discretization results from the fact that, in the model region, the 15 minutes de-

mand average is registered and its maximum value is used for tariff calculation over

a period of one month or one year [49]. It is assumed that temperature is kept stable

at approximately 25 ◦C. Parameters and price information for the BESS/inverter

system used in the simulations are listed in Table 7.3.

As described in Section 7.1, the electricity cost has two main components: the

total energy consumption and the power peak cost in the billing period. According

to German law StromNEV §19I, every grid operator is obligated to offer a monthly

billing scheme, i.e. instead of the highest load of the year, the highest load of the

month is the basis for the price per kW. Hence, this study considers both yearly and

monthly billing schemes. The results presented in the next section describe not only

the optimal BESS/inverter component sizes, but also the optimal billing scheme.

7.2.3 Effect of Sizing, Considering BESS Degradation Costs

The objective function and the constraints structured in this study have linear re-

lationships. This means that the effect of changing a decision variable is propor-

tional to its magnitude. For this reason, the economically optimal battery storage

component sizing for peak shaving is obtained using LP. The linear optimization

was implemented in MATLAB (MathWorks, Natick, MA, USA) code using a dual-

simplex algorithm, which is based on a conventional simplex algorithm on the dual
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Table 7.3: Battery Energy Storage System(BESS)/inverter performance parameters
and price information

Variable Parameter Unit Value

ηinv Average one way inverter efficiency % 97.5
Tinv Assumed inverter lifetime in years years 20
ηbatt Battery round-trip efficiency % 95
SDbatt Self-discharge per day % 0.02
[SoCmin . . . SoCmax] Usable SoC % 5–95

Life80%cal Battery calendric life indicator years 13

Life80%cyc Cycle life indicator in FEC FEC 4500

Cvar,inv Variable inverter cost e/kW 1306
Cvar,batt Variable battery cost e/KWh 577

Cfix
Fixed cost for storage
(housing, cooling, and periphery)

e 580

problem [132]. Each one-year simulation considered a 15-min time resolution, co-

optimized the storage and inverter size, and took on average 700 s on a workstation

with Intel Core i5 processor at 3.5 Ghz and 16 GB of memory.

The optimal storage and inverter size for each profile (A–D), as well as a number

of relevant technical and economical indicators, are presented in Table 7.4.

Table 7.4: Economical and technical comparison of system optimization results.
Profile Profile A Profile B Profile C Profile D

Scheme Year Month Year Month Year Month Year Month
Peak Loading Capping 5% 6% 30% 13% 8% 1% 0% 0%
Battery Size (kWh) 39 51 57 21 1109 18 0 0
Inverter size (kW) 117 152 171 63 3326 55 0 0
∆feh (h/a) 4431 4453 1195 957 1517 1407 2709 2709
Investment (e) 72,601 91,962 97,187 42,351 3,266,112 37,126 0 0
Operation Cost (e) 1156 1512 1663 674 39,577 583 0 0
Saving Grid charges (e) 15,880 16,735 992 6666 7613 6173 0 0
Total Savings (e) 14,725 15,223 −671 5992 −31,964 5591 0 0
Total return (IRR) 19% 14% −169% 11% −171% 12% 0% 0%
Amortization Time (years) 5 6 – 7 – 7 0 0
Full equivalent cycles (FEC) 5 51 1 32 11 25 0 0
Number of capped peaks 20 243 5 751 176 185 0 0
SoH at the end of year 98.78% 97.76% 98.88% 98.19% 98.66% 98.34% 0.00% 0.00%

The investment comprises the overall cost Cstorage described in Equation (7.3).

The operation cost, Copex,batt, reflects the German market and is calculated as 0.6%

of the investment plus 6 e/kW. Table 7.5 shows the OPEX components considered

in this paper.

The total return equal to the Internal Return Rate (IRR) [11], is calculated with-

out inflation or price changes based on the total savings of the first year. Likewise,
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Table 7.5: Operation cost (OPEX) composition.

Insurance 0.30%
System management 0.20%
Service contract 1 e/kW
Maintenance reserve 5 e/kW
Administrative costs 0.10%

total savings and amortization time are static calculations:

TotalSavings = SavingsGridCharges−OPEX, (7.19)

AmortizationTime =
Investment

TotalSavings
· (7.20)

’Profile A’ has an annual load of 9,350 MWh and features weekday peaks and

small loading during weekends. As shown in Table 7.4, this profile exhibits similar

results for yearly and monthly billing schemes. Figures 7.5 and 7.6 illustrate the

results obtained for the two billing schemes.
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Figure 7.5: Industrial load profile A with yearly billing scheme (left), and battery
state of charge and state of health (right).
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Figure 7.6: Industrial load profile A with monthly billing scheme (left), and battery
state of charge and state of health (right).

The yearly billing scheme requires an initial investment of almost e20,000 less

compared to the cost of the system optimized for monthly billing, and it can generate
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an additional 5% of total return in a shorter time. Although the monthly billing

scheme with a 51 kWh battery and 152 kW inverter (Figure 7.6) can increase the

peak load capping, it also shortens the battery end of life by seven years (Figure 7.7).

Therefore, all things considered, the yearly billing scheme is more suitable for ‘Profile

A’ because it delays the battery replacement and provides several extra years of

saving grid charges before it becomes necessary to invest in a new battery system.
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Figure 7.7: Extrapolation of the one-year results to represent the degradation after
10 years of usage for Profile A.

Further considering the monthly billing scheme, the optimizer determines the

optimal storage size of 51 kWh and inverter nominal power of 152 kW. Figure 7.8

illustrates the power flows for a three-day period during the first week of May. The

left panel shows the load consumption, the power flow imported from the grid for

direct use or to charge the battery, as well as the maximum power peak after shaving.

The right panel shows the periodically changing charge level of the storage system

(SoC), and the evolution of battery degradation (SoH). It clearly shows that the

capacity fade is stronger when the energy throughput is high. Figure 7.9 shows the

battery power profile and the same capacity fade in the terms of C-rate.

In contrast to ‘Profile A,’ results for ‘Profile B’ show that the yearly billing

scheme is not suitable for profiles with low average load and relatively high peaks.

Although it is possible to reduce 30% of the peak load using a 57 kWh BESS with

171 kW inverter, this system configuration provides no savings to support the initial

investment. In this case, the monthly scheme is more profitable, resulting in a peak

reduction of 13% with a 21 kWh battery and 63 kW inverter.

Similarly, ‘Profile C’ has a negative IRR when considering the yearly billing

scheme. This is caused by the seasonal nature of the load. As can be seen in Fig-
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Figure 7.8: Power flow analysis for a three-day period: load and power flows within
the system (left); time correlated evolution of battery state of charge (SoC) and
resulting state of health (SoH) decline (right).
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Figure 7.9: Battery power profile analysis for a three-day period and resulting state
of health decline.

ure 7.4, the consumption in the last three months of the year is very high compared

to the rest of the year. Analyzing the total return value in Table 7.4, the monthly

billing scheme appears to be the right choice for this profile. However, a peak load

reduction of only 1% is too slow to justify the installation of a BESS.

Finally, ’Profile D’ presents the most extreme case. Considering the exposed

investment cost for BESS and price schemes, there is no advantage to installing a

BESS for peak shaving purpose for this profile. Figure 7.10 illustrates the optimal

annual peak shaving limit for the profiles B, C, and D, as well as the state of charge

and state of health for the storage system used in each case. Similarly, Figure 7.11

shows the optimal monthly peak shaving limit, the SoC, and SoH for the same

three profiles. Appendix B provides the battery power profiles for all investigated

scenarios.

It can be seen that the optimization process minimizes expenses using the ca-

pacity of the storage system to decrease the peak power. The optimal power flow

89



Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

50

100

150

200

250

Po
we

r (
kW

)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0.0

0.2

0.4

0.6

0.8

1.0

SO
C(
p.
u.
)

0.80

0.83

0.85

0.88

0.90

0.93

0.95

0.98

1.00

SO
H(
p.
u.
)

Profile B: 214 MhW/a; Storage system: 57 kWh 171 kW

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

1000

2000

3000

4000

5000

6000

7000

Po
we

r (
kW

)

Jan FebMar Apr May Jun Jul Aug Sep Oct Nov Dec
0.0

0.2

0.4

0.6

0.8

1.0

SO
C(
p.
u.
)

0.80

0.83

0.85

0.88

0.90

0.93

0.95

0.98

1.00

SO
H(
p.
u.
)

Profile C: 10538 MhW/a; Storage system: 1108 kWh 3325 kW

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

500

1000

1500

2000

2500

3000

Po
we
r (
kW
)

Jan FebMar Apr May Jun Jul Aug Sep Oct Nov Dec
0.0

0.2

0.4

0.6

0.8

1.0
SO

C(
p.
u.
)

NO BATTERY

0.80

0.83

0.85

0.88

0.90

0.93

0.95

0.98

1.00

SO
H(
p.
u.
)

Profile D: 7790 MhW/a; Storage system: 0 kWh 0 kW

Figure 7.10: Industrial load profile B,C, and D with yearly billing scheme (left),
and battery state of charge and state of health (right).

shows that the battery cycles are short, meaning that the battery is charged to the

maximum necessary level just before being drained. This occurs due to the presence

of SoC-dependent calendric degradation as one of the optimization criteria. At the

same, cyclic aging is not a determinant in peak shaving applications because the

BESS has only a low number of charging/discharging cycles and energy is never

stored in the battery for a long time. For this reason, calendric degradation is the

most important cost driver in storage systems for peak shaving applications.

To analyze the relation between load size and return of investment, consider

Table 7.6. Optimization runs were performed, scaling the load size of Profile A

from 10 to 40,000 MWh/a. The relation between the peaks and the loads were kept

the same as in the original profile, resulting in exactly the same shape of battery
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Figure 7.11: Industrial load profile B, C, and D with monthly billing scheme (left),
and battery state of charge and state of health (right).

Table 7.6: Profile A with yearly billing scheme and duration factor of 4,431 h/a.
Peak load capping of 5% which represents 20 capped peaks per annum.

Load
(MWh/a)

Optimal Recommended
Investment

Operation
Cost

Saving
Grid

Charges

Total
Savings

(EBITDA )

Internal Rate
of Return
(IRR)

Payback
(Years)

EoL
(Years)

FEC
(First Year)Battery

Size
Inverter

Size
Battery
Size

Inverter
Size

10 0 0 0 0 e0 e0 e0 e0 0% 0.00 0.00 0.00
25 0 0 0 0 e0 e0 e0 e0 0% 0.00 0.00 0.00
50 0 0 0 10 e0 e0 e0 e0 0% 0.00 0.00 0.00
100 0 0 0 10 e0 e0 e0 e0 0% 0.00 0.00 0.00
250 1 3 10 10 e18,370 e170 e425 e254 −15% 72.23 18.00 1.00
500 2 6 10 10 e18,370 e170 e849 e679 −7% 27.06 18.00 1.00
750 3 9 10 10 e18,370 e170 e1274 e1103 −1% 16.65 18.00 2.00
1000 4 13 10 20 e18,370 e230 e1698 e1468 2% 12.51 18.00 3.00
2500 10 31 20 40 e31,901 e431 e4246 e3814 8% 8.36 18.00 4.00
5000 21 63 30 70 e42,351 e674 e8491 e7817 17% 5.42 18.00 5.00
10,000 42 126 50 130 e86,737 e1300 e16,983 e15,682 16% 5.53 18.00 6.00
20,000 84 251 90 260 e175,619 e2614 e33,966 e31,352 16% 5.60 18.00 7.00
30,000 126 377 130 380 e222,974 e3618 e50,948 e47,331 20% 4.71 18.00 7.00
40,000 168 503 170 510 e286,941 e4782 e67,931 e63,150 21% 4.54 18.00 7.00

SoC profile. As an overall trend, customers with large loads require BESS with

large storage size and large nominal power of the inverter. Loads smaller than 1,000

MWh/a have a negative IRR and an extensive payback period, rendering them
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unsuitable for BESS-based peak shaving applications. On the other hand, larger

load profiles have a substantial improvement in the payback period. The results

show that the BESS can be used for almost 18 years before reaching end of life at

80% of SoH. Although the peak capping is the same in all simulations, the battery

usage differs for each load size because of the assumed discrete sizing of BESS and

inverters in steps of 10 kWh and 10 kW respectively.
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Figure 7.12: Profile A-Impacts of peak capping variation. Initial investment Amor-
tization time (ROI), the number of years before the battery end of life (EOL), and
the number of years the BESS will keep being used and generating savings through
peak shaving after ROI being achieved.

It is clear that larger load sizes can benefit from BESS-based peak shaving with

better economical results. In addition, it is interesting to analyze the impact of the

peak capping variation on the payback period as well as the battery life time. Refer

to Figure 7.12 and Table 7.7 for a detailed comparison. To generate these results,

an additional constraint was added to the linear model described in Section 7.2.1:

Ppeak−shave = max(Pload)·(1−PC); PC = [0.01, 0.025, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30],

(7.21)

where PC is the fixed amount of the peak that must be shaved. As shown in

Table 7.7, all scenarios are profitable. However, the best IRR is obtained for peak

capping equal to 5% of the total load. Smaller peak capping values extend the

battery lifetime, but also extend the payback time as less savings of peak power

reduction may be attained. In contrast, larger peak capping values increase the

payback, but shorten the battery life.

As an overall trend, the increase of inverter size has a direct relation to the peak

shaved load, i.e. 2.5% load shaving needs a 60 kW inverter, and 25% load shaving
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requires ten times more. It is a straightforward relation because the inverter is sized

according to the load power peak. Interestingly, the battery sizing does not follow

the same trend because it is related to the number of peaks that must be shaved. In

contrast to the optimal result where the battery is charged closer to the load peaks,

larger peak load capping results in a smaller C-rate because the battery is charged

slowly to avoid violating the maximum power peak allowed, and the battery must

keep energy content for a longer period.

Table 7.7: Profile A wich peak load capping variating from 1% to 25%.
Peak
Load

Capping

Number of
Capped
Peaks

H/A
Load

(MWh/a)

Recommended
Investment

Total
Savings

(EBITDA )

IRR
Payback
(Years)

End of Life
(Years)

CyclesBattery
Size

Inverter
Size

1% 1 4246 9351 10 30 e23,595 e2773 8% 8.51 18.19 1
3% 6 4311 9351 20 60 e37,126 e7154 18% 5.19 18.11 2
5% 20 4431 9351 40 120 e72,601 e14,721 19% 4.93 17.87 5
10% 217 4670 9351 250 230 e211,317 e28,300 10% 7.47 17.51 11
15% 1298 4945 9351 610 360 e424,782 e41,714 5% 10.18 16.02 34
20% 4185 5254 9351 1420 480 e560,915 e55,651 5% 10.08 14.27 69
25% 8008 5605 9351 2720 600 e945,282 e68,099 1% 13.88 12.92 101

7.3 Final Remarks

This article describes a linear optimization model to size the most cost-effective

BESS for a variety of industrial load profiles and multiple billing schemes. The

optimization approach formulated in this work minimizes the storage degradation

cost and the maximum power peak in the billing period.

The optimal BESS size and the number of capped peaks are directly related

to the load profile. As an overall trend, for the exemplary load profiles under

investigation, the monthly billing scheme is more attractive for industrial customers

because of the number of peaks that can be capped with acceptable BESS sizes.

For instance, a 51 kWh/152 kW BESS can shave 243 peaks which represents 6% of

the maximum load peak and results in a 15,223 eof annual savings. As a general

remark, considering the current cost of storage and retail energy tariff valid in

Germany for 2016, most scenarios favor storage system installation. The expected

increases of electricity prices and the reduction of BESS costs are likely to accelerate

this trend. Although this work uses parameters corresponding to German market

conditions and regulations, the described methodology can be easily adapted to

other jurisdictions that use or consider peak power penalties, albeit with different

billing period schemes and retail electricity tariff models.
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Chapter 8

Battery Energy Storage as a
Service for Peak Shaving
Applications With Multiple
Industrial Clients

Industrial electricity customers are not only charged for their energy consumption

but also for the demand in a billing cycle. The demand charge can represent up

to 50% of the customer electricity bill [91]. The load power peaks usually occur

during short periods of time when large amounts of power are required and can

impact the network planning because the electrical infrastructure must support these

peaks of demand [139]. Consequently, the electricity charge contains the costs of

energy, transmission and distribution fees, taxes, and other fees that represent a

small portion of the total electricity bill of the customers.

Accordingly, industrial customers wants to reduce their energy and demand

charges, but without decreasing the overall energy consumption. In this context,

shaving the peak demand will benefit both the customer, by significantly reducing

the peak demand payments, as well as the entire grid system, by helping reduce the

network congestion and possibly lowering marginal energy prices. There are various

methods to shave peak demand. However, one common method is to use an energy

storage system (ESS).

The ESS can be used to help customers to flatten their demand profile by stor-

ing energy during off-peak periods and realizing this energy during peak load pe-

riods [18]. As a result, the use of ESS does not affect the customer load because

the shaved demand is supplied by the ESS discharged power, but the net load seen

from the utility side is changed. For instance, if the distribution provider considers
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a flat profile coupled with ESS, the infrastructure can be designed with less net-

work reinforcement [96]. Time of use energy price is another benefit that can be

achieved [147] by charging the ESS during low price hours and discharging during

high price hours [136].

Although the interest in battery energy storage system (BESS) is increasing in

recent years [34], it comes at the expense of a high capital cost. The costs associated

with purchasing, installing, and maintaining a storage system solution make the

deployment of BESS in power system applications debatable [52], [88], [98], [125].

In response to the need to make BEES economically viable, several studies focus

on finding the battery storage system optimal operation [14], [15], [21] to minimize

the electricity charges. The BESS size is assumed to be known, and the optimal

sizing problem is not considered. Therefore, several studies address the need to

properly size BESS [42], [61]. The work described in [1], [80] focuses on commercial

applications. Different methods have been used to determine the optimal size in-

cluding iterative methods [92], [115]. Magnor et al. [66] and Merei et al. [79] optimize

the size of home storage systems in the context of island grids using genetic algo-

rithms. The minimization of electric chargers in the customer side is formulated

with nonlinear model considering both energy charge and demand charge, where

Markov decision processes, and particle swarm optimization are used in [58], [99],

respectively. A general framework to find the optimal BESS size considering peak

shaving applications is presented by Martins et al. [71]. This study discusses the

economic advantages of peak load shaving and identifies the best storage operation

patterns considering a trade-off between energy purchase, peak-power tariff, and

battery aging.

Most existing studies focus on finding the optimal sizing as well as control strate-

gies for BESS for individual customers. While these studies prove that it is possible

to flatten the load and reduce demand charge, it is noticed that the storage system

is underused, staying idle most of the time. Contrasting the important contributions

mentioned above, this work proposes a strategy to reduce the inactive time of the

storage system by sharing the same BESS between multiple industrial customers.

In this new business model, the battery energy storage system is offered as a service

by a third party who has a contract with the industrial load owners to avoid the

power peaks. At the same time, the company providing BESS as a service (BESaS)

is considered an industrial customer and is charged by the energy consumption as
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well as by the power demand.

This chapter also introduces a techno-economic analysis evaluating the ROI of

the system and battery degradation, and presents a linear programming(LP) ap-

proach for exact determination of optimal size and operation strategy of BESS. In

addition, the break even point to balance the BESaS charges and clients expenses

is discussed. The results show the profit margin for negotiation and identify cases

when the service is not appealing.

8.1 Economic and Legal Framework for Industrial Cus-
tomers

BESS are very flexible devices that can be used for many different applications [61].

The energy management system proposed in this study involve a grid-connected

system shown in a schematic diagram in Figure 8.1. This figure demonstrates the

power flow direction for all component links.

Figure 8.1: Power flows considered.

Since the early times of power systems, system operators introduced electricity

tariffs to incentivize efficient grid usage. Typically, they add a demand charge to

the total bill [26]. Industrial customers who exceed 100 MWh/year or 500 kW of

average power demand have to pay an additional power price per kW. Electricity

costs typically can be divided in the following components: electricity generation

(wholesale prices and retail costs), the total for standard rates including taxes and

fees, the power price per kilowatt (the maximum power peak in the billing period),

and the energy price per kilowatt hour, based on the total energy consumption.

Figure 8.2 illustrates the price components for industrial customers: the total

energy consumption Etotal =
∑︁

Loadi averaged in time slots of 15 minutes, the

power peak Pmax, and the power peak after peak shave PPS . The optimization

definition and additional variables are explained in detail later.
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Figure 8.2: Customer load curve

In this context, three distinct parties are involved in the proposed peak shaving

model that can be described as follows:

• Utility owns and operates the distribution feeder lines that carry the electricity

from local sub-stations to neighborhood transformer boxes, and to industrial

end users. It also manages the electrical meters situated at end users to

measure their electricity usage.

• BESS owner is responsible for charging the BESS according to the projected

peak shave demand of the customers, and feeding the end-use customers.

• End users contract the utility to purchase electricity for their day-by-day con-

sumption, and also contract the BESS owner to supply power to avoid the

contracted peak of demand.

BESS

Transmission
Grid

Substation

Meter Meter Meter Meter

Local Distribution Line

Distribution Grid

Power flow

Information flow

Figure 8.3: Virtual net metering model

This model considers the local distribution system as a virtual metering model.

Figure 8.3 illustrates the structure of this model. Electricity stored in the BESS
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feeds directly into the local distribution grid through a meter. The net metering is

charged to each end user in the local distribution grid to offset its electricity usage.

At the same time, the industrial customers are charged individually by the BESS

owner for the electricity supplied to avoid their peak of demand.

In this thesis, it is assumed that the BESS is located in a close proximity of the

load (e.g. in an industrial park) and thus power losses are not considered. Similar

assumption of proximity can be made also for residential applications, e.g. with a

community energy storage system.

Table 8.1: Electricity price for exemplary industrial customer

Customer Charge
Demand Charge

Energy Charge
For the first 500 kW
of billing demand

For all billing demand
over 500 kW

Transmission - 26.70 ¢/kW/day 30.39 ¢/kW/day 1.09 ¢/kWh

Distribution 50.09 ¢/day 28.89 ¢/kW/day 20.07 ¢/kW/day -

Service $2.7464 /day - 0.72 ¢/kW/day -

Total Price $3.2473 /day 55.59 ¢/kW/day 51.18 ¢/kW/day 1.09 ¢/kWh

Table 8.1 describes the costs for industrial customers in Alberta, Canada. The

billing period has a fixed distribution and service charge of $3.2473 per day. The

charge for the first 500 kW peak demand is 55.59¢\kW per day in the billing period,

and after 500 kW the peak demand cost 51.18¢\kW per day. The energy price is

1.09¢/kW. Using the costs from Table 8.1, the total charges Ctotal in one billing

period can be calculated as follow:

Ctotal = 3.2473 ·∆days+0.5559 ·P<=500kW
peak +0.5118 ·P>500kW

peak +0.0109 ·Eload, (8.1)

i.e. considering an industrial customer with total load Eload = 486MWh in a 30 day

(∆days) billing period, and with peak power of 1044 kW, the total charges Ctotal in

this period are

Ctotal = 3.2473 · 30days+ 0.5559 · 500kW + 0.5118 · 544kW + 0.0109 · 486MWh ≈ $5951.

As described in Table 8.1 and equation 8.1, demand charges are billed for the

peak kW use averaged over 15 minutes increments of time. The highest demand

recorded during the billing period is used to level out the recovery of the fixed costs

necessary to serve the demand set.

A large amount of investment in transmission lines and other facilities may be

dedicated to attend industrial customers. To reduce the risks serving customers

who have potentially large swings in demand during the year, the imposition of a
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demand ratchet allows the utility to earn a fair return on its investment, even when

the demand falls to low levels. For instance, a ski resort may have significant energy

requirements for only few months of the year, but the utility have to prepare the

grid infrastructure to attend the resort when needed. A minimum billing will be

calculated based on a given percentage of their peak use, for example 85% of the

January billing, and the resort will be billed at least this much in the next 12-month

period, even if they use little or no energy. This insures that the utility is properly

compensated for the year-round expenses it incurs to serve this customer.

Figure 8.4 illustrates the ratchet rate. The utility notices when a high peak of

demand occurs. Considering the ratchet is 85%, the utility sets a minimum billed

demand for 85% of the maximum recorded peak kW for the next 11 months. Thus,

the customer will be billed 85% of the previous peak, even if the customer uses a

smaller amount of power during a succeeding month.
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Figure 8.4: Measured kW vs Billed at 85% Ratchet (started in July)

This study analyzes the economic potential and technical capabilities of BESS

where the investment costs of battery and the inverter are analyzed independently.

The total battery investment cost without inverter Cbatt comprises the fixed cost

Cfix, the storage system energy cost Cvar
batt, and the storage operation and main-

tenance (OPEX) cost (Copex,batt). The total cost Cstorage for the energy storage

system can be described as

Cstorage(E
nom
batt ,P

nom
inv ) = Cfix +Copex,batt + (Cvar

batt ∗ Enom
batt) + (Cvar

inv ∗ Pnom
inv ), (8.2)

where Enom
batt and Pnom

inv represent respectively, the energy content and the inverter

nominal power of the storage system.
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8.2 Battery Energy Storage Model

The battery energy storage system model considered in this paper is derived from

previous study [71]. Typical loads producing steep peaks are ideal for peak shaving

with BESS. Another condition for the feasibility of peak shaving is predictable

behavior of the load. Forecasting algorithms ensure that the storage system will have

enough energy when needed [113]. Although such prediction tasks are indispensable

for achieving the best BESS operation performance, they are outside the scope of

this work.

Storage aging is a significant cost driver during energy storage operation and

cannot be neglected. It is common to separate battery degradation between calen-

dric aging, and cyclic aging [118], [120], [138]. The battery cyclic and calendric

lifetime indicators (Life80%Cyc , Life
80%
Cal ) determinate the current state of health (SoH).

This paper considers that the BESS must be replaced when the SoH achieves 80%

of the nominal capacity.

As lithium-ion batteries have been developed to maturity, they have begun to

approach their theoretical energy density limits (200-250 Wh/kg) [4]. Ongoing elec-

trochemical research on lithium-ion batteries aims at increasing cycle life, safety,

and other performance characteristics [55]. The aging model and its linearization

are described in Chapter 6, and Table 8.2 summarizes the parameters and price

information for the BESS/inverter system used in the optimization model.

Table 8.2: BESS/inverter performance parameters and price information
Variable Parameter Unit Value

ηinv Average one way inverter efficiency % 97.5

Tinv Inverter lifetime years 20

ηbatt Battery round-trip efficiency % 95

SDbatt Battery self-discharge per day % 0.02

[SoCmin . . . SoCmax] SOC limits % 5-95

Life80%cal Battery calendric life years 13

Life80%cyc Battery cyclic life FEC 4500

Cvar
inv Inverter cost (variable) $/kW 239

Cvar
batt Battery cost (variable) $/kWh 889

Cfix Fixed cost for storage (housing, cooling, and periphery) $ 893.2

8.3 Linear Optimization of BESS

The economically optimal power flows and battery storage component sizing can be

obtained using linear programming. The goal is to minimize the overall electricity
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cost, three types of costs are considered. First, the energy cost Cenergy tot that is

composed of the base energy price, fees, and taxes. Second, the power cost Cpower max

that is charged by the retailer of franchisee in each billing period on the basis of

the ratchet rate. Third, the battery degradation cost Cstorage deg, also called aging

cost, that is the major cost driver during storage operation, caused by cyclic and

calendric aging. All variables and parameters considered in this study are described

in Table 8.3.

Table 8.3: Variables and parameters used for the battery modeling and optimization
routines

Variable Description (at the time slot i) Unit

Ploadij Load demand (historical data) kW

P nom
inv Nominal power of the battery inverter kW

Enom
batt Nominal battery capacity kWh

Ppeak−shavejk Maximum power in the billing cycle k kW

P batt
peak−shavek

Maximum power in the billing cycle k for the storage system kW

Pbatt Bidirectional power flow to the battery kW

Pbatt−loadij Power transferred from the battery to load j kW

Pgrid−loadij Power imported from the grid to load j kW

Pgrid−batti Power imported from the grid to the battery kW

SoHi State of health ( [0 . . . 1]) p.u.

Ebatti Battery energy content at time i kWh

SoCi State of charge ([SoCmin . . . SoCmax]) p.u.

To meet the electrical demand for industrial load j in each time step i, Ploadij ,

the system attempts to use power from the battery, Pbatt−loadij , or draw power from

the grid, Pgrid−loadij , i.e.:

Ploadij = Pbatt−loadij + Pgrid−loadij . (8.3)

In the same way, the power imported from the grid to load j at time i (Pgrid−loadij )

is restricted to the maximum power for the billing cycle k. This constrain can be

represented as:

Pgrid−loadij ≤ Ppeak−shavejk , (8.4)

where Ppeak−shavejk represent the highest point of demand in the billing cycle k. For

instance, considering the highest load of the month, all data points i for the load

j should be limited to the same maximum limit Ppeak−shavejk . The peak power is

used to calculate the optimal solution power cost. Similarly, the power imported

from the grid to the battery at time i (Pgrid−batti) is also restricted to the maximum
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power for the billing cycle k:

Pgrid−batti ≤ P batt
peak−shavek

. (8.5)

The battery charge power, Pgrid−batti and the discharge power, Pbatt−loadij , are

both limited by the nominal power flow from the inverter to the battery

0 ≤Pgrid−batti + Pbatt−loadij ≤ P nom
inv , (8.6)

where P nom
inv corresponds to the inverter size. The battery energy content at time

step i (Ebatti) is a fraction of the total energy content of the battery installed and

satisfies the recurrence relation

Ebatti = (Ebatti−1
∗ SDbatt

d
) + (ηbatt ∗ Pbatti ∗∆tres), (8.7)

where SDbatt is the self-discharge factor of the battery, and d = 96 is the conversion

factor to 15 minutes time slots. Pbatti is an auxiliary variable used to store the

bidirectional power flow from the storage inverter to the battery. It is correlated

with the average one-way efficiency of the inverter, ηinv, as follows

Pbatti = (ηinv ∗ Pgrid−batti) + (− 1

ηinv
∗ Pbatt−loadij ). (8.8)

The energy content of the storage system is further confined by an upper bound-

ary, which decreases upon usage and aging according to the SoH. The SoH is defined

as the irreversible capacity fade over time, related to the nominal battery capacity,

and Eusable
batt represents a fraction of the total energy content of the battery installed

limited to the maximum and minimum state of charge (SoC) that the battery can

achieve. The two constrains can be represented as

Ebatti ≤ Eusable
batt ∗ SoHi, (8.9)

Eusable
batt ≤ Enom

batt ∗ (SoCmax − SoCmin). (8.10)

The state of health (SoH) also meets the recurrence relation

SoHi = SoHi−1 − (agingcyci + agingcali) · 0.2. (8.11)

where agingcyci is the energy throughput dependent cyclic aging, and agingcali is the

pure time-dependent irreversible loss of battery capacity called calendric aging [118],

[120], [128], [138]

agingcyci = agingcyci−1
+ 0.5 · |Pbatti ·∆tres|

Ebatti

· 1

Life80%Cyc

, (8.12)
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agingcali =(3.676 · 10−7 · SoC + 6.246 · 10−6) · (i ·∆tres). (8.13)

SoH estimates the overall aging using the superposition principle [120]. A the-

oretical maximum charge throughput is defined via Life80%Cyc , i.e. the number of full

equivalent cycles until 80% capacity is reached if there were no calendric aging.

The optimal solution aims to reduce the overall cost by minimizing the expenses

for service charges and implicit cost caused by battery degradation. At the same

time, it must satisfy all constraints described above. This cost model is divided into

three components, i.e.:

minimize Cgrid
charge + Cbatt

charge + Cstorage deg. (8.14)

The first component Cgrid
charge comprises the sum of the customer charge, the peak

induced cost based on the highest point of demand (or peak) within billing period,

and the cost of energy purchased from the grid which is directly used to attend the

industrial load j or charge the battery. This component can be represented as

Cgrid
charge =

∑︂
k

Cfix ·∆daysk+∑︂
j

∑︂
k

Cpowerj · Ppeak−shavejk+∑︂
k

Cpower · P batt
peak−shavek

+∑︂
i

∑︂
j

Cbuy · Pgrid−loadij+∑︂
i

Cbuy · Pgrid−batti ,

(8.15)

where Cfix represents the fixed daily charge, ∆daysk is related to the number of

days in the billing period k, Cpower is the peak-power tariff, and Cbuy is the retail

electricity price. The second component Cbatt
charge represents the amount that each

industrial load pays for energy coming from the storage system. It is defined as

Cbatt
charge =

∑︂
i

∑︂
j

Cvar
batt

Life80%cyc

· Pbatt−loadij , (8.16)

where Cbatt
var is the energy specific cost of a storage system, and Life80%cyc denotes the

theoretical maximum charge throughput, i.e. the number of FEC until 80% capacity

is reached if there is no calendric aging. The third component estimates the storage

system degradation cost that can be represented as

Cstorage deg =
∆SoH

(1− αReplace)
· (Enom

batt ) + (Pnom
inv ) · ∆t

Tinv
, (8.17)
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where ∆t describes the time covered with the simulation and ∆SoH the battery

aging.

8.4 Case Study

This section presents an application of the developed methodology for dimensioning

BESaS for industrial peak shaving. The industrial customer has no responsibility

over the storage system, which is offered as a service. In this model, the BESS is

considered an industrial customer by the utility company. As a result, the energy

used to charge the battery and the energy used for immediate consumption have the

same cost, and both have to take into consideration the industrial customer peak

power calculation.

8.4.1 Case Description for Multiple Industrial Customers

Figure 8.5 shows the industrial load profiles considered in this case of study. The

simulations consider real demand averaged with a resolution of ∆tres= 15 min [8].

The maximum value in each 15 minutes time spam is used for demand charge over

the billing cycle.
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Figure 8.5: Load profiles.

The results presented in the next sections describe the optimal BESS component
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sizes, the optimal operation strategy, the degradation impact, and the economic

analysis for different combinations of industrial clients.

8.4.2 Effect of Sizing and Degradation of the BESS for Multiple
Industrial Customers

The main goal of this work is to decrease the peak of demand of multiple clients

with one BESS solution. The optimal storage and inverter size for each profile (A-

E), as well as the total load, the number of full equivalent cycles and the storage

degradation at the end of one year, and the number of years before end of life (EoL),

are presented in Table 8.4.

Table 8.4: BESS sizing and degradation comparison of system optimization results.
# Profiles Total load

(MhW/a)
Battery
size

Inverter
size

Number
of FEC

SoH at the
end of year

Number of Years
before EoLA B C D E

1 x 5,441 118 111 31 98.22% 11

2 x 270 189 203 5 98.79% 16

3 x 2,005 580 193 10 98.68% 15

4 x 1,545 381 127 12 98.63% 14

5 x 887 212 71 7 98.75% 16

6 x x 5,710 197 203 23 98.38% 12

7 x x 7,446 580 193 15 98.57% 13

8 x x 6,985 348 127 22 98.42% 12

9 x x 6,328 342 114 16 98.56% 13

10 x x 2,275 619 206 11 98.67% 15

11 x x 1,814 374 204 14 98.59% 14

12 x x 1,157 498 203 6 98.78% 16

13 x x 3,550 600 200 18 98.51% 13

14 x x 2,893 580 193 14 98.60% 14

15 x x 2,432 390 130 16 98.55% 13

16 x x x 7,716 619 206 15 98.57% 13

17 x x x 7,255 373 204 22 98.41% 12

18 x x x 6,598 496 203 13 98.62% 14

19 x x x 8,991 601 200 21 98.43% 12

20 x x x 8,333 585 195 18 98.50% 13

21 x x x 7,873 383 128 23 98.39% 12

22 x x x 3,820 625 208 18 98.51% 13

23 x x x 3,162 619 206 14 98.60% 14

24 x x x 2,702 530 204 13 98.61% 14

25 x x x 4,437 601 200 20 98.45% 12

26 x x x x 9,260 625 208 21 98.43% 12

27 x x x x 8,603 620 207 18 98.50% 13

28 x x x x 8,143 525 204 18 98.49% 13

29 x x x x 9,878 604 201 24 98.38% 12

30 x x x x 4,707 625 208 20 98.45% 12

31 x x x x x 10,148 625 208 23 98.38% 12

According to this table, the cyclic aging (number of FEC) has a small impact

in the SoH. For instance, in simulation ’1’ which considers only the industrial

‘Profile A,’ the total number of FEC after one year is less than 1% of Life80%cyc . To
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gain a better understanding of the impacts of calendric and cycling degradation in

peak-shaving applications, two battery usage strategies are considered. The first

strategy is based on the optimal solution obtained using the linear programming

(LP) algorithm. The second strategy is naive and assumes that the BESS is always

at full SoC capacity, drained to provide enough power to peak shave, fully charged

again, and then stays idle until the next peak of load.
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(b) Naive strategy

Figure 8.6: Time correlated evolution of battery state of charge (SoC) and resulting
state of health (SoH) decline for the optimal strategy (left) and naive strategy
(right).

Figure 8.6 illustrates the periodically changing charge level of the storage system

(SoC), and the evolution of battery degradation (SoH) for cycling and calendar aging

for a ten-year period. The image at the right shows the variation when the optimal

strategy is followed, and the image at the left shows the SoC and SoH considering

a naive strategy. That means, the battery is kept at full nominal capacity and then

drained when the load reaches above the peak shave limit. It can be noticed that

the number of times that the battery needs to intervene to avoid peaks remains

the same. For this reason, the cycling aging is exactly the same in both cases.

In contrast, the calendric aging distinctly differs because of the SoC dependency

described in equation (2.2). As a result, the naive strategy depleted the battery

30% faster than the optimal strategy. The optimal strategy also shows that the

battery cycles can be short, meaning that with adequate forecasting the battery can

be charged to the maximum necessary level just before the need to be drained.

Next, to better understand how the battery usage impacts the industrial clients,

consider Table 8.5 which shows the monthly peak load capping for simulations with

‘Profile A,’ ‘Profile B,’ and ‘Profile C.’ In general, it is possible to notice that the

peak load shaved increased. For instance, a peak reduction of 7.78% on average
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Table 8.5: Profile A and profile B simulations. Total peak load shaved per billing
cycle and total number of capped peaks in one year.

#
Profiles Total load

MhW/a
Peak load capping (%)

Number
capped
peaksA B C D E Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 x 5441 6.42 8.35 9.96 9.40 7.68 8.84 9.96 5.55 10.10 6.28 4.51 6.25 782
2 x 270 69.98 38.69 12.07 15.26 71.93 79.10 38.40 64.58 64.24 70.99 35.68 74.62 1,137
3 x 2005 13.59 10.43 18.14 15.45 10.66 17.21 12.79 43.15 34.36 6.17 8.25 18.69 651

6 x
5710

6.44 8.35 9.98 9.40 7.69 9.07 11.41 5.57 11.02 6.40 4.63 6.24 856
x 70.02 39.71 12.97 16.30 72.20 79.10 39.57 65.08 64.60 71.17 36.28 74.74 1,351

7 x
7446

6.73 8.44 10.27 9.78 7.72 9.02 11.53 5.86 9.57 6.52 5.15 6.68 885
x 13.59 10.43 18.59 15.54 11.29 17.50 14.33 42.10 34.36 6.40 8.31 18.61 669

10 x
2275

70.02 39.71 12.97 16.89 72.20 80.29 39.51 65.46 64.64 71.17 36.40 74.82 1,441
x 13.59 10.43 18.14 15.45 10.69 17.21 13.93 44.90 36.64 6.40 8.25 18.69 676

16 x
7716

6.73 8.46 10.27 9.78 7.79 9.07 11.53 5.96 9.75 6.43 5.15 6.68 896
x 70.02 39.71 12.97 16.89 72.24 80.29 39.90 65.46 64.73 71.17 36.46 74.82 1,464

x 13.59 10.43 18.59 15.54 11.23 17.44 14.37 43.91 36.29 6.43 8.31 18.69 685

26 x

9260

6.73 8.50 10.23 9.73 7.79 9.27 11.80 5.61 9.57 6.54 5.33 6.75 901
x 70.02 39.71 12.97 16.89 72.28 81.16 39.90 65.46 64.86 71.27 36.40 74.78 1,488

x 13.62 10.66 20.89 17.53 12.53 19.79 15.93 41.95 37.04 6.81 8.82 19.81 759
x 19.50 13.82 25.73 27.25 23.44 29.68 33.20 27.10 23.14 26.12 21.39 17.82 888

27 x

8603

6.80 8.61 10.28 9.82 7.81 9.07 11.53 5.61 9.75 6.58 5.22 6.79 908
x 70.07 39.71 12.82 16.89 72.20 80.47 39.90 65.46 64.73 71.22 36.40 74.82 1,467

x 14.45 11.16 18.97 16.54 11.55 17.63 14.50 44.10 36.37 6.62 8.50 18.88 724
x 21.39 21.48 17.54 25.49 34.94 34.26 23.57 14.29 14.64 30.62 12.79 4.52 889

31 x

10148

6.81 8.50 10.23 9.78 7.79 9.27 11.80 5.61 9.57 6.31 5.33 6.75 899
x 70.07 39.71 12.97 16.89 72.24 81.16 39.96 65.46 64.86 71.27 36.40 74.78 1,493

x 14.45 11.10 20.98 17.66 12.53 19.79 15.93 41.95 37.04 6.87 8.82 19.81 776
x 19.52 13.96 25.90 27.28 23.44 29.73 33.20 27.10 22.64 26.22 21.39 17.82 895

x 21.64 22.03 17.95 26.03 35.35 34.51 23.82 14.29 14.75 31.71 13.40 4.63 933

which represents 782 capped peaks can be achieved when ‘Profile A’ is BESaS’s

only customer. This average increases to 8.15% and 899 capped peaks when all

five profiles are present. Similarly, ‘Profile B’ has an increase of 0.85% on average,

and ’Profile C’ peak reduction goes from 17.41% when it is the sole client to 18.91%

when coupled with the other four profiles. The number of capped peaks in ‘Profile B’

are smaller but represent a significant portion of the demand charges. On average,

‘Profile B’ consumes 31 kWh, but its monthly demand peaks vary from 54 kW to

257 kW. These large demand spikes represent an excellent opportunity for peak

shaving. For this reason, ‘Profile B’ has the most significant peak load capping.

Further considering ‘Profile A’ with 5,441 MWh/a, the optimizer determines the

optimal storage size of 118 kWh and inverter nominal power of 111 kW. Figure 8.7

illustrates the power flows for a five-day period during the second week of July.

The left panel shows the load consumption, the power flow imported from the grid

for direct use or to charge the battery, as well as the maximum power peak after

shaving. The right panel shows the power profile of the storage system in the terms

of C-rate, and the evolution of battery capacity fade (SoH). It clearly shows that

the capacity fade is stronger when the energy throughput is high.

Furthermore, the battery is an industrial client that is charged based on the

energy consumption and the power demand. For this reason, the optimizer avoids
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Figure 8.7: Power flow analysis for a five-day period: load and power flows within
the system (left); time correlated evolution of battery power profile and resulting
state of health (SoH) decline (right).

charging the battery using large power spikes, resulting in the flat charging profile

seen in Figure 8.7b.

8.4.3 Economic Analysis

This section discusses a number of relevant economic indicators. Table 8.6 shows the

optimal storage, the inverter size, and the economic results for simulations including

‘Profile A,’ ‘Profile B,’ and ‘Profile C.’ The total BESS investment comprises the

Table 8.6: Profile A, profile B and profile C economic comparison of system opti-
mization results.
# Profiles Battery

size
Inverter
size

Total BESS
investment

BESS
share

Individual
Investment

Operation
Cost

Saving Grid
charges

BESaS
Charges

Total
Savings

Origial grid
charges

%
SavingsA B C D E

1 x 118 111 99963 100% 9,088 1,265 16,868 10300 5,303 274,763 2%
2 x 189 203 163092 100% 10,193 2,198 16,619 10683 3,738 29,279 13%
3 x 580 193 434405 100% 28,960 3,767 19,408 32103 -16,462 149,841 -11%

6 x
197 203 168782

51% 7,192 1,141 17,411 8261 8,009 274,763 3%
x 49% 6,873 1,091 16,710 7453 8,166 29,279 28%

7 x
580 193 434405

47% 15,818 1,783 17,593 17666 -1,856 274,763 -1%
x 53% 17,598 1,984 19,591 19955 -2,348 149,841 -2%

10 x
619 206 463263

46% 14,137 1,839 16,779 15363 -423 29,279 -1%
x 54% 16,747 2,178 19,818 19055 -1,415 149,841 -1%

16 x
619 206 463263

33% 11,601 1,308 17,655 13138 3,209 274,763 1%
x 31% 10,990 1,239 16,788 11978 3,571 29,279 12%

x 37% 13,045 1,470 19,870 15079 3,321 149,841 2%

26 x

625 208 468285

23% 8,848 921 17,703 10425 6,357 274,763 2%
x 21% 8,380 872 16,831 9401 6,557 29,279 22%

x 27% 10,404 1,083 20,843 12654 7,106 149,841 5%
x 29% 11,392 1,185 22,849 13548 8,115 113,923 7%

27 x

620 207 464339

28% 9,887 1,115 17,707 11404 5,189 274,763 2%
x 26% 9,341 1,053 16,796 10300 5,443 29,279 19%

x 32% 11,364 1,281 20,372 13457 5,635 149,841 4%
x 14% 5,126 578 9,156 6085 2,493 58,926 4%

31 x

625 208 468285

20% 7,877 820 17,688 9407 7,461 274,763 3%
x 19% 7,466 777 16,831 8447 7,608 29,279 26%

x 24% 9,374 975 21,077 11618 8,483 149,841 6%
x 26% 10,145 1,056 22,838 12245 9,538 113,923 8%

x 11% 4,162 433 9,321 5162 3,725 58,926 6%

overall cost Cstorage described in Equation (8.2). The BESS share factor ∆share
storagej

represents the fraction of peak of demand for each industrial customer j. It can be
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estimated as:

∆share
storagej

=
∆peakj∑︁
j ∆peakj

, (8.18)

∆peakj =

∑︁
k(Pload−maxjk − Ppeak−shavejk)

k
, (8.19)

where (Pload−maxjk − Ppeak−shavejk) describes the difference between the maximum

load peak without peak shaving and the maximum load peak after peak shaving per

billing period k, and ∆peakj is the average of this difference in all billing periods.

The BESS share factor is used to define the individual investment each client must

commit annually:

Cshare
storagej

=
Cstorage

EoL
·∆share

storagej
, (8.20)

where the total storage cost Cstorage is divided by the estimated number of years

before end of life (EoL) (Table 8.4). The operation cost, Copex,batt, is calculated as

0.6% of the investment plus 6$/kW and divided amongst the industrial customers

according to the respective BESS share factor. Table 8.7 shows the OPEX compo-

nents considered in this work.

Table 8.7: Operation cost (OPEX) composition.

Insurance 0.30%
System management 0.20%
Service contract 1 $/kW
Maintenance reserve 5 $/kW
Administrative costs 0.10%

The saving grid charges represent the amount each customer saves by using the

BESaS system:

Savingsgrid−chargesj
= Cbuy ·

∑︁
i Pbatt−loadij +

(︂
Cpowerk · (Pload−maxjk − Ppeak−shavejk)

)︂
,

(8.21)

where Cbuy and Cpowerk are the energy and power cost respectively. Additionally,

the cost of using the BESaS (BESaSchargesj ) is extracted from the parameter of the

cost function (equation (7.15)) and it can be expressed as follows:

BESaSchargesj =

(︃(︂∑︁
i

Cvar
batt

Life80%cyc
· Pbatt−loadij

)︂
+
(︂
Cpower ·

∑︁
k P

batt
peak−shavek

·∆share
storagej

)︂
+Cshare

storagej

)︃
·∆profit,

(8.22)

where the first component denotes the energy cost, and the second component de-

notes the power cost for the billing period k. The share factor ∆share
storagej

is also
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considered to define the fraction of the storage demand peak to which each cus-

tomer must commit. The charges are subject to the profit margin that the BESaS

owner must apply. To make it easier to find the break even point, the results in

Table 8.6 consider ∆profit = 1. Therefore, the total savings is a static calculation:

TotalSavingsj = Savingsgrid−chargesj
− (OPEXj +BESaSchargesj ). (8.23)

The original charges Ctotal (equation (8.1)) represents the electricity bill without

storage. Finally, the last column ‘% savings’ describes how much of the original grid

charges can be saved using BESaS using:

FracSavingsj =
TotalSavingsj

Ctotal
. (8.24)

Table 8.6 shows that ‘Profile C’ has a negative savings balance when contracting

BESaS alone or individually coupled with ‘Profiles A’ or ‘Profile B.’ This is happen-

ing because of the seasonal shape of its load profile. In contrast, BESaS starts to

become more attractive to this profile when more clients are involved, and the total

load shape reduces the seasonal impact of ‘Profile C.’

The profit margin can vary between different BESaS providers. Figure 8.8 illus-

trates this variation for four scenarios presented in Table 8.6. In these examples,

the grid charges savings and the operation costs are constant.

Figure 8.8a confirms that having only client A and client B is not desirable. At

the same time, Figure 8.8b shows that adding ’Profile C’ makes contracting a BESaS

more attractive, but with a small margin for negotiation (∆profit ≤ 22%). Indeed,

the scenario with all five profiles is the most appealing because the margin profit

can variates the most. For instance, for scenario 21, if the maximum profit margin

∆profit = 22% is kept, customer E and customer D can save approximately $3000

and $7000, respectively. Maximizing the number of clients also allows individual

negotiation with each customer. For instance, Profile E may looses interest in hiring

a BESaS when ∆profit ≥ 70%, but the negotiations with customer B can be extended

to ∆profit ≤ 90%

After confirming that contracting a BESaS becomes more attractive when the

number of industrial customers increases, it is necessary to perform the economic

analysis from the BESaS perspective. Table 8.8 summarizes the economic aspects

of providing a BESaS in the same scenarios as presented in Table 8.6. This table

shows the BESS and inverter sizes, the operation cost, and the BESS charge with
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(d) Total Savings Scenario 31

Figure 8.8: Economic analysis of four selected scenarios. The profit margin varies
from 0% (reference scenario) to 100% of the BESaS charges. Each panel shows the
total savings (equation (8.23)).

∆profit = 1. Additionally, there is the total return equal to the Internal Return Rate

(IRR) [11] calculated without inflation or price changes based on the total savings

for the first year. Likewise, the pay back is a static calculation:

PayBack =
Cstorage∑︁

j BESaSchargesj
. (8.25)

As mentioned before, the profit margin can be individually negotiated with each

client. The payback can be decreased by doing that. However, this paper neglects

this option and considers the same profit margin variation applied to all clients

within a scenario. To show the impact of ∆profit in the pay back period, refer

Table 8.8: BESaS economic comparison from the provider point of view

#
Profiles Battery

Size
Inverter
size

Operation Cost BESS charges
Total return

(IRR)
Payback
(years)A B C D E

1 x 118 111 1,265 10,300 8% 10

2 x 189 203 2,198 10,683 2% 15

3 x 580 193 3,767 32,103 3% 14

6 x x 197 203 2,232 15,714 6% 11

7 x x 580 193 3,767 37,621 5% 12

10 x x 619 206 4,017 34,418 3% 13

16 x x x 619 206 4,017 40,195 5% 12

26 x x x x 625 208 4,061 46,028 7% 10

27 x x x x 620 207 4,027 41,246 5% 11

31 x x x x x 625 208 4,061 46,879 7% 10
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to Figure 8.9. As expected, the payback period decreases when the profit margin

increases.
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Figure 8.9: Payback margin.

Looking only to Table 8.8 and Figure 8.9 the BESaS provider needs to make the

profit margin as high as possible. In contrast, the industrial customers want to keep

the profit margin as low as possible to reduce their expenses. As a result, it can be

assumed that the negotiations can be concluded once a balance is found. To find

this balance, it is necessary to consider the BESaS income after the BESS pay off

and before the BESS EoL, e.g .:

BESaSProfit = BESaScharges · (Life80%cal − PayBack). (8.26)

In the same way, the total savings during the BESaS life time are considered from

the industrial client perspective:

LifeSavings =
∑︂
j

TotalSavingsj · Life80%cal . (8.27)

After plotting the two lines resulting from equations 8.26 and 8.27, it is possible

to find the balance between the profit of BESaS provider and savings of the industrial

client. Figure 8.10 shows the break even points for the four sample scenarios.

As previously highlighted, Scenario 10 is not profitable for the industrial clients.

For this reason, the lines in Figure 8.10a never cross. However, the other three

sample scenarios show balance points at various locations. Scenario 16 with 3 load

profiles and scenario 27 with 4 load profiles have the balance point at ∆profit = 7%

and ∆profit = 16%, respectively. Following this trend, scenario 31 witch considers five

industrial profiles strikes the balance for profit margin at ∆profit = 28%. Figure 8.10

further supports the hypothesis that the higher the number of customers contracting

a BESaS service, the greater the negotiation margin.
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Figure 8.10: Break even point analysis of four selected scenarios. Each panel shows
the BESS profit (equation (8.26)) and the total savings during the BESaS life time
(equation (8.27)).

8.5 Final Remarks

This chapter describes a linear model to determine the optimal size of BESS for

industrial peak shaving applications. The main contribution is the introduction of

the concept of providing Battery Energy Storage as a Service (BESaS), and design

of a novel system for sharing a single BESS between multiple industrial customers.

The proposed approach significantly decreases the idle time of the BESS and makes

a strong business for their peak shaving applications.

The optimization approach formulated in this work also minimizes the storage

degradation cost and the maximum power peak for all clients. The model finds

not only the best component sizes and pricing from the point of view of industrial

customers, but also from the perspective of BESS service provider. The desirability

of contracting a BESaS is not only dependent on the characteristics of the load

profile(s), but is also directly proportional to the number of clients sharing the

BESS service. As a general trend derived from the load profiles under investigation,

a seasonal load profile is not suitable for peak shaving because of concentration of a

number of peaks in a small time window. However, combining various load profiles
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produces a featureless seasonal shape and makes the aggregated load more amenable

for peak shaving.

The number of customers also impacts the economic balance. The simulation re-

sults have shown that the same optimally-sized BESS system could support different

combinations of industrial clients. For instance, in scenario 30, a 625kWh/208kW

BESS attending 4 clients can shave 4,086 peaks and provide $20,176 of annual sav-

ings. A BESS of the same size is found to be optimal for scenario 31 with 5 clients,

shaving a total of 4,996 peaks and providing $29,354 of annual savings. The fact

that when a additional customer shares the BESS costs, there is a resulting 45%

increase in the total savings. It is an interesting consequence of relying on BESaS.

In terms of profit margin for the BESaS provider, the extra customer translates to

an increase from 11% in scenario 30 to 28% in scenario 31.

As a general remark, most scenarios favor storage system, even considering the

current cost of storage and retail energy tariff used in this study. The expected

increases in electricity prices and the reduction of BESS costs are likely to accelerate

this trend in the future. Although this work uses parameters corresponding to

market conditions in Alberta, Canada, the described methodology can be easily

adapted to different retail electricity tariff models and applied to other jurisdictions

that use or consider peak power penalty.
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Chapter 9

Conclusion and Future Studies

This thesis highlighted the necessity for finding the most cost-effective BESS di-

mensioning using a variety of residential load demand and local PV generation

profiles. At the same time, it shows the importance of considering costs caused by

battery degradation in the search for the optimal solution. Additionally, the linear

programming based predictive energy management system and the fuzzy logic con-

trolled energy management system were shown to provide superior technical and

economic performance compared to other common operational strategies.

The research contributions of this thesis can be summarized as follows:

Optimal component sizing for battery system and power electronics:

• A comparison of the three storage systems reveals that different storage tech-

nologies perform best for specific combinations of PV generation and local

demand. NMC technology appears most economical for households with very

small local demand. PbA chemistry shows some advantages for a mid-scale

demand and high PV generation. LFP batteries provide better results than

PbA and NMC at higher local electricity demand coincident with higher PV

generation.

• In peak shaving applications, the optimal BESS size and number of capped

peaks are directly related to the industrial load profile.

• As an overall trend, for the exemplary load profiles under investigation, the

monthly billing scheme is more attractive for industrial customers because of

the number of peaks that can be capped with acceptable BESS sizes.

• The optimization approach formulated for BESSaS approach minimizes the

storage degradation cost and the maximum power peak for all clients. The
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model finds not only the best component sizes and pricing from the point of

view of industrial customers, but also from the perspective of BESS service

provider.

• The desirability of contracting a BESaS is not only dependent on the charac-

teristics of the load profile(s), but is also directly proportional to the number

of clients sharing the service.

• The number of customers also impacts the economic balance. The simulation

results have shown that the same optimally-sized BESS system could support

different number of industrial clients. When additional customers share the

BESS costs, the total savings increase.

Energy management system:

• A linear programming-based predictive energy management system (LP-PEMS)

controller for residential PV-BESS provides superior technical and economical

performance compared to other common operational strategies.

• A fuzzy logic controller implementing PV/BESS energy management based on

optimal power flows (determined for a real system using linear programming)

was designed by differential evolution. It offers performance comparable to

the optimized system.

• The proposed approach is robust as the algorithm was able to find similar

FLC configurations in all independent runs.

• At the same time, it is easy to implement for other systems, and can be

interpreted to aid understanding of the PV/BESS behavior.

• From energy management perspective, offering BESSaS allows to decrease

the idle time of the storage system by sharing the storage among multiple

industrial clients.

The impact of battery degradation:

• The linear programming results reveal the potential of reducing the calendric

aging by five times when comparing with the naive strategy.
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• The research confirms that the depth of discharge cyclic aging dependency is

not relevant to peak shaving applications, and can be easily substituted by the

full equivalent cycle calculation to obtain an acceptable degradation estimate

for BESS.

• The linear model proposed for peak shaving applications gives an approxi-

mation of the real degradation, and small variations will be present when

compared with a real system.

• The linear aging model can be used in the design of a general framework for

sizing of battery energy storage systems in peak shaving applications.

9.1 Future Research Direction

There is opportunity for further research in the topics addressed in this thesis. The

studies proposed in this work are limited to specific methodologies or parameteri-

zations to keep the scope of the research manageable, and these limitations provide

avenues for further research.

The Economic study on residential BESS optimization uses parameters corre-

sponding to German market conditions and regulations, the described methodology

can be easily adapted to other countries that use feed-in and retail electricity tariff

models, e.g . Australia, Canada, France, Greece, and many others. German regula-

tions for the PV-to-grid feed-in limit and the complex scheme for storage systems

subsidies results in various constraints and challenging model scenarios. The adap-

tation to other regions is the subject of present work. This study is limited to the

optimization of storage systems using historical data on specific load demand and

PV generation profiles. A well parameterized energy management controller for a

BESS will also need accurate forecasting of load demand and PV generation [112]

to achieve the best operation. Although such forecasting tasks are outside the scope

of this work, they will be considered and used for energy management strategies in

future.

The LP-Based management system considers historical data as the sort-term

energy production and consumption forecasts. Future work will concentrate on

the determination of the optimal prediction horizon and on the combination of

energy management with other system components including controllable loads and

different types of energy storage devices.
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Similarly, the evolutionary fuzzy controller uses the optimal power flow for a

specific household to find the best parameters for the rule-based system, and with

additional research, it is likely our model could be refined or improved. The con-

troller can be improved using a more refined rule base and additional input and/or

control variables. In addition to that, data from multiple houses could be consider

to make the initial fuzzy system more generic, and allow a faster convergence to a

stable solution.

When constructing the optimization model to size the most cost-effective BESS it

is necessary to know in advance the industrial customer load profile signal shape, as

well as average peaks to define potential shaving opportunities. To consider the load

profiles as uncertainty leads to new research opportunities. Future research could

employ machine learning strategies to adapt the storage system size according to a

short time forecast. Additionally, the BESS could be used in other application so as

to balance the reactive power in the grid, or supply energy to residential customers.
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[85] P. Musilek, P. Krömer, and R. H. C. H. Martins, “Optimal energy manage-
ment of residential pv/hess using evolutionary fuzzt control,” in 2017 IEEE
Congress on Evolutionary Computation, CEC 2017, 2017. iv, 15, 40

[86] M. Naumann and P. T. Keil, institute for electrical storage technology internal
calendric aging studies. Unpublished work. 132

[87] M. Naumann, R. C. Karl, C. N. Truong, A. Jossen, and H. C. Hesse, “Lithium-
ion battery cost analysis in pv-household application,” Energy Procedia, vol. 73,
pp. 37–47, 2015. 11, 18, 33, 36

[88] M. Naumann, R. C. Karl, C. N. Truong, A. Jossen, and H. C. Hesse, “Lithium-
ion battery cost analysis in pv-household application,” Energy Procedia, vol. 73,
pp. 37 –47, 2015, issn: 1876-6102. doi: http://dx.doi.org/10.1016/j.
egypro.2015.07.555. 76, 95

[89] M. Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems, 1st.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2001,
isbn: 0201711591. 16

[90] S. P. Networks, Annual report / sa power networks, English, Journal, 2013. 78

[91] J. Neubauer and M. Simpson, “Deployment of behind-the-meter energy stor-
age for demand charge reduction,” doi: 10.2172/1168774. 94

[92] T. A. Nguyen, M. L. Crow, and A. C. Elmore, “Optimal sizing of a vana-
dium redox battery system for microgrid systems,” IEEE Transactions on
Sustainable Energy, vol. 6, no. 3, pp. 729–737, 2015, issn: 1949-3029. doi:
10.1109/TSTE.2015.2404780. 95

[93] Nissan. xStorage by Nissan-Clean Power Energy. 2017. Available online.
[Online]. Available: https://www.nissan.co.uk/experience-nissan/
electric-vehicle-leadership/xstorage-by-nissan.html(accessedon4May2017).

19

[94] J. Nocedal and S. Wright, Numerical Optimization, S. S. B. Media, Ed. New
York, NY, USA, 2006. 30

[95] V. Novák, J. Mockor, and I. Perfilieva, Mathematical principles of fuzzy logic,
ser. Kluwer international series in engineering and computing science. Boston,
MA: Kluwer, 1999. [Online]. Available: https://cds.cern.ch/record/
425778. 16

[96] S. Nykamp, A. Molderink, J. L. Hurink, and G. J. M. Smit, “Storage opera-
tion for peak shaving of distributed pv and wind generation,” in 2013 IEEE
PES Innovative Smart Grid Technologies Conference (ISGT), 2013, pp. 1–6.
doi: 10.1109/ISGT.2013.6497786. 76, 95

[97] B. Nykvist and M. Nilsson, “Rapidly falling costs of battery packs for electric
vehicles,” nature climate change, vol. 5, no. 4, p. 329, 2015. 11, 18

126

https://doi.org/http://dx.doi.org/10.1016/S0038-092X(98)00139-X
https://doi.org/http://dx.doi.org/10.1016/S0038-092X(98)00139-X
https://doi.org/http://dx.doi.org/10.1016/j.egypro.2015.07.555
https://doi.org/http://dx.doi.org/10.1016/j.egypro.2015.07.555
https://doi.org/10.2172/1168774
https://doi.org/10.1109/TSTE.2015.2404780
https://www.nissan.co.uk/experience-nissan/electric-vehicle-leadership/xstorage-by-nissan.html (accessed on 4 May 2017)
https://www.nissan.co.uk/experience-nissan/electric-vehicle-leadership/xstorage-by-nissan.html (accessed on 4 May 2017)
https://cds.cern.ch/record/425778
https://cds.cern.ch/record/425778
https://doi.org/10.1109/ISGT.2013.6497786


[98] B. Nykvist and M. Nilsson, “Rapidly falling costs of battery packs for elec-
tric vehicles,” Nature Clim. Change, vol. 5, no. 4, pp. 329–332, 2015, Let-
ter, issn: 1758-678X. [Online]. Available: http://dx.doi.org/10.1038/
nclimate2564. 76, 80, 95

[99] E. Oh, S.-Y. Son, H. Hwang, J.-B. Park, and K. Y. Lee, “Impact of demand
and price uncertainties on customer-side energy storage system operation
with peak load limitation,” Electric Power Components and Systems, vol. 43,
no. 16, pp. 1872–1881, 2015. doi: 10.1080/15325008.2015.1057883. eprint:
https://doi.org/10.1080/15325008.2015.1057883. [Online]. Available:
https://doi.org/10.1080/15325008.2015.1057883. 95

[100] N. Omar, M. A. Monem, Y. Firouz, J. Salminen, J. Smekens, O. Hegazy,
and J. Van Mierlo, “Lithium iron phosphate based battery—assessment of
the aging parameters and development of cycle life model,” Appl. Energy,
pp. 1575–1585, 2014. doi: http://dx.doi.org/10.1016/j.apenergy.
2013.09.003. 132

[101] W. Pedrycz, Fuzzy Control and Fuzzy Systems, 2nd. New York, NY, USA:
John Wiley & Sons, Inc., 1993, isbn: 0471934755. 16

[102] Photovoltaik4all. Available online. [Online]. Available: http://www.photovoltaik4all.
de/en/wechselrichter(accessedon7September2016). 24

[103] A. Piepenbrinck, “E3/dc system calculator.,” Available online: http://s10.
e3dc.com/E3dcWeb/SystemCalculator/syscalc.php (accessed on 4 May
2017)., [Online]. Available: http://s10.e3dc.com/E3dcWeb/SystemCalculator/
syscalc.php(accessedon4May2017). 11, 18

[104] G. I. Power, Handbuch f”ur Verschlossene Gel-Blei-Batterien. ; Exide Tech-
nologies GmbH.: B”udingen, Germany, 2013. 132

[105] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution A
Practical Approach to Global Optimization, ser. Natural Computing Series.
Berlin, Germany: Springer-Verlag, 2005. 16

[106] V. Quaschning, Unabhängigkeitsrechner. Accessed on 9 February 2017. [On-
line]. Available: pvspeicher.htw-berlin.de/unabhaengigkeitsrechner/.

11, 18

[107] ——, Representative Electrical Load Profiles of Residential Buildings in Ger-
many with a Temporal Resolution of One Second, H. B.-U. of Applied Sci-
ences, Ed. Berlin, Germany, 2015. 29, 30

[108] C. Rahmann, B. Mac-Clure, V. Vittal, and F. Valencia, “Break-even points
of battery energy storage systems for peak shaving applications,” Energies,
vol. 10, no. 7, 2017, issn: 1996-1073. doi: 10.3390/en10070833. [Online].
Available: http://www.mdpi.com/1996-1073/10/7/833. 2, 12, 64, 75

[109] T. Reddy, Linden’s Handbook of Batteries. 4th ed.; McGraw-Hill: New York,
NY, USA, 2011. 132

[110] M. J. Reno, K. Coogan, S. Grijalva, R. J. Broderick, and J. E. Quiroz, “Pv
interconnection risk analysis through distribution system impact signatures
and feeder zones,” in PES General Meeting— Conference & Exposition, 2014
IEEE, IEEE, 2014, pp. 1–5. 1

127

http://dx.doi.org/10.1038/nclimate2564
http://dx.doi.org/10.1038/nclimate2564
https://doi.org/10.1080/15325008.2015.1057883
https://doi.org/10.1080/15325008.2015.1057883
https://doi.org/10.1080/15325008.2015.1057883
https://doi.org/http://dx.doi.org/10.1016/j.apenergy.2013.09.003
https://doi.org/http://dx.doi.org/10.1016/j.apenergy.2013.09.003
http://www.photovoltaik4all.de/en/wechselrichter (accessed on 7 September 2016)
http://www.photovoltaik4all.de/en/wechselrichter (accessed on 7 September 2016)
http://s10.e3dc.com/E3dcWeb/SystemCalculator/syscalc.php
http://s10.e3dc.com/E3dcWeb/SystemCalculator/syscalc.php
http://s10.e3dc.com/E3dcWeb/SystemCalculator/syscalc.php (accessed on 4 May 2017)
http://s10.e3dc.com/E3dcWeb/SystemCalculator/syscalc.php (accessed on 4 May 2017)
pvspeicher.htw-berlin.de/unabhaengigkeitsrechner/
https://doi.org/10.3390/en10070833
http://www.mdpi.com/1996-1073/10/7/833


[111] M. Resch, B. Ramadhani, J. Buhler, and A. Sumper, “Comparison of control
strategies of residential pv storage systems,” 9th International Renewable En-
ergy Storage Conference and Exhibition (IRES 2015), 2015. doi: 10.13140/
RG.2.1.3668.2084. 41, 44

[112] J. Rodway, P. Musilek, E. Lozowski, M. Prauzek, and J. Heckenbergerova,
“Pressure-based prediction of harvestable energy for powering environmental
monitoring systems,” in Proceedings of the 2015 IEEE 15th International
Conference on Environment and Electrical Engineering (EEEIC), I. Rome,
Ed., 2015, pp. 10–13. 117

[113] J. Rodway, P. Musilek, E. Lozowski, M. Prauzek, and J. Heckenbergerova,
“Pressure-based prediction of harvestable energy for powering environmental
monitoring systems,” in Environment and Electrical Engineering (EEEIC),
2015 IEEE 15th International Conference on, IEEE, 2015, pp. 725–730. 80, 100

[114] S. Rohjans, M. Uslar, R. Bleiker, J. González, M. Specht, T. Suding, and
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Appendix A: Literature Survey

Table A.1: Literature review for battery performance parameters used in this study.
For all table fields the value used for simulations is given first. In some cases, other
values are given in brackets—these are for information to the reader only, but not
further used in the paper.

Parameter Variable Unit PbA LFP NMC

Battery round
trip efficiency

ηbatt %
85 [124], [126] *

(80 [50])
98 [124], [126] *

(95 [50])
95 [50] **

Battery
self-discharge

SD %/day
0.17 [126]

(0.2 [60], [109]
0.1 [60])

0.02 [124], [126] *
(0.33 [109]

0.1 [60], [109])
0.02 [86]

Calendric
lifetime

Life80%Cal (years)
10 [126]
(5 [60]
8 [104])

15 [60]
(12–20+ [124])

13 [86], [109]

Cyclic lifetime Life80%Cyc FEC
1500 [104] ***

(200–1300 [60], [126])

10,000 [86] ****
(6000 [20], [124]

1000–10,000+ [60],
[100])

4500 [36]
(700–1000 [122])

* Experiments conducted at the following parameters: 1/10 C, 25 ◦C, 50% SOC; **
Experiments conducted at the following parameters: 1 C, 25 ◦C, 50% SOC; *** Derived
at 50% DoD; **** Tested at 60–100% DoD.
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Appendix B: Battery Power Profiles
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Figure B.1: Battery power profile with yearly billing scheme and resulting state of
health decline.
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Figure B.2: Battery power profile with monthly billing scheme and resulting state
of health decline.
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Appendix C: Power flows in the examined PV/BESS
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Figure C.1: Power flows in the examined PV/BESS for different time periods (left:
June 2014 with high availability of solar energy; right: August 2014 with low and
highly variable availability), and different controllers (top: system optimized using
linear programming; center: baseline/zero controller; bottom: best evolved fuzzy
controller).
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