University of Alberta

TEST AND DIAGNOSTIC SCHEMES FOR LOCAL INTERCONNECTS OF
X1LINX VIRTEX FPGAS

by

Christian Giasson

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Master of Science.

Department of Electrical and Computer Engineering

Edmonton, Alberta
Fall 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-95752-7
Our file Notre référence
ISBN: 0-612-95752-7

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Etre homme, c’est précisément étre responsable. C’est connaitre la honte en
face d’une misére qui ne semblait pas dépendre de soi. C’est étre fier d’une
victoire que les camarades ont remportée. C’est sentir, en posant sa pierre,
que ['on contribue a batir le monde.

— Antoine de Saint-Exupéry, Terre des hommes

To be a man is, precisely, to be responsible. It is to feel shame at the sight of
what seems unmerited misery. It is to take pride in a victory won by one’s
comrades. It is to feel, when setting one’s stone, that one is contributing to
the building of the world.

— Antoine de Saint-Exupéry in Wind, Sand, and Stars

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A Eve-Lyne, pour son soutient quotidien.
A Diane et Charles-André, pour toute leur éducation.
A Marie-Hélene, pour étre un bon modele.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

This work was partly supported by the Natural Sciences and Engineering Re-
search Council of Canada, by the Informatics Circle of Research Excellence,
by the Canadian Microelectronics Corporation, and by the University of Al-
berta. I would like to give special thanks to my supervisors Xiaoling Sun and
Bruce Cockburn for their guidance and assistance. Finally, I would like to
thank all my student colleagues from the VLSI design and test laboratory at
the University of Alberta for all their help and support.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction
1.1 Thesis Scope.o
1.2 Thesis Organization.

2 Background
2.1 FPGA Architecture
2.2 Current Measurement Techniques
2.3 Voltage Measurement Techniques
2.3.1 Device Testing Techniques
2.3.2 Built-In Self-Test Technique
2.4 Interconnects Testing
2.4.1 Fault Models
242 Testingo
243 Diagnosis oo

3 The Proposed Test Scheme
3.1 Proposed BIST Architecture
3.2 TFault Models and Assumptions
3.3 Proposed Test Sets
3.4 Fault Detectability
3.5 Fault Coverage
3.6 Testing Time

4 Interconnects Model and Routing Algorithm
4.1 Test Logic and Feedback Routing
4.2 Intercomnect Model oL
4.3 Algorithm
43.1 EdgeColoring
4.3.2 Algorithm Overview
433 Example oL
4.3.4 Algorithm Details 0.
4.3.5 Experiments o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lo DD

O oo 0o Ot WX

5 Proposed Diagnostic Schemes
5.1 General Diagnostic Scheme
5.2 Fault Tolerant Scheme
5.3 Manufacturing Diagnostic Scheme
5.3.1 Run-Length Encoding
5.3.2 Feasibility of the Scheme
5.3.3 Postprocessing of Diagnostic Results

6 Conclusion
6.1 Main Contributions
6.2 Further Work

Bibliography
A Algorithm’s Pseudocode

B Perl Programs
B.1 Edge Coloring of Gogyr + -« v o v v o o oo
B.2 Completion of Gorpy Edge Coloring
B.3 Feedback Routing
B.4 Completion of Feedback Routing
B.5 Intermediate Code
B.6 Edge Coloring of Gygps - - - -« - o o o o oo oo
B.7 Completion of Gyrpy Edge Coloring

C Execution Script

D Test Configurations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45
46

47
50
02
54
a7

59
60
61

63

69

75
75
93
99
107
115
123
130

155

157

List of Figures

1.1 FPGA structure 1
2.1 FPGA interconnect system 5
22 CLBlogic 6
2.3 Local interconnects 7
24 Globallines 7
2.5 One global interconnect test configuration 10
2.6 A local interconnect test strategy 10
2.7 BIST architecture oL 11
3.1 Simplified representation of the Virtex FPGA 15
3.2 Conceptual block diagram 16
3.3 Proposed BIST architecture 17
3.4 BIST block diagram, 18
3.5 Testlogic 19
3.6 Single-bridge faults L. 24
3.7 Double-bridge faultso 25
3.8 Testing sequence 27
4.1 CLB configuration example 30
4.2 Local interconnect network L. 31
4.3 Routing matrix modeling example 32
4.4 Modeled k-partite graph oo 32
45 Graph Gi 33
4.6 Edge coloring examples 33
4.7 Edge coloring of Gogpr -« -« o oo e 35
48 Coloringofpart 1 o 36
4.9 Feedback paths and completionof part 2 37
4.10 Edge coloring of Grrar - . - -« o o o oo oo 37
411 Coloringofpart 3 37
4.12 Coloring and completion of part 3 38
4.13 Example of edge coloring enumeration 39
414 All edge coloring 39
4.15 Test configuration 14 L. 43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Fault-tolerant diagnosis test scheme 48

5.2 A test configuration with two BISTs 51
5.3 Manufacturing diagnosis test scheme 53
54 Test sequence oo 55
5.5 Worst case circuit under test 56
D.1 Test Configuration 1 158
D.2 Test Configuration 2 159
D.3 Test Configuration 3 160
D.4 Test Configuration 4 161
D.5 Test Configuration 5 162
D.6 Test Configuration 6 163
D.7 Test Configuration 7 164
D.8 Test Configuration 8 165
D.9 Test Configuration9 166
D.10 Test Configuration 10 167
D.11 Test Configuration 11 168
D.12 Test Configuration 12. 169
D.13 Test Configuration 13 170
D.14 Test Configuration 14 171
D.15 Test Configuration 15 172
D.16 Test Configuration 16 173
D.17 Test Configuration 17 174
D.18 Test Configuration 18 175
D.19 Test Configuration 19. 176
D.20 Test Configuration 20 177
D.21 Test Configuration 21 178
D.22 Test Configuration 22 179
D.23 Test Configuration 23, 180
D.24 Test Configuration 24 181
D.25 Test Configuration 25 182
D.26 Test Configuration 26 183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

31 Testland Test 2 22
3.2 Test3 22
3.3 Qresponses to Test 1 vectors 24
3.4 Response of Test 3 for single-bridge fault 24
3.5 Response of Test 3 with two bridge faults 25
3.6 Estimationoftesttime 26
5.1 RAM port configurations 0oL 49
5.2 Characteristics of Virtex FPGAs 49
5.3 Number of tilesunder test 50
5.4 Compression needed for all Virtex FPGAs 52
5.5 Example RLEin RAMport 54
5.6 Number of test vectors saved in the worst case 57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Acronyms

Acronym

BIST
CLB
CUT
DFF
FPGA
GRM
IC
IMUX
10B
IRM
OL
OMUX
ORA
ORM
PS
RLE
TC
TPG
WG
WUT

Significance

built-in self-test
configurable logic block
circuit under test

D-type flip-flop
field-programmable gate array
general routing matrix
integrated circuit

input multiplexer
input/output block
input routing matrix
output line

output multiplexer
output response analyzer
output routing matrix
programmable switch
run-length encoding

test configuration

test pattern generator
wire group

wire under test

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

SRAM-based field-programmable gate arrays (FPGAs) are programmable logic
devices widely used in digital systems. An FPGA consists of a two-dimensional
m X n array of tiles and input/output blocks (I0Bs). Each tile contains config-
urable logic blocks (CLBs) and interconnects surrounding them. Interactions
between CLBs and IOBs are possible with a system of programmable intercon-
nect resources composed of programmable switches (PSs) and wire segments.
Figure 1.1 shows a general representation of an FPGA structure, where m = 3

and n = 4.

Logic Block

OO O oo o []/ Configurable

/

/0 Block —{_] sl [l]
R ENENE
BRI

OO oo O
o O i

\ Interconnects

L OO O o

Figure 1.1: FPGA structure

FPGA interconnects can be divided into two categories: global and local

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1: Introduction

interconnects. The global interconnect structure provides programmable re-
sources to enable the routing of signals through the FPGA without entering
the CLBs. On the other hand, the local interconnects provide possible routing
between the global interconnects network and the CLBs.

The Xilinx Virtex group of FPGAs was the first million-gate FPGA device
family. The interconnect structure of these devices is relatively irregular and
more complex than earlier device families, such as the XC4000. Approximately
80% of all SRAM cells in a Xilinx Virtex FPGA are dedicated to interconnects,
which consist of programmable switches (PSs) and wire segments. Local inter-
connects account for 65% of interconnect PSs.

Like other integrated circuits (ICs), the integrity of FPGAs needs to be
verified during the manufacturing process and also when it is incorporated in
an electronic design (in-system). Therefore test strategies should be developed

to achieve appropriate testing of the device.

1.1 Thesis Scope

Testing is an important step for the design and manufacturing of integrated
circuits. An FPGA will be tested several times in its life cycle (e.g.: man-
ufacturing and in-system tests). In this thesis, we will focus on the local
interconnects test of one specific familly of FPGA: the Xilinx Virtex. It is im-
portant to mention that this thesis work is applicable to the Xilinx Virtex-E
and Virtex-EM family as well as the Xilinx Spartan-11 and Spartan-1IE FPGAs
since their structure is very similar to that of the Virtex family.

The test strategy should be able to verify the integrity of all local inter-
connects in the FPGA. The re-programmability of the FPGA allows a test
strategy with more than one testing configuration (TC). The overall test that
will be applied to the FPGA should be as fast as possible to minimize the
test duration. We know, from experience, that the FPGA programming time
is more time-consuming than the test performed by every TC. Therefore, an

important goal to achieve is to obtain the minimum number of TCs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 1.2: Thesis Organization

Therefore an adequate interconnect model as well as an algorithm should
be developed to generate a minimum set of TCs. The proposed interconnect
modeling is based on graph theory. Basically, vertices model the wire segments
and the edges of the graph are the PSs. The resulting graph is a k-partite
graph that represents k wire segment groups. An edge coloring algorithm was
developed to generate a set of TCs. Our experiments on Virtex FPGAs obtain
a minimal set of 26 TCs.

The proposed testing scheme is applicable to both manufacturing tests and
built-in self tests (BISTs). BIST is a popular test architecture which places all
the test circuitry in the chip. The test scheme uses some new architectural
features of the Virtex FPGA such as the RAM blocks.

When a circuit has failed a test, it is important to know the location of
the faults detected in the integrated circuit. Diagnostic tests can identify
faulty parts that should be replaced or avoided. Fault diagnosis is essential for
fault tolerant systems and helpful for yield improvement in a manufacturing
environment. Therefore, the proposed test scheme can be extended to support
diagnostic test by saving test responses on the FPGA. When the diagnostic

test is over, data are is sent out of the FPGA for further analysis.

1.2 Thesis Organization

This thesis is divided into six chapters organized as follows. Chapter 2 explains
some important concepts related to the FPGA architecture. It also presents a
literature review related to this thesis. This review shows where the work of
this thesis can be included relative to previous work in the field. The BIST test
scheme used in this project is presented in Chapter 3. It also presents the fault
models, the test vectors, and proofs of testability. Chapter 4 introduces a graph
model for the FPGA interconnects. It also explains the algorithm, based on
the edge coloring of bipartite graphs, that finds the TCs. The modeling and
the algorithm are then applied to a simplified FPGA resources example to
demonstrate how they work to find the TCs. More details about the algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1. Introduction

and experiments with the Virtex FPGA resources are also presented. Chapter
5 presents two other schemes that can perform diagnosis on the Virtex FPGA
interconnects. These schemes are based the test scheme shown in chapter 3.
The two diagnostic schemes are useful for two different applications: fault
tolerance and manufacturing. Finally, Chapter 6 concludes with a brief review
of the thesis, a summary of its important achievements, and possible further

work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background

This chapter first presents a background section on FPGA architecture. It

includes the general architecture, the logic, and the interconnects of the Xil-

inx Virtex FPGA. A literature review is also presented. It presents different

published strategies for testing FPGAs.

2.1 FPGA Architecture

General

Routing

Matrix {;] [—,; I;;l
A H T H M
— o H H

Global Line{ Q QH

Esltaile

™

.

I

CLB

Local
Interconnect

Figure 2.1: FPGA interconnect system

An FPGA typically consists of a two-dimensional array of uncommitted
configurable logic blocks (CLBs) surrounded by Input/Output (1/O) blocks. A

system of programmable interconnects is used to route signals between CLBs

to create an electrical circuit. The programmable interconnect network can

also connect the previously mentioned circuit to I/O blocks to allow external

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Background

¥

A

LUT D Q
CE

—- CLK

\AAAI

A\BRAAI

vy

Y

D Q
CE
SR
—{CLK

LUT

<

ARRI

Figure 2.2: CLB logic

control and observation. Figure 2.1 shows a simplified diagram of the regular
part of the FPGA made of CLBs and interconnects. This architecture, called
cluster-based, is the one used in the Xilinx Virtex FPGA.

Every CLB includes several components such as look-up tables (LUTSs),
multiplexers, and storage elements. In the Virtex FPGA, each LUT can be
configured as a 16 x 1-bit synchronous RAM or ROM as well as any asyn-
chronous 4-input logic function. The storage elements can also be configured
in two modes: D-type flip-flops (DFFs) or level-sensitive latches. Figure 2.2
shows a simplified representation of the Virtex CLB logic.

The interconnect network is made of wire segments and programmable
switches (PSs). A PS is made of one SRAM cell and a pass transistor. PSs
are mostly concentrated in some area in the FPGA called switching matrices.
FPGA interconnects can be divided into two categories: global and local inter-
connects. The global interconnect structure provides programmable resources
to enable the routing of signals through the FPGA without entering the CLBs.
On the other hand, the local interconnects provide possible routing between

the global interconnect network and the CLBs.

Figure 2.3 shows more details of Virtex local interconnects by presenting
a simplified FPGA tile. The input routing matriz (IRM) links the general
routing matriz (GRM) with the CLB’s input lines. On the opposite side of the
CLBs, the output routing matriz (ORM) helps to link output lines of the CLBs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 2.1: FPGA Architecture

Tri—state Bus

ORM
14 14
CLBO || CLB1 l<Zx Fk
Tn I3 18
RM
196
GRM

Figure 2.3: Local interconnects

minjuinjuinln

{a) Short b) Hex

DQDDDDDQDDDDDQD

{c) Long

Figure 2.4: Global lines

with the GRM. Note that there are two tri-state buffers in every tile linked
to a tri-state bus that crosses the FPGA horizontally. Every row of tiles has
a tri-state bus made of four lines. Tri-state buses act like MUX buses where
many tri-state buffers are allowed to be linked to a line but only one can put

its value on the line at a time.

There are different groups of global interconnects classified by their lengths.
Figure 2.4 shows the different kinds of global lines: short (), hex (b), and long
(c) lines. Short lines link the GRM with all its orthogonal GRM neighbors

in the next tiles. Hex lines can connect two GRMs that are six tiles away

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Background

horizontally or vertically. Hex lines can be driven only at their extremities but
they can be read either at their extremities or their midpoints (three tiles from
the source). The long lines can route signals vertically and horizontally and
they span the entire height and width of the FPGA. Their connection points
to GRMs are situated every six tiles as shown in Figure 2.4 (c).

Different techniques have been tried to test FPGAs. The following sections

will present different test techniques and schemes related to this thesis.

2.2 Current Measurement Techniques

The most popular current measurement technique to test CMOS devices is
Ippg testing [1]. This technique consists of monitoring the steady state supply
current (Ippg) to detect abnormally high currents during the steady state in
CMOS circuits. Ippg testing can detect low level faults such as transistor
stuck-open, transistor stuck-closed, transistor gate oxide shorts, interconnect
bridging shorts, and unpowered interconnect opens.

The Ippg testing technique requires a lot of equipment. Because of this
disadvantage, that technique is mostly used in manufacturing test and not in
field test when the integrated circuit is in a system. Furtermore, it takes a
significant amount of settling time to get accurate current measurements.

Most of the work on FPGA Ippg test was done by Zhao et al.. They applied
Ippg techniques to test different parts of the FPGA such as the Input/Output

resources [2], the logic resources [3], and the interconnects [4].

2.3 Voltage Measurement Techniques

Most of the testing on integrated circuits uses voltage measurement techniques.
These techniques measure logic responses at certain points in the circuit to
detect potential faults. Voltage measurement techniques are widely used for
FPGA testing.

Because of FPGA’s programming flexibility, not all the FPGA resources

can be programmed in one circuit configuration. The detectability of a fault

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 2.3: Voltage Measurement Techniques

therefore depends strongly on the circuit implemented in the FPGA. For ex-
ample, a particular fault can be redundant in a particular FPGA configuration
and consequently cannot be detected within that configuration. Therefore,
most of the FPGA test schemes apply tests successively on a set of configura-
tions to verify the integrity of all resources.

Presently, the two main voltage measurement strategies to test FPGAs are

the device testing technique and the built-in self-test (BIST) technique.

2.3.1 Device Testing Techniques

The device testing techniques generally need full access to the /O pins of the
integrated circuit. In this kind of test, the test vectors are applied in parallel
from outside the chip and the test results are read at other dedicated output
pins. This kind of test is often used in manufacturing testing.

This technique can be used to test global and local interconnects in FPGAs.
In[5,6,7,8,9,10, 11, 12], device testing is used to test global interconnects. In
the majority of these research papers, the basic idea is to configure the global
interconnects to form long buses and then test them by applying classical bus
testing vectors. The test vectors are applied to some chip I/Os and the test
responses are subsequently read from other I/Os. Figure 2.5 shows an example
of test configuration (TC) for the global interconnects, where multiple test
buses are formed, and all the general routing matrices are configured in the
same way to create diagonal routings in the FPGA. The ends of these buses
are connected to I/O Blocks.

The general idea when testing local interconnects is to apply signals to the
CLB inputs and propagate them to the outputs. The approaches in [13, 14]
supply signals to the combinational and sequential logic programmed in the
CLBs. Figure 2.6 shows the general idea of this methodology. In this kind of
scheme, some CLB outputs are linked to their neighboring inputs to create
a chain of logic functions. Testing signals are applied to all CLBs from an
external source and test responses from each CLB logic are passed on to the

next CLB on the right. The advantage is that the number of I/Os to observe

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Background

OCutputs to
I/0 Blocks

Inputs from VO Blocks

Outputs to I/O Blocks

Inputs from
1/0 Blocks

\Test Configuration

of the General
Switching Matrix

Figure 2.5: One global interconnect test configuration

Inputs from

/O Blocks | —

vV

YV

—= CLB [—>

CLB ||

CLB |

CLB || CLB || CLB
vV vV v Vv
—~{ CLB |—= CLB [—= CLB

Outputs to
/O Blocks

Figure 2.6: A local interconnect test strategy

is less than the number of test responses produced by all CLBs. Because of

the intensive use of I/Os in these schemes, they are classified as device testing

techniques.

Doumar et al. proposed a modified FPGA architecture in [15] to test
FPGA logic cells and interconnects. The new design modified the SRAM part
of the FPGA to allow faster loading of the test configuration data. The idea
is to use the redundancy in a test configuration to program the FPGA in

parallel. Since the research focus of this thesis is on a fixed design of FPGA,

the technique presented by Doumar et al. is not applicable.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 2.3: Voltage Measurement Techniques

TPG = CUT

A

ORA

BIST Controller

A

Figure 2.7: BIST architecture

2.3.2 Built-In Self-Test Technique

A built-in self-test (BIST) strategy is used when the test interface has a limited
access to the I/O pins of an integrated circuit. For example a BIST scheme
can be useful to test a chip already implemented on a printed circuit board
(PCB) or in a bigger system. This kind of test is called a field-test. A BIST
scheme is essentially composed of four parts: a BIST controller, a test pattern
generator (TPG), an output response analyzer (ORA), and a circuit under test
(CUT). Figure 2.7 shows the general architecture of a BIST scheme.

The first BIST approach to test FPGA interconnects was developed by
Stroud et al. in [16]. This scheme tests the interconnects by configuring
programmable switches (PSs) to form two groups of wires under test (WUTSs).
The two WUTSs receive identical test vectors from the same group of CLBs
configured as a TPG. On the other end of the WUTs an ORA compares the
results from the two WUTSs. This technique supports a good fault coverage for
many kind of faults, but it fails to detect multiple faults that make the two
WUTs behave in the same faulty way.

In [17], Abramovici et al. present an on-line FPGA testing and diagnosis
method. Every test configuration (TC) is localized on only one column and
one row of the FPGA. Since that represents only a small part of the overall
FPGA area, the FPGA can still perform its function during the test. The
entire FPGA can be tested by moving the test row and the test column.

In [18, 19, 20, 21, 22], Sun et al. use error control coding to detect faulty
behavior in interconnects. In the overall scheme, the FPGA is split into two

equal parts: one with the CUT and another one with the BIST controller, the

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Background

TPG, and the ORA. The idea is to configure interconnects into WUTs with
a parity wire. These WUTSs are configured in the CUT part of the FPGA. A
TPG supplies test vectors as well as a parity bit to the WUTs. At the other
end of the WUTs (or at some intermediate point on the WUTSs), a parity code
generator regenerates the parity and a XNOR gate compares the parity from
the parity wire of the WUTs and the generated one. This scheme can achieve

very high multiple fault coverage.

2.4 Interconnects Testing

2.4.1 Fault Models

Fault models are the abstract representation of physical defects that can ap-
pear in an electronic system, produced by process defects, material defects,
age defects, and package defects. Having a fault model is necessary to do
structural testing on any kind of integrated circuit.

For the interconnects testing, the typical fault models include wire segment
stuck-at 0 or 1, segment stuck-open, and segment bridging. They also in-
clude programmable switch stuck-on (stuck-closed) and stuck-off (stuck-open).
Many fault models also allow the multiple appearance of the faults (e.g. mul-
tiple stuck-at 0/1 faults). Fault models sometime include combinations of
different kinds of faults which can be present at the same time.

Some research has been done on more exotic types of faults. Metra et al.
investigated an FPGA test to detect transient and crosstalk faults affecting

interconnects in [23]. Abramovici and Stroud, in [24], presented a method to
detect delay-faults in FPGAs.

2.4.2 Testing

The testing of FPGA interconnects can be divided into global interconnect
testing and local interconnect testing categories. Prior work on FPGA inter-
connect testing mainly focuses on global interconnect testing [5, 6, 7, 8, 9, 10,

11, 12, 18, 19]. In [14, 20, 22] a local interconnect test scheme is presented and

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 2.4: Interconnects Testing

in [13, 16, 17, 21, 25, 26] a combined local/global scheme is explained.

In the previous section, different test architectures were presented. Two
other steps that rely on the test architecture are needed to derive a completely
functional test. First, a modeling of the interconnects should be done to have a
certain level of abstraction. This modeling allows the use of an algorithm that
can configure the programmable interconnects in test configurations. This
thesis focuses on the FPGA interconnect modeling and the aforementioned

algorithm.

A majority of the test methodologies use reprogrammability of the FPGA
to achieve high fault coverage with a set of test configurations (TCs). It is
desirable to minimize the number of TCs since programming the FPGA is
more time consuming than the test application time. Some research has been
devoted to optimization problems aimed at deriving a minimal number of TCs.

Heuristic approaches to these problems can be found in [12, 20, 21, 26].

A number of graph models have been used to model FPGA interconnects
and derive interconnect TCs. In [20], an adjacency graph is employed to repre-
sent local interconnects, where a vertex denotes a PS and an edge represents a
test requirement between two PSs. TCs are derived by solving a vertex color-
ing problem of the graph. A global interconnect bipartite graph model, where
a vertex represents a wire segment and an edge represents a PS, is given in [26]
for maximum fault coverage and diagnosability. In [12], both wire segments
and PSs of global interconnects are modeled by edges. Source and drain ver-
tices are introduced to the graph and a maximum flow algorithm is used to
derive T'Cs. However, the choice of a routing path through the graph is random
and, thus, constraints on using particular nodes for the source and destination
cannot be accommodated. Conversely, the algorithm in [27] supports choices
on source and destination nodes when forming routing paths, but does not
guarantee complete coverage of edges. A graph model is required to represent

the interconnect resources.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Background

2.4.3 Diagnosis

In a test procedure, the diagnosis is the action of identifying where a detected
fault is located.

The role of testing is to detect whether something went wrong. On the
other hand, the role of diagnosis is to determine exactly what went wrong.
Diagnosis is essential to fault tolerance techniques because it makes it possible
to avoid faulty parts of an integrated circuit and thus improve the yield in
the manufacturing process. Diagnosing a fault is usually more difficult and
requires more programming steps than simply detecting the presence a fault.

Some research has been done on diagnosing faults in wiring interconnects
on printed circuit boards (PCBs) by Park in [28], by Cheng et al. in [29], and by
Hassan et al. in [30]. They used boundary scan design techniques to test the
interconnects between chips on a PCB. Those techniques cannot be directly
applied to the FPGA interconnect fault diagnosis because the architecture is
different. However, the diagnosis test vector sets presented in these papers can
be reused for diagnosing faults in an FPGA interconnect network.

Huang et al. in [5], Yu et al. in [6, 7], and Liu et al. in [31] worked on
the diagnosis of FPGA interconnect faults. In these papers, fine resolution
diagnoses are presented. Tahoori, in [32], presents two diagnostic test schemes
for FPGA interconnects: a coarse-grain and a fine-grain diagnosis. The coarse-
grain diagnosis is first applied to the interconnects. If a fault is found, a fine-
grain diagnosis is applied to determine where the fault is with more precision.

Chen et al. worked on interconnects in general in [33]. They developed a
test vector derivation based on graph coloring techniques. In this methodology,

the adjacencies between nets are known.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

The Proposed Test Scheme

Built-in self-test (BIST) techniques add overhead to digital circuits but have
great advantages such as improved testability compared to other testing tech-
niques, support of at-clock-speed test of modules, and reduced need for ex-
pensive automatic test equipment (ATE). BISTs also allow for field test, where

the chip under test is in an assembled system.

Figure 3.1: Simplified representation of the Virtex FPGA

The proposed test strategy for FPGA local interconnects is a BIST strat-
egy. The overall BIST strategy uses the re-programmability of the FPGA to
perform a full test on the local interconnects. The test strategy is composed
of a set of test programs called test configurations (TCs). In every TC, the
FPGA resource is divided into two parts: the circuit under test (CUT) and

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: The Proposed Test Scheme

CLB
[l R
| i
| i
WUTs | Parity op |
At Code ' >
! ! P/F
TPG ! Generator : ORA |
i !
I

Fault—free Parity

¥

Figure 3.2: Conceptual block diagram

the BIST circuit.

Figure 3.1 shows a FPGA with m x n tiles. If a total of £ TCs are needed
to test the local interconnects of one half of the FPGA, the total number of
TCs is 2k because all TCs need to be applied on both left and right parts.

Figure 3.2 shows the conceptual block diagram of the proposed BIST strat-
egy. A portion of wire segments and programmable switches configured to-
gether is called a wire group (WG). The wire segments that are part of a
WG in one TC are called wires under test (WUTs). One extremity of a WUT
should be connected to a CLB. Because most of the local interconnects help to
route signals in and out of the CLBs, the testing signals have to pass through
the CLBs. This is why the testing scheme uses the CLB logic to perform test

calculations and is able to get relatively parallel test on every tile in the CUT.

During the test sequence, the WUTSs receive test vectors from the test
pattern generator (TPG). The TPG also supplies a fault-free parity directly
to the output response analyzer (ORA). Inside each CLB, the parity code
generator calculates the output parity (O,). The O, is sent to the, ORA which

compares the O, with a fault-free parity and gives a pass/fail result.

The parity calculator test scheme, combined with carefully chosen test
vectors, has a high fault coverage. The next section presents more details on
the proposed BIST scheme. It also gives the fault models, assumptions, the

proposed test sets, and the proof of fault detectability.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 8.1: Proposed BIST Architecture

XBasic Tile /- ORM CuT BIST
_________________________ i O e
R e [

: I
|= T + [
N ! y :
HRFE FE g 1 |
l| | 11 i
LRI BRI | o
! ** | 11 —C—&I
'y 1 =
by : 11 b0y
Py i i T N
i ' i
il g ¥ z
T ! X BIST | [§
! 7 * & Controller s \
[i
T =E i] I
! | s HVANVA ol k=il [VASVASRE =N
| U0 ®]1®] L L{‘:
: I ¥ I :: TPG - :
|
| Ny 3
}l__. [} i

Figure 3.3: Proposed BIST architecture

3.1 Proposed BIST Architecture

Figure 3.3 shows a simplified representation of the proposed BIST architecture.
As previously mentioned, the Virtex FPGA is split vertically in two parts: the
CUT and the BIST. The CUT part is represented as a 2 x 2 array of basic tiles
in Figure 3.3. Three major parts are in the BIST section: the BIST controller,
the TP@G, and the ORA. The BIST controller controls the test sequence. The
TPG generates the vectors and supplies all the tiles in the CUT via the global
interconnects. The TPG also generates the fault-free parity code and gives it
directly to the ORA. The output parity (O,) signals, calculated by the CLBEs,
are put on the tri-state buses. Since the tri-state buses are horizontal in the
Virtex FPGA, and the scheme uses them to carry the test responses, the CUT
and the BIST should be side by side horizontally. The ORA receives all the test
responses from the tri-state buses and compares them to the fault-free parity
code generated by the TPG. Depending on the result of the comparison, the
ORA gives a passed or failed result to the BIST controller.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8: The Proposed Test Scheme

I
t
i
; |
| |
i i
: I
| i
| i
! !
I i
I 1
! 1
f |
i |
e =
Column Selects ' ! 4 BIST ;
: Controller !
N {.__TPG |
l] v l :
: ; Address ! |
: : Counter ! :
Test Vector Lines, '~ 9 | Y | !
CE!' ! Test Vectors ! !
= RAM | Fault—free
SR 1+ -
bra— | ' Parity !
U e e e e e e i !
__________ 3 e

Figure 3.4: BIST block diagram

Figure 3.4 shows a block diagram of the BIST part of the test configuration.

The central BIST controller is a state machine that controls the test sequence.

The implementation of a TPG is usually done using only the CLB memory
resources. Since the Virtex FPGA family has some random-access memory
blocks (RAM blocks), they can be used with a counter to create a TPG that
will save some CLB programming resources for the rest of the BIST circuit. In
the present BIST scheme, a binary counter is tied to the address of the RAM
block to create the TPG. Test vectors, two control signals (CE and SR), and
a fault-free parity signal are stored in the RAM. A new test value is applied

every time the counter increments.

The ORA compares the test responses from the tri-state buffer with the
fault-free parity code from the TPG. AND and NOR logic gates are used as

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 8.1: Proposed BIST Architecture

CLB
Parity Code Generator — PFeedback
i Connection
~STTLUT
WUTs_¢c f ! to Tri—state
: ; Buffer
® ll_ ___________ -
WUTs_s{
Column
Select

Figure 3.5: Test logic

a comparator. If the value of the fault-free parity is a logic 1, the AND gate
is selected to have a faulty output signal when at least one input is equal to
0. If the results (parity responses) from the CUT are supposed to be 0s, the
NOR logic gate is used for the comparison. The ORA gives a passed or failed
result to the BIST controller at the end of the process.

In the CUT part of the TC, the global interconnects help to route signals
from the BIST controller and the TPG. Thus, the Long, Hex and Short lines,
and the dedicated clock lines supply the test vectors and the control signals
(column selects) to every tile. Figure 3.3 shows some characteristics of a basic
tile. In every tile, the two CLBs receive the test vectors via the general routing
matriz (GRM) and the input routing matriz (IRM). The CLBs perform some
test logic and also latch the results. The result is then passed though the
output routing matriz (ORM) and the tri-state buffers put the two results that
come from both CLBs on the tri-state lines. The tri-state buffers are used
to pass the test results back to the BIST for two main reasons. First, some
local interconnects are connected to the tri-state buffer input and control, and
the tri-state buffer should therefore be included in the local test logic. The
second reason is that using the tri-state buffer buses allow good observabil-
ity of the test responses without the problem of routing many test responses

independently back to the BIST part of the FPGA.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8: The Proposed Test Scheme

The tri-state buses cannot propagate all the test responses in parallel be-
cause there is a limiting quantity of four tri-state lines per row of tiles. There
is a need for control signals that can select which test responses are on the tri-
state buses. That is why the BIST controller interacts directly with the CUT
part with some column select signals. The number of column select signals is
dependent on the size of the FPGA. Since the CUT takes half of the FPGA
columuns (m/4) and two columns of tiles can share the same select signal, the
number of column select signals is C = [m/4]. Note that the ceiling bracket
in the function C' come from the fact that m/4 can be a non-integer.

Figure 3.5 presents in more detail the testing circuit implemented in all
the CLBs in every tile of the CUT part of the FPGA. It can be seen that the
WUTs are subdivided in two categories. The WUTs that are connected to the
combinational logic are the combinational wire segments under test WU Ts_c.
Similarly, the WUTs connected to the flip-flop are the sequential wire segments
under test, WUTs_s. The WUTs_s supply only two signals: CE and SR. The
column select is also part of the WUTs, but it supplies the tri-state buffers
instead of the CLBs.

The parity code generator is implemented in the CLB with LUTs. The
biggest parity code generator (XOR logic gate) that can be implemented in
one CLB has seven inputs. The parity code generator is implemented with
two LUTs and needs a feedback path via the ORM and the OUT lines. The
parity signal is latched by a D flip-flop in the CLB to help the timing of the
test.

3.2 Fault Models and Assumptions

To test the lines, typical fault models for interconnect networks are used [34):

1. Multiple segment stuck-at 0/1 faults,
2. Multiple segment stuck-open faults,

3. Multiple segment/programmable switch bridging faults,

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 8.3: Proposed Test Sets
4. Multiple programmable switch stuck on/off faults,

5. Combinations of the above faults.
Some assumptions should be made in order to use the previous fault models:

Assumption 1 Suppose there is a stuck-open foult on a wire. Applying a
logic value of 0 or 1 at one end will generate a logic value of 0 at the other

end.

This assumption is realistic even if a stuck-open fault can generate a float-
ing voltage at the output end of the fault because that voltage will be inter-

preted by the next testing logic block as a logic low or a logic high.

Assumption 2 The floating voltage caused by a bridging fault will be either
logic 0 or 1. These create a wired-AND or a wired-OR respectively.

The behavior of a bridging fault is a function of the driving capacity of the
wires involved. In this fault model we assume that this type is deterministic.
We consider the bridging fault to be deterministic because we assume that it

will react as either a wired-AND or a wired-OR function.

Assumption 3 A switch stuck-on fault creates the same behavior as a bridg-

ing fault between two wire segments connected by the switch.

The switch stuck-on fault will have the same behavior as a bridging fault.
Therefore, if the test can detect the bridging faults it can also detect the switch

stuck-on faults.

Assumption 4 The components of the CLBs (LUTs, lines, MUX, memory

elements, ...) are fault-free.

Finally, we assume that the CLB logic is fault-free in order to target the

faults on the interconnects.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: The Proposed Test Scheme

Table 3.1: Test 1 and Test 2

Test 1 Test 2
VU234 UsUgUrlg || V3UUsly ... V125V126V127V128
e1 0000 1111 0101 0101
€9 0000 1111 0011 0011
es 00600 1111 0000 1111
WUTsc | eq4 0000 1111 0000 .. 1111
es 0000 1111 0000 1111
e 0000 1111 0000 1111
ey 0000 1111 0000 1111
CE| 0011 0011 1111 .. 1111
WUIss lspl 0101 0101 [0000 .. 0000

Table 3.2: Test 3

Test 3
V1V Ugls Uslg UrlUg Uglip ViiViz Vi13li4
e 11 060 00 00 00 00 00
€s 00 11 00 00 00 00 00
es 60 00 11 06 00 00 00
WUTs.c | ey 060 00 00 11 00 00 00
es 00 00 00 060 11 00 00
eg 00 00 00 060 00 11 00
er 00 00 00 OO 00 00 11
CE101 01 01 01 01 01 01
SRy 10 10 10 160 10 10 10

WUTs_s

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 8.3: Proposed Test Sets

3.3 Proposed Test Sets

In the BIST architecture presented in section 3.1, there are seven wires in the
WUTs_c and the WUTs_s includes two signals: CE and SR. The test vector
sequence proposed here is composed of tree tests. Table 3.1 and Table 3.2

show Tests 1 to 3.

1. Test 1 is composed of exhaustive logic vectors on CE and SR with all Os

and all 1s applied on the WUTs_c consecutively.

2. Test 2 is composed of exhaustive patterns on WUTs_c with CE at 1 and
SR at 0.

3. Test 3 is a repeating sequence of two vectors (0,1) and (1,0) for (CE,SR)
with walking 1s on the WUTs_c.

Each of the proposed tests is designed to detect a subset of the modeled
faults described in subsection 3.2. Test 1 is capable of detecting multiple
segment-stuck-at 0 (stuck-open) faults, segment-stuck-at 1 faults and switch-
stuck-off faults in the WUTs_s, and the multiple-wire bridging faults (switch-
stuck-on faults) within WUTs_s. Test 2 detects the same kind of faults but on
WUTs_c. Test 3 detects the multiple-wire bridging faults between the WUTs_c
and WUTSs_s.

Prior to starting any of the previously mentioned test sequences, the D-
type flip-flop (DFF) must be initialized. If DEFFs are all in reset mode, then
any test vector where CE = 0 and SR = 1 will reset them. It is assumed that

all DFFs are initialized to a logic 0 before any set of test vectors.

3.4 Fault Detectability

To prove that Test 1 can detect all the faults mentioned earlier on CE and SR,
we enumerated all the possible cases. Table 3.3 shows the ¢} response with
all the possible cases that are parts of the fault models. Bold values in the

table are faulty responses compared to the corresponding fault-free response.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: The Proposed Test Scheme

Table 3.3: Q responses to Test 1 vectors

Condition of the Wire Group | @y, Qu, Quv; Quy Quvs Qv GQovr Qug
Fault-free 0 0 0 0 0 0 1 0
CE s-a-0 0 0 0 0 0 0 0 0
CE s-a-1 0 0 0 0 1 0 1 0
SR s-a-0 1 1 0 0 0 0 1 1
SR s-a-1 0 0 0 0 0 0 0 0
CE s-a-0, SR s-a-0 0 0 0 0 0 0 0 0
CE s-a-0, SR s-a-1 0 0 0 0 0 0 0 0
CE s-a-1, SR s-a-0 0 0 0 0 1 1 1 1
CE s-a-1, SR s-a-1 0 0 0 0 0 0 0 0
CE bridges with SR (wiressAND) | 0 0 0 0 0 0 O o0
CE bridges with SR (wires-OR) o 0 o 0 0 0 0 o0
WUT { I { 1 i
S C . i 1 i o | & 1
v lam Jor L L
cE : : ; : :
= | | | f AND f OR

Figure 3.6: Single-bridge faults

Table 3.4: Response of Test 3 for single-bridge fault

Condition of the Circuit Qgi,_g Q2i—1 Qgi QQH.l QQH_Q
Fault-free 1 0 1 0 1
WUTs_¢c;-CE AND 0 0 1 0 0
WUTs_c;-CE OR 0 0 1 0 0
WUTs_c;-SR AND 1 0 0 0 1
WUTs_ci-SR OR 1 0 0 0 1

We can see that, for every faulty case, there is always at least one faulty Q)

respounse.

Test vectors in the Test 2 sequence are exhaustive patterns on WUTs.c
with CE = 1 and SR = 0. Sun et al. proved, in [18], that an exhaustive test
pattern on the WUTs_c can detect all the assumed faults mentioned in our

fault models.

It has to be proved that Test 3 can detect the multiple-wire bridges between
the two wire groups WUTs.c and WUTs_s. Let’s define WUTs_c as a set of

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 8.4: Fault Detectability

WUTS.c; E AI:TD E AI:ID E O}{ :. 0}{ E
WUTs_cjf-LfnL!-Lf~Li
w oot

) f i l/ '. J./ f f N
oK 'AND 'OR 'AND ' OR !

Figure 3.7: Double-bridge faults

Table 3.5: Response of Test 3 with two bridge faults

Condition of the Circuit QQi—l Q2i Q2j—1 ng
Fault-free 0 1 0 1
WUTs.c;-CE AND WUTs_c;-SR AND 0 1 0 0
WUTs.¢;-CE AND WUTs_c;-SR OR 0 1 0 0
WUTs_¢;-CE OR WUTs_c;-SR AND 1 1 0 1
WUTs.c;-CE OR WUTs_c;-SR OR 0 1 0 0
wires:
WUTs.c={WUTs.c;,WUTscy,..., WUTs.c,}, (3.1)

where 1 is the number of wires in WU Ts_c.

First, consider the cases where there is only one bridge between the two
groups of wires. Figure 3.6 shows all the possible single-bridge cases between
one line in WUTs_c and CE and SR. Table 3.4 is a generic table that shows @
results of five testing vectors that are function of 7, where WUTs_¢; is the line
implied in the bridge. In this table, i € Z and 1 < ¢ < n, where Z represents
the set of integers. It can be seen that a test vector sequence built like Test 3
can detect any single-bridge fault between a group of n wires and CE or SR.
It must be mentioned that when 7 = 1, the vector g does not exist because
the vector vg does not exist. Similarly, responses Qg;41 and Qg;42, when ¢ = n,

do not exist because the test vectors vy, 1 and vy, o do not exist.

Using Figure 3.7 and Table 3.5, it is possible to prove, in a similar way,
that double-bridge fault cases between WUTs.c and WUTs_s groups can be
detected. Again, Table 3.5 shows four test responses for all the possible double-

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8: The Proposed Test Scheme

Table 3.6: Estimation of test time

Virtex FPGA | Number of | Number of Column | Test Time
Device Test Vectors | Select Lines [m/4] (us)
XCVs0 150 6 12.0
XCV100 150 8 15.0
XCV150 150 9 16.5
XCV200 150 11 19.5
XCV300 150 12 21.0
XCV400 150 15 25.5
XCV600 150 18 30.0
XCV800 150 21 34.5
XCV1000 150 24 39.0

bridge faults that imply WUT's_¢; and WUT's_c;, where
{(,5) | 1€Z,1<i<n, j€Z 1<j<n i#j} (3.2)

For any pair of wires in WUTs_c that can bridge with CE and SR, test vectors

in Test 3 can detect these faults from a wrong response @.

3.5 Fault Coverage

The fault coverage of a test is determined by the ratio of faults detected by the
test divided by the total number of faults, defined by the fault model, present
in the circuit. Since no fault simulation was performed on the circuit, it not
possible to determine a precise fault coverage.

The previous section proved analytically that the three sets of test vectors
can detect many kinds of faults describe in the fault model. Therefore, it
proved that this test can have a high fault coverage. These proofs are valuable
because they are general and can then be applicable to a different system of

local interconnects.

3.6 Testing Time

Now that the test scheme has been presented in detail, an estimation of the

testing time can be determined. The testing time will be estimated by mul-

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 3.6: Testing Time

1: for all Test Vectors do

2 for all Column Selects do

3: Compare test responses in parrallel with fault-free parity signal
4: end for

5. end for

Figure 3.8: Testing sequence

tiplying the total number of clock cycle in the test by an estimation of the
FPGA clock period. The Equation 3.3 shows how to obtain the number of
clock cycles for the test as a function of the number of test vectors and the

number of column selects.
Number of clock cycles = Test vectors (Column selects + 2) (3.3)

The Figure 3.8 shows a simple algorithm of the test sequence. To derive
Equation 3.3, it was assumed that the application of any test vector takes two
clock cycles and one clock cycle is needed to select a column and to get a
pass or fail result from the ORA. Table 3.6 shows the testing time for different
FPGAs in the Virtex family. Here it was assumed that the clock frequency
is 100 MHz. Since our design was not simulated and not implemented in an
FPGA, it is not easy to estimate the maximum clock frequency of the design.
Therefore, a realistic estimation of half the maximum clock frequency of the

Virtex FPGA was taken.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

blank page—-no text

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Interconnects Model and
Routing Algorithm

In the previous chapter, the overall test scheme was presented and the fault
coverage of the scheme was analyzed. In order to get an FPGA testing pro-
gram from the test scheme, the local routing matrices have to be programmed
in combination with test logic in the configurable logic blocks (CLBs). The
local routing matrices are input routing matriz (IRM), output routing matriz
(ORM), and a part of the global routing matrix (GRM). In the present work, a
divide-and-conquer approach is taken: test configurations (TCs) are generated
for one tile and duplicated for all tiles under test in the FPGA.

Due to the structure of the IRM and ORM, made of MUX switches, it
is not possible to configure all the PSs in one TC. Therefore, to test all the
local interconnects, more than one TC is needed. The FPGA programming
time is usually relatively long (10 - 100 ms [35]) compared to the time one test
program takes to perform the actual test (see Section 3.6). Since one of the
most important concerns in testing integrated circuits is to reduce test time,
a heuristic way of minimizing the number of TC is needed.

This chapter first presents some constraints related to the derivation of TCs
followed by a definition of the problem. It will be followed by a presentation of
a local interconnects model based on graph theory. A TC derivation algorithm
based on a sequence of bipartite graph edge coloring is also presented. Finally,

the last two parts of this chapter present an analysis and experimental results

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Interconnects Model and Routing Algorithm

GRM IRM CLB ORM

i

{>_.

v,
~— Feedback Signals

Figure 4.1: CLB configuration example

of the algorithm.

4.1 Test Logic and Feedback Routing

As mentioned in Chapter 3, the local test logic used to test local interconnects
is a parity generator implemented in CLBs. In order to minimize the number
of TCs, the algorithm has to maximize the number of PSs and wire segments
used in these TCs. Therefore the parity generator implemented in the CLBs
should be configured with the maximum number of CLB inputs and outputs.

In order to configure a parity generator with the maximum number of
inputs using the two LUTSs of the CLB, feedback must be used. The structure
of the CLB allows signals to pass through it without entering into the logic.
Consequently, another way to add more CLB inputs and outputs to the test
logic is to use these kinds of signal combined with feedback signals. The other
feedback signals are used to route the latched values of the logic to tri-state
buffers. Therefore, one of the constraints that the algorithm has to deal with
is building the TCs local routing according to the test logic.

Figure 4.1 shows an example of a CLB configuration with four feedback
signals. In this example, it is possible to cbserve that feedback is needed to
be able to configure the two LUTs as a parity generator. The parity output is
latched by a D type flip-flop (DFF). Finally, the output needs another feedback

signal to reach the tri-state buffer that will drive the test response on the tri-

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 4.2: Interconnect Model

$18;8:84558s

[muilinal
=g an)

GRM~

OL,
oL,

IRM ~ ,~ ORM
L 0
— I, CLB 01 ‘
—! - 13 2 L

s

Figure 4.2: Local interconnect network

state bus.

4.2 Interconnect Model

A local interconnect model is necessary for Virtex FPGAs in order to support
a TC derivation algorithm. Figure 4.2 shows a simple model of a CLB with
the local interconnects, including the IRM, ORM, and the part of the GRM
that connects the output lines (OLs) to the global network. The IRM and
the ORM are made of multiplezer PSs, called input multiplezers (IMUXSs)
and output multiplerers (OMUXs) respectively. A multiplexer PS functions
as a conventional many-to-1 MUX. The other kind of PS is called a basic
PS denoted by squares in the GRM. A basic PS connects two wire segments
when it is programmed on. The basic PSs in the GRM between the OL wire
segments and the short wire segments (51, Sy, .., Sg) are included in the local
interconnects according to the definitions in chapter 2.

A routing matrix can be modeled as a bipartite graph (G = {V, E}),
where wire segments and PSs are denoted by wvertices (set V') and edges (set
E), respectively. In a bipartite graph, V is split into two disjoint sets, V;
and V5, and an edge is a link between two vertices, u and v, where u €
Vi and v € V5. The two disjoint vertex sets of a bipartite graph represent
two sets of wire segments. Edges of the graph represent PSs that can be
programmed in order to connect two wire segments. Figure 4.3 shows an

example of routing matrix modeling. Two groups of lines, Vi and V3, are

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Interconnects Model and Routing Algorithm

v,
K‘J\—\
DEF
A +HHB
Vi< B +H-H-
C -t
(a) Routing matrix (b) Graph model

Figure 4.3: Routing matrix modeling example

l Gorm | Gorm 1 Grm ’

Figure 4.4: Modeled k-partite graph

modeled as two groups of vertices, where V; = {A, B,C} and Vo = {D, E, F'}.
All possible PS connections are also represented on the bipartite graph by
edges.

Similarly, the IRM, the ORM, and the local interconnect part of the GRM
from Figure 4.2 can be modeled by three bipartite graphs Gy, Gorym, and
Georu, respectively. Graphs are combined to form a k-partite graph, a graph
with £ disjoint sets of vertices, where k = 4, by merging the common vertices
shared between bipartite graphs. Figure 4.4 depicts the k-partite graph. The

formation of the k-partite graph is convenient to trace a routing path needed to

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 4.8: Algorithm

Figure 4.5: Graph G4

Cl CZ
M, M, M; My M, M;
Sl
3
Oan®) o—0O
{a) Coloring C; of G (b) Coloring Cy of Gy

Figure 4.6: Edge coloring examples

test local PSs and wire segments. For example, a routing path, O; — OL; —
Sy — I3, shown in bold lines, permits the test of one PS in the ORM, one PS
in the IRM, one basic PS in the GRM, and corresponding wire segments.

4.3 Algorithm

The proposed algorithm is based on the graph modeling of FPGA interconnects
shown in the previous section. It is the first to use bipartite graphs to model

FPGA local interconnects, and to derive TCs from a k-partite graph.

4.3.1 Edge Coloring

Finding a minimal or near-minimal set of TCs, which verify the integrity of
local interconnects, can be considered as an edge coloring problem of graphs.
Edge coloring involves coloring all edges of a given graph G = {V, E'} with the
minimum number of colors so that no two edges connected to the same vertex
are assigned the same color (i.e., a coloring C' = {M, My, ..., My}, where M;

is a set of edges of the same color). If each color represents a TC, then edges

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Interconnects Model and Routing Algorithm

included in that TC are PSs that can be tested simultaneously.

Figure 4.5 shows a bipartite graph called G and Figure 4.6 (a) shows an
edge coloring of G called C;. The edge coloring of a bipartite graph is often
not unique. For example, Figure 4.6 (b) shows another possible coloring C5 of
the graph G

The minimum number of colors, known as the edge chromatic number, is
equal to the maximum vertex degree of the graph, A(G). Since each color of
the graph G represents a TC, the minimum number of TCs is A(G). Maximum
degrees of vertices for Grry and Gogy are A(Grry) and A(Gorar) respec-
tively. For Virtex FPGAs A(Grry) > A(Goru). Therefore, the theoretical

minimum number of TCs is determined by A(Grruy).

4.3.2 Algorithm Overview

As stated in Chapter 2, no existing algorithms can be used to solve coloring
problems of a k-partite graph for our test application mostly because of the
constraints generated by the test logic. What is proposed in this algorithm
is to first treat the k-partite graph coloring problem as coloring problems of
two bipartite graphs, Goryr and Grras, to obtain minimal solutions. The
two colorings are consolidated to form a maximal or near-maximal number of
routing paths, which in turn support the minimal or near-minimal coloring of
the two bi-partite graphs (i.e., the minimal or near minimal number of TCs
for the local interconnects).

The routing algorithm developed in the present research has three major

parts:

Partl Edge coloring of Gory + Completion,
Part2 Feedback routing + Completion,

Part3 Edge coloring rest of Gyry + Completion.

All the PSs programmed for each TC in ORM will be part of the feedback.
Since feedback is critical to the test logic, the algorithm takes care of them by

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 4.3: Algorithm

O CHNOYD
(o T

(a) Gorm (b) Edge coloring of Goru

Figure 4.7: Edge coloring of Gorm

configuring the ORM first. The first part of the algorithm is to configure PSs
in the ORM by coloring its corresponding bipartite graph Gogar. The coloring
of Goru is followed by what is called a completion of the coloring. Even if
edge coloring of a particular bipartite graph ensures that all the PSs are used
in at least one TC, some TCs will need more PSs to be sure that the test
logic is respected. Some edges, which were already present in other colors, are
included in the specific TCs to complete then. The number of colors generated
by this coloring is equal to A(Gorm)-

The purpose of the second part of the algorithm is to create correct test
logic by routing the feedback. Part two finds feedback signals that include
all the edges of all the colors of the Gorpy. A completion of the TC is also
necessary to route signals that are not part of the feedback signals. These
signals are control signals (SR, CE, CLK) and logic inputs. After the second
part is done, TCs numbered 1 to A(Gory) are completed.

The last part of the algorithm colors the rest of the edges in Grgps that were
uncolored in the previous part. This coloring configures PSs in T'Cs numbered
A(Gorm) + 1 to A(Grru). The completion is done by adding some already

tested PSs, used in previous TCs, to create test logic.

4.3.3 Example

This subsection presents an example of applying of the algorithm. The algo-
rithm will be applied on the simple local interconnect modeling presented in

Section 4.2. From that model, the theoretical number of TCs the algorithm

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Interconnects Model and Routing Algorithm

TC 1

Figure 4.8: Coloring of part 1

should derive is equal to A(Grry) = 4.

As described in the previous section, the first part of the algorithm is to
color Gorys. Figure 4.7 (a) and (b) show graph Gogy and an edge coloring
of it, respectively. Because all the vertices have the same degree in Gopryr, the
completion phase of the first part does not have to be performed. These colors
can be integrated into TC1 and TC2 as shown in Figure 4.8. At this stage,
TC3 and TC4 are still empty.

The second part of the algorithm makes feedback paths from the CLB out-
puts to the CLB inputs that include the edges configured in part 1. When the
feedback paths are routed, the algorithm completes TC1 and TC2 by adding
edges in IRM. Added edges will be inputs of the local test configuration where
the test vectors will be applied. Figure 4.9 shows TC1 and TC2 completed
by the inclusion of the routed feedback paths and the edges added by the
completion.

All PSs in IRM that were not configured in TC1 and TC2 need to be
configured in TC3 or TC4. An edge coloring is performed on the rest of Grr.
Figure 4.10 (a) and (b) shows the rest of Grray and its corresponding coloring.
Again, the colors can be transfered to the TCs as shown in Figure 4.11.

Since the ORM has been already tested, it is now possible to use any PSsin
it to route feedbacks for TC3 and TC4. These TCs also need to be completed
because the coloring does not include all the CLB inputs necessary to have

correctly configured test logic in all TCs. Figure 4.12 shows the completed

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 4.3: Algorithm

o
A
()

()

HEOEE
) &
OO

©]6]0]0]0.

s

(a) Grrum (b) Edge coloring of Grrm

Figure 4.10: Edge coloring of G'rpy

®-® O

S

° o
Mo
©

C 3 ; ~»:~;‘.¢3 TC 4

Figure 4.11: Coloring of part 3

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter J: Interconnects Model and Routing Algorithm

Figure 4.12: Coloring and completion of part 3

TC3 and TC4 after the inclusion feedback paths and the completion of Ggas

coloring.

4.3.4 Algorithm Details

To gain a more in-depth understanding of the algorithm, some parts require
further explanation. Most algorithms used in this thesis are presented with
pseudo-code in Appendix A. More details can be found in Appendix B where
all the Perl-coded programs are included.

In the first part of the algorithm, an edge coloring of a bipartite graph is
performed on Gogry. In fact, this edge coloring of Gopry is actually not a
straight edge coloring of a bipartite graph. Some of the colors generated by
an edge coloring of Goras are not compatible with any feedback combination.
The result is that no test logic, as described in Section 4.1, can be used.

In order to get compatible colors, an algorithm which employs enumeration
of edge coloring of bipartite graphs is used. As mentioned earlier, the edge
coloring of a specific graph is often not unique. In this case, it is possible to
use that property of the edge coloring to find a set of colors that can match a
certain feedback routing. The procedure used is based on the work of Matsui
and Uno in [36]. More details about this algorithm are presented by the
Algorithm 2 in Appendix A.

The algorithm developed by Matsui and Uno in [36] takes a bipartite graph

as input and basically builds a tree of colors in a depth-first manner. Figure

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 4.3: Algorithm

&

S
80
-
O
/0
O

&
&
o
&

o0—0
%
o~
‘O/
8
oo
o 0
o0
5-0/o8
o8

@
0/8
O—O
o—0
o O
O0—O
0—0
O—0

o0
O—O|=—o
N

Figure 4.13: Example of edge coloring enumeration

Cl C2 C3 C4 Cs

g g N [N 7)
ool [okol (030l ool [ose
O O 00

2 b0 |y bod | Qb |36
" god) [dod) [955) (558) (84

Figure 4.14: All edge coloring

O
o—0O
O O
o0

%

N

(O0—0O
0O

-

4.13 presents an example of the enumeration of the colorings of a bipartite
graph. Every path from the roots to the leaves is an edge coloring of the
bipartite graph on the top of the figure. Figure 4.14 shows all the five possible
edge colorings (C; to Cs) that can be derived from the tree of Figure 4.13.
All edge colorings get the minimum number of three colors M;, My, and Ms.
Because the number of possible colorings can be very high in this case, the

run time of this algorithm can be long.

Since the present application needs only one edge coloring that can be
routed in the FPGA, it is possible to modify the algorithm and speed up the
process. The modified algorithm checks if every new color found is able to

generate at least one test logic configuration with feedback. If the color found

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Interconnects Model and Routing Algorithm

cannot generate routable feedback paths, the algorithm does not continue
further in that part of the tree. If the algorithm reaches the bottom of the
tree (a leaf), it stops the search. The pseudocode of the modified algorithm is
presented in Algorithm 3 in Appendix A.

The non-modified enumeration algorithm used in part one has a time com-
plexity of O(JV|N), where |V| represents the number of vertices and N the
number of edge coloring. This time complexity is from [36].

The modified algorithm checks the routablility of feedback paths for every
new color generated according to the CLB test logic configurations. To find
the routability of the feedback paths, the algorithm performs a linear search
through the CLB configurations and checks if all paths in those configurations
can be routed in the FPGA. The added procedure increases the worst-case
time complexity that is now O(]V|NBS), where B is the number of CLB
configurations and S the number of feedback paths per CLB configuration.
The time complexity seems very high, but in fact, the algorithm does not have
to pass through all of the enumeration. The O(BS) complexity procedure
actually speeds up the process because only one solution is necessary. In fact,
the best case is O(ABS) where A is the maximum degree of the bipartite
graph. The average case is a lot faster than the worst case of O(|V|NBS),
but it is a function of the probability of finding a routable color.

The completion step of the first part of the algorithm is done in a worst time
complexity of O(AIBS), where A represents the number of incomplete colors
in the coloring, I is an over-bounded value for the maximum number of missing
edges in an incomplete color, and B and S are the same as before. Algorithm 5
shows this completion pseudocode. Even if this procedure seems to be highly
time consuming, the number of incomplete colors and their corresponding
missing edges are low. In practice, the running time for this procedure is
relatively low.

In the second part, the algorithm has to find feedback paths for all edges
in colors that were generated by the coloring and completion in part one. The

algorithm performs a sequential search for each color of the coloring. The

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 4.3: Algorithm

worst-case time complexity for the sequential search is very’high, O(ABS),
but it will most likely not happen because the search stops when a combination
of paths is found. It does not have to search through all possibilities. This
procedure is shown in Algorithm 6.

The completion phase of part two treats each color separately and adds
edges in color IRM. For one specific color, the vertices related to the edges
already in the color are deleted. On the resulting Grry, & procedure tries to
find a match (or a color). The edges that are part of the match are transferred
from Grruy to the color. Since finding a new match in a bipartite graph can
be done in O(maz{|E|,|V| log|V| log’A}) as described in [37], the present
completion can be done in O(A(maz{|E|, [V| log|V|log?A})), where A is the
maximum degree of any vertex in Grgy. Algorithm 7 shows the pseudocode
of this part of the algorithm.

The last part of the algorithm first performs a simple edge coloring of a
bipartite graph on the rest of Grgy to build the last TCs. A simple imple-
mentation of the edge coloring of bipartite graphs can run in O(|V||E|) where
|V] is the number of graph vertices and |E| is the number of edges in Grry.
Algorithm 1 shows the pseudo-code of a simple edge coloring that runs in
O(|JV||E|). This algorithm is presented in [38].

The last completion is performed in O(AIBS), similar to the completion
of the first coloring. Here, A = A(Grry) — A(Goru) because it is part of the
algorithm which colors the second part of Gypps. Algorithm 8 presents more

details about this procedure.

4.3.5 Experiments

The proposed algorithm was tested on Virtex FPGAs, whose A(Grryr) = 26.
The coloring algorithm, coded in Perl, modeled the interconnects resource into
bipartites graphs and successfully derived a minimal set of 26 TCs with the
edge coloring sequence described earlier in this chapter. The program ran in
under 6 minutes. The experiments were carried out on a 750 MHz UltraSPARC
[T microprocessor with 2 GB of RAM.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Interconnects Model and Routing Algorithm

The programs, presented in Appendix B and C, derived the set of 26 TCs.
These TCs are presented by 26 conceptual diagrams in Appendix D. Figure
4.15 shows the TC number 14. On this diagram, the routing matrices are
identified in gray on Figure 4.15. The wire segments are represented as cir-
cles and the programmed PSs as straight lines in the routing matrices. Two
CLBs and two tri-state buffers are identified by CLB0, CLB1, TO, and T1,
respectively, on the diagram. The short lines are the only global lines shown
on the periphery of the GRM. Some other global lines, like some hex lines, are
connected to the IRM. The inputs and the outputs of the CLBs are below and
on top of the CLBs, respectively. The out lines, are shown at two places for
more clarity: on the side of ORM and also on the side of GRM.

It should be mentioned that the set of TCs presented in Appendix D is
not unique. That is according to the fact that the edge coloring of a bipartite
graph is not unique as well. For example, other sets of TCs can be found if
the order of the PSs is changed in the inputs of the program.

Since a divide-and-conquer approach was used, and the TCs derived are
duplicated to all remaining tiles to form a TC, the TC derivation algorithm is

independent of the dimensions of Virtex FPGAs.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 4.3: Algorithm

CLBO

Q0000000 CTO

i

NG

]
e
aviis
.
y,

00000660666000600660600006

Figure 4.15: Test configuration 14

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

blank page - no text

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Proposed Diagnostic Schemes

Diagnostic tests are applied after a circuit has failed a pass/fail test. These
tests have to identify a faulty part or area that should be replaced, modified,
or avoided. Diagnostic tests, like normal pass/fail tests, can be applied to an
integrated circuit in its design system, manufacturing system, and application
system. A diagnostic test is characterized by its diagnostic resolution, defined
as the smallest faulty feature that the diagnostic test can detect. The diagnos-
tic resolution can be at a transistor level, where transistors and wire segments
can be faulty. At higher levels, the diagnosis can declare a register, a chip, or

even a complete printed circuit board to be faulty.

In the case of FPGA interconnects, the smallest resolution that can be
achieved is at the wire segment and programmable switch (PS) level. Prac-
tically, it is not possible to have a diagnosis at that level since not all wire
segments and PSs are tested in one test configuration (TC). Therefore, the

diagnostic resolution will be bigger.

It is useful to develop FPGA diagnostic tests that can be embedded in the
chip, like a diagnostic BIST scheme. For manufacturing diagnosis, this kind
of embedded test avoids the use of expensive test machines such as automatic
test equipment (ATE). When an FPGA is embedded in an electronic system, a
diagnostic test can repair the FPGA. That is called a fault tolerant system. In
order to repair an FPGA, the diagnostic test must let the FPGA programming

device know which parts are defective. The programming device can then avoid

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Proposed Diagnostic Schemes

the defective parts of the FPGA.

A certain diagnosis can operate at the tile level by keeping the same TCs as
the previous section. In one TC, it is possible to select a specific tile because
two test responses are put on a tri-state bus for each tile, and the column select
signals can control one column at a time. Consequently, it is possible to have
a diagnostic resolution with a size of half a tile according to the test scheme
presented in Chapter 3. Of course, the BIST circuitry has to be modified,
but the circuit under test (CUT) of the scheme presented in Chapter 3 can be
preserved.

This chapter presents two diagnostic test schemes that are modified ver-
sions of the scheme presented in Chapter 3. The first section presents a gen-
eral diagnostic scheme. The second and third sections present a fault tolerant

scheme and a manufacturing scheme respectively.

5.1 General Diagnostic Scheme

Chapter 3 presented advantages of having a BIST scheme. The present diag-
nostic scheme is also a BIST scheme. Some modifications are needed in the
BIST part to adapt it to diagnosis. One new consideration that the diagnos-
tic scheme has to deal with is to determine where and how diagnostic result
information will be stored in the FPGA. Since the new scheme uses the same
CUT part, the scheme can keep the same test vectors described in Chapter 3.
Since some RAM blocks are not used for test vector storage, they can be used
to store diagnostic test responses. When the test is over, test responses stored
in RAM blocks can be sent out of the FPGA.

The sequence of the diagnostic test is similar to the one presented in Chap-
ter 3. First, test vectors are applied in parallel to the CUT part of the FPGA.
Second, the column select signal from the BIST part selects two columns of
tiles that will be under test. Four test responses per row are sent back to
the BIST part in parallel via tri-state buses. FEach test response received by

the BIST part is compared with a fault-free signal. This process generates a

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 5.2: Fault Tolerant Scheme

sequence of I's and (s, meaning passed and failed, respectively.

One of the major differences between the diagnostic test scheme and the
regular one presented in Chapter 3 is that test responses need to be stored
during the diagnostic test. Test responses are not analyzed in parallel by
combinational logic like in the test scheme in presented Chapter 3. Figure 3.4
shows the ORA that was composed of an AND, a NOR and a multiplexer.
In the diagnostic scheme, test responses from the CUT are stored in a shift
register and analyzed one by one. This is slower but it allows no loss of test
response information.

Different FPGA applications may need different diagnostic tests and thus
may need a different kind of test result data. In the next subsections, two
diagnosis schemes will be presented. Their differences come from the way
the data is stored for two different applications. The first diagnostic test is
ideal when the FPGA is used in a fault-tolerant system. The other diagnostic
test can be applied in a manufacturing environment where a fine diagnosis is

needed.

5.2 Fault Tolerant Scheme

A fault-tolerant system has the capacity to work in the presence of faults. In
the case of FPGAs, fault tolerance is achieved by avoiding faulty resources the
FPGA and using only good ones when programmed, allowing the design to
function properly. Of course, when there are too many faulty resources, the
FPGA design can not be implemented properly.

A diagnostic test scheme, based on the Chapter 3 scheme, can be devel-
oped for fault-tolerant systems with FPGAs. Diagnostic tests embedded in an
integrated circuit can perform, inside the integrated circuit, testing computa-
tions that is usually computed outside. In the present scheme, diagnostic test
outputs can be coordinates of faulty FPGA tiles. As mentioned before, the
smallest resolution that a diagnosis program can achieve is half a tile. Since

it is easier for an FPGA programming device to avoid a faulty tile than avoid

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Proposed Diagnostic Schemes

L

Row J Column , Column Select
Counter Counter Decoder

t

E
Ee Ee

| .| Address
Counter
152\1:/1 Cﬁﬁn BIST CUT
Controll i
Block Block oter I
Test Vectors
{] RAM Block 3
I Fault—free signal Shift Register
Address , A
C ? {
ounter \

Figure 5.1: Fault-tolerant diagnosis test scheme

only one particular faulty element in this tile, outputting the coordinates of

faulty tiles is a good choice of output data for a fault-tolerant scheme.

In this diagnostic scheme, the diagnostic results are stored in the available
RAM blocks in the FPGA. In fact, not all the results need to be saved. To
comply with a fault-tolerant scheme, only row and column numbers of all
faulty tiles have to be saved. Figure 5.1 shows a diagram of the fault-tolerant
scheme. When the BIST controller detects a faulty test response in a specific
tile, its row and column number are saved in two separate RAM blocks. The
address of both memories will be incremented every time a new faulty tile is
found. The test does not have to pass through all test vectors: when a tile
gets one faulty response, it is declared faulty and the test continues on to the

next tile.

Because memory space is a concern in the present scheme, more investi-
gation is needed to prove the feasibility of the scheme. Every RAM block in
the FPGA has 1 kB of memory divided into two 512-Byte ports. These ports
can be configured as shown in Table 5.1. Many memory widths can be used.

Table 5.2 shows some characteristics for every FPGA in the Virtex family.

Practically, RAM ports need to be configured at least 8 bits wide to be able

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 5.2: Fault Tolerant Scheme

Table 5.1: RAM port configurations

Memory | Memory
Width Depth
1 4096
2 2048
4 1024
8 512
16 256

Table 5.2: Characteristics of Virtex FPGAs

Virtex FPGA | Number of | Number of | Number of
Device Rows Columns | RAM Blocks
XCV50 16 24 8
XCV100 20 30 10
XCV150 24 36 12
XCV200 28 42 14
XCV300 32 48 16
XCV400 40 60 20
XCV600 48 72 24
XCV800 56 84 28
XCV1000 64 96 32

to store the row number of the biggest FPGA. A 4-bit wide memory is not
sufficient. Due to the vertical division between the BIST part and the CUT
part in the test scheme (see Chapter 3), only half of the total RAM blocks are
accessible to save test information. Even with this constraint, there is enough
space to store all tile addresses of the biggest FPGA in the worst case where
all tiles are faulty. Table 5.3 shows that the number of bits is enough to store
the addresses of all the tiles in the CUT part of the FPGA.

When the test is over the RAM block information is read from outside the
FPGA. The diagnostic results (column and row addresses of faulty tiles), for
all the TCs, are accumulated outside the FPGA. These diagnostic results are
used by the compiler tool to recompile the original design and then avoid the

faulty resources.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Proposed Diagnostic Schemes

Table 5.3: Number of tiles under test

Virtex FPGA | Number of Tiles Bytes
Device Under Test Available
XCV50 384 3584
XCV100 600 4608
XCV150 864 5632
XCV200 1176 6656
XCV300 1536 7680
XCV400 2400 9728
XCV600 3456 11776
XCV800 4704 13824
XCV1000 6144 15872

5.3 Manufacturing Diagnostic Scheme

In certain tests, further analysis on the diagnostic test results is needed outside
the FPGA. Manufacturing diagnostic test falls into in this category. The
collection of all test results for all TCs can help to perform a more accurate
diagnosis outside the FPGA. In that kind of test, no loss in the test results is
allowed.

Storing test responses on-chip instead of sending them one-by-one outside
the chip can speed up the test process because the circuit outside does not
have to be synchronized with the FPGA during the test. At the end of the
test, the FPGA sends out stored values. With this kind of test scheme, many
FPGAs can be tested in parallel, which further speeds up the testing process.

Because the available storage space is limited, a quick analysis is needed to
see if there is enough space in the RAM block to save all of the test responses.

The length of the binary test vector sequence applied to a tile is the same
for every device in the Virtex family. On the other hand, FPGAs in the
Virtex family get different numbers of test responses due to their different

sizes. Equation 5.1 describes the total number of test responses applied during
one TC.

Columns
Test response total = — x 2 X Rows x Number of test vectors

= Columns x Rows x Number of test vectors (5.1)

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 5.83: Manufacturing Diagnostic Scheme

FPGA

Test Cireuit 1

BIST 1

RAM Block

Figure 5.2: A test configuration with two BISTs

The Number of test vectors variable in this equation is equal to 150 from
test vector sets derived in Chapter 3. The number of Columns is divided by
two because the CUT takes only half the space divided vertically. It is also
multiplied by two because there are two test responses per tile.

In the regular BIST scheme described in section 3, only half of the RAM
blocks are accessible from the BIST because the CUT block the accesses the
one adjacent to it. Since the BIST part of the FPGA is essentially the same
for all TCs for all the FPGAs in the family, there are available logic resources
in the BIST part of the TC for the biggest FPGAs. Therefore, to be able to
reach the RAM blocks on both the right and left sides of the FPGA, a new TC
partition of the FPGA can be used. Figure 5.2 shows the proposed solution
where the logic resources are split into four parts. T'wo test circuits are present
in this TC. The BIST 1 tests the CUT 1 and uses the column of RAM Blocks
on the left side. Similarly, BIST 2 tests CUT 2 and uses right side RAM blocks.
Therefore the number of test responses will be divided by two for FPGAs that
are twice as big as the smallest FPGA in the Virtex family, the XCV50. Some
interactions are needed between the two BISTs because the values stored in
the RAM blocks must be read only when both test circuits have finished there

tests. Having more than two test circuits in one TC will not give access to

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Proposed Diagnostic Schemes

Table 5.4: Compression needed for all Virtex FPGAs

Virtex No. of | No. of No. of Available | Compression
FPGA BIST Test RAM Ports | Memory Ratio
Device Used | Responses | Available (Bits) Needed
XCV50 1 57600 7 28672 2.01
XCV100 1 90000 9 36863 2.44
XCV150 2 64800 11 45056 1.44
XCV200 2 88200 13 53248 1.66
XCV300 2 115200 15 61440 1.88
XCV400 2 180000 19 77824 2.31
XCV600 2 259200 23 94208 2.75
XCVe800 2 352800 27 110592 3.19
XCV1000 2 460800 31 126976 3.63

more memory, but it can speed up test application.

Table 5.4 shows the number of test responses for all the FPGAs in the Vir-
tex family. It is possible to see that the number of test responses is influenced
by the number of BISTs used in the TCs. It also shows the number of RAM
ports available for each test circuit to store test responses. The available mem-
ory space is derived from the number of RAM ports available by multiplying
it by 512, the number of bytes per port, and by 8, the number of bits in one
byte.

Since the number of test responses is more than the number of bits avail-
able in RAM blocks, the test responses need to be encoded. Therefore, the
minimum compression ratio needed is defined by the number of test responses
divided by the number of bits available in the RAM blocks. The compression
ratios needed are presented in Table 5.4. The biggest compression ratio needed
is for the XCV1000, the biggest FPGA in the Virtex family.

Figure 5.3 shows a diagram that presents the manufacturing diagnostic test
scheme. The major difference between Figure 5.3 and Figure 5.1, which shows

the fault-tolerant scheme, is the encoder.

5.3.1 Run-Length Encoding

Run-length encoding (RLE) is a technique used to reduce the size of a sequence

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 5.3: Manufacturing Diagnostic Scheme

L

f -/
Column Column Select
Counter Decoder
Test 1 T
Responses
RAM L ol jéddretSS
ounter
Block BIST : Ut
Controller ’ l———»‘—*
Test Vectors
’-—f~—f RAM Block A
4 , Fault-free signal Shift Register
Encoder v_____d(
<

Figure 5.3: Manufacturing diagnosis test scheme

of characters by exploiting their repetitions. A repeating sequence of charac-
ters is called a run. RLE encodes a run into two values: a count and a symbol.
For example, the binary sequence 17171100111 can be encoded in three runs
as {{4,1}, {2,0}, {3,1}} with a RLE encoder, where the first number in each
couple is the count and the other is the symbol. In that way, RLE can encode
any kind of data, but its compression ratio varies with the data content to be
compressed. RLE is easy to implement in FPGAs with a few resources and is
also quick to execute due to its simplicity. Therefore, RLE is a good solution
for the compression of diagnostic test results in the manufacturing diagnostic
scheme because the space to program the BIST is limited. Furthermore, en-
coding part of the scheme must be performed as fast as possible because time

is always a major concern in testing.

Practically, the FPGA implementation of the RLE encoder is not com-
plicated and can be implemented using a few FPGA logic resources. In the
diagnostic test scheme, binary test results are stored in RAM blocks. The

present work uses a simple and common way of storing the data in the FPGA.

The same memory is used to store the count and symbol. Therefore, the

count and symbol data have different bits assigned in the memory word. In

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Proposed Diagnostic Schemes

Table 5.5: Example RLE in RAM port

Memory | Memory Content

Address || Symbol | Count
$000 1 000 1001
$001 0 000 0001
$002 1 000 0100
$003 0 000 0010

the case of binary symbols, one bit in the word has to be assigned for the
symbols. Table 5.5 shows a RAM port with encoded data of the stream of
data 1111111110111100 into it.

In this example, the RAM port is configured to be 8 bits wide. The most
significant bit of the word is assigned to the symbol and the rest to the count.
In this particular case, the length of the counts can be up to 255. When a run
has a count value greater than 255, the encoder resets the count and starts
counting at the next memory space. When a RAM port is full, the encoder
continues its encoding in the next port. With this kind of compression, all test
responses can be recovered by a decoder outside the FPGA.

There is also no compression achieved in this example encoding because the
number of bits in the input data (16 bits) is less than the number stored by the
encoder (32 bits). That is due to the short runs compared to the capacity of
each memory space. However, if the runs are much longer, some compression

will be achieved.

5.3.2 Feasibility of the Scheme

A quick explanation of the test sequence is necessary to understand the feasi-
bility analysis of the manufacturing diagnostic scheme. First, the BIST applies
a test vector to all tiles in the CUT part of the FPGA. Next, column select sig-
nals select a column that becomes the column under test. All test results from
the tiles in the column under test are compared one by one with a fault-free

signal in the BIST part of the FPGA. Finally, a 1 or a 0, meaning passed and

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 5.3: Manufacturing Diagnostic Scheme

1: for all Test Vectors do

2 for all Column € CUT do

3 for all Tile € Column do

4: Compare the test response of the Tile with fault-free signal
5 end for

6 end for

7. end for

Figure 5.4: Test sequence

failed respectively, is sent to the encoder. Figure 5.4 shows a small pseudocode
that presents the test sequence. In the present subsection, the sequence is sim-
plified to make the concept easier to understand. But results on the feasibility
of the scheme are according with the real scheme.

Since the feasibility of the scheme is related to the capacity of the encoder
to compress the sequence of test results, the analysis will present the best and
the worst cases from the point of view of the encoder.

There are two cases where the encoder will perform the best compression.
One of these cases is when the CUT is all fault-free. When this occurs, the
sequence of test results has identical symbols of logic 1s. In the case of a fault-
free FPGA, all of the test responses can be stored if the RAM port width is
set to 8 bits. The compression ratio can be easily calculated for the best case.
Remember that the maximum number of test responses that can be stored in
a 8-bit wide memory by the RLE is 2% — 1 = 255. Therefore the compression

ratio achieved in this case is represented by the following equation:

Number of test responses
Memory available

Compression ratio =

Capacity of a cell X Number of memory cells
Width of memory X Number of memory cells

Capacity of a cell
Width of memory
(Width of memory)® — 1

B Width of memory (52)

From Equation 5.2 it is possible to see that the compression ratio depends

only of the Width of memory and it is independent of the Number of memory

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Proposed Diagnostic Schemes

CUT

6 5 4 3 2 1

Shift Register

: Faulty Tile (0)

: Fault—Free Tile (1)

L Column Under Test

Figure 5.5: Worst case circuit under test

cells. Therefore, a compression ratio of 255/8 = 31.875 can be found for an
8-bit wide memory. For a 16-bit wide RAM block, the compression ratio is
even better. It is equal to (16% — 1)/16 = 4095.9. Since these compression
ratios are larger than the one in Table 5.4, all the test responses can be stored
in the RAM ports. With a similar calculation, it is possible to demonstrate
that a 4 bit wide memory cannot store all the values even for the best case.
That means that the RAM ports have to be configured either 8 bits or 16 bits

wide.

A similar scenario occurs when the entire FPGA is faulty. In this case, the
test responses will be all faulty and will generate a sequence of logic 0s. The
compression ratio will be the same as before. Even if this case is very unlikely
to happen, it is interesting to observe that all these values can be stored in

the RAM blocks.

The worst case scenario for the encoder occurs when symbols are alternated
every test response. In that case, there is not enough space in the RAM Blocks

and the test must stop when the RAM blocks are full.

Let’s assume that a tile gets a fault that always returns faulty responses
to the BIST. The worst case happens when faulty and fault-free tiles are
alternated in the CUT part of the FPGA. Figure 5.5 shows this scenario in

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 5.8: Manufacturing Diagnostic Scheme

Table 5.6: Number of test vectors saved in the worst case

Virtex FPGA | Number of Test Vectors
Device 8-bit Wide | 16-bit Wide
XCV50 9.33 4.67
XCV100 7.68 3.84
XCV1i50 13.04 6.52
XCV200 11.32 5.66
XCV300 10.00 5.00
XCV400 8.11 4.05
XCV600 6.81 3.41
XCV800 5.88 2.94
XCV1000 5.17 2.58

the CUT part of the TC. This generates a checker board pattern in the CUT.
In this case, the compression ratio is very low because only one value can be
stored in one word in the memory regardless of the width of the memory.

To characterize the performance of the encoder in the worst case, the num-
ber of test vectors applied to the CUT that will fill the memories has been
counted for each FPGA in the Virtex family. Table 5.6 shows these results.
The numbers of test vectors are not integers because a fraction of a test vector
can be stored in the RAM. Table 5.6 shows that for the worst case, it is better
to have a memory with narrower words and more memory cells. Therefore,

8-bit wide RAM ports are better than 16-bit wide RAM ports in this case.

5.3.3 Postprocessing of Diagnostic Results

Similarly to the fault-tolerant diagnostic scheme, the information stored in
the RAM blocks is read from outside the FPGA when the test is over. The
diagnostic results from all the T'Cs can be analyzed outside the FPGA and can
possibly lead to an accurate diagnostic resolution. The post processing should
analyze diagnostic results of all TCs simultaneously and consequently deter-
mined faulty relations between results from different TCs to identify faulty
resources as fine as an individual wire segment or PS. Therefore, the most ac-
curate diagnostic resolution can be achieved. This analysis is outside the scope

of this thesis, but it is mentioned as further work in the conclusion chapter.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

blank page — no text

o8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusion

State-of-the-art FPGAs, such as Xilinx Virtex FPGAs, are composed of tens
of millions of programmable switches (PSs) and wire segments, which are ac-
cessible either through the programmable interconnect network or require the
use of programmable logic blocks. The main challenge for interconnects test-
ing is to verify the integrity of the tens of millions of programmable elements

in the shortest time possible.

The way FPGA manufacturers test their FPGAs is proprietary informa-
tion. Since FPGAs need to be tested by users after manufacturing, much
research has been done to create FPGA test strategies for that case. One
common approach employs a divide-and-conquer technique that tests some of
these elements at a time, and uses a set of tests to complete the verification.
Testing local interconnects is an especially hard task because test signals have
to get in and out of configurable logic blocks (CLBs). Previous research is
mostly on the XC4000 or similar architectures that have simpler local inter-
connect networks than the Virtex FPGA. This thesis presents the first work
that heuristically derives test configurations (TCs) for the Virtex FPGAs.

It should be mentioned that the built-in self-test (BIST) test scheme pre-
sented in this thesis can be applied in manufacturing test as well. Since the
test processing is inside the FPGA, the test can be performed in parallel on
many FPGAs. The cost of testing can be considerably reduced if enough tests

are done in parallel to beat the performance of automatic test equipment.

o9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Conclusion

6.1 Main Contributions

In Chapter 3, a new BIST scheme for the Virtex FPGA is presented. This
BIST scheme is different than previous schemes because test responses are
carried by the tri-state buses. The local interconnects related to the tri-state
buffer can then be tested. Another important feature of the BIST scheme is
that test vectors are stored in the RAM blocks of the FPGA. Three sets of
test vectors are created to detect common types of interconnects faults such as
segment stuck-at 0/1, segment stuck-open, segment/ programmable switch (PS)

bridge, and PS stuck on/off faults.

One critical aspect of the test scheme is the local routing itself. Chapter
4 described an algorithm that can derive the minimum necessary number of
TCs. The algorithm is based on a graph model. In the model, vertices and
edges of the graph represent wire segments and PSs, respectively. The models
of the three local interconnects are bipartite graphs. The algorithm uses graph
coloring of bipartite graphs to build the TCs. The experiments on the Vir-
tex resources show that the theoretical minimum number of TCs is equal to
26. The algorithm can derive that minimum number of TCs. The total time
complexity for the algorithm is O(|V|NBS). Though this time complexity
may appear to be slow, the algorithm derives the Virtex FPGA local TCs in

approximately six minutes.

Two diagnostic test schemes were presented in Chapter 5. These two tests
were created for two different applications: fault-tolerant diagnosis and man-
ufacturing diagnosis. In both schemes, test results are stored on chip in the
RAM blocks, but they are stored differently. Because of the nature of a fault-
tolerant system, it is only necessary to store the addresses (rows and columns)
of the faulty FPGA tiles. In the case of the manufacturing diagnostic scheme,
all the test results need to be stored. Since the space in the RAM blocks is
not sufficient to store all of the test responses, an encoder was needed. A
run-length encoder (RLE) was chosen for its simplicity, which makes it easy

to implement and fast to execute in an FPGA. A two-BIST manufacturing

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 6.2: Further Work

scheme, that allows the access of the entire RAM block in the bigger Virtex
FPGAs (XCV150 and over), was also presented. An analysis of the feasibility
of this scheme with a RLE showed that all the test results can be stored when
the FPGA is fault-free. The analysis also shows that, for the worst-case sce-
nario, the scheme can save the test responses of 5 complete test vectors over

a total of 150 test vectors.

6.2 Further Work

Though feasibility studies were performed on all the schemes presented in
this thesis, none of the schemes were physically implemented in a real FPGA.
Therefore, an implementation could be useful to see if the BIST can be im-
plemented in half of the FPGA for the smallest FPGA. Simulations and tests
could then be performed on the different test schemes to see how fast the tests
can be loaded and applied.

For the manufacturing diagnostic test scheme, it could be interesting to
perform further investigation and have finer test resolution. That could be
achieved by comparing test responses between TCs. New sets of test vectors
could be developed to have better diagnostic resolution. Therefore, test vectors
could be different for every TC. They could also be adapted from the test
results from the previously applied TCs.

More investigation into how TCs can be programmed in FPGAs and how
data in the RAM blocks can be read should be part of the further work of
this project. One interesting property of the Virtex/Spartan-II is that it is
possible to use run-time configuration to partially reconfigure some parts of
the FPGA when other parts stay the same. In the present case, the BIST
can stay the same and the CUT can be reprogrammed. This can speed up
the programming of the FPGA and also reduce the size of the TC outside
the FPGA. Tt seems also possible to read only the content of the RAM blocks
from outside the FPGA. This could speed up the reading of the test results in

the diagnostic schemes. The modularity of local TCs can also be used to save

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Conclusion

memory space in the system outside the FPGA.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] M. L. Bushnell and V. D. Agrawal, FEssentials of Electronic testing for
Digital, Memory and Mized-signal VLSI Circuits, Kluwer Academic Pub-
lishers, 2000.

[2] L. Zhao, D.M.H. Walker and F. Lombardi, “Ippg testing of input/output
resources of SRAM-based FPGAs,” in Proc. of Asian Test Symposium,
1999, pp. 375-380.

[3] L. Zhao, D. Walker and F. Lombardi, “Ipp¢ testing of bridging faults in
logic resources of reconfigurable field programmable gate arrays,” IEEE

Transactions on Computers, pp. 1136-1152, 1998.

[4] L. Zhao, D.M.H. Walker and F. Lombardi, “Bridging fault detection in
FPGA interconnects using Ippg,” in Proc. of International Symposium

on Field Programmable Gate Arrays, 1998, pp. 95-104.

[5] W.K. Huang, X. Cheng and F. Lombardi, “On the diagnosis of pro-
grammable interconnect systems: theory and application,” in Proc. of

IEEE VLSI Test Symposium, 1996, pp. 204-2009.

6] Y. Yu, J. Xu, W.K. Huang and F. Lombardi, “A diagnosis method for
interconnects in SRAM-based FPGAs,” in Proc. IEEE Asian Test Sym-
posium, 1998, pp. 278-282.

[71 Y. Yu, J. Xu, W.K. Huang and F. Lombardi, “Minimizing the number
of programming steps for diagnosis of interconnects faults in FPGAs,” in

Proc. of Asian Test Symposium, 1999, pp. 357-362.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[8] M. Renovell, J. Figueras and Y. Zorian, “Test of RAM-based FPGA:
Methodology and application to the interconnect,” in Proc. of IEEE
VLSI Test Symposium, 1997, pp. 230-237.

[9] M. Renovell, J.M. Portal, J. Figueras, and Y. Zorian, “Testing the inter-
connect of RAM-based FPGAs,” IEEE Design and Test of Computers,
vol. 15, no. 1, pp. 45-50, 1998.

[10] M. Renovell and Y. Zorian, “Different experiments in test generation for
XILINX FPGAs,” in Proc. IEEE International Test Conference, 2000,
pp. 854-862.

[11] M.B. Tahoori, S. Mitra, S. Toutounchi and E.J. McCluskey, “Fault grad-
ing FPGA interconnect test configurations,” in Proc. of International

Test Conference, 2002, pp. 608-617.

[12] M.B. Tahoori and S. Mitra, “Automatic configuration generation for
FPGA interconnect testing,” in Proc. VLSI Test Symposium, 2003, pp.
134-139.

[13] H. Michinishi, T. Yokohira, T. Okamoto, T. Inoue and H. Fujiwara, “A
test methodology for interconnect structures of LUT-based FPGAs,” in
Proc. of Asian Test Symposium, 1996, pp. 68~74.

[14] M. Renovell, J.M. Portal, J. Figueras, and Y. Zorian, “Testing the local
interconnect resources of SRAM-based FPGAs,” Journal of Electronic

Testing: Theory and Applications, vol. 16, no. 5, pp. 513-520, 2000.

[15] A. Doumar and H. Ito, “Testing the logic cells and interconnect resources

for FPGASs,” [EEFE Asian Test Symposium, pp. 369-374, 1999.

[16] C. Stroud, S. Wijesuriya, C. Hamilton and M. Abramovici, “Built-in
self-test of FPGA interconnect,” in Proc. of IEEE International Test
Conference, 1998, pp. 404-411.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[17] M. Abramovici, C. Stroud, C. Hamilton, S. Wijesuriya and V. Verma,
“Using roving STARs for on-line testing and diagnosis of FPGAs in fault-
tolerant applications,” 1999, pp. 973-982.

[18] X. Sun, J. Xu, B. Chan and P. Trouborst, “Novel technique for built-in
self-test of FPGA interconnects,” in Proc. of IEEE International Test
Conference, 2000, pp. 795-803.

[19] X. Sun, S. Xu, J. Xu and P. Troubst, “Design and implementation of
a parity-based BIST scheme for FPGA global interconnects,” in Proc.

of IEEE Canadian Conference on Electrical and Computer Engineering,
2001, vol. 2, pp. 1251-1257.

[20] X. Sun, J. Xu, A. Alimohammad and P. Trouborst, “Minimal test config-
urations for FPGA local interconnects,” in Proc. IEEE Canadian Confer-

ence on Electrical and Computer Engineering, 2002, vol. 1, pp. 427-432.

[21] X. Sun, A. Alimohammad and P. Trouborst, “Modeling of FPGA lo-
cal/global interconnect resources and derivation of minimal test config-
urations,” in Proc. IEEE International Symposium on Defect and Fault

Tolerance in VLSI Systems, 2002, pp. 284-292.

[22] X. Sun, K. Ogden, H. Chan and P. Trouborst, “A novel FPGA local in-
terconnect test scheme and automatic tc derivation/generation,” Journal

of Systems Architecture (in press).

[23] C. Metra, A. Pagano and B. Ricco, “On-line testing of transient and
crosstalk faults affecting interconnects of FPGA-implemented systems,”

in IEEFE International Test Conference, 2001, pp. 939-947.

[24] M. Abramovici and C. Stroud, “BIST-based delay-fault testing in FP-
GAs,” Jounal of Electronic Testing: Theory and Application, pp. 549-558,
2003.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[25] 1.G. Harris and R. Tessier, “Interconnect testing in cluster-based FPGA
architectures,” in Proc. of ACM/IEEE-CAS/EDAC Design Automation
Conference, 2000, pp. 49-54.

[26] I.G. Harris and R. Tessier, “Testing and diagnosis of interconnect faults
in cluster-based FPGA architectures,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 21, no. 11, pp.
1337-1343, 2002.

[27] C. Nomikos, A. Pagourtzis and S. Zachos, “Routing and path multicol-
oring,” Information Processing Letters, vol. 80, no. 5, pp. 249-256, 2001.

[28] S. Park, “A new complete diagnosis patterns for wiring interconnects,”

in Proc. Design Automation Conference, 1996, pp. 203-208.

[29] W. Cheng, J.L. Lewandowshi and E. Wu, “Diagnosis for wiring inter-
connects,” in Proc. of IEEE International Test Conference, 1990, pp.
565-571.

[30] A. Hassan, J. Rajski and V.K. Agrawal, “Testing and diagnosis of inter-
connects using boundary scan architecture,” in IEEFE International Test

Conference, 1988, pp. 126-137.

[31] T. Liu, F. Lombardi and J. Salinas, “Diagnosis of interconnects and
FPICs using a structured walking-1 approach,” in Proc. of IEEE VLSI
Test Symposium, 1995, pp. 256-261.

[32] M. B. Tahoori, “Diagnosis of open defects in FPGA interconnect,” in
Proc. of Conference on Field-Programmable Technology, 2002, pp. 328—
331.

[33] X.T. Chen, F.J. Meyer and F. Lombardi, “Structural diagnosis of in-
terconnects by coloring,” ACM Transactions on Design Automation of

Electronic Systems, vol. 3, no. 2, pp. 249-271, 1998.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[34] M. Abramovici, M. A. Breuer and A. D. Friedman, Digital Systems Test-
ing and Testable Design, IEEE Press, revised printing edition, 1990.

[35] “The programmable logic data book,” Xilinx Inc., 2002.

[36] Y. Matsui and T. Uno, “A fast enumerating algorithm for edge colorings
of bipartite graphs,” Submitted to Algorithmica.

[37] R. Cole and J. Hopcroft, “On edge coloring bipartite graphs,” SIAM
Journal on Computing, vol. 11, no. 3, pp. 540-546, 1982.

[38] O. Ore, The Four-Color Problem, New York: Academic Press, 1967,

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

blank page - no text

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Algorithm’s Pseudocode

Algorithm 1 Edge Coloring of Bipartite Graph
procedure BIPARTITE_GRAPH_EDGE_COLORING(G)

1:
2 V; «— Choose one set of vertices between V; and V5
3 for all V.. € Vs do

4 for all Vy,..in € of adjacency list of Viguee do

5.

6

7

8

a « lower missing color at edges adjacent to Vigurce
0§ « lower missing color at edges adjacent to Viain

if a # 3 then
P « path where colors o and § alternate (start with 3 at
‘/source)
9: Interchange colors o and f in P
10: end if
11: assign color 8 to edge Viource, Virain
12 end for

13: end for
14: end procedure

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendiz A Algorithm’s Pseudocode

Algorithm 2 Enumaration of Edge Coloring

1: procedure ENUM_EDGE_COLORING(G)

2 if G is a matching then

3 print ADD last color G

4 else

5 V' « max_degree_vertices(G)

6 e «+ edge incident to a vertex in V'

7 M « find_covering_matching(G)

8 enum_covering_matching (G (e), V', M)
9 end if

10: end procedure

11: procedure ENUM_COVERING_MATCHING(G, V', M)
12: if a new match M’ # M can be found in G then

13: e «— edge in M\ M’

14: enum_covering._matching(G*(e), V', M)
15: enum_covering.matching(G\e, V', M')
16: else

17: print ADD color M

18: enum_edge_coloring(G\ M)

19: print DELETE color M

20: end if

21: end procedure

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 3 Enumaration of Edge Coloring (Modified)

1: procedure ENUM_EDGE_COLORING(G)

2 if G is a matching then

3 if match_routable(G) then > NEW
4 print ADD last color G

5: exit program > NEW
6 end if

7 else

8 V' « max_degree_vertices(G)

9: e « edge incident to a vertex in V’

10: M « find_covering_matching(G)

11 enum_covering matching(G*(e), V', M)

12: end if

13: end procedure

14: procedure ENUM_COVERING_MATCHING(G, V', M)
15: if a new match M’ £ M can be found in G then

16: e « edge in M\ M’

17: enum_covering_matching(G*(e), V', M)

18: enum_covering_matching(G\e, V', M")

19: else

20: if match_routable(G) then > NEW
21: print ADD color M

22: enum_edge_coloring(G\ M)

23: print DELETE color M

24: end if

25: end if

26: end procedure

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendiz A Algorithm’s Pseudocode

Algorithm 4 Verification of Color Routability

1: procedure COLOR-ROUTABLE(M ,CLB_conf,OUT adj list)
2 for all Conf € CLB_conf do

3 conf_ok « 1
4
5

for all Request € Conf do
if not possible to route the Request with the corresponding edge
in M according to the OUT _adj list then

6: conf_ok « 0
7 end if

8: end for

9: if conf_ok = 1 then
10: Return 1

11: end if

12: end for
13: Return 0
14: end procedure

Algorithm 5 Completion of Gogrpy Coloring
1. procedure G_-ORM_COLORING_COMPLETION(C,CLB_conf,
OUT _adj list, ORM_adj)

2 for all M € Incomplete colors in C' do
3 repeat
4 CLB_conf_tmp « CLB_conf
5: Conf « push(CLB_conf_tmp)
6: repeat
7 M* «+ new_missing_edge_combination(M,M* ORM_adj)
8 conf ok « 1
9: for all Request € Conf do
10: if not possible to route the Request with the correspond-
ing edge in M* according to the OUT _adj.list then
11: conf ok «— 0
12: end if
13: end for
14: until No more M* or conf ok = 1
15: until CLB_conf_tmp is empty or conf.ok = 1
16: if confof = 1 then
17 Replace M by M*
18: end if
19: end for
20: end procedure
72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 6 Feedback Routing

1: procedure FEEDBACK _RoOUTING(C,CLB_conf,0UT_adj,JRM_adj)
2 for all M € C do

3 repeat

4: CLB_conf tmp «+ CLB_conf

5: Conf « push(CLB_conf_tmp)

6 conf ok « 1

7 for all F € M do

8 if path_is_found(F, Conf, OUT adj, IRM_adj) = 0 then
0: conf ok «— 0

10: end if

11: end for

12: until CLB_conf tmp is empty or conf ok =1

13: end for
14: end procedure

Algorithm 7 Completing Test Configurations in IRM

1. procedure COMPLETE_COLORING_1(Feedbacks, Grrur)
for all C € colors do
Gimp — G_IRM
for all Feedback Edge E={u,v} in Gypy do
Delete v and v in Gipp
end for
M « find a Match in Gy
Put M in C
9: end for
10: end procedure

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendiz A Algorithm’s Pseudocode

Algorithm 8 Completing Test Configurations in IRM

1: procedure COMPLETE_COLORING _2(coloring, Grrar, OUT line_adj)
2 for all C' € coloring do

3 repeat

4 CLB_conf_tmp «— CLB_conf

5: Conf « push(CLB_conf_tmp)

6: conf ok « 1

7 for all Request € Conf do

8 if Request cannot be route in IRM then

0: conf_ok «— 0
10: end if
11: end for
12: until CLB_conf_ tmp is empty or conf ok = 1
13: Add the routing in the present color according to the configuration
14: Add edges in IRM to complete the coloring

15: end for
16: end procedure

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

Perl Programs

B.1 Edge Coloring of Gory

#l/usr/local /bin/perl
Zheadl NAME

good_coloring
=headl AUTHOR (DATE)
Christian Giasson (June 18th, 2003)
=headl SYNOPSIS
enum._-edge.coloring —a {name of the file that contains the ORMG}
~b {name of the file that contains the CLB.conf}
—¢ {name of the file that contains the OUT._adj.list}
=headl DESCRIPTION
This program find a edge coloring of a particular bipartite graph (if one
exist) that is agree with the CLB_configuration and the adj list of the OUT
lines.

This program is based on the paper:

A Fast Enumerating Algorithm for Edge Coloring in Bipartite Graphs
by Yasuko MATSUI and UNO

=over 4

=item INPUT

ORMG

A graph on an adjacency list format. This program is only for Bipartite

Graphs.

Note: the edges of the graph are defined only for the first group of
vertices {V1). Then the adjacent list for the second group {V2} is empty

CLB.conf

OUT.adj.list

=item OQUTPUT

Outputs is a coloring and is passed as a standard output. The output format
can seems strange. It is composed of ADD and DELETE of matches. The ouput
generate a tree of coloring.

=item DEPENDENCIES

This program has some dependencies on some libraries:

Graph;

Graph:: Directed ;

Graph:: Undirected;

Graph :: Writer :: Dot

Graph :: DFS;
Set:: Array;

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendiz B Perl Programs

note: those libraries are not part of the standard Perl libraries. You can
find these libraries www.cpan.org

=cut
. . , v
AT 7 T 7 7 7

use warnings;

use strict;

use Graph;

use Graph:: Directed;

use Graph::Undirected;

use Graph:: Writer :: Dot}

use Graph::DFS;

use Set::Array;

use Getopt:: Std;

. 7

HH
#Get the inputs of the program
r .

HH T

7 7 7 7

getopts('ha:bic:');
our{$opt.h ,$opt.a ,$opt-b,$opt._c);

if ($opt-h)

print”\n\tOption_.of_.this.program:\n
________ \Nt—h:-\t\t\thelp
________ Vt—a._[file]:\t\tadj.list.of the ORMG
________ \t~b.[file]:\t\tlist .of.the .CLB.configuration
________ Vt~co[file]:\t\tadj.list..of .the OUT.lines\n\n";
exit;

my @adj-G_input = &read_file (8opt.a) if ((%opt.a)&&(!$opt.h))};
my @CLB_conf.input = &read_file ($opt.b) if ((Sopt._b)&&(!$opt.h));
my @OUT._adj_input = &read_file (Sopt.c) if (($opt.c)&&(I$opt.h));

77
#build the ORM graph

7 FHAH HH HHHA AT
my $global.graph = Graph->new ();

#put edges in the Graph

my @graph.edges = &adj2edge(\ @adj.G.input);
$global_graph-~>add_edges(@graph_.edges);

#global count to test the program
my $level = 1;
my $count.coloring = 0;
, 4

#build the data structure of the CLB.conf and the OUT.adj.list
P p

7 7 7T

#data structure for CLB.conf is a hash of arrays
my % CLB .conf;
foreach my $conf (@CLB.conf.input)

1 seont = JCw)e ()))

my $conf.name = $1;
my $fb = $2;
@{$CLB._conf{$conf.name}} = split(/ /,$fb);

}

#data structure for OUT.adj is a haesh of arrays
my %OUT_adj_list;

my %$OUT.adj-list.0;

my %OUT.adj-list-1;

foreach my $0UT. line (@OUT._ adj.input}

if ($OUT.line =~ /(.%): (.*)/)
{
my $OUT = §$1;

@{$0UT_adj-list {$1}} = split (/ /,$2);
#print "@($OUT.adj list{81}}\n”;

7

n

7 7 A
Split the OUT lines adj list into two list of connections
OUT_adj-list_. 0 : edges related to CLBO
OUT.adj-list_1 : edges related to CLBI
notel: The CLB imputs are in the same format than the CLB
configuration .
note2: The T in OUT_.adj.list.0 is T0 and
The T in OUT_adj_list.1 4is TI.

K 7 7 7

eI

foreach (@{$§O0UT_adj.list{$OUT}})

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cpan.org

}

B.1 FEdge Coloring of Gorum

I (8- =T /8O- (1B

my $num = §3;
if {81 == 0)

vy

if ($num eq

{push (@{$OUT.adj_list_0{SOUT}},”$2");}

else

{push (@{$0UT._ adj.list.0{$OUT}},” $28num”);}
else

if (%3 eq ’7)

{push (@{$0UT.adj_list.1{$OUT}},” 82");}
else

{push (@{$0UT.adj-list.1{$OUT}},”82%3”);}

}
#Modifications to allow the CLBO to connect to the
tri—state buffer 1 and wice wversa
elsif ($. =~ /T.IN(\d)/)
if (%1 == 0)

push (@{$OUT.adj_list_0{SOUT}},”T0");
push (@{$0UT._adj_list_1{SOUT}},”T0” };

else

push (@{$O0UT.adj_list_1{$OUT}},”T1");
push (@{80UT.adj.list_0{SOUT}},"T1" };

}

#test
#print "$OUT CLBO: @{$§O0UT.adj-list_0{5OUT}}\n";
#print "$OUT CLB1: @{$0OUT.adj.list_1{8OUT}}\n”;

4 4

(s

7 7 7
Main part: call of the principal recursive function enum_edge_coloring
4 s

AN

7" 7

&cnum._.edge_coloring (\ @graph_edges);

4 4 ¥

»

7 7 7
#output the graph in a .dot format (graphuviz)
4 4 P

7 &
#my $dot-.writer = Graph:: Writer:: Dot—>new();

#8dot-writer—>write_graph (8graph , ‘mygraph.dot ’);

7 7 7

7 7
#Function Name: enum_edge.coloring

T,

#Inputs: A list of edges that belongs to G
#Output :
#note :

. .

7
sub enum.edge._coloring

{

#get the input data

my @edges = @{(shift (@.))};
#build the graph G

my $G = Graph-—>new;
$G—>add.edges (@edges);

y)

1. if all edges are incident to an edge or

#if G is a matching then output "edge coloring by adding”
#an the unique edge coloring of G.

#modification to that part of the algorithm:

#check 4f the graph is a matching

#if it is o maiching then Outpul fthe match

#
probably that part is there ito avoid the gemeraition of empty problems
. .

i i 7 7

#Call the check.ifomatch

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendiz B Perl Programs

my $if-match = &check-if.matching(\ Qedges);
if ($if-match == 1)
{

my @M._copy = @edges;
my $0OK = &match.ok (\@M_copy , \%CLB.conf \%OUT _adj.list .0 \%OUT_adj-list.1);
if (0K == 1)
{
print "ADD_the MATCH: @edges\n” ;
#ewxit the progrem when the match of o coloring is found
exit;
}

else

return;

1

S$count_coloring++;
#print ¥ Coloring number $count.coloringi\n”;
return;

4 Iy »

7
2. find o covering matching M of G

#(A match that cover every vertex in V.mez)
#

77 AT 7

#indenfify the set V_max

my @V.onax = &find_V.max (\ @edges);
#find a first cowvering matching
my @M = &C1(\ @edges };

#note: the founctions find.covering matching and MD2 are old functions
that did not work. You can find a copy of those functions in the
last wversion of enum_edge-coloring. C1 4is the good function to

find the first coverimg matching.

#ny @M = &find.first-covering.matching(\ @edges,\ @V.maz);
#test

#print ”the graph : @edges\n”;

#my @M = &MD2(\ @edges);

L AL .

7 7 # i
8. Choose (can be random pick) an edge 7e” in M
4

T H AT 7 7 7 7 7

#let’s choose the first one
my @M. copy = @M;

my Qe;
push{@e, shift (@M._copy));
push(@e, shift (@M._copy));

print for test

DTNt THks Ak Ak h A AR A AN CRUM A GE_COlOTING hokor ok wwoR ok kKK H KRR R R FRE T
print "Edges of the graph = @edges\n”;

print YMazimum degree wvertices = @V.mar\n”;

print ? First metch = @M\n”;

print ”Global ¢ = @e\n”;

RS SN

i’ P 4. 4
7 7 7 7
4. Call enum_covering-matching(G+(e), V_omaz, M)

4 D I

"0

#G+(e) is the subgraph of G obtained by removing "e
#adjacent to "e”.

#cereate Goplus.e

my $G._plus_.e = Graph->new;
$G.plus_e—>add.edges (@edges);

and all edges

#print "e = @e\n”;
#create the graph G+(e)
foreach (@e)

$G_plus.e—>delete.vertex ($.);

#list of edges of G+(e)
my @G_plus_e_edges = 838G _plus_e—>edges;
#print " @G.plus.e.edges\n”;

&enum.covering -matching (\ @G_.plus.e.edges , \@V._max, \@M);

%) e Y 1]

3
#7 FHAAHH T T ¥
#Function Name: enum._covering.matching
#Inputs:
#Output:
#note :
"y ,

7 7
sub enum._covering.matching

{
#get the input data
my @edges = @{(shift (Q.))};
my @V.max = @{(shift (@.))};

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.1 Edge Coloring of Gopm

my @M = @{(shift (Q.))};

#build the G passed to the function
my $G = Graph->new;

$3G—>add_edges (@edges);

Check if the graph is empty (part added to the Algorithm)

HHIH AT 7

#my Sedge.count = @edges;
#if ($edge_count] [))
#{return 0;}

K 7 a r 7y 7 ¥
Check if there ts a cycle or not in G
Call the function find.covering_matching ()
4

E 7 T L 7 T, A

#build the list @VI and @V2 they are the partition of the graph
my @V1 = &find_V1(\ @edges);

#print V1 = QVI\n";

#substract @VI to all the wvertices to get @QV2
#S5et for all the werices and for VI

my $all.V = Set::Array—>new;

my $V1 = Set:: Array—>new;

#buid $all_V

foreach (@edges) {$all.V->push($.);}

#build VI

foreach (@Vvil) {$V1-—>push($)i}

#8VE = §all.V \ §

my @V2 = §all. V-—>dxfference($V1);

#print "V2 = @VA\n”;

#(\@{list_of.edges_-G} \N@{Vi} \@{V2}, \@{V.maz} , \@{ edges.match})
my ©M.prime = &find.covering-matching(\ @edges,\@V1,\@V2,\ @V_max, \@GM);

n L 7

¢ 7 i 7
if there is mno cycle in D then
P

7 7
my $M_.prime_count = @M_prime;

#test

my $M_.prime_text = "@M_prime”
print for debugging

DTINE Takkk kKK F X KRR RRE KRR CNUMCOVETING-MALCRING *#hkkkkdkkkakx ko kkkmwnkk \n "
print "edge of G = @edges\n”;
print "Vi = @VI\n"

print "V2 = @VAn”

print 7 Vomaz = @V.omnaz\n”;

print "count = $M_prime_count\n”;
print "M = @M\n”;

print "M.prime = $M_prime_test\n”;

et IR

if (8M_prime_count == 1) #if there is only a 0 in the match_prime

NEW : werify <f the match can be route

my @M_copy = @M;

my $0OK = &match.ok (\ @M.copy,\%CLB.conf \%OUT_adj.list.0 \%OUT_ _adj.list.1);
if ($0K == 1)

{
#Output ; "Add” and the edges of M
print "ADD.the.match :@M\n”;
#Substact the Match M from the global_graph
$global_graph —>delete_edges (@GM);
#Htest
#Slevel ++;
#if ($level < 7)
#{print *level: $level mnum coloring done: $count_coloring\n”;}
#print "level: $level\n”
#Call the function enum_edge_coloring (G\M)
#This recursive call defines a new problem with the graph G
#minus the covering matching M
my @graph.edges = $global.graph->edges;
&enum.edge.coloring (\ @graph_edges);
#Output @ " Delete” and the edges of M
print "DELETE.the._match:@GM\n” ;
#put back the match M in the global_graph
$global_graph ~>add.edges (GM);
#test
$level ——;

}

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendiz B Perl Programs

7 7
if there is a cycle in D then
. ”

else

{
#1. Choose an edge "e” in M\M’
my $s.M = 8et:: Array—>new;
my $s_.M_prime = Set::Array—>new;
#build the set of edges in M
my $index = 1;
my $u;
my $v;
foreach my $vertex (@GM)

if ($index == 1)

$u = $vertex;
$index = 0;

else

{
3v = Bvertex;
$s.M~>push (" $u—§v” };
$index = 1;

}

#build the set of edges in M_prime
$index = 1;

foreach my $vertex (@M.prime)

if {($index == 1)
{

$u = S$vertex;
$index = 0;

else

{
$v = $vertex;
$s.M_prime—>push(”$u~3%v”);
$index = 1;

}

by

p)

7 7 HHT
new thing added to the algorithm
Check if M’ include M if true then swap MI->M’

my $’n0t_inciude’: 0; #assume ttmt 18 ;ncludc
$s_M—>foreach (sub{
if (1{$s.M_prime—>exists(§.)))

$not.include = 1;

1)
my Q@diff.Ms;
if ($not.include == 1)

HM\M?

@diff-Ms = $s.M—>difference ($s_-M_prime);
}
else

ANM’

@diff.-Ms = $s_.M_prime—>difference (8s_M);
}
if (scalar{@diff_Ms) == 0)
{

print YERROR:.M.same.as.M’\n”;

exit;
}

#get a e from the difference
my $e-temp = shift (@diff -Ms);
my @e = split(/—/,8%e.temp);
#print for test

print "e = @e\n”;
¥ ;

#2. Build the graph G+(e)
my $G_plus.e = Graph—>new;
$G_plus_e—>add.edges(@edges);
#create the graph G+(e)
foreach (Qe)

$G.plus.e—>delete.vertex ($.);

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.1 Edge Coloring of Gorum

}

#list of edges of G4(e)

my @G_plus_e_edges = $§G.plus_e~>edges;
#print ¥ @G_plus-e_edges\n”;

#8. Build the graph G\e

my $3G.diff.e = Graph->new;

3G _diff_e—~>add_edges(@edges);

3G _diff.e~>delete.edge (Qe);

my @G_diff_e_edges = $G_diffe —>edges;
#print Y @G.diff_e-edges\n”;

#4. call enum.covering.matching(G+(e), V.mar, M)
&enum._covering.matching (\ @G_plus_e.edges , \ @V_max, \@M);

#5. call enum.covering.matching(G\e, Vomaz, M’)
&enum.covering.matching (\ @G_diff_.e.edges , \@V.max, \ @M_prime);

y) . £ £ v

#Function Name: find.V1

#Inputs: A list of graph edges

#Output: A list of vertices that composed VI
#note :

) i

7
sub find.V1

#get the input data

my @edges = @{(shift (@.))};
#build the graph G

my 8G = Graph—>new ();
$G—>add._edges {@edges);

#define a set for VI
my $V1 = Set:: Array->new;

#for all the edges

my $half.index = Qedges;

$half.index /= 2;

for (1..%half_.index)}

{
my $u = shift {Qedges);
my $v = shift(Qedges);
$Vi->push(8u);

}
$Vi—unique{);

my @V1;
$§Vi->foreach (sub{push(@V1,$.)});
return @V1;

}

7 i T
#Function Name: check_if.moatching
#Inputs: A list of graph edges
#Output: 1 if it is a Match and 0 <«f it ’s not a Match
#note :

7 7
sub check_if_matching

#get the input data

my @edges = @{(shift (@.))};
#build the graph G

my $G = Graph—>new ();
$G—>add.edges (Qedges);

my @vertices = $G~>vertices;
#check 4f 4t is a matching
foreach my $vertex (@vertices)

{
my @adj = $G->neighbors (" $vertex”);
my $adj-size = @adj;
if{$adj.size > 1)
#print "graph not a match\n”;
} return 0O;
}
#print ;’graph is o match\n”;
return ;

}
; . . ;

AT i
#Function Name: find.V_maz
#Inputs: A list of graph edges
#Output: A list (ervay) of all the max degree wvertices
#note :
4

’ L AL AL

sub find_V.max

#get the input data

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendiz B Perl Programs

my @edges = @{(shift(@.))};
#build the graph G

my $G = Graph—>new();
$G—>add.edges (@edges };

my @vertices = $§G—>vertices

#find a set of the mazimum degree wvertices
my @QV._max;

my $max.degree = 0;

#find the mawimum degree

foreach (@vertices)

my @adj = $G->neighbors ($.);
my 3adj.size = @adj;
if (8adj-size > $max_degree)

$max._degree = $adj.size;

}

#find all the wertices with a degree of $maz.degree
foreach (@vertices)

my @adj = $G—>neighbors ($.);
my $adj.size = @adj;

if ($adj.size == $max.degree)

push(@V._max, $.);

return @V._max;

L) ’

#Function Name: odjZedge
#Inputs: &adjledge (@{adj.list})
#Output: return a list with all pair of vertices (edges)
#note: The element of the adj should be on thot format
A:B,C,D

7

AL 4

sub adj2edge

{
my @adj.line = @{(shift(@.))};
my @return_list;
foreach my $line (@adj.line)

my $f.vertex;
my @Qs.vertex;

if($line =" /" {(.%):(.x)8/)
{
$f_vertex == $1;
@s.vertex = split(”,”,82);

foreach (@s_vertex)

push(@return.list ,” §f_vertex™);
push(@return_list ,”$.");

}

return @return_list;

4) 7

7 7

#Function Nome: dot_-the_graph

#Inputs: &dot.the_graph (${name} @{list_of_edges})

#Output: a ${name}.dot file in the current directory

#note: this function create o directed .dot file no mater what
. P ; P

AL
7 7 T

sub dot_-the_graph

{
my $local_graph_name = shift;
my @local_edges = @_;
my $local_graph = new Graph:: Undirected;
$local.graph—>add.edges{@local.edges);
#output the graph in a .dot format (graphuviz)
my $dot.writer = Graph:: Writer :: Dot—>new ()}
$dot.writer->write.graph(8$local_graph , "$local.graph.name.dot”);
}

4 . 2 2

AT HAH
#Function Name: find_covering_matching

#Inpuis:
#(\@{list_.of.edges_G},\@{Vi} \@{Ve} \@{ V_omaz}, \@{edges.match})
#Output: return a list (an array) of edges that represent the match
or 0 if there 4s no match.

4 7 4 EEL 7 7

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.1 Edge Coloring of Gorum

sub find.covering.matching

b L
7 a

7 7 7 7%
put all the input of the function in arrays
. . 4

4

my @graph.edge = @{(shift (@.))};
my @graph. V1 = @{(shift (@.))};

my @graph V2 = @{(shift (@.))};

my @graph-V._max = @{(shift (@.))};

my @graph.edge.match = @{(shift (Q.))};

#test

#print "graph = @graph.edge\n”;
#print "V1 = @graph.Vi\n”;
#print YV2 = @graph_V2\n”;

4

7 7 7
create the sets of wvertices that are covered by the graph

7T 7 7 g

my $s_g-.covered = Set:: Array->new{@graph_edge);
$s_g.covered —>unique;

il % 77 i 7 a £
create the sets V1, V2, V_maz, and m.covered
oy 4

7 ez

my $s.V1 = Set:: Array->new(@graph.V1);

my $s5.V2 = Set:: Array—>new (@graph_V2);

#create Vomaz (set of mazimum degree vertices)

my $s.V.max = Set:: Array—>new (@graph_V_max);

#ecreate the set of wvertices covered by the input wmatching
my $s.m_covered = Set::Array->new(@graph_edge.match);

L 4 1

7
create the set $s_V_bar
) «

7 7

#create V.bar (a special set in the algorithm)
my $s.V_.bar = Set::Array—>new ();
my $s.templ = Set:: Array~>new ();
my $s_temp2 = Set:: Array->new (};

#(vertices covered by M in V1)that are not in V.mazr in §s.templ
$s.m.covered —>foreach(sub{$s_templ->push(8$.)});

my @templ = $s_templ->intersection ($s.V1)—>difference($s_-V_max);
$s.templ—>clear;

foreach (@templ) {8$s.templ->push($.);}

#(vertices uncovered by M in V2)that are not in V.max in $s-temp?2
$s.V2->foreach(sub{8s.temp2-~>push($%_.)});

my @temp2 = $s_temp2~>difference ($s-m_covered)~>difference ($s.V.max);
$s_temp2->clear;

foreach (@temp2) {§s.temp2->push($.);}

#Union sets $s_templ an §s_-temp2 in $s_V_bar
@templ = $s.templi-~>union{$s_temp2);

foreach (@templ) {$s.V_bar->push($_.);}

#8s- V. bar->print (1);

create the set §s_V_rest
b oy
#H 7 7 7 7 7 A

#create $3.V_rest (It’'s a special set in the algorithm)
#8s.V.rest = $s_.g.covered \ (($s.V.mazx) U ($s.V_bar))
my 8$s_V.rest = Set::Array->new();

@templ = $s.V.max->union(8s.V_bar);

$s_templ-—>clear;

foreach (@templ) {$s_-templ—>push($.);}

@templ = $s.g_covered-->difference ($s_.templ);

foreach {@templ) {$s_V_rest->push($.);}
#8s.V.orest—>print (1);

) ’ yaI

7 7
create the new directed graph D
;

iz 4 7

my 8graph.D = new Graph:: Directed;

———————— first: Oriente edges of M from Vi to VEB—roere—n
my @edge.temp = @graph_edge.match;

my 8for-var = @Qedge-temp;

$for-var = $for_var/2;

for (1..(8for.var))

{

FW R

my $u = shift (@edge_temp);

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendiz B Perl Programs

my $v = shift (@edge-temp);
if (1($s.VI—>emists ("$u”)) SB& 1(§s . V2-—>exists ("8v”)))

$graph-D—>add_edge ($v, $u);

else

{

}
}

#Htest

my @edge.-temp = @graph_edge_match;
for (1 .. (scalar(@edge.temp)/2))

{

$graph_D—>add_edge ($u, $v);

et I FH R W IFH

my $u = shift (Qedge-temp);
my 3v = shift (@edge_temp);
$graph_D-~>add_edge ($u,8$v);

e e secend: Oriente edges of E\M from V2 to VI——ee—
#create a set E (edges in the input graph)

my @g.edge;

@edge-temp = @graph_edge;
my $for_var = Qedge-temp;
$for-var = S$for.var/2;
for (1..(8for.var))

my $u = shift (Qedge temp);
my $v = shift (Qedge-temp);
if (($s-Vi->exists ("8u")) && ($s.V2->exists("3v”)))
push(@g_edge ,” $v—>%u”);
else
push{@g_edge ,” $u—>8%v”),
}

my $s.g.E = Set:: Array->new(@g.edge);
#create set M (edges in the match)
#test

my @me.edge;

Qedge.temp = @graph.edge_match;
for (1 .. (scalar{@edge_temp)/2)})

{
my $u = shift (Qedge_temp);
my $v = shift (@edge_temp);
push (@m_edge,”8v—>8%u”);

my $s.m.E = Set:;: Array—>new(Q@Qm-.edge);

#E\M

my @edge.V2_to.V1 = $s.g.E->difference ($s.m_E);

foreach my $local.edge (@edge V2 to.V1)
if(8local_edge =" /{.*x)~>(.*)/)

$graph.D—>add_.edge ($1,82);

Fm e e third: create a wertexr S in the graph —————
$graph.D—>add.vertex ("S.ADD" };

#Hrrm————— Add edges from S to all the eclement in V.bar —————
$s.V_bar~>foreach({sub{$graph.D~>add_edge (’S.ADD’ ,”§_.");});
Fh— e Add edges from V.rest to V———-~

$s.V._rest->foreach(sub{$graph.D~>add.edge(”$." ,'S.ADD");});
Find a cycle in the graph D

7 7

P e Put the graph in o adjacency list form =————mem
my $graph_adj = ’’; ’
foreach my $vertice ($graph.D—>vertices)

my @adj = $graph.D—>successors ($vertice};
my $Stemp = 7,
foreach (@adj) {$temp = ”StempS$.,”;}

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.1 Fdge Coloring of Gorm

if($temp =~ /{.x),%/)
{3temp = $1;}

$graph.adj = "8$graph-adj$vertice:Btemp\n”;
}
e Call the graph.cycle.pi program to find o cycle ————m———
f—eme— Call the function graph.cycle to find a cycle ———mmm

my @graph.D._.edges = $graph_D->edges;

my @cycle = &graph.cycle (\@graph_D_edges);
my $cycle.le = @cycle;

if ($cycle.le < 2)
{

return 0;

B Build a graph with the path———————rr——

#need repeat in the middle
my $cycle_length = @cycle;
$cycle.length —= 2;
push(@ecycle ,(shift (@Qcycle)));
for (l..8%cycle.length)

my $cycle.temp = shift (Qcycle);
push{@cycle , $cycle_temp);
push(@cycle , $cycle.temp);

}
push(@cycle ,(shift (Qcycle)}));
#print 7 @Qeycle\n”;

my $cycle_l = @cycle;
$cycle.l /= 2;

my $graph.cycle = Graph—>new ();
for (1..8cycle 1)

{
my 3u = shift(@cycle);
my $v = shift{@cycle);
$graph.cycle->add.edge (8u,8v);
}
Fhm e Delete the wertez §

$graph.cycle—>delete.vertex ('S-ADD’);

) / 7

7 %
create the other match
, P p

e e e e e e 1. Build o Set of edges from the input match —-———

my $s_.m.edges = Set:: Array—>new ();

my Q@graph.edge_match.copy = @graph_edge.match;
my $half_.index = @graph.edge.match.copy;
$half_index /= 2;

for (1..8%half.index)

{

my $u = shift{@graph_.edge_match_copy);
my $v = shift(@graph.edge.match.copy);
if ($s_Vi-exists("8v”))
{
$s.m._edges —>push (" $v~-8u”);
else
$s_m.edges —>push(”$u—8v”);
}
}
e e — 2. Build a Set of edge from the cycle ——————wmum

my $s-cycle = Set::Array—new();

my @cycle_edges = $graph_cycle—>edges;
$half.index = Qcycle_edges;

$half index /= 2;

for (1..8halfiindex)

my 8u shift (Qcycle_edges);
my 8$v shift (@cycle.edges);
if ($s.V1—>exists("8v”))

{

IRt

$s_cycle~>push(”8v—5%u”});

ise

Y]

$s_cycle ~>push(”$u—8v”);

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendiz B Perl Programs

}
}
oo e 8 Perform the simetric difference M’'=M delta E’
my @unew.match = $s.m._edges—>symmetric.difference{8s_cycle);

@new.match = split (/[\s—]/,”@new_-match” };
return @new.match;
#print " @new_match\n";

}

#Func’tia’n Na.me’: graph_cycle
#lnputs :
#(\N@{list_of-edges.G})
#Qutput:

#The ouput format is a string with all the sequence of wertices in the
#cycle separated with spoce.

s#note : that function has been cleened. previous wversion of that function can
be find in the latest version of ”"enum.edge_coloring”.

4 4 4 "

sub graph.cycle

{

my @graph.edge = @{(shift(@.))};
#build the graph
my $graph = Graph—>new ();

$graph->add.edges (@graph_edge);
my @l.vertices = $graph—>vertices;

#do o DFS on the graph

my Y%param;

my $dfs = Graph::DFS->new($graph,%param)};
my @Qdfs.edges = $dfs—>edges;

#put the DFS result in an array of edges
my 3$ed;

my Q@dfs.edge_seq;

my $toggle=1;

foreach my $ve (@dfs.cdges)

{

if ($toggle == 1)

$ed = $ve;
$toggle = 2;

else

$ed = "Sed—§ve”;
push (@dfs.edge.seq ,$ed);
$toggle = 1;

#find a cycle in the DFS edges sequence
#curent edge
my $s_cur;
my $d.cur;
#previous edge
my $s_prev;
my $d.prev;
#Set of the elements of the cycle
my @set.cycle;
my $set_cycle;
#Flag that tell thaet a path was found
my $flag.cycle = 0;
#shift the first edge
my $first.cdge = shift(@dfs.edge.seq);
if ($first-edge =" /{(.*)~(.%)/)
{
$s.cur = $1;
$d_cur = $2;
push(@set_cycle ,8s_cur);
push{@set_cycle ,$d.cur);

foreach my 83cur.edge {(@dfs.edge.seq)

$s_prev $s_cur;

$d_prev $d.cur;

if ($cur.cedge =" /(%) —(.*)}/)
{

$s_cur = $1;
$d_cur = 82;

$set.cycle = ” @set.cycle”;

#Check if the path continue
if ($d_prev eq $s.cur)

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.1 Edge Coloring of Gonm

#check if a cycle 4s found
#check if the element 8$d.cur is in the list
foreach my $vertex (@set.cycle)

if ($vertex eq $d._cur)

#need to suppress the edges of the path before the cycle
push{@set.cycle ,8d_cur);

my $shift_val=’";

while($shift_.val ne $d.cur)

$shift.val = shift (@set_cycle);

}

unshift (@set_cycle , $shift_val);
#return the cycle

return @set.cycle;

}

push(@set.cycle ,$d_cur);

}
#check if the cycle is broken
else

{

#check if the source of the curent edge is in the path
my 8$s.in-the_path = 0;
foreach my $vertex (@set_cycle)

if($vertex eq $s_cur)

$s.in-the_.path = 1;
last;

¥
#check if the drain of the curent edge is in the path
if ($s_in.the_path == 1)

#remove edges in the path wuntil the value $s.cur

#and put both $s.cur and 8d.cur

my $dump = '’

while ($dump ne $s_cur)

$dump = pop(@set_cycle);
}
push{ @set_cycle ,$s_cur);

#check if there is a cycle
foreach my $vertex (@sect.cycle)

if($vertex eq $d.cur)

push(@set.cycle ,$d.cur);
return @set.cycle;

}
push(@set.cycle ,8d.cur);

else

#elsif the source of the current edge is not in the
#path then clear the emntire path and push the curent
#edge in the cycle.

my @temp.array;

push(@temp-array , $s_cur);

push(@temp.array , $d_cur);

@set-cycle = Qtemp.array;

return 0;

4

#Function Name: CI

#Inputs :

#(\N@{list.of.edges.G})

#Output : the color number 1 of the coloring

(the fonction find an entire coloring but return only)

#Dependencies: functions:
lower_color
alt.path

path
inv_path.color
check_color

AR RS

7 7 7

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendiz B Perl Programs

sub C1
{

7 7 ’ 4 4

7 7
put all the input of the function in arrays
. -y A » .

7 7 7 7

my @graph.edge = @{(shift (@.))};
my Qgraph.edge_copy = @Qgraph_edge;

” 1 2

Build the graph

7 7 BT 7 i 7

my $G = Graph:: Undirected~>new;
$G—>add_edges (@graph_edge);

AL 4

Set all the edges colo; to 0

. 4) 4 9
£z 4 7 7

for (1 ., (scalar{@graph.edge)/2))
{

my $color = 0;

my $vs = shift (@graph_edge);
my $vd = shift (Qgraph_edge);
push @graph_edge, $vs;

push Q@graph_edge, $vd;

$G—>set.attribute ('color’ ,8vs ,$vd, $color);
$G—>set.attribute (’color’,8vd,8$vs, $color);

z w7 v iars 7
Star of the main loop

i 7 7 7 AT s (i

my $alpha;
my $beta;

for (1 .. (scalar(@graph.edge)/2))

my $vs = shift (@graph_edge);
my $vd = shift (@graph_edge);
push @graph.edge, $vs;
push @graph_edge,$vd;

£ i

7 7 7
find the lower color missing at $vs
" P

7

Salpha = &lower_color (\$G,8vs);

b £ p)
7 7

7 7 7 % AT
#find the lower color missing at $vd
.

7 7 L
$beta = &lower.color (\$G,8vd);

) L

Check if alpha not equal bete

7 ” s 7

if (Salpha 1= $beta)

4 v ..

HHHH 7 # 7 HHHHHHTHT 7
#find an alternative path and swap color
. y 5

Zalt.path (\8G, Svs ,Svd . Salpha ,Sbota)

) 7 7 St A 4

i 7 A 7 7
#color the edge (vs,vd) with beta
; i

A 7 % 7 HH
$G—>set_attribute (’color’,$vs,$vd, 8beta);
$G—>set.attribute ('color’,%vd,8vs,8beta);

}

return color [
P ‘

£

my @colorl_edges;

for (1 .. {scalar(@graph.edge)/2))
my $vs = shift (@graph_edge);
my $vd = shift {@graph_.edge);
push @graph_edge , $vs;
push @graph_edge,$vd;

if{8G-—>get.attribute (’color’ ,$vs,8vd) == 1)

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.1 Edge Coloring of Gopm

push @colorl_edges ,h $vs,8vd;

#test
my $test = $3G—>get_attribute(color’,8vs,8vd);
#print “color Svs—%ud = $test\n”;

return @colorl.edges;

}

#Return the lower missing color at the wvertes
sub lower_color
{

my $G = shift;

my $vertex = shift;

my $color = 1;

my @color_-list;

my @adj.list = $8G—>neighbors ($vertex);

#build a list of all the color
foreach my $adj_vertex (@adj.list)

my $temp = $3G->get.attribute(’color’ ,8vertex,$adj_vertex);
push @color.list , $temp;

#find the smallest missing
@Qcolor.list = sort(@color.list);
my $prev.c = shift @color._.list;
foreach my $c (sort{(@color.list))
{

if($prev_c == 8c)

{next;}

elsif(8c != §color)

{last;}

else

{$color++;}

$prev.c = 8c;

return $color;

sub alt_path

$G = shift;
$vs = shift;
$vd = shift;
$alpha = shift;
$beta = shift;

i 32588

@alternate_path = &path (\$G,$vs ,$alpha , $beta);
if(@alternate.path)
&inv.path_color (\8G,\ @alternate_path ,$alpha ,$beta);

alse

{
@alternate.path = &path(\8G,3vd, $alpha ,$beta);
if (@Qalternate_path)

&inv.path_color (\$G,\ @alternate_.path ,3alpha , $beta };
}

else
{return;}

-

sub path

my $G = shift;

my $vertex = shift;
my $alpha = shift;
my $beta = shift;

my $temp.color = $beta;

my @path.list;

my S$next.vertex;

$next_vertex = &check.color (\8G, $vertex ,$temp.color);
if($next-vertex eq 0)

{return @path._list;}

while ($next.vertex ne 0)

push {@path_list,$next_vertex);
push (@path_list ,$next.vertex);

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B Perl Programs

if(Stemp.color == $alpha)
{$temp_color = $beta;}
else

{$temp_color = $alpha;}
$next.vertex = &check_color (\$G, $next.vertex ,$temp.color);
my 83extra = pop @path.list;

unshift (@path_list ,$vertex);
return @path.list;

}
sub inv_.path.color
{
my 3G = shift;
my @path = @{(shift (@.))};
my $Salpha = shift;
my $beta = shift;
#test
#print " @path\n”;
for (1..(scalar(@path)/2))
{
my $start = shift @path;
my $vertex = shift @path;
if (88G—>get_attribute (’color’,$start ,$vertex) == 8$beta)
$$8G—>set.attribute(’color’',$start ,$vertex ,$alpha);
$$8G—>set_attribute (color ' ,$vertex , $start ,$alpha);
}
elsif ($83G—>get_attribute (' color’ ,$start ,$vertex) == $alpha)
$88G—>set_attribute(’color’,$start ,§vertex, $beta);
$$8G—>set.attribute (color’,$vertex , §start ,$beta);
}
}
}
sub check._color
{
my $G = shift;
my $vertex = shift;
my $color = shift;
my $edge.color;
my Q@vertex_adj = $$$8G—>neighbors ($vertex);
foreach my $v.end (@vertex_adj)
{
$edge_color = 38G->get_attribute(’color’ ,$vertex ,$v.end);
if($edge-color == $color)
return $v.end;
}
return 0;
}
T r i 5 2 = 7
#Function Name: match_ok
#lnputs:
M a match (a list)
CLB.CONF (a hash table)
OUT.adj.list {a hash table)
#Output:
1 if it is OK
& if it is not OK
sub match_ok i ' ’
) P
7 7 R HHAA
Get the input peremeters
)
7 7 i G

#the match

my $ref M = shift;

#the CLB.CONF

my $ref.CLB_.CONF = shift;
#the OUT.adj.list 0 and I
my $ref.adj-list_0 = shift;
my $ref.adj_list.1 = shift;

test print
foreach (@{$ref-M})

e W Y d

print "8§.\n”;

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.1 FEdge Coloring of Gorm

foreach my $hash_key (keys%{$ref-CLB.CONF})
|
print *$hash_key: @{$8ref.CLB.CONF{$hash_key}}\n";
1
foreach my $hash_key (sort keys%{$ref.adj_list.0})
|
print "$hash_key: @{$8ref_adj_list_0{Shash_key}}\n”;
}
foreach my $hash_key (sort keys%{8ref-.adj_list-1})
|
print *8hash.key: @{$8%ref.adj_list_1{8hash_key}}\n”;
}
gL 2 v ¥ 77
Split the M in MO and M1
4 44 . P it p
my @M0;
my @QM1;
my @M.t = @{8$ref.M};
for (1 .. (scalar{(@M.t)/2))
{
my $u = shift @M.t;
my $v = shift @M4;
I (8 =T /50D (o))
if (81 == 0)
{
push @MO, $2;
push @MO, §v;
}
else
{
push @M1, $2;
push @M1, $v;
}
}

7 7
Start the checking loop
P P

R IT A I

my $find_-one_.CLBO
my $find.one.CLB1
my $first.T.IN = 3;

foreach my 3CLB.conf.name (sort keys%{Sref.CLB.CONF})

#print 7 cLBY \n”;
#print "\ nChange in the CLB conf\n”;
#print "OMOA\n\n";

#Start the check for connections related to CLBO
my $check . CLB_.0O = 0; #false first
foreach my $conf.conn (@{$3ref_ CLB.CONF{$CLB.conf_.name}})

{
#print ”"configuration $CLB.conf.name: $conf.conn\n”;

#find the connection in MO thaet got the same source as
#§conf.conn .
#print "conf.conn_before : $conf-conn\n”;

my $conf_conn_source;
my $conf_conn_drain;
if(Sconf.conn =" /(.*)—>(.x)/)

{
$conf.conn.source = 8$1;
$conf_conn.drain = $2;
my $out.line = 0;

#print "MO: @MOA\n”;
for (1 .. {scalar(@M0)/2))
ke
i
my $source = shift (@M0);
my $drain = shift (@M0);

if($conf.conn_source eq $source)
{$out.line = $drain;}

push (@MO, $source);
push (@MO, $drain);
}
#print "OUT line: $out_line\n”;
#if that connection does not exist in MO then go to
the mnext CLB connection (in the same configuration)

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendiz B Perl Programs

Because sometime the configurations
if ($out.line eq 0)

#{last;} #newct CLB configuration
{next;} #same CLB configuration

are not complete

#print "conf: @{$$ref-CLB_.CONF{$CLB_conf-name}}\n”;
#print "We looking for a connection at
#print "conf.conn : §conf.conn\n?;
#check im the OUT line adj list if the
#if the loop did not find any paeth the
#and return false.

my $local_check = 0;

foreach my $adj_out‘_1ine (@{$8%ref_adj.list.0{$out.line}})
{
#test

#print "$adj_out.line Sconf.conn.drain\n”;

Sconf.conn-drain at §out_ line\n”;

input can be reach
stop the function

#print Yadj.out.line $out.line : Sadj_out.line\n”;

if ($adj.out.line eq $conf.conn.drain)

{
#print ” First loop drain: Sconf.conn_drein\n”;
$local_check = 1;
last;

ilsif(&'ad]’_out_line =" /(T)(\d)/)
{

#print " Enter in the loop with $182 and conf-drain: Sconf.conn_drain\n”;
if(8conf.conn.drain eq 'T’)

$local.check = 1;

$first . T_IN = §2;

#print *F_T_IN : $2\n”;

last;
}

#if there is no connection possible for that connection
#then go out of the loop and change the CLB conf
if ($local.check == 0)

$check_ CLB_.0 = 0;
last;
}
#print "conf OK\n”;
$check.CLB.O = 1;

}
#nezxt CBL conf if it is mnot good

if ($check .CLB.O == 0)
{
next;
}
else
{
#got out of the loop if one CLB configuration works with the match
$find-one.CLBO = 1;
last;
}
#print 7 find CLBO conf = 8find.one.CLBO\n”;
if ($find.one.CLBO == 0)

return 0;

foreach my $CLB.conf-name (sort keys%{$refl.CLB.CONF})

#print ” CLB1 \n”;
#8tart the check for connections related to CLBI
my $check.CLB.1 = 0;

foreach my $conf.conn (@{$$ref.CLB.CONF{$CLB.conf.name}})
{

#print Yconfiguration $conf.conn\n”;
#find the connection in MO that got the
#$conf.conn .

my $conf.conn.source;

my $conf.conn_drain;

if ($conf.conn =" /(.%)~>(.%)/)

{

same source 48

$conf_conn_source == $1;
$conf_conn_.drain = $2;

}

#print "M1: @MN\n”;

my $out-.line = 0;

for (1 .. (scalar(@M1)/2))
{

my $source = shift (@M1);
my $drain = shift (@GM1);

if($conf._conn_source eq 3$source)

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.2 Completion of Gorym Fdge Coloring

{$out_line = $drain;}

push (@M1, $source);
push (@M1, $drain);
}
#print "OUT.line: Sout_line\n”;
if ($out_line eq 0)
{next;}
#cheek in the OUT line adj list if the input can be reach
#if the loop did not find any path the stop the function
#and return false.
my $local.check = 0;
foreach my $adj_out_.line (@{$3ref_adj_list_1{Sout.line}})

#Htest
#print "Sadj.out_line $conf.conn.drain\n”;

if {($adj.out.line eq $conf.conn.drain)

$local_check = 1;
last;

1
elsif{$adj-out.line =" /T(\d}/)
if(8conf.conn.drain eq ’T7)

#print "T$1 first.T_IN:$first.T_IN\n”;
if($1 ne $first . T_.IN)

$local.check = 1;
last;

}
}
if ($local-check == 0)

8$check CLB_1 = 0;
last;

1

$check CLB.1 = 1;
}
if (8Scheck_CLB.1 == Q)
{

next;

else

$find_one.CLB1 = 1;

last;
}
'
#print *find CLB1 conf = $find.one.CLBI\n";
if ($find.one.CLB1 == 0)
{
return 0;
return 1;
} £ 28 L
#Function Neme: read.-file
#lnputs :
name of the file you want to open
#Output:

the array that contain all the line of the file
; » P 4 4

7 7

sub read-f/ilel

{
my (8filename) = Q@_;
open(FILE,” $filename”)|} die(” could.not.open_the_file”);
my @file = <FILE>;
close (FILE);
chomp { @file };
return @file;
¥

B.2 Completion of Gpogry Edge Coloring

#!/usr/bin/env perl

.

P
H 7 7
File name: complete.ORM._coloring. pl
Author: Christian Giasson
Date : 277
Comments: This script complete ORM coloring
P 4 g

7 7

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendiz B Perl Programs

use warnings;
use strict;
use Getopt::Std;

4 7 (LA 4 L 4

FAHHA 7
#Get the inputs of the program
. P .

getopts('ha:b:c: 7}
our {$opt.h ,$opt.a ,Bopt.b,Bopt_c);

if (8opt.h)
{
print”\n\tOption.of.this.program:\n

e\ t~hio\ t\t\ thelp
oo\ t—a o] file]:\t\tcoloring ~of uthe .ORMG

________ Nt—bo[file |:\t\tlist of_the .CLB_.configuration
commomw\t—c o[file]:\t\tadj.list nofuthe .OUT.lines\n\n";
exit;

}

my @lines = &read.file ($opt-a) if (($opt.a)&&({$opt_h));
my @clb.conf .2 == &read_.file ($opt-b) if ({%opt.b)&&(!%opt_h));
my Qout_adj_-list = &read_file(Sopt.c) if (($opt.c)&&(I$opt_h));

#get the color 1 to 8 without the "ADD” lable
#replace the YA by Y

my @color-1.8;

foreach my $line (@lines)

éf(f%}ine =" /:(.%)/)

my $tmp = $1;

$tmp =" s/S0.YA/SO.Y/g;
$tmp =" s/S1L.YA/S1.Y/g;
push @color.1.8 ,$tmp;
#print 7 $tmp\n”;

}
#my @out_adj_list = Bread_file ('OUT_adj_list ’);
#my @clb.conf.2 = Bread.file ("CLB.CONF.2");

P P Ly

’

& 7 FHT
#build the data structure of the CLB.conf and the OUT.adj-list
. »y

7 7, 7

#data structure for CLB_conf is a hash of arrays
my %CLB.conf;
foreach my $conf (@clb_conf.2)

#if ($conf =7 (/(-*)f (-x) (%) (%) (x)/)

if($conf =" /): (Lx)/)
{

my $conf.name = $1;

my $fb = $2;

@{SCLB_conf{$conf.name}} = split(/ /,8fb);
}

}

#data structure for OUT_adj is a hash of arrays
my %OUT.adj.list;

my %0OUT._adj_list_0;

my %0UT.adj-list_1;

foreach my $0OUT.line { @cut_.adj.list)

if($OUT.line =" /{.*): (.%)/)
{
my SOUT = $1;

@{$0UT.adj.list {81}} = split(/ /,82);
#print "@{8OUT. .adj_list{$1}\n";

Split the OUT lines adj list into iwo list of connections
OUT_adj.list.0 : edges related to CLBO
OUT.adj_list_1 : edges related to CLBI
notel: The CLB inputs are in the same format than the CLB
configuration.
note2: The T in OQUT.adj.list.0 is T0 and
The T in OUT.adj-list.1 is T1.

7 7

AR H IR

foreach (@{$0OUT._adj.list {$OUT}})
{
{if (8. =7 /S(\a)-(.*)-B(.%}/)

my $pum = $3;
if (81 == 0)

if (3num eq ')

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.2 Completion of Gorym Fdge Coloring

{push (@{30UT._.adj_list.0{BOUT}}," 827);}
else
{push (@{$0UT._adj_list_0{3OUT}},” $28num”);}

else

if (83 eq)
{push (@{$0UT _adj_list_1{SOUT}},”$2”);}
else

{push (@{$0UT.adj-list.1{3OUT}},”$283”);}

};elsif ($. =" /TIN(\d)/)
if ($1 == 0)

push (@{$0UT.adj-list_0{$OUT}},”T0" };
push (@{80UT_adj_list_1{80OUT}},»T0”);

else

push (@{$0UT.adj.list.1{8OUT}},”T1"};
push (Q{$0UT.adj.list.0{8OUT}},”T1”};

}

}
#print "$OUT CLBO: @{$0OUT_adj list . 0{SOUT}I\n";
#print "$OUT CLB1: @{$0UT.adj-list 1{8OUT}}\n";

}

#A hash of arrays that include all the coloring

my %all_coloring;

#The completion of the matches.

@clb_list = qw({S0-XB S0.XQ S0.Y S80.YB S1.XB S51.XQ S1.Y S51.YB);
@Qout.list = qw(OUT0 OUT1 OUT2 OUT3 OUT4 OUT5 OUT6 OUTT);
@clb_out.missing;

@ount_missing;

$color_-count = 0;

oreach my $color {@color.1.8)

£8838

Ay

$color_count+-;

#check if there is some connection missing

my @count = split (/ /,8color);

my $count = @count;

if ($Scount == 16)

{
#print 7 @count\n”;
@{%all_coloring {" $color.count”}} = @Qcount;
next;

}

#checking the missing CLB output
@clb_out_missing = @clb._list;
for (1 .. scalar(@clb.out_missing))
{
my $match = 0;
my $pin = pop @clb_out.missing;
foreach my $color_vertex (®@count)

#print "$pin —— $color.vertez\n”;
if ($pin eq $color_vertex)

$match = 1;
#print "match\n”;
last;
}
}
if ($match == 0)

#print "no match\n”;
unshift @clb_out.missing , $pin;

}

#checking the missing OUT lines
@out.missing = Qout-list;
for (1 .. scalar(®@out.missing))

my $match = 0;
my $pin = pop @out_missing;

foreach my $color_vertex (@count)

#print "$pin ~— $color.vertez\n”;
if ($pin eq 8$color.vertex)

$match = 1;
#print Y match\n”;
last;

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendizx B Perl Programs

}
%f ($match == 0)

#print "no match\n”;
unshift @Qout_missing, $pin;

}
if(scalar{ @out_missing) == 1)

push @Qcount, pop @clb.out.missing;

push @count, pop @out.missing;
@{$all_coloring{” $color_count”}} = @count;
#print P @count\n”;

next;
}
print »COLORS$color-count : @clb_out.missing ——— @out_-missing\n”;
) g J
#print “new color : Qcount\n”;

push @count, pop Qclb.out.missing;

push @count, pop @Qout.missing;

push @count, pop @clb_.out.missing;

push @count, pop @out.missing;

push @count, pop @clb.out.missing;

push @count, pop Qout_missing;

#my Scolor.ok = Bmatchook(\ @count \%CLB_conf \ZOUT_ adj.list 0 \N\BOUT adj_list.1);
#print "color.ok = S$color.ok\n”;

@{$all_coloring{”$color.count”}} = Qcount;
#print " Q@count\n”;

#duplicate the color 1 to 8 to get color 9 to 16
with subtitutions.

my Qcolor.9.16;

foreach my $color (sort (keys(%all.coloring)))

my $line = "@{$all.coloring{$color}}”;
$color_count-++;

$line =" §/S0.Y /S0.X /g;
$line =" $/80.XQ/S0.YQ/¢g;
$§line ="~ s/81.Y /S1.X /g;
$line =" s/81.XQ/S51.YQ/g;

@{$all_coloring{”$color.count™}} = split (/ /,$line);
#push @color.9.16, $line;

}
foreach my $color (sort {$a <=> $b} keys(%all.coloring))
{
my @color.copy = @{8all_coloring{$color}};
#print Y @color_copy\n”;
for (1 .. scalar(@{8all.coloring{8$color}})/2)
my $s = shift @color.copy;
my $d = shift @Qcolor_copy;
print " COLORScolor: $5.8d\n”;
}
#print *8color:@{ Sall.coloring{8color}}i\n”;
}

foreach my $color (@color._1.8)
print "feolor\n”;
foreach my $color (@color.9.16)

print "Scolor\n”;

#Funciion Name: maich.ok
#lnputs :
M a match (o list)
CLB.CONF (a hash table)
OUT-adj_list (a hash table)
#Output:
1 if it is OK
0 if it is not OK

Iy y? 7
7 i 7 7

A
sub match.ok

) 4 i’ L 4

Get the input parameters
P ; gy s
7 7 7

#the match
my $ref M == shift;
#the CLB.CONF

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.2 Completion of Gory Edge Coloring

my $ref . CLB.CONF = shift;
#the OUT_adj.list 0 and 1
my $ref_.adj-list.0 = shift;
my $ref.adj.list.1 = shift;

test print
foreach (@{8ref.M})

print 7§ \n";

foreach my Shash_key (keys%{$ref-CLB.CONF})

E)r'i-n.t "$hash_key: @{8%ref-CLB_.CONF{8hash. key}}\n”;
}oreuch my Shash_key (sort keys%{$ref.adj.list_0})
;rint "$hash-key: O §$ref.odjlist 0{Shash_ key}}\n”;
foreach my Shash_key (sort keys%{$ref-adj_list.1})

{
print *$hash_key: @{8%ref-adj-list.1{Shash_key}}\n”;
}

TR IR HER

4 o’ 4

7 7
Split the M in MO and M1
it 4

my @MO;

my @M1;

my @M.t = @{$ref-M};

for (1 .. (scalar(@Mut)/2))
{

my $u = shift @M.,
my 8v = shift @M.t;
i ($u =" /S(\d)~(.%)/)
if (81 == 0)
push @MO, $2;
push @M0, $v;
}
else
{
push @M1, $2;
push @M1, $v;
}
}

}

HHAT BN AT : 7 7
Start the checking loop
oy P

my $find.one_-CLBO
my $find.one.CLB1
my $first T_IN;

0;
o

0l

3

foreach my $CLB.conf-name (sort keys%{$ref.CLB_.CONF})

#print ” CLB0@ \n”;

#8tart the check for connections related to CLBO

my $check.CLB.O = 0; #false first

foreach my $conf.conn (@{88ref.CLB.CONF{$CLB.conf.name}})
{

#print "configuration $conf-conn\n?”;

#find the connection in MO that got the same source as
#8conf.conn .

my $conf_conn.source;

my $conf.conn.drain;

if($conf_conn =" /(.*)—>(.x)/)

$conf_.conn.source = §1;
$conf_.conn.drain = $2;

my $out.line = 0;
#print "MO: @MO\n”;
for (1 .. (scalar(@M0)/2)})
{
my $source = shift (@M0);
my $drain = shift (@M0);

if ($conf_conn_source eq $source)
{8out.line = $drain;}

push (@MO, §source);
push (@MO, $drain);

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B Perl Programs

#print " OUT line: $out_line\n”;

if {$Sout.line eq 0)

{next;}

#check in the OUT line adj list +f the input can be reach
#if the loop did not find any path then stop the function
#and return false.

my $local_check = 0;
foreach my $adj-.out.line (@{$%%ref_adj_list.0{Sout.line}})
{

H#test

#print "$adj.out_line Sconf-conn_draein\n”;
if ($adj.out.line eq $conf.conn_drain)

$local.check = 1;

last ;
}
elsif($adj-.out.line =~ /T(\d)/)
{
if(3$conf.conn_drain eq 'T’)
$local-check = 1;
$first . T_IN = $1;
last;
}
}
}
if ($local.check == 0)

$check .CLB.0 = 0;
last;

1

$check-CLB.0 = 1;
}
if ($check.CLB.0 == 0)
{

#Freturn 0;
next;

else
$find_one_CLBO = 1;
#print "8CLB_conf.name (0) ”;
#last;
}
if($find-one.CLBO == 0)
{

return 0;

foreach my $CLB.conf_name (sort keys%{$ref CLB.CONF})

#print ™ CLBI \n”;
#Start the check for connections related to CLBI
my $check . CLB.1 = 0;
foreach my Sconf.conn (@{83$ref .CLB.CONF{$CLB conf.name}})
{
#print "configuration $conf.conn\n”;
#find the connection in MO that got the same source as
#fconf_conn .
my $conf.conn.source;
my $conf_conn.drain; '
if($confoconn =" [(ix)—>(.%)/)

$conf.conn_source = $1;
$conf_conn_drain = $2;

}

#print "Mi: @MNn”;

my $out_line = 0;

for (1 .. (scalar(@Ml1)/2))

my $source = shift (@M1);
my $drain = shift (@M1);

if ($conf-conn._source eq $source)
{$out.line = $drain;}

push (@M1, $source);
push (@Mi, §drain);

#print "OUT.line: $out_line\n";
if ($out_line eq 0)
{next;}

#check in the OUT line adj list ¢f the input can be reach

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.3 Feedback Routing

#if the loop did not find any path the stop the function
#and return false.

my $local_check = 0;

foreach my $adj-out.line (@{$Sref_.adj.list_.1{8out.line}})

#test
rint " $adj_out.line Sconf.conn.drein\n”;
P

if ($adj.out.line eq Sconf.conn_drain)

$local_.check = 1;
last;

}
elsif($adj-.out.line =" /T{(\d)/)
if(8conf.conn_drain eq 'T’)
if (81 ne $first_.T.IN)

$local_check = 1;
last;

}
i
if (8local.check == 0)

$check_CLB.1 = 0;
last;

1
$check CLB.1 = 1;

}
if (8check.CLB.1 == 0)
#return 0;
next;
}
else
$find_one.CLB1 = 1;
#print "8CLB.conf-name (1) 7;
#last;
}

}
if($find-one.CLB1 ==0}
{

return 0;

return 1;

}
4
HHH T
#Function Name: read.file
#lnputs :
name of the file you want fo open
#Output:

the array that contain all the line of the file

7 7 AT 7
sub read_file

{
my ($filename) = @Q.;
open(FILE,” $filename”){| die(” could_not._.open.the_file” };
my @file = <FILE>;
close (FILE);
chomp(@file);
return @file;
}

B.3 Feedback Routing

#l/usr/local /bin/perl

wheadl NAME

7 i 7

color_path.1_.16. pl

=headl AUTHOR (DATE)

Christian Giasson (July 23rd, 2003)

=headl SYNOPSIS

color.path_1.16.pl —a {16 colors of the ORMG}
—b {CLB configuration 2 and 4}
~c¢ {Configuration for each colors}

—~d {List of single paths}
—e {List of double paths}

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendiz B Perl Programs

flags
—h help

=headl DESCRIPTION

This program generate routable paths in the Virtex FPGA from each of the
colors (test configurations) generated by the program enum._edge_coloring.pl.

=over 4
=item INPUT
There is a list of all the file needed by the this program:

The coloring of the ORMG. That file includes complete (8 paths by color)
colors for the first 16 colors.

CLB configuration list. conf2 and conf4 are needed in the same file.

The list of all the CLB_configuration of each COLOR and both CLB
configurations generated by the program get_CLB_conf.pl.

A list of all the possible path for a routing between the the OUT lines and
the CLB inputs(actually two files single and double path).

=item OUTPUT

That program will generate a detail list of the routing for each color. Also
the CLBO and CLB1 confiration will be print for each color (or testing
configuration).

=item DEPENDENCIES

No dependencies on other programs or none built in functions

=cut

7 77 7
use warnings;

use strict

use Getopt:: Std;

n /4 7 .

7
#Get the inputs of the program
. 4

getopts(’ha:b:c:d:e:’);
our ($opt-h ,$opt.a ,%opt.b,$opt.c,Bopt.d, 6 Bopt.e};

if ($opt.h)
{

print”\n\tOption_.of.this_program:\n
—-— “\t-h:-\t\thelp
—— ANt-ao[file]:.\t16._colors.of the ORMG\t\t
— At~bo[file]:.\tCLB_configuration .2.and . .4\ t\t

— e\ t—c [file]:.\tCLB.configurations.for.each.colors\t\t
—— cmo\t—d [file |:.\ tList cof.single_paths\t\t
~~~~~~~~ \t—e.[file]:.\tList_of.double.paths\t\t\n\n";

exit; -

#push every lines of each file inside an array

my @ORM_color.l = &read-file(8opt.a) if ((Sopt_a)&&(IBopt_-h));

my @CLB.conf.2.4_1 = &read_file ($opt_b) if ((Sopt_.b)&&(!3opt.h));
my @CLB.conf_color.l == &read.file($opt.c) if ((Sopt.c)&&(18opt.h))
my @path_single_list = &read._file ($opt.d) if ((Sopt_d)&&(!$opt.h})
my @path_double.list = &read_file($opt.e) if ((Sopt_e)&&(!$opt.h))

LA 4 y

¥ 7 7 7
# New
# Suppress all the orthogonal double paths

p 7
i 7 AT 7 77

for (1 .. scalar{@path_double.list))

my $path = shift @path_.double_list;
if (Spath =- /" \w-+—>(NSEW]) (\ d+)—>(INSEW]) (\d+)/)
) if ($2 eq $4)
g
next if ({31 eq 'N")&&($3 eq 'S
next if ((8$1 eq ’8')&&($3 eq 'N
next if (($1 eq 'E')&&($3 eq W’
next if ((8$1 eq "W")&&($3 eq 'E’))

# push @path_double.list , S$path if (($1 eq 'N’)BE($3 eq ’S’));
# push @path_-double_list , $path if (($81 eq ’S’)B&($3 eq 'N’));
# push @path.double_list , $path if (($1 eq 'E')&EH(83 eq "W’));

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B.3 Feedback Routing

# push @path.double_list , $path if ((81 eq "W )HE($3 eq 'E’));

}

}

push @path_double_list , $path;
}
L s o . i

7 s

# New test
# Check How many connections can cannect to the CLB inputs
St y . ¥ 4 it P P
#my %occurence ;

#forecach (@path.double.list)

if (/T (\wt)=>x=>Nwt)8/)
i}(ezists $occurence{”"$1827})
Soccurence{"$1827} ++;
else

#

#

#

#

# )
#

#

# $occurence{"§182”7} = 1;
#

}
# 1
#}
#print
#foreach (sort keys(%occurence))
#
# print *§. : Soccurence{§_}\n”;
#}
#Hexit ;

#daeta structure wvariables

my %ORM_color;

my %A CLB_.conf_2.4;

my % CLB_conf.color;

my %path.single;

my %path.double;

#build the data structure

&data_struct ( \%ORM.color, \@ORM_.color.l,
\%CLB.conf.2.4, \QCLB_.conf_2.4_1,
\%CLB_conf.color ,\@CLB_conf.color.l,
\%path.single , \ @path.single._list ,
\%path_.double , \ @path_double_list );

4 4 WAL y

7 7 7 HHHHH I
o / .y / f
EHAHH 7 7
#H# MAIN part of the program ##
4 7 77 7 g 7 L Z L 777
& 5 . .
7 7 HHHHHH 7
. P
G # PR
# New
# Create an array of all the short lines to check if the othogonal short
# line are mot taken in the same time.
7 (EE Y I (4
my @short_list;
for (0..23)
{
push @short.list , ("N§." ,”8§.” ,"E$.” ["WE.” ),
}

A L i 2

A Z
#Check if each color can be match with o CLB configuration with
#SINGLE PATHs

7 g 77 7 4

#Hnew

my Qcolor_.sequence = ( COLOR1’ , "COLOR2’ , "COLOR3’ , 'COLOR4’ ,
*COLOR5’ , "COLORG’ , "COLORT’ , "COLORS" ,
'COLORS’ , 'COLOR10’, "COLORI11’ , "COLORI12’ ,
'COLORI13’ , "COLORI14’ , "COLORI15’ , "COLORI16’ };

#COLORPATH is a hash of a hash of arrays {color}{path num} = array of
#connections that make the path.
my %COLORPATH;
#for all the COLOR
#foreach my Scolor (sort keys(%HORM_color))
foreach my $color {(@color.sequence)
{
my $found_CLB_match = 0;
#for all the CLBO configurations
foreach my $CLBO_conf(sort keys(%{$CLB_conf.color{$color}{ CLB0 }}))
{

#for all the CLB1 configurations
foreach my $CLBl.conf(sort keys(%{8CLB.conf.color{$color}{'CLB1’}}))

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendiz B Perl Programs

#One pass for the (CLBO->T0 CLB1->T1)

#and another one with (CLB0O->T1 CLB1->T0)
my $CLBO_tri = *T_.INO’;
my $CLB1_tri = 'T.IN1’;
foreach my $order (’sta

{

*,lrev’)

if{(Sorder eq 'rev’)

$CLBO.tri = 'T.IN1’;
$CLB1.tri = "T.INO’;
}

#for all the conections in the color
#try to connect to the input of the conf
$found .-CLB_match = 1;
foreach my 3CLB.out (sort keys(%{8ORM.color{8color}}))
{
#OUT line
my $OUT._line = $ORM_color{8$color}{8CLB_out };

#CLB conf.0 and confl array
my @conf0 = @{$CLB_conf.2.4{$CLBO.conf}};
my @confl = @Q{$CLB.conf.2_.4{8$CLBl.conf}};

my $CLB;
my $short_name.CLB_out;
if (3CLB.out =~ /S([01]).(\w+)/)

$CLB = §1;
$short.name_CLB_.out = $2;
}

#find the S$CLB.in
my $short.name.CLB.in;
if ($CLB == Q)

{
foreach (@conf0)
if ($. =" /$short_name.CLB.out—->(\w+)/)
$short.name.CLB.in = $1;
last;
}
}
}
else
{

foreach (@confl)
if ($. =~ /$short.name.CLB._out—>(\w+)/)
{

$short-name.CLB.in = $1;
last;

}

#Put the CLB input name in long format
my $CLB.in;
if ($short_name_CLB_.in eq 'T’)
if (SCLB == 0)
$CLB.in = "$CLBO.tri”;
}

else

$CLB.in = "$CLB1l.tri”;

}

elsif ($short_name.CLB.in ="~ /([GF}}(\d)/)
$CLB.in = "S$CLB” .” .§1” .7 _.B$2";

}

elsif ($short_name-.CLB.in ="~ /(B[XY])/)

$CLB.in = "S$CLB” .” .17 .7 _B”;

Ly " N 7
HH 7 g

# Find a path

#find a path = 1, no path = 0

my $find_a_path;

my @connection.of.path;

#call the function to find o path

$find_a_path = &find_path(\ @connection_of_path ,
\Fpath_single ,

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B.8 Feedback Routing

$OUT. line ,
$CLB.in);
#look for path in the single feedback
if ($find.a_path == 1)
{

#save the path in the COLORPATH hash

unshift @connection.of_path ,$CLB out;

push @{$COLOR.PATH{S$color}{”"S:.8CLB.out-—>" .”$CLB.in" } } ,
Qconnection_of.path;

}
#look for o path in the double feedback
elsif(8find_a.path == 0)

my @connection.of.path.2;

#check for the double path

$find.a.path = &find_path.2(\ @connection_of.path.2,
\%path.double ,
$OUT line,
$CLB.in);

if ($find.a.path == 1)

unshift @connection-of_path_.2 ,3CLB_out;
push @{$COLOR.PATH{S$color}{”D:.8$CLB.out—>".”$CLB.in"}},
@connection.of.path.2;

}
}
4 4 P : »
# if there is no path for one color connection
) 4 . ) 4
if(8find.a.path == 0) ’
{
$found CLB.match = 0;
#delete every paths inside the COLOR.PATH hash
foreach my $path.name (sort keys(%{$COLOR.PATH{3color}}))
{
#put back all the path in the path.single hash
my %a = shift @{$COLOR.PATH{$color}{$path.name}};
my $b = shift @{$COLOR.PATH{$color}{$path.name}};
my %¢ = shift @{SCOLOR.PATH{S$color}{$path_name}};
my $d = shift @{$COLOR.PATH{$color}{$path.name}};
if ($path_name =" /"8/)
$path.single{$a}{$b}{$c}{3d} = 1;
¥
elsif($path.name =~ /"D/)
my $e = shift @{3COLOR_PATH{$color}{3$path_name}};
$path.double{$a}{$b}{3c}{8d}{%e} = 1;
delete $3COLORPATH{S$color}{$path-name};
}
last;
}
}
#check if the color is good
if ($found.CLB_match == 1}
{
my $zood.color = &check.color (\%{$COLORPATH{ $color }});
#print "good = Sgood.color\n";
#last if (($found.CLB.match == 1)8&($good.color == 0});
last if ($good.color == 1};
$found _CLB_match = 0;
#have to put back all the path in path.singe and
#path_double
}
}
last if $found_CLB_match == 1;
}
last if $found .CLB.match == 1;
}
foreach (sort keys(%{3COLORPATH{$color}}))
{
print " $color: - @{$COLOR.PATH{ $color}{8.}}\n";
#delete all the path related to the path in IRM
&delete.path (\@{$COLOR.PATH{ Scolor}{$.}}, \%path_single , \% path_.double);
}
}
#Function Name: fivrw,d-pa.th. ' e ’
#Inputs:
#Output:

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendiz B Perl Programs

sub find_.path

#input variables

my $conanection_of_path.ref = shift @._;
my $path_single_.ref = shift @_;

my $CUT . line.var = shift @.;

my $CLB.in_var = shift @_;

#flag variable
my $got_a_path = 0;

foreach my $short.line (sort keys(%{$Spath._single_ref{$OUT.line.var}}))
foreach my $node.line (sort keys(%{$$path_single_ref{$OUT. line.var}{$short.line}}})

foreach my $CLB.in_path (sort keys(%{$3path_single.ref{8OUT.line.var}
{$short.line}{S8node.line}}))

{
if ($CLB.in.path eq $CLB.in.var)
$got.a.path = 1;
push @{$connection.of_-path_.ref} ($OUT line.var,
$short_line ,
$node.line ,
$CLB.in_var);
#new
#delete the path from the hash if 4t is o CLB input
#if (8CLB.in_path =~ /S[01]_(.x).B/)
if ($CLB.in.path =~ /S[01}.[FG].B/)
#delete $8path_single-ref{80UT line.var}{$short.line}
#{8node. line}{$CLB in_path},
}
last;
}
last if $got.a.path == 1;
last if $got_.a.path == 1;
}
if ($got_a.path == 0)
{return 0;}
else
{return 1;}
¥
#Functiu;l N:m’ne: 'ftind_path..g ’ "
#Inputs :
#Output:

sub find_path.2

#input wvariables

my $connection.of-path_ref = shift @.;
#my $deleted_path.ref = shift @.;

my $path.double.ref = shift @_;

my $OUT . line.var = shift @.;

my $CLB.in.var = shift @.;

#flag wveriable
my $got_a_path = O;

foreach my $short.-linel (sort keys(%{$$path.double.ref{8OUT.line.var}}))

foreach my $short_line2 (sort keys(%{%%path_double.ref{30OUT. line.var}
{$short_-linel }}})

foreach my $node_line (sort keys(%{$%path.double.ref{$OUT_line.var}
{$short_linel}{8short_-line2}}))

foreach my $CLB_in_path (sort keys(%{$$path_double.ref{$OUT.line.var}
{$short.linel}{8short.line2}{8node.line}}))

if ($CLB.in.path eq $CLB.in.var)
{
$got_a.path = 1;
push @{$connection.of.path.ref},($30OUT.line_var ,
$short_.linel ,
$short._line2 ,
$node_line,
$CLB.in-var);

#new
#delete the path from the hash if it is o CLB input

#if ($CLB.in.path =~ /S[01].(.%).B/)
if ($CLB.in_path =~ /S[01].[FG].B/)

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B.8 Feedback Routing

#delete S$path.double_ref{30UT.line_var}{¥short.linel}
#{$short_-line2}{¥node_line}{$§CLB.in.path};
}

last;

}
}
last if $got.a.path == 1;
last if $got.a.path == 1;

}
last if $got.a.path == 1;

}

if {$got.a.path == 0)

{return 0;}

else

#delete the poth from the hash
{return 1;}

}

7 7 HHHHA A
#Function Name: check.color
#lInputs:
#Output:

4

sub check_c¢olor

my $color.path.ref = shift;
my %color-path.local = %{$color_path._ref};

7

7 #7 i 7 7
# verify 4f the same short line appear two times
‘ P . P ; .

7 HH I 7% 7 HHH A
foreach my $path.name (keys(%color.path.local})

my $array_print == "@{$color.path_local {$path.name}}”;
nmy Q@short;
if ($array_print =" /OUT\d ([NSEW]\d+) [NSEW]./)

push @short,$1;
}
elsif {Sarray_print =7 /OUT\d {[NSEW]\d+) ([NSEW]\d+) [NSEW]_/)
{

push @short, (%1,82);

#find if there 15 another same sort line
foreach my $short_conn (@short)

foreach my $path.name2 (keys(%color.path_local))

next if (8path.name2 eq $path.name);
for (@{8%color_path.local{$path_.name2}})

return 0 if ($. eq $short.conn);

}
}

}
}

. ” ; »

7 7
# verify if mo orthogonal short lines are used
P P

foreach my $path.name (keys(%color-path‘loca)3)

my $array_print = "@{$color-path_local{$path_name}}”;
my @short;

if ($array.print =" /OUT\d ([NSEW]\d+) [NSEW]./)

{

push @short, $1;
}
elsif {Sarray.print =" /OUT\d ([NSEW]|\d+) ([NSEW]\d+) [NSEW]_/)
{

push @short, ($1,%2);

#find if the opposite line 1is used in the
foreach my $short.conn (@short)

¢ #find the opposite
if(8short_conn =" /N(\d+)/)
. $short.conn = "3$1”
J;1sif($shom_conn =" /S(\d+)/)
{ $short_conn = "N§1”;
%lsif(&ﬁshort_conn =" /E(\d+)/)

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendiz B Perl Programs

$short_conn = "W$1”;
}
elsif{$short_conn =~ /W(\d+)/)
{

$short.conn = "E§1";

}

foreach my $path_name2 (keys(%color.path.local))

next if (8$path.name2 eq $path_name);
for (@{8color.path_local{$path.name2}})

return 0 if (3. eq $short.conn);

}
}
return 1;
¥
y ) i
7 7 i 7
#Funection Name: delete.path
#lnputs :
#Output:

sub delete.path

my $color.path.ref = shift @Q.;
my $path.single_ref = shift Q_;
my $path.double.ref = shift @.;

my $CLB_in_line = pop @{$color.path_ref};
my $node.line = pop @{$color.path.ref};
push @{$color_path.ref},$node.line;

push @{%color_.path.ref},$CLB.in_line;

#delete the path from the hash if it is a CLB input
#if (8CLB_in line =" /§[01].(.x).B/)
if (8CLB.in.line =~ /S[01] - {FG].B/)
{
#delete related paths in single
foreach my $OUT.line.var (sort keys{%{$path.single.ref}))

foreach my $short.linel (sort keys(%{$$path_single.ref{$OUT.line_var}}))

if{exists($$path_single.ref{$OUT. line_var}{fshort.linel }{3node_line}
{$CLB.in.line}))

{
#print 7.7;
delete $$path_single.ref{80OUT.line.var}{$short.linel}{$node-line}
{8CLB_in.line};

}

}

#delete related paths in double
foreach my $OUT . line.var {sort keys(%{$path.double_ref}))

foreach my $short.linel {sort keys(%{$8path.double_ref{$OUT_line.var}}))

{
foreach my $short_line2 (sort keys(%{$$path.double.ref{$OUT. line_var}
{$short.-linel }}))
{
if{exists ($Spath_-double_ref{$OUT. line_var}{$short.linel}
{$short_line2}{$node.line}{$CLB.in_line}))
#print ".7;
delete $S8path_double.ref{$0OUT line.var}{$short_ linel}
{$short_line2}{$node-line}{$CLB. in.line};
}
}
}
N }
}
} I 1 72 L
;éF’"unct'ion Name: doata_-struct o
#Inputs:
#Output:
7 (s t / Y7
sub data.struct
{

#input variables

my 3ORM.color.ref = shift @_;

my $ORM_color.l_ref = shift Q.;

my $CLB_conf.2_4_ref = shift @_;

my $CLB.conf_2_4.1_ref = shift @.;
my $CLB_conf.color_ref = shift @_;
my $CLB.conf_color.l.ref = shift @Q_;

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B.4 Completion of Feedback Routing

my $path_single_ref = shift @_;
my $path_single_l.ref = shift @_;
my $path.double.ref = shift @._;

my $path_double.l.ref = shift @_;

#date structure for the 16 colors
foreach (@{$ORM._color.l_ref})

(8. =" /(COLOR\d+):(\w+) (\w-+)/)
$$ORM.color.ref{$1}{82} = §3;

}

#data structure for the list of configurations
foreach (@{$CLB_conf.2.4.1l_ref})

zf(s- =" f(\w4): (.%)/)
my $temp = $2;

chomp 8temp;
push (@{$$CLB_conf.2.4.ref{$1}},split(/ /,82));

}

#data structure for the list of configurations that fit with the colors
foreach (@{$CLB.conf.color_l.ref})

(8. =" /Q\w+):(A\w+):(\w+)/)
$8CLB_conf_color.ref{$1}{$2}{8%3} = 1;

}

#data structure for the list of single paths
foreach (@{$path.single.l_ref})

{
(3. =" /(\wH)—>Owh)~>Ow+)->(w+)/)

$3path-single.ref {$1}{32}{83} {84} = 1;
}
foreach (@{8path.double.l_ref})
zf($- =" J(\wH)=>(\wt)=>(\wt)—>(\w+)—>{(\w+) /)
my $ml = $1;
my $m2 = $2;
my $m3 = §3;
my $m4 = $4;
my $m5 = $5;
# to avoid owverlap between the single and double path

foreach (keys(%{8path._single.ref}})
{

if (exists $$path_single_ref{$.}{8m3}{3m4}{Sm5})

{}
else
{
$8path_double_ref{$ml1}{3m2}{$m3}{$m4}{3m5} = 1;
}
}
}
}
. P 4 v
Z HHHH % 7
#Funcition Name: read_file
#Inputs:
# name of the file you went to open
#Output:

# the array that contain all the line of the file

4

AT 7 # 7 7 i
sub read_file

my ($filename) = Q_;
open(FILE,” §filename” } || die(”could..not.open.the.file”);
my @file = <FILE>;
close (FILE};
chomp( @file );
return Qfile;
Y
b

B.4 Completion of Feedback Routing

#!/usr/local /bin/perl

7 7

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendiz B Perl Programs

=headl NAME

color IRM. pl

=headl AUTHOR (DATE)

Christian Giasson (August 7th, 2003)

=headl SYNOPSIS

color . IRM

=headl DESCRIPTION

This program build (or color) the configurations in the IRM

The coloring part of the program is based on the Vizing algorithm for
edge—color bipartite graphs.

=over 4

=item INPUT

The list of the connections (reduced) in the IRM.

The feedback paths associate with all the Testing configurations 1 to 16.
=item OUTPUT

The output the connections of the testing configurations 1 to 24.

=cut
»)

7
use warnings;

use strict;

use Graph;

use Graph:: Directed;
use Graph::Undirected;
use Graph:: Writer :: Dot
use Set::Array;

use Getopt:: Std;

; 4 y

i R
#Get the inputs of the program
4 ; P

7 7

getopts('ha:b:');
our{$opt.h ,$opt.a ,Sopt.b);

if (8opt-h)
{

print”\n\tOption.of.this.program:\n
____________ Vt=h:.\$t\t\thelp
____________ \t—a.[file ]: . IRM.Color\t\t
____________ \t=b.[file]:.Node_adj.list\t\t\n\n”;
exit;

my @graph.edge.l = &read_file(Sopt.a) if ((Bopt_a)&&(!$opt.h));
my @feedback.color.] = &read._file($opt.b) if ((Sopt_b)&&(I$opt.h));
3|=1;
it
# Get the IRM connections
p "

7

#Get the graph edges by the standard input
my @G.edges;
foreach (@graph_edge.l)

2f (/(\w+) —> (\w+)/)
push @G_edges, ($1, $2);

P o ¢
7 HHH

# Get the feedback paths 1 to 16
4 4 o

7 7

my %fb.IRM;
my $cn = 0;
foreach (@feedback.color.l)

{if (8. =" /(COLOR\d+): .« (\w+) (\w+}$/)

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B.4 Completion of Feedback Routing

push @{$fb_IRM{31}}, ”"§2->83";
#Test
Scn4-;
#print "§1 §2->83\n”;
}
} y? /2 ye 1

7 HH 7
# Get the opposit short line of the double path for color 1 to 16
. Yy .

my %short_opposit;
foreach (@feedback.color.l)

if ($- =" /(OCOLOR\d+): \w+ OUT\d (\w+) (\w+) \w+ \w+8$/)
$short.opposit{$1}{$3} = »82”;

A t 7

# Muain program
; 4

7 T 7 7 7
i ‘ YLk .

# build the graph @

e

my $G = Graph:: Undirected—>new;
$G—>add.edges (@G _edges);

4 2 5
7

7 7 G AT
# Remowve oll the edges the graph G that are already used by the feedback
# paths

s oy

7 77 7 7

foreach my $color (sort keys(%fb.IRM))

{
foreach my $conn (@{$fb.IRM{$color}})
I (Scoma = /(\wH)=>(wt)/)
#delete that edge in the graph G
$G—>delete_cdge ($1, $2);
#print Y $color : $1 —— $2\n”";
}
}
#test

#my @test.e = §G—>edges ();
#my $num = @test-e;

#¥num = Snum / 2;

#print ”$num\n”;

4 7

7 7
# for the color 1 to 16
; .

rr:y $color-in§ex i_— 1;
my %coloring;
foreach my $color {sort keys(%fb.IRM))

my Qedge.g = $G—>edges ();

my @color.conn = @{$fb.IRM{$color}};

#get the match(color)

my @IRM.color.edge = &get . IRM._match(\ @edge_.g, \ @color_conn, $color);

# put the edges in the coloring hash
for (1 .. (scelar(@IRM.color_edge)/2))
{

my $vs = shift (@IRM_color.edge);
push @QIRM _color_edge , $vs;
my $vd = shift (@IRM.color_edge);
push @IRM.color_edge , $vd;

push @{8$coloring{” $color—-8color_index”}},” $vs.—~>.8vd";

}

# delete the edges in the Graph "G”
for (1 .. {scalar{@IRM_color_edge)/2))
{

shift (@IRM_color_edge);
shift (@IRM.color.edge);

my 8$vs
my $vd

$G—>delete_.edge ($vs, $vd);

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendiz B Perl Programs

}

#increment the color index
$color_index++;

. ,
7 7
# print the result
4 Y LAt gt
7 74
my 8¢ = 1;
foreach my $color (sort keys(%coloring))

foreach (@{$coloring{8$color}})

print "Scolor ;.8.\n";
#8c++;
}

¥
#print "$ec\n”;

#test

my @test.edges = $G->edges ();
#my 84 = 0;

for (1..(scalar(@test.edges)/2))

my $vs = shift @test_edges;
my $vd = shift Qtest.edges;

#print ”$vs —> Fud\n”;
# $d++;

#print "number of connections left is $d\n”;
#8d $d/2;

#8c Fe + $d;
#print "Fc\n”;

#test for find_covering.matching function

#my @G_.edges = qw(A DA EAFBEBVFCDCF);
#my @G_edges = qw(A D AEAFBDBEBFCDCECF);
#my @G.edges = qw(A CA DA EAFBCBDBETBF),;
#my @G.edges = qw(A EAFA GBEBFBHCGDGDH);
#my @M = 8C1(\ @G_edges );
#print "@MN\n”;
" P Py 4
HHA AT A AT HT

7
# Functions
3 2 4 ) i
7 7 7 7 5

o 4

i AT

#Function Name: get.JRM_match

# Inputs:

# The remaining edges in G (IRM connections)

# The comnection of the colors in IRM

# Cutput:

# A set of edges in IRM that match with the color edges
P P . p

HH 7 7 7 HHH 7 7
sub get_ IRM.match
{
#get the inputs of the function
my $graph.edge_ref = shift;
my $color_conn_ref = shift;
my $color = shift;
my

@graph.edge = @{$graph.edge_ref};
my @color.conn = @{$color_conn_ref};

#build the local graph G
my $G = Graph:: Undirected —>new;
$8G—>add.edges(@graph.edge);

.y

# Remove all the vertices in the graph G thet are related to the
# feedbacks conmnection in the [IRM
4

L 4

foreach my $edge (@color_conn)
if (Sedge =~ /(\w+)=>(\w+)/)

$G—>delete.vertex (81);
$G—>delete.vertex ($2);

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B.4 Completion of Feedback Routing

# Remove the edges relates to the opposite short line in GRM
# note : modified for diagonal short connections (not orthogonal)
) 4 .

7

foreach ;'ny $edge (@Zolorr_conn)
I (sedge =7 /(v =>()))
my $node_line = $1;
my $op = O
if (Snode.line =" /([NSEW])_P(\d+)/)
{
if (exists($short.opposit{Scolor}{”81827}))
$op = $short_opposit{fcolor}{"8§1827};
¥
éf($op =" /({NSEW])(\d+)/)
#remove the first short edge in the double path
$G—>delete_vertex (*$17 .” P8§2”);
#remove the oposite of that edge too
if(51 eq 'N’)
$G~>delete_vertex ("S.P3$2” );
}
elsif($1 eq ’S’)
$§G—>delete_vertex ("N.P$2” };
}
elsif($1 eq W)
$G—>delete_vertex ("E_P$2” );
}
elsif (81 eq 'E’)

$G—>delete.vertex ("W._P$2" );

}

if(Snode_line =" /S_P(\d-+)/)
$G->delete.vertex ("N_P81” );

Llsif($node_line =~ /N_P(\d+)/)
$G~>delete_vertex ("S.P§1");

Llsif($node_line =" JE.P(\d+)}/)
$§G~>delete_vertex ("W_P$1” );

Llsif(Snode_Iine =" JWP(\d+)/)

$G~>delete-vertex ("E_P§1” );

}

o 7 7

.
777 I 7
# Color the remaining graph and get the color 1
P "

77 4 7 7

my @after_.del_edge = $G—>edges (); my @Qcolorl =
&C1(\ Qafter.del.edge);

i

7
# Return the comnections in the IRM

4

7 E 7 7

return @colorl;

¥
p " s

#Function Name: Cl1
#Inputs :
#(\@{list_.of.edges-G})
#Output : the color number 1 of the coloring
H# (the fornction find aen entire coloring but return only)

7 7 HH HHH 7 7 7 7
sub C1

"

i 7
# put all the input of the function in arrays
. i ) P

7 7 7 7

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendiz B Perl Programs

my @graph_edge = @{(shift (@.))};
my @graph.edge.copy = Qgraph_edge;

.y

#
# Build the Igraph.

£ 7 i

my 3G = Graph:: Undirected—>new;
$G—>add.edges(@graph.edge);

Ry, 4 )

G 7
# Set all the edges color to 0
” P

7 7 7 G

for (1 .. (scalar(@graph_edge)/2))
{

my $color = 0;

my $vs = shift (@graph.edge};
my $vd = shift (@graph_edge);
push @graph_edge, $vs;

push @graph_edge,$vd;

$G~>set_attribute (' color’,8vs,$vd, $color);
$G—>set.attribute {'color’,$vd,$vs, $color);

}
4 4 %
# Star of the main loop
Y 4 oy ”

# FHH T 7 7 AT 7
my $alpha;
my $beta;
#test wvariable
my Bindex = 1;
for (1 .. {scalar(@graph_edge)/2))
{

#test

#print 7 3index ¥

#Sindex ++;

my 8$vs = shift (@graph_edge);
my $vd = shift (@graph_-edge);
push @graph_edge,8vs;
push @graph.edge, $vd;

4 y ) y 4 y) 4 s pp

/2

#

AT 7
find the lower color missing af $us

$alpha = &lower_color {\$G, $vs);

#print 7 Salphe 7

4

7
#find the lower color missing at $ud
P 4

7 7 is

$beta = &lower.color (\$G, $vd );
#test
#print "$beta 7;

4

7777_7/1 77 4
# Check if alpha not equal beta
P 4 ‘ .
AT i

if (Salpha l= $beta)

4 p? >

7
#find on olternative path and swap color
4 .

&alt_path l(\$G,$vs y $vd s $a1p(ha \ $heta s

#color the edge (vs,vd) with beta

$G->set.attribute (’color’,8vs,$vd, $beta);
$G->set_attribute (' color’,8vd,$vs, 8beta);

H

& 4 s

7
# return color 1

T G % 4 7 7

my @Qcolorl_edges;

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B.4 Completion of Feedback Routing

#my $count = I1;
#foreach my $color (1..25)

#{
my $color = 1;
for (1 .. {scalar{@graph.edge)/2))
my $vs = shift (@graph_edge);
my $vd = shift (Qgraph.edge);
push @graph_edge,8vs;
push @graph.edge , $vd;
#if ($3G—>get_atiribute ('color ’,8vs,8vd) == 1)
if (§G~>get-attribute{’color’ ,8vs,8vd) == 8$color)
push @colorl_edges ,$vs, $vd;
#print " COLORScolor: $vs — $vd\n”;
#test
#my Stest = $§G->get_attribute ("color ', fuvs,$vd);
#print Ycolor $vs—8vd = Stest\n”;
}
#}

return @colorl_edges;

}

#Return the lower missing color at the vertexz
sub lower_color
{

my $G = shift;

my $vertex = shift;

my 8$color = 1;

my @Qcolor._list;

my @adj.list = $3G—>neighbors ($vertex );

#build a list of all the color

foreach my $adj_vertex (@adj.list)

{
my Stemp = $$G—>get_attribute( ' color’ , 8vertex,$adj.vertex );
if ($temp != 0)
{

push @color_list , $temp;

#find the smallest missing
#@color.list = sort{@color.list);

#test

#print 7 Qcolor.list: lowest missing 7,
my $got.it;

for my $iocal.color (1..50)

$got.it = 1;
foreach my 8¢ ( @color_list)

if (8c == 8$local_color)

$got.it = O;
last;

1
}
if ($got.it == 1)

$color = $local_color;
last;
}
}
#my Sprev.e = shift @Qcolor_.list;
#foreach my Sc¢ (sort{@color.list))
#{
if ($prev.ec == §c)
{next;}
elsif ($c /= Bcolor)
{last;}
else
{8color++;}
$prev.e = $¢;

FHW I ® N

#}
#test

#print “§color\n”;

return $color;

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendiz B Perl Programs

sub alt.path

{
my 3G = shift;
my $vs = shift;
my $vd = shift;
my $alpha = shift;
my $beta = shift;
#Htest
#print "8G Svs Salpha $beta\n”;
my @aliernate.path = &path(\$G,$vs,Salpha ,h $beta);
if(@alternate.path)
&inv.path_color (\8G,\ @alternate.path ,$alpha , $beta);
else
{
@alternate.path = &path(\$G,%vd, $alpha,8beta );
if (@alternate.path)
&inv.path.color {\3G,\ @alternate_path ,8alpha, $beta);
}
else
{
return;
}
}
sub path
{
my $G = shift;
my $vertex = shift;
my S$alpha = shift;
my $beta = shift;
my $temp.-color = $beta;
my Q@path_list;
my $next_.vertex;
$next.vertex = &check.color(\$G, $vertex,$temp_color);
if($next.vertex eq 0)
{return @path_list;}
while($next.vertex ne 0)
push (@path_list ,$next_vertex);
push (@path.list ,$next_vertex);
if{Stemp_color == $alpha)
{$temp-color = §beta;}
else
{8temp-color = $alpha;}
$next_vertex = &check_color (\8G, §next.vertex ,$temp.color);
# have to break the path when it is o loop becouse the progrem ecnter in
# aen infinite loop.
# if the next.vertexr is egual to vertewx
if (3next.vertex eq 8$vertex)
{last;}
my $flag = 0;
foreach (@path_list)
if (8. eq $next.vertex)
$flag = 1;
}
last if 8$flag == 1;
#Htest
#print " Svertex: §nect_vertex 7;
#print 7.7;
}
my $extra = pop @path.list;
unshift (@path.list ,$vertex);
return @path_list;
}

sub inv.path_color

T

my $G = shift;

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B.5 Intermediaie Code

my @path = @{(shift(@.))};
my $alpha = shift;
my $beta = shift;

#test
#print 7 @path\n”;

for (1..(scalar{@path)/2))
{

my $start = shift @path;
my $vertex = shift @path;

if ($88G—>get-attribute(’color’ ,$start ,$vertex) == $beta)

$$$G—>set_attribute (’color’,$start ,$vertex ,$alpha);
$$8G—>set_attribute ("color’ ,$vertex, $start ,$alpha);

elsif ($$8G—>get atiribute ('color’,$start ,$vertex) == S$alpha)

$88G—>set.attribute (’color’,8$start ,$vertex ,$beta);
$$8G—>set.attribute (color’,$vertex, §start ,$beta );

}
}
}
sub check.color
{
my $G = shift;
my $vertex = shift;
my $color = shift;
my 8$edge.color;
my @vertex.adj = $8$88G—>neighbors (Svertex );
foreach my $v._end (@vertex_adj)
{
$edge.color = $8$8G—>get_attribute ('’ color’ ,$vertex ,$v.end);
if(%edge-color == $color)
return $v.end;
return 0;
}
y Ak 3 Y vy
#Funcition Name: read-file
#Inputs :
# name of the file you want to open
#Output:

# the arrey that contain all the line of the file

sub read.file

my {$filename) = @Q.;

open(FILE,"” $filename” ) || die(” could.not.open_the.file”);
my @file = <FILE>;

close (FILE );

chomp ( @file );

return @file;

B.5 Intermediate Code

#l/usr/local /bin/perl

K T aais 7 7

:healél N’Ai\/IJE
color.IRMu.rest.pl

=headl AUTHOR (DATE)

Christian Giasson (August 7th, 2003)
=headl SYNOPSIS

color . IRM. rest

=headl DESCRIPTION

This program output the rest of edges in IRM that were not color yet to
the standard output.

This code is really similar to color.IRM.pl

=over 4

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendiz B Perl Programs

=item INPUT

The list of the counnections (reduced) in the IRM.

The feedback paths associate with all the Testing configurations 1 to 186.
=item OUTPUT

Rest of IRM to the STDOUT.

=cut
A " .

use warnings;

use strict;

use Graph;

use Graph:: Directed;
use Graph:: Undirected;
use Graph:: Writer :: Dot
use Set:: Array;

use Getopt:: Std;

4 eI NINY) L

i
#Get the inputs of the program
Lt 4 .

7 7 7 T

getopts(’ha:b: ' );
our ($opt-h ,8opt.a ,$opt.b);

if (Sopt.h)
{

print”\n\tOption_of_this_program:\n
____________ \t—h:.\t\t\thelp
enme\t—au[file }: LIRM.Color\t\t
____________ Vt=b.[file]:_-Node.adj.list\t\t\n\n";

my @graph.edge.l = &read.file ($opt.a) if ((Sopt-a)&&(!$opt.-h));
my @feedback.color.l = &read_file(Sopt_.b) if ((Bopt-b)&&(!$opt.h));

$|=1;

y? y)

e 7
# Get the IRM connections
i . % "

# 7

#Get the graph edges by the standard input
my QG._edges;
foreach (@graph._edge.l)

zf (/(\w+) => (\w+}/)
push @G.edges, (81, $2);

}
r 7 7 /! 7, 7 7 7 4
# Get the feedback paths 1 to 16

7 ?

my %fb . IRM ;

my $cn = 0;

foreach ( @feedback.color.l)
{

(s = J(COLORNA+): .x (\w+) (\w+)8/)
push @{8fb IRM{$1}}, ”"82->83";
#Test
$cn-+;

#print 781 $2->83\n";

. ) ¢

7
# Main program
Al )

(i (B i 4 7

# bu,ild the graph G

7 7

my $G = Graph:: Undirected—>new;
8G—>add.edges (@G.edges );

e

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B.5 Intermediate Code

# Remowve all the edges the graph G that are already used by the feedback
# paths
4

7

foreach my $color (sort keys(%fb.IRM))
foreach my $conn (@{§fb_.IRM{Scolor}})
if ($conn =" /(\w+)=>(\w+)/)
{

#delete that edge in the graph G
$G—>delete_edge ($1, $2);
#print "$color : $1 —— §2\n”;

}

#Htest

#my @test_e = $G—>edges();
#my $num = @test.c;

#¢num = $num / 2;

#print Y$numi\n’”;

HH

# for the color 1 to 16
« P

my $colo;-index = 1; ’ ’ ’ ’
my %coloring ;
foreach my $color {sort keys(%fb.IRM))

my @edge.g = $G—>edges ();

my @color.conn = @{$fb.IRM{$color }};

#get the match{color)

my @IRM.color.edge = &get.IRM.match(\ @edge.g, \ Qcolor_conn);

# put the edges in the coloring hash
for (1 .. (scalar(@IRM_color.edge)/2))
my 8$vs = shift (@IRM_color.edge);
push @IRM_color_edge , $vs;
my $vd = shift (@IRM.color.edge)};
push @IRM.color.edge , $vd;

push @{$coloring{” $color—8%color_index”}},” §vso—>_8$vd";
}

# delete the edges in the Greph "G”
for (1 .. {scalar(@IRM.color.edge)/2))
{

my $vs = shift (QIRM_color.edge);
my $vd = shift (@IRM.color.edge);

$G—>delete.ecdge ($vs, $vd);

#increment the color index
$color_index-++;

) 1 7

# #
# print the result

. )

my $c = 1; o e
foreach my $color (sort keys(%coloring))
foreach (@{$coloring{$color}})

#print "$color : $_\n?”;

#Sc++;
}
)
#print "Sc\n”;
#Htest
my Qtest_edges = $G—>edges();
#my $d = 0;

for (1..(scalar(@test_edges)/2))

shift @test.edges;
shift Qtest_edges;

my $vs
my $vd

print ”8vs.—>.8vd\n";
# $d++;

print "number of connections left is $d\n”;

N et

$d = $d/2;
#8ec = $c + $d;
#print 78c\n”;

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendiz B Perl Programs

#test for find_covering.matching function

#my @G.edges = qu(A D AEAFBEBFCDCF);

#my @G.edges = qu(A DAEAFBDBEBFCDCECF);
#my @G_edges = qu(A CADAEAFBCBDDBERBF);
#my @G_edges = qu(A EAFAGBEBFBHCGDGDH);
#my @M = &C1(\ @G.edges );

#print "@M\n”;

P
7% 7 3 7 8 7 7

# Functions

4 7 7

4 1 ey

#Function Name: get.IRM_match

# Inputs:

# The remaining edges in G (IRM connections)

# The connection of the colors in IRM

# Output:

# A set of edges in IRM that match with the color edges
P . P

i’

sub get.IRM._match

{
#get the inpuis of the function
my $graph.edge_ref = shift;
my $color.conn_ref = shift;

my @graph.edge = @{$graph_edge_ref};
my @color_conn = @{8$color.conn.ref};

#build the local graph G
my $G = Graph:: Undirected —>new;
$G—>add_edges{ @graph.edge);

Ly

# Remove all the wvertices in the graph G thaet are related to the
# feedbacks connection in the IRM
: ‘

77 G 7

foreach my $edge (@color.conn)
zf (Bedge =" /(\wt)=>(\w+)/)

$G—>delete.vertex ($1);
§G~>delete-vertex ($2);

7 7

# NEW

# Remove the edges relates to the opposite short line in GRM
4

foreach my $edgé (@color_clonn)
zf ($edge ="~ /(\w+)~>(\w+)/)

my $node_line = 8$1;
if ($node.line =" /N.P(\d+)/)

8G—>delete.vertex {"S_P$1” );
Llsif($node‘line =" /S.P(\d+)/)
$G-~>delete_vertex ("N_P$1”);
}elsif(Snode_line =" /EP(\d+)/)

8G—>delete_vertex ("W.P$1” );

¥
elsif{$node_line =~ /WP(\d+)/)
$G—>delete.vertex {("E_P$1”);
}
}
}
i 7T 7
# Color the remaining graph and get the color 1

1 4

7

my Qafter.del.edge = $G->edges ()}; my @colorl =
&C1l{\ @after.del_edge);

s -y
7 H#H
# Return the connections in the IRM

4 7

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B.5 Intermediate Code

return @colorl;

}

#Function Name: C1

#Inputs:

#(\@{list.of_edges-G})

#Output: the color mumber 1 of the coloring

# {(the fonction find an entire coloring but return only)
sub C1

. 7 4 7

% 7
# put all the input of the function in arrays
. .

my @graph_edge = @{(shift (@Q.))};
my Qgraph.edge_copy = @graph_edge;

P oy

7 %

# Build the graph
.

7 7 77

my $G = Graph:: Undirected—>new;
$G—>add_edges (@graph_edge);

# Set all the edges color to 0

Ahof b b 7
s 7 7

for (1 .. (scalar{@graph_edge)/2))

my $color = 0

my $vs = shift (@graph.edge);
my $vd = shift (@graph_edge);
push @graph.edge, $vs;

push @graph.edge, $vd;

$G->sect_attribute ('color’ ,$vs,8vd, $color );
$G~>set.attribute{ color’,8vd,8vs, $color);

# Star of the main loop

7 7 77 7

my S$alpha;
my $beta;

#test variable

my $index = 1;

for (1 .. (scalar(@graph.-edge)/2))
{

#lest
#print " Jindex 7;
#Sindew++;

my $vs = shift (@graph_edge);
my $vd = shift (Qgraph_edge);
push @graph_.edge , $vs;
push @graph.edge, $vd;

4 4 L it

HHHH
# find the lower color missing at Sus
P

7 VH

$alpha = &lower_color (\8G,8vs);
#test
#print ”Salpha 7;

4

7 7
#find the lower color missing at Sud

7

$beta = &lower_color (\8G, $vd );
#Hlest
#print "8beta 7;

.

T T 7
# Check if alpha not equal beta

a 7 4 G 7

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendiz B Perl Programs

if ($aipha i= $beta)

£ f

7 7 7
#find an alternative path and swap color
" 4 P .

G 7

Lalt.path (438G, Svs ,§vd,$alpha , Sheta ):
}

RLEL 7 17[ URLaEL
#color the edge (vs,vd) with beta
. g 4

7

WA 7 7 i
$G~—>set_attribute (’color’ $vs,$vd,8beta);
$G->set_attribute ('color’,8vd,$vs, 8beta );

} 7 I
5 7 7 Lt w (
# return color 1
7 7 4 77 r s 77
my @colorl_edges;
#my $count = I1;
#foreach my $color (1..25)
#{
my $color = 1;
for {1 .. (scalar(@graph.edge)/2})
{
my $vs = shift (@graph_.edge);
my $vd = shift (@graph_edge);
push @graph_edge,$vs;
push @graph.edge , $vd;
#if(38G~>get.attribute ("color ', 8uvs ,8vd) == 1)
if ($3G->get.attribute( ' color’ ,$vs,8vd) == 8color)
push @colorl_edges , $vs,8vd;
#print "COLORS$color: $vs — $Sud\n”;
#test
#my $test = $G—>get-attribute ('color ’,$vs, Svd);
#print ”color $vs—8%vd = Ftest\n”;
}
#}

return Qcolorl_edges;

}

#Return the lower missing color at the wertex
sub lower_color

{
my $G = shift;
my $vertex = shift;
my $color = 1;
my @Qcolor_list;

my Q@adj-list = $8G—>neighbors (Svertex );
#build a list of all the color
foreach my %adj.vertex (@adj.list)

my $temp = $$G—>get.attribute{’'color’,$vertex,8adj.vertex };
if ($temp != 0)

push @color.list , $Stemp;

#find the smallest missing
#@color_list = sort(@color.list);

#Htest

#print " @color.list: lowest missing
my $got_it;

for my $local_color (1..50)

e
;

{
$got_it = 1;
foreach my $c ( @color.list)
{
if (8¢ == $local.color)

$got.it = O;
last;

}
}
if ($got.it == 1)

$color = $local_color;

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B.5 Intermediate Code

last;

}
#my $prev.c = shift @color.list;
#foreach my $c (sort{ @color_list))

if($prev_oec == §c )}
{next;}

elsif ($c I= $color)
{last;}

else

{¢#color++;}

$prev.c = $c;

IR RN,

#}

#test
#print " §color\n”;

return $color;

sub alt.path

my $G = shift;
my $vs = shift;
my 8vd = shift;
my $alpha = shift;
my $beta = shift;

#test
#print "8G Sus Falpha $beta\n”;

my @alternate.path = &path(\$G,$vs, $alpha, beta);

if(@alternate.path)
{

&inv_path_color (\$G,\ @alternate.path ,$alpha , $beta );
}

else

{
@alternate_.path = &path(\$G,8vd, $alpha ,$beta);
if(@alternate_path)

{
&inv_.path.color (\$G,\ @alternate_.path ,$alpha , $beta);

else

return;

—

sub path

my $G = shift;

my $vertex = shift;
my $alpha = shift;
my $beta = shift;
my

$temp_color = $beta;
my @path.list;
my $next_vertex;

$next-vertex = &check.color (\$G, $vertex ,8temp.ceolor);
if($next_vertex eq 0)
{return @path.list;}

while($next.vertex ne 0)

push (@path._list ,$next_vertex);
push (@path.list ,$next_vertex };

if($temp.color == $alpha)
{8temp-.color = $beta;}
else

{$temp._color = $alpha;}

$next_vertex = &check_color (\$G, $next_vertex ,$temp.color);

# hove to break the path when ¢t is a loop because the program enter in
# en infinite loop.

# if the mext.verter is equal to wvertez
if ($next_vertex eq $vertex)
{last;}

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix B Perl Programs

my $flag = 0;
foreach (@path.list)

if ($. c¢q Smext.vertex)

$flag = 1;
last if $flag == 1;
#test
#print "Svertex:$nexst.vertez 7;
#print *.7;

my $extra = pop @path.list;
unshift (@path.list , Bvertex );
return @path_list;

b
sub inv.path.color
{
my $G = shift
my @path = @{(shift(@.))};
my $alpha = shift;
my $beta = shift;
#test
#print 7 @path\n”;
for (1..(scalar(@path)/2))
{
my $start = shift @path;
my $vertex = shift @path;
if ($88G—>get-attribute (' color’ $start,$vertex) == $beta)
$$8G—>set.attribute ('color’,8start ,8vertex,$alpha);
$$8G—>set.attribute(’color’,$vertex , $start ,$alpha);
}
elsif ($§$8CG-—>get_attribute( ' color’,$start ,$vertex) == $alpha)
{
$$8G—~>set. attribute ( 'color’,$start ,$vertex ,$beta);
$$$G—>set.attribute (’color’,$vertex , 8start ,$beta);
}
}
}
sub check_color
{
my $G = shift;
my $vertex = shift;
my $color = shift;
my S$edge_color;
my @vertex.adj = $$83G—>neighbors ($vertex };
foreach my $v.end (@vertex.adj)
{
$edge.color = $8$3G—>get._attribute(’color’ ,$vertex ,$v._end);
if($edge-color == $color)
return $v_end;
return 0;
}
#Function Name: read.file
#lnputs :
# name of the file you want to open
#Output:

# the array that contain all the line of the file
P ;

sub read-.file "

{
my ($filename) = @_;
open(FILE,” $filename” ) || die(”could..not.open.the.file”};
my @file = <FILE>;
close (FILE);
chomp({ @file );
return @file;

#l/usr/bin/perl

7 7 7 7
use warnings;

use strict;

# Author: Christian Giasson

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B.6 Edge Coloring of Girm

# Date: August 10th 2003

# Comment: This is a smaoall program that pers the entire CLB tile to find all

# the comnections in the [RM that are not connect the node lines and the CLBs
# and the tri—state buffers inputs.

my @file.lines = <>;

my %adj-list;
foreach my $line (@file.lines)

chomp( $line );

#get the comnnection to the CLBs

éf($line =" /{(\w+ ~> S[01] A\w+)\)/)
my $connection = $1;
if ($connection !~ /[NSEW]_.P\d+ —>/)
{

print " 8$connection\n”;

#get the tri—state buffer connections

elsif($line =~ /(\w+ —> T\w+)\)/)

{
#print *$i\n";
my $connection = 8$1;
if (($connection !~ /[NSEW].P\d+ —>/)&&(8connection !~ /TBUF/))
{
print "$connection\n”;
}

B.6 Edge Coloring of Gigy

#!/usr/local /bin/perl
Theadl NAME

color.IRM_part2. pl

=headl AUTHOR (DATE)

Christian Giasson (August 10th, 2003)

=headl SYNOPSIS

color.IRM._part2. pl

=headl DESCRIPTION

This program build {or color) the testing configuratioms 17 to 28 in the IRM.

The coloring part of the program is based on the Vizing algorithm for
edge—color bipartite graphs.

=pver 4
=item INPUT

The list of the connections left by the previous ceoloring [1..16] in the IRM.
plus other one that dont come from the node lines.

=item QUTPUT
The output the connections of the testing configurations 17 to 26.

=cut

use warnings;

use strict;

use Graph;

use Graph:: Directed;
use Graph::Undirected;
use Graph:: Writer :: Dot}
use Set::Array;

use Getopt:: Std;

A FHHHTHT
#Get the inputs of the program

7 8

getopts( ’ha:b:’);
our {$opt-h ,%0pt.a ,Bopt-b);

if ($opt.h)

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendiz B Perl Programs

print”\n\tOption_.of _this.program:\n
NVt—~h:o\t\t\thelp
\t—a.|[file]: .JRM.edges
Vi—b.[file]:_.IRM.edges\n\n";

my @IRM._.edges = &read.file(8opt.a) if ((Bopt.a)&&(!$opt_h));
my Qfeedback.17.22_]1 = &read_file($opt.b) if ((Bopt.b)&&(1%0pt.h)};

it L 4 n

# Get the IRM conmnections
/e L 7 7
7 7 7 2 7

#Get the graph edges by the standard input
my QG_edges;
foreach (@IRM.edges)

éf (/(\w+) => (\w+}/)
push @G.edges, ($1, $2);

) L v

T 7
# Get the feedback connections for the color [17..22]
4 » 4 . "

o

7

my % foedback.17-22 ;
foreach (@feedback.17.22_.1)

{if (/(\w+):(.*)8/)
push @{$feedback.17.22{81}}, 82;

7 4 7 7 7

7

4
A AT 7

# build the graph G

AL

my $G = Graph:: Undirected —>new;
$8G—>add._edges (@G_edges);

AL 7 i

# Color g'rlu,ph G

#EC1(\ @G_edges ) ;
’ ’ .
T #
# Remowve all the edges the greph G that ore already wused by the feedback
# paths
P

7 7 s

foreach my $color (sort keys(%feedback.17.22))
foreach my $conn (@{$feedback.17.22{8color}})
if (8conn =" /(\w+) —> (\w+)/)
{ #delete that edge in the graph G

$G~>delete_edge (81, $2);
#print "8$color : $1 —— B2\n"”;

4 ' L 4

# for the color 17 to 22
P P

L et
G A

my %coloring;
foreach my $color {sort keys(%feedback.17.22))
{

my @Qedge.g = $G->edges();
my @color.conn = @{$feedback.17.22{8$color}};
my @IRM.color_edge = &get_ IRM_match(\ @edge.g, \ @color_conn);

# put the edges in the coloring hash
for {1 .. {scaler(@IRM_color-edge)/2))

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B.6 Edge Coloring of Grru

{

my $vs = shift (@IRM_color_edge);

push @IRM._color.edge , $vs;

my $vd = shift (@IRM_color_edge);

push @IRM._color_edge , $vd;

push @{$coloring{” $color”}},”$vs.—>_8vd";
}

# delete the edges in the Graph *G”
for (1 .. (scalar(@IRM_color.edge)/2))
{

my $vs = shift {(@IRM.color_edge);
my $vd = shift (QIRM_color.edge);

$G—>delete.edge ($vs, $vd);

}

y 1

7 7 7
# for the color 23 to 26
, . P

for my $color (123..26')

my Qedge.g = $G->edges ();
my @QIRM.color.edge = &C1(\ @Qedge_g);

# put the edges in the coloring hash
for (1 .. (scalar(@IRM.color.edge)/2))

my $vs = shift (@IRM_color_edge};

push @IRM_color_edge , $vs;

my $vd = shift (@IRM_color_edge);

push @IRM.color.edge , $vd;

push @{$coloring {"COLORScolor” }},” $vs—>.8vd”;
# delete the edges in the Graph 7G”
for (1 .. (scalar(@IRM.color.edge)/2))
{

my $vs = shift (@IRM.color.edge);
my $vd = shift (@IRM.color_edge);

$G->delete.edge ($vs, $vd);

4 4

# print the result
.

7 4

7 HH NI,
#my $ec¢ = I1;
foreach my $color (sort keys(%coloring))

foreach (@{$coloring{$color}})

print " $color o 8.\n";
#Sc++;

p 4 . . P p 4
AT 7 7 7 7
# Functions
2 / . P s . 4
7 7 7 7 7 7 7

’ 4 4 )
Liaad 7 7 7. 7 (s

HHH?
#Function Name: get_.JRM_match

# Inputs:

# The remaining edges in G (IRM connections)

# The connecction of the colors in IRM

# Output:

# A set of edges in IRM that match with the color edges

y

sub get.IRM._match

#get the inputs of the funciion
my $graph_edge_ref = shift;
my $color.conn.ref = shift;

my @graph.edge = @{$graph_edge.ref};
my @color.conn = @{$color_conn._ref};

#build the local graph G
my $G = Graph:: Undirected —>new;
$G~>add.edges (@graph._edge );

4 st ey LA

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendiz B Perl Programs

# Remove all the wvertices in the graph G that are related to the
# feedbacks conmection in the IRM

£

foreach my 8edge (@color_conn)
{if ($edge =~ /(\w+) ~> (\w+}/)

$G—~>delete_vertex($1);
$G—>delete_vertex ($2);

}

i

7 HH
# NEW
# Remove the edges relates to the opposite short line in GRM

¥

forea::h my Sedge ,(@color-conn)
;f (Sedge =" /(\w+) => (\w+)/)

my $node_line == $1;
if {$node.line =" /N.P{\d+)/)

$G—>delete_vertex ("S_P$1” };
}elsif(Snode-Iine =" /S.P{(\d+)/)
$G~—>delete_vertex ("N_P$1”7);
Llsif($node_line =" /E.P(\d+)/)
$G~>delete_vertex ("W.P$1");
];elsif($node_1ine =" JWP(\d+)/)

$G~>delete.vertex ("E_P$1” };

7 HIHT
# Color the remaining graph and get the color 1
!

;L

my @after.del.edge = $G—>edges();

my @colorl = &C1(\ @after.del.edge);

y?

i &
# Return the connections in the [IRM
. ; 4

o

return @colorl;
}
& 4 P
#Function Name: CI
#lnputs:
#(\@{list.of-edges.G})
#Output: the ceolor number I of the coloring

{the fonction find an entire coloring but return only)
A : . .
7 7

sub C1
{

AL 2 7

7 7
# put oll the input of the function in arrays
. .

7 G 7

my @graph.edge = @{(shift{(@.))};
my @Qgraph_edge_copy = @graph.edge;

4 ‘

# Build the graph

i 7 G

my $G = Graph:: Undirected—>new;
$G—>add_edges { @Qgraph_edge );

P 4 .
7 g # ?
# Set all the edges color to 0
: 4

7 77 TR 7

for (1 .. {(scalar(@Q@graph.edge)/2))

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B.6 FEdge Coloring of Grpuy

{
my $color = 0;
my $vs = shift (@graph_edge);
my 3vd = shift (@graph_edge);
push @graph.edge , $vs;
push @graph.edge,$vd;
$G->set.attribute (’color’,$vs,8vd, $color);
$G—>set_attribute (’color’ ,8vd,8vs, $calor};
}
A P p 4 . .
# Star of the main looap
‘ P 4 Y .
my $alpha;
nyy 8$hbeta;
#test variable
my $index = 1;
for (1 .. (scalar(@graph_.edge)/2))
{
#test
#print 7 §index 7
#%index ++;

my $vs = shift (@graph.edge);
my $vd = shift (@graph.edge);
push @graph_edge,$vs;
push @graph_edge, 8$vd;

£ 4

HHH 7
# find the lower color missing at Suvs
’ Py
7 7 7

$alpha = &lower._color (\$G, 8vs);
#test
#print ”8alpha 7;

- 4 4

e 7 7
#find the lower color missing ot Svd
it 4 ‘
7

4

$beta = &lower_color (\$G, $vd );

#test
#print " $beta ¥;

. 4 2 7

7 7
# Check if alpha not equal bete
vy

G 7 7

if ($alp;1a 1= $belta)

7 £ 4 4

G 7
#find an alternative path and swep color
. ,

7 7 HHHH T
&alt.path (\8G,8vs ,8vd, $alpha ,§beta );

7 4 ” L 7 7

7 i 7
#color the edge (vs,vd) with beta
. s

)

HAHHTH 7
$G~>set_attribute (’color’,8$vs,$vd, $beta );
$§G~>set_attribute(’color’,$vd,8vs,$beta);

3

A i L o

7
# return color I
4

r 7 7 7

my @colorl._edges;

#my $count = 17;
#foreach my $color (1..50)

#{

my $coior = 1;

for (1 .. {scalar(@graph.edge)/2))
{

my $vs = shift (@graph.edge);
my $vd = shift (@graph_edge);
push @graph_edge ,8vs;
push @graph_edge ,$vd;

#if ($G—>get_attribute ('color ’,8vs,8vd) == 1)
if(3G—>get.attribute(’color’ ,8vs,8vd) == $color)

push @colorl.edges ,8vs,8vd;
#print COLORS$color: $vs — 8Bvd\n?;

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendiz B Perl Programs

}

#Htest
#my $test = $G—>get.attribute ('color ', 8vs, Svd);
#print "color $vs—§%vd = Ftest\n”;

#Bcount +4;
#}

return @colorl_edges;

}

#Return the lower missing color at the vertez
sub lower_.color

{
my $G = shift;
my $vertex = shift;
my $color = 1;
my @color.list;
my @adj.list = $8G—>neighbors ($vertex );
#build a list of all the color
foreach my $adj.vertex (@adj_list)
my $temp = $3G—>get.attribute(’'color’ ,$vertex,$adj.vertex);
if ($temp != 0)
push Q@color_list , $temp;
}
}
#find the smollest missing
#@color_list = sort(@color_list};
#test
#print " @color_list: lowest missing ”;
my $got.it;
for my $local_color (1..50)
{
$got.it = 1;
foreach my 8¢ ( @color.list)
{
if ($c == 8local_color)
$got.it = 0;
last;
}
}
if ($got-it == 1)
$color = $local.color;
last;
}
}
#my Sprevee = shift @color_list;
#foreach my $c (sort{@color_list))
#{
# if($prev_ec == §c)
# {nezt;}
# elsif (§c != 8color)
# {last;}
# else
# {Scolor++;}
# $prev.c = $c¢;
#}
#lest
#print "$color\n”;
return $color;
}

sub alt_path
my 3G = shift;
my $vs = shift;
my $vd = shift;
my $alpha = shift;
my $beta = shift;
#test
#print "3G S$vs Salpha $beta\n”;

my @alternate.path = &path(\8G,$vs, $alpha ,h$beta);

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B.6 Edge Coloring of Girm

if( @alternate_path)
&inv.path_.color (\$G,\ @alternate_.path ,$alpha , $beta );
else

@alternate_path = &path (\8G,$vd, $alpha ,8beta);
if (@alternate.path)

&inv.path.color (\$G,\ Qalternate.path ,$alpha ,$beta);

else
{
return;
}
}
sub path
{
my $G = shift;
my $vertex = shift;
my Salpha = shift;
my $beta = shift;
my $temp.color = $beta;
my @path_list;
my 8$next.vertex;
$next.vertex = &check.color(\$G, $vertex ,$temp_color);
if($next_vertex eq 0)
{return @path.list;}
while(§next_vertex ne 0)
push (@path.list ,$next_vertex);
push (@path.list ,$next_vertex);
if($temp.color == §alpha)
{$temp-color = $beta;}
else
{$temp.color = Balpha;}
$next.vertex = &check.color (\$G, $next_vertex ,$temp.color);
# have to break the path when it is a loop becouse the program enter in
# an infinite loop.
# if the nest_vertexr is equal to vertex
if ($next_vertex eq $vertex)
{last;}
my $flag = 0;
foreach (@path_list)
if ($- eq Snext_vertex)
$flag = 1;
}
last if $flag == 1;
#Htest
#print " $vertezr: $next.vertexr 7
#print 7.7
my $extra = pop @path_list;
unshift (@path_list,$vertex);
return @path.list;
}
sub inv_path_color
{

my $G = shift;

my @path = @{(shift(@.))};
my $alpha = shift;

my $beta = shift;

#test
#print ” @path\n”;

for (1..(scalar(@path)/2))
{

my $start = shift @path;
my $vertex = shift @path;

if (888G —>get_attribute (’color’,$start ,$vertex) == $beta)

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendiz B Perl Programs

$88G—>set.attribute ('color’,8start ,$vertex , $alpha);
$88G-—>sect.attribute ('color’,8vertex, $start ,$alpha);

}
elsif($88G~>get_attribute(’color’,$start ,$vertex) == 8$alpha)

538G —>set_attribute ('color’ , 8start ,$vertex ,Bbeta);
$38G—>set.attribute ('color’,$vertex , 8start ,$beta);

b

sub check.color
my $G = shift;
my $vertex = shift;
my $color = shift;
my $edge.color;

my @vertex.adj = 38$8G—>neighbors ($vertex );
foreach my $v.end (@vertex.adj)

Sedge-color = $$38G-—>get_attribute(’color’ ,$vertex,$v.end);
if($edge.color == $color)

return 8v.end:

return 0;

}
i 4 i 4
7 7
#Function Naeme: read_file
#inputs:
# name of the file you want to open
#Ouiput:

# the array that contain all the line of the file
P

77 7 7 7
sub read._file

{
my { $filename) = @.;
open(FILE,” $filename” ) || die(” could._.not_open.the_file”);
my @file = <FILE>;
close (FILE);
chomp ( @file );
return @file;
}

B.7 Completion of G;zy Edge Coloring

#l/usr/local /bin/perl
Zheadl NAME

completion. pl

=headl AUTHOR (DATE)

Christian Giasson (August 21st, 2003)
=headl SYNOPSIS

completion

=headl DESCRIPTION

This program complete the coloring made by color.IRM.v2.pl and
color.IRM_part2.v2.pl

If there is one:

The coloring part of the program is based on the Vizing algorithm for
edge—color bipartite graphs.

=over 4

=item INPUT

All the edges in IRM (a complete one)

coloring 1 to 16 : result from color IRM.v2.pl {result_1.16)
coloring 17 to 26 : result from color.IRM_part2.v2.pl (result.17.26)

feedback path for the color 1 to 16 : feedback_path_v2
feedback for color 17 to 22 : feedback_17.22

=item OUTPUT

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B.7 Completion of Grry Fdge Coloring

The output all the completed TESTING CONFIGURATION all in the same file with
all the full paths in the tile.

=cuf
” DTy .
A3 7 WA I 7

use warnings;

use strict;

use Graph;

use Graph:: Directed;
use Graph:: Undirected;
use Getopt:: 8td;

7
#Get the inputs of the program
.

getopts( ha:b:c:d:e:f:’);
our {$opt.h ,%0pt.a,8opt.b,%opt.c,Bopt.d ,$opt.e,  Bopt.f);

if (Sopt.h)
{

print”\n\tOption_of.this._program:\n
____________ \t—h:.\t\t\thelp
~A\t—ao|file j:.edges.of JRM\t\t
e we\t-bo[file]:.colored JRMoluto 16\ t\t
—\t—c.ffile]:_colored JJRM.17-50..26\ t\t
—\Nt—d._.[file]:.feedback.for.lato 18\ t\1
e\t—e ] file ]:.feedback.for .17.t0.22\ 1\t

{

~~~~~ e\t—fo[file]:oallotheotile\t\t\n\n";
exit;
}
my @IRM_edge_line = &read_file($opt-a) if ((Sopt_.a)&&(l%opt.h));
my @colored.1.16.line = &read_file(8opt.b) if ((S$opt.b)&é&(1$opt.h));
my Qcolored_17.26_line = &read_file($opt.c) if ((Sopt.c)&&(!$opt.h));
my @feedback.1.16_line = &read_file(3opt.d) if (($opt-d)&&(!Sopt_h));
my @feedback.-17_22_line = &read_file(Bopt.ec) if ((Sopt_e)&&(I$opt_h));
my @all.tile = &read.file($opt_f) if ((Sopt -fl&&(!$opt.-h));
/ Y
A 7 FAHA 7
Build the IRM graph edges array
my @IRM.odges; ’
foreach (@IRM.edge.line)
{
;f (/(\w+) —> (\w+)/)
push @IRM_edges, (8$1, $2);
. }
}
Bui’ldrzlz hash with’th'c,colév' key and o list of connections that include all

the one of the feedback and the coloring itself for the color 1 to 26.

rny%coloring;’ ’
#put colored 1 to 16 in
foreach{ @colored._1_16_.line)
if (/(COLORNAH)-\d+ : (.%)/)
push @{8coloring{$1}}, "827;
}
#put colored 17 to 26 in
foreach(@colored.17.26.line)
P (/(COLORNG+) : (.%)/)
push @{$coloring{$1}}, "827;
#put feedback 1 to 16 in
foreach(@feedback_1_16_line)
Lf (/(COLOR\NA+): .+ (\w+) (\w-+)$/)
push @{8coloring{81}}, "$2.~>.83";
1
#put feedbock 17 to 22 in
foreach(@feedback.17.22 line)
if (/(COLORNA+):(.%)/)

push @{$coloring{$11}}, "%27;

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendizx B Perl Programs

}

#Build a feedback GRM ressources
my %feedback.GRM_res;
foreach(@feedback.1.16_line)
if (/(COLORNA+): \w+ \w+ ([NSEW])(\d+) \w+ \w+ \wt$/)

push @{$feedback . GRM.res{$1}}, 7§27 .7 _P83”;

}

#build feedback paths
my %fb_rest;
foreach(@feedback_-1_16_.line)

if(/(COLOR\d +): (\w+) (\w+) (\w+) (\w+) (\w+)8/)
push @{$fb_rest{$1}}, "$2.—>.83.~>_34.—>.85";

elsif (/(COLORNd+): (\w+) (\w+) (\w+) (A\w+) (\w+) (\w+)8/)
push @{$fb_rest{$1}}, "82.~>_83.~>_$4.==_85.—>.56";

}

#outputs of the IRM

my @IRM.output.list = (
'SO.F.B1’,
*SO0_F_B2’
'S0.F.B3°

w
e
=
;

o

'S0.G.B
'S0.G.B
'S0.G.B
'S0.G.B
'S0.G.B
'S0.BX
’S0.BY
’80-CL
'S0.CE.
’50.SR.-.
’S1.F_B
’S1.F.B
’S1.F.B
’81.F.

B AR e

W wo
v «

s

#build the OUT lines adj list
my %OUT. adj;
foreach my $line (@all_tile)

{
éf ($line =" /(OUT\d) —> (\w+)/)

push @{30UT.adj{81}},82;
}
#build the ORM adj list
my %ORM.adj;
foreach my $line (@all_tile)
if ($line =" /([{S]\w+) —> (OUT\d)/)

push @{3ORM.adj{$1}},%2;

ey . v
Get the feedback paths I to 16

(A 7 7

#my Bfb_1_16;
#my $cn = 0;

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.7 Completion of Grry Edge Coloring

#foreach (@feedback_1.16_line)

#{

:;: if (8. =7 /(COLOR\d +): .» (\w+) (\w+)$§/)
push @{8fb_1.16{81}}, "§2>83";

#Test

#Scn 4+

#print "§1 $2-—>83\n”;
#
#}

4 2 z 4

7 7
Get the opposit short line of the double path for color 1 to 16
P

7

#my %short.opposit;
#foreach (@fecedback_.color.l)

#{

if ($. =" /(COLOR\d+): \w+ OUINd (\w+) (\w+) \w+ \w+$/)
#

$short.opposit{$1}{83} = 782";

}

#}

e 4L

7 HHHH A 7
build the graph G with groupment of the orthogonal lines
p L
7 7

#build the list of grouped wertices
my @group-vertex;
for ($a = 0; $a <=23; $a++)

push @group.vertex ,” N_.P$a:S_P$%a”;
push @group.vertex ,”"E_P$a:W.P$a”;

}

#build the grouped IRM for each color
my %group-.edge;
foreach my $color (sort keys(%coloring))

{
foreach (@{$coloring{$color}})
if (/[NS}].P(\d+) —> (\w+)}/)
push @{8group.edge{$color}},"N.P§1:8_P81~7;
#push @{group.edge{Scolor}},”82%;
elsif (/[EW]-P(\d+) —> (\w+)/)
{
push @{8group.edge{%color}} ,”E.P81:W_PS$1”;
#push @Qgroup_edge,”327;
1
if(exists($feedback .GRM.res{%¥color }))
{
foreach (@{$coloring{$color}})
iF{/[NS}-P(\d+)/)
push @{8$group-edge{%color}},”N.P$1:5.P§1”;
}
elsif (/[EW]-P(\d+)/)
push @{$group.edge{$color}},”E.P$1:W.P$1";
}
}
}

#build the groph grouped
#my $G_group = Graph:: Undirected—>new;
#3C. group—>add_edges (Qgroup_edge);

T
e .

AT 7
Maoin program
"

build the graph G

my $G = Graph:: Undirected —>new;
$G~>add.edges (QIRM._edges);

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B Perl Programs

4 AL 1

7 #

Complete the color 1 to 16
o Ly YA
7 5

my %test.canfiguration = %coloring;
foreach my 8color (sort keys(%test_.configuration})

3)

7
only color 1 to 16

if($color = COLOR(\d+)/)
{

next if $§1 > 16;
}

) . N

7 7 7 7
Find missing inputs
" "

7 i 7
#copy the @IRM_ouiput
my @output.rest = @IRM_output._list;
for (1l..scalar(@output.rest))

my $output = shift Qoutput.rest;

my $found = 0;
foreach my $connection (@{$test.configuration{S$color}})

if ($connection =~/ —> (\w+)/)}
if (%1 eq Soutput)

$found = 1;
last;

}
push @output_rest ,$output if $found == 0;

#print "8$color : Qoutput-rest\n”;
P

7 oy ey

Put CLK signals

7

ya 4

the easy way by the { high fannout lines
GCLKGO for S0 and GCLKO for 81 (Fannout but less signals to route)

check if the S0 CLOCK signal is missing
foreach (@output.rest)

if($. eq 'SO.CLK.B')
{

push @{$test_configuration{$color}}, GCLKO.—>.30.CLK_B’;
#print "SO_CLK.B is missing in $color\n”;
last;

}

}
check if the S1 CLOCK signal is missing
foreach {@output_rest)

if($- eq ’S1I.CLK.B’)
{
push @{$test_configuration{$color}}, *GCOLKO.—>_.81.CLK.B’;

#print"S1.CLK_B is missing in $color\n”;
last;

Put CE signals

foreach (@Output-rlest)
if(%$. eq 'SO.CE.B’)

push @{S$test_configuration{$color}}, ’VEN3.—>_50.CE.B’;
last;

}

foreach (@output.rest)
if($. eq 'SI.CE.B’)
{

push @{8test.configuration{$color}}, 'VEN3.—>_.831.CEB’;
last;

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.7 Completion of Grry Fdge Coloring

Put SR signeals

foreach (@output.rest)
if(8. eq 'SO0.SR.B')

push @{$test.configuration{8$color}}, *V6NI.~>.S0.SR.B";
last;

}
foreach (@output_rest)
if($. eq 'S1-8R.B’)

push @{8test_configuration{$color}}, '"V6N1.~>.81_SR.B’;
last;

7 7 74
Put tri—state control signals
T

foreach (@output_lrest)
if(%. eq 'TS.B0’)

push @{83test.configuration{$color}}, "VENO.~->.TS.B0O’;
last;

}

foreach (@output.rest)
if($-. eq 'TS.B1’)
{

push @{$test.configuration{$color}}, 'V6NO.~>_TS.B1’;
last;

}

‘ p)

(&

Put the BX and BY in the config

foreach (@output_rest)
if($- eq 'SO0.BX.B’)
{
my @neigh = $G—>neighbors (’S0_BX.B’);
#find if there is space to route the a signal to S0.BX.B
my $good_node = 0
foreach my $adj (@neigh)

my $find = 1;
foreach my $group.e (@{$group-edge{$color}})

éf($gr0up-e =" /AW :(Aw+) /)

$find = 0 if 81 eq SBadj;
$find = 0 if $2 eq 8adj;
iast if $find == 0;
}
b
if ($find == 1)

$good.node = $adj;
last;

}
if ($good.node eq 0)
print " Error.:.No_connection .found.for.S0.BX.B\n";

else
{

: #print "GOOD : found e SO.BX_B with 8good.node\n”;
push @{$test_configuration{$color}}, "$good.node~>_8S0_BX.B";

last;

}

foreach { @output.rest)

if(3-. eq 'SO.BY.B’)
{

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendiz B Perl Programs

my @neigh = $3G->neighbors ("SO_BY_.B’);

#find if there 4is space to route the o signal to 50.BY.B
my $good.node = 0;
foreach my $adj (@neigh)

{
my $find = 1;
foreach my $group-e {@{3group-edge{8color}})
1 (Sgroup-e =" /(\w):(\wh)))
$find = 0 if $1 eq $adj;
$find = 0 if %2 eq $adj;
last if $find == 0;
b
}
if ($find == 1)
$good_node = $adj;
last;
}
}

if ($good.node eq 0)
print ”Error.:_-No.connection .found.for.S0.BY.B\n";
else

{
#print "GOOD : found a SO0.BY.B with 8good.node\n”;

push @{$test_configuration{$color}}, "$good.node~>_S0.BY.B";

last;

#
Check which missing connection are left
oy

@output_rest = @IRM.output.list;
for (1..scalar{@output.rest))

my $output = shift @output.rest;

my $found = 0;
foreach my $connection (@{S8test.configuration{8$color}})

if ($connection ="/ —> {(\w+4)/)

if (%1 eq $output)

$found = 1;
last;
}
}
push Qoutput.rest ,$output if $found == 0;
#print ?§color : @output.rest\n”;

i 7 7 A
Compleie the color 17 to 22
ORIV s

#routing added
my %routing_added
my %routing.imp;

foreach my $color (sort keys(%test_configuration))

i

on/ly color 17 to 22
) 4

if($color —- /COLOR(N\d+)/)
{

next if ($1 < 17)[{(81 > 22);

4 4

7 s
Find missing inputs
.

)

#copy the @IRM_output
my Qoutput.rest = QIRM_output.list;
for (1..scalar(@output.rest))

my $output = shift Qoutput._rest;

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.7 Completion of Grry Fdge Coloring

my $found = 0;
foreach my $connection (@{$test_configuration{8$color}})

if ($connection =~ / —> (\w+)/)

if (81 eq $output)

$found = 1;
last;
}
}
push @output.rest ,$output if $found == 0;
#print ”8color : @output.rest\n”;

. ‘ .
HH7 7 7
Route the tri—stoate buffer signals
. P

G

#if one of the T_IN[0O1] is missing
foreach (@output_rest)

if (/(T.IN0)/)
push @{$routing.added{8color}},”80.XQ.—>.0UT2.—->.81";
}elsif(/(T-INl)/)
push @{$routing_added {$color}},”S1.XQ.—>.0UT6.~>.81";
}

#get the tri—state connection
foreach my $connection (@{$test.configuration{$color}})

if($connection =" /(\w+) —> (TIN([01]))/)
{

my $node = $1;

my $CLB_out = »883”.".XQ";

my $T = 782",

#route the OUT direct feedback
if($node =~ /OUTY/)

my $OUT = $node;
push @{$routing.added{$color}},” $CLB out.—>830UT”;

#route the OUT —> GRM feedback
if ($node !~ /OUTY/)

my $short;

my $direction;

if ($node =" /([NSEW])_P(\d+)/)
$short = 7 §18%27;

$direction = §1;

}

#check if it can be route directly from the OUT lines
my $get = 0;

foreach my $OUT.line (sort keys(%OUT.ad}j))

{

foreach my $s (@{30UT.adj{$OUT.line}})
if($s eq $short)
{
#print "single : $OUT_line —> $s\n”;
push @{8routing.added{$color}},”$CLB out~>_80UT. line.—>._8s.~>_%node”;
$get = 1;
last;
}

next if 8get == 1;

#check if it can be route with o double feedback
#from the OUT lines

my @line = grep /== $short\)/, @all_tile;
my @adj.short;
foreach my $1 (@line)

If (81 =" /(([NSEW])\d+) == /)

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendiz B Perl Programs

{ if (8direction eq 'N’)
push @adj_short ,$1 if (82 ne '8’);
Llsif ($direction eq 'S’}
push @adj_short , 81 if ($2 ne °N’);
}elsif ($direction eq 'E’)
push @adj_short ,81 if ($2 ne "W’);
Llsif ($direction eq 'W’)
push @adj_short ,$1 if ($2 ne 'E’);
}
}

my $find = 0;
my 8$direct.conn;
foreach my $last.S (@adj.short)
foreach my $OUT.line (sort keys(%OUT_.adj))
foreach my $s (@{30UT_adj{$0OUT.line}})
#have to wverify if there 4is no conflies
my %ok = 1;
foreach (@{S$group-edge{8$color}})
éf(/([NSEW])-P(\W+)=([NSEW])—P(\W+)/)

$ok
$ok

0 if ($last-S eq ”"$182”);
0 if (S$last_S eq ”$3%47);

it A

}

next if 8$ok

It

= 0;
if ($last.S eq $s)

#print "$OUT line —> $s\n”;
$direct.conn = "$CLB_.ont.—>_80UT_ line.—>.8s";

$find = 1;
last;
}
}
last if $find == 1;
}
last if $find == 1;
}
if ($find == 1)
{
push @{$routing.added{$color}},” $direct_conn._==.8short.—>.8node”;
#print”?double : $direct_conn == $short\n”;
else
{
#print "ERROR\n”;
next if $find == 1;

#check for the triple path

my %adj-second.short;
foreach my $sec (@adj_short)

my $local.sec = 81 if (8sec =" /([NSEW])\d+/);
my @line2 = grep /== $sec\)/, @all_tile;
#print Y @line2\n”;
foreach my %! (@Qline2)
BECS1 =T J(NEWD V) == /)
if ($local_sec eq °'N’')
push @{$adj.second.short{8%sec}},$1 if (82 ne ’8’);
elsif ($local_sec eq ’S’)

push @{$adj.second._short{$sec}},$1 if (82 ne ’N’);

}
elsif (8local.sec eq ’E’)

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.7 Completion of Grry Edge Coloring

push @{$adj.second_short{8$sec}},$1l if ($2 ne W’);
}
elsif (S$local.sec eq W’)

push @{$adj.second.short{$sec}},$1 if (82 ne 'E’);

}
}
}
#foreach my $sec (keys(%adj.second.short))
#{
#print "sec $sec : @{$adj.second_short{§sec}ti\n”;
#}

my $find2 = 0;

my $direct_conn?2;

my $second_short;

foreach my $sec (keys (%adj.second.short))
{

#have to werify if there is mo conflics
my $Sok = 1;
foreach (@{8$group.edge{$color}})

}f(/(INSEW])—P(\W+):([NSEW])—P(\W+)/)

$ok
$ok

0 if ($sec eq "8$1827);
Q if (3%sec eq 783847);

(L

next if $ok

it

= O

foreach my $last.S (@{Sadj.second_short{$sec}})

¢ foreach my $OUT_ line (sort keys(%OUT.adj))
{ foreach my $s (@{$OUT.adj{$OUT. line}})

if (8last.S eq $s)

{
#have to werify if there is no conflics
my $o0k2 = 1;
foreach (@{$group.edge{$color}})
2f(/({NSEW])—P(\W+)=([NSEW1)—P(\W+)/)
$ok = 0 if ($last_S eq 7851827},
Sok = 0 if ($last_S eq "$3847);
}
next if 8o0k2 == 0;
#print *$OUT line —> $s\n”;
§direct.conn?2 = "$CLB.out.—>.30UT line.~>.8s";
$second.short = §sec;
$find2 = 1;
last;
}
}
last if $find2 == 1;
1
iast if $find2 == 1;
}
last if $find2 == 1;
}
if ($find2 == 1)
push @{$routing_-added{Scolor}},” $direct.conn2.==_8second.shortu==_8short~>_8node”;
#print 7triple : $direct_conn?2 == §second.short == $short\n”
}
else
push @{$routing.imp{8color}},”$connection”;
#print ?impossible: $connection\n?”;
#print "$connection : @adj-short\n”;

#check if the T_IN are missing
foreach (@output.rest)

if($. eq 'T.INO')

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendiz B Perl Programs

#push @{ §test.configuration{§color}}, 'V6NO ~> TS.B1’;

last;
}
foreach (@output_rest)
{
if($. eq "T_IN1')
{
#push @{$test.configuration{$color}t}, "V6NO —> TS.B1’;
last;
}
}

” 4 L

RoutelF‘e,edbac;c for BX and BS;' signals to G[1..4] or F[1..4]

HHH G s
my @feedback;
foreach my $connection (@{$test_configuration{$color}})

if ($connection =" /(\w+) —> ((S[01])-B([{XY]).B)/)
{

my $node = 81;

my $B_in = $2;

my $B.out = 783" ." _$4” ."B";

my $CLB = $3;
See if o feeback from XB or YB can be route as a feeback to one
of the ressources alrecady there for F[1..4] and G[1..4]
foreach (@{$test.configuration{8$color}})
zf(/(\W“H ~> (8[01] _{FG].B\d)/)

my $node.FG = §1;
my $FG = $2;

#find the short line
my $last.short;

if (8node.FG =" /([NSEW])_P(\d+)/)
{
$last.short = 7 $18%2”";
}
else
{
next;

#print "last short: $last.short\n”;

#eheck if it can be route directly from the OUT lines
my $get = 0;
foreach my $OUT.line {sort keys(%OUT.adj))
{
#check if the OUT line have been use before
my $already = 0;
foreach (@{$routing.added{$color}})

21' (/(OUT\d) /)
#print "$i\n”;
$already = 1 if $1 eq $OUT. line;
}
next if $already == 1;
#check if the B.out can be connect to that OUT line

#my Scannot.be = 1;
#foreach my $CLB.out (sort keys(%ORM_adj))

#{

if ($CLB.out eq $B_out)

{

foreach (@{$ORM.adj{$CLB.out}})
{

$cannot_be = 0 if 8. eq §OUT.linec;
last ;

'}

}

#}

#nezt if $cannot_be == I1;

foreach my $%$s (@{$0UT.adj{$0OUT.line}})
{

if(8%s eq $last.short)

#print "single : $OUT.line —> §s —> 8node.FG —> $FG\n";
push @feedback ,”$0UT linec—>_%s.~>_8node.FG.—> 8FG”;
$get = 1;

last;

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.7 Completion of Grry Edge Coloring

#check if the feedback can be route in ORM and pick one
#my $cannoi-be = 1;
foreach my $CLB.out (sort keys(%ORM.adj))
if ($3CLB.out eq $B.out)
{
for {(1..scalar(@feedback))
my $fb = shift @feedback;
#check if 4t’s the same CLB
if ($fb =" /(S{10]) - [FG]_B/)
if (81 ne $CLB)

push @feedback, $fb;
next;

}
my $fb.OUT = $1 if ($fb =~ /(OUI\d)/);
#check if the B.out can be connect
my $ok = 0;
foreach my $adj-OUT (@{$ORM.adj{8$CLB.out}})
{
$ok = 1 if $b.OUT eq $2d4j.OUT;
}
if(80k == 1)
{

push @{$routing.added{$color}},”" B out.—>." .7 §fb”;
last;

else

push @feedback, $fb;

3

}
#print " Fcolor\n”;
#if (ezists ($routing.added{$color}))

#{
print @{§routing.added{Scolor}i\n”;
)
}
. ” gt 4
Complete the color 28 to 26
& 7 7

foreach my $color {sort keys(%test.configuration))

y

I

7
only color 23 to 26

4)
if ($color =~ /COLOR(\d+)/)
next If (81 < 23);
}
i v (i 77 4 4 2 4
Find missing inputs
% 4 5 ”

7 7
#copy the @IRM_output
my Qoutput.rest = @IRM.output_list;
for (1..scalar(@output_rest))

my 3output = shift @Qoutput.rest;

my $found = 0;
foreach my $connection (@{%test.configuration{$color}})

if ($connection =" / ~> (\w+)/)
if ($1 eq $output)

$found = 1;
last ;

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendiz B Perl Programs

push @output._rest ,$output if $found == 0;

rint ”"8color : @outpui.rest\n”;
4]

supply the conirol signals (CE, SR, CLK, TS)

7

check if the S0 CLOCK signal is missing
foreach { @output_rest)

{
if($. eq 'SO.CLK.B')
{

push @{$test.configuration{$color}}, 'GCLKO.—>.S0.CLK.B’;
#print *S0.CLK_B is missing in S$color\n”;
last;

}

1
check if the 51 CLOCK signel 4s wmissing
foreach (@output.rest)

if($. eq ’S1.CLK.B’)
push ©@{$test_configuration{$color}}, 'GOLKO.~>.81.CLK.B’;

#print ’S1.CLK_B is missing in $color\n”;
last;

4 4 3 7

Put CE signals

LA

7 # 7
foreach {@output.rest)

{
if($- eq ’SO_CE.B’)
push @{$test.configuration{$color}}, 'V6N3.~->_S0.CE.B’;
last;
}
}

foreach { @output.rest)
if (8. eq 'S1.CE.B’)
{

push @{$test_configuration{$color}}, 'V6N3.—>.S1.CE.B’;
last;

’ L

Put SR signals

foreach (@ostpu’t.’rest)
if{$. eq 'SO0.SR.B’)
{

push @{$test_configuration{8$color}}, 'VENI.—>.S50.8R.B’;

last;
}
}
foreach (@output.rest)
{
if{8. eq ’Si.8R.B’)
push @{$test_configuration{$color}}, V6NI.—>.S51.5R.B’;
last;
}
}
Put iri—state control signals

foreach (@out}:ut-rest)
if(%- eq 'TS.BO’)

push @{ $test.configuration{$color}}, "VENO.~>_.TS.BO’;
last;

}

foreach { @output_rest)

if (8- eq 'TS.B17)

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.7 Completion of Grry Fdge Coloring

push @{$test_configuration{$color}}, '"V6NO~>_.TS.B1";
last;

¢

7 7 7
route a feedback for the lach c¢lb output that going in the tri—state
buffers

7, 7 7

7

my %OUT.1 = (

COLOR23 => 'OUTH',

COLOR24 => *OUT3” ,

COLOR25 => 'QUT5’ ,

COLOR26 => ’OUT4’ |

)i

#my @OUT_av = ('OUTZ2’, 'OUT3’, OUT,’, ’OUT5’):

my $T.INO_fb;
my $T_IN1_fb;

#Route T_INO with OUT2 for all
$T_.INO.fb = OUT2.—>.T.INO’;

#Route T.IN1 with OQUT.1 for all
#foreach my $locel . OUT (@QOUT.av)

#{

my $local.OUT = $OUT.1{8color};

#print "§local . OUT : @{$0UT.adj{8local . OUT}}I\n";
foreach my $local_.short (@{$OUT.adj{$local.OUT}})

if($local.short =" /" ([NSEW])(\d+)/)
{

my $node = "§1”.”_P$§2\n";
chomp $node;

foreach (@all_tile)

#if (/(([NSEW]_P\d+) —> (T_IN[01]))/)
1/ (NP > (T-IND) /)

#print 782 —— $node\n";
my $IRM.c = $1;

my $local.node = $2;
my $7T = $3;

if (%node eq $local.node)

#print Yx\n”;
#print "$local OUT —> $local_-short —> $IRM.c\n”;

#check if there is no routing problems
foreach (@{8group.edge{8color}})

if (/(\w+):(\w+)}/)
if (($1 ne 8$node)&&($2 ne $node))
{
my $temp = "$local OUT. ~>_%local_short.—>_$IRM.c”;
#print " Scolor : $temp\n”;

#ST_INO_fb = $temp if 8T eq *T-INO’;
$T.IN1.fb = $temp if $T eq ’*T.IN1’;

}
}
}
}
}
}
}

¥

#}
push @{$routing.added{$color}},”S0.XQ —~> *"§T_INO.fb”";
push @{$rouiing_added{$color}},”851.XQ —> "."§T_INI1_fb”;

#supress the OUT lines used
for (1., scalar (@OUT.av)})
#
my $temp = shift @QOUT-av;
#
if (ST-INO.fb == /~(OUTNd) —>/)
#
newst if $1 eq $temp;
}
#

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendiz B Perl Programs

Z.f (8T.INI_fb ="~ /" (OUT\d) —>/)

next if $1 eq Stemp;

}
push @OUT.av, Stemp;

Hel HWH R

#print *@OUT.av\n";
4 P

Need to route ! feedback by CLB for the logic
The feedback should be connect to an existing connnection in the IRM
It should be connect to S[10].F because S[01]_.XQ is the output letched

R N

my $fb_CLBO;
my $fb_.CLB1;

my %0UT 2 = (

COLOR23 => ["OUT4” ,”0OUT3”],

COLOR24 = ["OUT4” ,"OUTs” |,

COLOR25 => ["OUT4" ,”0UT3”],

COLOR26 => [YOUT3” ,"OUT5” |,

)s

#foreach my $local_conn (@{$test.configuration{$color}})
#{

#route OUT2 to S[01].F CLB input

my 8T = ’0°';

foreach my $OUT.line (@{$OUT.2{$color}})
my 8find = 0;
if (8T eq 'T.INO’)
{ $T = "T.IN1';
}{;:lsif (8T eq ’'T-IN1’)

$T = "T.INO;
}

foreach my $OUT.adj (@{80UT.adj{$0OUT.line}})
{
next if $OUT_adj !~ /" [NSEW]\d+8 /;
#print "30UT4.adj\n”;
foreach my 8local_conn (@{S$test.configuration{$color}})

{
if (Slocaloconn =" /(([NSEW]).-P(\d+)) —> (S([01])-[FG].B\d)/)
{

next if (($5 eq '0’)&&($T eq 'T.IN1’));
next if (($5 eq '1')&& (8T eq 'T.INO’));

print "85 —— $T\n”;

#print 7 $local_conn\n”;

my $T.num = " §57;

my $CLB.in = 84" ;

my $short = ”$28%37;

my $node = 8$1;

my $oppo;

Soppo = "S§1” if $node =" /N.P(\d+)/;
$oppo = *N$1” if $node ="~ /S_P(\d+)/;
Soppo = "W$1” if $node =~ /E_P(\d+)/;
$oppo = "E$1” if 8%node =~ J/WIP(\d+)/;

#simple connection
if($short eq $0OUT.adj)

#print "8color : $OUT.line —> $short —> $node —> FCLB.in\n";

my $temp = "$0UT.line.—>_8short.—>_8node.~>_8CLB.in”;
$find = 1;
8T = "T.IN$Tnum” if (8T eq '0’');

$fh_CLBO = $temp if (8T eq *T.INO');
$fo_CLB1 = $temp if (8T eq ’T.IN1’);
last;

#double connection
foreach (@all_tile)

if (/(\w+) == (\w+)/)
if((%1 eq $short)&&($2 ne S$oppo))
{

#print *$node : §1 == $2\n”;
if($2 eq $OUT.2adj)

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.7 Completion of Giry Edge Coloring

#print "8color : $OUT.line ~> $2 == §1 —> $node —> $CLB.in\n”";
my $temp = ?"$0UT. Jine.~>.$2.==_81.~>_8node.~>_8CLB.in";
$find = 1;

$T = "T.IN$T.num” if (8T eq ’07);
$fb_CLBO = 8$temp if (8T eq *T.INO’);
$fb_CLB1 == $temp if ($T eq ’*T.IN1');
last;

}
last if 8find == 1;

}
last if $find == 1;

}
#print 7§T\n";

#print "Scolor : TO : 8T_INO_fb\n”;
#print *Scolor : T1 . §T_INI_fb\n”;
#print "8color : logicO0 : $f6.CLBO\n™;
#print " $color : logicl : Bfb.CLBI\n”;

if ((8fb_CLBO =~ /—> SO.F./)&&($fb.CLB1 =~ /—> S1.F./))
{

push @{8routing.added{8$color}},”S0.XQ.—>."." $T.INO.fb”;
push @{$routing-added{$color}},”851.XQu—>_" ."§T.IN1.fb";
push @{$routing_added{$color}},”80.Yo~>." ."$fb_CLBO";
push @{$routing-added{$color}},”S1.Y.~>." ."$fb_.CLB1";

]:alsif (($fb_CLBO =" /—> SO_F./)&&(8fb.CLBl =~ /—> S1.G_/))

push @{$routing.added{$color}},”S0XQu—>."." §T_INO.fb";
push @{$routing_added{$color}},”"S1.YQu—>_" . " §T_INI.fb";
push @{$routing-added{$color}},”S0.Y.~>." .7 §fb.CLBO";
push @{$routing.added{8color}},"S1.X~>_"."$fb_CLB1”;

}
elsif (($fb_.CLBO =" /—> S0.G_/)&&($fb_.CLB1l =~ /~> S1.F./))

push @{$routing.added{$color}},”80.¥YQu~>.".” $T INO.fb";
push @{§routing-added{$color}},”81.XQu~>."."§T_IN1.fb";
push @{$routing.added{8color}},”S0.Xu~>."."8fb_CLB0O”;
push @{$routing.added{$color}},”S1.¥Y.~>."."8{b.CLB1";

Llsif {($fb.CLBO =~ /—> S0.G_/)&&(8$fb_CLB1 =~ /—> S1.G./))
{

push @{$%routing-added {$color}},”"S0.YQ.~>_" " $§T_INO.fb”;
push @{$routing.added{$color}},”81.¥Q.—>." .7 $T_IN1_fb”;
push @{$routing_.added{8color}},”S0.Xu~>.".” $fb_CLBO”;
push @{$routing.added{$color}},” 81 .Xow->." .7 §fb.CLB1”;

Y

A G HH 7 #
Route signal to OUTO, OUTI, OUT6, OUT7Y to test the West and East tile

connections in the IRM
4 P

#
#

if

7

push @{$routing-added{$color}},”S0.XB.~>00T0";
push @{8routing.added{$color}},”S0_YB.~>.0UT1”;
push @{3%routing.-added{$color}},”51.XB.—>.0UT6";
push @{$routing-added{$color}},”SI.YB.—>.0UT7";

7 At) 4

su/pply’S[OJ./-B[XY]_B

my @route_signal = (’S0.BX.B’, ’S0.BY.B’, ’'S1.BX.B’, ’'S1.BY.B’);
foreach my 8B (@route.signal)
my @B.adj;

#find the adj_list
foreach (@all_tile)

i (/(\w+) —> (S[01] B [XY] .B)/)
if (32 eq $B)
{

push @B.adj, $1;

}

#print "$B : @B.adj\n”;
#look for conflics in group.edge

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendiz B Perl Programs

for (1..scalar(@B.adj))
my $adj = shift @B.adj;
my $find = 1;
foreach (@{$group.edge{8color}})
if (/(\w+):(\w+)/)
if ((81 eq $adj)]l (%2 eq $adj))

$find = O;
last;

}
}
push @B_.adj, $adj if $find == 1;
#print *$B : @B.adj\n”;
#look for conflics in the routing_.added
for (1..scalar(@B.adj))
my $adj = shift @B_adj};
my $find = 1;
foreach (@{$routing.added{$color}})
{
my $opo;
zi;f (/ C(INS]) (-P\d+}) /)
$opo = "883” if (%2 eq 'N’);
$opo = "N$3” if ($2 eq 'S’);
if ((81 eq $adj)]||(Bopo eq $adj))

$find = 0;

}
?lsif(/(([m])(—P\d+>)/)

TW$3" if (82 eq 'E’);

$opo =
= "E$3” if ($2 eq W’);

$opo
if (($1 eq $adj)||{(8%opo eq $adj))

$find = 0;
last;

}
}
push @B_adj,8$adj if $find == 1;

#print "$B : @B_adj\n”;

#put the routing in

my $good_node = shift @B.adj;

my $good.short = "$1%2” if ($good_node =~ /([NSEW]).P(\d+)/);
push @{$routing-added{8$color}}, ?$good._short.—>.%good _node.—>.8B
#print "$good_short —> 8good.node —> $B\n"”;

7 4

Have to be smru“e that oll the LUTs input (F[1..4] and G[1..4]) are
supply

) ’ At
77 7 7

my @FG_rest:
foreach (@output_rest)

if(/S[01]-[FG]-B\d/)
{ push @FG_rest,$.;
}
foreach my SFG (@FG_rest)
¢ my @FG_adj:

#find the adj_list
foreach (@all_tile)

if (/(\w+) —> (8{01] . [FG].B\d)/)
if (82 eq $FG)

push @FG.adj, $1;

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.7 Completion of Giry Fdge Coloring

}
#print 7§FG : @FG.adj \n”;

#look for conflics in group.edge
for (1..scalar(@FG.adj))

my $adj = shift @FG_adj;
my $find = 1;
foreach (@{$group.edge{8color}})

if (/(\w+):(\w+)/)
if ((81 eq $adj)|](%$2 eq $adj))

$find = 0;
last;
}
}
¥
push @FG_adj, $adj if $find == 1;

}
#print "$FG : @FG_adj \n”;

#look for conflics in the routing.added

for (1..scalar(@FG.adj))

my $adj = shift @QFG_adj;

my $find = 1;

foreach (@{$routing.added{S$color}})

#conflics in the first
my $opo;
;f (/ ((INS]) (-P\d+))/)

"8$3” if ($2 eq 'N’);
57}

’

$opo =
$opo = "N$3” if (32 eq

if (($1 eq $adj)||(%opo eq $adj})

$find = 0;
iast;

b
}
?lsif(/(([EW])(-P'\dH)/)
hY

$opo = "W$3” if ($2 eq 'E’);
$opo = "E$3” if ($2 eq W');

if (($1 eq $adj)||(8%opo eq $adj))

$find = 0;
last;

}

#conflics for the double connection

my $node_special;
zf (/ ([NSEW]) (\d+) ==/)

$node_special = "§1” .7 _P§2";
if($node_special eq %adj)

$find = 0;
last;
}
}
}
push @FG_adj, $adj if $find == 1;

#print "$FG : @FG_adj \n”;

#put the routing in
my $good_node = shift QFG.adj;
my $good_short = "$182” if (8good.node =~ /([NSEW]).P{(\d+)/);

push @{$routing.added{$colar}}, "8$good_short.~>_8good.node—>.8FG”;
#print ”"$good.short —> $good-node —> $FG\n”;

}
#foreach (@{$routing.added{$color}})

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendixz B Perl Programs

#print *8color : 8$.\n”;
#}

L /

7 # i
ADD the impossible to route connections to another Testing cofiguration
4 sty '

7

#push @{$routing.added{ 'COLORI7’}}, 'S0.XQ -> OUTI —~> N2 == E22 —-> E.P22';
#push @{$routing_added{ COLORI7’}}, 'W20 == E20 == §2 —> S5.P2';

foreach my $connection {(@{8$test_configuration{ COLOR17’}})

#print *COLOR17 : $connection\n";

foreach my $connection (@{$routing.added{'COLORI7'}})

#print "COLOR17 : Sconnection\n";

7
build paths of test configuration
s

4

far 1 to 16

P’

foreachlmy $célotr (sort keys{%test_configuration))
if ($color =~ JCOLOR(\d+)/)
{

next if ($1 > 16);

#route orthogonal connections for the supply
foreach my $IRM (@{$test.configuration{$color}})

#print "$IRM\n”;

BE(SIRM =" (] P (\a) —>/)
my $node = $1;
my $shortl = ”82837;
my $short2;
$short2 = "S8$1” if ($shortl =" /N(\d+)/);
$short2 = "N81” if (8shortl =~ /S(\d+)/);
$short2 = "W81” if ($shortl =~ /E(\d+)/);
$short2 = "E$1” if (8$shortl =" /W(\d+)/);

my $fb = 0;
foreach (@{$fb_rest{Scolor}})

zf(/—> Aw+)8/)
if (%1 eq 8node)
push @{$routing_added{$color}}, "§.7;
#print "$color : $.\n”;

$fb = 1;
last;

}
if (8fb == 0)

push @{3routing.added {$color}}, "8short2.==_8shortl.—>.$node”;
#print "Scolor : $short2 == $shortl —> $node\n”;

#print "$color : $IRM\n”;

for 17 to 22

L

foreach my’St:cl)lor’ {sort keys(%test.configuration))
if ($color =~ JCOLOR(\d+)/)
{

next if ((81 < 17)[{(%1 > 22));

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.7 Completion of Grpyr Edge Coloring

#route orthogonal connections for the supply
foreach my $IRM (@{$test.configuration{$color}})
{

#print ”$colur : $IRM\n

zf(MRM =" /" (([NSEW]) P(\d+)) ~>/)
my $node = $1;
my $shortl = 782§3";
my $short2;
$short2 = "881” if (8shortl =" /N(\d+)/);
$short2 = "N$1” if (S$shortl =~ /S(\d+)/);
$short2 = "WS$1” if (8$shortl =~ /E(\d+)/);
$short2 = "E81” if ($shortl =" /W(\d+)/);

my $fb = 0;
foreach (@{$rout1ng added {$color}})
{

#print 7§ _\n
if (/~> ([NSEW] -PAd+)/)

if(81 eq $node)}

{
#push @{$routing.added{8color}}, 78.7;
#print Y8color : §.\n7”;

$fb = 1;
last;

}
if (8fb == 0)

push @{$routing.added{$color}}, ”"8short2 ==.8shortl.~>.8node”;
#print "8color : $short2 == §shortl —> Snode\n”;

)

7 7
for 23 to 26

foreach my $‘i‘olor (sort keys(%test.configuration))
if ($color =~ /COLOR(\d+)/)
{

next if (§1 < 23);

#route orthogonal connections for the supply
foreach my $IRM (@{8$test_configuration{$color}})

#print ”$color ; $8IRM\n"”;
;f(ﬂRV[=" /" ((I[NSEW])_.P (\d+)) ~>/)

#print "8$color : SIRM\n”;

my $node = $1;

my $shortl = "$2837;

my $short2;

$short2 = "881” if (8$shortl =~ /N(\d+)/);
$short2 = "N$1” if ($shortl =" /S(\d+)/);
$short2 = "W81” if ($shortl =" /E(\d+}/);
$short2 = "E$1” if ($shorti =" /WAd+)/);

my $fb = 0;
foreach (@{S$routing.added{8color}})

#print "8color : $_\n
iF (/> (INSEW) PR/

if(81 eq S$node)

#push @{ Srouting. added{$colo1}}, rgL”
#print "8color : §_\n

$fb = 1;
last;
}
}
}
if ($fb == 0)
push @{$routing_added{8color}}, "$short2.==.8shortl_—>.8node”;
#print "8color : $short?2 == §shortl —> $node\n”;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendiz B Perl Programs

}
) }
for (1..scalar(@{$routing.added{$color}}))
{
my $temp = shift @{8routing.added{$color}};
if ($temp =" /" ({NSEW[\d+) ~>/)
{
my $short = §1;
my $short2;
$short2 = "S81” if ($short =" /N(\d+)/);
$short2 = "N$1” if {8short =7 /S(\d+)/):
$short2 = "W$1” if ($short ="~ /E(\d+)/);
$short2 = "E$1” if ($short =~ /W(\d+)/);
push @{$routing_-added{$color}}, ”8$short2. ==_$temp”;
next;
}
push @{§routing.added {§color}}, $temp;
#print ”8color : §_\n”;
}

}

#print the result
foreach my $color (sort keys(%test.configuration))

foreach my $conn (@{$test.configuration{$color}})
{

print ”$color.:_8%conn\n”;
if (exists ($routing.added{$color}))

foreach my $add (@{Srouting.added{8$color}})

print "8$color u:..$add\n”;

7 7
Functions

7 4 7

7 i 7 H
#Function Name: C1

#Inputs:

#(\N@{list.of_edges.G})

#Output : the color number 1 of the coloring

(the fomnction find an entire coloring but return only)
sub C1

4 y?) A 4

7 TR 7 e T 7
put all the input of the function in arrays

i 7 7

my Qgraph_edge = @{(shift (@_))};
my @Qgraph_edge_copy = @graph_edge;

Build the graph
P »

g 7, 7 7 77

my $G = Graph:: Undirected —>new;
$G—>add_edges (@graph.edge);

. . .

? 7 7

Set all the edges color to 0
s

7 7 7 7

for (1 .. (scalar(@graph_edge)/2})
{

my $color = 0;

my $vs = shift (@graph_edge);
my $vd = shift (@graph_edge);
push @graph.edge ,$vs;

push @graph_edge , $vd;

$G->set_attribute ('color’ ,8vs,$vd, $color);
$G->set.attribute { "color’ ,8$vd,8vs, $calaor };

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.7 Completion of Girym Edge Coloring

g 7 y
A 28

7 5
Ster of the main loop

i T 4 7 7 7

my $alpha;
my $beta;

#test wariable

my $index = 1;

for (1 .. (scalar(@graph_edge)/2))
{

#test
#print " Sindex 7;
#%index++;

my $vs = shift (Qgraph_edge);
my $vd = shift (@graph_edge);
push @graph_edge,$vs;
push @graph._edge,$vd;

i 7

find the lower color missing at Swvs

7 (& 7

$alpha = &lower.color (\$G, 8vs);

#lest
#print "8$alpha 7;

2 4) .

7 7 7 7
#find the lower color missing et $vd

. w ,
HHHH HHHT %

$beta = &lower_color (\8G, $vd);
#test
#print " 8beta 7

7 7 7
Check if alpha not equal beta

if ($alpha != Sbeta)
{

7

Z #
#find an alternative path and swap color

Xalt-path(\$G,8vs,8vd, $alpha , Sbeta)
}

#color the edge (ws,vd) with beta
" g

4 7

$G—>set.attribute (’color ’,$vs ,$vd,ébeta);
$G-—>set_attribute (’'color’ ,8vd,$vs ,$beta);

3

return color 1

7 4
7 7 7T,

my @colorl_edges;

#my $count = I1;

#foreach my $color (1..25)

#{

my $color = 1;

for (1 .. (scalar{@graph_edge)/2))

my $%vs = shift (@graph_edge);
my $vd = shift (Qgraph_edge);
push @graph_edge,$vs;
push @graph_edge, 8$vd;

#if (8C->get-attribute ("color’,$uvs ,$vd) == 1)
i£(3G—>get-attribute (' color’ ,8vys,$vd) == $color)

push @colorl.edges ,$vs,8vd;
#orint Y COLORS$color:$vs — Svd\n?”;
}

#test
#my $test = $§G—>get_attribute(’ ' color’,8vs,$vd);
#print "color $vs—$vd = $test\n”;

}

#}

return Qcolorl.edges;

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendiz B Perl Programs

#Return the lower missing color at the wvertex
sub lower.color

{
my $G = shift;
my $vertex = shift;
my $color = 1;
my @color_list;
my @adj.list = $$G—>neighbors{($vertex);
#build a list of all the color
foreach my $adj.vertex (@adj.list)
my Stemp = $3G->get_attribute(’ color’ ,$vertex ,$adj.vertex);
if ($temp != 0)
{
push @Qcolor.list , $temp; -
}
} .
#find the smallest missing
#@color.list = sort{@color_list);
#test
#print Y @color_list: lowest missing 7;
my $got.it;
for my $local_.color (1..50)
{
$got_it = 1;
foreach my $c¢ (@color.list)
if (8¢ == §local.color)
$got_it = 0;
last;
}
}
if ($got_it == 1)
$color = $local.color;
last;
}
¥
#my Sprevoc = shift @color.list;
#foreach my $c (sort(@color_list))
#{
if ($prev_oc == $c)
{nest;}
elsif (8c != $color)
{last;}
else
{$color++;}
$prev.e = $c;
#}
#test
#print " §color\n”;
return $color;
}
sub alt_path
{

my 838G = shift;
my $vs = shift;
my $vd = shift;
my $alpha = shift;
my $beta = shift;

#test
#print “$G Svs $alpha 8beta\n";

my @alternate_path = &path(\8G,8vs,$alpha, $beta);

if(@alternate_path)
&inv.path.color {\$G,\ @alternate_.path ,$alpha ,$beta);

else

{
@alternate.path = &path(\3G,8vd, $alpha ,$beta);
if(@alternate.path)

{
&inv._path_color (\$G,\ @alternate_path ,$alpha ,$beta);

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.7 Completion of Giry Edge Coloring

else
{
return;
o}
H
sub path
{
my $G = shift;
my $vertex = shift;
my $alpha = shift;
my $beta = shift;
my $temp.color = $beta;
my @path.list;
my $next_vertex;
$next.vertex = &check.color{\$G, $vertex , $temp.color);
if($next-vertex eq 0)
{return @path.list;}
while(8next.vertex ne 0)
push (@path_list,$next_vertex);
push (@path_list,$next_vertex);
if{($temp.color == $alpha)
{%temp._color = $beta;}
else
{$temp.color = $alpha;}
$next.vertex = &check-color (\8G, $next.vertex ,$temp_color);
have to break the path when it is o loop because the progrem
an infinite loop.
if the nexzt_vertez is equal to wertex
if (8$next_vertex eq $vertex)
{last;}
my $flag = 0;
foreach (@path_list)
{
if ($. eq 8$next.vertex)
$flag = 1;
}
last if $flag == 1;
#test
#print " $vertex:$next_vertexr ”;
#print 7.7
}
my $extra = pop @path_list;
unshift (@path_list ,$vertex);
return @path.list;
}
sub inv.path_color
{
my $G = shift;
my @path = @{(shift (@.))};
my $alpha = shift;
my $beta = shift;
#test
#print 7 @path\n”;
for (1..(scalar(@path)/2))
my $start = shift Qpath;
my $vertex = shift @path;
if(838G—>get_attribute(’color’ ,8start ,fvertex) == $beta)
8G~>sct_attribute{’color’ ,8start ,3vertex ,$alpha);
$88G—>set..attribute{’color ' ,$vertex , $start ,$alpha);
elsif ($88G—>get.attribute{ ' color’ ,$start ,$vertex) == 3alpha)
$38G—>set.attribute(’color’,$start ,$vertex ,$beta);
$38G—>set_attribute {’color’ ,Bvertex, $start ,$beta);
}
}
}

153

enter

in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendiz B Perl Programs

sub check_color

my $G = shift;
my 8vertex = shift;
my $color = shift;

my $edge_color;

my @vertex.adj = $$$8G-—>neighbors ($vertex };
foreach my $v_.end (@vertex_adj)

$edge_color = 38$3G—>get_attribute (’color’,$vertex ,$v_end);
if($edge_color == $color)

return $v.end;

}

return 0;

}

pt . 4 4 oy 5
A

#Function Name: read_file

#Iinputs:

name of the file you want to open

#Output:

the array that contain all the line of the file

g 7 777, 7

sub read.file

my ($filename) = @._;

open(FILE,” $filename”) || die(” could.not.open.the.file”);
my @file = <FILE>;

close (FILE);

chomp (@file);

return @file;

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C

Execution Script

#l/usr/bin/env bash
Illl II 7 B (& I

Name: running_script

Author: Christian Giasson

Date: July 21st 2004

Note: This bash script ezecutes all programs in sequence to get all the

test configurations.

7 T 7 7 (s 7 7

#ORM coloring
ORMs=" ../ good.coloring.clean’
8ORM/ good_coloring . pl —a $ORM/ORM.CONF.2
—b $ORM/CLB_CONF_2
—c¢ $ORM/OUT_adj.list > EDGE.COLORING

#complete ORM coloring
COMP="../ complete . ORM.coloring’
$COMP/ complete-ORM _coloring. pl
—a ./EDGE.COLORING
~b $COMP/CLB_CONF_2
—c $COMP/OUT_adj.list > EDGE.COLORING.C

#find feedback paths to the CLB inputs for all edges in each color
PATH_1.16='../ color_.path.1_16_clean’
$PATH.1.16/color_path_1.16.pl

—a . /EDGE.COLORING.C

—b $PATH.1.16 /CLB_.CONFIG.2_4.v3

—c $PATH.1.16 /LIST.CONF

—d $PATH.1.16 /PATHSINGLE

~e $PATH.1.16 /PATH.DOUBLE >FEEDBACK.PATH.1.18

#complete the coloring of the IRM for color 1 to 16
IRM="../ color.IMUX clean’;
$IRM/color. IRM . pl —a $IRM/small.IRM
-b ./FEEDBACK.PATH.1.16 > TRM.1.18

#get the rest of the IRM that is not color yet
$IRM/color . IRM_rest.pl —a $IRM/small.IRM
—~b . /FEEDBACK.PATH 1.16 > IRM_REST

#get the IRM connection that are not connected on node lines
$IRM/gen IRMG. sup.pl! < $IRM/all_tile.txt > IRM.SUP

#merge the rest of the node line connections and the one that
#are not connected to the node lines.
cat IRM_REST IRM_SUP > IRM.TOTAL

#color the rest of IRM and get test configuraetion 17 to 26
$IRM/color IRM_part2.pl —a ./IRM.TOTAL
—b $IRM/feedback.17.22 > IRM.17.26

#Get feedback for the TC 17 to 26 and configuring all the GRM in such a way
#that there is no conflics in the routing of the signals,
$IRM/completion. pl —a $IRM/small IRM

~b IRM.1_16

—c IRM_17_26

-~d FEEDBACK.PATH_1.16

—e 3IRM/feedback.17.22

—f $IRM/ all_.tile.txt > FINAL.PATH

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

blank page - no text

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D

Test Configurations

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendiz D Test Configurations

BONEOOEOHLOOHBBOKOEO

A
=

=
GG

L EEE

L1
(=X

1

X§<FM<§§§\SIH&X 166060006000060
| AV

Figure D.1: Test Configuration 1

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

()
(=)
()

/0

SCO22TTTITTLIDO0C
F—]

\

/ 4 =\

=\

\

XIEEXEOEX

S 7 AN

i 7 = A\

27 7 7 2
S ﬂ/f/f \ §
QL / _ &
ok /4¢/ /%Q/ \\)
& &
) /] &
::,(F/ / // AL

Figure D.2: Test Configuration 2

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/
BOORHHERN0000)

00H0H6006000000000006000

Appendiz D Test Configurations

CLBO CLB1

T0

%///j:’//i)
o] 2
= | /|| LAA NG
S Lo // A\ N\
s /] N\ 8
S VAR Vavii N\ &

S 4 N\
© / AN/ N\ G
: 7 7 I ANV

Figure D.3: Test Configuration 3

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T1

£) €)

CLBO CLB1

o002 TIBLICIBOCC0000000
S

RN

N

i

00680006000000000060008

i R E
i N

WY
AN

l
\
N \\\\\\
TN

%
N7ava

Figure D.4: Test Configuration 4

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendiz D Test Configurations

0000000

)
aﬁPGEL\ji" /‘,pﬁes§!§ﬁ';gﬂ
) |

CCOCTTECRCTIT000D0ODCO0 o\oﬁe‘\i‘/'
\\/ g

066006060660000

<

L7

BE00H00000660000000CC0H

1

\

A\}

\N

\

NN

36606000000000006000000604

Figure D.5: Test Configuration 5

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mmmmmmm

CLBO CLB1

T0
b) g .
i PN
:] NWANN\ Y2
E /I/i/ \\ \ E
- 7] NN Y:
: i \\ 16
s T
? il \
1

Figure D.6: Test Configuration 6

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T

EXOEXEEEE

Appendiz D Test Configurations

CLBO CLB1
TO

N

X AEEEEEEEEEL

W ‘*V;

0666000666606,
\

RS
\
g

~

&}‘_Ll DECEGEE
BN
1
&

SR 0Co2TTOO2OODO00000000

Figure D.7: Test Configuration 7

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T

CLBO cLB1

TO

0 >
%P’/// %j/ e AN \ AN \&1??
: | 27/] NN :
=7/ NN
1 oA, \
VWiV §

Figure D.8: Test Configuration 8

165

T1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendiz D Test Configurations

TO

LAl

/

ﬁb\%\\
N
\\\\\\\ \\\\

AN
AN

10606606000060H000666000006,
]

L
4
| 4
L

PO0OOEBEOEOEONEH

e

Figure D.9: Test Configuration 9

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T

]

COSEIOIITITOIITCOOOCOCODN ‘\\“) =1L '
\ ! ¥
% ‘,] y 7’
) iy

{7
//I
/4
/

[
///
S /%/ /A/ .
: 7 TATL] :
2 1 szl $
== ﬁ
$ 2 @ANVY S
NeeZavd /il :
spts // ®
>~ ®
o YAy 4/ o

777
X AL A\
9

Figure D.10: Test Configuration 10

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendiz D Test Configurations

CLBO CLB1
TO T1
§\ \:
LN
™~
///,/
i i
L////’// X
// .
4 e // :/ z 1
> = o
: ///ﬁ;% %"
S / L1 [#A 5
@ = 7 1 7] S
i
el 1 | <
;’/ LT / / :
e~ /] o
Bl s
9 7 7] o
- 7117 [
o /17

Figure D.11: Test Configuration 11

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.0,
R

3
K3

i

W
SR

=
)
S

NMVANN
RSN

i\

X%xxx\x\xwxxxxiﬁ‘r
AN
AN
//
DOCHOOBOBHLHHOBH0HHU

N
\\\

Figure D.12: Test Configuration 12

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6(38@!6@@69999(909@9090990}@9@@@@@980999

Appendiz D Test Configurations

CLBO CLB1

0000000000 a0 00

00000020

N ,,,4;!:";,//;%;?%0

ol T

OCTCTTTEICIT IO 00C OO0 DX] it ,’
ORI ,gg,%%g,,»// s
\\ T M". ; ' / ,
\\\ \ “()
R\
: X ‘
N

| | =t

o—T S
s U S
3 v # 3
3 A IMAN :
Paragyi=7y -
Sl N
NN E
) 2L / TR
3 777 G
Q / 3
D g

Figure D.13: Test Configuration 13

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

060606000000000000000600006006060060000)

CLBO CLB1
TO
— \‘%i\f\
NNSES Z
// s
>
B M/
//

) //// L1 sl =
e B CONY \\\\\:
= I e ey ®
T A / ®

o ot
S 1 ®
D
< 14)
2 7 717 TR
B N
- N
3 o
% o)

%

o) /

Figure D.14: Test Configuration 14

171

T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendiz D Test Configurations

CRORREE

,/,,,«

N

e T

ONOROND

006080860 H60060006006800080686000600

'0

O

3 w,/
>

e

®
®
O,

CLB1

AN\

i
G
Y,

X cf 2
m .A",/ QMW“‘
”/ oK
R /
o@’t’ \\\\

N SxoSA/
NN\ S
m,._'Aﬁﬂ.,,\Ar(\

A N

LDICO
:::ﬁ

Ry

~

D En (7))

S8

) 066606860606006060006000¢

Figure D.15: Test Configuration 15
172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TO | T1

i

/]

Al
V4

AN LE
il

//

N \\\
N
%\\

& 7/
/
/a/mv

S
i
—
£
Z

RO HHHOHLHHOEHOHO6OHO,
VAN

N
LA AN
v
\
B
//
%%
7
e

)I00060600O6BHOOO(

\\
™~
-~

N
X
—X
-~

Figure D.16: Test Configuration 16

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D Test Configurations

800000606,

0000@@@@@@@@@@@@@@@@@@@9@@@@@@@@@@@@

-
4
\

N

CLB1

OO0

5

OO0

CLBo

6 XaXeX:

XOEXE XX e

‘\%@

LN

N

S]]

S /)

4/

EEEEND

XoXE XXX

X

Figure D.17: Test Configuration 17
174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PEREEREEEECOEREEE
aa——

/l//

| B ‘
3 // il @
EV‘ ;/ §
: i /Al // \\\ \\g
S /i ANNYE
o/ AN Nt

Figure D.18: Test Configuration 18

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D Test Configurations

o
&)
£
()
S,
8
&)
)
OO0 O~
CLBO CLBt
TO
00000000000 DY, 0000000000030, 00
' “'ﬁ!ﬁ'/’“\\\
SOVS0TLD ww 000000000 \\ ’) - ‘
A —) _/.//” 7
k: N
2
K
-

N

VA \

W
L
N\

/

C0ITOTTOOTSITO0Q000000

0600000606000000000000000

\\\ \\
\\
i —

I
i

7

Figure D.19: Test Configuration 19

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rooodoo

106060006060000000000008660

6060000006,

A

CLEO CLB1
TO

/%5 o
J;/ 3
=4 .3

‘/// vl S
)

OO0 HO60006C0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure D.20: Test Configuration 20

177

T

60006

Appendiz D Test Configurations

mmmmmmmmmmmmmmm

CLBO CLB1
TO
&\

L m
? // / AR AT E
: g - NN
7170 N
T |

Figure D.21: Test Configuration 21

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T

TO

\\\ \\:
\.\\\

¥
127
é/ 1l //4 // / / \\\ g
-~ i N
// /]

OO OO0 2000000000

Figure D.22: Test Configuration 22

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

™

Appendiz D Test Configurations

0000600600606000806008600000000000000060

[—2
F 8 \.\
I.ﬂ&\\\
Oﬁw \\EV 7

>
©
)
©®
€

S/
W L)
| Q2 3] m»h, v
AN
b g w\% B

O

X8 X

XaXEXa e XEeeX

X

)8 6000000000 6

=

HOHHBH O

860000000

Figure D.23: Test Configuration 23

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CLBO CLB1
TO

S EEEEEEEEEEEE 00000000000 T0

]
ﬁ
L] /§
=
g ;?
| g / /= NN

'/ A

3008000008006066060006

AN
NN

A NN
7

OO0 060H6HB66060000600,

00600600

Qo000 LD DI0CE0OD0C0

Figure D.24: Test Configuration 24

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendiz D Test Configurations

BO6006606066600666006.6 (

Figure D.25: Test Configuration 25

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CLBO CLB1
TO

OCO000SCoCOOOTO0

B
3

|
i
i

=
N\ \\\
N
S\
h

LN
.

0060660 0H0VOLOHH,

2000
N
=

Figure D.26: Test Configuration 26

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

