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ABSTRACT
The dynamic response of bridge piers to time-varying ice
loads is investigated. Measured ice load histories,
recorded at two bridge piers, are used in the study.

For the purpose of analysis, bridge piers are modelled
by single-degree-of-freedom systems. The maximum dynamic
response of a range of piers to each of the load histories
is evaluated. The results are summarized in the form of
mean response spectra and curves of coefficients of
variation in the maximum response. The mean spectra show
that dynamic effects can be significant and that the
response of bridge piers depends on the time-varying
characteristics of the load histories.

Dynamic effects of ice-structure interaction are not
accounted for in the current Canadian standard. It is shown
how the mean response spectra and curves of coefficients of
variation developed in this study, can be used in design
procedures which account for dynamic effects.

The results of a design example demonstrate that where
dynamic effects are significant, theApresent code prdcedures

may underestimate the effective ice load.
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1. INTRODUCTION

1.1 Introductory Remarks

Ice torces ire a major consideration in the design of
structures in cold regions. - Bridge piers are, perhaps, the
most common type of structure that must be considered when
dealing with the effects of ige loads.

The forces caused by moving ice sheets striking a pier,
during spring break-up, are dynamic in nature in that rapid
changes in force magnitude occur over short periods of time.
In some cases, the structural properties of the pier are
such that significant dynamic interaction may occur between
the pier and ice sheet. As a result, the maximum response
of the pier may differ markedly from that caused by a static
application of the maximum ice force. This s tudy
investigates the magnification in response that may occur as
a result of dynamic effects.

In Canada, the design of bridge piers subjected to
dynamic ice loads is carried out in accordance with the CSA
Standard CAN3-S56-M78 (CSA, 1978). The specified ice force,
which is a function of the geometrical properties of the
pier and the physical properties of the ice, does not
acpount for any dynamic effects. In the case of slender and
flexible piers only, the code recognizes that dynamic
effects may be significant and should be investigated
further. However, no procedures are presented to assist the

designer in this respect. The need for further research in



this area, with particular emphasis on the deve lopment of

appropriate design procedures, is therefore apparent .

1.2 Background Information

Design engineers have been concerned with the forces
caused by moving ice impinging on structures since the 19th.
century.  The results of most of the major research into ice
forces have been summarized by Michel (1978). Past studies
have, by and large, been directed towards determining the
magnitude of maximum ice forces.

More recently, engineers have recognized the importance
of the time-varying characteristics of ice forces. Peyton
(1866) has discussed the form of the force oscillations
recorded at a test pile in Cook Inlet, Alaska. The
magnitude of the force was found to vary considerably with
time and in some cases the variations were almost periodic.
As the force history Qas determined directly from the
measured reaction on the pile, it probably contains
significant effects caused by the filtering process of the
measuring system. Although the observed rate of force
fluctuations corresponded closely to the natural frequency
of the structure, Peyton concluded that the fluctuations
were caused by a characteristic failure frequenc& of the
ice. Records from the same site were presented by Blenkarn
(1870) who suggested that the periodicity in the measured
forces resulted from the structural response to random ice

loads .
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The most extensive program to record ice forces on
bridge piers has been conducted in Alberta, Canada, over the
past 14 years. The results of the program have been
reported by Sanden and Neill (1968), and Neill (1970, 1972
and 1976). The results showed that the magnitude of the ice
force at spring break-up changes rapidly with time. Gerard
(1978) extended the analysis of the Alberta records by
relating the type of failure of the ice to the form of the
ice load histories. The results of this experimental
program were also discussed by Watts and Podolny (13878},
with particular reference to code recommendations for br idge
pier design. Although specific recommendations were not
made, both Gerard and Watts and Podolny recognized that the
time-varying characteristics of ice ?orces are an important
design consideration.

The effect of dynamic interaction between structure and
ice was described by Englebrektson (1977). He investigated
the heavylv?brations felt by the staff at a Swedish
lighthouse which was subjected to the action of moving ice.
In this case, the ice load was derived from the measured
response of the structure. Maattanen (1975) studied very
severe vibrations of a flexible steel lighthouse in the Gulf
of Bothnia and concluded that structural resonance occurred
with the ice force oscillations. In 1978, Maattanen
developed a mathematical model that relates structural
response to ice forces and accounts for the effect of

loading rate on ice strength. Maattanen (1979) further -



investigated the dependence of ice force on loading rate by
conducting laboratory tests on dynamic ice-structure
interaction. The effects of the measuring system on the
recorded ice force were eliminated by using a transfer
function approach.

Matlock et al. (1871) assumed that a cantilever pile
subjected to ice forces responds primarily in the
fundamental mode of vibratiop. Accordingly, they analyzed
the pile as a single-degree-éf;freedom system subjected to-
an ice force modelled by a deterministic ’'saw-tooth’ type
.function.

Sundararajan and Reddy (13873) recognized the stochastic
nature of ice loads and used fregquency domain analysis to
~tudy- the random respoﬁse of a single-degree-of-freedom
<ystem to an actual ice force hisory. The analysis was
e tender t¢ a multi-degree-of-freedom system by Reddy and
T .- 074). 0Only one record, that reported by Blenkarn,

was -nn:ide ed in the analysis. Sundararajan and Reddy

(1977) ro I ~~ificant differences between the power
spectrezl - va2s for three sections of the force
record. | :=ndec that, in the absence of more data,
an envelope ,. - .tral density curve be used when
applying ti me e sis.

Inea =zt: . 'se the 'ce force data base,
Swamidas e. al. . N .=ner. " artifical ice force
records with charc.ter s "lar to Blenkarn’'s measured

record. By investiga in¢ e r: »onse of an offshore tower



to these artifical records, they have shown that dynamic
interaction can cause significant magnifications over static
response.

Reddy et al. (1875) have used the concept of response
spectra to evaluate the response of offshore structures to
ice forces. This concept, which is used extensively in the
area of earthquake engineering, will be explained in detai]
in Chapter 3. Rlenkarn's force record was again used to
develop the response spectra.

As an extension of the testing progam on bridge piers
in Alberta, referred to previously, Montgomery et al. (1980)
have studied the problem of dynamic ice-pier interaction.
From field tests, they found that some types of bridge piers
respond to ice forces primarily in a single mode of
vibration. They evaluated the response of a range of single
degree-of-freedom systems to three ice load histories,
recorded at a test pier, and presented their results in the
form of response spectra. Each of the load histories
corresponded to a particular type of ice failure. as
distinguished by Gerard (13978). The results showed that
dynamic effects can be significant for a wide range of
bridge piers.

'‘The above investigations demonstrate that the response
of structures to ice forces can be significantly influenced
by dynamic effects. Although theoretical methods of
analysis are demonstrated, much of the past research has not

been directed specifically toward bridge piers or design
v
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applications. In addition, where results have been presented
in a form applicable to design, their use is restricted by
the small amount or dubious quality of ice force data

considered.

1.3 Purpose and Scope

The purpose of this study is to evaluate the maximum
response of a range of bridge piers to dynamic ice loads and
to present the results in a form which enables dynamic
effects to be easily incorporated into the design procedure.
Extensive ice force records from two bridge piers in Alberta
have been considered. Design curves have been developed
which enable dynamic effects to be accounted for in the
éurrent code format. An alternative design format, based on
the concepts of 1imit states design, is also presented.

The scope of the study has been restricted to the
dynamic nature of ice loads and the response of structures
to dynamic ice forces. While the ‘nvestigation is concerned
with bridge piers, the analytical procedure can be applied
to any structure which can be modelled by the simple dynamic
systems considered herein. Although the results are only
directly applicable to piers which experience the same flow
conditions as the Alberta test structures, they can be
applied as an approximation to estimate the dynamic effects

for piers in other locations.



2. ICE LOAD HISTORIES

2.1 Introduct ion

To investigate the problem of dynamic interaction, both
load and structure must be represented by an appropriate
model. This chapter is devoted to a description of the ice
force records considered in this study.

Over the past 14 years, the Alberta Research Council
has been carrying out full scale ice force measurements,
during spring break-up, at two test piers in the province.
One of the test piers, located at Hondo on the Athabasca
River, is a massive structure with an inclined nose. The
other pier, at Pembridge on the Pembina River,is slender and
vertical. In this chapter, the test set-up at both piers is
described and it is shown how the raw data, originally
recorded on magnetic tape at the piers, has been reduced to
the form of digitized ice force time histories.

The way in which ice fails on impact with a pier
influences the time-varying characteristics of the ice force
history. Several failure types have been distinguished and
these are discusser detail in this chapter.

In subsequent chapters, it is shown how a bridge pier
may be modelled by a single-degree-of-freedom system. The
ice load histories, developed and grouped in this chapter,
are applied to the structural model and the resulting

dynamic interaction is evaluated and analyzed.



2.2 Test Piers

2.2.1 Hondo

A detailed description of the load measurement
installations at both the Hondo and Pembridge locations is
given by Lipsett and Gerard (1980). The test set-up at the
massive, concrete Hondo pier is shown in Fig. 2.1. The nose
of the pier, semicircular in plan, is inclined at 23° to the
vertical. It has been fitted with a moveable section,
pinned at the base and supported by a load cell at the top.
As the moving ice sheets strike this moveable sec tion, the
load cell measures the upper reaction, which is recorded on
magnetic tape. The displacements of the pier are assumed to
be small relative to the displacemeﬁts of the ice and hence
any movement of the pier does not affect the measured
reactions.

In general, for a load measuring system, the
time-varying ice force may be related to the measured
reaction by a transfer function. This function, depending
on the dynamic characteristics of the load and the l}oad
measuring system, may be derived from simple statics or
alternatively, may be required to account for dynamic
effects. In the latter case, the dynamic interaction
between load and system causes the measured reaction to be
different from the corresponding static reaction. In the
case of the Hondo pier, calculations indicate that dynamic
effects are not significant because of the relatively high

natural frequency of the measuring s  -tem. The estimated

-~



natural frequency is 57 Hz while the significant frequency
components in the ice force are less than 25 Hz.
Accordingly, the transfer function relating the measured
reaction to the applied load has been derived from static
relationships alone.

Data from the Hondo tapes have been processed, in
digitized form, to produce the records of the ice load
histories considered herein. Significant ice runs occurred
during the springs of 1876, 1977 and 1978. The data from
1977 has been digitized at 125 Hz and filtered above 50 Hz
to eliminate the possibility of aliasing. The data from .
1976 and 1979 have been digitized at 250 Hz enabling
frequency components up to 125 Hz to be uniquely defined.
Above 125 Hz the frequency components are not significant

and therefore aliasing is not a problem.

2.2.2 Pembridge

The test set-up used té measure the ice forces at
Pembridge is shown in Fig. 2.2. In this case, the floes
strike a specially constructea vertical steel pile, the top
of which is enclosed in a steel collar. The pile is filled
with concrete. A load cell at the top measures the
resulting reaction parallel to the flow direction and the
reaction is recorded on magnetic tape. Similar to the Hondo
case, it is assumed that the displacements of the pier are
relatively small and that, in effect, the pier provides a

rigid support to the load measuring system.
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‘The results of vibration tests show that the
fundamental frequency of the pile is between 12 and 14 Hz
and that the damping ratio is 0.04 (Lipsett, 1980).
Calculations based on the procedures presented by Michel
(1878) show that, for the flow conditions experienced at
Pembridge, the iee lgads may have significant frequency
components in the range of 5 to 30 Hz. The effect of the
test pile is to magnify the frequency components which are
close to the fundamental Frequency gf vibration of the pile.
Hence, in this case, the transfer function between load and
reaction cannot be derived from stétics alone, as the
dynamic characteristics of the pile significantly influence
the measured reactions.

As discussed in detail in Appendix A, if the ice force
and the measured reaction are expressed in terms of harmonic
components, the transfer functi~r between reaction and
force, for each component, can be conveniently developed.

To develop the function, the test pile has been modelled by
a siﬁply suppor ted beam with distributed mass and
elasticity. The steps in calculating the ice force from the
measured reaction were as follows:

(1) Express’the time history of the reaction response in
terms of harmonic components, using a Fourier transform.

(2) Evaluate the amplitudes of the harmonic components of
the ice force from the components of the reaction™using the
transfer functidn.

(3) Evaluate the time history of ‘he ice force from_the

4
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harmonic components using the inverse Fourier transform.

In order to define the complete range of s:gnificant
frequency components in the ice force and to eliminate thé‘
probliem of aliasing, the Pembridge data were digitized at
250 Hz. The digitized data were then processed according to
the above procedures. Significant ice runs occurred onlf in

the spring of 1974 and these load histories have been used

in this report.

2.3 Types of Ice Load Histories

2.3.1 Introductory Remarks

At Hondo, ice sheets may fail by simply crushing
against thé pier and eventually splitting, or alternatively,
by i .dihg up the pier nose and failing in flexure. Since
the Pembridge test pile is vertical, the ice sheets %ail
mainly by crushing and splitting. Accordingly, the ice
force time histories considered in this study were grouped .-
under three main headings, depending on’the primary mode 6f
failure: crushing, bending or splitting. Examples of ice
force time histories from each group are described below.

The entire set of load records is presented in Appendix B.

2.3.2 Bending Failure Load Histories

. At Hondo, bending failures rgsult because the inclined
nose of the ﬁier provides a vertical reaction component to
the ﬁnpingjng ice sheet. This reaction component causes the

sheet to rise up the pier nose and fail as flexural cracks
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form. Plate 2.1 shows a tybicél bendiﬁg failure event.
Larger ice sheets are more prone to fail by bending as they
have the necessary momentum to rise up the pier nose. Also,
bending failure occurs in preference to crushing if the
strength of the ice sheet is such that the ultfmate bending
moment is reached before the contact force induces crushing’
across the entire contact area.

Figure 2.3 shows the repetitive series of large
ahp]itude force fluctuations that characterize a typical
bending ice force history. Each force fluctuation is caused
by the ‘rise up and bend’ action of the ice sheet as it is
forced against the pier. The initial increase in load
corresponds to the floe moving up the nose. The force then
drops off as the sheet breaks around the pier. The process
is repeated until all of the ‘floe has been forced past the
pier, or alternatively, until bending ceases to be the
failure mode. The load history of Fig. 2.3 also shows
higHer frequency, small amplitude force variations

'merimposed on those caused by bending. As discussed in
the following section, these‘are characteristic of local
crushing of the ice which occurs as the sheet goes through
the bending process.

The frquenCy of the'bending force fluctuétions dépends
on a number of factors. The ’'rise up and bend’ action of
fast flowing ice occurs at a greater rate than for slow
flowing ice. Also, the rate is dependent on the ice

strength and thickness. For the years under consideration



at Hondo, the frequencies associated with t~nding failure

were found to be between 0.2 and 2 Hz.

2.3.3 Crushing Failure Load Histories

Plate 2.2 shows an ice sheet undergoing crushing
failure at the Hondo pier. As the ice floe striKes‘thé
pier, local crushing of the ice occurs across the entire
contact area. This crushing process is restricted to a zone
around the pier from which the crushed ice is continua]]y
cleared by the movement of the ice. As the pier continues
to cut through the moving sheet, the stresses induce cracks
which propagate from the pier into the moving ice. If the
size of the floe is small, these cracks completely split the
sheet into smaller parts. This type of failure also occurs
at Pembridge.

Figures 2.4 (a) and (b) show typical crushing failure
ic  histories from Honr and Pembridge, respectively. The
initial impact of the ice sheet on the piér causes a Su
incréase in load. The force then remains at an almost
constant average level, with high freguency small amplitude
oscillations occurring throughout the crushing process. The
- rate at which these force oscillations occur depends on a
number of factors. As suggested by Michel (1978) and
Montgomery et al. (1880), the ice velocity and thickness
should be of particular significance, higher frequencies
being associated with faster, less thick floes. Fér the

years under consideration at Hondo, the floe velocities and
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thicknesses were of the order of 1m/s and 1m, respectively,
and the crushing frequencies were in the 15 to 20 Hz range.
At Pembridge, however, the respective values were 2m/s and
0.6m and the corresponding crushing fequencies were in the
region of 35 Hz.

The duration of the loading event depends on the size
of the ice sheet. Crushing may contir Jantil the complete
floe has been forced past the pier. Alternatively, if the
stress cracks which occur simultaneously with crushing
completely spliit the sheet, the force drops off as the now

smaller floes move past the pier.

2.3.4 Splitting Failure Load Histories

In splitting failure, the initial impact between sheet
and pier is followed by local crushing and the formation of
stress cracks. ‘When the size of the floe is comparatively
small, these cracks completely split the sheet in a
relatively short time and the event is then complete.
Although the successive occurrence of impact, crushing and
cracking is also associated with crushing events, splitting
events differ in that the duration of the event is much
shorter. Splitting events have been observed at both test
lopations.

A splitting failure load history from the Hondo data is
shown in Fig. 2.5(a). The initial sudden rise or ‘step’ in
force corresponding to the impact between éheet and pier, is

characteristic of both splitting and crushing events. It

s
+
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differs from the slightly more gradual rise in force caused
by a bending failure. Tt rise in force is followed, for a
short time by high frequency force fluctuation owing to
local crushing of the ice. Finally, the sheet splits and
the load suddenly drops.

Load histories of similar duration as splitting events,
but which differ in detail, are also grouped under this -
heading. Since the load in each case is » short impulse,
the dynamic response of a pier to each type is essentially
the same. For example, a small floe may strike the pier and
move past the side, with very little crushing ihvolved. In
this case, an impact event results and the rise and fall in
force is almost instantaneous. An example of such a load
history, recorded at Hondo, is shown in Fig. 2.5(b).
Alternatively, i the sheet is not completely split by the
formation of cracks, crushing continues until the floe has
been forced past the pier. The decrease in force is not as
sudden as for a true splitting event, but more gradual, as

shown in the Pembridge example of Fig. 2.5 (c).

2.3.5 Classification of Load Histories

A]fhough the Hondo data has been grouped into crushing,
bending and splitting load histories, in practice, any
particular loading event may not be composed entirely of a
single ice failure typé, but rather of a combination of
types. In cases where more than one type of failure

occurred, the force history was grouped by considering not
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only the failure type but also the predominant frequency
components contained in the record.

The load history shown in fig. 2.6, for example,
consists of force variations caused by bending in addition
to crushing events of short duration. Hence, it has the
characteristic low and high frequency components of a
bending failure load history and was categorized
accordingly. The load history in Fig. 2.7 shows a crushing
failure event. However, low frequency force fluctuations
about the almost constant force level are also apparent.
These may be caused by partial bending of the ice sheet as
1t crushes against the pier. In this case, crushing
characteristics as regards both failure type and component
frequencies wer onsidered to be predominant and the load
histbry was classified as such.

“ecause only one year of good data was available for
the Pembridge site, definite distinctions could not be made
between the load histories on theibasis of failure types.
Records corresponding to crushing and splitting events
seemed to predominate. However, load histories composed of
a series of splitting events in close succession have also
been recorded and these would warrant a distinct category.
Because of insufficient data, the Pembridge force histories

have been considered in a single group.
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3. DYNAMIC RESPONSE OF BRIDGE PIERS

3.1 Introduction

When a time-varying ice load is applied to a bridge
pier, the dynamic characteristics of the pier influence the
way in which it responds to the load. Dynamic
characteristics may result in a magnification or reduction
in response when compared to the response that would occur
if the load was applied statically. Hence, the dynamic
properties of both load and pier should be taken into
account when considering ice-pier interactibn.

In this study, it is assumed that the dynamic
characteristics of bridge piers can be represented by a
single-degree-of-freedom oscillator. Accordingly, this
chapter contains a review of the theory of vibration for
single-degree-of-freedom systems. The theory is illustrated
by evaluating the response of piers to idealized and actual
ice lcadings. For convenience, the maximum response of a
range of piers to a given loading is presented in the form
of response spectra.

Response spectra~have been evaluated for each of the
ice load histories considered in this study. In this
chapter, the results of these calculations are summarized in
termsvaf mean response spectra for crushing, bending‘and
splitting load histories at Hondo and for the Pembridge load
histories Curves of coefficients of variation of maximum

response are also presented for each category of load
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history. It is shown tha e form of thé mean response
spectra depends on the predominant frequency components and
dynamic characteristics of the load histories.

The next chapter contains a discussion of the use of
the mean response spectra and curves of coefficients of
variation in"a design procedure which includes dynamic

effects.

3.2 Single-Degree-of-Freedom System

3.2.1 Dynamic Properties

The sing]e-degreé-of—freedom system shown in Fig. 3.1
is composed of a single mass, m, a linear spring, K, and a
viscous dashpot with damping constant, c¢. The position of
the mass at any time, t, is defined by the single
co-ordinate, x(t). When a time-varying ice force, F(t), is
app]ied to the system, the equation of motion of the system

may be expressed by

mX(t) + cx(t) + kx(t) = F(t) 3.1
In Egn. 3.1, a dot above the variable x(t) represents one
differentiation with respect to time. Dividing Eqn. 3.1 by
the mass, m, results in an equation of the form

X(t) + 2cwx(t) + w2x(t) = F(t)/m ' 3.2

When the undamped system is vibrating freely, with no
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applied load, it oscillates sinusoidally with a natural

circular frequency, o, given by

@ = VK/m 3.3

The period, T, and natural frequency, f, of these free

oscillations are given by
T = 2n/w 3.4
f = 1/T = w/2n 3.5

If dambing is present in the system, in general, the
free vibration response’ attenuates with time and the period
of v1brat1on is altered slightly. It is convenient to
express the amount of damping associated with the system as
a ratio of the critical daméing value, 2mw, the value of
damping for which the free vibration response of the system
becomes non-oscillatory. Accordingly, the damping ratio, £,

is defined by

£ = ¢c/2mw 3.6

The response of a pier to an ice force history, which
is essentially an arbitrary load, must be evaluated by
. humerical means. However, as discussed in Sec. 2.3,

depending on the type of failure of the ice, certain
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frequency components become predominant. Hence,
comparisions can be m§de with the response of a pier to an
idealized force oscillating at a single frequency. In
addition, the initial step in the load, characteristic of
splitting and crushing events, may be represented by a
simple rectangular force. The response to these two
idealized loads will be investigated prior to considering

actual ice force histories.

3.2.2 Response to Harmonic Loading .

An idealized ice force, F(t), which varies harmonically
at the circular frequency, o, wit amp 1itude, Fmax, may be
expressed as

F(t) = Fnax Sin @t 3.7

The steady state solution for this particular forcing

function (Clough and Penzien, 1975) is
x(t) = G Sin(&at - a) 3.8

where the response amplitude, G, has the form

w?
/K) ' 3.9

G = (F
[(w? - 2)2 + (260m)2]3

max

and a is a phase angle.

It is convenient to normalize the displacement response
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by the displacement that would be produced if the maximum
value of the load was applied statica]ly. The resulting
function is known as the response ratio, R{(t). For the load

under consideration the response ratio is given by

x(t)

From Eqns. 3.8, 3.9 and 3.10, the maximum value of the

response ratio, Rmax' is

02
MaX w2 - 52)2 + (2Eww)2]?

When the frequency of the applied loading is close to
the natural frequency of the pier, the denominator in Egn.
3.11 becomes relatively small and for piers with zero
damping the amplitude of the forced vibrations tends toward
intinity. In this case, the pier is said to resonate with
the applied loading. In practice, the presence of damping
reduces the resonant maximum response ratio to approximately
1/2e. The time required to attain this maximum response
ratio depends on the amount of damping present in the
system. The build up of resonant response from rest is
demonstrated by Fig. 3.2, which shows the largest response
ratio attained for a given number of cycles of oscillation.

In Fig. 3.3, the maximum response ratio has been
plotted against system frequency for harmonic loads

oscillating at two particular cyclic frequencies, f = @/2nr.
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These curves show the relatively large resonant response
that occurs when the natural frequency of the pier is close
to that of the applied load. As the pier frequency
decreases from the resonant frequency, the maximum response
ratio tends toward zero. This indicates that lower
frequency piers do not respond in full to the higher
frequency force oscillations. Alternatively, as the system
frequency increases from the point of resonance, the maximum
response ratio approaches unity. In this case the dynamic
magnification of response is progressively reduced until the

system responds statically to the fluctuating load.

~
3.2.3 Resﬁbnse to a Rectangular Impuilse

A rectangular impulsive load is shown in Fig. 3.4. The
sudden rise and fall in force is a characteristic of
crushing and splitting ice load histories. (see Figs.
2.4(a) and 2.5(a)). The maximum response of an undamped
pier to a rectangular pulse occurs during the loading stage
if the natural frequency of the pier is greater than or
equal to 0.5 divided by the pulse duration, Tp. In this
case, at least half a cycle of vibration occurs before the
load iS removed. When the natural fregquency of the pier is
less than 0.5 divided by the pulse duration, the maximum
response occurs during the free vibration fél]owing the
loading stage. The maximum response ratios for these cases

are given by
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Rmax = 2 (f 2 O.S/TD) t12
Rmax = 2 Sin(ﬂpr) (f < 0.5/Tp) 3.13
These equations have been , ' :-d aqu- vate o
frequency in Fig. 3.5 for a pulse o' ¢ - nd duration.

Note that the lower frequency systems with f < 0.5 Hz do not
complete the necessary half cycle of vibration during the

/ ,
load application to attain the constant maximum response

ratio of 2, given by Egn. 3.12.

3.2.4 Response to an Ice and History

In evaluating the response of bridge piers to digitized
ice force histories, the response history was divided into a
number of‘small time increments. The method of Newmark
(1958) was used to transform the differentia) equation of
motion (Egn. 3.2) into an incrementa) algebraic equation.
The resulting algebraic equation was used to calculate the

change in response during each time increment. Calculations

. advanced in a step by step manner to build up the complete

time history response.

In the analysis, the response was evaluated at each.
time increment and also at each discontinuity in the slope
of the forcing function. To ensure accuracy and stabilii,
of the solution, the time step used in the calculations was
always less ti-n or equal to 1/20 of "the period of the

system. Linear acceleration of the mass was assumed during
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each time interval and the system was assumed to be
initially at rest.

For the purpose of design, it is the maximum response
to an ice load history, rather than the response with time,
that is of particular interest. Accordingly, it is
convenient to represent the maximm response of a wide range

of bridge piers to a particular " rcing function, by using

response spectra. These aro p '~t- | the maximum response
ratio against system natural fr ves of this type
have already been presented s, 3., ane 3.5 for a

harmonic loading and a rectangular impulse, respectively.
Since the maximum response ratio gives the ratio of maximum
dynamic to maximum static displacement and since other
response quantities such as stresses and moments are
propoftiona] to displacement for elastic systems, the
maximum response ratio may be applied to any static response\
quantity to obtain the corresponding maximum dynamjc
response.

The response spectra calcul *=d for each of the ice
loading events measured at Hondo und Pembridge are presented
in Appendix B. These response spectra have been obtained
for systems with natural frequencies between 0.1 and 50 Hz
and with damping ratios between 0 and 20%. The form of the
spectra for the various types of load history is discussed

below.
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3.3 Hondo Response Spectra

3.3.1 Bending Failure Response Spectra

Examples of response spectra corresponding to bending
ice load stories recorded at Hondo are shown in Figs. 3.6
{a) and (b). These response spectra correspond to the
bending load histories discussed in Chapter 2 (Figs. 2.3 and
2.6, respectively). Both spectra show that relatively high
maximum response ratios occur at system frequencies around
0.5 and 15 Hz, with reduced responses occurring between
these limits. Differences in detail, caused by
peculiarities in the individual loads, are also apparent .,

The peculiarities in the response spectra can be
eliminated by developing curves whicH reflect the average
response to bending failure records. For this purpose, the
average maximum response ratio was evaluated at each system
frequency, for all the bending response spectra. These
values were then plotted to obtain the mean response spectra
shown in Fig. 3.7. The averaging procedure.has resulted in
a smoothed set of curves, more representative o the
response to the major characteristics in the load histories.

In describing the response spectra in this report,
three different frequency ranges are referred to: a low
frequency range corresponding to'pier frequencies between
0.1 and 1 Hz, a medium range corresponding to frequencies
between 1 and 10 Hz and a high frequency range including
piers between 10 and 50 Hz. The mean response spectra (Fig.

3.7) show that the maximum response ratio rises to a peak in
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both the low and high freguency ranges. The magnification
of static response is cimilar in both regions, reaching a
magnitude of about 1.8 for a damping ratio of 2%. Higher
damping significantly diminishes the response at each system
frequency, the peak values for a 20% damping ratio being
reduced to about 1.0. The maximum response ratio remains
almost constant throughout the medium frequency range, with
values of approximately 1.3 and 1.0 for damping ratios of 2
and 20%, respectively.

As discussed in Chapter 2, bending failure load
histories have significant low and high fregquency
components, resulting from flexural failure and local
crushing of the ice, respectively. when discussing the form
of the mean response spectra, compar isons can be made to the
response spectra presented previously in Fig. 3.3 for the
case of harmonic loads. Fig..3.3 has been plotted for
harmonic loads oscillating at\the predeminant frequencies

for flexural failure and local crushing of ice at the Hondo

pier.

By analogy to Fig. 3.3, the mean bending -pe . ~
Fig. 3.7 indicate that low frequency »iers r’ e L. g
slow force fluctuations associated with bendi- 231U o

This causes the peak response at approximaicly 0.z,

Simi]érly, high frequency piers resonate with the crushing

component of the load, causing the peak response at 15 Hz.
At the lower ond of the low frequency range, the

maximum response ratios are less than unity. Comparison
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with Fig. 3.3 indicates that these piers, with very low
natural frequencies, do not respond fully to the higher
frequency force fluctuations associated with bending or
crushing failure of the ice. In the medium frequency range,
the response is also reduced, but not below Unity. The
piers in this range respond statically to the slower force
fluctuations of bending failure, but do‘not respond fully to
the higher frequency crushing fluctuations. 1In contrast,
piers at the upper limit of the high frequency range respond
fully to all the frequency components in the load. The

corresponding maximum response ratio tends to unity,

indicating that r- m -nification of static effebt oceurs.
From conside- » o .ne response spectra for each

bending everi = - = .andard deviation to mean

value, or coef _iar._s riation of the maximum response

ratio, have been eva uated at each system freguency. The
resulting curves are shown in Fig. 3.8. These curves
represent the variation in response between the individual
spectra.

The'highest coefficients of vériation occur in the low
frequency range. In this region, system response depends
primarily on the frequency of bending failures which is in
turn a function of several variable factors such as flow
velocity, thickness and strength of the ice. As a result,
the resonant peak response in the indiv i -1 spec‘ra occur
anywhere between 0.2 and 2 Hz. In the h: - frequency range,

the coefficients of variation are smaller. This indicates,
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perhaps, that the frequency of crushing failure is less
variable than the frequency for bending, at the Hondo site.
Finally, since systems with smaller damping ratios respond
more readily to the individual frequency characteristics in
each load history, the curves show a greater variability in

response for the lighter damped systems.

3.3.2 Crushing Failure Response Spectra

Examples of crushing failure response spectra,
corresponding to the load histories discus§ed in Chapter 2
(Figs. 2.4(a) and 2.7) are shown in Figs. 3.9(a)'and (b).
Characteristic of the crushing case, both these spectra
exibit a peak in response in the high frequency range.
However, in addition to the high fregquency crushing
component; the response spectra also reflect the individual
peculiarities present in the load histories. To eliminate
peculiar ‘ies, the mean response spectra show - Fig. 3.10
have been developed for crushing failure load histories at
Hondo .

Fig. 3.10 shows that the maximum response ratio remains
almost constant throughout the low and med i um frequency
ranges. In these regions, the maximum static response of
piers with a 2% damping ratio is magnified bv about 1.3
However, no significant magnifications occur for piers with
a damping ratio of 20%. A peak in response occurs in the
high frequency region. The maximum values, occurring at 15

Hz, range from 1.7 to 1.1 for various damping ratios between
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2 and 20%, respectively.

By analogy to the response spectrum given in Fig. 3.3
for a harmonic load oscillating at 15 Hz, the peak responses
in the high frequency region of the mean spectra (Fig. 3.10!
are largely due to resonance with the high frequency
crushing component of the load histories. Interestingly,
this resonant response is similar in magnitude to. and
occurs at the same freguency as, the high freguency resonant
response for the bending spectra (Fig. 3.7). For both the
crushing and bending cases, resonant response is caused by
local crushing of the ice.

In the low and medium frequency ranges of the mean
spectra, the maximum response is caused, primarily, by the
initial sudden 'step’ in load, characteristic of crushing
load historiesil The maximum response is therefore simtlar
to that given oy Eqgns. 3.12 and 3.13, for a rectangular
impulse. Thesé equations imply a constant maximum response
ratio of 2 for undamped piers with natural frequencies
greater than 0.5 divided by the event duration. This is
shown in Fig. 3.5 for an impulse with a duratior of one
second. For the relatively long duration crushing events,
most of the piers considered have natural frequencies larger
than the limit implied by th. 3.12. Consequently, the
maximum response ratio reaches a constant value in the low
and medium frequency ranges.

The coefficients of variation in the maximum response

ratios for the crushing failure spectra are/éhown in Fig.

/
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3.11. The variations are relatively high in the low
frequency range, are reduced for medium frequencies, but
increase again in the high frequency region. Individual
crushing load histories at Hondo may exhibit particular
characteristics such as slow force fluctuations caused by
partial bending of the ice. These peculijarities contribute
to the high variations at low frequencies. The variations
are slightly less, however, than those corresponding to
bending failure (Fig. 3.8). -

In the high frequency region, the Sensitivity of system
response to any variations in the predominant crushing
component of the load causes relatively high coefficients of
variation (Fig. 3.11). The variations are reduced
throughout the entire frequency range by incheased amounts

of damping.

3.3.3 Splitting rFailure Response Spectra

Examples of response spectra corresponding to the Hondo
splitting load histories are shown in Figs. 3.12 (a) and
-(b). Both of these response spectra show relatively high
-ﬁaximum response ra}ios occurring in the high frequency
region. In addition, these example spectra, which
correspond to the load histories discussed in Chapter 2
(Figs. 2.5 (a) and (b)) also reflect the differences between
the individual cases. Hence, in order to discuss the ma jor
characteristics of Splitt{ng failure spectra, mean curves

have been developed and are presented in Fig. 3.13.
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Figure 3.13 shows that the maximum response ratio rises
steadily within the limits of the low frequency range from
values around 0.3, to va lues between 1.0 and 1.3, depending
on the amount of damping. It levels off in the medium
frequency region. A significant peak in response occurs in
the high frequency range at 15 Hz where the maximum response
ratios vary from 1.8 to 1.1 for damping ratios between 2 and
20%, respectively. h

The Eénge in response between the damping ratios
considered is less than in the previous cases, especially
for lower frequency systems. This may be explained with
reference to Fig. 3.2 which shows that the number of cycies
completed by these systems, during short duration splitting

events, is 1nsuff1c1ent for the build up of full resonant

' response.

In contrast, resonance with the crushing forces in
splitting load histories causes the high frequency peak
response. As demonstrated by Fig. 3.2, for damped high ’
frequency piers an event duration of Just a couple of
seconds is suff1c1ent for build up of resonant response.
Consequently, the magnifications for thgse piers are similar
to those resulting from bending and érushing failures.

Similar to the crushing case, the maximum response of
low and medium frequency systems to a spl1tt1ng failure load
hzstory is caused mainly by the sudden applvcat1on of load
By analogy to the response for an impulsive load given by

Eqns. 3.12 and 3. 13 and shown by Fig. 3.5, in the sp]1tt1ng
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case only systems in the medium frequency range respond
tfully to the short duration events. Low frequency systems
do not respond fully to the impulsive load.

Plots of coefficients of variation in the maximum
response ratios of the splitting failure spectra are shown
%n Fig. 3.14. As the event duration determines the
frequency at which full response to the impulsive load is
attained, the variation in this value causes higher
coefficients of variation in the low frequency range. The
relatively low mean values of maxfmum response ratio, in
this region, also contribute to the higher coefficients.
Significant variations again occur in the high frequency

‘range where the systems are sensitive to the crushing

component in the load.

3.4 Pembridge Response Spectra
At Pembridge the ice fails by local crushing against

the vertical pile. Although load histories corresponding to
crushing, splitting and also repeated splitting events have
been observed, the smaller amount of data available for the
Pembridge location were consjdered as a single group. Mean
response spectra and curves gf cbefficients of variation for
the Pembridge data are presented in Figs. 3.15 and 3. 16,
respectively. '
Fig. 3.15 shows that the maximum response ratio

increases within the limits of the low frequency range from

values around 0.7 to va’' .es between 1.0 and 1.4, depending

%‘;
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n the damping ratio. It remains constant in the medium
fre¢ .ency region. In the high frequency range, a peak in
response occurs at 3/ Hz. At this frequency the maximum
response ratios vary from 2.0 to 1.2 for damping ratios
between 2 and 20%, respectively. As for the cas s
previously discussed, damping attenuates the response
throughout the spectra.

The crus ng failure of the ice at Pembridge results in
spectra that are similar in form to those for crushing and
splitting at Hondo (Figs. 3.10 and 3.13). In the low and
medium frequency regions, the pier responds primarily to thgu
initial impact of the ice. The resulting response is
comparable to the response for an impulse load (see Egns.
3.12 and 3.13 and Fig. 3.5).

The peak in the high frequency range is caused by
resonance with the crushing force fluctuations. In contrast
to Hondo, for which the crushing rescnant response occurs at
about 15 Hz, at Pembridge, the corresponding peak occurs at

35«Hz. This reflects the variation in flow conditions

~ between the two locations. In particular, the floes a’

P=-" ‘dge are thinner and have higher velocities.
curves of coefficients of variation shown in Fig.
simi to the Hondo cases in that the higher
Va iues occu~ - the low and high frequency ranges. For
Pembridge, however, the different response of low frec :ency
systems tc crushing, splitti g and repeated splitting

events, contributes to these “igh coefficients. In the high

£
A
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frequency range, the largest coefficients of va~iation occur
at 35 Hz, as these systems are most sensitive to the
crushing component in each of the load histories. Damping
lowers the variation in response throughout the entire

frequency range.
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4. DESIGN APPLICATION

4.1 Introduction

The current CSA Standard (CSA, 1978) for the design of
bridge piers subjected to ice forces indicates that the
design engineer should investigate the possibility of
structural resonance caused by ice-strucfure interactioq.
However , no procedures aré presented to enable the designer
to quantify these effects and include them in the design
process,

This chapter briefly reviews the desigr method used in
the code. Alternative procedures which incorporate the
effects 6f dynamic interaction are then presénted. These
procedures require the use of the mean response spectra and
curves of coefficients of variation presenfed in the '
previo&s chapter. Fina]]y. the general implications of the

.

proposed procedures are discussed.

-

4.2 Current”Design Practice \ )

- In Canada, the design of bridge piers sybjected to
dynamic\icg pressure caused by moving ice sheets, is carried
out in accordance with the CSAYStendard CAN3-56-M78. The
specified horizontal ice forcef’Fai, is given by /

.

4.1

oon -

Fni = Cnpbh

"3

where C_ is the coefficient for nose 1nclina$ion, p is the

53
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effective ice strength, His ‘e ice thickness and b is the
pier width. The coefficient C, accounts for the(reduction
in horizontal force as the angle of nose iﬁclin§tion with
the vertical is increased. It ranges from 1.0, for
inclinations of 0 to 15", to 0.5 for angles of 30 to 45°.
The effective ice‘str‘ength, p, is obtained by
multiplying the specified ice strength by a pier coefficient
that depends on the pier width to ice thickness ratio. Thr
specified strength, ranging from 700 to 2800 kPa, uependg on
the temperature and the condition ¢ he ice at break-up.
The'pfér coefficient ranges fro: ' 5 o 0.8 for increasing’
pier width to ice thickness ra: os.
The specified ice force, Fni determined by gdn. 4.1,
r: an estimation of the maximpm horizontal load applied t9
‘e pier by an impinging ice sheet. As such, when relate;'
to a particular load history, Foi correséonds to Fhax the
maximum ice force which occurs during the event. The
specified force does not account for any dynamic effects
resulting from ice-pier interaction.
The code recognizes the possibility of si@nificant
dynamic effects, in some cases, when it states
: ""In the case of slender and flexiblefﬁiers,
consideration should be given to the vibrating
' nature of dynamic ice forces and the possibility of
high momentary pressures and structural resonance".
However, no indication is given of how these effects should

be évaluated, this being left to the judgement of the



individual designer.

In addition, consistent with the procedures of limit
states design. the code proposes several loa:i
combinations for which the pier should be proportioned. The
ice load, F ., is included in two of these groupings which,
in genebal. may be written in the form |

Total Factored Load = NLF , +F ,+.. . +F  +F ] 4.2
The load factor, X, has the value 1.3 or 1.2, depending on
the load combination and, Fiy to F . are nominal or
specified loads corresponding to, for example, ~ead or live
loading. The code suggests that the load factors may be
’révised’ if the engineer considers the ’'predictability of
the loads ' to be ‘erent than anticipated by the code
itself. | |

The remainder of this chapter is concerned with

formulating procedures which enable the engineer to

incorporate the dynamic nature of the ice-pier interaction

problem into design.

(%4

4.3 Response Spectra and Design
Response spectra are a basic tool employed in several
design procedures concerned with time-varying loads, such as

procédureé for blast earthquake and impact. The concept

P J)’: . .
may be easily applied to the design of bridge piers, for

which it provides a direct .and rational approach to’
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incorporate dynamic eff t*s.
As explained pre ious (Sec. 3.2.4) the maximum value

the response ratio fies the magnification or
reduction in static response caused by the dynamic R
characteristics of both load and pier. Hence, the magnitude
of the effective static force, F,, which produces the Qame
maximum response effect as a dynamically applied load with
is given oy

maximum value, ﬁnax'

F =R F 4.3

where R, is the maximum response ratio for the particular
load history and bridge pier.

The maximum response ratio and the maximum value >f the
c! mically applied load are dependeqt on the properties of
ti.. particular pier under consideration. For a given design
application, however, R . and F .  are random variables and
can only be estimated by appropriate values based on
statistical distributions.

The statistical characteristics of the maximum response

ratio, R have been investigated for each load category

max’
considered in this study. As demonstrated by sample cases
shown in Figs. 4.1 to 4.4, the maximun response ratios for a
particular pier frequency and damping value ploi as a
straight line on normal probability paper. Accordingly, the

normal distribution is an acceptable model and the

statistical variation in the maximum respoinse ratio can be

i
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determined from the mean value, Rmax' and the coefficient of

variation, VR' |

The statistical characteristics of the maximum value of
the dynamically applied load, Fmax, are beyond the scope of
this study. Estimates of this load can be made by using the
current code expression (Egn. 4.1! or alternatively by Jging
expressions proposed by Lipsett and Gerard (1980). which
take account of the type of failure of the ice. The
equations of Lipsett and Gerard are presented ih a
subsequent example. In order to avoid confusion between
measured and estimated quantities, the estimated maximtum
value of the dynamically applied load will be denoted by F,
and will be referred to as the 'static’ component of the
1oéd in thé remainder of the study.

In the next section, the form of Egn. 4.3 R modi fied
by probabilistic considerations so thaf it can be used for
practical design situations. Two forms are presented. The
first enables dynamic effects to be directly included in the
current code format. As an alternative code format, the

second enables the ice load to be evaluated according to the

principles of limit states design.

4.4 Design Equation
4.‘4. 1 Direct Approach
" Under current code procedures, the specified ice load,
Fi » is included in two load combinations given, in general,

by Egn. 4.2. Dynamic effects and the uncertainty in

wx ;5(
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estimation can be incorporated into this format by replacing
the specified ice load by a modified value, t . , evaluated
from an expression of the form

Fr,n = (1~ ng)Rmasz 4.4

The mean maximum response ratio, R and the coefficient

max'’
of variation of the maximum response ratio, Vg, for use in
this equation are obtained from the design curves pﬁesented
in Chapter 3 and the static component of the load, Fg, is
evaluated using Eqn. 4.1. The symbol g is the number of

standard deviations above the mean value by which R, ..
should be incremented to give a sufficiently low probability
of exceedance. As Rmax is normally distributed, g may be
obtained from standard statistical tables.

The detailed application of Egn. 4.4 will be

demonstrated in a subsequent example.

4.4.2 Limit States Design Approach

According to the principles oi limit states design, a
giﬁg]e load factor, 1, shouid be applied to each specified
load. Thef1ogd factor reflects the uncertainties inherent
.7in the evaluation of the load effect. In conjunction with a
resistance factor, ¢, ﬁpplied to the estimated strength of
the structure, thé‘fbad factor ensures that an adequate
safety margin exists against the structure reaching certain

limits of usefulness. These l1imit states are termed
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"Ultimate’, as in the case of complete failure or collapse,
or 'Serviceahility’, when, for example, excessive
deflections occur.

In the direct approach discussed above, dynamic effects
were incorporated into the design process by applying a
simple modification to the current code format. The
uncertainties associated with estimating both the dynamic
effects and the static load were accounted for separately.
The load factor currently employed in the code was assumed
to account for the variability in the static component.
However, using the concepts of limifs states design, the
~uncertainties associated with both components can be
incorporated in a single load fag}gr.

By the 1imit states design ééb%hach} the factored ice

load for use in design is given by

Factored Ice Load = AiF;i 4.5(a)
where
A= 1.22(1 + VR) 4.5(b)
and
F;li = masz 4.5(c)

The expression for X, (Eqn. 4.5 (b)) applies‘to the ultimate
limit state and is derived in the following section. It is
based on an assumed coeffigient of variation in the static

ice load, F and accounts for the overall uncertainty in

s y

estimating the effective ice'load by the specified value
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4.4.3 Derivation of Load Factor, X,

If the random variables S and U represent structural
strength and total load, respectively, then for a given
structure the requirements of limit states design are

satisfied if

¢S, 2 AU, 4.6
In this equation, Sn'and U, are the nominal or specified
values of S and U, respectively. »

In this approach to design, probability concepts are
employed to determine values for the resistance factor, ¢,
and load factor, x. The method most commonly used is the
'second moment probabilistic method’, in which the random
nature of each variable is accounted for by two parameters,
the mean and coefficient of variation.

A variab.2 associated with the success or failure of

the structure is used to formulate a failure criterion. The

one most commonly used (Galambos and Ravindra, 1973) states

that for failure to occur

InS - 1InU= 1In{S/U) <0 _ 4.7

The probability of failure may then be exr assed as the
probability that the randoi variable In (S/U) is less than



zero. The failure limit can then be characterized by the
safety index, g, which s the number of standard deviations
the mean of In (S/U) (i.e. In (S/U)) is above the failure
Yimit of zero. It can be shown (Galambos and Ravindra,

1973) that g may pe approximated by

In(5/U)
B = - 4.8

where S and U are the mean values of strength and load,
respectively, and VS and VU are the corresponding
coefficients of variation.

The design criterion, in the form of Eqn. 4.6, can now
be developed directly from Egn. 4.8. However, as explain~'
previously, it is desireable to break up the total load into
individual load components, with a separate lozd- factor
applied to each. The total load effect may be written in

the form

U= E(F + Fo o+ F * Fi) 4.9
The factor, E, is a random variable with mean, E} and
coefficient of variation, VE' which accounts for the
transformation of load into load effect. The variation in E
reflects the uncertainty in this calculation. ﬂ to Fk and
Fi are the true values of the loads referred to previously,

and V, to V., and V,, are the corresponding coefficients of

variation.
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Galambos and Ravindra (1973) nave shown that the total
leac can be separated into individual components by
linearizing Eqn. 4.8 and using a separation function, a.
The error involved in this approximation has been found to
be acceptable in the case of a dead, live and wind load
combination. This combination of loads, with low to high
variabilities, is similar to the case in question and the
approximation will be employed here. Hence, using this
procedure, Egn. 4.8 can be written in the form

-aBV

voe t s s 2 Ee"BVE [y, (1+agVy )Fyt. .+ Y (14agV, Ik, T 4.10

where £ and Vg are the mean and coefficient of variation of
the errors introduced in the structural analysis.  In Egn.
4.10, the Y factors account for the fact that loads
specified by design equations are not necessarily mean ..
values. Accordingly, the vy values are simply the ratio of
mean to specified loads. From Egqn. 4.10 the load factor,

X applied to the specified ice load, F;i, is given by

o= v, (Ee*BVE) (1 + agv,) 4.11

The coefficient of variation in the ice load, Vi, can

be written inythe'form



where V. 1is the coefficient of variation in the maximum
value of the dynamically applied load, VR is the coefficient
>f variation in the maximum reponse ratio and o, is a
separation factor. In this study, the value of the
separation factor is taken to be 0.75 (Lind 1971). If Egn.
4.12 is substituted into Egn. 4.11, the expression for the
load factor A, can be written in the form
= v, (Ee*BVE) (1 + asza V. + aga V) 4.13
Equation 4.13 can be simp:ified to a design expression
by appropriate numerical substitutions. By analogy to the
values proposed by Nowak and Lind (1979) for the calibration
of the Ontario Highway Bridge Design Code, it is assumed
that € = 1.0, Vo = 0.06 and 8 = 3.5. From consideration of
the available data for the maximum static ice loads recorded
at the test locations, it is apparent that the equations
proposed by Lipsett an arard (1980) overestimate the mean
vélues. Based on these data, conservative values of 0.75
for v; and 0.3 for V. have been chosen. With a greater
amount of data, more exact estimates of these values coulid
be developed. Fina]iy, ugfng the value a = 0.55, determined
by Galambos and Ravindra (1973), Egn. 4.13 reduces to
,a‘ S, = 1.2201 + Vg 4.14

i

-

(g(:‘i A
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4.5 Design Example

4.5.1 Introductory Remarks

The dynamic properties of the Hondo and Pembridge test
piers have been measured and hence {i.ese piers will be
considered in the following examples The factored design
ice loads are evaluated by the present code‘procedure and
also by the proposed procedures as presented in Secs. 4.4
and 4.4.2.

The direct approach is user ' conjunction with the
code estimate of static load. S...ce the code d{::f}ét
distinSﬂish between ice failure types, the spectfa relating
to all the relevant failure types are consulted to determine
the worst dyﬁamic effects. |

The load factor for‘use in the limit states design
approach has been based oﬁ consfderations of Lipsett and
Gerard's (Lipsett and‘GeEard, 1980) estimate of the static
ice load. Accordingly, this procedure is demonstrated using
Lipsett and Gergrd’s equations to determine the static load
and failure type. This approach could also be implémented,
with similar results, using the code estimate of static
load. However, the value of the ratib of mean to specified
load, v,, in Eqn. 4.11 would have to be reevaluated.

Two equations have been proposed by Lipsett and Gerard, -
depending on whether the ice fails by bending or crushing.

If both failure types are Pegsible, the lower value is féken
to be the load at which'acfu{f failure dccurs. A static

load caused by splitting failure is not considered to govern

e
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in a design situation as it can always be exceeded by the
load from a bigger ice sheet which crushes against the pier.
Lipsett and Gerard’s equations attempt to predict'this
larger load. When the static force and failure type have

- been determined, the corresponding spectra are consulted to

determine the appropriate maximum response ratio.

4.5.2 Code Procedure
The specified ice load for which ier .« 'd be
proportioned using the code procedi'"e is given by Egn. 4.1.

For the pier and flow conditions at !tondo

it

1.0

C. = .75 p

n 2100 kPa Pier coefficient

h=1m b=2.32m -
Hence, the specified ice load is ;
Fni = 3.65 MN
and the larger factored load (X = 1.3) is given by
| NFoi = 4.75 MN
For the pier and flow conditions at Pembr idge

2100 KPa Pier coefficient=1.1

C.=1.0 P

n

h 0.61 m b=0.86m

Hence, the specified ice load is

Fai = 1.21 MN

and the factored load (A= 1.3) is
NFy; = 1.57 MN

- 4.5.3 Direct Approach
In this method, the code estimates of the static ice
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load, Fy, are used.. These are simply the specified values,

F.. , evaluated above. In the proposed procedires, the

ni
dynamic properties of both load and p.er a-e ‘axen into
account. The Hondo pier has a natural ‘equency of 8.9 Hz
and damping ratio of 0.19 (Montgomery et al., 1980). The
respective values for the Pembridge pile are 12 Hz andj0.04
(Lipsett, 1980)..

In the direct approach of Sec. 4.4.1, the effective ice
load is calculated using Eqn. 4.4. A 1% probability of
exceedance, corresponding to g = 2.33, is commonly used in
design and will be assumed in this example. However, if in
a particular case, the designer feels that the direct
approéch.gives results which are too conservative a lower
probahility of exceedance may be adopted.

In the case of the Hondo pier, therefore, bending,
crushing and splitting are possible failure types and
reference to the mean spectra and curves of coefficients of
variation show that the worst case is for splitting (Figs.
3.13 and 3.14) with

Rmax = 1:0 Vo = 0.13

In addition, from Sec. 4.5.2 we have

Fg = 3.65 MN
By making the necessary substitions into Eqri. 4.4, the
specified ice load is

Fri = 4.75 MN 2

This value is then factored by the code load factor of 1.3

to account for the uncertainty in estimatigp the statig load
2

- . : k.

b
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component . The final factored design ice load is ther 2n
by
XFL = 6.18 MN
_The mean response spectra and curves of coefficients oé
‘variation for Pembridge (Figs. 3.15 and 3.16) give
Rmax = 1-25 VR = 0.13

From Sec. 4.5.2 we have

Fg = 1.21 MN~
and therefore, Egn. 4.4 gives a specified ice load of

CFC = 1.97 MN

ni

The code load factor of 1.3 is now applied to give

xF;i = 2.56 MN

4.5.4 Limit States Design Approach
In this method, the expressions proposgd'by Lipsett and
Gerard (1980) are used to estimate the - .atic ice load, Fe -
These are 7
Fsp = Kpoy h? s - Fe. = K, o bh

s$b 8C

Fep and Fy_ are the static loads caused by Bgnding and
crushing failure, respectively. The other terms are defingd 5
as follows: _
kp= coefficient relating to the charactetistics of a
bending fa}]ure. ‘
k.= coefficient relating to the characteristics of a
vcrushing failure,

o9, = crushing strength of ice,

o

o, = tensile strength of ice,
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o
H

pier width,

o 4
]

ice thickness.
At Hondo, the ice fails by both bending and crushing
and Lipsett and Gerard’s equations give ;
Fop = 2.62 MN Fec = 4.33 MN

The static load used in design is taken as the lower of
these values. Therefore, in ths governing design situation,
the ice fails by bending and the static lo&d is

Fe = Fop = 2.62 MN.

For Pembridge, the ice can only cru i, st the pile.

2
Therefore, we have

Fo = Fgo = 1.17 MN. |

_\;?Thes_e static <1oads ¢an now be used in the p'rr‘oiﬁ.s‘ed . , L
procedures. Firstly, howeyerfvthe dynamic effects’¥o; the
Hondo pier must be reqiglgated_§slbending‘has beenvspecifjed
ﬁo be the critical ice g;{$pre type. The design curves for
bending failure (Figs.&™3.7 an& 3.8) give, _
| C Rpay = 1.0 w V, = 0.08

In the 1imit st'=tes design approach of Sec. 4.4.2, the
factored ice load is evaluated using'Eqns: 4.5. "For the
Hondo case, fhese give

Froo= (1.0)(2.62) = 2762

X 1.22(1 + 0.08) = 1.32 ’“

-’ ~

N FL = 3.46 MN.

and therefore

For the Pembridge cése, Egns. 4.5 give"
Fri = (1.25)(1.17) = 1.46



Nz 1.22(1 4 0.13) = 1.38
[N

A
and therefpre

R :
B e x Fro = 2.01 MN.

e The reswlts of the above design examples are summarized

in Tables 4.1 and 4.2.
- e

. "

>
4.5.5 Discussion of Results .

‘ S
With reference to Tables 4. 1 and; 4.2, the maximum -

response ratios 1nd1cate that dynamic é?fects are
s1gn1f1cant for the Pembridge p)le but that no
magnification of static respon;e occurs -for tme Londo pier.
For Hondo, Lipsett and Gerard’'s lower est1mate of statwc
force, used in the 11m1t states’ des1gn approach contributes
to the factored load being less hﬁan the values determ1ned
by the ‘code and: direct approaches o However, the 1nplus1on
of dynamlc eff;cts in the dlrect approach, results fn @
‘%factored ice load which is-significantly greaﬁer than the
code value. For the Pembridge pile, the significant dynamic
effects incorporated in the proposed procedures cause bgth
factored loads to be. greater than"th: codé estimate.

A comparison of the code and Lipsett and Gerard’s
estimates for the static load, shows that the values
predicted by the latter are consistently lower. Lipsétt and
Gerard’'s estihates are thought to be preferable ‘o the code
estfmates since they account for the type of failure of the
ice. L .

Lipseft’EEBNGerard neglect the splitting failure case,

{ . :
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o

‘is nearly 30% greater than the code value.
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which proved to produce the governing dynamic effects when
considering all possible failure types for the Hondo pier.
This is probably acceptable,'nevertheless, as the animum
response ratios for sp]itting"failure never signif?cantlg
exceeded the corré%pbqping crusping values. Therefore, it
is un]ikety that dynamic effects, resulting from a lower
splitting Joad, would b~ cretical in design.

A A comparison of the ré&%&éﬁﬁ&t fhe direct and limit
states des1gn approaches shows Uun,lower factored Ioads’are
predicied by the latter procedure In addition to the )

smﬁ]lec estimates of static Noad used, the limit states load

factors a]so reflect a more accurate representatfon of thes
* .

uncertainties 1nherent in estimating the effective ice load.

R o .

The direct approach in'aecounting separately for the ;‘f

variability in dynam1c and stat1S effects, produces results
wh1ch are unnecefsar11y con tive As expected the
der1ve&oad factors are shghtly greater than the code
value as thé? reflect the uncertainty in estimgting both
dynamic and static-effects. ﬂ '

In summary, therefore, the limit states design
approach, as demonstrated, should be considered the
preferable procedure. The factored ice load predicted for
the Hondo pier, for which dynamic effects are not
significant, is lower than the code estimate. For the *{
ﬁkmbridge pi]e,'however, dynamic effects cause 2

magnification of response and the factored design ice load
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4.6 Gene il

1 Design of Slender

=lender piles, as opposed to massive piers., several
modes of v.oration hay make a signifiéant contribution to
«the response. However, the proposed design ice load has been
based on a static force which produces the same maximum
displacement response as the dynamic load when applied to a
single-degree-of-freedom system. This model accurateiy
represents the displacement response_of the pile. However,
for the higher order response quant$¥ies, the contribution
of the higher modes may be significant. In particular, the
maximum shear on the pile may be underestimated by direct
static appligation ogfthe design ice load.
’ In this case, a better estimate of the/maximum dynahic
sheéar in the pile is given by Biggs‘719645. The improved
estimate is based on the dynamic equilibrium of thé total
inebt%a'fo,c for the pile and the load when the'pile is
mode lled by an qu%va]ent single-degree-of-freedom system.
The dynamic propen?ies of the equivalent system are
JZiérhfneq‘from thé properties of the real system‘by a set
of transformation factors. AFor a simply supported. pile
subjected-to an ice load, F(t), at mid-height, the maximum

shear, Q given by Biggs is

max’

= 0.78F, - 0.28F 4.14

Qmax

where the effective static load, Fe, is defined cgn. 4.3
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and F, is the magnitude of the ice load at the time of
maximum response.

a general design situation the latter value is
unknown. However, a conservative estimate of the sheat can
be obtained by negleéting F in Egqn. 4.14. 1In addition, Fe
s&}uld be estimated by the factored ice load, preferably by
the limit states desigﬁ force, i Fh;, determined for the
dynamic properties of the particuiar pile under design.

Hence, the maximum shear on the pf]e should be evaluated

from A
: ‘ V . B
K 0 F = orenEn & 1@“

. 4

The direct static application of the factored .dce {oad at
mid-h%ighf of the pila’wbuld, of course, give a much smaller
value of 0.5X;F.. for the maximum shear.
4.6.2 Scope of Results

Certain restrictions apply to the direct application of

-

the mean response Spectra developed in this study: The form

N o

of the curves depends, to some ekfent, on the ice and flow

conditions at the test locations. For example, the %

- chatacteristic frequency of crushing failure is from 15 to

‘ i
20 Hz at Hondo, but about 35 Hz at Pembridge. The Pembridge ‘ﬁg

piie. with a natural frequency of 12'Hz, would experience

greater dynamic effects if subjected to the Hondo flow

~

conditions,
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I't has been suggested, (Montgomery et al., 1980), that

ice thickness and velocity are the significant flow

o8

parameters which affect the Characteristic ice failure -

frequencies. These researchers have proposed that the S

response spectra may be generalized, for any ‘f low
conditions, in terms of a non-dimensional quantity formed by
the product of system frequency with the ratio of ice
thickness to flow velocity. “Relatively crude estimates of
theseﬁValues‘ﬁave beenn recorded for-the Hondo pier only and
their application to the individual Hondo response spectra
does not produce cgo§1stent generalizations. However, 1 and
2m/s are approx?maﬁﬁfestlmates of the flow velocities for
Hondo and Pembridge}'respectiv@%;,ﬁand estimates of the
respective-ice thicknesses -~ = 1 anq'O.Gm. When applied to
the respective crushi?g frequencie; of 15 and 35 Hz, the
velocity to ice thiekness ratios give non-dimensional
?requencies»of 15 and 10.5. The comparable magnitudes of
these non-dimensional guantities suggest that this approach
would be worthy of further investigation witk more accurate
ice flow data

In addition, a certain componeni of the response
reflected .in the mean response spectra is related to the
‘hyerd load histor1es con§1qgeed,3n the load categories.
The effect of generalizing tﬁis cqmpdnent to other.locations
is uncertain. Nevertheless, it fs felt thet the mean
response;spectra Wfll give a good estimate of dynamic

effects when abplied to other locations. The'hybrid load
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histories correspor Oac Lalﬂload{ng events and therefore
warrant consideratior. 1+ ‘he analysis.

For each location and load category, the coefficients
of variation of the maximum response ratio have been
~determfned by considering the data in a single group.
Ideally, if data were available for a large number of years
the coefficients of variation should be based on the largest!
maxfmum response ratios which occh in each year. Hoa’mever‘w
the amount of data available for this stuay is insufficient

b

“to give statistically significant results by this approach.

ot
-

4.6.3 Implications of Dynamic Effects on the Design Process

The ;ésults of the design example above show that
dynamic effects can cause a significant increase in the
design ice load above the code value. Attention tgmthe
dynamic propefties of the pier durﬁng the design p;ocess,
can result in these effect§ being minimized.

For inclined piers, s;milar to Hondo, the natural
frequency should bé such that resonance does not occupwith
either low frequency bending or high freqdency crushing
forcé fluctuations. Hche, for practical purposes, a
natural frequency 1in tH;\medium frequency range shou?d be
aimed at in design. The Hondo pier falls into this
preferred region. It should be noted, however, that the
mean response speétra indicate that this structure should be
designed for at least the full static effect. As mentioned

8 by Montgomery et al. (1980), this is contracy to the

+
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proposals of some engineers who have suggested, with
particular reference to short duratken events, that massive
structures can be designed for reduééd loads.

For vertical piers, such as the Pembridge pile, natural
frequencies in the high frequency range, which result in
resonance with the crushing component in both splitting and
crushing failure load histories, should be avoided. In
addition, while the mean spectra for Pembridge indicate that
dynamic effects are lower in the low and medium frequency
ranges, the 1nd1v1dua} curves corresponding to repeated
splitting load h1§%’§&k§*1nd1cate that dynamic effects may
be significant in the low frequency region. The slow rate
of repeated splitting loads can cause resonance with these
systems. Hence, for vertical piers also, natural .
frequencies in the medium frequency range are preférab]e.

The above considerations can be used as a guide when
applying the mean response spectra, developed herein, to
approximate the dynamic effects iog.piers subjected to more
ge.era?ﬁéjgw conditions. For{this purpose, the natural
frequency of the pier should be considered ih relation to
the characteristic failure frequencies of the ice at the
location under consideration.

The crushing fréquency, for giveq flow conditiohs. can
be estimated using the procedures presented by Michel )
(1978). The\freqpencies associgfég\with repeated spli{ting
Fyents are more di?ficult to predict.~- Fgr the conditions at
* Pembtidge, ice fl?es'O.Q m.th:ck with a velocity of 2m/s,}

s .
S
-~ A - »
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resulted in repeated splitting loads with frequencies up to

.1 Hz. The frequencies for repeated bending failures can be

estimated by using the frow\\onditions at Hondo as a
reference. At Hondo, ice floes 1m thick with a velocity of
im/s caused resonance at frequencies up to 1 Hz. 1£§
The above discussion of design requirements has been
based throughout on choosing appropriate values for the
pier’'s natural frequency. This indicates the important need
for devising procedurks to predict the natural frequencies
of piers under design. These methods can only be Eeliab]y
developed by correlation with the results of actual field
tests. Hence, the need for extensive @ynamic tests on

piers, such as those performed at Hondo and Pembridge, is

apparent




TABLE 4.1 HONDO DESIGN RESULTS

A

~
o

-

—

Procedure Code Direct Limit states designt,ﬁ\
Static ice load (MN) 3.65 3.65 2.62
Max. Response Ratio - 1.0 1.0
Specified Ice Load (MN) 3.65 4.75 2.62
Load Factor 1.3 1.3 1.32“
Factored Ice Load (MN) 4.75  6.18 3.46
CORY
L
TABLE 4.2 PEMBRIDGE DESIGN RESULYS
| S I .
Procedure ‘ Code’ Direct Limit States\Dgsig‘n
Static Ice Load (MN) .21 1.21 1.17 -
- Max. Response Ratio - 1.25 1.25°
Specifiegwlcenkoa"d (MN) 1,21 1.97 1.46
Load Factor = 1.3 1.3 .38
l:ac‘{ored- Ice Load (MN) 1.§7 m 2.56 2.01°
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5. SUMMARY AND CONCLUSIONS
This study has been devoted tc 'he effect of dynami:
interaction between bridge pier: and time-varying ice loac: .
Extensive ice force data. recorded at two bridge ; iers in
Alberta, Canada, have been used in the analysis. The
time-varying characteristics of the ice force data have been
discussed with reference to the way in which the ice fails
on impact with the pier. For the data recorded at the
massi- Hondo pier. classifications have been made on the
basis of the predominant failure type. Since only a small
amount of data were available for the slender pile at
Pembridge, the ice force histories retorded at this location
Five been considered in a single group.

For the purpose of dynamic analysis, bridge piers have
béen modelled by single-degree-of-freedom systems. - The
maximum response ratios of a range of these simple
oscillators to each of the ice load histories have been
evaluated and the results presented in the form of response
spectra. Mean response spectra have been developed for each
of the load categories considered. These mean curves
reflect the respons the major dynamic characteristics in
the load type and s/ . that dynamic interaction can cause
magnifications of almost twice the corresponding static
effect. Tbh- ireatest magnification occurs when the naturéﬂ
frequency of the pier is close to a characteristic failure
frequency of the ice. Curves of coefficients of variation

in the maximum response ratios have been used ‘o discuss the

82
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variation in response within each load group.
The present design procedure of the CSA Standard (CSA,

19781 neglects the effect of dynamic int-i »~tion between

~ier and load. Two approaches. whi use '+ mean response
spectra and curves of coefficients N developed in
this study, are suggested for accoun. the dynamic

effects. The first, or direct approach, enables dynamic
effects to be incorporated into the current code format. In
‘he second approach, the concepts of limits states design
have been used to develop an expression for a single
factored i~e load which includes dynamic effects.

A des gn example has been used to demonstrate that the
current cou oprocedure may underestimate the effective ice
load in “e ca-e - piers where dynamic effects are
signiticant. In other cases, the proposed limit states
design approach. which uses an improved estimate of static
ice load proposed by Lipsett and Gerard (1380), shows that
the design load given by the code may be conservative. In
addition. while attention to the dynamic properties of a
pier under design can enable dynamic effects to be
minimized, all piers should be proportioned'to withstand at

least the full static effect of the load.
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APPENDIX A

A.1 Introduction

The ice load reaction recorded at the Pembridge pile
during ice runs at spring break-up is related to the ice
load by a transfer function. Because of the dynamic
characteristics of the pile. the transfer function cannot be
derived from statics alone. In particular, the pile
magnifies frequency components in the load which are close
to the fundamental natural frequency of the pile.

The purpose of this appendix is to show how the
Pembridge load histories have been evaluated from the
recorded ice force reactions. The transfer function which
accounts for the dynamic characteristics of the pile 1is
derived, and the analysis procedure deVeloped is

demonstrated with reference to example data.

A.2 Dynamic Mode]l

In this section, an expression is derived which relates
the time history of the reaction for the vertical pile at
Pembridge to the components of the reaction associated with
each mode of vibration.

In the derivation, the pile has been modelled by a
simple beam of length, L, and mass per unit length, m, (Fig.
A.1.) In general, a horizontal ice load, F(s.t), may vary
with position, s, along the‘beam and time, t. The resultant

transverse displacement response, x(s,t), is also a function

88
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of these variables. For each loading event, the ice force
is assumed to act at a constant level, distance al. from the
lower support. The upper reaqtion at s = L s denoted |
N(t).

Under the assumbtion that the pile is a distributed
parameter system, the displacement response may be written
as (Clough and Penzien, 1975)

oo

xCs, )0 ¢ o) Y ) AL
This equation states that the total response is the sum of
the responses in an infinite numberhof modes. The response
in the n-th. mode consists of a constant shape, @n. the
amplitude of which varies with time according to the
normalized displacement, Yn. For the assumed simplie end

conditions, the shape function, @n. is given by

¢ ()= Sin (Aans/L), mei2 O ALD

n

The time-varying component in the response, Yn, is given by
s ‘J , & _ _
7HH*Z&Q,%JJ*Q,&@)*Q¢MMH A.3

where a dot above Y represents one differentiation with

respect to time.

The generalized mass of the beam, Mn; may be evaluated

from



Mn = _/‘@nl(S)}ﬁA& A A

which, using Eqn. A.2, reduces to . | }

Simila ly, the generalized load, Fn(t), is defined by
fo(e) - oftsfnm Fis, ¢)ds A.6
which in this particular case reduces to
£ = Sininna) Fce) A.7

J
In Egn. A.3,~§n, is the damping ratio in the n-th. mode and
w,, is the corresponding circular frequency of vibration.
The latter may be evaluated from

W= Pnt JET /LY pel 2. 20 A.8

where the flexural rigidity of the beam is denoted by EI.
The shear on the beam corresponding to a given
deflected shape is proportional to the third derivative of
the displacement, x, with respect to position, s. In
addition, assuming that the stresses produced by the .
internal damping are proportional:to the rate of change of

strain with time, the shear on the beam, Q(s,t), for any



g2
AN
position and time is given by
3 - .
Qus )= £I X x(s,e) + ¢ ] 2% x(s,¢) A.9

ps? dst ot

where cg represents the internal damping, and is the
constant of proportionality between stress and strain rate.

By using Egn. A.1, the shear may be written in the form

o0 2 , o0 3 :
Qesjt)= £ 1 & Y @) + 3 oI 4786 Ya) A.10
r=y = " rres —_—l
as as7

The reaction N{t), which is simply the shear when s =

L, may be evaluated from

NE) = @/L, ) At

Accordingly, if Egn. A.2 is substituted into Eqn. A.10, and

the result is substituted into Egn. A.11, we can write,

o0 O .
- - , 3 - 3
N = ,,5/ Linr “Los nr Y (&) i;/ & I(ax Losrm Y &) AL12
Egn. A.12 relates the time history of the reaction to the .
time-varying component of the response, Y . By making
appropriate substitutions in Egn. A.12, the required

relationship between reaction and load can be derived.
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A.3 Derivation of Transfer Function

The dynamic effects of the system on the recorded
reaction can be conveniently accounted for in the frequency
domain. In this section, the transfer function, T(&@), is

derived such that
FE)=T065) Nw) ~ A.13

where F(a) is the ice load and N(&) is the reaction, both
expressed as functions of circular frequency, ©.

The variables involved in the analysis can be
transformed from the time to the frequency domain usiﬁg
Fourier transforms, (FT). A geneqéﬁ function of time, P(t),
composed of a range of frequenty components has a Fourier
transform, P(3), defined by

O

FT[P)= P5) = [ Ple)e-t5% ¢ A 14
b -0

The values of P(@) reflect the magnitude and phase of all

the harmonics contained in the complete time history. The

following relationships can also be shown

o —
FI[Pe)] = (5 Py A, 15(a)
Frl Pee)] = ~-5% Pi3) A.15(b)

In addition, the inverse Fourier transform, (IFT), given by
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J o0 B N
CrErs Pl PE = (ren) | rs) e s A 16
5ot

maps functions from the frequency to the time domain.
By taking the Fourier transform of both sides of
Eqn. A.3, the governing equation‘of motion for the pile can

be written as

-

-0 )’,,(5) +2 }:’ w1 w yp[[))‘f Unz yn o) - /i,/g-j/Mn . A 17
or
X’/u)://(é)f(g) X 2 18
wﬁere
K (@)= Wk, (A i 25, 8,)] A.19
and )
Po™ Ty A.20 &

The function, Hn(ﬁ)- called fhe'modal complex frequency
response, relates the frequency components in the resﬁonse,
Y, (@), to those in the modal generalized load, F (@), |

In the same way, the frequency components in the
response, Y (&), and reaétion. N(@), may be're]ated ;&
tafng the Fourier tra‘sform of the time functfons in Egn.
A.12. This gives <

*

L, 80 _ ’ L oo 3
Nz) = Tﬁ/?gi_r Pcds nrlFT+ 56 T) ) (5) A.21
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Further, the modal generalized load, Fn(t), can be related
to the ice load, F(t), in the frequency domain, by using

Egn. A.7. This gives

£ lS) )= Siplrma), oS A.22

Substituting Eqns. A.18 and A.22 into A.21, results in

the following expression for N(@)

00
N(S)= % /hmf[asnn/[[+zwé-JJ#&@)Qnﬁma)zéJ A.23

nx/

By using Egns. A.18, A.5 and A.8, Egn. A.23 can be written

in the form

0z ,z/ 2 Losnm Sip nra (1 +ESE/E)  Fr) A.04
A
7 (/A7 “ 25, A :
If the damp‘ is assumed to be stiffness proportional, then

for orthogcnali. - conditions to be satisfier the damping
term, c,/E * @ so given by 2§ /w, (Cloug - d Penzien,
1975). Ther: ~ , with Cos(nm = (-1)", Eqn. A.24 can be

rearranged to give

Fs) /1 /[2 —2//) Sin nrna (1+L28 8 Jf /V/u) A.25
" (/ﬁ‘HZf/sn)
which is similar in form to Eqn. A.13, if the transfer
function, relating the frequency components of the load and

reaction is defined by

. ne e s R RS



A.4 Application

In this study a computer program was written to develop
the ice force time history from the measured reaction time
history. The program is listed on pp.104. The major steps
involved are presented below, with reference to an exampile
set of data. In the following, for convenience, functions

of circular frequency, @, are referred to in terms of cyclic

frequency, f = w/2m.

(1) Read in reaction time history, N{(t).

Fig. A.2 shows a typical reaction time history recorded

at Pembridge.

(2) Transform N(t) to the frequency domain.

For numerical analysis of the digitized‘reaction time
histories, the Fourier transform of Egn. A.14 is replaced by
the discrete equivalent and evaluated using fast Fourier
transform (FFT) algorithims. Hence,

FFTIN(t)] = N(f]

Accordingly, the harmonic coefficients N(f are evaluat:r -¢
at discrete frequencies, f.

A plot of N(f) is shown in Fig. A.3 for the time
history of Fig. A.2. Consistent with the procedure

presented by Michel (1978) which relates the 'crushing
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frequency of the ice *» the ice velocity and thickness, it
has been assumed that all significant frequency components
in the load are less than 50 Hz. The coefficients
corresponding to higher frequencies are set equal to zero.
The plot shows that the harmonic components in the region of
12 Hz are relatively large. Resonance of the pi'e in the

fundamental mode amplifies the response of these frequency

components.

(3) Evaluate the transfer function, T(f).

In generé], the transfer funétion is given by Egn.
A.26. For practical analysis, it is sufficient to consider
only those modal components which provide significant
contributions to the response. In this case, consideration
of the first ten modes has been assumed to give sufficiently
accurate results. In addition, due to the high frequencies
of oscillation associated with the higher modes, the
contribution to the response of the fourth and higher modes
is essentially a static effect. This is indicated,
mathematically, by the term g2 in Eqgn. A.26 approaching

zero. Therefore, in the calculations, T(f) has been

approximated by.

T(F)= 1/[£ 2 (1" Sinnna {1+ ¢25,8)) +2 -21—/)”5//7 mra]
=/ Yai ///5/7.#52;/5,() =g nl

The plot of the transfer function, T(f), in Fig. A.4

shows that. for low frequency components, T(f) is
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approximately 2.5. This is éimply the static relationship
between load and reaction, as for the force history under
consideration the water level corresponded to a value for al
of about 0.4L. Since the dynamic characteristics of the
pier magnify the frequency components of the load near the
natural frequency of vibration for the pier, the values of

the transfer function are significantly reduced at 12 Hz.

(4) Evaluate the ice load, F(f).
Each harmonic component of the reaction, N(f), is
multiplied by its transfer function, T(f), to give the

corresponding harmonic component of the ice load, F(f).
Figure A.5 shows a plot of F(f), derived from the reaction
of Fig. A.3. The dynamic effects of the pile have been
eliminated as indicated by the absence of relatively large

components at 12 Hz.

(5) Evaluate the ice load time history, F(t), from F(f).

This is achieved by using the inverse fast Fourier
transform (IFFT) algorithims. Hence,

F(t) = IFFTLF(F)]

The corrected ice load time history, F(t), is shown in Fig.
A.6. The function is independent of any characteristic of
the load measuring system. As can be seen from Fig. A.6, it
is similar in overél] form to the reaction time history of
Fig. A.2. with, however, significantly different frequency

components.
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The above procedures ha e been applied to each of the
~eaction time histories to give the ice loads on.the

Pembr idge pileﬁ The ice load time histories are presented

in full in Appendix B.
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APPENDIX B

B.1 Introductory remarks

The complete set of ice load histories and response
spectra, used in the study, are presented in this appendix.
The Hondo data are grouped under 3 headings: bending,
crushing and splitting failu;e. The Pembridge data are
presented in a single group.

In the following, the load history/response spectra
combinations are presented in pairs (i.e. 2 load histories
followed by the corresponding spectra). ‘he plots are
labelled according to the date and time when the maximum

force in the loading event was measured in the field.
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B.2 Bending Failure Load Histories and Response Spectra -
Hondo
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B.5 Load Histories and Response Spectra - Pembr idge
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