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Abstract

Static data-flow analysis is a method of reasoning about program values with-

out executing the program. A data-flow analysis that is context-sensitive,

field-sensitive, flow-sensitive, and alias-aware can precisely and soundly an-

swer points-to queries (e.g. what heap objects can variable v reference at

line n?). For large modern software systems, answering these queries is time-

and resource-intensive due to the size and complexity of library code. If an

application is heavily library-dependent, a typical data-flow analysis spends

the majority of its computation time analyzing library code. However, library

code does not change each time an application is compiled, so library data-flow

can be summarized and re-used to efficiently analyze application code.

This thesis details a novel method of computing precise data-flow sum-

maries for libraries using Synchronized Pushdown Systems (SPDS) and heap

graphs, which we implement in a tool called BluJ. To construct the sum-

maries, BluJ instantiates an SPDS instance at every point that an object

may enter the library. BluJ then computes forward data-flow reachability in-

formation for each SPDS instance and uses a heap graph to model the heap re-

lationships between the respective objects tracked by each SPDS instance. The

resulting data-flow summaries take into account any aliasing that occurs in the

library, they are context- and field-sensitive, and they are flow-sensitive with

the exception of a few rare cases. The generated summaries are bi-directional

and can be consumed by either a forward or backward client analysis. We im-

plement our summaries within the Boomerang points-to analysis framework
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and compare the relative performance and precision of Boomerang with and

without our generated summaries.

iii



Preface

This thesis contains wholly original work, and we intend to publish portions

of this thesis in the future. I formulated the concept and theory of this work,

designed and implemented the software component, and carried out the em-

pirical evaluation. Karim Ali was the supervisory author and contributed to

the concept and theory of this work, as well as the empirical evaluation design

and thesis edits.

iv



Acknowledgements

I would like to thank my supervisor, Karim Ali, for his patience, guidance, and

support over the last few years. In addition to his invaluable contributions to

this work, he provided focus and direction in the early stages when I was

unsure of my research topic, and he taught me the research skills I needed

to be successful. I would also like to thank Ondr̆ej Lhoták and Frank Tip

for providing me with feedback and advice early in my Master’s, which was

invaluable to me at the time.

Thank you to my amazing partner, Sarah, and our wonderful daughter

for providing the support and encouragement I needed to stay grounded and

motivated over the course of my graduate studies.

Thank you to my friends and colleagues in the Maple lab for the produc-

tive discussions we had and the mentorship you provided, and thank you to

everyone else at the University of Alberta who helped me along the way.

Thank you to the folks at the Amazon Prime Video Automated Reasoning

team, especially Bor-Yuh Evan Chang, Daniel Schoepe, and Pauline Bolig-

nano, for providing me with the chance to spend six months learning as an

intern. Thanks to my time with the team, I was able to return to my Mas-

ter’s studies equipped with a greater breadth of static analysis knowledge and

several new ideas for this work.

I would like to thank the University of Alberta Department of Computing

Science and Faculty of Graduate Studies and Research for partially funding

this work. Additionally, I acknowledge that this work was funded in part by

the Natural Sciences and Engineering Research Council of Canada (NSERC).

I respectfully acknowledge that during the completion of this thesis I have

lived and worked on Treaty 6 and Treaty 7 territory, the traditional lands

v
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Chapter 1

Introduction

Static data-flow analysis leverages program semantics to reason about the

flow of information in a program at compile-time, without running the pro-

gram. Optimizing compilers use static data-flow analysis to determine which

program transformations they can safely apply [51], integrated development

environments (IDEs) use static data-flow analysis to detect possible bugs [37],

and software security tools use static data-flow analysis to verify that pro-

grams are free from data leaks and injection attacks [7]. Unfortunately, com-

puting exact semantic properties of arbitrary programs is undecidable, per

Rice’s theorem [43], so static data-flow analysis techniques must either over-

or under-approximate the true runtime behaviour of programs.1

Generally, compilers and security tools must over-approximate program

behaviour because they aim to provide guarantees about the programs they

analyze, i.e., that a compiled program is semantically equivalent to its original

source code, and that a program is free from security vulnerabilities, respec-

tively. An analysis that provides these guarantees is sound, but it is also

necessarily imprecise due to the undecidability of static analysis. This im-

precision manifests in the form of false positives. For a security analysis, this

means that it may report data leaks that may not actually occur at run time.

For a compiler, this means that it may avoid applying an optimization that

would be perfectly safe in practice.

Because data-flow analyses reason about the flow of information in a pro-

1Hereafter, we use “data-flow analysis” to refer to “static data-flow analysis”
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gram, they are generally flow-sensitive, meaning they compute information at

every individual program statement. For large programs, precise flow-sensitive

analyses are not always feasible due to constraints on memory usage or run-

ning time. For example, a flow-sensitive points-to analysis calculates the set

of possible heap allocations that every program variable can reference at each

individual program statement. It is therefore difficult to efficiently compute

flow-sensitive points-to information for large programs with many statements

and many heap-allocated objects.

The difficulty of obtaining flow-sensitive information for large, complex

programs motivates the development of techniques to analyze data-flow in

partial programs. The goal of partial program data-flow analysis is to de-

crease the scale of an analysis problem by analyzing individual compilation

units and then composing the results of the individual analyses. Most partial

program data-flow analyses persist their analysis results by writing data-flow

summaries to disk, allowing subsequent analysis runs to re-use the summaries.

Consequently, this analysis approach is most applicable to compilation units

that see a high amount of re-use across multiple programs. For the Java lan-

guage, the highest-use compilation units are libraries such as the Java Stan-

dard Library or those available through repositories such as Maven Central.2

Java libraries are often significantly larger and more complex than the applica-

tion code that uses them, motivating extensive research on generating analysis

summaries for Java libraries [1], [2], [6], [45], [60], [61].

There are inherent difficulties in generating precise library data-flow sum-

maries for Java. In the absence of application code, the library only has access

to type information for objects created in the application as declared in the

signatures of its application programming interface (API) methods, making

it difficult to accurately resolve virtual method calls. Application classes can

override library methods, so library summaries must accurately model the flow

of objects back into the application at overridable method calls. Because Java

programs often exhibit deeply nested (and sometimes recursive) field accesses

on objects, library-only analyses must track the flow of fields of objects passed

2https://mvnrepository.com/repos/central
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into the library in addition to the objects themselves. Analyses that track

fields of objects are called field-sensitive. The current state-of-the-art for Java

library data-flow summaries uses k-limited access paths to abstract fields of

objects at library entry and exit points. k-limited access paths only track

data-flow up to k field accesses on each object, and they are field-insensitive

for access paths with length greater than k.

This thesis introduces BluJ, a tool that improves the precision of library

data-flow summaries by tracking the flow of all fields of objects passed into

the library, including access paths of arbitrary depth, using a combination of

precise field abstractions: PDSs [11] and heap graphs [14]. BluJ instantiates

a synchronized pushdown system (SPDS) [55] for every base object that enters

the library and additionally maintains a heap graph that tracks any field reads

that the library performs on that object. We target flow-sensitive points-to

analyses as the primary consumer of our library summaries, due to the large

class of potential client analyses that require flow-sensitive points-to infor-

mation and the difficulty of obtaining whole-program flow-sensitive points-to

information for large Java programs.

We aim to determine whether data-flow summaries based on synchronized

pushdown systems and heap graphs are feasible in practice. Specifically, we

(1) assess whether they can be computed efficiently and (2) whether they can

be efficiently and precisely integrated into an existing whole-program points-

to analysis. For (1), we evaluate whether BluJ can summarize enough li-

brary classes to capture at least 50% of application-to-library data-flows within

the span of 12 hours. For (2), we integrate BluJ’s summaries into the

Boomerang points-to analysis framework [56] and compare Boomerang

to Boomerang+BluJ on the basis of analysis time, memory consumption,

soundness, and precision. We determine thatBluJ’s integration withBoomerang

is efficient and precise if it satisfies the following criteria:

• On average, Boomerang+BluJ takes less time to analyze the same

target program set as Boomerang.

• On average, Boomerang+BluJ uses less maximum memory to analyze
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the same target program set as Boomerang.

• Boomerang+BluJ is sound with respect toBoomerang, i.e., it reaches

the same set of application states as Boomerang when analyzing the

same target program set.

• Boomerang+BluJ does not introduce more than 25% additional reached

application states when compared to Boomerang on the same target

program set.

We show that BluJ can compute its summaries efficiently, but integration

of BluJ’s summaries into an existing analysis is not efficient.

This thesis includes the following contributions:

• We provide a novel technique for generating precisely field-sensitive li-

brary data-flow summaries based on synchronized pushdown systems and

heap graphs.

• We present a process for integrating our data-flow summaries into an

existing data-flow analysis framework.

• We present BluJ, a tool that generates our data-flow summaries for

Java library classes and integrates them into the Boomerang points-to

analysis framework.

• We provide an empirical evaluation of precision and performance ef-

fects that result from using our data-flow summaries in a whole-program

points-to analysis.

This thesis is organized as follows. Chapter 2 provides relevant background

on data-flow analysis, call graphs, and points-to analysis, as well as pushdown

systems and their relation to data-flow analysis. Chapter 3 discusses related

work in the area of partial program analysis and library data-flow summaries.

Chapter 4 describes how we use synchronized pushdown systems and heap

graphs to summarize library data-flow in the absence of application code.

Chapter 5 outlines how BluJ writes persistent summaries and integrates them

4



into a whole-program points-to analysis. Chapter 6 provides an evaluation on

the basis of soundness, precision, and performance for a points-to analysis

that integrates BluJ’s summaries. Chapter 7 reviews the contributions and

conclusions of this thesis and discusses potential directions for future work.
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Chapter 2

Background

Data-flow analysis first became an area of research interest in the late 1960s as

a technique to perform aggressive optimizations in compilers. Early research

on data-flow analysis was often tailored to specific compiler optimizations, such

as common subexpression elimination [16] and reaching definitions [3]. These

analysis problems both fall into the category of classical bit-vector problems,

which take their name from the fact that they have solutions that are efficiently

computable using bit-vectors. In 1973, Kildall [28] introduced the first generic

approach to data-flow analysis, formalizing the bit-vector problems in a single

framework.

2.1 Intraprocedural data-flow analysis

Kildall’s framework applies to intraprocedural data-flow, meaning that the

analysis restricts the tracking of data-flow to the confines of procedure bound-

aries. The framework operates over a control-flow graph (CFG)Gc = (S,E, s0),

where S is the set of statements in the program, E ⊆ S×S is the set of edges

of the CFG, and s0 is the program entry statement. A CFG represents the

execution order of statements in a program. For a CFG edge (s, s′) ∈ E, s′

is called the control-flow successor of s, and s is called the control-flow prede-

cessor of s′. The framework additionally requires a domain of data-flow facts

D that form a semilattice with a meet operator ⊓ : D × D → D, and a flow

function f : S×D→ D that maps a pair (s,D) to D′ for s ∈ S and D,D′ ∈ D.

The flow function f can be viewed as an input/output relation on each state-
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ment s ∈ S—given a set of input data-flow facts D before statement s, the

flow function returns a new output set of data-flow facts D′ after statement s.

In other words, each s ∈ S naturally yields a function f(s) : D→ D.

Kildall’s framework computes the meet-over-all-path (MOP) solution to a

data-flow problem, i.e., the set of data-flow facts D ∈ D that holds at some

statement s. Let PATH(s) be the set of all paths from the initial statement

s0 to s in the CFG, and let ⊥ be the least element of D. Then, the MOP

solution for a statement s is:

MOPs =
l

(s0,...,s)∈PATH(s)

(f(s) ◦ ... ◦ f(s0))(⊥)

The MOP solution is computable for data-flow problems that are distribu-

tive. A problem is distributive if it defines a flow function f such that for all

s ∈ S and D,D′ ∈ D, f(s, (D ⊓ D′)) = f(s,D) ⊓ f(s,D′). Some practical

data-flow problems, such as constant propagation, are non-distributive. In

1977, Kam and Ullman [25] generalized Kildall’s work to the class of mono-

tone data-flow problems, which includes the distributive data-flow problems

as well as some non-distributive problems like the aforementioned constant

propagation. A problem is monotone if it defines a flow function f such that

for all s ∈ S and D,D′ ∈ D, D ≤ D′ =⇒ f(s,D) ≤ f(s,D′), where ≤ is the

ordering operator for the semilattice D. For the class of monotone data-flow

problems, the MOP solution is not computable. Instead, the monotone data-

flow framework computes the maximal fixed point (MFP) solution, which is an

over-approximation of the MOP solution. For problems where the flow func-

tions are distributive, the monotone framework’s MFP solution is equivalent

to the MOP solution.

2.2 Interprocedural data-flow analysis

Interprocedural analysis tracks data-flows through procedure calls and returns

in addition to tracking data-flow within individual procedures. Early research

on interprocedural analysis emerged from attempts to perform whole-program
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optimizations in the IBM PL/I compiler [57]. Generally, interprocedural anal-

ysis requires a call graph [4] to keep track of referencing relationships between

procedures. A call graph is a mapping from each program statement (or “call

site”) that invokes a procedure to each potential target of the procedure call.

For object-oriented languages such as Java, statically resolving the exact

target of a procedure call is, in general, undecidable. However, there are

a large number of effective approximate algorithms for computing static call

graphs, e.g., [8], [17], [35], [59]. The choice of call graph construction algorithm

significantly affects the efficiency and precision of an interprocedural data-

flow analysis. An imprecise call graph can lead to a large number of spurious

data flows (negatively impacting precision) and large sets of data-flow facts

(negatively impacting performance). Conversely, computing a very precise call

graph may not be feasible for large programs due to constraints on memory

usage or running time.

2.3 Data-flow dimensions

Data-flow analyses are characterized by the ways in which they propagate

data-flow facts with respect to control flow, procedure calls/returns, and heap

accesses [46]. Each data-flow analysis has a level of sensitivity in each of the

aforementioned dimensions, which we discuss in the following subsections.

2.3.1 Flow-sensitivity

A flow-sensitive data-flow analysis is an analysis that takes into account the

control flow of a program when computing data-flow facts. A flow-sensitive

analysis maintains data-flow facts at each location along a program’s control

flow graph. A flow-insensitive analysis instead computes data-flow facts that

must hold at all program locations. Flow-sensitive analyses are inherently

more precise than their flow-insensitive counterparts because they are able to

perform strong updates to remove data-flow facts that no longer hold at a

particular statement. Most distributive data-flow problems have an efficient

flow-sensitive formulation, including the classical bit-vector problems.
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Flow-insensitive analysis is most applicable to problems where the flow

functions are non-distributive and computing per-statement information is

computationally expensive, such as points-to analysis. Widely-used instan-

tiations of flow-insensitive points-to analyses include Andersen’s set-based for-

mulation [5] and Steensgaard’s equality-based formulation [58]. Recently, some

advancement has been made on efficient flow-sensitive points-to analysis, e.g.

[21], [33], [56], and we incorporate many of the ideas of Späth et al. [56] into

BluJ.

2.3.2 Context-sensitivity

A context-sensitive data-flow analysis is an interprocedural analysis where the

information computed for a procedure depends on its calling context. Con-

versely, a context-insensitive analysis makes no distinction between possible

calling contexts of individual procedures. A context-sensitive analysis uses a

call graph to determine the possible calling contexts for each procedure that it

analyzes. Two classical and influential approaches to context-sensitive data-

flow analysis are the call-strings approach and the functional approach [52].

The call-strings approach attempts to approximate the runtime stack by

maintaining a “string” of calling contexts for each procedure call. When the

analysis enters a procedure call, it appends the calling context to the call-

string. When it exits that procedure, it removes the context, ensuring calls

and returns are properly matched. To guarantee that the analysis terminates,

call-strings are bound to a finite length chosen by the analysis designer. The

largest downside to the call-string approach is that it cannot effectively model

recursive procedure calls, making it infeasible for languages where call graphs

are likely to contain many cycles [34].

The functional approach attempts to summarize the input-output relations

for each procedure. Once the analysis finishes computing the summary for a

given procedure, it does not need to analyze the procedure again. Instead,

when the analysis encounters an invocation of the procedure elsewhere in the

program, it applies the summary to the current calling context. Usually, the

analysis begins by analyzing the set L of procedures that do not invoke any
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other procedures, then continues recursively analyzing callers of L until the

analysis reaches a fixed-point. This is commonly referred to as “reverse invoca-

tion order” or “bottom-up” analysis. An advantage of the functional approach

is that it effectively handles recursive procedure calls. However, it is difficult to

create procedure summaries that are sufficiently general to be applied at any

possible calling context, yet lightweight enough to be applied efficiently. Many

modern context-sensitive analysis techniques are variations of the functional

approach, e.g., [13], [19], [40], [47].

2.3.3 Field-sensitivity

In object-oriented languages, programs read and write to heap memory by

executing loads and stores on fields of objects. A precise data-flow analysis

must therefore be field-sensitive and implement an abstraction that tracks

object fields.

2.3.3.1 Field-based abstraction

A field-based analysis does not distinguish between field accesses on different

objects of the same type. Instead, for an object o of type T and a field access

o.f , the analysis abstracts the object by its type and treats the field access as

T.f . If there is a field access o′.f on a different object o′ that also has type

T , the analysis again treats the field access as T.f and does not distinguish

between the objects o and o′. The advantage of the field-based approach is

that it has a relatively small data-flow domain D = V ∪ F , where facts are

either variable names or field names. The small data-flow domain restricts the

size of sets of data-flow facts that the analysis needs to propagate, and in many

cases translates to an efficient analysis. The analysis also grows less precise

as the number of field accesses on different objects of the same type increases.

Despite its limitations, the field-based abstraction is significantly more precise

and generally more efficient than field-insensitive abstractions [22].
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2.3.3.2 k-limited access paths

Access paths describe a base variable, v, followed by a finite sequence of field

references f ∗ of up to length k. The data-flow domain of an analysis that uses

k-limited access paths is then D = V × F ∗. Access paths offer more precision

than the field-based abstraction, at the cost of a larger data-flow domain.

Additionally, for data-flow facts with field access chains longer than k, the

analysis becomes field-insensitive. In practice, an analysis developer may need

to select an appropriate value of k that balances precision and scalability. A

high value for k yields a more precise analysis, but it also leads to an explosion

in the size of the data-flow domain [31]. Access paths have proven to be a useful

abstraction for alias analysis, as aliasing relationships can be represented as

equivalence classes of access paths [26].

2.3.3.3 Access graphs and heap graphs

Access graphs remove the need for k-limiting by representing field accesses as a

(possibly infinite) regular set of paths [27]. Analyses that use this abstraction

typically capture the set of access paths in a graph G = (v, f0, F, E), where v ∈

V is the root variable of each access path, F is the set of fields in the program,

f0 ∈ F is the entry point of the graph that contains no incoming edges, and

E ⊆ F×F . The data-flow domain is then D = GP , the set of all possible access

graphs. Access graphs are more precise than k-limited access paths because

they capture recursive field accesses. Despite a large data-flow domain, access

graphs are often more efficient than k-limited access paths. Since each access

graph concisely represents a set of access paths, the quantity of data-flow facts

that the analysis must propagate is often considerably smaller, especially when

the access path abstraction uses a high value of k.

Heap graphs (also referred to as shape graphs) are closely related to access

graphs but differ in their representation of field accesses. Rather than main-

taining a separate graph for each root variable, a heap graph captures the

field access relations between heap-allocated objects in the form of a labelled

directed graph GH = (A,F, δ), where A is the set of heap allocated objects, F
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is the set of fields in the program, and δ ⊆ A×F ×A is the set of field-labelled

edges between heap objects. Similar to access graphs, the data-flow domain

for a heap graph-based analysis is D = GP . Kanvar and Khedker [26] discuss

this class of heap abstractions at depth.

2.4 Pushdown systems

Pushdown systems were originally developed as a tool for model-checking pro-

grams with recursive procedure calls [11] and are currently widely-used for

both verification and program analysis [30]. Definitions 1-5 in this section are

adapted from Bouajjani et al. [11], and Definitions 6 and 7 are adapted from

Späth et al. [55].

Definition 1. A pushdown system (PDS) is a triple P = (P,Γ,∆), where P

is a finite set of control locations (i.e., states), Γ is a finite stack alphabet,

and ∆ ⊆ (P × Γ) × (P × Γ∗) is a finite set of PDS rules. We use the syntax

⟨p, γ⟩ ↪→ ⟨p′, w⟩ for a rule ((p, γ), (p′, w)) ∈ ∆, and we refer to c = ⟨p, w⟩ as

a configuration of P , where p ∈ P and w ∈ Γ∗. We denote the set of all

configurations by C.

Throughout the remainder of this thesis, we assume that ∀w.(⟨p, γ⟩ ↪→

⟨p′, w⟩ ∈ ∆ =⇒ |w| ≤ 2). This assumption does not restrict the expres-

siveness of a PDS, because any PDS that admits rules with |w| > 2 can be

transformed to an equivalent PDS with the restriction |w| ≤ 2 [20].

Similar to pushdown automata, pushdown systems describe a set of op-

erations performed on a stack. In contrast to pushdown automata, push-

down systems do not accept any input because they are not intended to solve

language-recognition problems. Rather, a pushdown system is generative—

when provided with a set of initial configurations C, a PDS generates a tran-

sition system that captures the set of configurations that are reachable from

C. We define PDS reachability in terms of the predecessor relation pre and

the successor relation post.

Definition 2. pre : 2C → 2C is defined as

12



pre(C) = {⟨p, γw⟩ ∈ C | ∃⟨p′, w′⟩ ∈ C . ⟨p, γ⟩ ↪→ ⟨p′, w′⟩ ∈ ∆}

Definition 3. post : 2C → 2C is defined as

post(C) = {⟨p, w⟩ ∈ C | ∃⟨p′, γw′⟩ ∈ C . ⟨p′, γ⟩ ↪→ ⟨p, w⟩ ∈ ∆}

We can compute all configurations reachable from a set of initial config-

urations C by applying the transitive closure of the pre and post relations,

denoted by pre∗ and post∗, respectively. The sets pre∗(C) and post∗(C) are

possibly infinite, but they are regular and can therefore be represented by

finite automata.

Definition 4. Given a pushdown system P = (P,Γ,∆), a P-automaton is a

finite state automaton A = (Γ, Q, δ, P, F ), where Q ⊇ P is the set of states,

δ ⊆ Q×Γ×Q is the set of transitions, P is the set of initial states, and F ⊆ Q

is the set of final states.

Definition 5. The transition relation →⊆ Q× Γ∗ ×Q for a P-automaton is

the smallest relation satisfying the following:

• if q ∈ Q, then q
ϵ−→ q

• if (q, γ, q′) ∈ δ, then q
γ−→ q′

• if q
γ−→ q′ and q′

w−→ q′′, then q
γw−→ q′′

Informally, a transition q
w−→ q′ is included in the transition relation for A if

q′ is reachable from q along a path labelled by w. A P-automaton recognizes a

set of configurations C if, for every ⟨q, w⟩ ∈ C, there is a corresponding qf ∈ F

such that q
w−→ qf . The sets pre∗(C) (resp. post∗(C)) are computable by first

constructing a P-automaton A0 that recognizes C, and then repeatedly adding

transitions to A0 such that every time a new transition (q, γ, q′) is added to

δ, a new configuration ⟨q, γw⟩ ∈ pre∗(C) (resp. post∗(C)) is recognized by

A0. Efficient algorithms [20] can construct pre∗(C) in O(|Q|2|∆|) time and

O(|Q||∆|+ |δ|) space, and post∗(C) in O(|P ||∆|(|Q|+ |∆|) + |P ||δ|) for both

time and space.
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1 main() {

2 A a = new A();

3 A b = new A();

4 A c = m(a, b);

5 }

6

7 m(A x, A y) {

8 if (...) {

9 return x;

10 } else {

11 return y;

12 }

13 }

(a) A small example pro-
gram.

Normal Rules

⟨a@2, ∗⟩ ↪→ ⟨a@3, ∗⟩
⟨x@7, ∗⟩ ↪→ ⟨x@8, ∗⟩
⟨x@7, ∗⟩ ↪→ ⟨x@10, ∗⟩
⟨x@8, ∗⟩ ↪→ ⟨x@9, ∗⟩
⟨x@10, ∗⟩ ↪→ ⟨x@11, ∗⟩
⟨y@7, ∗⟩ ↪→ ⟨y@8, ∗⟩
⟨y@7, ∗⟩ ↪→ ⟨y@10, ∗⟩
⟨y@8, ∗⟩ ↪→ ⟨y@9, ∗⟩
⟨y@10, ∗⟩ ↪→ ⟨y@11, ∗⟩

Push Rules

⟨a@3, ∗⟩ ↪→ ⟨x@7, 4 · ∗⟩
⟨b@3, ∗⟩ ↪→ ⟨y@7, 4 · ∗⟩

Pop Rules

⟨x@9, 4⟩ ↪→ ⟨a@4, ϵ⟩
⟨y@9, 4⟩ ↪→ ⟨b@4, ϵ⟩
⟨x@11, 4⟩ ↪→ ⟨a@4, ϵ⟩
⟨y@11, 4⟩ ↪→ ⟨b@4, ϵ⟩
⟨x@9, 4⟩ ↪→ ⟨c@4, ϵ⟩
⟨y@11, 4⟩ ↪→ ⟨c@4, ϵ⟩

(b) PDS rules for the program in Figure 2.1a. The
symbol ∗ is the wildcard symbol, denoting that the
rule accepts any statement s ∈ S.

Figure 2.1

2.4.1 Context-sensitive analysis with pushdown systems

Pushdown systems can encode distributive data-flow problems. As an ex-

ample, we construct a context-sensitive PDS to track interprocedural data-flow

for the example in Figure 2.1a.

Definition 6. Given a set of program variables V and a set of program state-

ments S, a context-sensitive PDS is PS = (V × S, S ∪ {ϵ},∆S). We use the

notation v@s for a control location (v, s) ∈ V × S. The symbol ϵ denotes an

empty stack.

Figure 2.1b contains the PDS rules for the example in Figure 2.1a. For a

PDS rule of the form ⟨v@s, γ⟩ ↪→ ⟨v′@s′, w⟩, we refer to rules with |w| = 1 as

normal rules, rules with |w| = 2 as push rules, and rules with |w| = 0 as pop

rules.

Normal rules encode intraprocedural data-flow, while push and pop rules

encode procedure calls and returns, respectively. For example, the push rule

⟨a@3, ∗⟩ ↪→ ⟨x@7, 4 · ∗⟩ reflects that the value a at Line 3 flows to value x at

Line 7. The portion of the rule w = 4 · ∗ pushes the return site at Line 4 onto

the stack. The pop rule ⟨x@9, 4⟩ ↪→ ⟨c@4, ϵ⟩ handles the return flow from x
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oc@4c@4
ϵ

(a) Initial automaton A0 that ac-
cepts the configuration ⟨c@4, ϵ⟩

oc@4

c@4
a@3
a@2
b@3

x@9
y@11
x@8
y@10
x@7
y@7

ϵ 4

(b) Saturated automaton A that
accepts the set of configurations
pre∗(⟨c@4, ϵ⟩)

Figure 2.2: Initial and saturated P-automata for the example in Figure 2.1a.

at Line 9 to c at Line 4. The 4 in the start configuration ⟨x@9, 4⟩ removes the

return site 4 from the stack, and the ϵ in the end configuration indicates that

no other statement is pushed onto the stack.

To determine which values flow to variable c at Line 4, we compute pre∗(C)

for C = {⟨c@4, ϵ⟩}. Figure 2.2a shows the initial P-automaton that accepts

C, and Figure 2.2b shows the saturated P-automaton that accepts pre∗(C).

From the saturated P-automaton, we conclude that both ⟨a@2, ϵ⟩ and ⟨b@3, ϵ⟩

flow to ⟨c@4, ϵ⟩.

2.4.2 Synchronized pushdown systems

The example in Section 2.4.1 uses a pushdown system to perform a flow- and

context-sensitive analysis. However, this formulation is field-insensitive, and

the problem of simultaneously fully-field-sensitive and fully-context-sensitive

analysis is undecidable [39]. Synchronized pushdown systems provide a close

approximation of a fully-field-sensitive and fully-context-sensitive analysis by

solving the field-sensitive and context-sensitive problems separately and tak-

ing the intersection of their results. The SPDS approach constructs two

PDS instances—a fully-field-sensitive but context-insensitive instance and a

fully-context-sensitive but field-insensitive instance. We define the constext-

sensitive PDS (from here onwards we refer to the context-sensitive PDS as

the “call-PDS”) in Section 2.4.1, and we define the field-sensitive PDS (“field-

PDS”) below.

Definition 7. Given a set of program variables V , a set of program statements

S, and a set of program fields F , a field-PDS is PF = (V × S, F ∪ {ϵ},∆F ).
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14 main() {

15 A a = new A();

16 A b = new A();

17 a.f = b;

18 A c = foo(a);

19 }

20

21 foo(A x) {

22 if (...) {

23 return x;

24 }

25 A y = x.f;

26 A z = foo(y);

27 return z;

28 }

Figure 2.3: A small recursive program with field accesses.

Because the field-PDS is context-insensitive, it encodes procedure calls and

returns as normal rules rather than push and pop rules. Instead, the field-PDS

stack abstraction tracks field write (push) operations and field read (pop)

operations. Conversely, the call-PDS encodes field read and write statements

as normal rules.

Figure 2.3 provides an example program with both interprocedural flow

and field accesses. Figure 2.4a and Figure 2.4b show the rules for the call-PDS

and field-PDS, respectively. By applying either the pre∗ or post∗ saturation

procedure to both pushdown systems for some initial configuration c0, we can

determine data-flow reachability for c0.

For this example, suppose we wish to compute the set of value-statement

pairs in the program that can point to the allocation site at line 16. We

first choose our initial configuration c0 = ⟨b@16, ϵ⟩ and construct two initial

automata AS
0 and AF

0 that recognize c0. The superscripts S and F refer to

the respective stack symbol domains of the call-PDS and field-PDS. Because

our analysis starts at an allocation site, we wish compute forward reachability

information, so we compute the post∗({c}) sets for both pushdown systems.

Figure 2.5a and Figure 2.5b show the saturated automata AS and AF that
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encode the sets of forward-reachable configurations post∗({c}) for the call-PDS

and field-PDS, respectively. Taking the intersection of the reachable states

of AS and AF yields Table 2.1, which describes the per-statement points-to

information for the allocation site at Line 3.

Variable Statement Access Path

b 16, 17, 18 ϵ
a 17, 18 f

c 18 f ∪ ϵ
x 21, 22, 24 f

y 25, 26 ϵ
z 26 ϵ

Table 2.1: Points-to information for the object allocated at Line 16

BluJ uses synchronized pushdown systems and heap graphs to construct

summaries of library data-flow. The summaries retain the majority of the de-

sirable properties of SPDS as an analysis framework: they are fully context-

and field-sensitive, even in the presence of recursive method calls and un-

bounded field accesses. The main difference between BluJ’s summaries and

the pure SPDS framework is in the dimension of flow-sensitivity. SPDS is

fully flow-sensitive, but BluJ uses a flow-insensitive heap graph. Despite this,

BluJ is still flow-sensitive in most cases. We discuss BluJ’s flow sensitivity

further in Section 4.6. The following chapter discusses other approaches to

library summarization and how they differ from BluJ.
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Normal Rules

⟨a@15, ∗⟩ ↪→ ⟨a@16, ∗⟩
⟨a@16, ∗⟩ ↪→ ⟨a@17, ∗⟩
⟨b@16, ∗⟩ ↪→ ⟨b@17, ∗⟩
⟨b@16, ∗⟩ ↪→ ⟨a@17, ∗⟩
⟨b@17, ∗⟩ ↪→ ⟨b@18, ∗⟩
⟨x@21, ∗⟩ ↪→ ⟨x@22, ∗⟩
⟨x@21, ∗⟩ ↪→ ⟨x@24, ∗⟩
⟨x@24, ∗⟩ ↪→ ⟨x@25, ∗⟩
⟨x@24, ∗⟩ ↪→ ⟨y@25, ∗⟩
⟨x@25, ∗⟩ ↪→ ⟨x@26, ∗⟩

Pop Rules

⟨x@23, 18⟩ ↪→ ⟨c@18, ϵ⟩
⟨x@23, 18⟩ ↪→ ⟨a@18, ϵ⟩
⟨x@23, 26⟩ ↪→ ⟨z@26, ϵ⟩
⟨x@23, 26⟩ ↪→ ⟨y@26, ϵ⟩
⟨z@27, 18⟩ ↪→ ⟨c@18, ϵ⟩
⟨x@27, 18⟩ ↪→ ⟨a@18, ϵ⟩
⟨z@27, 26⟩ ↪→ ⟨z@26, ϵ⟩
⟨x@27, 26⟩ ↪→ ⟨y@26, ϵ⟩

Push Rules

⟨a@17, ∗⟩ ↪→ ⟨x@21, 18 · ∗⟩
⟨y@25, ∗⟩ ↪→ ⟨x@21, 26 · ∗⟩

(a) Call-PDS rules for the program in Figure 2.3.

Normal Rules

⟨a@15, ∗⟩ ↪→ ⟨a@16, ∗⟩
⟨a@16, ∗⟩ ↪→ ⟨a@17, ∗⟩
⟨b@16, ∗⟩ ↪→ ⟨b@17, ∗⟩
⟨b@17, ∗⟩ ↪→ ⟨b@18, ∗⟩
⟨x@21, ∗⟩ ↪→ ⟨x@22, ∗⟩
⟨x@21, ∗⟩ ↪→ ⟨x@24, ∗⟩
⟨x@24, ∗⟩ ↪→ ⟨x@25, ∗⟩
⟨x@25, ∗⟩ ↪→ ⟨x@26, ∗⟩
⟨a@17, ∗⟩ ↪→ ⟨x@21, ∗⟩
⟨x@23, ∗⟩ ↪→ ⟨a@18, ∗⟩
⟨x@23, ∗⟩ ↪→ ⟨c@18, ∗⟩
⟨x@27, ∗⟩ ↪→ ⟨a@18, ∗⟩
⟨z@27, ∗⟩ ↪→ ⟨c@18, ∗⟩
⟨y@25, ∗⟩ ↪→ ⟨x@21, ∗⟩
⟨x@23, ∗⟩ ↪→ ⟨y@26, ∗⟩
⟨x@23, ∗⟩ ↪→ ⟨z@26, ∗⟩
⟨x@27, ∗⟩ ↪→ ⟨y@26, ∗⟩
⟨z@27, ∗⟩ ↪→ ⟨z@26, ∗⟩

Pop Rules

⟨x@24, f⟩ ↪→ ⟨y@25, ϵ⟩

Push Rules

⟨b@16, ∗⟩ ↪→ ⟨a@17, f · ∗⟩

(b) Field-PDS rules for the program in Figure 2.3.
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ob@16

b@16
b@17
a@17
b@18
a@18
c@18

a@2118

x@21
x@22
x@24
x@25
x@26
y@25
y@26
z@26

a@2126

ϵ

ϵ

18

18

26

26

(a) Saturated call-automaton for
the example in Figure 2.3

ob@16

b@16
b@17
b@18
c@18
y@25
y@26
z@26

a@17f

a@17
a@18
c@18
x@21
x@22
x@24

ϵ

ϵ

f

(b) Saturated field-automaton for
the example in Figure 2.3

Figure 2.5: Saturated P-automata initialized with the configuration ⟨b@16, ϵ⟩
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Chapter 3

Related Work

In this chapter, we discuss related approaches to library summarization for

static analysis, as well as the more general case of partial program analysis.

3.1 Analysis of Partial Programs

Rountev et al. [44] formalize the notion of a flow-sensitive data-flow analysis

for partial programs as an extension of the classical monotone data-flow frame-

work (Section 2.1). They extend the framework with a program fragment F ,

which is a collection of procedures contained within some program P , and an

abstraction of available whole-program information I. This approach works

under the assumption that I may contain some easily-computable informa-

tion to bootstrap the analysis, such as flow-insensitive whole-program pointer

information and a context-insensitive call graph. Because BluJ computes

persistent summaries that are applicable across multiple programs, it cannot

rely on any whole-program information.

Chatterjee et al. [15] present a bottom-up approach to modular points-to

analysis that can be used to analyze partial programs. Their analysis initially

constructs a call graph and traverses the methods of the call graph in reverse

topological order, computing a pointer summary transfer function for each

method. The pointer summary transfer function captures the effects that a

method’s internal pointer assignments may have on its unknown initial inputs.

The analysis then traverses the call graph in topological (top-down) order and

propagates each method’s concrete pointer relations to its callees. When Chat-
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terjee, et al.’s approach analyzes partial programs, it requires k-limiting on the

access paths of unknown initial values at the boundaries of the partial program.

BluJ avoids k-limiting at library boundaries by using a pushdown system as

its field abstraction. BluJ’s internal implementation also differs from that of

Chatterjee, et al.—they use a summary-based compositional approach, while

BluJ computes demand-driven points-to information.

Utture and Palsberg [63] improve static analysis performance by providing

the client analysis with a partial library specifically tailored to the application

code rather than the whole library. The downside of this approach is that it

is inherently unsound—it ignores references to code outside the scope of the

partial library. The target clients for this approach are IDE integrations aimed

at developer productivity. In these scenarios, soundness has less importance

than precision and scalability. BluJ instead targets client analyses that bene-

fit from soundness guarantees (up to some measurable level of soundness [36]),

such as security analyses.

3.2 Call Graph Summaries

Ali and Lhoták [1] formalize the distinction between Java application classes

and library classes as a set of constraints on library behaviour that follow from

the assumption that library classes can be compiled in the absence of applica-

tion classes. In subsequent work [2], Ali and Lhoták leverage the constraints

from [1] to construct persistent summaries of Java library behaviour in a tool

called Averroes. The summaries that Averroes constructs use classes and

methods referenced in the application code to reason about objects that are

possibly available to the library and are therefore tailored to individual appli-

cations. Averroes can construct its summaries quickly and with low memory

footprint because it does not actually inspect the library source code. Instead,

it obtains information about class, method, and field references from the con-

stant pool. Averroes’ generated summary library is flow-insensitive and is

most useful for constructing application call graphs, whereas BluJ aims to
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compute more precise and mostly-flow-sensitive1 data-flow information.

3.3 Data-flow summaries

Rountev et al. [45] construct library data-flow summaries for the interproce-

dural distributive environment (IDE) [47] framework. The core insight of this

approach is that the IDE framework can be extended with awareness of call-

backs to application methods from the library, allowing the summaries that

IDE computes to be composed once the application code is available. Curi-

ously, Rountev, et al. do not provide details on how the summaries can be

persisted for later re-use, and they instead discard the summaries at the end

of each analysis run.

Arzt and Bodden [6] build upon the work of Rountev, et al. [45] to create

flow-sensitive taint analysis summaries for Java and the Android framework.

They implement their approach in a tool called StubDroid, which takes a

Java library class and a list of taint sources/sinks as input and produces a taint

summary for that class. At library boundaries, StubDroid reports tainted

fields in the form of k-limited access paths. While StubDroid is specifically

tailored to taint analysis, BluJ is more general and captures additional data

flows that may nor be of specific interest to a taint analysis. For example

a points-to analysis that integrates BluJ’s summaries can answer aliasing

queries for arbitrary application variables.

Schubert et al. [49] apply a compositional data-flow summary approach to

C/C++ that simultaneously computes a call graph, pointer information, and

distributive data-flow information for the interprocedural finite distributive

subset (IFDS) [40] and IDE frameworks. The data-flow portion of the approach

is similar to that of Rountev, et al. [45] in that it is bottom-up and composes

function information at each calling context, and the points-to information

that it computes is flow-insensitive.

Tang et al. [61] present a language-theoretic approach to library data-flow

1see Section 4.6 for a discussion of the situations in which BluJ’s computed summary is
not flow-sensitive
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summarization via tree-adjoining language (TAL) reachability. TALs are a

family of mildly context-sensitive languages that allow the definition of strings

that contain gaps. The ultimate decision of whether a tree-adjoining language

L with alphabet Σ contains a particular string s ∈ Σ∗ can be expressed as

a conditional expression over the gaps present in s. The nature of TALs

makes them a convenient formalism for representing context-sensitive data-

flow in library code that contains many callbacks. However, for a program

with a control-flow graph Gc = (S,E, s0), the time complexity for solving

TAL-reachability is O(|S|6), making this approach infeasibly slow for many

real-world programs. By contrast, BluJ’s time complexity is identical to that

of post∗, i.e., O(|P ||∆|(|Q|+ |∆|)+ |P ||δ|), which is equivalent to a worst case

of O(|S|5) (Section 2.4).
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Chapter 4

Heap Graph Augmented
Synchronized Summaries

Chapter 2 and Chapter 3 provide background and an overview of recent re-

search results on data-flow analysis and persistent library summaries. This

chapter introduces a novel method of generating a precise library data-flow

summary, which we refer to as a heap graph augmented synchronized summary

(HGASS). Similar to prior work [6], an HGASS is field- and context-sensitive,

and it captures data flows affected by aliasing relations within the library.

An HGASS is also flow-sensitive for most summarized data-flows (Section 4.6

discusses situations where an HGASS is not flow-sensitive). An HGASS ad-

ditionally captures data flows involving arbitrarily complex field accesses by

combining Synchronized Pushdown Systems [55] with heap graphs [26]. We

additionally implement a data-flow solver called BluJ to generate HGASSs.

This chapter first provides an overview of the challenge involved in generat-

ing precise library summaries and the motivation for Heap Graph Augmented

Synchronized Summaries. This chapter then details a naive approach to li-

brary summarization that uses synchronized pushdown systems, highlighting

the data-flows that cannot be captured by synchronized pushdown systems

alone. Finally, this chapter introduces heap graphs and describes how an

HGASS uses them to account for the flows that synchronized pushdown sys-

tems miss.
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29 recursive(A x){

30 while (...) {

31 x = x.f;

32 ...

33 }

34 return x;

35 }

x x.f x.f.f x.f.f.*

Figure 4.1: Data-flow graph for library method recursive() using the access
path field abstraction with limit k = 2.

4.1 Overview

When analyzing library code in the absence of application code, the analysis

possesses little information about the objects passed into the library from an

application. A library analysis is able to reason about the declared type of the

object at the library entry point, but not about the object’s runtime type or

what might be stored in the object’s fields.

One technique to deal with the lack of information about fields of objects

passed to the library is to abstract the objects’ fields with k -limited access

paths at the library entry point [6]. A k -limited data-flow analysis tracks data

flows for not only each object in a given program, but for each of the object’s

fields, recursively, up to a depth of k chained field accesses. As k increases,

there is a combinatorial explosion in the number of flows that must be tracked

through the library, and the analysis designer must determine a value for k

that allows the analysis to terminate in a reasonable amount of time.

For chains of field accesses longer than k (including recursive field accesses),

the analysis does not distinguish between fields, resulting in a drastic drop in

precision. Figure 4.1 shows a method recursive() that contains recursive

field accesses and its exploded supergraph (ESG) [40]. Each vertex of the

ESG represents a value-statement pair (v, s) in the method, and the set of

edges is a graphical representation of the flow function f assuming a data-flow

domain D = 2V (i.e., the powerset of program values). Within the while loop,

field x.f is read and assigned to x an arbitrary number of times. Depending
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Table 4.1: Definitions for entry and exit points of a library method m. Square
brackets denote that a portion of the statement is optional.

Variable Statement Condition Type

Library Entry Points

this firstStmt(m) isPublic(m) ∧ ¬isStatic(m) instance method receiver
v firstStmt(m) isPublic(m) ∧ v ∈ params(m) method parameter
v v = new A() allocation site
v v = A.f f ∈ staticF ields(A) static field read
r r = v.p(...) isOverridable(p) callback return value
v [r =] v.p(...) isOverridable(p) callback receiver return
x [r =] v.p(x, ...) isOverridable(p) callback argument return

Library Exit Points

r.∗ return r isPublic(m) return value for m
this.∗ return [r] isPublic(m) ∧ ¬isStatic(m) receiver return
v.∗ return [r] isPublic(m) ∧ v ∈ params(m) parameter return
v.∗ A.f = v f ∈ staticF ields(A) static field write
v.∗ [r =] v.p(...) isOverridable(p) callback receiver
x.∗ [r =] v.p(x, ...) isOverridable(p) callback parameter

on the application calling context, the access path abstraction may or may not

be able to precisely reason about all objects accessible to the library through

repeated field accesses on x.f.

Synchronized pushdown systems provide an alternative to k -limited ac-

cess paths by abstracting fields with pushdown systems that precisely encode

all field reads and writes. An SPDS instance is a pair of pushdown systems

(PF,PS) where PF encodes a field-sensitive (and context-insensitive) analysis

and PS encodes a context-sensitive (and field-insensitive) analysis (Section ??).

The field-PDS avoids the precision limitations of k -limited access paths by

abstracting all reachable field accesses on an object as a set of regular config-

urations that can be efficiently represented by a finite state automaton.

In a typical whole-program analysis, the analysis instantiates an SPDS

instance for every allocation site in the program, and each SPDS instance ex-

ecutes its saturation procedures until all reachability information is computed

for every allocation site. In the absence of application code, BluJ instead

instantiates an SPDS instance at every library entry point and tracks the

flow of objects passed into the library to every reachable library exit point.

A variable-statement pair is considered a library entry point (or library exit
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Table 4.2: Helper functions for determining library entry and exit points

Function Input Output

isPublic Method m
true if m is declared public

false otherwise

isProtected Method m
true if m is declared protected

false otherwise

isStatic Method m
true if m is declared static

false otherwise

params Method m P , the set of parameters declared by m

staticF ields Class A F , the set of static fields declared by A

isOverridable Method p
true if (isPublic(p) ∨ isProtected(p)) ∧ ¬isStatic(p)
∧ the class that declares p is not declared final

false otherwise

point) if it conforms to the conditions in one or more of the rows of Table 4.1.

The helper functions used in Table 4.1 are defined in Table 4.2. Note that

BluJ’s definition for isOverridable() assumes that applications do not de-

clare classes in the same packages as library classes and consequently cannot

override library methods declared as package-private. For now, we restrict

our discussion of HGASS entry points to the first two entries in Table 4.1.

Allocation sites and static fields are discussed in Section 4.2, and callbacks are

discussed in Section 4.5.

To summarize method foo() from the example in Figure 4.2, BluJ instan-

tiates an SPDS solver at the library entry point for each respective parameter:

(PF,PS)u@36 and (PF,PS)v@36. The saturation procedure for PSu@36 is straight-

forward: variable u is not used in any call statements and is only involved in

the field write statements at Lines 39 and 40. Since the field write statements

overwrite fields of u rather than u itself, the field write statements do not

affect the saturated call-automaton of ASu@36. The saturation procedure for

PFu@36 is similar. Once again, u is not used in any call statements and the field

writes on Lines 39 and 40 do not affect the field-automaton AFu@36. ASu@36

and AFu@36 are shown in Figure 4.3a and Figure 4.3b, respectively. Since the

library exit point u@40 is reachable in both automata, we conclude that u@36

flows to u@40.
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36 foo(A u, A v){

37 A z = v;

38 A w = bar(z);

39 u.a = w;

40 u.b = z;

41 }

42

43 bar(A x){

44 A y = new A();

45 x.a = y;

46 return y;

47 }

v z u.b w u.a

x.a y

u.b.a z.a

Figure 4.2: Data-flow graph for library methods foo and bar, ignoring aliasing
relations.

The saturation procedure for ASv@36 yields a call automaton that tracks

the flow of z through method bar and the assignment of z to u.* at Line

40. AFv@36 also tracks the flow of z through method bar() and processes the

field write statement that assigns z to u.b. ASv@36 and AFv@36 are shown in

Figure 4.3c and Figure 4.3d, respectively. There are two library exit points

reachable in both automata: v@40 and u@40. Since v@40 is reachable in both

automata along ϵ-transitions, we conclude that v@36 flows to v@40. Since

u@40 is only reachable in AFv@36 along a path labelled with b, we conclude

that v@36 flows to u.b@40.

Putting all of the aforementioned data-flows together yields the summary

in Figure 4.4. However, this summary only partially captures the data-flows

that escape the library. Notably, the flows from the allocation site at Line

44 to u.a and u.b.a are not realized. Neither is the flow from the allocation

site to v.a that arises from the aliasing relationship between v and z. The

following two sections discuss these missing flows and how an HGASS instance

can capture them.
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(b) Saturated field P-automaton for
parameter u
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(c) Saturated call P-automaton for parameter v

ov@36v@36

v@37 v@38 v@39
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z@37x@43
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x@45x@46 z@38
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ϵ

ϵ
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(d) Saturated field P-automaton for parameter v

Figure 4.3: Saturated automata for SPDS instances (PF,PS)u@36 and
(PF,PS)v@36. Library exit points are highlighted in dark red.
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ENTRY

EXIT u

u

v

v

u.b

Figure 4.4: Alias-unaware data-flow summary for paramters u and v of method
foo.

4.2 Allocation sites and static fields

BluJ handles allocation site and static field read entry points as they are

discovered during the saturation procedures of other SPDS instances. In most

cases, the process is straightforward: an existing SPDS instance reaches an

allocation site or static field read statement, and BluJ creates a new SPDS

instance originating at that statement.

Returning to the example in Figure 4.2, the SPDS solver (PF,PS)v@36

reaches Line 44 where a new object is allocated. From here, BluJ creates

a new SPDS instance (PF,PS)y@44 that tracks the flow of y through the li-

brary. To maintain context sensitivity with respect to the data-flow path

along which the allocation site was discovered, (PF,PS)v@36 shares its context

with (PF,PS)y@44. Each time BluJ discovers an allocation site under a dif-

ferent calling context, it creates a new SPDS instance for the allocation site,

taking its context from the discovering solver. Figure 4.5 shows the saturated

automata ASy@44 and AFy@44. Since ASy@44 receives context information from

ASv@36, the solver identifies the return flow from y@46 to w@38. Both au-

tomata reach the exit state u@40, and the state is reachable in AFy@44 along

two paths: a path labelled with a and a path labelled with b ∗ a. There-

fore, we conclude that y@44 flows to u.a and u.b.a. The summary is still

not complete, however, because it is missing a flow that results from aliasing.

Section 4.3 addresses how BluJ handles aliasing.

BluJ handles static field reads in a similar manner to allocation sites.
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(a) Saturated call P-automaton for
variable y. The node ctx38 represents
the calling context shared with PSy@44

by PSv@36.

oy@44

y@44 y@45y@46

x@45ax@45

x@46 v@38 v@39

v@40

u@40b

u@40

w@38

w@39w@40u@39a
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a

a

a
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(b) Saturated field P-automaton for
variable y

Figure 4.5: Saturated automata for SPDS instance (PF,PS)y@44. Library exit
points are highlighted in dark red.

48 B readWriteStatic(B t) {

49 B q = Util.f;

50 Util.f = t;

51 return q;

52 }

ENTRY

EXITt

t

q

Util.f

Util.f

Figure 4.6: Library method readWriteStatic() and its data-flow summary.
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When BluJ encounters a static field read, it instantiates a new SPDS instance

to track the flow of the value assigned at the field read. BluJ also treats static

field writes as library exit points, because the value written to a static field

possibly becomes accessible to application code. For the example in Figure 4.6,

BluJ tracks the flow from parameter t to the static field write at Line 50 as

well as from the static field read at Line 49 to the return value q.

In general, there is no guarantee that all allocation sites and static field

reads along a valid execution path will occur along BluJ’s tracked data-flow

paths. It is possible that a data-flow query encounters a static method call

site r = m(). In this situation, the solver will not enter method m(), but flows

could possibly originate in method m() that may escape the library through

the return value r. Because we assume that all library classes can be compiled

in the absence of application classes (the separate compilation assumption

[1]), this situation may only arise at parameterless static method calls. It

follows from the separate compilation assumption that any object available to

the library is either created in the library or passed into the library by the

application at a library entry point. In either case, BluJ tracks the object.

Any method call in the library that is non-static must therefore have a receiver

o that BluJ tracks into the body of the method, and for any static method

call in the library that has some parameter p, BluJ tracks p into the body of

the method. Because paramaterless static method calls do not propagate the

data-flow of other objects into the method body, BluJ must treat them as a

special case.

It is important to note that the separate compilation assumption is a sim-

plifying assumption that may not always hold in practice. For example, some

Java libraries such as JUnit [24] make heavy use of reflection to obtain infor-

mation about the application that is not available to the library at compile

time. For some languages, libraries frequently violate the separate compila-

tion assumption, such as C++ (via template metaprogramming) and Common

Lisp (via macros).

To avoid missing flows that originate in static method calls, BluJ abstracts

the declaring classes of static members as if they are heap objects and tracks
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53 public class L {

54 public A libraryMethod() {

55 A x = L.getNewA();

56 return x;

57 }

58

59 private static A getNewA() {

60 A y = new A();

61 return y;

62 }

63 }

Figure 4.7: Library class with API method libraryMethod() and non-
API static method getNewA() that creates a new instance of A. When
libraryMethod() is called, the new instance of A is returned from the library.

their flow through the library as well. For the example in Figure 4.7, BluJ

creates an SPDS solver instance for L@55 as if L is the receiver of the method

call. While tracking the flow of L, the SPDS solver (PF,PS)L@55 discovers the

allocation site at Line 60, and BluJ begins tracking the flow of y@60 as well.

If BluJ did not track the flow of L, no SPDS instance would enter the body of

method getNewA(), and the value returned from the library at Line 56 would

be missed.

4.3 Aliasing

Points-to analysis is non-distributive [40]. Since SPDS flow functions are

distributive, a single SPDS instance is incapable of accurately capturing points-

to information for flows that involve aliasing [54]. To account for this, BluJ

handles non-distributivity in the same manner as Boomerang [56]: SPDS

instances share information with one another at points of aliasing, which occur

at field writes and call statements along a solver’s data-flow path. Definitions

8 and 9 in this section are adapted from Späth [54].

Definition 8. Given a field P-automaton AF = (Q,Γ, δ, P, acc), a field write

point of aliasing is a state c = (y@x.f = y) ∈ Q.

Any object tracked by an SPDS instance that was accessible through y
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(or any of its fields) at statement x.f = y is then also accessible through

x.f (or any of its fields) after the field write. Additionally, the object is now

accessible through field f of any alias of x. To account for aliases of x, BluJ

uses a system of listeners to receive updates from any field automata A′
F =

(Q′,Γ′, δ′, P ′, acc′) such that (x@x.f = y) ∈ Q′ and copies relevant aliasing

information from A′
F to AF. BluJ then re-starts the saturation procedure

for AF with the new information present in the automaton. However, this

procedure is only sufficient for capturing aliasing that occurs within the scope

of the current method. If x is aliased to an object outside the method scope,

BluJ must also process a call site point of aliasing.

Definition 9. Given a field P-automaton AF = (Q,Γ, δ, P, acc), a call site

point of aliasing is a pair of states (cf , cs) where cf = (y@z.f = y) ∈ Q is a

field write point of aliasing, cs = (xi@x0.m(..., xn)) ∈ Q for some 0 ≤ i ≤ n,

and z is the ith parameter of method m.

At the call return site x0.m(..., xn), z and xi point to the same object.

BluJ locates the field automata for additional aliases of xi and copies relevant

information to AF. As with field write points of aliasing, BluJ then re-starts

the saturation procedure forAF with the new information. For a more in-depth

discussion of points-to analysis using SPDS, we refer the reader to Chapter 5

of Johannes Späth’s doctoral thesis [54].

Figure 4.8 reproduces the example from Figure 4.2 while highlighting the

alias relationships that were omitted in Section 4.1. The field write point of

aliasing at Line 73 triggers a call site point of aliasing when method bar()

returns at Line 66. BluJ searches for aliases of z at Line 66 and copies

relevant information from any aliases that it finds. Since z and v alias at Line

66, BluJ copies the state v@66 into AFy@72 and connects it to the accepting

state of AFy@72 via an edge labelled with a. This new edge reflects that at

Line 66, v.a points to oy@72. After re-saturating AFy@72, the flow from y@72

now reaches the library exit point v@68 along access path a.

4.4 Tracking complex field flows
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64 foo(A u, A v){

65 A z = v;

66 A w = bar(z);

67 u.a = w;

68 u.b = z;

69 }

70

71 bar(A x){

72 A y = new A();

73 x.a = y;

74 return y;

75 }

v z u.b u.b.a z.a v.a w u.a

x.a y

Ac

Af

Figure 4.8: Data-flow graph for library methods foo and bar, with aliasing
information.

76 baz(A x, A y){

77 B p = x.b;

78 A q = y.a;

79 q.b = p;

80 }

x x.by y.a y.a.b

Figure 4.9: Data-flow graph for library method baz().
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Figure 4.10: Saturated field P-automata for parameters x (left) and y (right)
in Figure 4.9. Unbalanced field reads are highlighted in dark blue.

An SPDS instance is sufficient for capturing field-sensitive flows for objects

that are passed directly into the library via method parameters, static field

reads, or new object allocations, but it misses flows originating at objects that

are passed into the library as fields of other objects. Consider the example

in Figure 4.9. Line 77 reads field b from parameter x and assigns it to p.

Similarly, Line 78, reads field a from parameter y and assigns it to q. Then,

Line 79 assigns variable p to q.b. Since q aliases with y.a, this results in a

flow from x.b to y.a.b.

Figure 4.10 shows the saturated field automata for x and y. The SPDS

instances for the parameters miss the flow from x.b to y.a.b because the flow

originates at fields of the parameters rather than at the parameters themselves.

This issue is solved with a combination of delegate SPDS solvers and heap

graphs.

4.4.1 Delegate solvers

To ensure that the analysis is aware of values passed into the library as fields,

we introduce a delegate solver at each unbalanced field read.

Definition 10. Given a field P-automaton AF = (Q,Γ, δ, P, acc), an unbal-

anced field read is a state c = (v@x = v.f) ∈ Q for some arbitrary v, x such

that ∀q ∈ Q, (c, f, q) /∈ δ.

Informally, an unbalanced field read is any field read where, in the absence

of application code, the library has no way of determining what is stored in

the field.

A delegate solver is an additional SPDS instance that tracks the assigned

variable of a field read. A delegate solver is denoted by Dv@s, where v is the
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Figure 4.11: Saturated field P-automata for delegate solvers Dp@77 (left) and
Dq@78 (right) in Figure 4.9.

value tracked by D and s is the statement at which the D is generated. BluJ

additionally maintains the set of delegate solvers D ⊂ A and a mapping D f→ A

between delegate solvers and their parent solvers. Delegate solver creation is

restricted to unbalanced field reads to avoid unnecessarily repeating analysis

steps. In the case of a balanced field read of the form c@d = c.f , a solver that

encodes the reachable state c@d = c.f is able to reason about the flow from

c.f to d because the corresponding write into field f occurs along a data-flow

path that is known to the solver. For the example in Figure 4.9, all field reads

are unbalanced and BluJ generates two delegate solvers: Dp@77, which tracks

the value p loaded from x.b, and Dq@78, which tracks the value q loaded from

y.a. Figure 4.11 shows the saturated field automaton for each of the delegate

solvers.

There are now four total solvers for method baz(), and the delegate solver

Dp@77 informs the analysis that p and q.b point to the same object when the

method returns at Line 79. However, the analysis is still unable to detect the

flow from x.b to y.a.b. To capture this flow, it is necessary to keep track of

the field read and write relationships between each of the solver instances.

4.4.2 Heap graphs

Heap graphs [14] are abstract models of heap memory that are commonly

used in shape analysis to reason about the structure and relations between

heap allocated objects [41]. In this thesis, we define a heap graph as follows

(adapted from Kanvar and Khedker [26]).

Definition 11. A heap graph is a 5-tuple G = (V, S, F,Q,E) where V is a set

of program values, S is a set of program statements, F is a set of field names,
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(a) Initial heap graph contain-
ing only the respective accepting
states of Ax

F and Ay
F

x@76 y@76

p@77 q@78

b a

(b) Heap graph after the cre-
ation of delegate solvers Dp@77

and Dq@78

x@76 y@76

p@77 q@78

b a

b

(c) Heap graph after the addition of the field write

alias edge p@77
b→ q@78

Figure 4.12: Heap graph construction for the summary of library method
baz() in Figure 4.9.

Q ⊆ V × S is the set of locations or nodes of G, and E ⊆ Q × F × Q is the

set of labelled edges of G.

The following operations are defined on G:

• AddNode(q): Given q = (v, s), if v ∈ V and s ∈ S, then Q← Q ∪ {q}

• AddEdge(q, f, q0): if q, q0 ∈ Q and f ∈ F , then E ← E ∪ {(q, f, q0)}

BluJ uses a heap graph to keep track of field read and write relationships

between solvers, and the heap graph is constructed simultaneously with the

iterative solving approach described in Section 4.3. As described in subsection

4.4.1, delegate solvers are created at unbalanced field reads. When BluJ

creates a new delegate solver Dv@s, BluJ updates the heap graph with a new

node (v, s). Additionally, BluJ adds an edge from (v, s) to the accepting state

(v0, s0) of the solver containing the unbalanced field read. Returning to the

example in Figure 4.9, Figure 4.12b shows the state of the heap graph after

the creation of delegate solvers Dp@77 and Dq@78.

When a delegate solver tracks a value v that is written to a field f of variable

x, the heap graph must also be updated to take into account any values which
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can now access the object pointed to by v through x.f . To accomplish this,

BluJ finds any other solvers in AF for which the variable x is reachable at the

field write statement. BluJ then updates the heap graph with new f -labelled

edges from the delegate solver’s accepting state to the respective accepting

states of the other solvers, reflecting the aliasing relationship between v and

x.f at the field write statement. For the delegate solvers in Figure 4.11, Dp@77

contains a state q@79 that is reachable by a write to field b. Since Dq@78 also

contains the state q@79, BluJ adds a new heap graph edge from p@77 to

q@78, labelled with b, as shown in Figure 4.12c.

We give the precise semantics of heap graph construction in the form of

inference rules below.

(1) AF = (Q,Γ, δ, P, acc)
(2) AF ∈ AF (3) q = (v, x = v.f) ∈ Q

(4) IsUnbalancedRead(AF, q) (5) q′ = (x, x = v.f)

G.AddNode(q′) G.AddEdge(q′, f, acc)
NewDelegate

(1) AF = (Q,Γ, δ, P, acc)
(2) AF ∈ DF (3) A′

F = (Q′,Γ′, δ′, P ′, acc′)
(4) A′

F ∈ AF (5) A′
F ̸= AF

(6) q = (v, x.f = v) ∈ Q (7) q′ = (x, x.f = v) ∈ Q′

G.AddEdge(acc, f, acc′)
AliasEdge

The inference rule NewDelegate defines the logic for creating a new heap

graph node and edge at the point that a new delegate solver is introduced.

Premises (1) and (2) require that there exists some solver AF in the method

summary’s set of field solvers AF. Premise (3) requires that the set of states

Q of AF contains some state q where the associated statement is a field read

and the associated value is the base of the field read. In premise (4), the

helper function IsUnbalancedRead(AF, q) returns true if q is an unbalanced

field read of the automaton AF. Premise (5) introduces a state q′ that has the

same associated statement as q, but the associated value is the value assigned

to at the field read statement. The conclusions add q′ as a new node in G and
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add a new edge from q′ to the accepting state of AF, labelled with field f .

The rule AliasEdge defines the addition of new graph edges at field write

points of aliasing. Premises (1) and (2) introduce a delegate solverAF. Premises

(3) and (4) introduce a second solver, A′
F, which can be any solver that is a

member of the method summary’s set of field solvers. Premise (5) ensures

that the two solvers are not equivalent. AF already encodes the field rela-

tion between x and v, so the heap graph does not need to be updated in this

case. Premise (6) states that AF must have some state q where the associate

statement is a field write and the associated value is the value being written.

Premise (7) states that A′
F must have a state q′ where the associated state-

ment is the same field write statement as in premise (6) and the associated

value is the base of the field being written to. The conclusion adds a new edge

to G that starts at the accepting state of AF, ends at the accepting state of

A′
F, and is labelled with field f .

4.4.3 Generating summaries with complex field flows

In previous sections, we have listed access paths at library exit points by read-

ing the labelled edges of the saturated field automaton. When a non-delegate

solver has incoming edges from another solver in the heap graph, we read

the labelled edges of the heap graph and append the resulting reversed field

expression (f)∗ to the field expression (g)∗ generated by the solver’s field au-

tomaton. Conversely, we obtain the access path at a library entry point in

the following manner: for each delegate solver Dv′@s′ in the heap graph with a

non-delegate ancestor Av@s we take the field expression (h)∗ generated by the

relation Dv′@s′(
f→)∗Av@s. If Av@s contains a library exit point ve@se, we con-

clude that there is a data flow from v.(h)∗@s to ve.(g)
∗.(f)∗@se. In practice,

(h)∗, (f)∗ and (g)∗ can be arbitrarily complex regular expressions. To generate

these regular expressions, we use an implementation1 of Robert Tarjan’s path

expression algorithm [62].

Returning to the example in Figure 4.9, once all saturation procedures are

finished, BluJ looks up the delegate solver Dp@77 in the mapping D f→ A
1https://github.com/johspaeth/PathExpression
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and finds that Dp@77 maps to its parent solver Ax@76 along (h)∗ = b. Then,

BluJ consults the heap graph and finds that Dp@77 reaches Ax@76 along a

path labelled with (f)∗ = b and Ay@76 along a path labelled with (f)∗ = b.a.

Finally, BluJ looks for library exit points in Ax@76 and Ay@76. In, Ax@76,

BluJ finds the exit point x@79, which is accessible along the path (g)∗ = ϵ

and adds the summary data-flow x.b@76→ x.b@79 to the HGASS. In, Ay@76,

BluJ finds the exit point y@79, which is accessible along the path (g)∗ = ϵ

and adds the summary data-flow x.b@76→ y.a.b@79 to the HGASS.

4.5 Callbacks

When a library method is overridable by application code, calls by the library

to the overridable method may resolve to application methods at runtime.

Consequently, BluJ treats calls into overridable methods as library exit points

and returns from overridable methods as library entry points. The helper func-

tion isOverridable in Table 4.2 defines the criteria for determining whether or

not a library method is overridable.

In the running example in Figure 4.8, if the method bar() is overridable,

BluJ considers the flow into and out of the call site at Line 66. This means

that BluJ treats z@65 as a library exit point. BluJ additionally treats z@66

and w@66 as library entry points and instantiates SPDS instances at both

locations. When generating HGASSs at the end of the analysis, flows involving

entry/exit points at overridable callsites are marked as conditional to inform

the client analysis consuming the HGASS that the flows depend on whether

or not the application overrides bar(). Once the client analysis has access

to application code, it can determine whether or not to use the conditional

flows. Section 5.2.2 discusses in detail how our example client analysis handles

summaries with callbacks.

4.6 Discussion

One of the drawbacks of heap graphs as a primary mechanism for heap ab-

straction is their inefficiency [26]. Traditionally, heap graphs model a whole
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81 baz(A x, A y){

82 B p = x.b;

83 A q = y.a;

84 q.b = p;

85 C.f = y;

86 A n = new A();

87 y.a = n;

88 }

x@81 y@81

p@82 q@83

n@86

b

b

(a) Unsound heap graph implemented
with strong updates

x@81 y@81

p@82 q@83

n@86

b a

b

(b) Heap graph implemented without
strong updates

Figure 4.13: Example library method where BluJ cannot perform strong
updates on the heap graph.

program’s heap state at every program statement (and under every calling

context if the analysis is context-sensitive), meaning that the analysis must

maintain at least one graph node for every variable that is in scope at a given

statement. The upper bound on the total number of heap graph nodes is 2|V ar|,

where |V ar| is the number of program variables [48]. For large programs, the

memory required to maintain a precise and complete heap graph can be pro-

hibitive. However, BluJ only maintains heap graph nodes at locations that

generate SPDS queries (i.e., library entry points and unbalanced field read

statements) rather than at every statement-variable pair.

An additional consequence of the reduced scope of nodes stored in BluJ’s

heap graph is that BluJ cannot soundly perform strong updates on the heap

graph. The example in Figure 4.13 extends the code snippet in Figure 4.9 to

illustrate the issue. The field y.a is overwritten with a new value at Line 87, so

x.b no longer escapes the library through y.a.b. Because BluJ’s heap graph

does not store heap information at every statement, it cannot reason about

the relative execution order of the static field write statement at Line 85 and

the write to y.a at Line 87. Consequently, BluJ cannot determine whether
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y.a and q still point to the same object when static field C.f is written to.

BluJ performs a safe over-approximation by keeping the edge from q@83 to

y@81 in the graph, leading to a spurious data-flow from x.b to y.a.b in the

final HGASS.
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Chapter 5

Adapting Summaries for Client
Analyses

While Chapter 4 detailed the process of HGASS generation, this chapter

describes how a client analysis can consume an HGASS. We integrate our

summaries into Boomerang, a state-of-the-art SPDS-based pointer analysis

framework, via the BluJ summary adapter (BSA), which parses and applies

summaries at calls to library methods. Figure 5.1 provides an overview of

BluJ’s architecture.

In the following section, we discuss the structure of HGASSs and the format

in which BluJ stores them on disk. We then discuss how our Boomerang-

based summary adapter consumes HGASSs and conclude by describing sources

of imprecision that HGASSs may introduce to a pointer analysis.

5.1 Storing Persistent Summaries

Summary
generator

Library classes HGASS

Summary-based pointer analysis

Summary
adapter

Boomerang
Points-to

information
Application classes

Figure 5.1: BluJ’s architecture and typical workflow. Components outlined
in blue are part of BluJ.
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89 ...

90 {

91 "declaringClass": "Example",

92 "subSignature": "void foo(A, A)"

93 },

94 ...

95 {

96 "start": {

97 "location": {

98 "value": {

99 "valueType": "ParameterRef",

100 "n": 0,

101 "paramType": {

102 "sootClass": "A"

103 }

104 },

105 "stmt": {

106 "stmtType": "JNopStmt"

107 }

108 },

109 "expression": "Wildcard"

110 },

111 "end": {

112 "location": {

113 "value": {

114 "valueType": "JimpleLocal",

115 "name": "r4",

116 "type": {

117 "sootClass": "A"

118 }

119 },

120 "stmt": {

121 "stmtType": "JReturnVoidStmt"

122 }

123 },

124 "expression": "Wildcard"

125 },

126 "callbackGaps": []

127 }

128 ...

Figure 5.2: Excerpt from an HGASS for the example in Figure 4.2
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Storing summaries on disk allows a client analysis to amortize the cost of

summary generation over each run of the client analysis. Assuming that each

execution of the client analysis saves computation time by using the summary,

the up-front cost of summary generation becomes negligible with respect to

time saved in the client analysis. While we tailor our summaries to SPDS-

based solvers such as Boomerang, an HGASS is generic and consumable by

other data-flow frameworks as long as they provide an appropriate summary

adapter. To facilitate persistence and genericity, we serialize HGASSs to easily-

parsable JavaScript object notation (JSON). BluJ generates an HGASS for

each summarized library class. The top-level JSON element in each file is an

array of API methods declared by the class. For each method, the summary

contains an array of data-flows, and each data-flow provides a start point, an

end point, and a set of possible callbacks that may affect the flow. The start

and end points of each data-flow additionally define the field regular expression

through which the value of the data-flow is reachable. Figure 5.2 shows an

excerpt from the JSON representation of an HGASS detailing a single data

flow from the first parameter of foo() to its corresponding local value at a

return statement.

An HGASS is not fully generic across all static analysis frameworks. It re-

lies on abstractions provided by the Soot static analysis framework, specifically

the program statement and value abstractions of Soot’s Jimple intermediate

representation (IR). While it would be possible to generate summaries that are

analysis-framework agnostic, doing so would add an additional computational

cost to summary serialization and deserialization. Determining whether an

additional layer of abstraction may provide any practical benefit is beyond the

scope of this thesis.

5.2 Using Summaries

BluJ’s BSA hooks intoBoomerang by registering a listener on eachBoomerang

solver instance. A Boomerang solver notifies the BSA listener when its post*

algorithm encounters a library entry call rule.
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129 baz(A x, A y){

130 B p = x.b;

131 A q = y.a;

132 q.b = p;

133 }

ENTRY

EXITValue: y, Expr: a · b

Value: x, Expr: b

Figure 5.3: Summary of a single data-flow for library method baz(), from
x@129 to y@132

Definition 12. Given va, vl ∈ V , the set of program variables, sc ∈ Sapp, the

set of statements contained within application classes, and sentry ∈ Slib, the

set of statements contained within library classes, a library entry call rule is a

Call-PDS rule of the form ⟨va@sc, ∗⟩ ↪→ ⟨vl@sentry, sc · ∗⟩

A library entry call rule corresponds to the interprocedural data-flow gener-

ated at an application call site that targets a library method. WhenBoomerang

encounters a library entry call rule ⟨va@sc, ∗⟩ ↪→ ⟨vl@sentry, sc · ∗⟩, the BSA

checks whether there is a data-flow summary present that begins at the library

entry point vl@sentry. If no summary is present, the BSA returns control to

Boomerang, and Boomerang continues its analysis of the library method.

If a summary is present, the BSA caches the summary and begins the process

of creating PDS rules from the field regular expressions at the library entry

and exit points.

5.2.1 Generating PDS rules from regular expressions

The primary purpose of the BSA is to transform the field access path reg-

ular expressions at the entry and exit point of each summary into the PDS

rule format recognized by Boomerang. We use the example in Figure 5.3 to

explain the PDS rule generation process. At the library entry point, the expres-

sion is the single field b. To access field b from the base variable x, the program

would need to perform a field read, so the BSA generates a field pop PDS rule

⟨x@129, b⟩ ↪→ ⟨x@sfresh, ϵ⟩. Here, sfresh denotes a unique placeholder state-

ment that does not exist in the concrete program. The BSA then processes

the expression a · b at the library exit point. The BSA generates one push
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Epsilon
(ϵ, v@s, ∅)

EntryField
(f, v@s, {⟨v@s, f⟩ ↪→ ⟨v′@sfresh, ϵ⟩}) ⇓ (ϵ, v′@sfresh, ∅)

ExitField
(f, v@s, {⟨v@s, ∗⟩ ↪→ ⟨v′@sfresh, f · ∗⟩}) ⇓ (ϵ, v′@sfresh, ∅)

Concat
(e1, v@s,∆F) ⇓ (e′1, v

′@s′,∆′
F) (e2, v

′@s′,∆F) ⇓ (e′2, v
′′@s′′,∆′′

F)

(e1e2, v@s,∆F) ⇓ (e′1e
′
2, v

′′@s′′,∆′
F ∪∆′′

F)

Union
(e1, v@s,∆F) ⇓ (e′1, v

′@s′,∆′
F) (e2, v@s,∆F) ⇓ (e′2, v

′′@s′′,∆′′
F)

(e1 ∪ e2, v@s,∆F ∪ {⟨v′@s′, ∗⟩ ↪→ ⟨vf@sfresh, ∗⟩, ⟨v′′@s′′, ∗⟩ ↪→ ⟨vf@sfresh, ∗⟩}) ⇓
(e′1 ∪ e′2, vf@sfresh,∆

′
F ∪∆′′

F)

Star
(e, v@s,∆F) ⇓ (e′, v′@s′,∆′

F)

(e∗, v@s,∆F ∪ {⟨v′@s′, ∗⟩ ↪→ ⟨v@s, ∗⟩}) ⇓ (e′, v′@s′,∆′
F)

Figure 5.4: Big-step operational semantics for generating field-PDS rules from
HGASS regular expressions

rule for each field symbol at the exit, yielding ⟨x@sfresh, ∗⟩ ↪→ ⟨y@s′fresh, a · ∗⟩

and ⟨y@s′fresh, ∗⟩ ↪→ ⟨y@s′′fresh, b · ∗⟩.

Figure 5.4 provides a more precise notion of PDS rule generation in the

form of big-step operational semantics. For each regular expression that the

BSA must process, we define a meta-configuration that captures the relation

between the regular expression and its corresponding set of PDS rules.

Definition 13. Given a set of program fields F , a set of program control

locations P ⊆ V × S, and the set ∆F = (P × F ) × (P × F ) of all PDS rules

over P and F , the set of meta-configurations is C = E × P × 2∆F where E is

the set of regular expressions over the alphabet of field symbols F .

We additionally define the big-step operator ⇓ as the relation ⇓⊆ C × C.

Our discussion of the example in Figure 5.3 gave an informal description of

the rules EntryField, ExitField, and Concat. We use the example in

Figure 5.5 to illustrate the rules Union and Star. As with the previous

example, we generate a pop rule for each terminal symbol in the expres-

sion. The terminal symbols are f and g, so the BSA generates the rules
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134 qux(A a) {

135 A b = a;

136 while (...) {

137 if (...) {

138 b = b.f;

139 } else {

140 b = b.g;

141 }

142 }

143 return b;

144 }

ENTRY

EXITValue: b, Expr: ϵ

Value: a, Expr: (f ∪ g)∗

Figure 5.5: Summary of a single data-flow for library method qux(), from
a@134 to b@143.

⟨a@134, f⟩ ↪→ ⟨a@s′fresh, ϵ⟩ and ⟨a@134, g⟩ ↪→ ⟨a@s′′fresh, ϵ⟩. The two termi-

nals are combined via the ∪ operator, so the BSA additionally generates the

normal rules ⟨a@s′fresh, ∗⟩ ↪→ ⟨a@sfresh, ∗⟩ and ⟨a@s′′fresh, ∗⟩ ↪→ ⟨a@sfresh, ∗⟩.

The two normal rules have the same target configuration, reflecting the merger

of data-flow facts upon exiting a branching control structure. Finally, the BSA

processes the Kleene star applied to f ∪ g, generating one additional normal

rule ⟨a@sfresh, ∗⟩ ↪→ ⟨a@134, ∗⟩. This normal rule reflects a control-flow back

edge. Together, we refer to the set of five previously described rules as ∆F.

Using the operational semantics defined in Figure 5.4, we prove the correctness

of the set of rules ∆F for the regular expression (f ∪ g)∗ via derivation tree.

Star

Union

EntryField
(f, a@134, α) ⇓ (ϵ, a@s′f , ∅) (g, a@134, β) ⇓ (ϵ, a@s′′f , ∅)

EntryField

(f ∪ g, a@134, {α, β, γ, δ}) ⇓ (ϵ, a@sf , ∅)
((f ∪ g)∗, a@134, {α, β, γ, δ, ζ}) ⇓ (ϵ, a@sf , ∅)

After the BSA finishes processing the regular expressions, it providesBoomerang

with a library exit call rule to process, passing control back to the analysis of

the application code.

Definition 14. Given vl, va ∈ V , sc, ssucc ∈ Sapp, and sexit ∈ Slib, a library exit
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Symbol Expanded Rule

α ⟨a@134, f⟩ ↪→ ⟨a@s′f , ϵ⟩
β ⟨a@134, g⟩ ↪→ ⟨a@s′′f , ϵ⟩
γ ⟨a@s′f , ∗⟩ ↪→ ⟨a@sf , ∗⟩
δ ⟨a@s′′f , ∗⟩ ↪→ ⟨a@sf , ∗⟩
ζ ⟨a@sf , ∗⟩ ↪→ ⟨a@134, ∗⟩

call rule is a Call-PDS rule of the form ⟨vl@sexit, sc⟩ ↪→ ⟨va@ssucc, ϵ⟩, where

ssucc is the control flow successor of the call site sc.

The library exit call rule mirrors the library entry call rule, ensuring prop-

erly matched calls and returns when applying the data-flow summary.

5.2.2 Callbacks

When the BSA encounters a callback gap while processing a summary, it con-

sults Boomerang’s call graph for the program and determines the (possibly

empty) set of realizable callbacks for the callback gap.

Definition 15. Given a program P with a set of statements S, a set of meth-

odsM and a call graph G ⊆ S×M , a realizable callback is an edge (sl,ma) ∈ G

such that sl is a statement in the library code of P and ma is a method in the

application code of P

If the set of realizable callbacks is empty, the BSA continues processing

the data-flow summary. If the set of realizable callbacks is non-empty, the

BSA generates a call-PDS push rule ⟨vl@sl, ∗⟩ ↪→ ⟨va@sa, sl · ∗⟩ for each realiz-

able callback and registers a callback return listener with Boomerang. The

BSA then provides the rules to Boomerang, and Boomerang analyzes the

target methods. When Boomerang’s analysis reaches the end of a target

method, Boomerang notifies the callback return listener, which produces a

call-PDS pop rule ⟨v′a@s′a, sl⟩ ↪→ ⟨v′l@s′l, ϵ⟩ for the callback return site v′l@s′l

and continues applying the library data-flow summary.

Figure 5.6 provides an example program where the data-flow summary

includes a library callback. At Line 148, the library calls the abstract method

callback(). The data-flow summary reflects this by registering a callback gap
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145 // Library Code

146 public abstract class LibraryClass {

147 public A foo(A x) {

148 A y = callback(x);

149 return y;

150 }

151 public abstract A callback(A z);

152 }

153

154 // Application Code

155 public class ApplicationClass

156 extends LibraryClass {

157

158 public static void main() {

159 A a = new A();

160 A b = foo(a);

161 }

162

163 @Override

164 public A callback(A z) {

165 A w = new A();

166 w.f = z;

167 return w;

168 }

169 }

x@148cb

x@147

x@149

x@149cb

y@149

y@149cb

Figure 5.6: Sample program that includes a callback method callback()

(left), and the data-flow summary for library method foo() (right).
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for the data-flow of parameter x at Line 148. When the BSA processes the

data-flow summary for parameter x during the client analysis, it encounters the

callback gap and consults the program’s call graph to find realizable callbacks

in the application. In this case, there is only one possible callback target,

the overridden method at Line 164. From here, Boomerang analyzes the

body of the concrete callback() method defined on Line 164 and reaches

the configurations z@167 and w@167 (reachable through field f). The BSA

then resumes applying the summary at the configurations x@149 and y@149,

respectively.

5.3 Additional Imprecision

For each object that an application passes into a library method, BluJ

has access to type information for that object only as declared at the library

entry point. Consequently, a whole program analysis tracking the flow of the

same object from its allocation site may be able to set more precise bounds

on the type of the object. The code listing in Figure 5.7 provides an example

where a whole-program points-to analysis provides more precise results than

a points-to analysis that uses HGASSs. The application code makes a call to

libraryMethod() on Line 204, and libraryMethod (Line 194) declares the

type of its first parameter as LeftOrRight. In the absence of application code,

a sound summary must conclude that the method call getObject() on Line

195 may resolve to any of Left.getObject() (Line 181), Right.getObject()

(Line 189), or an unknown override in an application class.

Figure 5.8 shows the data-flow graph for a whole-program analysis of the

example in Figure 5.7 with BluJ’s summary flow edges overlaid on the graph.

A whole-program analysis has access to the allocation site at Line 201 and can

determine that the object passed into the library at Line 204 is of type Left.

Since the analysis knows the concrete type of o at Line 195, the only possible

call target is Left.getObject(). The whole-program analysis then precisely

determines that the points-to set of y at Line 204 is {onew@202}. When the

analysis uses BluJ’s summaries instead of analyzing the library, it computes
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170 // Library code

171 public class LeftOrRight {

172 LeftOrRight left;

173 LeftOrRight right;

174

175 public abstract LeftOrRight getObject();

176 }

177

178 public class Left extends LeftOrRight {

179

180 @Override

181 public LeftOrRight getObject() {

182 return left;

183 }

184 }

185

186 public class Right extends LeftOrRight {

187

188 @Override

189 public LeftOrRight getObject() {

190 return right;

191 }

192 }

193

194 public LeftOrRight libraryMethod(LeftOrRight o){

195 LeftOrRight r = o.getObject();

196 return r;

197 }

198

199 // Application code

200 public void main() {

201 Left x = new Left();

202 x.left = new Left();

203 x.right = new Right();

204 LeftOrRight y = libraryMethod(x);

205 }

Figure 5.7: A small program for which BluJ’s library summary is less precise
than a whole-program analysis.
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public void main() {

Left x = new Left();

x.left = new Left();

x.right = new Right();

LeftOrRight y = libraryMethod(x);

}

public LeftOrRight libraryMethod(LeftOrRight o){

LeftOrRight r = o.getObject();

return r;

}

x x.left x.righty

o o.left o.rightr

Figure 5.8: Flow graph for methods main() and libraryMethod(). Dashed
edges are BluJ summary edges. The edge highlighted in dark red is an im-
precise flow edge.

the points-to set of y at Line 204 as {onew@202, onew@203}

In some cases, this additional imprecision may have a profound effect on

client analysis performance. For example, the commonly-used library meth-

ods StringBuilder.append(Object) and HashSet.contains(Object) have

no type bounds on their respective parameters and make use of commonly-

overridden java.lang.Object methods. The number of spurious data flows

resulting from the respective calls to Object.toString() and Object.hashCode()

is so large that summaries of these methods significantly slow down the client

analysis. In cases like these, where an object o has no type bounds and is the

receiver of a method call, BluJ does not produce a data-flow summary for o.

BluJ instead defers the tracking of object o to the client analysis.

This chapter gave a theoretical view of how BluJ integrates its summaries

into an existing analysis. In the following chapter, we assess the feasibility of

generating HGASSs and their utility as a tool for improving the performance

of an existing data-flow analysis.
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Chapter 6

Evalutation

The usefulness of an HGASS depends on the balance it can provide between

increased performance and decreased precision to a client analysis. Addition-

ally, a useful HGASS must be sound with respect to its client analysis, i.e.,

it must not miss data-flows that its client analysis detects, and it must be

computable in a reasonable amount of time and with a reasonable amount of

resources (for example, a summary that takes years to compute is not likely to

be useful). To evaluate the performance, precision, and soundness of HGASSs,

we formulate the following research questions:

• RQ1 How much memory does BluJ need to generate a method data-

flow summary?

• RQ2 How many library classes can BluJ summarize in the span of 12

hours?

• RQ3 How does the integration of HGASSs into an existing data-flow

analysis affect the running time, memory usage, soundnes, and precision

of that analysis?

To addressRQ3, we integrated HGASSs into the Boomerang [56] points-

to analysis framework and compared analysis results for Boomerang and

Boomerang+HGASS. We chose to evaluate our work for RQ3 with a whole-

program points-to analysis because points-to information is a prerequisite for

a large class of other analyses. We chose Boomerang as the framework for
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integrating HGASSs because it uses SPDSs internally and is therefore able

to take advantage of the additional field-sensitivity that BluJ provides over

other data-flow summaries.

6.1 Experimental Setup

We carried out all experiments on a server with two AMD EPYC 7351 16-Core

Processors. For all experiments we set the maximum Java virtual machine

(JVM) heap size to 256GB and the maximum JVM stack size to 1GB.

We used the DaCapo [9] benchmark suite (Version 9.12-MR1-Bach) as our

evaluation dataset. Specifically, we use the subset of DaCapo benchmarks

available from the Doop [12] benchmark repository [53].1 Each benchmark

consists of two java archive (JAR) files: an application JAR file, which contains

all application classes for the benchmark in addition to the classes used by the

DaCapo test harness, and a library JAR file, which includes all non-JDK

library dependencies for the benchmark. The DaCapo test harness makes

heavy use of the Java reflection API, which is notoriously difficult for static

analyses to reason about [32]. To account for this, we supplement each analysis

run with reflection traces that we obtained by running TamiFlex [10] on each

benchmark.

The first step of our evaluation methodology was mining DaCapo to iden-

tify library classes as candidates for summarization. We determined candidate

classes for summarization by determining which library classes had the most

direct usages by application classes.

Definition 16. Given a program and its static call graph G, a direct usage

is a call graph edge (m,n) ∈ G such that method m() is a member of an

application class and method n() is a member of a library class. If n() is a

member of library class C, we say that (m,n) is a direct usage of C.

To determine direct usages, we used a precise static call graph algorithm

1This subset excludes the benchmarks fop, tomcat, and daytrader. We additionally
exclude jython—we were unable to obtain reflection traces for jython due to an issue with
TamiFlex.
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Figure 6.1: The number of summarized library classes and the proportion of
total library usages captured by summarizing that number of classes.

[35] to construct a call graph for each application and totalled the direct us-

ages for all library classes across the 9 DaCapo applications in our evaluation

dataset. For our evaluation, we focus on summarizing as many of the most-

used library classes as possible within a 12 hour time window. We chose a

12 hour time window because we envision BluJ’s summary generation as a

component of an overnight build. Appendix A provides a table of the 100

library classes with the most direct usages, and Figure 6.1 shows the cumula-

tive proportion of library usages that BluJ is able to capture with respect to

number of classes summarized.

6.2 Summary Generation

We performed BluJ’s summarization of each class in parallel across 32 physi-

cal threads, with a configured timeout of 20 minutes for each summarized API

method. Table 6.1 shows the peformance results for summary generation by

package. Appendix B shows the full results by class.

BluJ generated summaries for 89 library classes within the allotted 12

hours, and the 89 summaries captured 78% of library usages (RQ2). The

total peak heap memory usage across the full summary generation run was

57



Table 6.1: Summary generation statistics for library classes by package.

Package Classes CPU Time Used Flows Summary Size (MB)

java.util 33 62hr 6min 3309 66.03
java.lang 23 39hr 50min 2604 118.07
java.io 11 26hr 15min 1210 43.32
org.antlr.runtime 5 3hr 32min 743 13.99
java.awt 2 9hr 22min 360 5.41
java.awt.image 2 10hr 50min 274 3.49
java.net 2 13hr 0min 236 12.18
other 11 10hr 27min 2001 92.37

14.2 GB, or 444 MB on average per thread, suggesting that summary genera-

tion is not particularly memory intensive (RQ1). This indicates that on very

high-powered systems, the generation phase could be further parallelized, per-

haps even summarizing individual methods in parallel, to decrease summary

construction time. The on-disk size of the 89 generated class summaries is

355MB.

6.3 Whole-program points-to analysis

To evaluate RQ3, we integrated HGASSs into the Boomerang flow-sensitive

points-to analysis framework. The whole-program analysis initializes an SPDSs

instance at every allocation site reachable from the program entry points and

solves each SPDSs query independently. We measured performance on the

basis of total analysis time and peak memory usage. We measured soundness

and precision by comparing the size of the set of reachable application states

for Boomerang and BluJ.

Definition 17. A reachable application state is an SPDSs control location

v@sa ∈ V × S such that sa is a statement in the application code and there

exists some configuration ⟨v@sa, wf⟩ ∈ post∗(⟨o@salloc, ϵ⟩) for arbitrary wf ∈

F ∗ and arbitrary object allocation site o@salloc.

Table 6.2 provides a summary of the results for each benchmark. While

evaluating Boomerang andBluJ, we encountered a limitation of theBoomerang

framework: Boomerang does not use a worklist algorithm to compute PDS
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Table 6.2: Memory usage, analysis time, library analysis time, reached appli-
cation states, and failed queries for each benchmark. Reported mean values
are the arithmetic mean.

Benchmark
Analysis Time (S) Mem. Usage (GB) Lib. Analysis Time (S) kStates Reached Failed Queries
mean st. dev. mean st. dev. mean st. dev. mean st. dev. mean st. dev.

avrora
Boomerang 461.4 32.7 19.7 1.7 0.84 0.06 1 278 36 1 0

BluJ 1 220.2 196.1 18.1 1.4 0.34 0.02 855 44 74 2

batik
Boomerang 13.5 0.3 2.3 0.3 0.93 0.07 223 0 0 0

BluJ 14.9 0.7 2.4 0.3 0.21 0.02 191 0 53 0

eclipse
Boomerang 287.5 32.8 19.2 3.7 8.61 2.12 2064 271 48 15

BluJ 123.2 6.3 7.2 1.9 24.48 1.34 420 3 884 1

h2
Boomerang 9.5 0.1 1.7 0.3 0.76 0.06 161 0 0 0

BluJ 16.9 0.3 2.3 0.2 0.29 0.01 125 0 47 0

luindex
Boomerang 129.1 13.8 10 1.8 5.83 0.47 1743 392 20 15

BluJ 135.3 8.9 7.1 1.6 1.47 0.06 606 13 137 1

lusearch
Boomerang 30.3 0.6 3 0.2 0.74 0.04 514 0 0 0

BluJ 60 1.3 3.8 0.6 0.41 0.02 545 3 78 0

pmd
Boomerang 16.7 0.7 2.5 0.1 0.69 0.03 311 0 0 0

BluJ 17.7 0.4 2.5 0.1 0.3 0.01 238 0 89 0

sunflow
Boomerang 71.1 1 5.5 0.5 1.43 0.04 1148 9 1 1

BluJ 63.3 0.9 4.1 0.3 0.37 0.03 623 0 125 0

xalan
Boomerang 9.9 0.3 1.9 0.1 0.62 0.08 160 0 0 0

BluJ 12.4 0.2 2 0.3 0.19 0.01 119 0 46 0

reachability information but instead makes heavy use of the observer design

pattern. For large programs like those in our evaluation dataset, the heavy

use of this design pattern leads to deeply nested sequences of method calls

and occasional stack overflow errors, even when the Java Virtual Machine is

configured with the maximum stack size. Additionally, analysis execution is

non-deterministic, and there is no way to predict which queries will fail with a

stack overflow error on a particular analysis run. To mitigate this limitation,

we executed BluJ and Boomerang five times for each benchmark and report

the arithmetic mean for each metric.

For each benchmark, we show the analysis time, peak memory usage, reach-

able application states, and failed queries in Figure 6.2. The results indi-

cate that there is generally not much advantage to using BluJ rather than

Boomerang. This result initially surprised us, but a closer examination of

the time that Boomerang actually spends analyzing library code for this

set of benchmarks (Figure 6.3) reveals that there is not much performance to

be gained by speeding up library analysis. For 8 of the 9 benchmarks, BluJ

reduced library analysis time, but library analysis time was nearly inconse-

quential when compared to application analysis time. Additionally, BluJ
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Figure 6.2: Analysis time, maximum heap memory usage, reached application
states, and failed queries for Boomerang and BluJ. Plotted values are the
arithmetic means for the five analysis runs.
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Figure 6.3: Library analysis time and library analysis time as a proportion
of total analysis time for Boomerang and BluJ. Plotted values are the
arithmetic means for the five analysis runs.

creates performance overhead by checking to see if it can apply a summary at

every application-to-library call edge, and this overhead more than offsets the

reduction in library analysis time. The unusually low proportion of time spent

analyzing library code runs contrary to results reported in existing studies,

e.g., [2], [6], [45]. The following section discusses some possible reasons for

this surprising result.

6.4 Discussion

While the benchmark source code contains a high number of library calls, both

Boomerang and BluJ determine the majority of them to be unreachable

from the application entry point. This suggests that TamiFlex is unable to

capture adequate reflection traces for the DaCapo benchmarks, the DaCapo

harness does not provide high code coverage, or some combination of the two.

The Jacoco code coverage tool [23] reports that of the 9 benchmarks in our

corpus, only sunflow surpasses 20% coverage, with batik and xalan below 10%

coverage [18]. Additionally, theTamiFlex booster agent (the portion of Tam-

iFlex responsible for integrating reflection traces into a static analysis) only

supports basic Java reflection mechanisms and ignores several types of reflec-

tion that occur in both the benchmark applications and the DaCapo harness.
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We attempted to mitigate this problem by ignoring program entry points and

setting all application classes as reachable. However, all analysis runs of both

Boomerang and BluJ failed with out-of-memory errors, and we were un-

able to obtain useful data. We expect that if we had been able to successfully

perform the analysis with all application methods set as reachable, we would

have found the proportion of analysis time spent analyzing library code to be

more in line with existing research.

BluJ’s current implementation computes an under-approximation of Boo-

merang’s reached application states, meaning it is not sound with respect to

Boomerang. The majority of the states that BluJ did not determine to be

reachable were missed as a result of failed queries. Overall, BluJ had 21 times

as many queries fail due to stack overflow errors compared to Boomerang.

Manual inspection of BluJ and Boomerang’s respective sets of reached

states for the batik benchmark also revealed 4 successful queries for which

BluJ under-approximated the set of reachable states. While we are currently

working to determine the cause of the increased stack overflows and additional

unsoundness, we do not believe that addressing these issues will significantly

change the answer to RQ3.
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Chapter 7

Conclusion

Constructing data-flow summaries that are simultaneously precise, easily gen-

erated, and efficiently consumed by a client analysis is a difficult task. In this

thesis, we attempted to address the problem of precise and efficient data-flow

summaries through BluJ, a tool that generates context- and field-sensitive

data-flow summaries using synchronized pushdown systems and heap graphs.

We provided formal descriptions of how BluJ generates its HGASS summaries

and how BluJ integrates them into an existing whole-program points-to anal-

ysis.

We successfully generated HGASSs for 89 library classes within 12 hours,

indicating that HGASS generation is feasible in a production environment.

For example, new summaries could be generated as part of a nightly build, if

necessary.

We integrated our summaries into the Boomerang points-to analysis

framework and evaluated the performance of BluJ against Boomerang.

The results for analysis time and memory usage indicate that HGASS sum-

maries, in their current formulation and implementation, cannot be efficiently

consumed by an existing whole-program points-to analysis. The empirical

evaluation also uncovered issues with soundness in BluJ’s implementation

that we are working to address.

While BluJ’s summaries do not offer performance gains for generic Java

applications, they may offer more benefit to analyses that target framework-

heavy applications, e.g., Android applications. Future work could evaluate
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BluJ on a suite of Android benchmarks to assess their feasibility.

BluJ could possibly be extended to weighted pushdown system. Weighted

pushdown systems extend pushdown systems with an additional finite weight

domain represented by an algebraic structure called an idempotent semiring.

The weight domain can encode a variety of information for specific data-flow

analyses, such as access control [50], constant propagation [42], and types-

tate analysis [54]. An extension of BluJ’s pushdown systems to weighted

pushdown systems would facilitate analysis-specific library summaries. The

primary challenge of this work would lie in extending the heap graph portion

of BluJ’s summary generation framework with the appropriate weight do-

main and weight functions such that BluJ can compute weighted reachability

information.

BluJ may also be applicable to dynamic languages such as JavaScript,

provided that we modify BluJ to efficiently handle its language features.

BluJ’s notion of context-sensitivity would need to be extended to handle

closures. Additionally, BluJ would need to soundly model the variety of

mechanisms that JavaScript provides for asynchronous computation. BluJ

may also be able to build on existing work that performs lightweight partial

program analysis on individual JavaScript compilation units [29], [38].
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Appendix A

Most Used Dacapo Library
Classes

Library Class Direct Usages
java.lang.StringBuilder 44 573
java.lang.StringBuffer 41 222
java.lang.String 26 199
java.lang.Throwable 15 485
java.lang.AbstractStringBuilder 12 220
java.util.ArrayList 12 220
java.lang.System 9 918
java.lang.Object 6 726
java.util.HashMap 6 568
java.lang.Integer 5 773
java.io.File 5 411
java.lang.Class 4 676
java.io.PrintStream 4 144
java.util.HashSet 2 867
java.util.Hashtable 2 609
java.lang.Math 2 288
java.util.Vector 2 252
java.util.ArrayList$Itr 2 175
java.lang.Boolean 1 865
java.lang.Thread 1 683
java.util.Arrays 1 626
java.lang.IllegalArgumentException 1 546
java.util.Properties 1 488
java.lang.NoClassDefFoundError 1 420
java.lang.Character 1 398
java.lang.Float 1 254
org.antlr.runtime.BufferedTokenStream 1 223
java.lang.Long 1 084
java.util.LinkedList 1 041
java.util.AbstractList$Itr 1 014
java.awt.geom.AffineTransform 953
java.io.FileInputStream 947
java.lang.RuntimeException 944
java.awt.Container 938
org.antlr.runtime.BitSet 934
org.antlr.runtime.BaseRecognizer 916
java.util.Locale 900
java.util.StringTokenizer 875
java.io.DataInputStream 851
java.util.LinkedList$ListItr 845
java.util.AbstractList$SubList$1 840
java.util.Vector$Itr 837
java.net.URL 830
org.antlr.runtime.tree.BaseTreeAdaptor 822
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Library Class Direct Usages
java.lang.Double 812
org.xml.sax.SAXException 765
java.io.BufferedReader 742
java.awt.image.Raster 741
java.awt.Component 725
com.ibm.icu.text.MessageFormat 714
java.io.PrintWriter 706
java.io.FileOutputStream 696
java.io.BufferedInputStream 688
java.util.AbstractMap$1$1 660
java.util.Collections 647
java.lang.AssertionError 638
javax.swing.JComponent 604
java.security.AccessController 588
java.util.LinkedHashMap$LinkedHashIterator 568
java.util.HashMap$HashIterator 568
java.io.DataOutputStream 550
java.io.RandomAccessFile 542
java.math.BigInteger 526
java.lang.Enum 510
sun.awt.util.IdentityLinkedList$ListItr 495
javax.imageio.metadata.IIOMetadataNode 491
org.antlr.runtime.ANTLRStringStream 491
java.lang.NullPointerException 481
org.w3c.dom.DOMException 475
java.lang.UnsupportedOperationException 474
java.util.ResourceBundle 468
org.antlr.runtime.DFA 441
java.util.Date 440
java.util.HashMap$Node 439
java.util.Collections$EmptyIterator 430
java.net.URI 427
java.util.Calendar 421
java.util.Stack 420
java.awt.Rectangle 409
java.util.AbstractCollection 407
java.util.AbstractMap$2$1 405
java.awt.image.BufferedImage 399
java.io.IOException 381
java.awt.Window 373
java.util.LinkedHashMap$LinkedKeyIterator 364
java.util.HashMap$KeyIterator 364
java.io.InputStreamReader 362
com.sun.org.apache.xerces.internal.impl.xs.opti.ElementImpl 361
java.lang.IllegalStateException 360
java.lang.ClassLoader 355
java.util.AbstractList 352
java.util.Arrays$ArrayItr 351
java.util.Collections$SynchronizedCollection 345
java.lang.Byte 341
javax.xml.transform.TransformerException 329
java.util.Collections$UnmodifiableCollection 327
java.lang.Short 327
java.util.Hashtable$Enumerator 326
sun.java2d.SunGraphics2D 325
java.util.ImmutableCollections$ListItr 321
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Appendix B

Summary Generation

Class Gen. Time (s) Flows Size (MB)
java.math.BigInteger 19 423.43 781 74.26
java.lang.Integer 15 508.10 758 49.90
java.lang.Long 15 489.25 607 32.70
java.awt.geom.AffineTransform 1 301.37 557 7.92
java.util.Properties 26 287.69 502 16.24
java.util.Vector 18 742.63 481 10.71
java.util.Collections 12 485.24 419 7.13
java.util.LinkedList 11 457.12 400 6.81
java.lang.StringBuffer 24 002.93 312 7.57
org.antlr.runtime.BaseRecognizer 10 693.55 299 5.59
javax.imageio.metadata.IIOMetadataNode 17.21 290 4.38
java.io.PrintWriter 16 048.82 267 20.79
org.antlr.runtime.BufferedTokenStream 932.00 235 4.87
java.util.HashMap 10 954.88 229 4.12
java.io.PrintStream 22 472.58 220 7.85
java.io.RandomAccessFile 5 766.35 213 4.06
java.awt.Container 33 664.05 211 3.68
java.util.Hashtable 16 469.86 208 3.17
java.net.URI 29 989.33 202 12.02
java.util.Calendar 7 225.43 182 3.89
java.util.ArrayList 9 351.80 175 3.04
java.awt.image.BufferedImage 14 410.50 154 1.97
java.awt.Rectangle 35.58 149 1.73
java.lang.Boolean 2 225.65 147 8.93
java.lang.Byte 7 867.50 136 6.32
org.antlr.runtime.tree.BaseTreeAdaptor 1.88 133 1.16
java.lang.Character 6 021.93 130 3.80
com.sun.org.apache.xerces.internal.impl.xs.opti.ElementImpl 0.30 126 0.93
java.io.FileInputStream 4 369.14 121 3.11
java.awt.image.Raster 24 581.06 120 1.52
java.lang.Throwable 9 735.91 120 3.42
java.util.AbstractList 7 207.81 117 2.05
java.util.HashSet 4 422.36 110 2.28
java.io.FileOutputStream 6 543.17 105 2.84
org.antlr.runtime.BitSet 1 088.67 103 1.89
java.io.DataOutputStream 2 718.84 103 2.56
javax.xml.transform.TransformerException 3 640.10 94 3.57
java.io.InputStreamReader 7 246.33 86 1.31
java.lang.Thread 21 411.67 69 1.38
org.antlr.runtime.DFA 0.33 65 1.42
java.util.LinkedList$ListItr 1 230.18 56 0.51
java.util.Hashtable$Enumerator 7.33 54 0.56
java.util.StringTokenizer 7 312.10 54 1.43
java.lang.Short 8 400.55 49 1.14
org.antlr.runtime.ANTLRStringStream 0.69 41 0.22
java.lang.ClassLoader 8 406.48 38 0.25
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Class Gen. Time (s) Flows Size (MB)
java.util.HashMap$Node 1 802.02 38 0.75
java.net.URL 16 800.48 34 0.16
java.lang.Object 311.61 33 1.12
java.io.BufferedReader 6 005.12 32 0.32
java.lang.Double 3 602.28 31 0.13
java.lang.Float 3 601.47 31 0.13
java.lang.System 10 813.71 29 0.39
java.util.ResourceBundle 14 406.80 29 0.24
java.util.Collections$UnmodifiableCollection 13 225.48 29 0.28
java.util.Date 15 600.70 27 0.40
java.io.BufferedInputStream 4 089.40 24 0.19
java.io.DataInputStream 18 025.84 24 0.19
java.util.AbstractCollection 10 805.63 23 0.26
java.util.Collections$SynchronizedCollection 16 800.51 22 0.14
java.util.LinkedHashMap$LinkedHashIterator 65.12 21 0.34
java.util.HashMap$HashIterator 54.34 21 0.34
java.lang.Enum 1 204.69 21 0.11
java.util.Stack 3 600.63 21 0.56
java.util.AbstractList$SubList$1 3 601.93 20 0.14
java.lang.AssertionError 1 203.48 16 0.15
java.lang.RuntimeException 1 202.56 15 0.12
java.lang.IllegalArgumentException 1 203.12 15 0.12
java.lang.IllegalStateException 1 203.12 15 0.12
java.lang.UnsupportedOperationException 4.88 15 0.12
java.io.IOException 1 204.39 15 0.12
sun.awt.util.IdentityLinkedList$ListItr 8.01 14 0.12
java.util.ArrayList$Itr 1 203.93 12 0.12
java.util.Vector$Itr 1 386.67 12 0.11
java.lang.NullPointerException 4.41 12 0.08
java.util.Collections$EmptyIterator 4.96 11 0.10
java.util.AbstractList$Itr 1 747.07 10 0.10
java.util.ImmutableCollections$ListItr 1 200.34 7 0.03
java.util.HashMap$KeyIterator 2.06 5 0.05
java.util.LinkedHashMap$LinkedKeyIterator 1.59 5 0.05
java.util.Arrays$ArrayItr 2.18 5 0.04
java.lang.NoClassDefFoundError 1.59 5 0.04
org.w3c.dom.DOMException 1.79 5 0.04
java.util.AbstractMap$2$1 2 417.50 2 0.01
java.util.AbstractMap$1$1 2 495.94 2 0.01
org.xml.sax.SAXException 0.52 1 0.00
java.security.AccessController 13 200.20 0 0.00
java.lang.Math 1.23 0 0.00
com.ibm.icu.text.MessageFormat 0.00 0 0.00
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