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Abstract

Multivariate techniques aim to integrate multiple variables and/or data in the same

framework to improve uncertainty assessment in high resolution geostatistical mod-

els. The necessity to build models that better quantify the uncertainty with limited

data that are often collected with different data types has driven the latest develop-

ments in multivariate geostatistical modeling. The use of decorrelation techniques

facilitates the modeling of equally sampled data, whereas cokriging is more suitable

for unequally sampled data and in cases where different data types are considered.

The emphasis of this thesis is on the challenges and gaps in current multivariate

modeling workflows involving multivariate criteria and geostatistical cosimulation

with cokriging. This thesis develops techniques that improve multivariate models

of equally and unequally sampled data.

The first contribution of this thesis is on multivariate modeling of equally sam-

pled data. An integrated framework that uses the projection pursuit multivariate

transform in the context of estimation and local uncertainty assessment is proposed.

Simulation of the independent factors is skipped and the local multivariate distri-

butions are directly back transformed for posterior uncertainty assessement. This

framework provides a starting point for modeling more complicated multifactor and

extreme value criteria. The applicability of the proposed methodology is shown

in the context of exploration geochemistry with geochemical data collected in the

Northwest Territories.

The second contribution of the thesis is the development of a methodology that
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combines the LMC and blind source separation theory for addressing the complexity

and limitations of multivariate geostatistical workflows with the LMC and cokriging.

The proposed methodology allows for independent simulation of the LMC factors

with the most appropriate algorithm, improving variogram reproduction and fa-

cilitating model checking. As a consequence, this methodology offers a modern

approach to the LMC that increases its applicability in geostatistical multivariate

modeling. This methodology is applied in a multivariate modeling of geochemical

data.

Because the LMC factors have a single spatial covariance function, the most ap-

propriate Gaussian simulation algorithm may be selected and applied to each factor

independently. A third contribution of this thesis is to address the challenges of op-

timal selection of the simulation algorithm and provide practical recommendations

based on different analyses with four common Gaussian simulation algorithms.
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Chapter 1

Introduction

This chapter introduces the challenges of multivariate modeling with current tech-

niques that motivate the research documented in this dissertation. Background on

the problem setting is provided. The research contributions are reviewed with a

thesis statement. The outline of the thesis and a brief summary of each chapter are

also provided.

1.1 Problem setting

Evaluation of subsurface resources is a critical task in mining. The complexity of the

many geological events that formed a mineral deposit cannot be fully understood or

explained by one variable or a single data type. Characterization of mineral deposits

is done with the available data that come from different sources and represent

different scales. The collected data are used to build numerical representations of a

mineral deposit that in the presence of limited data, will always be uncertain. Our

understanding of the uncertainty is improved by maximizing the use of all available

data.

Geostatistics provides the tools to model spatially correlated data and evaluate

recoverable reserves in mineral deposits since the development and formalization of

its theory in the 1960s (Matheron, 1962). The continuing development of geostatis-

tics over the 1970s (David, 1977; Journel and Huijbregts, 1978; Matheron, 1971)

and 1980s (Isaaks and Srivastava, 1989) expanded its use from interpolation of

values at unsampled locations to model the uncertainty about unknown values of

the attribute of interest. The release of the geostatistical software library GSLIB

(Deutsch and Journel, 1992) in the early 1990s had significant impact in spread-

ing geostatistics among practitioners and the development of new algorithms and

1



1. Introduction

techniques in recent years.

Cokriging is an early multivariate technique in geostatistics (Goovaerts, 1997;

Journel and Huijbregts, 1978). Cokriging provides a framework to combine pri-

mary and non-exhaustive secondary information for estimation and requires a lin-

ear model of coregionalization (LMC) (Isaaks and Srivastava, 1989; Journel and

Huijbregts, 1978). The LMC is a tool for modeling the direct and cross covari-

ances of two or more variables. Since its introduction, multivariate geostatistical

modeling evolved from the LMC and cokriging for estimation to simpler models of

coregionalization and more general use of cosimulation (Wackernagel, 2003). While

multivariate modeling allows integration and use of more data, it comes with chal-

lenges. Data from different sources are rarely collected at the same locations. Dif-

ferent data types, such as drill core, blast hole, channel samples, and geophysics

are measured differently and represent different scales of the data. The integration

of all data types for cosimulation with cokriging is challenging. A methodology

to facilitate geostatistical workflows with the LMC is currently not available. An-

other problem in multivariate geostatistical simulation workflows is to choose the

appropriate simulation algorithm. The current approach is to choose an algorithm

for simulation. The choice of the algorithm is usually left to judgement and expe-

rience. However, different algorithms are more efficient at generating realizations

for different spatial covariance functions. A methodology that permits independent

conditional simulation of LMC factors is currently not available.

While multivariate modeling of unequally sampled data is restricted to the LMC,

collocated data is often modelled with decorrelation techniques. Decorrelation tech-

niques such as principal component analysis (PCA) and projection pursuit multi-

variate transform (PPMT) transform multivariate data with arbitrarily complex be-

havior to be multivariate Gaussian and uncorrelated (Barnett et al., 2014; Boisvert

et al., 2013; Davis and Greenes, 1983; Hotelling, 1933). Simulation and estima-

tion are greatly facilitated since the transformed factors can be considered one at a

time. The back transformation restores any complex multivariate behavior. Closure

property or hard constraints present in the data (e.g. Z2(x) < Z1(x)∀ x) could be

2



1. Introduction

enforced by a ration transform, then PPMT. Simulation of the factors is routinely

performed since that provides an assessment of local uncertainty and multilocation

uncertainty. There are times when local estimates or local uncertainty measures are

the goal of the study. One application is in exploration geology. Assessing the local

multivariate joint-probability for a given mineral deposit signature criteria provides

insights to narrow exploration targets and highlights the regions where deposits are

likely to occur. A computationally efficient methodology that provides accurate

multivariate data-value dependent measures of local uncertainty is currently not

developed.

The problem of unequally sampled data

The main problem this thesis addresses refers to the many challenges of modeling

multivariate data in the presence of unequally sampled data. In geostatistics, hetero-

topic and homotopic observations refer to unequal and equal sampling respectively,

see Figure 1.1. The term unequal refers to incomplete observations of different

variables of the same data type, e.g., variable 1 and variable 2 are available at all

locations, but variable 3 is missing at some (Figure 1.1b). Unequal sampling may

also refer to observations of two or more data types that are available at different

locations and never collocated, e.g., reverse circulation and diamond core drilling

(Figure 1.1c). Unequal sampling commonly occurs as a result of (1) legacy data,

(2) use of exploration data such as delineation drilling and geophysics, (3) different

data types being used at different stages of a mineral project to reduce sample errors

and improve confidence in the estimates, and (4) different data types collected to

represent different scales of variability and/or being used in geometallurgical and

geotechnical analyses.

In the presence of missing data, unequal sampling, or different data types, vari-

ables are typically cosimulated with some variation of cokriging. Simultaneous

modeling of multiple primary variables requires a model of coregionalization. A

model of coregionalization like the LMC is required to combine multiple data types

measured at different locations and different data support into the same framework,

3



1. Introduction
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Figure 1.1: Schematic illustration of heterotopic and homotopic data. A trivariate dataset
composed of Z1, Z2, and Z3 are unequally sampled in five locations in (a), completely
unequally sampled in (b), and equally sampled in (c).

and in cases where decorrelation techniques do not successfully remove spatial cross

covariance. Different variables and data types having sample-specific measurement

errors can be used together for estimation with cokriging (Goovaerts, 1997). In

the case of completely unequally sampled data (Figure 1.1c), that is, when two or

more data types are available and are never collocated, simultaneous modeling of

the variables is restricted to the LMC and other models of coregionalization (Liang

and Marcotte, 2015; Marcotte, 2012; Paciorek and Schervish, 2006).

Cosimulation with cokriging imposes challenges in geostatistical modeling work-

flows. Cokriging requires computation of the spatial structure of the direct and cross

relationships of all variables. In presence of unequally sampled data, it is necessary

to compute K(K + 1)/2 direct and cross covariances, where K is the number of

variables considered. An LMC is assumed and fitted to the computed covariances.

The calculation of the experimental covariances takes little computational effort,

but fitting an LMC with a large number of variables is challenging. Geological data

is often anisotropic, that is, different directions show different spatial continuity.

The problem lies in fitting the LMC to the calculated covariances accounting for

anisotropy in the data. For example, fitting an LMC to a multivariate data with

k = 5 variables requires modeling 15 covariances in each anisotropic direction. The

covariances models are fitted together in the LMC. The matrix of covariance mod-

els must be mathematically valid and the variance of each variables non-negative

(Rossi and Deutsch, 2014). Despite the challenge of modeling and LMC with a large

number of variables, it remains a useful and mathematically flexible tool.
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Simulation algorithms

There are many algorithms for simulation of Gaussian variables including sequen-

tial Gaussian simulation, turning bands, moving average methods, random coins,

spectral methods, circulant embedding, and matrix methods such as Cholesky fac-

torization and singular value decomposition (Borgman et al., 1984; Chiles and

Delfiner, 2012; Dietrich and Newsam, 1997; Emery, 2008; Emery and Lantuejoul,

2006; Goovaerts, 1997; Kyriakidis, 1999; Legchenko et al., 2017; Mantoglou, 1987;

Mantoglou and Wilson, 1982; Matheron, 1973; Oliver, 1995; Oliver et al., 2008; Par-

avarzar et al., 2015; Pardo-Iguzquiza and Chica-Olmo, 1993; Wackernagel, 2003;

Yao, 1998b). Each algorithm has a range of spatial covariance functions and grid

parameters where they perform with high efficiency and robustness in terms of var-

iogram and histogram reproduction. The current approach in cosimulating with

the LMC is to choose an algorithm to simulate all the structures simultaneously.

The use of one algorithm may not be optimal. Good variogram and histogram

reproduction may not be achieved.

Direct assessement of local multivariate distributions

Another problem this thesis addresses relates to assessing the probability of meet-

ing multivariate criteria. These criteria may involve different rules being applied to

many variables at the same time. For example, consider the probability of satisfy-

ing the following multivariate rules: variable 1 above a threshold while variable 2

is above a different threshold and variable 3 is below another threshold. One of the

applications is in exploration geochemistry. Multivariate criteria are defined based

on deposit signatures, for example, Pb/Zn SEDEX deposits usually contains high

concentrations of Zn and Pb, while concentrations of other economic elements such

as Ag, Au, and Cu vary from low to high (Jebrak and Marcoux, 2008). The assess-

ment of multivariate criteria requires multivariate simulation. Stable assessment of

local uncertainty may require hundreds of realizations; a mere one hundred realiza-

tion would lead to significant noise in the variance or any probability sensitive to
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the tails of the distribution. Exploration geology deals with a large number of trace

elements often collected at the same locations. In the presence of collocated data,

Figure 1.1a, decorrelation methods offer a more practical workflow for simulation

than cosimulation with cokriging. The application of multivariate modeling in the

context of such criteria is developed.

Research contributions and thesis statement

To address the first two challenges, a framework for the spatial modeling of unequal

sampling data is proposed in this thesis. This framework combines the LMC and

Blind Source Separation (BSS) (Schmidt, 2009) to factorize the multivariate data

allowing for missing geological data imputation and direct simulation of the factors.

Computation of the original variables from the simulated factors is straightforward.

The factors have their own spatial structure and can be modelled independently with

the optimal algorithm for each structure. Another convenience is that factors can

be analysed and checked independently, as opposed to cosimulation with cokriging.

The proposed methodology is referred as to independent factor simulation (IFS).

To address the third challenge, this thesis develops the use of the PPMT (Bar-

nett et al., 2014) in the context of estimation and local uncertainty assessment.

Simulation of the independent factors is skipped and the local multivariate distri-

butions are directly back transformed for posterior uncertainty assessement. The

proposed methodology is referred as to post-process of PPMT factors (PostPPMT).

The key contributions of this thesis are:

• The development of a framework for addressing the problems of the complexity

and limitations of multivariate geostatistical workflows with the LMC and

cokriging for a large number of variables.

• A modern approach to the LMC that increases its applicability in geostatisti-

cal multivariate modeling.
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• The proposed methodology allows for independent simulation of the LMC fac-

tors with the most appropriate algorithm, improving variogram reproduction

and facilitating model checking.

• The development of a framework for estimation and local uncertainty assesse-

ment with multivariate data that provides a starting point for more compli-

cated multifactor and extreme value criteria.

The thesis statement:

The development of geostatistical modeling with multivariate complex rela-

tionships of unequally sampled data modernizes the use of the LMC and leads

to improved high resolution geostatistical property models. The practical

implementation of probabilistic assessment of uncertainty with multivariate

criteria provides ways for multivariate modeling in the context of such cri-

teria and adds practical value and theoretical insight for more complicated

multifactor criteria.

At present, multivariate modeling has been a collection of methods and computer

programs developed to tackle specific problems in geostatistics. Even though many

of these methods have proven their values, many implementation details are missing.

In this thesis, the emphasis is on the challenges and gaps in current multivariate

geostatistical workflows.

1.2 Thesis outline

Chapter 2 reviews relevant literature and provides the background that motivates

the development of this thesis. A summary of the geostatistical theory for multi-

variate modeling is provided. The focus is on multivariate techniques that use the

LMC for cokriging and cosimulation, a brief review of multivariate modelling with

decorrelation techniques is also given.

Chapter 3 brings a discussion on multivariate criteria and develops the theory

of the PostPPMT methodology. A brief case study on different deposit signatures

7



1. Introduction

found in the Northwest Territories, Canada, demonstrates the practical implemen-

tation of the methodology.

Chapter 4 starts with a discussion on the limitations of current practices in multi-

variate modelling with unequal sampling. It introduces a framework for integrating

different data types and unequal sampling data within geostatistical modelling work-

flows. The remainder of the chapter develops the theory of BSS and explains in

details how the BSS theory is used for imputation of factor data. When combined

with the LMC, BSS provides a framework to impute factor data that reproduce the

original data and have the correct spatial structure. This chapter also addresses to

the practical aspects, implementation details, and limitations of the BSS theory. A

small numerical example demonstrates the step-by-step of the BSS theory.

Chapter 5 brings a discussion on the practical aspects and best practices of

selection of simulation algorithm. Because factors are independent they can be

simulated independently with the best algorithm for each structure. The process of

generating realizations of the factors and computing the original variables is highly

parallelizable, not only across realizations, but also across factors and variables.

Practical recommendations for algorithm selection are given.

Chapter 6 demonstrates the BSS methodology in a comprehensive case study

with geochemical data. The first part of the case study introduces the multivariate

data, the fitted LMC model, and the imputation of factor data at sample locations.

The second part discusses the simulation of factors and reconstruction of the original

variables. Modeling results are compared with that of established techniques.

Chapter 7 summarizes the contributions and results of the developed method-

ologies. The limitations and proposed future work are highlighted. Each of the

methods developed in this thesis are implemented in software. Computationally in-

tensive algorithms are constructed as stand-alone FORTRAN executables in stan-

dard GSLIB format and wrapped in Python for easy integration into workflows.

These programs are used to generate all results in this thesis and are available from

the author upon request. Software description is given in the Appendix.
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Chapter 2

Theoretical background

This chapter reviews the geostatistical concepts that are relevant to the development

of the proposed methodologies. The independent simulation of the LMC factors

calls for a review of the LMC, cokriging, and the normal score transformation.

The LMC factors may be simulated with different algorithms; therefore, the most

well established Gaussian algorithms in geostatistics are reviewed. The PostPPMT

methodology is based on the framework of multi-Gaussian kriging, therefore a review

of kriging and decorrelation methods are provided.

2.1 Essentials of Geostatistics

The theory of regionalized variables developed by Georges Matheron (Matheron,

1971) is the foundation of geostatistics. It uses the concepts of random variables

(RVs), random functions (RFs), and probability theory to model spatially depen-

dent data. Random functions are an ensemble of spatially related random variables,

the inference of the moments of a random function requires stationarity.

Random variables and functions

A random variable is used to quantify outcomes of random processes according

to some probability distribution (Goovaerts, 1997). Random variables are either

categorical or continuous. A categorical RV has a finite number of outcomes, e.g.,

facies in a reservoir or rock types in a mineral deposit. Variables with a continuous

range of values, such as porosity or mineral grade, are modeled by a continuous

RV. Random variables are commonly represented by a capital letter Z(u), while

its outcome values are denoted with the corresponding lower-case letter z(u). The
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2. Theoretical background

location coordinates vector u is required since the RV model of Z and its probability

distribution are location-dependent (Deutsch and Journel, 1992).

The cumulative distribution function (CDF) of Z(u), F (u; z) = Prob {Z(u) ≤ z},

defines the prior model of uncertainty about the unsampled value z(u). The prior

model of uncertainty does not account for the information at neighboring loca-

tions u′
. In geostatistics this information is usually available from n neighbor-

ing non-exhaustive data values Z(uα) = z(uα), α = 1, ..., n. The n data values

are used to define the conditional distribution function (CCDF) F (u; z | (n)) =

Prob {Z(u) ≤ z | (n)} that defines the posterior uncertainty at z(u). This posterior

model of uncertainty is the goal of geostatistical modeling and the concept of RF

allows such modeling.

A random function, also denoted by Z(u), is a finite set of RVs related to the

same attribute z defined within a field of study A, {Z(u), u ∈ A}. A different RF

Y (u) is defined to model the uncertainty of the attribute y that may or may not

be related to z. In the univariate case, the CDF of the RV Z(u) is used to model

the uncertainty about z(u). In the multivariate case, the set of the CDFs of any

number K of variables, k = 1, ..., K, is used to model the joint uncertainty about

the K values z1(u), ..., zk(u). Inference of the moments of a k-variate CDF requires

stationarity.

The decision of stationarity

Inference of any statistics and moments (mean, variance, covariance) of a multivari-

ate CDF requires repetitive sampling at each location u. Exhaustive samples of

Z(u) are rarely available in practice and multiple samples at the same location are

never available. Stationarity is the decision to pool data together within a domain

A to allow for such inference. The decision of stationarity is required to spatially

homogenize the attribute under study and allow for statistical inference of Z(u)

from samples collected at other locations, uα ̸= u, α = 1, ..., n, within A. Two RVs

Z(u) and Z(u′) separated by a vector h = u′ − u within a stationary domain A

are assumed to have the same multivariate CDF under any translation vector h,
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F (u1, ...,un; z1, ..., zk) = F (u1 + h, ...,un + h; z1, ..., zk), ∀ h (Deutsch and Journel,

1992; Goovaerts, 1997).

A multivariate RF {Zk(u), k = 1, ..., K ; ∀ u ∈ A} is said to be stationary of

order two if the expected value of each interdependent RF exists and is constant

within A, and the covariance and variogram functions exist and depend only on the

vector h:

mk = E {Zk(u)} k = 1, ..., K (2.1)

Cij(h) = E {[Zi(u)−mi] · [Zj(u+ h)−mj]} ∀ i, j ∈ {1, ..., K} (2.2)

2γij(h) = Cov {[Zi(u)− Zi(u+ h)] , [Zj(u)− Zj(u+ h)]}

= E {[Zi(u)− Zi(u+ h)] · [Zj(u)− Zj(u+ h)]}
∀ i, j ∈ {1, ..., K}

(2.3)

When i = j the terms auto or direct are applied, whereas the terms joint or

cross are used if i ̸= j. The semivariogram γ(h) has been historically utilized in

the place of the variogram 2γ(h) and is hereafter referred as to as the variogram.

Under the assumption of second-order stationarity, the covariance, variogram, and

correlogram are related by (∀ i, j ∈ {1, ..., K}):

γij(h) = Cij(0)− Ci,j(h) (2.4)

ρij(h) =
Cij(h)√

Cii(0) · Cjj(0)
(2.5)

Some important properties of these moments are defined (Goovaerts, 1997). At

| h |= 0 the correlogram defines the linear correlation between variables. In gen-
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eral the covariance function is not symmetric. In practice such asymmetry is often

ignored and the so-called lag effect is rarely modeled. Although a lag effect results

in a directional asymmetry, there can be other causes for asymmetries. For exam-

ple, depositional processes of dunes form asymmetric objects and produce spatially

asymmetric grain size distributions, but there is no lag effect of such. Another ex-

ample, the cross-covariance between a variable and its derivative is not symmetric.

It is important to note that asymmetry is not synonymous of lag effect. The vari-

ogram and covariance are then considered symmetric in (h,−h), therefore Cij = Cji,

and Cij(h) = Cij(−h) = Cji(| h |) ∀ i, j. In general terms, the correlation between

variables tend to zero C(h) → 0 and the variogram tends to the a priori stationary

variance γ(h) → C(0) as the separation distance increases | h |→ ∞. The reason

geostatisticians prefer the variogram is because it does not require a constant sta-

tionary mean and finite variance for the RF Z(u). The variogram only requires

that the RF increments [Z(u)− Z(u+ h)] are stationary of order two (Journel and

Huijbregts, 1978).

The decision of stationarity is made prior to calculating relevant statistics in an

estimation domain and it is subject to data availability and geological understanding.

It is neither a characteristic of the variables being modeled nor a property of the

RF, therefore it cannot be checked. Because the decision of pooling data together is

one of the first steps of a geostatistical workflow, further steps such as exploratory

data analysis and experimental variograms may indicate a lack of homogeneity in the

data population. The decision of stationarity may then be reviewed. Variograms are

calculated and modeled within stationary domains. They are required for estimation

and simulation.

2.2 Spatial variability

Variogram models provide a measure of spatial variability, or continuity, for geo-

statistical modeling. Conceptual variogram models can be inferred from geology

if geological and mineralogical factors are known. Traditionally, direct and cross
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experimental variograms are calculated from the available data with Equation 2.6

and reconciled with known geology.

γij(h) =
1

2 | N(h) |

N(h)∑
α=1

[zi(uα)− zi(uα + h)] [zj(uα)− zj(uα + h)] ∀i, j ∈ {1, ..., K}

(2.6)

where N(h) is the number of pairs of data locations a vector h apart. Experimen-

tal variograms are calculated in different directions because geological variability

is often anisotropic. Anisotropy is modeled with three main directions orthogonal

to each other and their respective ranges of continuity. The major direction is the

direction of greatest continuity, the minor direction is the direction of smallest con-

tinuity, and the semi direction is the direction orthogonal to the first two directions.

Selective sampling often occurs in mining and the calculation of the variogram must

account for it. Parameters such as the azimuth and dip, number of lags, lag distance

and tolerance can be adjusted to guarantee a reasonable number of data pairs are

used to calculate the variogram in the presence of sparse irregular sampling.

Analytical continuous functions are fitted to the experimental points to allow

for interpolation of variogram values for any possible lag h and to smooth out

sample fluctuations. These functions also ensure positive-definite condition of the

covariance values and non-negativity of the variance of any linear combination of

random variables. Such condition guarantees that the kriging system of equations

have a solution and such solution is unique. The four most frequently used ba-

sic models in geostatistics are the spherical (Equation 2.7), exponential (Equation

2.8), Gaussian (Equation 2.9), and the nugget effect (Equation 2.10). There are

other models available in the literature (Gneiting, 1999b; Matern, 1986; Rasmussen

and Williams, 2006; Wackernagel, 2003; Webster and Oliver, 2007b) and their uses

depend on the area of study, such as geology, environmental, hydrogeology, etc.

Most experimental variograms in mining and geology can be fit with these basic

functions.
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Sph(h) =


1.5h− 0.5h3 if h ≤ 1

1 otherwise

(2.7)

Exp(h) = 1− exp(−3h) (2.8)

Gaus(h) = 1− exp(−3h2) (2.9)

Nug(h) =


0 if h = 0

1 otherwise

(2.10)

These models are expressed in their isotropic form and are said to be permissible

in three dimensions. The scalar h =| h | is the normalized distance calculated from

Equation 2.11 to account for the anisotropy and allow inferring the variogram value

for any direction and any distance.

h =

√√√√(hmajor

amajor

)2

+
(
hminor

aminor

)2

+
(
hsemi

asemi

)2

(2.11)

where a is the range parameter or the distance the variogram reaches the station-

ary variance (sill), here set to 1 (standardized models). The nugget effect reaches the

sill as soon as h > 0. The spherical model reaches the sill at distance a, whereas the

exponential and Gaussian models reach their sill asymptotically and therefore have

their practical range modeled at 95% of the sill. The three continuous variogram

models are illustrated in Figure 2.1. Note the different behavior near the origin of

the different models. The Gaussian is highly continuous whereas the spherical and

exponential models are linear and steep.

Variograms are modeled using nested structures, that is, the variogram is fit

with a sum of valid variogram models. Nested structures allow for different ranges

and anisotropy to be modeled together. Each structure can be modeled independent

of the other explaining part of the total variance. Note that the variance of all struc-

tures must sum up to the stationary variance or to 1 if variograms are standardized.
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Figure 2.1: The most frequently used variogram models and their shapes. A standardized
sill of 1 is used in the illustration.

The variogram tends to zero when the lag distance tends to zero γ(0) = 0, however

an apparent discontinuity at the origin of the variogram may occur. The nugget

effect is this discontinuous behavior and is isotropic by definition. It relates to mea-

surement errors and spatial variations at short-scale, usually at distances shorter

than the sampling interval (Goovaerts, 1997; Journel and Huijbregts, 1978).

In multivariate cases, the coregionalization of two or more RFs
{
Zk(u),

k = 1, ..., K ; ∀ u ∈ A
}

requires a joint model for the covariance function ma-

trix. This covariance matrix contains the K(K+1)/2 direct and cross relationships

required for cokriging. The nested structures of the direct and cross covariances

cannot be modeled independently from each other. All direct and cross covariances

must share the same set of basic structures. Similar to the univariate case, each

basic structure must be positive definite, and the contribution or sill of each struc-

ture must be positive. To ensure the positive definiteness of the covariance matrix

a permissible model such as the LMC must be used to fit the covariances. In the

presence of equally sampled data the variograms are most commonly calculated and

expression 2.4 is used to convert variogram to covariance values. Unequally sam-

pled data requires the direct calculation of the covariances. The LMC is reviewed
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thoroughly in the next section due to its importance in the development of the BSS

methodology.

Linear Model of Coregionalization

ConsiderK coregionalized variables at locations u in a stationary domain A denoted

Zk(u), k = 1, ..., K u in A. An LMC is assumed, that is, each variable consists of a

sum of independent factors and a stationary mean:

Zk(u) = mk +
nst∑
i=0

ak,iYi(u) (2.12)

Where mk is the stationary mean of the kth variable, nst is the number of

structures or factors, ak,i are the coefficients explaining the contribution of the ith

factor to the kth variable and Yi(u) are independent factors defined by single spatial

covariance structure, with the 0th factor representing the nugget effect component.

The nst+1 factors Yi(u) have zero mean and unit variance. The ak,i parameters are

stationary parameters that are derived in practice from experimental variograms or

covariances and a conceptual geological model. The mean and variance of the Zk(u)

variables are given by:

E {Zk(u)} = E

{
mk +

nst∑
i=0

ak,iYi(u)
}

= mk +
nst∑
i=0

ak,iE {Yi(u)} = mk

k = 1, ..., K u in A (2.13)

V ar {Zk(u)} =
nst∑
i=0

a2k,iV ar {Yi(u)} =
nst∑
i=0

a2k,i k = 1, ..., K u in A (2.14)

In the context of this work, the K variables are standard variables since we

could always standardize or normal score transform at the start and reverse the

standardization when the models are constructed, that is:
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mk = 0 k = 1, ..., K (2.15)

V ar {Zk} =
nst∑
i=0

a2k,i = 1 k = 1, ..., K (2.16)

Given that the factors are independent the direct and cross variograms are given

by:

γk,k′ (h) =
nst∑
i=0

ak,iak′ ,iΓi(h) k, k
′ = 1, ..., K (2.17)

This model is widely used in cokriging of unequally sampled data (Chiles and

Delfiner, 2012). It is especially useful for multiple data sources that are not sampled

at the same location; inference of the cross variograms is done through the cross

covariance and the data are combined into best estimates of the variables under

consideration (Minnitt and Deutsch, 2014). This model is also widely used as a

means to fit direct and cross variograms.

The correlation between Zk and Zk′ at h = 0 is:

CZk,Zk
′ (0) = ρZk,Zk

′ (0) =
nst∑
i=1

ak,iak′ ,i k, k
′ = 1, ..., K (2.18)

The direct and cross covariance between variables is:

Cov
{
Zk(u), Zk′ (u

′)
}
= E


nst∑
i=0

ak,iYi(u) ·
nst∑
j=1

ak′ ,jYj(u
′)


=

nst∑
i=1

nst∑
j=1

ak,iak′ ,jE
{
Yi(u)Yj(u

′)
}

=
nst∑
i=1

ak,iak′ ,iCi(u− u′) u,u′
in A

(2.19)

The cross covariance between the Z and Y values is:
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Cov
{
Zk(u), Yi(u

′)
}
= E


nst∑
j=0

ak,jYj(u)Yi(u
′)


= ak,iE

{
Yi(u)Yi(u

′)
}

= ak,iCi(u− u′) u,u′
in A

(2.20)

The Y factors are independent from each other and have their own covariance

that is fit from the data:

Cov
{
Yi(u), Yi(u

′)
}
= Ci(u− u′) i = 0, ..., nst u,u′

in A (2.21)

A more typical notation for the LMC found in the literature combines the outer

product of the the ak,i parameters into matrices of c coefficients:

γk,k′ (h) =
nst∑
i=0

ck,k′ iΓi(h) k, k
′ = 1, ..., K (2.22)

where each of the i = 0, ..., nst k by k matrices of c coefficients must be positive

definite (Goovaerts, 1997; Rossi and Deutsch, 2014). Although both notation styles

are interchangeable, fitting algorithms that are used to derive coefficients typically

yield the c matrices, rather than the a vectors. The latter is more convenient for

the developments in this work.

2.3 Estimation

Kriging and cokriging are briefly reviewed in this section. In the PostPPMTmethod-

ology the simple kriging estimate and variance of the independent factors identify

the mean and variance of the conditional distribution. Since the factors are Gaus-

sian, the uncertainty at an estimated location is fully determined by these two

parameters. Such estimation framework is the basis of multi-Gaussian kriging and

sequential simulation. In the BSS methodology, simple cokriging provides a mini-

mum norm solution to Equation 2.12.
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Kriging

Kriging is a family of least-squares linear regression algorithms that estimate an

unsampled value z(u) from neighboring data values z(uα, α = 1, ..., n) (Chiles and

Delfiner, 2012; Krige, 1951). The unknown value z(u) and the data values z(uα)

are realizations of the RVs Z(u) and Z(uα). All members of the kriging family aim

to minimize the estimation error of the random variable Z∗(u) − Z(u). This error

is also referred as to as kriging or estimation variance and is defined as σ2
E(u) =

V ar {Z∗(u)− Z(u)}. Kriging is an exact interpolator that aims to minimizes σ2

under the constrain of unbiasedness E {Z∗(u)− Z(u)} = 0, therefore it honors data

values at their locations Z∗(u) = Z(uα) ∀ u = uα, α = 1, ..., n.

In its simplest form, kriging requires a stationary RF model Z(u) with known

mean m and covariance C(h) (Deutsch and Journel, 1992). The simple kriging

estimator Z∗
SK(u) is defined as

Z∗
SK(u) =

n∑
α=1

λα(u) [Z(uα)−m] +m (2.23)

The number n of data used in the estimation is constrained to the data closest

to the location being estimated. In practice, a moving search ellipsoid centered on

u is used to limit the data being used in the estimation. This search ellipsoid must

account for the anisotropy in the covariance models. The weights λα(u) assigned

to each sample z(uα) are a function of the covariance and are determined such as

to minimize the kriging unbiasedness constraint. This minimization results in the

famous simple kriging system of equations (Equation 2.24), also referred as to the

normal equations (Luenberger, 1969). The simple kriging variance (Equation 2.25)

is derived from this system of equations.

n∑
β=1

λβ(u)C(uα − uβ) = C(uα − u) ∀ α = 1, ..., n (2.24)

σ2
SK(u) = C(0)−

n∑
α=1

λα(u)C(uα − u) (2.25)
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The simple kriging system of equations can be easily represented using matrix

notation. Equation 2.24 is written as CSKλSK(u) = rSK , where CSK is the n ×

n matrix of covariance between the data, λSK(u) is the vector of simple kriging

weights, and rSK is the right hand side vector of covariance between the data and

the estimation locations.

The success of kriging is explained by some important properties, such as to

account for the geometry of volume being estimated, the distance of the information

and configuration of the data, and the structural continuity of the variable. The

kriging weights account for the closeness of the data to the location being estimated,

redundancy between the data, and the covariance. The smoothness of the kriged

estimates can be predicted from the kriging variance, but the kriging variance and

weights do not depend on data values. For this reason, the kriging variance does

not provide a measure of the uncertainty at an unsampled location.

The traditional SK estimator (Equation 2.23) expresses the estimates as a func-

tion of the data values. Such estimator can be defined in its dual form. The

dual form of kriging expresses the estimates as a function of the covariance values

(Dubrule, 1983; Goovaerts, 1997; Journel, 1989). The dual simple kriging estimator

is defined as:

Z∗
SK(u) =

n∑
α=1

λdual
α (u)C(uα − u) +m (2.26)

The dual kriging weights λdual
α (u) are derived from the exactitude property of

kriging z∗SK(uα) = z(uα):

z∗SK(uα) =
n∑

β=1
λdual
β (u)C(uα − uβ) +m = z(uα) ∀ α = 1, ..., n (2.27)

Such dual formalism provides a more efficient way of conditioning realizations

generated with Gaussian simulation algorithms (Manchuk and Deutsch, 2017). In

the BSS methodology, realizations of the independent LMC factors may be condi-

tioned with dual kriging.
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The simple kriging mean and variance can be used to assess the local uncer-

tainty at an unsampled location if used in the multi-Gaussian (MG) approach. A

necessary condition is the univariate CDF of a stationary RF Y (u) to be standard

normal, i.e., Y (u) follows a Gaussian distribution with a zero mean and unit vari-

ance (Deutsch and Journel, 1992). The normal score (NS) transformation (Barnett,

2015; Bliss, 1934; Verly, 1983) is a quantile-by-quantile transformation that converts

a distribution to be standard normal:

yk = G−1(Fk(zk)), ∀ k = 1, ..., K (2.28)

where G−1 is the inverse of the standard univariate normal CDF. The resultant

distribution is univariate normal and permit independent modeling of the CDFs

with simple kriging. In the MG approach, the simple kriged mean y∗k(u) and variance

σ2
k(u) fully define the posterior CCDF {Gk(u),u ∈ A} at a location u. The back-

transformation to the original distribution is given by the expression:

zk = F−1
k (G(yk)), ∀ k = 1, ..., K (2.29)

In simple terms, multi-Gaussian kriging is the application of the normal equa-

tions to NS transformed variables. Simple kriging is used to estimate the conditional

mean and variance at an unsampled location. This conditional distribution follows

a non-standard normal distribution with mean and variance equal to the estimated

simple kriging mean y∗SK and variance σ2
SK . A number of equally spaced quan-

tiles pl, l = 1, ..., L of this distribution are defined and back-transformed for post

processing and uncertainty assessment:

zl = F−1
(
G
(
σSKG

−1(pl) + y∗SK
))

, ∀ l = 1, ..., L (2.30)

The MG approach can be applied to a univariate or multivariate data set. In

the multivariate case, cokriging is used to build the local conditional distributions.
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Cokriging

Cokriging is a member of the kriging family that uses data from different attributes,

also referred as to secondary data, for estimation of the primary variable. There

must be a correlation between the variables, otherwise no extra information from

the secondary variables are considered and cokriging is reduced to simple kriging.

Theoretically, cokriging can be applied to any set of RVs coregionalized with a

valid LMC. In practice, cokriging is restricted to a few variables due to the tedious

task of fitting large LMCs, the computational requirements to solve large kriging

matrices, and challenges of validating the results. Moreover, if the number of data

is approximately the same for both primary and secondary variables, the benefits

of cokriging may not be worth the additional modeling efforts. Cokriging yields a

more significant reduction in the estimation variance when there are many more

secondary data than primary data (Rossi and Deutsch, 2014). Cokriging can be

useful even with a few secondary data when a physical relationship relates the two

variables and this physical relation is taken into account, e.g. a variable and its

derivative (Chiles and Delfiner, 2012).

Consider first the case where a primary variable {z1(uα1), α1 = 1, ..., n1} is used

in combination with a single secondary attribute {z2(uα2), α2 = 1, ..., n2}. The sim-

ple cokriging estimator Z∗
SCK(u) of the primary variable z1 at location u is defined

as

Z∗
SCK(u)−m1 =

n1∑
α1=1

λα1(u)[Z1(uα1)−m1] +
n2∑

α2=1
λα2(u)[Z2(uα2)−m2] (2.31)

where m1 and m2 are the mean of the RVs Z1(u) and Z2(u) respectively. This

estimator can be extended to any set of (K − 1) secondary variables, and the more

general simple cokriging estimator for several secondary variables defined as:

Z∗
SCK(u)−m1 =

n1∑
α1=1

λα1(u)[Z1(uα1)−m1] +
K∑
k=2

ni∑
αi=1

λαi
(u)[Zk(uαi

)−mk] (2.32)
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The cokriging weights are a function of the direct and cross covariances and sim-

ilar to simple kriging, are determined such as to minimize the kriging unbiasedness

constraint and minimum estimation variance. Such minimization yields the sim-

ple cokriging system of (∑K
k=1 nk) equations (Equation 2.33). The simple cokriging

variance (Equation 2.34) is derived from the system of equations.

K∑
j=1

nj∑
βj=1

λβj
Cij(uαi

− uβj
) = Ck1(uαi

− u) αi = 1, ..., ni; k = 1, ..., K (2.33)

σ2
SCK(u) = C11(0)−

K∑
k=1

ni∑
αi=1

λαi
(u)Ck1(uαi

− u) (2.34)

Similar to simple kriging kriging, the system of equations in 2.34 can be repre-

sented using matrix notation:


K11 · · · K1K
...

. . .
...

KK1 · · · KKK




λ1(u)

...

λK(u)

 =


r11
...

rK1

 (2.35)

where Kij is the ni×nj submatrix of direct and cross covariances [Cij(uαi
−uβj

)],

λk is the vector with the cokriging weights, and ri1 = [Ck1(u1−u), ..., Ck1(unk
−u)]

is the vector of direct and cross covariances between the data and the estimation

location.

The development of the IFS methodology is discussed at length in Chapters

4 and 6 of this thesis. One of the steps in the IFS requires full cokriging of the

latent factors at data locations. The factors Y are not directly observed. They

are determined from the variables Z. In this aspect, the IFS methodology can be

compared to a method known as factorial (co)kriging analysis (Chiles and Delfiner,

2012; Goovaerts, 1992,9; Ma et al., 2014; Matheron, 1982). The development of the

IFS methodology provides a direct way to simulate the factors from the observed

variables and the fitted LMC that are later used to compute the variables at other

locations.
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The MG approach reviewed in this section provides a framework for assessing

local uncertainty but it does not provide a measure of the joint spatial uncertainty of

the variables at several locations taken together. Multi-location spatial uncertainty

is assessed with geostatistical simulation.

2.4 Simulation

Kriging produces estimates with less variability than the data, this is also referred

as to as the smoothing effect of kriging. For this reason kriging does not repro-

duce the original data distribution and its spatial variability. Simulation aims at

reproducing the input data statistics and the covariance models, preserving the

spatial correlation inferred from the sample data and honoring the data values at

their locations (Journel and Kyriakidis, 2004). As opposed to kriging, simulation

provides a set of l = 1, ..., L realizations of the z-values within a stationary domain{
zl(u),u ∈ A

}
, where l denotes the lth realization. These realizations are equally

likely to be drawn, resulting in a distribution of predicted system response values,

reflecting the uncertainty (Gotway and Rutherford, 1994). In geostatistical work-

flows, transfer functions applied to the simulated model are used for risk analysis

and decision making.

There are many types of simulation methods and algorithms. The ones more

relevant for this work are Gaussian-based approaches such as sequential Gaussian

simulation (SGS), turning bands, moving average, and spectral simulation. The

process of generating geostatistical conditional realization can be divided into two

steps: the generation of unconditional realizations and their posterior conditioning

with (dual)kriging. The term unconditional refers to simulated values that follow

a standard normal distribution and reproduce the input covariance but do not

reproduce the input data values. Posterior conditioning of these realizations will

guarantee that the data are reproduced. Of the methods listed above, SGS is the

only one that has a conditioning step built-in, and for this reason it is one of the

most popular Gaussian algorithms in geostatistics. Another advantage of SGS is
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that univariate or multivariate simulation are performed with the same framework.

Simulation at a location u requires building the CCDF at that location, which is

performed with kriging in the univariate, and cokriging in the multivariate case.

The implementation of multivariate simulation in the other algorithms is relatively

more complex than in SGS. This complexity is not a concern in the proposed BSS

methodology, since the simulation of the LMC factors is a univariate process.

Sequential Gaussian

The sequential simulation paradigm relies on a recursive application of Bayes’ law

to define the CCDF of the joint distribution of N RVs
{
Z(u′

i), i = 1, ..., N
}
. The

number of simulation locations N is usually very large, e.g., a dense simulation

grid discretizing the stationary domain A. Generating realizations of the N RVs

conditional to the n original available data values {z(uα), α = 1, ..., n} requires

sampling the N -variate CCDF (Goovaerts, 1997):

F (u′

i, ...,u
′

N ; z1, ..., zN | (n)) = F (u′

N ; zN | (n+N − 1))

· F (u′

N−1; zN−1 | (n+N − 2)) · ...

· F (u′

2; z2 | (n+ 1)) · F (u′

1; z1 | (n))

(2.36)

Realizations of the RVs are generated in N sequential steps, where each step

involves a univariate CCDF defined from decomposition 2.36. The first simulated

value z(l)(u′
1) is drawn from the CCDF defined at u′

1 with the n conditioning data.

The simulated value z(l)(u′
1) is added to the data set and becomes a conditioning

data to simulate the next location u′
2. The CCDF at location u′

2 is then defined

on the n original data values and the previously simulated value. These steps

repeat until all nodes N are simulated. The simulation at N locations requires

the definition of the N univariate CCDFs F (u′
1; z | (n)), ..., F (u′

N ; z | (n + N − 1))

with increasing level of conditioning. The inference of these distributions is possible

under the multivariate Gaussian model.
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The SGS algorithm is very simple and straightforward implementation of the se-

quential paradigm with the multiGaussian RF model (Gomez-Hernandez and Jour-

nel, 1993; Isaaks, 1990). Under such assumption, the N univariate CCDFs are

assumed Gaussian and fully determined by the simple kriging and variance from

the (n+i−1) conditioning data. Because the number of conditioning data increases

very quickly as simulation happens, the size of the kriging systems to be solved be-

come prohibitive. Practical implementation of the SGS algorithm limits the number

of data for conditioning to data a fixed maximum within a search neighborhood.

Good practice consists in using the variogram ranges and anisotropy to define the

search. Simulation with SGS proceeds as follows:

• Define a random path for simulation, each node is visited once.

• At the location being simulated, search for the conditioning data and solve the

normal equations (simple kriging of the NS data) to determine the conditional

mean and variance of the Gaussian CCDF at that location.

• Draw a simulated value from the CCDF and add it to the conditioning data

set.

• Move to the next node location in the random path.

Multiple realizations are generated with a different random numbers that are

used to define the random path and the sampled quantiles from CCDFs. Simple

cokriging is used to define the CCDFs in the second step to simulate correlated

variables.

Moving average

Moving average is one of the simplest algorithms to generate unconditional real-

izations in geostatistics. Simulation of the random function Y (u) with covariance

Cy(h) is performed with the convolution product

Y (u) =
∫ ∞

−∞
f(u− t)X(t) dt (2.37)
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where X(t) is a second order stationary RF with mean of zero and covariance

Cx(h), and f(u − t) is the weight function applied to each value X(t). Simulation

with moving averages simplifies the integral by considering discrete grid points in

a simulation grid so that the integral in 2.37 is replaced by the summation over all

points within the window. A special case that makes moving average suitable for

large applications in geostatistics is when the RF X(t) is a standardized random

noise (pure nugget effect) and the weight function has a constant value of 1 within a

distance a/2 =| u− t | and zero at distances beyond a/2 (Luster, 1985). In this case

the covariance between Y (u) and Y (u+h) is equal to the volume of the intersection

of two n-dimensional spheres of diameter a centered at u and u+h. The intersection

of these two spheres defines the covariance between pairs of points separated by h.

The diameter a of the sphere is the range of the covariance Cy(h).

Simulating a RF with a spherical covariance function is straightforward because

the weight function is linear and constant for all data inside the window, but simu-

lating other covariances involve an expensive convolution process. For example, the

weight function to simulate a 2D Gaussian type covariance (Equation 2.9) with a

range of a is f(r) = (4/a2π)1/2exp(−2r2/a2). Simulation at a location u requires the

calculation of the distance r of every node data to u. This process is computation-

ally expensive for a large number of simulation locations and long covariance ranges.

Weight functions and kernels for other covariance functions are found extensively in

the literature (Chiles and Delfiner, 2012; Journel, 1974; Oliver, 1995; Oliver et al.,

2008).

The simulation of spherical covariance functions are speed up by a clever update

of the node data when simulation is performed on a regular grid. When simulation

proceeds from a node location u to the next u′
the contribution of some values

are removed and the contribution of other values are added. The algorithm keeps

tracking of the nodes getting out of the window (removed) and the nodes getting

in the window (added). This implementation, illustrated in Figure 2.2, permits

fast simulation of spherical functions in relatively large models (Cabral Pinto and

Deutsch, 2017d).
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u u u' Nodes ge�ng in the 
window

Nodes common to both windows

Nodes ge�ng out of the window

Figure 2.2: The process to update the node data indices for moving average simulation is
schematically illustrated for two locations in a regular grid.

The moving average algorithm as implemented in the GSLIB-like program MW_SIM

(Cabral Pinto and Deutsch, 2017d) proceeds as follow:

• Project the window onto the coordinate axes and calculate the length of the

directional projections.

• Pad the grid based on the projections to avoid artefact in the border of the

grid.

• Centre the window at the first cell of the grid and calculate the sum of all

values inside the window.

• For each subsequent node until all nodes have been visited:

– Move the window over the grid and add the values of the node data

getting in the window to the previously calculated sum.

– Subtract the values of the node data getting out the window from the

previously calculated sum.

• Average the values considering the number of nodes inside the window.

• Rescale mean and variance as needed.

• Add prior mean as needed.

The moving average algorithm is used to simulate any RF whose covariance can

be expressed in terms of the convolution product 2.37. In practice, this method is
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limited to the simulation of spherical covariance functions in 3D or circular covari-

ance functions in 2D.

Turning bands

The turning bands algorithm was the first 3D simulation algorithm in geostatistics,

originally developed to simulate isotropic spherical and exponential covariance func-

tions (Journel, 1974; Matheron, 1973). It was later expanded to other covariance

functions (Brooker, 1985; Mantoglou and Wilson, 1982) and more recently updated

to simulate multivariate RFs in fast implementations of the algorithm (Emery, 2008;

Emery and Lantuejoul, 2006; Marcotte, 2016). Generating realizations with turning

bands requires a series of independent 1D realizations on a set of lines. These lines

are generated equally distributed in space and radiate from the same point, often

set in the grid origin. The simulation node is orthogonally projected onto the lines

and is associated to the set of 1D simulated values that fall inside an interval space

(or band) of each line. The simulated value for that node in the grid is a function

of the sum of these values. The method is schematically illustrated in Figure 2.3.

D1

D2

D3

u

(a) Orthogonal projection of a location u be-
ing simulated onto the lines.

D1

u

uD1

(b) Projection of u onto line D1 and its asso-
ciated band.

Figure 2.3: Illustration of the turning bands methods in two dimensions. Each simulation
location is projected onto a set of lines. The simulated value at u is a function of the
1D simulated points inside the correspondent bands of all lines. The ticks represent the
discretize points along the lines where 1D simulation occurs.

Consider generating realizations z(u) of a RF Z(u) with known covariance C(h).
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Consider also a one dimensional RF Y (u1) on line D1. This RF is stationary of order

two, has zero mean, and covariance C1(h). A RF Z1(u) = Y (uD1) is defined, where

uD1 represents the orthogonal projection of the grid location being simulated u

onto the line D1. This RF has zero expectation and a one dimensional stationary

covariance C1(hD1), where hD1 is the projection of vector h onto D1. A realization

of z1(u) is generated from the value y(uD1) which lie within a band perpendicular

to D1 (Figure 2.3b) and centered at y(uD1). This process is generalized to N lines

D1, ..., DN with different directions uniformly distributed on the unit circle (2D

realizations) or on the unit sphere (3D realizations). A realization of Z(u) is a

linear combination of the RV Y (uDi
) simulated on each line Di:

Z(u) = 1√
N

N∑
i=1

Y (uDi
) (2.38)

It is important to note that the covariance of the RF Z(u) depends on the

implementation of the algorithm and can be expressed in its two dimensional form

C2(h) or three dimensional form C3(h). As the number of lines becomes very large

these covariances tend to the isotropic covariances:

C2(h) = 2
πh

∫ h

0

C1(u)√
1− (u/h)2

du (2.39)

C3(h) = 1
h

∫ h

0
C1(u)du (2.40)

Because simulation on the lines is performed at discretized points (Figure 2.3),

these integrals are solved in their discretized forms. Two or three dimensional

simulation in turning bands requires the simulation on the lines to be performed

with the right form for the 1D covariance C1(h). The functions for the 1D covari-

ances are derived in literature (Brooker, 1985; Brooker and Paul, 1982; Chiles and

Delfiner, 2012; Mantoglou, 1987). The integral 2.39 is solved using the analytic

form of the derived 1D covariances. The solution of equation 2.40 is simpler be-

cause the 1D covariance can be reduced to a convolution form. Therefore, different

algorithms such as moving average (Journel and Huijbregts, 1978) or spectral sim-
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ulation (Emery and Lantuejoul, 2006; Mantoglou and Wilson, 1982) can be used to

generate realizations on the lines that will reproduce the desired covariance function.

For this reason, practical implementation of the turning bands method simulate in

3D space, and 2D realizations are obtained by slicing the model. Anisotropy is

achieved by geometric transformation of the grid, and realizations are conditioned

with (dual)kriging.

Spectral

Spectral simulation methods generate 3D realizations of a RF with covariance C(h)

in the frequency domain (Davis et al., 1981; Emery and Arroyo, 2018; Mejia and

Rodriguez-Iturbe, 1974; Yao, 1998a,9). In a particular case with a discrete trans-

formation and limited to a regular grid, the stationary covariance is transformed

into the density spectrum with a discrete Fourier transform (DFT). The inverse

of DFT converts the simulated values from the frequency domain to the original

space domain. The DFT decomposes an original signal waveform into its frequency

representation. For a series of N discrete values f(τ), τ = 0, ..., N − 1 the forward

one-dimensional DFT of f(τ) and its inverse are defined respectively as:

F (ν) = DFT (f(τ)) = 1
N

N−1∑
τ=0

f(τ)e−i2πτν/N for ν = 0, ..., N − 1 (2.41)

f(τ) = DFT−1(F (ν)) = 1
N

N−1∑
ν=0

f(ν)ei2πτν/N (2.42)

where i =
√
−1 is the imaginary unit. There exist other spectral methods that

are continuous and can simulate anywhere, not only on regular grids (Chiles and

Delfiner, 2012; Emery and Lantuejoul, 2006; Lantuejoul, 2002; Shinozuka, 1971;

Shinozuka and Jan, 1972). The fast Fourier transform (FFT) is the most popular

algorithm to calculate the DFT of a function (Smith, 1998). The direct computation

of the DFT with Equation 2.41 requires N2 operations. The computation of the
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DFT with FFT requires a number N × log(N) of operations, significantly reducing

the computation time. The FFT algorithm is illustrated in Figure 2.4. The first

transformation decomposes the N -point signal in two N/2 length signal. At this

point, the number of operations is of 2×(N/2)2 and the DFT of the N -point signal is

the summation of the DFTs of the two decomposed signals. This process continues

until the number of computations is reduced to N × log(N). Direct computation

of Equation 2.41 yields the same result of FFT but it is a much more expensive

process for a large number N . For example, the number of operations to compute

the DFT of a function with N = 100, 000 is 109, whereas FFT would take only

500, 000 operations.

N-point signal

N/2 length signal

N/2 length signal

N/4 length signal

N/4 length signal

N/4 length signal

N/4 length signal

N x logN computations

(4 x (N/2)2  multiplications)(2 x (N/2)2  multiplications)

...

...

Figure 2.4: The number of computations to calculate the DFT of a signal is greatly
decreased with the FFT algorithm.

The FFT of the covariance C(h) of a RF Z(u) is represented in the frequency

domain by its density spectrum s(ω):

s(ω) = FFT (C(h)) = |Z(ω)|2 (2.43)

where the term |Z(ω)|2 represents the energy (or amplitude) of the signal. The

Fourier coefficient Z(ω) is calculated as

Z(ω) = |Z(ω)| e−iφ(ω) =
√
s(ω)e−iφ(ω) (2.44)

with the phase spectrum φ(ω) measured in radians. Realizations of z(u) are
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generated from its frequency counterparts s(ω) and φ(ω). Realizations in the spec-

trum density are generated by drawing phases randomly from a uniform distribution

within the interval [0, 2π]. The inverse FFT of these realization generate realiza-

tions of z(u) in the space domain. The spectral simulation algorithm proceeds as

follows:

• Define a simulation grid where simulation will occur. Pad the grid with respect

to the covariance range to avoid artifacts at the borders.

• Calculate the covariance values from the center of the grid. This avoids arti-

facts with the periodic nature of the DFT if the stationary covariance function

is too continuous.

• Apply FFT on the calculated covariances to yield the density spectrum s(ω).

• Square root the density spectrum to yield the amplitude spectrum |Z(ω)|.

• Randomly draw phase values φ(ω) from a uniform distribution within [0, 2π].

• Calculate the Fourier coefficient Z(ω) = |Z(ω)| e−iφ(ω).

• Perform the FFT−1 on Z(ω) for a realization of z(u) in the space domain.

Modern implementations of the FFT algorithm extend its application to vari-

ogram calculation (Marcotte, 1996) and permit its computation with any grid size

(FFTW, 2017). Spectral simulation offers a fast approach to simulate any covari-

ance functions. In practice it is used to simulate very continuous covariance func-

tions, that is, covariances with long range of continuity or with a parabolic behavior

near the origin. Short range structures have more high-frequency variation, so s(ω)

tends to zero slowly as ω tends to infinity. The discretization of such a long-tailed

density requires large increments of ω in the transformation. This process leads to

a loss of local information and increases the cost of simulation (Chatfield, 1980).

33



2. Theoretical background

2.5 Multivariate transformations

Geological variables often show non-linearity, heteroskedasticity, composition con-

straints, and other complexities that conventional multivariate geostatistical tech-

niques such as cokriging cannot capture. In univariate modeling, the NS trans-

formation maps the original variables to the Gaussian space. This transformation

only ensures that the marginal distributions are normal and does not guarantee

multivariate normality. Complex multivariate relationships and constraints may

remain after the transformation, however, such transformation is a common first

step in most multivariate transformations. Multivariate decorrelation methods aim

at removing nonlinearity and other complex relationships and constraints between

variables. This section reviews some of these methods.

Stepwise Conditional Transformation (SCT) (Leuangthong, 2003; Rosenblatt,

1952) attempts to remove complex multivariate features by decorrelating the vari-

able in an ordered fashion. The NS transform (Equation 2.28) converts the first

variable to normal, the next kth variable is transformed based on the conditional

distributions given the previous k − 1 transformed variables:

y1(uα) = G−1 (F1(z1(uα)))

y2(uα) = G−1
(
F2|1(z2(uα) | z1(uα))

)
...

yK(uα) = G−1
(
FK|1,...,K−1(zK(uα) | z1(uα), ..., zK−1(uα)

)
, ∀ α = 1, ..., n

(2.45)

The transformed variables are multivariate Gaussian and independent at their

collocated locations. Back transformation is similar to the NS back transformation

expression (Equation 2.29) and respect the forward transformations described above.

SCT has been used with success in multivariate modeling (Neufeld et al., 2008;

Pyrcz and Deutsch, 2014). More recently, the use of kernel density estimation

(Leuangthong and Deutsch, 2003), kernel density networks (Manchuk and Deutsch,
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2011), and Gaussian mixture models (Silva and Deutsch, 2015) have enhanced the

performance of SCT in the presence of sparse data and eliminated binning artifacts.

Minimum and maximum autocorrelation factors (MAF) was first introduced by

Switzer (1984) as a method to decorrelate variables while maintaining specific direct

and cross spatial continuity. In geostatistics, MAF is an enhancement of principal

component analysis (PCA) that uses the direct and cross covariances to improve

the PCA transformation of the input variables into uncorrelated and independent

factors (Desbarats and Dimitrakopoulos, 2000). The ability to remove covariance

at one more lag vector leads to better cross covariance reproduction than PCA, and

for this reason MAF has become a popular MV transformation in mining (Barnett,

2015; Boucher and Dimitrakopoulos, 2012).

Projection Pursuit Multivariate Transform (PPMT) (Barnett, 2015; Barnett

et al., 2014) is a technique that applies a modified component of the projection

pursuit density estimation algorithm (Friedman, 1987) to decorrelate complex and

high dimensional data. The first step of PPMT is to apply the NS transformation to

all variables, then a variant of PCA (sphering) is used to decompose the eigenvalues

of the covariance matrix at lag zero C(0) = VDV⊤, where V is the matrix of

eigenvectors, D is a diagonal matrix with eigenvalues, and C(0) is the K × K

covariance matrix at lag zero. The sphering step rotates the data matrix with n

normally transformed values y =
(
y⊤(u1), ...,y⊤(un)

)
to the principal components

basis, standardize and rotate back to original basis, yielding the sphered variables:

y0 = VD− 1
2V⊤y (2.46)

An iterative process takes place to convert the most non-Gaussian projection

of the data to be Gaussian. After a number of iterations, the data is multivariate-

Gaussian and variables are uncorrelated. For every iteration the forward transfor-

mation is stored, the correspondent back transformation restores the complexities

in the original data.
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2.6 Matrix transformations

The Cholesky factorization is a method to solve a set of linear equations of form

AX = B, where An×n is a non-singular positive definite square matrix, and Xn×1

and Bn×1 are the solution and right hand side vectors respectively. The Cholesky

factorization has many applications in linear algebra, optimization, linear program-

ming, and simulation (Golub and Loan, 2013). A symmetric positive definite matrix

A is decomposed into the product of a lower triangular matrix Ln×n with an upper

triangular matrix L⊤
n×n:

A = LL⊤ (2.47)

where L is also called the Cholesky factor of A, has positive diagonal elements,

and is interpreted as the square root of a positive definite matrix. The diagonal

elements lkk and the off-diagonal lower elements li,k (∀ i > k) of the matrix L are

respectively calculated by Equations 2.48 and 2.49:

lkk =

√√√√√akk −
k−1∑
j=1

l2kj ; k = 1, ..., n (2.48)

lik =
1
lkk

aik − k−1∑
j=1

lijlkj

 ; k = 1, ..., n and ∀ i > k (2.49)

where akk are the elements of matrix A. This factorization permits an efficient

solution to the linear system AX = B:

AX = B

LL⊤X = B
(2.50)

defining L⊤X = Y , the following system of equations can be directly solved with

forward and back substitution (Axler, 2015), solving first for Y then for X:

LY = B

L⊤X = Y
(2.51)
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The Cholesky factorization is numerically efficient in computational time for

small matrices. Computation of large matrices may suffer from sparsity and round-

off error propagation leading to suboptimal solutions or infeasible solutions (Dhi-

flaoui et al., 2003).

The singular value decomposition (SVD) is an orthogonal matrix reduction with

applications in many fields such as in data analysis, linear algebra and linear least

squares problems, digital processing analysis, blind source separation, and data re-

duction and compression in computer science (Golub and Reinsch, 1970; Goodfellow

et al., 2016; Sadek, 2012; Schmidt, 2009; Strang, 2016; Zhang, 2009). SVD is the

factorization of a matrix Am×n with m ≥ n into orthogonal matrices Um×m and

Vn×n, and a diagonal matrix Sm×n:

A = USV ⊤ (2.52)

where U⊤U = V ⊤V = In and S = diag(σ1, ..., σn) with σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0.

The diagonal elements of S are called singular values, and the rank r of A is the

number of nonzero singular values. The matrices U and V are the left and right

singular vectors. The computation of the SVD consists of finding the eigenvectors

of A⊤A and AA⊤ that make up the columns of V and U respectively. The singular

values in S are square roots of eigenvalues from A⊤A or AA⊤. The SVD is also

represented by sub-matrices partitioned by r:

A = USV ⊤ =
[
U1 U2

] S1 0

0 S2


V1

V2

 (2.53)

where S1 = diag(σ1, ..., σr), S2 = diag(m−r)×(n−r)(0, ..., 0), U1 ∈ Um×r, U2 ∈

Um×(m−r), V1 ∈ Vn×r, and V2 ∈ Vn×(n−r). These matrices provide the range and

null spaces for both the column and row spaces of A. U1 provides an orthonormal

basis for the column space of A. V1 provides an orthonormal basis for the row space

o A, and V2 provides its orthogonal complement U1⊥ or an orthonormal basis for

the null space of A. The null space of a matrix A is the matrix X = nullA, such

that, AX = 0. Orthonormal basis are linearly independent vector that are mutually
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2. Theoretical background

perpendicular and unitary in length (Strang, 2016). The row space of a matrix is

the space spanned by the rows of A.

In cases where the matrix A in the linear system of equations AX = B is rank-

deficient and the columns of A are not independent, there are infinite solutions

to AX = B. Usually the solution with the minimum norm X̂ is chosen as the

solution to the system AX̂ = B. The solution requires the calculation of the vector

X̂ = minX ∥ AX−B ∥2. This requires the projections of B and X̂ onto the column

space of A and the row space of A⊤ respectively, leading to the normal equations

(A⊤A)X̂ = A⊤B (Golub and Loan, 2013). SVD provides a way to solve this problem

using the generalized pseudo inverse of a matrix. The pseudo inverse A† of a matrix

A = USV ⊤ is given by:

A† = V S†U⊤ (2.54)

where S† is calculated by transposing S and inverting all non-zero elements. The

solution of AX̂ = B is then:

AX̂ = B

X̂ = V S†U⊤B
(2.55)

The computation of SVD is slow and computationally expensive for large ma-

trices and when the matrix size is approximately equal to its rank (Tzeng, 2013).

The factorization of sparse matrices may generate suboptimal solutions and lack of

convergence (Yang et al., 2014).

The geostatistics concepts and methods reviewed in this chapter are required

for the development of the methodologies proposed in this thesis and explained in

the next chapters.
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Chapter 3

Multivariate criteria in
geostatistical modeling

The following chapter presents the theory of the post processing of the projection

pursuit multivariate transformation (PostPPMT) methodology. This methodology

provides a framework for the direct assessement of local multivariate distributions.

A case study with geochemical data demonstrates the application of the methodol-

ogy for exploration geochemistry.

3.1 Motivation

Multivariate models aim to maximize the use of the information in the data and

improve decisions. In recent years, geological modeling has gone from dealing with

one economic variable to more complex scenarios with variables of different nature,

such as grade, lithology, geomechanical properties, and geometallurgical properties.

These multivariate models of uncertainty are built for decisions making. Decisions

can be made based on a single threshold value or multiple criteria. An example

of a single decision criterion is the cutoff grade concept - a block is mined as ore

or waste if the grade is above or below the cutoff grade, see Figure 3.1. Modern

decisions, however, involve multiple thresholds and considerations. These criteria

may involve different rules being applied to many variables at the same time, see

Figure 3.2. For example, the destination of a mined block in a polymetallic mine

can be one of many blending and homogenization piles, a stockpile that will feed

the mill, the leach pad, or the waste dump. These destinations are chosen based

on a series of thresholds applied to multiple grades or ratios of grades, and also

depend on other rock properties such as the degree of weathering of the rock, the

lithological properties, the presence of contaminants, and so on.
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Variable 1 Threshold 1

At or above

Below

Decision 1

Decision 2

Figure 3.1: Illustrated scheme of a single criterion decision. The criterion is defined based
on threshold 1 applied to variable 1. If the value of variable 1 is greater or equal than the
threshold, then decision 1 is taken. Otherwise, decision 2 is taken.

Variable 1 Threshold 1

At or above

Below

Decision 1

Decision 2

Variable 2 Threshold 2

At or above

Below Decision 3

Figure 3.2: Illustrated scheme of multivariate criteria decision. The criteria are defined
based on threshold 1 applied to variable 1 and threshold 2 applied to variable 2. Decision 1
depends only on the value of variable 1. Decision 2 is taken if variable 1 is below threshold
1 and variable 2 is greater or equal than threshold 2. Decision 3 depends only on the value
of variable 2.

Although geostatistics provides ways for multivariate modeling, the application

in the context of such criteria is not clear. The need to improve technical and

economic decisions of geostatistical workflows given complex multivariate criteria

motivates the development of the PostPPMT methodology.

3.2 Multivariate criteria

Criteria are one element of decision making that spell out or make clear the con-

straints or targets for a specific decision. Criteria define the desirability of specific
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3. Multivariate criteria in geostatistical modeling

outcomes and the negative consequences of other outcomes. Criteria are based on

thresholds and objective values using the variables involved. Most decisions in earth

sciences involve criteria with multiple aspects; decisions are rarely made based on

the value of one variable.

In the field of mineral exploration, multivariate modeling of pathfinder elements

is used to model the distribution of such elements in large areas to potentially

narrow exploration targets. Complex criteria can be applied to high resolution

models of uncertainty to identify anomalous regions for a type of mineral deposit.

For example, different types of mineral deposits, such as sedimentary exhalative

deposits (SEDEX) or volcanogenic massive sulfide (VMS), have their own signatures.

VMS deposits found in northern Canada commonly show high values of Titanium

(Ti) and Zirconium (Zr) and low values of Tantalum (Ta) and Scandium (Sc); while

SEDEX deposits in the same region usually show very high values of Zinc (Zn),

Silver (Ag), and Lead (Pb), and relatively high values of Barium (Ba), Copper (Cu),

and Arsenic (As) (Berger, 2015; du Bray, 1995; Fischer et al., 2016; McClenaghan

and Peter, 2013; Ootes et al., 2013). New areas for exploration can be defined

by translating the deposits signatures into numerical criteria and evaluating the

multivariate modeling outcomes with these rules.

Another application is in mineral processing. The multivariate modeling of

geometallurgical properties has become as important as grades in many mines. The

combination of geological and metallurgical information for production management

is necessary for efficient planning, optimal design and maximum metal recovery

(Deutsch, 2015b; Deutsch et al., 2016). The old approach of a single cutoff for

ore and waste classification has been substituted for more complex decision models

based on grades, rock properties, and processing routes (Rendu, 2008). Teck’s Red

Dog mine complex, destination criteria for mined blocks depend on the grade of Zn,

Pb, Ag, Ba, iron (Fe), Silica (SiO2), and the degree of weathering of the rock. Rocks

with high grades of Ba and low grades of Zn and Fe have a processing destination

different than those with a high ratio of non-sulphide Pb to total Pb. High Ba/high

non-sulphide rocks have another destination. Another destination is for weathered,
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low-grade, high non-sulphide Pb rocks that do not produce sellable concentrate

and are sent to the waste dump. Low to moderately weathered rock with low Cu

grades differ from highly weathered ore with low Cu grades, although both produce

concentrates, the mined blocks have different destination to different blending piles

before floatation. Other complex rules involve Fe as pyrite (high ratios of Pyrite to

Zn or Pb), SiO2, and weathering as deleterious process impacting both Pb and Zn

metallurgy (Teck, 2017).

In Newmont’s Twin Creeks operation, the resources model and mine planning

are reported to be stochastic. The combination of a set of orebody data generated

by geostatistical simulation with a production scheduling optimizer increases the net

present value (NPV) of the mine complex and provides a basis for assessing differ-

ent block destination scenarios for decision making (Montiel and Dimitrakopoulos,

2018). Destination criteria involve different types of ore with varying gold grade

and cyanide solubility being sent to stockpiles before mill blending in three different

facilities. Higher grade oxide ore is processed by conventional milling and cyanide

leaching, lower grade material with suitable cyanide solubility is treated on heap

leach pads, and refractory ores are fed through grinding mills followed by autoclaves

(Ewing, 2016; Kawahata et al., 2016). Assessing the destination criteria for mined

blocks can improve mine operations and support technical decisions regarding fleet

destination.

Other applications of multivariate modeling with complex criteria are also found

in environmental sciences (Lin, 2002; Liu and Koike, 2007; Patil and Rao, 1994;

Webster and Oliver, 2007a). The details of these criteria vary from one project to

another. The PostPPMT methodology defines how these rules will be transferred

and processed in practical geostatistical workflows.
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3.3 PostPPMT for estimation and local

uncertainty assessment

The PostPPMT methodology is a hybrid of the post-multiGaussian (PostMG)

methodology (Deutsch and Journel, 1992; Verly, 1983) and the application of PPMT

in the context of estimation and local uncertainty assessment. The step of simulat-

ing the independent factors is skipped and the local multivariate distributions are

directly back transformed. This is not suitable for situations where multilocation

uncertainty is required, but it is a fast and efficient approach for local best estimates

and measures of local uncertainty.

The PPMT is widely used for multivariate simulation. Multivariate data ob-

servations with no missing values are transformed to be independent and standard

normal. Simulation of the transformed factors then proceeds independently or in

sequence when secondary data are available. The simulated independent Gaussian

variables are back transformed to original units where the multivariate complexity

is restored. These realizations could be averaged to obtain a local estimate and

other post processing could be considered for measures of local and multilocation

uncertainty. Stable assessment of local uncertainty may require hundreds of re-

alizations; a mere one hundred realizations would lead to significant noise in the

variance or any probability sensitive to the tails of the distribution. In cases when

local estimates or local uncertainty measures are the goal of the study, a direct lo-

cal back transform with thousands of realizations provides stable results with little

computational effort.

PostMG workflow

Considering a single regionalized variable in PPMT is equivalent to the multiGaus-

sian approach long used in geostatistics (Verly, 1983). The core steps to this algo-

rithm could be summarized as:

1. Infer a global representative distribution for the regionalized variable in the

43



3. Multivariate criteria in geostatistical modeling

deemed stationary domain by a declustering algorithm. Normal score trans-

form the data and save the transformation table of paired original data and

normal score transformed values. The stationary global distribution is stan-

dard normal.

2. Infer a variogram model of the normal score data. This stationary variogram

model provides all of the covariances needed to parameterize the multivariate

Gaussian distribution for the domain.

3. Perform simple kriging to compute a local mean and local variance at each

unsampled location. These two moments at each location fully define the local

conditional Gaussian distribution; for N locations, the 2×N numbers define

the local parametric distributions of uncertainty.

4. Back transform and post process the local distributions. A large number of

quantiles are defined and back transformed using the transformation table

from step 1. The quantiles are sometimes regularly spaced, e.g., the 99 per-

centiles. Many random quantiles could also be sampled to allow the tails of

the distribution the correct probability of being sampled. The locations are

considered one at a time and local summary statistics are calculated from

the back transformed values. It is common to save the local mean, the local

variance, the probability to be within a specified tolerance of the mean, and

specified local quantiles such as the p10, p50 and p90.

This straightforward workflow is computationally efficient and provides esti-

mates and accurate data-value dependent measures of local uncertainty. It is not

possible to calculate any multilocation measures of uncertainty; nevertheless, the

local measures are useful. The conditional mean values could be used for resource

calculation. The conditional variance values could be used to support classification

decisions. A high (or low) probability of exceeding a critical threshold would make

locations more or less interesting. Finally, the results provide a useful check on

simulation-based workflows that are more computationally demanding and prone

to error.
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PostPPMT methodology

The PPMT transformation has become widely used because of its remarkable ability

to transform multivariate data with arbitrarily complex behavior to be multivariate

Gaussian and uncorrelated. Simulation and estimation is greatly facilitated since

the transformed factors can be considered one at a time. The back transformation

restores any complex multivariate behavior. Simulation is routinely performed since

that provides an assessment of local uncertainty and multilocation uncertainty. The

realizations can be processed in the normal way through resource/reserve calcula-

tions or optimization. As with the PostMG workflow, there are situations where

stable local estimates and measures of local uncertainty are desired for direct use

or for checking of the simulation workflow.

Considering K multiple regionalized variables in PPMT leads to a slightly mod-

ified algorithm that could be summarized as:

1. Infer a global representative distribution for all regionalized variables in the

deemed stationary domain by a declustering algorithm. There can be no

missing values; data imputation would be considered if necessary. PPMT

transform the multivariate data and save the transformation. The PPMT

transform consists of many steps, but they are all embedded in a single pro-

gram that greatly simplifies the procedure from a user perspective. The sta-

tionary global distribution of each factor is standard normal. The factors are

uncorrelated at lag zero.

2. Infer a variogram model for each factor. If no MAF-like rotation is considered,

then variograms of the normal score transformed variables is recommended.

The variograms for the transformed variables are modeled independently.

3. Perform simple kriging (normal equations) to compute a local mean and local

variance at each unsampled location for each factor. These moments fully

define the local conditional Gaussian distribution; for N locations and K

variables, the 2 × K × N numbers define the local parametric multivariate

45



3. Multivariate criteria in geostatistical modeling

distributions of uncertainty. Note that the local multivariate distributions

are fully defined by the K univariate non-standard distributions since the

local factors are independent.

4. Back transform and post process the local distributions. A large number of

quantiles are defined and back transformed using the transformation table

from step 1. The quantiles cannot be regularly spaced because of the po-

tentially high dimensionality. Considering 100 regularly spaced quantiles for

K = 10 variables would lead to 1020 values to back transform for each location.

This is an excessively large number. An arbitrarily large number of random

quantiles is recommended. Low-discrepancy random sequences like the Hal-

ton sequence are more uniformly distributed for a same number of quantiles

and is an alternative to drawing from a uniform distribution (Halton, 1964).

Thousands of randomly chosen back transformed values would provide stable

results. The locations are considered one at a time and local summary statis-

tics are calculated from the back transformed quantiles. It is common to save

the local means, the local variances, and other measures of uncertainty, see

below.

This straightforward workflow, illustrated in Figure 3.3, is computationally effi-

cient and provides estimates and measures of local uncertainty. The results could

be used for resources, local multivariate criteria assessment and for checking simu-

lation. Regarding the summary statistics to save, there are many possibilities. The

local mean and variance for each variable is always useful for global resource assess-

ment and for checking. The probability of certain variables to be within a tolerance

of the mean (e.g., 15%) could be useful in some circumstances. Specific quantiles

of certain variables could also provide a measure of uncertainty. The probability of

satisfying multivariate rules could be interesting, e.g., variable 1 above a threshold

while variable 2 is above a different threshold and variable 3 is below another thresh-

old. Considering the ratios of different variables in the multivariate rules could also

be assessed.
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Var1 Var2

PPMT
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STEP 1:

The PPMT transform decorrelates 
multivariate data into standard normal 
factors.
Each PPMT factors follows a Gaussian 
distribution with zero mean and variance 
of one.
The factors are uncorrelated.

STEP 2:

Because the factors are uncorrelated, the 
variograms are modeled independenlty.
The cross variograms are not needed.

STEP 3:

At each location considered, solve the 
normal equations to compute a local 
mean and local variance for each factor.
The K-univariate local CCDF fully define 
the local multivariate distributions.

STEP 4:

Randomly sample the CCDF of each 
factor. Back-transform the drawn values 
using the PPMT transformation table 
from STEP 1.
Save the values for post-processing.

Figure 3.3: Schematic illustration of the PostPPMT methodology.
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The postPPMT program implements the PostPPMT methodology in GSLIB for-

mat. The run-time to process the local distributions and back transform the large

number of quantiles is greatly reduced with the postPPMT FORTRAN program (sec-

tion A.1). The following case study demonstrates the practical implementation of

the methodology in exploration geochemistry with multivariate criteria.

3.4 Application to exploration geochemistry

Publicly available data are used to developed the PostPPMT case study described

above. The geochemical data were collected by the Northwest Territories Geological

Survey (NTGS) in partnership with the Geological Survey of Canada (GSC) across

the Mackenzie Mountains in the Northwest Territories, Canada. This regional geo-

chemical survey is conducted for the evaluation of mineral potential in the area,

based on sample collection and analysis protocols developed by the GSC for the

National Geochemical Reconnaissance program (Falck et al., 2012).

Data

The Inductively Coupled Plasma Mass Spectrometry (ICP-MS) measurements of

stream sediments of Ag, As, Cu, Pb, Thallium (Tl), Vanadium (V), Zn; and the

Instrumental Neutron Activation Analysis (INAA) measures of stream sediments of

Ba are considered. Duplicated measurements and samples with missing analyses are

removed. A subset of the geochemical data containing 8188 samples is considered.

These elements are selected as the pathfinders for Ag/Zn/Pb SEDEX deposits in

the area. The available geochemical data are plotted on top of the regional geology

in Figure 3.4. The distribution of the elements are highly right-skewed due to a large

percentage of samples at or below the detection limits and the presence of outliers,

see Table 3.1 for a summary of the statistics and Figure 3.5 for the histograms of

Ag and Cu.

The analysis of the variable distributions might reveal interesting threshold val-

ues that combine with professional judgement to support decisions when formulating
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Figure 3.4: The geochemical samples (black circles) are plotted on top of the geological
map of the Mackenzie Mountains. The thick line represents the keyout that delimits the
area where estimates are calculated. Geological map provided by the NTGS.
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Table 3.1: Summary of statistics for the pathfinder elements. The 25th, 50th (median),
75th, and 90th percentiles are shown along with the mean (µ) and standard deviation (σ).

Element Minimum p25 p50 p75 p90 Maximum µ σ

Ag(ppb) 0.00 24.00 51.00 121.00 308.000 6732.00 124.01 234.17
As(ppm) 0.00 3.70 6.30 11.10 23.100 1060.80 12.32 30.23
Ba(ppm) 0.00 300.00 590.00 1200.00 3000.00 84000.00 1320.30 2841.69
Cu(ppm) 0.46 7.58 17.09 31.02 57.536 718.36 27.13 38.77
Pb(ppm) 0.50 7.69 11.88 18.49 28.820 2489.07 17.14 41.26
Tl(ppm) 0.00 0.05 0.08 0.16 0.350 6.33 0.16 0.25
V(ppm) 0.00 8.00 16.00 30.00 51.000 2959.00 28.57 69.19
Zn(ppm) 1.50 25.60 65.45 129.60 334.430 10000.00 170.70 428.91

the multivariate criteria rule.

Multivariate criteria rule

The signature for Ag/Zn/Pb SEDEX deposits is defined as high values of specific

pathfinder elements. The assessment of the following multivariate criteria is con-

sidered for targeting new exploration areas: Ag, Pb, and Zn values above their

respective global p90 quantiles, and As, Ba, Cu, Tl, and V values above their re-

spective p75 quantiles. Locations where the probability of all variables to exceed

their thresholds simultaneously are flagged as potential areas for further investiga-

tion.

Geostatistical modeling

The multivariate NS transformation guarantees that the marginal distributions of

the variables are standard normal, but multivariate normality is not always achieved.

Figure 3.5c shows the bivariate relationship between the NS of Ag and Cu, note

the high correlation between both variables. The NS variograms are an alternative

to the PPMT variograms when MAF-like rotation is not required after the PPMT

transformation and the correlation between the NS data and the PPMT transformed

factors is high. The NS variograms are easier to model and not sensitive to spurious

noise when variables are highly correlated, therefore, the NS transform is considered

for variogram modeling.
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Figure 3.5: The distribution of Ag (a) and Cu (b) are shown in original units. The
relationship of the normal score transforms of both variables is shown in the bivariate plot
(c) and colored by the kernel density estimation. The correlation in normal scores is 0.76.

Experimental variograms are calculated at the directions of the apparent anisotropy,

with the azimuths of major and minor directions of continuity set respectively to

315 and 45 degrees. The variograms are modeled with a small nugget effect of 10%

of the total variance and three spherical structures. The contribution to the sill

of each structure depends on the variable. In general, the variogram ranges vary

from approximately 40 Km to 300 Km in the minor and major directions. The NS

variograms of Ag and Cu are shown in Figure 3.6.
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Figure 3.6: The normal scores variograms of Ag (a) and Cu (b). The dots and lines
represent the experimental points and the fitted model respectively. Blue and red colors
represent the variograms at the minor and major directions of anisotropy respectively.

The local conditional distributions are defined by the simple kriging and variance

of the PPMT factors. PPMT decorrelate variables while ensuring that the marginal

and joint distributions are standard normal, see Figure 3.7 for the distribution of
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the PPMT factors of Ag and Cu and their bivariate relationship.
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Figure 3.7: The distribution of the PPMT factors of Ag (a) and Cu (b). The relationship
of the PPMT factors of both variables is shown in the bivariate plot (c) and colored by the
kernel density estimation. The factors are uncorrelated.

A grid containing 248 and 305 nodes respectively in the easting and northing

directions, with a node spacing at both directions of 2 Km is considered. A keyout is

used to ensure that only nodes inside the project area, a total of 29,475 locations, are

estimated (Figure 3.4). The PPMT factors are simple kriged on the grid locations

using their respective NS variograms and accounting for the anisotropy. The vectors

of simple kriging mean and variance of each factor at each location are used to build

the local multivariate conditional distributions that are used for local uncertainty

assessement. The simple kriging estimates of the PPMT factors of Ag and Cu are

shown in Figure 3.8.

Assessing the multivariate criteria

At each location the conditional distribution of each factor is sampled 10,000 times.

This large number of quantiles is required to account for the highly skewed distri-

butions of the variables. The quantiles are back transformed and the probability

of the individual variable rules and multivariate criteria are considered. The indi-

vidual rules are defined on a variable by variable basis as defined in subsection 3.4,

for example, Ag values above the p90 quantile. The joint-probability is calculated

counting the number of times that the single rules occur simultaneously at a loca-

tion. Therefore, the calculation of the joint-probability involves the calculation of

single rule probabilities. Figure 3.9 shows the distribution and map of the individ-
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(b) Kriging estimates PPMT Cu

Figure 3.8: The simple kriging estimates of the PPMT factors of Ag (a) and Cu (b) are
plotted on the grid.

ual probabilities calculated for Ag and Cu. These results could be used for decision

making if decisions are based on a single criterion only.

The multivariate criteria probability is now considered. Locations with a higher

probability of the multivariate rule to occur are flagged as new potential exploration

areas. In the case of exploration geochemistry, this probability is expected to be

low overall. The distribution of the joint-probability in the project area is shown

in Figure 3.10. Note the large number of locations where the probability of the

multivariate criteria to occur is zero. The expected value over the project area is

only 0.7%, with a maximum probability value of 87.2%.

The global joint-probability map is shown in Figure 3.11. Most areas of interest

are located in the western region of the Mackenzie Mountains, with peaks of proba-

bility concentrated in the southwest region of the map. To improve the visualization

of these areas, consider the ratio of local to global probability, that is, the ratio of

local values to the mean of 0.7%. Consider also taking the logarithm to the base 10

of the calculated ratio, see Figure 3.12. The value of 0 represent all locations where

the local probability is equal to the global average. Positive values represent areas

where the local probability is above average, the more positive the value, the higher
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(b) Probability distribution of Cu criterion
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(c) Probability map of Ag criterion
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(d) Probability map of Cu criterion

Figure 3.9: The distribution of the calculated probabilities based on the univariate rules
of Ag (a) and Cu (b); and the map of the respective calculated probabilities of Ag (c) and
Cu (d). The univariate criteria are Ag and Cu above their respective global p90 and p75
quantiles respectively. Probability values are on a 0 to 1 scale.
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Figure 3.10: The distribution of the multivariate joint-probability. Probability values are
on a 0 to 1 scale.

the potential of the area is. In the logarithm scale, a positive value of 2 represents

local values 100× greater than the average. Negative values represent areas where

the local probability is below the average.

Overall, the western region of the Mackenzie Mountains concentrates most of

the potential areas for exploration of Ag/Zn/Pb SEDEX deposits. The analysis of

the flagged areas by geologists can support decisions regarding targeting new zones

and potentially narrow exploration areas. The pathfinder elements were chosen to

illustrate the methodology and would need to be refined for future application. The

choice of the elements and the multivariate rule was based on a series of reports,

thesis, and articles on the geology of SEDEX deposits and mineral deposits in the

Mackenzie Mountains (Berger, 2015; du Bray, 1995; Fischer et al., 2016; Ootes et al.,

2013).

3.5 Conclusion

The practical aspects and development of the PostPPMT methodology is discussed

in this chapter and demonstrated in a case study with geochemical data. The appli-

cation of the PPMT transformation for estimation and local uncertainty assessment
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Figure 3.11: Map of the calculated multivariate joint-probability. The global probability
is plotted. Probability values are on a 0 to 1 scale.
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Figure 3.12: Map of the calculated multivariate joint-probability. The logarithm to the
base 10 of the ratio of local to global probability is plotted. Negative values are locations
where the local probability is below the global average probability. Positive values are all
locations where the local probability is greater than the average. Locations with a global
probability of 0 are not plotted because the logarithm cannot be calculated.
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is straightforward and useful. The PostPPMT methodology provides a solution to

this problem and a starting point for more complicated multifactor and extreme

value criteria.
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Chapter 4

Decomposition of multivariate
spatial data into latent variables

Simulating spatial Gaussian realizations is one of the core components of geostatis-

tics and numerous other fields involving uncertainty, risk, and reliability. The use

of decorrelation methods and truncated Gaussian algorithms further promotes the

use of Gaussian realizations. In multivariate cases, geological variables may rep-

resent different scales and exhibit different spatial structures and anisotropy that

complicates decorrelation methods. For cases where spatial dependencies cannot

be removed using techniques such as the projection pursuit multivariate transform

coupled with maximum autocorrelation factors, cokriging is advocated and requires

a linear model of coregionalization (LMC). However, blind source separation rep-

resents the original multivariate problem as a linear combination of latent source

variables, each one having a spatial structure from the LMC. The latent source

variables or factors are independent and follow a standard normal distribution facil-

itating the use of Gaussian simulation algorithms. Moreover, different algorithms

may be utilized for each variable given that some are more efficient at generat-

ing realizations for different spatial covariance functions. Recovering the original

variables afterwards is straightforward. The theory for this decomposition is pre-

sented in this chapter. A small numerical example is used to explain the theory.

Limitations of the method are discussed.

4.1 Motivation

Geostatistical conditional simulation is used to generate stochastic realizations of

the joint spatial variability between variables and it is in the core of modern multi-

variate modeling (Bailey and Krzanowski, 2012; Chiles and Delfiner, 2012; Wacker-
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4. Decomposition of multivariate spatial data into latent variables

nagel, 2003). Decorrelation techniques such as the stepwise conditional transforma-

tion (Leuangthong and Deutsch, 2003), minimum/maximum autocorrelation factors

(MAF) (Desbarats and Dimitrakopoulos, 2000), and projection pursuit multivariate

transform (Barnett et al., 2014) are used to decorrelate non-Gaussian relationships

between variables for independent simulation. The application of these techniques

in geostatistical modeling has grown in the past years with the advancement of al-

gorithms and computer architectures. Such techniques have limitations. A notable

one is the requirement for homotopic data, that is, all variables must be available at

all sample locations. The requirement for homotopic data is particularly limiting in

mining applications since multiple data sources are common, for example, data may

originate from diamond drilling, reverse circulation drilling, and blast hole drilling.

Another limitation is that decorrelation techniques do not necessarily account for

spatial cross covariance. MAF is intended to mitigate cross covariance at a spe-

cific lag that, under appropriate circumstances, mitigates cross covariance at all

lags; however, it is not always successful. Ignoring residual cross covariance, even if

it appears insignificant, can lead to complications with variogram reproduction in

geostatistical simulation workflows.

In the presence of missing data, unequal sampling, or different data types, vari-

ables are typically cosimulated with some variation of cokriging. This is usually

the case when the variables of primary interest are sparsely sampled and one or

more densely sampled secondary variables are available that relate to the primary

variables being simulated. Markov-type coregionalization models used in collocated

cokriging are an alternative to the Linear Model of Coregionalization (LMC) that is

required for cokriging (Almeida, 1994; Rivoirard, 2001). However, common imple-

mentations of collocated cokriging leads to variance inflation (Babak and Deutsch,

2009). They present a more appropriate technique called intrinsic collocated cokrig-

ing that does not lead to variance inflation and expands the range of application of

techniques that make use of collocated data. In cases with multiple secondary vari-

ables, the problem is simplified by merging them together into a super-secondary

variable (Babak and Deutsch, 2008).
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4. Decomposition of multivariate spatial data into latent variables

Simultaneous modeling of multiple primary variables requires an LMC. Despite

the challenge of modeling an LMC with a large number of variables, it remains a

useful and mathematically flexible tool. A model of coregionalization like the LMC

is required to combine multiple data types measured at different locations and

different data support into the same framework, and in cases where decorrelation

techniques do not successfully remove spatial cross-covariance. Different variables

and data types having sample-specific measurement errors can be used together

for estimation with cokriging (Goovaerts, 1997). The classic approach is to fit

all direct and cross variograms with the LMC (Chiles and Delfiner, 2012). The

LMC is then utilized in cokriging and simulation. The approach proposed here

is to decompose or factorize the normal score transform of the original variables

into a set of independent normal latent variables using the LMC and blind source

separation (BSS) (Schmidt, 2009). This approach is based on the definition of

the LMC and therefore accounts for the direct and cross covariance of the original

variables. Source variables or factors may then be modeled independently with an

appropriate simulation algorithm and used to reconstruct the original variables.

In the case of completely unequally sampled data, that is, when two or more data

types are available and are never collocated, simultaneous modeling of the variables

is restricted to the LMC. In this context, BSS may be used to generate factors at

the locations of all data types facilitating independent simulation. BSS provides a

way to simulate factors at all data locations that combined with the LMC creates

a framework to compute missing variable values at those locations. The modeling

of independent factors also permits practical and easy model checking at each step.

The factors can be analysed and checked independently, as opposed to cosimulation

with cokriging in which model checking is quite challenging for a large number of

variables. Another convenience of BSS is that the process of simulating the factors

and computing the variables is highly parallelized, not only across factors but also

across variables and structures.

There are many algorithms for simulation of Gaussian variables including se-

quential Gaussian simulation, turning bands, moving average methods, random
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coins, spectral methods, circulant embedding, and matrix methods that rely on

Cholesky factorization (Borgman et al., 1984; Chiles and Delfiner, 2012; Dietrich

and Newsam, 1997; Emery, 2008; Emery and Lantuejoul, 2006; Goovaerts, 1997;

Kyriakidis, 1999; Mantoglou, 1987; Mantoglou and Wilson, 1982; Matheron, 1973;

Oliver, 1995; Oliver et al., 2008; Paravarzar et al., 2015; Pardo-Iguzquiza and Chica-

Olmo, 1993; Wackernagel, 2003; Yao, 1998b). Each algorithm has a range of spatial

covariance functions and grid parameters where they perform with high efficiency

and robustness in terms of variogram and histogram reproduction. Given that the

factors from BSS are independent and have a single spatial covariance function,

the most appropriate algorithm may be selected and applied to each factor inde-

pendently. For example, moving average methods could be applied to factors with

short range spherical covariance functions, while spectral methods could be applied

to factors having an exponential structure.

Most simulation algorithms are unconditional and the resulting realizations

could be conditioned by (co)kriging after unconditional simulation. Once the fac-

tors have been simulated and conditioned, the original variables are computed from

the definition of the LMC.

4.2 Latent factors

Recall the LMC equation presented in Section 2.2:

Zk(u) = mk +
nst∑
i=0

ak,iYi(u) (4.1)

Where mk is the stationary mean of the kth variable, nst is the number of

structures or factors, ak,i are the coefficients explaining the contribution of the ith

factor to the kth variable and Yi(u) are independent factors defined by single spatial

covariance structure, with the 0th factor representing the nugget effect component.

One approach from the early days of geostatistics, is to unconditionally simu-

late each of the (nst + 1) factors. The factors can be combined with the ak,i coef-

ficients into unconditional realizations of the K variables (Journel and Huijbregts,
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1978; Matheron, 1979; Myers, 1982). Then, the realizations can be conditioned by

(co)kriging. The simulation of each of the (nst+ 1) factors could be done with the

best technique for each factor; there is no need to use the same technique for each,

then conditioning could be done by global dual kriging for efficient assembly of the

final realizations.

Decomposition of data into factors

Consider decomposing the original variables into their underlying factors so that the

factors could be kriged and or simulated independently and values reconstructed

at the end. The idea is to impute factor data that reproduce the original data and

that have the correct spatial structure. If the data are equally sampled, this could

be denoted as:

Z = AY (4.2)

where A is the matrix with the a coefficients, Z is the matrix with the core-

gionalized variables Zk, and Y is the matrix with the Yi independent factors. This

development is restricted to cases when there are more factors than there are origi-

nal variables, that is, (nst+1) > K. This is common since a large number of factors

would be required to explain the complexity of multivariate spatial data.

The Z and Y data contain equivalent information since they are linked by Equa-

tion 4.1. There may be advantages to this decomposition including: (1) the factors

are independent, that is, they can be kriged or simulated independently, and (2)

unequally sampled data, that is, locations where subsets of the K variables are

available could be considered with the (nst+ 1) variables carrying the information

from each subset.

Inference of the Y values from the available Z data is presented here as an

inverse problem; we know the result of the linear combination, but not the factors

that went into the combination. The solution is non-unique when (nst + 1) > K,

which is the case for small K or large nst; the case considered here. The inverse
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problem is non-unique; there are more y variables to derive than z variables to

constrain the results. A simulation framework is developed to create realizations

of the factor values and constrain each geostatistical realization with a different

data realization. This is similar in principle to the multiple imputation framework

(Rubin, 1996). We denote the data:

(zk(uj), k = 1, ..., K; j = 1, ..., n) →



(y(1)i (uj), i = 0, ..., nst; j = 1, ..., n) u in D

(y(2)i (uj), i = 0, ..., nst; j = 1, ..., n) u in D

...

(y(L)i (uj), i = 0, ..., nst; j = 1, ..., n) u in D

(4.3)

where L is the number of realizations. The challenge now is to simulate the

underlying latent independent factors at locations where one or more of the original

data are observed.

4.3 Blind source separation

Blind source separation (BSS) methods are used to process mixed sensor obser-

vations and infer the most probable source estimates, without or with limited in-

formation about the source signal. Independent component analysis (ICA), PCA,

and SVD are the most used techniques for BSS to reveal the hidden factors in the

observed signals. BSS methods have applications in image processing, medical imag-

ing, music, wavelets and signal processing, speech recognition, telecommunications,

and machine learning (Comon and Jutten, 2010; Naik and Wang, 2014; Yu et al.,

2014).

BSS is often explained with the cocktail party problem (Choi and Cichocki,

1997; Handel, 1989). Consider a party with people talking simultaneously. There

might also be some background noise such as music or sound coming from outside

the room. Consider the analysis of the sound recorded by microphones installed
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in the room. The problem is to separate the mixture of sound signals with no

a-priori knowledge of the sources. This kind of problem is referred as to as blind

source separation. BSS aims at separate the signals based on their mixture only,

without accessing the signal themselves, hence the term blind. In most applications

of BSS, the signals are assumed to be stationary and have zero-mean, the sources

are statistically independent, and the number of sensors (observations) exceeds or

equal the number of sources (Kofidis, 2016).

The paradigm of BSS is that some unknown matrix of sources Z is mixed by

some linear matrix of constants A, also referred as to the mixing coefficient matrix.

The sources are projected from the original source space to an observation space X

in which the signals are obtained:

X = AZ (4.4)

where X is the mixed signal matrix. Both source signal Z and how the source

signal are mixed are unknown. The goal of BSS is to calculate a demixing matrix

W ≈ A−1 such that

Y = WX = Ẑ (4.5)

is a good estimation and approximation of the real source signal Z. To achieve

this, the observations in X are transposed into an estimated source space in which

the estimates of the sources, Y are projected. Such projection highlights different

patterns in the data along different projection axes. This allows filtering solutions

of Y that corresponds to noise signals or unwanted solutions. This projection or

transformation can be done with orthogonalization. ICA and SVD are used to per-

form BSS and estimate W , since both methods assume linear independence between

the sources and yield statistically independent estimated Y (Clifford, 2008). SVD

attempts to find an independent set of vectors onto which data is transformed, that

is, the principal components of a multi-dimensional signal. SVD separates the sig-

nal into a subspace of signal and another of noise. Maximum independence between
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these subspaces is achieved by requiring them to be orthogonal. The projected data

onto each vector are the independent sources. Once these vectors are discovered,

they are used to calculate the inverse W−1 of the demixing matrix and reproject

the data back into the observation space.

Problem illustration

The following example is used to illustrate the problem and early motivation to the

development of the proposed methodology. At a location u consider the following

LMC:

Z1 = a1,1Y1 + a1,2Y2

Z2 = a2,1Y1 + a2,2Y2

(4.6)

The Z variables are standard normal with correlation equal to ρ1,2 = a1,1a2,1 +

a1,2a2,2 (Equation 2.18). This model is very constrained since Equation 4.6 imposes

a21,1 + a21,2 = 1 and a22,1 + a22,2 = 1 as both Y and Z have variance of 1. Equation 4.6

can be reorganized such as the factors are isolated from the variables:

Y1 =
Z1 − a1,2

a2,2
Z2

a1,1 − a1,2
a2,2

a2,1
(4.7)

Y2 =
Z2 − a2,1

a1,1
Z1

a2,2 − a2,1
a1,1

a1,2
(4.8)

The equations above are used to compute the variables from the factors or the

factors from the variables. They define the linear relationship between the bivariate

distributions shown in Figure 4.1.

In the context of unequally sampled data, one of the variables is missing and

a unique observation of Z1 or Z2 is available. The available variable defines the

conditional distribution of the other. For example, for an observed value Z1 = z1

the conditional distribution Z2|Z1 = z1 has a mean equal to µZ2 = ρ1,2 × z1 and

variance σ2
Z2 = 1 − ρ21,2. This conditional distribution in the Z space defines the

space of uncertainty of Z2. It also defines the space of uncertainty of Y since Y
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Z2
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- 3 - 2 - 1

Y2

Y1

- 3 - 2 -

A

B

Figure 4.1: The bivariate relationships between the Z variables (left) and Y factors (right)
are illustrated. They are linked by paths A (Equations 4.7 and 4.8) and B (Equations 4.6).

is constrained to Z by the relationship in Equation 4.6. For the observed value

Z1 = z1, this space of uncertainty is a plane whose intersection with the XY plane

is a line with equation a1,1Y1 + a1,2Y2 = z1, see Figure 4.2.

Z2

Z1

- 3 - 2

z1

(a) Space of uncertainty in Z space

Y2

Y1

- 3 - 2

a1,1Y1 + a1,2Y2 = z1

(b) Corresponding space of uncertainty in Y
space

Figure 4.2: The conditional distribution Z2|Z1 = z1 (a) defines the space of uncertainty
of Y (b) since the variables are linked by Equation 4.6. The space of uncertainty in Y is
defined by the line a1,1Y1 + a1,2Y2 = z1 (b).

We are interested in sampling either conditional distribution Y1|Z1 = z1 or

Y2|Z1 = z1 and calculate the other. These conditional distributions in Y are de-
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fined by available Z and are linearly constrained by the LMC. For convenience, the

conditional distributions in Y must be standard normal and independent. BSS pro-

vides a solution to this problem by reducing the space of uncertainty to a subspace

where all vectors are orthogonal. It constrains the sampling space of the multivari-

ate Gaussian distribution to a region that can be sampled to generate realizations

of the Y factors such that the Z are reproduced. In this example with two variables,

this space is illustrated in Figure 4.3.

Y2

Y1

- 3 - 2

N(0,1)

Figure 4.3: BSS is used to calculate the space of uncertainty shown in Figure 4.2b.

Given heterotopic samples of Z and a valid LMC, BSS is used in the proposed

methodology to constrain the sampling space of the multivariate Gaussian distribu-

tions such that the Y factors are imputed at locations where at least one variable

Z is measured. The Y values must be valid solutions of Equation 4.1, must be

standard normal, and have the same spatial structure from the LMC. The theory

of the proposed methodology is discussed with more details in the next section.

4.4 Theory

The process of simulating y values is equivalent to generating random samples from a

multivariate Gaussian distribution subject to linear equality constraints. This is an
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essential component in matrix factorization methods used in BSS (Schmidt, 2009).

The following theory was adapted from Schmidt (2009) to the proposed independent

factor simulation (IFS) methodology. Assuming that rank(A) > K and using matrix

notation, the problem consists of solving the following underdetermined system of

equations:

Z = AY

Consider generating random samples y ∈ D from a multivariate Gaussian density

p(y) subject to the linear equality:

p(y) ∝


N (y | µy,Σy) if z = Ay

0 otherwise

(4.9)

where µy is the mean and Σy the covariance matrix of the y variables. The

equality constraints restrict the distribution of p(y) to an affine subspace of the

multivariate Gaussian space. This distribution can be mapped onto this subspace

by computing an orthonormal basis T and its orthogonal complement T⊥ for the

constraints using singular value decomposition (SVD) (Golub and Reinsch, 1970):

A = USV ⊤ = US

 T
T⊥

 (4.10)

Given a minimum norm solution, y0, to Z = AY , which is obtained using cok-

riging, a random variable x that is orthogonal to the residuals y − y0 is defined:

x = T⊥(y − y0) (4.11)

The minimum norm solution is equivalent to the linear combination closest

to the true unknown value measured with a least squared norm (minimum mean

squared error). Since the variables have a known covariance function, the solution

is equivalent to cokriging that minimizes the estimation variance and hence mini-

mizes the mean squared error. The dual form of cokriging is applicable when the
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number of samples multiplied by the number of variables is not excessive. The cok-

riging solution (Equations 4.12) requires the calculation of the covariance matrix

Σz between z values, and the cross covariance matrix Σyz between y and z values.

These covariances are calculated from the Equations 2.19 and 2.20 of the LMC.



Σz = ATΣyA

Σyz = ΣyA
T

y0 = ΣyzΣ−1
z z

(4.12)

The conditional distribution of x given the equality constraint is Gaussian with

the following mean and covariance matrix

p(x | z = Ay) ∝ N (x | µx,Σx) (4.13)


µx = Λ(µy − y0)

Σx = ΛΣyT
⊤
⊥

(4.14)

where Λ = T⊥(I − ΣyT
⊤(TΣyT

⊤)−1T ). Given the Cholesky decomposition

LLT = Σx, a vector, r, of uncorrelated Gaussian random variables is defined:

r = L−1(x− µx) (4.15)

Sampling from this distribution is used to generate realizations of the original

variable y by substituting them into Equation 4.16 (from equations 4.11 and 4.15):

y = T⊤
⊥ (LT r + µx) + y0 (4.16)

The resulting realizations of the same y variable are equally likely to be drawn

from the constrained multivariate Gaussian distribution and for this reason real-

izations of the same factor are not independent. However, the different Y values

may be independent, there is no cross-correlation between the values of the fac-

tors. These values follow a standard normal distribution, have the correct spatial
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structure, and satisfy Z = AY .

Summary The methodology described above can be summarized by the following

steps. These steps will be illustrated by a small example in the next section.

1. Fit an LMC to the normal scores of z, which yields A.

2. Use the LMC to calculate Σy matrix.

3. Use Σy and A matrices to calculate the Σz and Σyz and solve the cokriging

equation for y0, Equations 4.12.

4. Decompose the matrix A with SVD to compute T and T⊥.

5. Calculate Λ and Σx as in Equations 4.14.

6. Decompose Σx with Cholesky decomposition and calculate L.

7. Generate a vector with random standard Gaussian values r and calculate y

with Equation 4.16.

Once the Y factors are imputed at data locations, their simulation at grid loca-

tions will call for a series of univariate conditional simulations, that is, conditional

to the Y at data locations, observed or imputed.

4.5 Small example and implementation details

In this small example, the theory and equations from the previous section are used

to illustrate the simulation of the LMC factors and then reconstruct the variables

at the data locations.

Problem setup

Consider a realization of two standard normal random variables Z1 and Z2 at loca-

tions u1 and u2 with an arbitrary distance of |u1 − u2| = 1 unit:
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z1(u1) z1(u2)

z2(u1) z2(u2)

 =

 0.146 −1.207

−0.264 1.155


A LMC is assumed with no nugget effect and four nested isotropic spherical

structures i = 1, ..., 4 with respective ranges of 2, 4, 7, and 10 units:


γ1,1(h) = 0.711γ1(h) + 0.254γ2(h) + 0.028γ3(h) + 0.007γ4(h)

γ1,2(h) = 0.293γ1(h) + 0.175γ2(h) + 0.146γ3(h) + 0.007γ4(h)

γ2,2(h) = 0.120γ1(h) + 0.120γ2(h) + 0.752γ3(h) + 0.008γ4(h)

This is a valid LMC model that respects the constraints in Equations 2.16 and

2.17. The A matrix is given by:

A =

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

 =

0.843 0.504 0.168 0.084

0.347 0.347 0.867 0.087


Let us reshape matrix A to a new matrix A with dimensions equal to (nvar ×

nloc) rows and (nfac × nloc) columns, where nvar is the number of variables, nloc

the number of locations, and nfac the number of factors. The system of equations

Z = AY for this problem is then given in matrix form by Equation 4.17:



z1(u1)

z2(u1)

z1(u2)

z2(u2)


=



0.843 0.504 0.168 0.084 0 0 0 0

0.347 0.347 0.867 0.087 0 0 0 0

0 0 0 0 0.843 0.504 0.168 0.084

0 0 0 0 0.347 0.347 0.867 0.087





y1(u1)

y2(u1)

y3(u1)

y4(u1)

y1(u2)

y2(u2)

y3(u2)

y4(u2)


(4.17)

This system of equations is underdetermined, with two z data and four y values

at each location. An infinite number of solutions exist for this system of equations.
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Covariances and cokriging

The required covariance matrices for cokriging are calculated as in the system of

equations 4.12:

Σy =



C1 0 0 0

0 C2 0 0

0 0 C3 0

0 0 0 C4


=



1.000 0.312 0 0 0 0 0 0

0.312 1.000 0 0 0 0 0 0

0 0 1.000 0.633 0 0 0 0

0 0 0.633 1.000 0 0 0 0

0 0 0 0 1.000 0.787 0 0

0 0 0 0 0.787 1.000 0 0

0 0 0 0 0 0 1.000 0.851

0 0 0 0 0 0 0.851 1.000



Σyz = ΣyA
T =



0.843 0.263 0.347 0.108

0.263 0.843 0.108 0.347

0.504 0.319 0.347 0.220

0.319 0.504 0.220 0.347

0.168 0.132 0.867 0.682

0.132 0.168 0.682 0.867

0.084 0.071 0.087 0.074

0.071 0.084 0.074 0.087



Σz = AΣyA
T =



1.000 0.411 0.620 0.323

0.411 1.000 0.323 0.620

0.620 0.323 1.000 0.712

0.323 0.620 0.712 1.000


The matrix with the cokriging solution y0 = ΣyzΣ−1

z z is calculated and reshaped

to match the size of the original A matrix:
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y0 =

y0,1(u1) y0,2(u1) y0,3(u1) y0,4(u1)

y0,1(u2) y0,2(u2) y0,3(u2) y0,4(u2)

 =

 0.452 −0.343 −0.343 −0.053

−1.705 −0.251 2.113 0.020



The cokriging estimates z∗ = Ay⊤0 = z are verified to ensure numerical consis-

tency:

z∗1(u1) z∗1(u2)

z∗2(u1) z∗2(u2)

 =

0.843 0.504 0.168 0.084

0.347 0.347 0.867 0.087




0.452 −1.705

−0.343 −0.251

−0.343 2.113

−0.053 0.020



=

 0.146 −1.207

−0.264 1.155


Note that the cokriging variance is not used anywhere in the BSS theory, there-

fore the dual form of cokriging is used to calculate the minimum norm solution.

Singular value decomposition

The null spaces of the big matrix A are calculated with SVD and defined based on

the rank rk of A (Equation 4.10). The first rk = 4 rows of V form the orthonormal

basis T , whereas the remaining rows form the orthogonal complement T⊥:
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A = USV

= US

 T
T⊥



= US



0 0.661 0 0.473 0 0.575 0 0.095

−0.661 0 −0.473 0 −0.575 0 −0.095 0

0.569 0 0.180 0 −0.802 0 −0.003 0

0 −0.569 0 −0.180 0 0.802 0 0.003

0.486 0 −0.860 0 0.152 0 −0.027 0

0 0.486 0 −0.860 0 0.152 0 −0.027

−0.048 0 −0.068 0 −0.054 0 0.995 0

0 −0.048 0 −0.068 0 −0.054 0 0.995


The matrices Σy, T , and T⊥ are used in the calculation of Λ, µx, and Σx, as in

Equation 4.14:

Λ =



0.430 0.144 −0.882 0.067 0.210 −0.078 −0.028 0.007

0.144 0.430 0.067 −0.882 −0.078 0.210 0.007 −0.028

−0.036 −0.030 −0.060 −0.019 −0.044 −0.011 0.997 −0.003

−0.030 −0.036 −0.019 −0.060 −0.011 −0.044 −0.003 0.997



Σx =



0.976 0.571 0.004 −0.001

0.571 0.976 −0.001 0.004

0.004 −0.001 0.999 0.849

−0.001 0.004 0.849 0.999


Since the mean of the y is zero, the mean of x is µx = Λy⊤0 = 0.
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Simulation of the factors

Two realizations of the Y factors are generated with Equation 4.16. The lower

triangular matrix L is computed from the Cholesky decomposition of Σx:

L =



0.988 0 0 0

0.578 0.801 0 0

0.004 −0.005 0.999 0

−0.001 0.006 0.849 0.527


Let r(1) and r(2) be two different realizations of a vector with random samples

generated from a standard Gaussian distribution:

r(1) =



−0.355

1.909

0.593

−1.076


; r(2) =



−0.260

0.129

−0.698

1.482


Equation 4.16 is evaluated for r(1) and r(2) to generate two realizations y(1) and

y(2) of the Y factors:


y1 =

[
0.254 −0.081 −0.427 0.536 −1.058 −1.386 2.317 −0.066

]

y2 =
[
0.361 −0.075 −0.344 −0.742 −1.737 −0.224 2.096 0.210

]

Substituting these two vectors into Equation 4.17 yields two realizations, z(1)

and z(2), where z(1) = z(2) = z. The theory presented in the previous section is

demonstrated in this small example. The computed z(l) values at the data locations

are exactly the same of the input z values.
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4.6 Limitations

One of the limitations of the BSS theory is regarding the nugget effect. The nugget

effect is explained by (1) artificial error caused by sampling error, and an (2) in-

trinsic short scale variability caused by geologic factors. In the theory of sampling,

the nugget effect is also referred as to the variance of strictly random fluctuations

(Pitard, 2019). It includes the variance of the estimation errors, the variance of

the intrinsic heterogeneity of the material, and it is always positive (Minnitt and

Esbensen, 2017). The variance of the measurements is expected to be zero, that

is, V (0) = 0. In fact, the variogram tends to zero when h tends to zero. In the

theory of sampling, however, V (0) represents the errors from the sampling, prepa-

ration, subsampling, and analytical errors. This variance is not zero and affects the

shape of the variogram. The most effective way to estimate the nugget effect is by

extrapolating the variogram values calculated between h = 0 and the next lag(s).

In geostatistics, this extrapolation is often done on the experimental variogram cal-

culated in the most informative direction, e.g., the down-hole variogram (Deutsch,

2015a).

In the old view of the LMC there is no need to split the nugget effect (Chiles

and Delfiner, 2012; Goovaerts, 1997). It is directly taken into account in the calcu-

lation of the covariances used for cokriging. In the new approach to the LMC intro-

duced by the BSS methodology, each factor is isolated and simulated independently.

Therefore, proper decomposition of the nugget effect requires the identification and

isolation of all of its sources. In the proposed methodology, it is unrealistic to have

one completely shared nugget. It is also unrealistic to have a different nugget effect

for each variable. The most realistic scenario would consider the many possible com-

binations of the nugget effect, that is, the nugget that is shared across all variables,

the nugget shared in subsets of the variables, and the independent truly variable

specific nugget effect. Consider the variable gold measured from reverse circulation

(RC) and diamond drilling (DDH). There are three different nugget effect to iso-

late, two drilling specific and a large shared nugget effect. Different nugget factors
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may also be considered for different mineralogy. For example, the copper minerals

chalcopyrite (CuFeS2) and chalcocite (Cu2S) have a shared nugget effect between

copper, and an independent nugget effect for each mineral.

The many combinations for the nugget effect for K variables taken r at a time

is calculated as:

kCr = k!
(k − r)!r!

For any K number of variables the combined number of independent and shared

nugget effect is calculated by 2k−1. This is a large number for only a few variables.

For example, for two different data types, and three variables, there would be a

total of 26 − 1 = 63 different nugget effect factors to be considered in the BSS

decomposition. The nugget components could never be isolated from data itself

and additional information and professional judgement must be used. In practice,

the nugget effect is still isolated and simulated independently as a single unique

factor.

Another limitation is related with the size of the model. Memory allocation

for dual cokriging, SVD, and Cholesky decomposition becomes expensive as the

number of variables, factors and locations grow. The methodology of BSS is im-

plemented in the GSLIB programs LMC_IMP and LMC_COMP (There will be a link

here to the Appendix). These programs, written in FORTRAN, are used to assess

the memory required for each major operation in the methodology. The required

memory is calculated based on the maximum memory that must be allocated inside

each subroutine. The LAPACK library for FORTRAN is used for SVD, Cholesky

decomposition, and to solve linear system of equations (Anderson et al., 1999). The

computation of the memory considers that an n×m matrix with double-precision

floats requires n ∗m ∗ 8/109 gigabytes (GB) of memory RAM to be allocated.

Figure 4.4 shows the memory required for each operation for a different number

of factors and conditioning data. Memory-wise the most expensive step of the

implementation is dual cokriging, followed by SVD. Note that cokriging requires

the calculation of the covariance matrices Σy, Σz, and the cross covariance Σyz

78



4. Decomposition of multivariate spatial data into latent variables

between y and z variables. Memory for SVD also depends on the dimensions of

the big A matrix, that is, after reshaping as in the Equation 4.17 of the example.

The memory required to allocate A is shown in Figure 4.4b. Another expensive

operation is the Cholesky decomposition of the matrix Σx. The Σx and Σz matrices

have the same dimensions, that is, (nvar × nloc)× (nvar × nloc).
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Figure 4.4: Expected memory in gigabytes required to allocate all matrices for the opera-
tions given different number of data locations and factors.

SVD is the slowest operation in the methodology. While the memory required

to perform SVD on a model with 10 factors and 2,000 conditioning data is less than

8 Gb, the expected run-time is more than 30 minutes, see Figure 4.5.

Despite the expensive computation of dual cokriging and SVD for large models,

these operations are performed once. Practical implementation of the BSS method-

ology should perform cokriging and SVD upfront and store all matrices requires

for simulation. Multiple realizations of the factors are generated with one single

program call, as oppose to multiple parallel calls of the program.
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Figure 4.5: Expected run-time of the SVD operation given different number of data
locations and factors.

4.7 Conclusion

An approach to simulate independent standard factors of the LMC is presented.

This approach uses the theory of BSS to sample a constrained multivariate Gaussian

distribution. The methodology relies on the SVD of the coefficients explaining the

variance of each structure of the LMC to calculate the null spaces that are needed

in further steps of the methodology. To satisfy the linear constraints, a vector

with the minimum norm solution has to be calculated at the data locations that is

obtained with dual cokriging. All covariance matrices required to solve the system

of equations of dual cokriging are calculated from the LMC. A transformed variable

is then calculated using the null spaces and the covariance matrix of the independent

factors. Decorrelation of these factors is achieved with Cholesky decomposition of

the latter covariance matrix. A vector of simulated LMC factors is then generated

conditioned to the minimum norm solution, the null space, and the decomposed

matrix. Original variables are recovered directed from the LMC at the sample

locations or in a grid. The factors can be simulated independently. The variables
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can be computed at any locations where all factors have been simulated.
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Chapter 5

Best practices of selection of
simulation algorithm

The IFS methodology discussed in the previous chapter provides a framework for

imputation and simulation of independent factors that are used to reconstruct the

original variables. In a simulation context it offers an alternative to cosimulation

with cokriging. The current approach is to choose an algorithm to simulate all

variables. In the IFS methodology, the variables are computed from the simulated

factors. The factors are independent, facilitating the use of Gaussian simulation

algorithms. A different algorithm may be used to simulate each factor. The choice

of the algorithm must account for the unique spatial covariance function of the

factors, that is, the range of correlation, the structure type, and the anisotropy.

This chapter discusses the practical aspects and best practices of selection of four

common simulation algorithms in geostatistics: moving average (MA), sequential

Gaussian simulation (SGS), turning bands (TB), and spectral simulation (SS). The

non-conditional simulated mean, variance, and variogram are checked and compared

against the theoretical expectations. The heavy mathematical foundation of these

methods is put aside for a more hands-on analysis (Cabral Pinto and Deutsch,

2017a).

5.1 Motivation

The choice of the simulation algorithm depends on many factors, such as, the prac-

tical implementation and software availability, the target variogram function, and

the modeler expertise and experience. Given software availability and assuming

that all best practices are implemented in each algorithm, the choice of the simu-

lation algorithm reduces to one goal: choosing the algorithm that best reproduces
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the input variogram.

The different nature and implementation of these algorithms yield to different

reproduction of first and second order statistics. For example, the practice of SGS

has shown that short range structures with a high contribution generates realiza-

tions with high average variance. Also regarding SGS, another observation from

practice is that long range structures are simulated with less variability and the

average simulated variogram is more continuous than the reference one. In the MA

method, the reproduction of first and second order statistics depends on the num-

ber of data inside the window, for a reasonable large number of data the variogram

is well reproduced. There are many spectral methods. The one reviewed in this

thesis refers to spectral method with DFT and is referred as to Spectral simulation

(SS) throughout the chapter. Other methods include the FFT Moving Average

(FFT-MA) based approach (Le Ravalec et al., 2000) that is exact on a grid, and

continuous spectral methods that are exact and not limited to a grid, see section

(?). The SS method has shown good reproduction of long range structures, but

poor reproduction of short range structures and covariance functions that are not

smooth at the origin. Practice has also shown that the simulated variograms with

SS can suffer from the periodic nature of DFT, which may generate artifacts in

the borders of the grid. DFT and continuous spectral method have more difficulty

with variogram models having a linear behavior at the origin (e.g. spherical and

exponential). Continuous approach has no problem simulating smooth covariances

at the origin for all ranges. Such methods can also simulate covariances with linear

behavior provided the sampling at high frequencies is well done. In TB the number

of lines used for simulation impacts the variogram reproduction. The number of

lines depends on the dimension of the model and variogram structure, a few lines

and the artifact banding is perceptible in the realizations. Overall, significant statis-

tical fluctuations are expected in any Gaussian algorithms as the variogram range

increases with respect to the domain size. Optimal selection of the parameters of

each algorithm is ideal, however, some parameters may be more important than

others to ensure a good variogram reproduction. In this chapter the following are
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discussed:

• The problem of discretization:

– The number of data inside the window in MA.

– Searching strategy and the number of data for kriging in SGS.

– The number of lines in TB.

• Ergodicity

• The variance of the simulated mean of each method and the theoretical error.

A better reproduction of the input statistics is achieved with optimal selection of

the simulation algorithm. In addition to choosing the algorithm, the understanding

of the practical implementations and user-input parameters of each method is im-

portant to improve geostatistical workflows involving uncertainty assessment with

simulation.

5.2 Combining spatial structures

In the IFS methodology, the factors are extracted from the LMC and used to recon-

struct the original variables. The reproduction of the LMC over all realizations is

then directly affected by the simulated factors. Simulated factors that do not honor

their spatial structures may depart from the multivariate Gaussian assumptions and

potentially introduce less or more variability to the computed variables, which di-

rectly affects the simulated LMC. In the IFS methodology, each realization of the

simulated factors are combined to generate a final realization of the input LMC

through the computation of the variables. The concept of simulate different struc-

tures of the variogram independently is not new in geostatistics (Goovaerts, 1997;

Journel, 1974). Each structure of the variogram is simulated independently, the

generated maps are scaled to their variogram contributions and combined together

to produce unconditional realizations that honors the input model.
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To illustrate, a few unconditional realizations of an isotropic spherical variogram

with two structures and no nugget effect are generated on a grid. The variance con-

tribution of the two structures are 80% and 20% of the total standardized variance,

with the respective ranges of 100 m and 400 m. The grid contains 100 nodes in the

easting and northing directions, with a node spacing at both directions of 10 m. A

total of 50 realizations are generated with SGS and SS. The simulated histogram

and map of the first realization are shown along with the variogram reproduction

of each method in Figure 5.1.
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Figure 5.1: The distribution and map of the first realization of a simulated random vari-
able and the respective variogram reproduction are shown for SGS (top) and SS (bottom).
The grey lines represent the simulated variograms, the black line represents the average
variogram of the realizations, and the red line is the input variogram model.

Note that both simulated histograms shown in Figure 5.1 are standard normal,

and the simulated maps appear similar; however, the SS map appears smoother

than SGS. The SS reproduces the input variogram more accurately. The biggest

difference in the simulated variograms between the two methods is seen in the second

structure. The average simulated variogram with SGS shows more discrepancy

from the input model. Consider simulating the two structures of the variogram
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independently. The first and second structures are simulated respectively with SGS

and SS. Realizations of the input variogram model are generated by adding the SGS

realizations to the correspondent SS realizations. This is represented by:

γ(h) = 0.8× Spha=100 + 0.2× Spha=400

γ(h) = 0.8× γ(h)SGS + 0.2× γ(h)Spectral
(5.1)

The final model is a combination of the realizations generated independently

with SGS and SS. The results are shown in Figure 5.2. Note that the combined

model reproduces better the input variogram when compared to the SGS variograms

shown in Figure 5.1. The high variability seen in the second structure of the SGS

model is replaced by the better behaved simulated variograms of the SS method.

This example illustrates the potential gains when simulating structures indepen-

dently, which permits mixing different algorithms and optimal setting of simulation

parameters. The next sections discuss important practical implementations in each

algorithm. Recommendations for algorithm selection are given in the end.

5.3 The problem of discretization

This section covers the problem of the number of data inside the window in MA,

the number of data used for kriging and search strategy in SGS, and the number of

lines for simulation in TB.

Window size and grid discretization for moving average

The grid discretization in MA defines the number of data n falling inside the window.

For a fixed window size, the variance of the simulated values decreases when n

increases. The error in simulation of the spherical structure is assessed for 2D and

3D grids. The software MW_SIM (Cabral Pinto and Deutsch, 2017d), see sections

2.4 and , is used. To assess the error in simulation as a function of n, a simulation

exercise is performed. A set of thirteen different numbers n ranging from a minimum

of 10 to a maximum of 100,000 is defined. A total of 500 realizations are generated
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Figure 5.2: The distribution and map of the first realization, and the variogram repro-
duction generated with SGS for the first structure of the input variogram model are shown
in the left column. The same results generated with SS for the second structure of the
variogram are shown in the middle column. The combined models are shown in the column
to the right. The grey lines represent the simulated variograms, the black line represents
the average variogram of the realizations, and the red line is the input variogram model.
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for each n. The n numbers are randomly drawn from a standard normal distribution.

The average of these numbers represents the simulated value for each realization.

The variance of the 500 simulated values is calculated and plotted against n in

Figure 5.3a.
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(a) Error in simulation for different n values
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(b) Schematic illustration of d and a

Figure 5.3: The effect of discretization d in MA. The variance of the simulated values is
a function of the number n of data inside a window with radius a.

The discretization d in MA, shown in Figure 5.3b, is defined as a function of

the window radius a and the number of data n inside the window. The error in the

simulated values approaches zero as n tends to infinity. In practice, as shown in

Figure 5.3a, there are no significant changes in the error for n > 1000. This number

is used in the Equations 5.2 and 5.3 to calculate the discretization d as a function

of the variogram range in 2D and 3D models respectively.

n = πa2

d2

d = a×
√

π

1000
d ≈ 0.05× a

d ≈ 0.025× γrange

(5.2)
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n = 4
3
πa3

d3

d = a× 3

√
4
3

π

1000

d ≈ 0.16× a

d ≈ 0.08× γrange

(5.3)

The grid discretization values of at least 2.5% and 8% of the variogram range for

2D and 3D models respectively, are values calculated based on an isotropic window

size for a reference value n = 1000. For the same variogram range the discretization

required in 2D models is approximately 3x finer than the required in 3D. For an

acceptable higher error in simulation, a coarser discretization can be calculated from

Figure 5.3a and Equations 5.2 and 5.3. The discretization must accommodate the

anisotropy, and a different grid discretization in the anisotropic directions must be

set accordingly.

Considerations for sequential Gaussian simulation

The grid discretization is an important parameter in MA. The error in simulation

is directly related to the number of data inside the window. Simulated values from

SGS are less sensitive to the grid discretization and good variogram reproduction

is still achieved in coarse grids. For instance, consider a 2D grid with node spacing

of 16 m in both directions. A total of 50 realizations are generated with MA and

SGS. The target variogram is isotropic with one spherical structure with a range

of 64 m. Note that the grid discretization is 10x coarser than the recommended

discretization for MA, calculated with Equation 5.2. The variogram reproduction

of both methods are shown in Figure 5.4.

Note the difference in the average simulated variogram, the SGS variogram

shows a better reproduction for any lags values whereas the MA variogram is above

the reference for range values greater than 35 m. The MA variogram reaches the

sill at a lag distance of approximately 50 m and the variogram values beyond this

range are consistently higher than the input variogram. This illustrates the high
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Figure 5.4: Variogram reproduction of realizations on a grid with coarse discretization
generated with SGS (a) and MA (b). The target variogram range is four times larger than
the grid node spacing.

variance in MA simulation for a few n inside the window. In SGS, the number of

data n used in kriging to conditioning the local distributions is a critical param-

eter. Using all data in SGS is in practice prohibited (Emery, 2004; Emery and

Pelaez, 2011; Safikhani et al., 2016). As simulation proceeds, previously simulated

nodes are added to the original input data matrix and become new conditioning

data to simulate the next location. A few interactions and the high computational

requirements to solve the kriging equations invalidate the method. Practical imple-

mentations such as a moving search window and multiple-grid search (multigrid)

provide a workaround to the problem but limit the number of data used as con-

ditioning. This limitation reduces the performance of SGS and affects variogram

reproduction. The optimal selection of the number of data inside the search is con-

sidered, and the balance between good variogram reproduction and computational

performance is sought.

SGS is a covariance based algorithm, the covariance matrix used in the kriging

equations is a function of the n data found inside the search. The simulated values

are more normal distributed for large n. To illustrate, unconditional realizations of

an isotropic variogram with no nugget and one spherical structure with a range of

correlation of 100 m are generated on a 3D grid. The grid extends 1000 m in easting,

northing, and elevation directions. The node spacing is 10 m in each direction. The
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variogram range is then 1/10 of the domain size. The number of data n is set

variable, ranging from n = 10 to n = 50. For each n a total of 100 realizations

are generated. In the presence of conditioning data, n is the total number of data

used for conditioning, that is, hard input data and previously simulated data. In

unconditional simulation cases, there is no conditioning data and n coincides with

the number of previously simulated data and the total number of data used for

kriging. The variance of the realizations are calculated and plotted against n in

Figure 5.5.
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Figure 5.5: Box plots of the variance of the realizations generated with different number
of previously simulated nodes. The whiskers represent 10% and 90% of the distribution,
the green line in each box represents the median, and the mean is represented by the green
triangle.

Note that the mean of the distributions approaches to one and that the dis-

persion of the distributions (see the whiskers) decreases as n increases. There is

no significant change in the distributions for n > 30. The number of data inside

the search and how the search is performed is critical for SGS. To illustrate the

impact of n in the variogram reproduction, the variograms from the same analysis

are calculated for n = 10, n = 30, and n = 50 and plotted in Figure 5.6. The

simulated variograms approach the reference model as n increases, that is, more

data is required to reproduce the input spatial variability.

A similar analysis is performed to n in 2D and 3D grid models. The input
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Figure 5.6: The variogram reproduction with SGS for a different number of data n inside
the search. The simulated values from the example of Figure 5.5 are used.

variogram, number of realization, and grid specs are the same of the previous exam-

ple. The mean of the simulated values is calculated for each realization, then the

variance of the mean values is calculated and used as the measure of the error in

simulation for each n. The distribution of the simulated values for each realization

is expected to be standard normal. Departure from normality is expected for small

n values, and less error is expected when a large number of data is used. The results

are shown separately for the 2D and 3D models in Figure 5.7. The analysis of the

plots indicates a diminishing changing rate in the measured error for n > 20 and

n > 40 values in the 2D and 3D models respectively. These parameter values can

be used as a reference when SGS is considered and fine tunned after checking the

simulation results.
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Figure 5.7: The variability in the simulated mean with SGS as a function of n for 2D (a)
and 3D (b) models. The highlighted n > 20 (2D) and n > 40 (3D) values are used as a
reference for a diminishing changing rate in the measured error.

The multigrid random paths is another search strategy found in most implemen-

tations of SGS (Deutsch and Journel, 1997; Gomez-Hernandez and Journel, 1993;
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Isaaks, 1990; Manchuk and Deutsch, 2012; Tran, 1994). It is designed to improve

the reproduction of long range structures by allowing data that are further away

from the simulation location, but still inside the search range, to be used for krig-

ing. These data points are found using a coarse grid searching strategy. By refining

the coarse grid to a finer grid the multigrid does not compromise the reproduction

of short range structures, thus, there is no harm in using it. In most implemen-

tations, the multigrid is a parameter that can be turned on and off and does not

required tunning. The improvements in the variogram reproduction are perceptible,

although not as significant as the ones seen when changing the number of data in

the search window. Consider the case n = 10 in the example used to generate Figure

5.6. The variogram reproduction with n = 30 and n = 50 are significantly better

than using n = 10. The multigrid search is used during simulation. A comparison

is made with the variograms of realizations generated without multigrid, see Figure

5.8. The average and simulated variograms with multigrid are slightly closer to the

input reference variogram. This is visually more evident when taking the range of

120 m as a reference point.
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Figure 5.8: The variogram reproduction with SGS with (a) and without (b) multigrid
search strategy. The simulated values for n = 10 in the example generated for Figure 5.6
are used.

The number of data to search and the search strategy in SGS are important

input parameter for SGS. A balance between the number of data to search and

computational performance must be found. The analyses made on the simulation
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error and variogram reproduction for different n data indicate that a minimum of

n = 20 and n = 40 provide a good starting point for 2D and 3D models respectively.

The use of a multigrid search is suggested since it improves reproduction of the

long structure range of the variogram without sacrificing short range structures,

and does not require any user-input adjustments.

Number of lines in turning bands

Practical implementations of the TB algorithm found in the literature use different

approaches to generate line directions for simulation. To cite a few, there is the

icosahedron approximation (Deutsch and Journel, 1992; Journel, 1974), algorithms

to generate lines that are uniformly or equidistributed over the sphere (Brooker,

1985; Chiles, 1977; Hunger et al., 2015; Tompson et al., 1989), or lines that follow

directions from a van der Corput sequence (Corput, 1935; Emery and Lantuejoul,

2006; Lantuejoul, 1994). It is demonstrated that the input covariance is honored

in these methods (Chiles and Delfiner, 2012) and that TB lines generated with the

van der Corput sequence improve ergodic properties (Emery and Lantuejoul, 2006;

Freulon and de Fouquet, 1991; Lantuejoul, 1994). The current implementation for

the analyses in this chapter uses the van der Corput sequence (Cabral Pinto and

Deutsch, 2018; Mol, 2018).

The number of lines N in TB depends on several factors, such as, the distribu-

tion of the lines, the spatial structure type, and the algorithm to simulate the one

dimensional random fields onto the lines. There is no magic number that works for

all implementations. There is, however, a range of values for N that practitioners

can use as a reference when using TB in geostatistical workflows. The recommended

number of lines for 2D and 3D models varies in the literature. Values ranging from

N = 4 to N = 180 are recommended for 2D models (Chiles, 1977; Gneiting, 1999a;

Mantoglou and Wilson, 1982; Tompson et al., 1989), whereas for 3D models these

values range from N = 15 (Journel and Huijbregts, 1978) to hundreds of lines

N > 100 (Emery and Lantuejoul, 2006; Lantuejoul, 2002; Tompson et al., 1989).

In practice, the number of lines to use in TB can be choose by generating a few
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unconditional realizations with the desired input variogram and visually checking

the results. Simulated maps with artifact banding indicates that more lines should

be used. It is also recommended to check the variogram reproduction, since visual

appreciation of the banding is subjective. To illustrate, consider generating uncon-

ditional realizations on a grid with a different number of lines and variogram types.

The simulated map of a realization and the variogram reproduction for each N are

checked. Three variograms with one isotropic structure and no nugget effect are

considered: a spherical type with range of 20 m, and a exponential and Gaussian

variograms with effective range of 20 m. The Gaussian variogram is fit with a small

nugget effect for computation stability. A total of 100 realizations on a grid with

200 node cells in easting and northing directions are generated. The cell spacing is 1

m in each direction. The results are shown in Figures 5.9 to 5.11. Note the artifact

banding seen in the spherical and exponential models for N = 10. These covariance

functions are simulated with the partition method (Lantuejoul, 1994) and require

more lines to reproduce the input function. The spectral method is utilized to sim-

ulate the Gaussian covariance and fewer lines are required in simulation since the

simulation is not performed into intervals of the line. The banding effect becomes

less perceptible when N increases. The inspection of the simulated variograms for

all models shows that a larger N improves variogram reproduction.

Practical implementations of TB found in the literature consider different ap-

proaches to generate the lines, different algorithms for simulation on the lines, and

the discretization used for this simulation. Practical recommendations for choosing

the number of lines to use in TB is based on the visual analysis of the simulated

maps and the variogram reproduction. Departures from normality and the input

variogram model are more unlikely to happen for a large number of lines, regardless

of the implementation. The process of generating the lines is not computationally

expensive and can be performed in parallel. The analysis made in this section indi-

cates that N > 100 are suitable for generating realizations that reproduce the input

variogram. This number can be reconsidered to improve variogram reproduction.
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Figure 5.9: 2D realization maps of an isotropic spherical variogram with range of correla-
tion of 20 m generated with a different number N of lines.
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(b) N = 50
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Figure 5.10: 2D realization maps of an isotropic exponential variogram with effective
range of correlation of 20 m generated with a different number N of lines.
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Figure 5.11: 2D realization maps of an isotropic Gaussian variogram with effective range
of correlation of 20 m generated with a different number N of lines.

5.4 Ergodic fluctuations of different simulation

algorithms

In geostatistical simulation, the discrepancy between the simulated values over a set

of realizations and the corresponding model parameters is referred as to ergodic fluc-

tuations (Deutsch and Journel, 1997). Ergodicity allows inference of the statistical

parameters of stationary random functions from realizations statistics. Simulated

values tend towards normality as the size of the model increases as regarding the

range of correlation. Fluctuations in the simulated statistics are expected in any

Gaussian simulation algorithm. The ratio between the variogram range and the do-

main size (VRD) dictates the degree of discrepancy between the simulated values

and the reference model parameters.

To illustrate the expected degree of ergodic fluctuations in different algorithms,

consider a 3D grid extending 1000 m in all three directions with an equal grid

discretization of 10 m. Five isotropic spherical variograms with ranges of 100, 200,
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300, 400, and 500 meters are considered. These values correspond to VRD ratios

ranging from 10% to 50%. A total of 200 realizations are generated. The search

window in SGS matches the variogram range with the maximum number of data

for kriging set to 48. A multigrid search is used. For TB, 250 lines are used

for simulation. Consider the variogram reproduction plots shown in Figure 5.12.

Note that the dispersion of the simulated variograms around the reference model

depends on the algorithm and the VRD ratio. Note also, that despite the high

dispersion of the simulated variograms as the range increases, the input variogram

is on average reproduced. SS provides good results also at short distances but with

less variogram fluctuations than with the other methods. The lower fluctuations is

explained by the implementation (section (?)) using
√
s(ω) instead of a Gaussian

variable with variance proportional to s(ω) as describe in Chiles and Delfiner (2012).

This is seen in the simulated variograms of SS for small lag distances. Long range

structures, including spherical and exponential ones, are still recommended to be

simulated with Spectral, since a fine discretization of the spectrum is still achieved

at long range. In fact, the Spectral method shows the best variogram reproduction

for VRD=0.3 and VRD=0.5. The average variogram generated with SGS is more

continuous than the reference for any VRD ratios. The increase in the search

allows for more data to be used in the kriging equations which leads to a better

reproduction of the variogram for VRD=0.5. The simulated variograms with TB

are similar to SGS, however, TB shows a better average variogram for any VRD.

The mean (µ) and variance (σ2) of the simulated values are calculated for each

realization and their distributions are shown as box plots in Figures 5.13 and 5.14.

These two figures show the ergodic fluctuations in the first and second order statis-

tics as a function of the variogram range and domain size. Note that the despite an

increasing dispersion of the simulated mean for large VRD values, the average and

median of the distributions fluctuate around zero. The analysis of the dispersion of

the variance shows that as the variogram range increases compared to the domain

size the realizations have a lower average variance. As shown in Figure 5.12, the

reference variograms are still reproduced over many realizations. It is recommended
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(b) SGS
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(c) Spectral
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Figure 5.12: The reproduction of the variogram of each method for different VRD ratios.
A VRD=0.1 is shown on the top row, VRD=0.3 on the middle row, and VRD=0.5 on the
bottom row. The methods are plotted column-wise.

to increase the number of realizations when simulating structures with long ranges

of correlation.

The visual analysis of the variograms and the analyses on the distributions of the

simulated mean and variance are recommended when different algorithms demon-

strate similar performance. For example, the simulated variograms with MA and

SGS for VRD=0.5 appear similar. The distribution of the simulated mean in both

methods also look similar, however, there is more dispersion in the simulated vari-

ance with SGS, which can be seen comparing Figures 5.14a and 5.14b. The visual

inspection of the variograms and simulated distributions are hands-on analyses to

compare different algorithms.

5.5 Recommendations for algorithm selection

The analyses made in the previous section illustrate that all four algorithms per-

form well when compared against the expected error and input statistical param-
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Figure 5.13: The dispersion of the simulated mean over all realizations for different algo-
rithms and VRD ratios. The whiskers represent 10% and 90% of the distribution, the green
line is the median, and the mean is represented by the green triangle.
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Figure 5.14: The dispersion of the simulated variance over all realizations for different
algorithms and VRD ratios. The whiskers represent 10% and 90% of the distribution, the
green line is the median, and the mean is represented by the green triangle.
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eters. There are however, different implementation aspects in each method that

when used correctly improve performance for specific input variogram functions

and provide a better modeling tool at a given scenario. The understanding of these

practical implementations when selecting the algorithm for geostatistical simulation

workflows directly impacts the simulation results. All these algorithms are often

available in software and different implementations of the same algorithm exist. A

comprehensive understanding of what is available and implemented can also save

time on further post-processing and tunning. Based on the analyses made and

review of the literature, the following are recommended:

• Different structures of the variogram can be simulated independently and com-

bined together to generate a final realization that reproduces the input model.

The realizations generated for each structure must be scaled accordingly to

their sill contributions.

• MA offers a fast approach to simulate spherical structures. Improved var-

iogram reproduction is achieved for a number n > 1000 of data inside the

window. This number represents a grid discretization of 2.5% and 8% of the

variogram range for 2D and 3D models respectively. The discretization must

change to accommodate anisotropy.

• SGS is less sensitive to the grid discretization and more dependent on the num-

ber of data in the search window and other search strategies. The multigrid

search does not harm simulation and helps improving long range structures

without sacrificing short range variability. The recommended number n of

data to search, accounting for original input data and previously simulated

nodes, is n > 20 in 2D and n > 40 in 3D models. Using more data improves

the reproduction of the variogram but affect computational performance since

more data is used to solve the kriging equations.

• The recommended number of lines N in TB simulation depends on how the

lines are generated. For most applications N > 250 is a good stating point.
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Fewer lines may be required to simulate continuous covariance functions near

the origin if spectral methods are implemented to simulate such structures

onto the lines.

• Long range structures are better reproduce than short range structures with

Spectral simulation with discrete spectral decomposition. Algorithms based

on continuous spectral decomposition can be used to achieve good overall

reproduction of short and long range structures and less continuous covariance

functions at the origin.

• Spectral or TB implementations that use continuous spectral decomposition

functions or DFT are recommended for simulating continuous structures with

short or long range of correlation.

• SGS is recommended to simulate short range structures that are less contin-

uous near the origin.

• Ergodic fluctuations in the simulation statistics is expected for model with a

relatively larger range of correlation with relation to the simulation field size.

5.6 Conclusion

This chapters discusses important implementation details of moving average, se-

quential Gaussian simulation, spectral simulation, and turning bands. These are

common Gaussian simulation algorithms used in geostatistics and different imple-

mentations exist in the literature. Each algorithm performs differently when sim-

ulating different spatial structures. The choice of the algorithm depends on the

implementation and the nature of the algorithm. Recommendations for selecting

the best algorithm are given based on the analyses performed on the simulated

mean, variance, and variogram reproduction of each method with different grid

discretization and the variogram range to the domain size ratio.
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Chapter 6

Case study: multivariate modeling
of geochemical data with IFS
methodology

The following chapter demonstrates the application of the Independent Factor Sim-

ulation (IFS) methodology for multivariate modeling. The proposed approach is

illustrated through a case study with geochemical sample data. The steps of the

methodology discussed in Chapter 4 are highlighted and comments on the results

are given. The results of the IFS method are compared to the conventional cosim-

ulation of the variables with cokriging.

6.1 Motivation

In this case study, two geochemical variables are modelled with the IFS methodology.

To demonstrate all practical aspects of the proposed method, a subset of the data

set is selected that contains collocated and non-collocated sample locations. These

locations are chosen randomly. This case study demonstrates that:

• The IFS methodology can be used to impute missing factors at the data

locations.

• The imputed factors at the data locations follow a standard normal distribu-

tion and are independent.

• At the collocated data locations, the computed variables are exact for any

realizations of the imputed factors.

• At the non-collocate data locations, the missing geological variables can be

computed from the imputed factors.
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6. Case study: multivariate modeling of geochemical data with IFS methodology

• The factors have a unique spatial structure fitted by the LMC.

• The factors are simulated independently and their spatial structures are re-

produced over many realizations.

• The original variables can be computed from the simulated factors.

• The LMC is reproduced over many realizations.

• The distribution of the original variables is reproduced over many realizations.

The two variables are modeled with a conventional approach and results are

compared to the proposed methodology.

6.2 Data

Publicly available data collected by the Northwest Territories Geological Survey

(NTGS) in partnership with the Geological Survey of Canada (GSC) across the

Mackenzie Mountains in the Northwest Territories, Canada, are used to illustrate

the IFS methodology (Figure 6.1). The geochemical data were collected in sev-

eral regional surveys for the National Geochemical Reconnaissance program and

published by many authors in a series of open file reports (Day et al., 2009,1,0;

du Bray, 1995; Falck and Day, 2008; Falck et al., 2014,1,1; Fischer et al., 2016;

McCurdy et al., 2009a,0,0; Ozyer, 2010,1).

A subset of the geochemical data containing 2,000 Inductively Coupled Plasma

Mass Spectrometry (ICP-MS) measures of stream sediments of Copper (Cu), and

the Instrumental Neutron Activation Analysis (INAA) measures of stream sedi-

ments of Lanthanum (La) is considered. The geochemical data were collected over

an area of approximately 438 Km easting and 546 Km northing, with an average

sampling spacing of 6.65 Km. Homotopic measurements of Cu and La are available

at 1,500 locations. At the remaining 500 locations, Cu and La are unequally sam-

pled, with a total of 250 measurements of each variable at unique locations. The

sample locations are shown in Figure 6.2. A larger subset of the data containing
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6. Case study: multivariate modeling of geochemical data with IFS methodology

Figure 6.1: Project location: the Mackenzie Mountains (in yellow) in the Northwest
Territories (red line). Courtesy of the NTGS.

4,000 measures of Cu and La are left out of the analysis for validation. The ac-

curacy plot of the computed variables over all realizations, and the scatterplot of

the smooth e-type mean of each location is compared with the true value of the

validation samples.

Cell declustering is considered to calculate a representative distribution of the

variables that accounts for the different sampling distances in the area. The cell

size is chosen to be the average spacing in areas of sparse sampling and the same

cell size is used for both variables. The declustered mean of Cu and La are 6.17%

and 1.04% lower than their respectively clustered mean. The naive and declustered

distributions of both variables are shown in Figure 6.3.

A requirement of the IFS methodology is that variables are standardized. The

original units of Cu and La are transformed to a standard Gaussian distribution

with a normal scores (NS) transformation. The distribution of the transformed

variables are shown in Figure 6.4. This transformation ensures a zero mean and

unit variance consistent with the BSS theory and LMC constraints in Equations 2.12

to 2.16. Moreover, this transformation diminishes the impact of common features

in geochemical data such as despikes and outliers on the variograms. The sample
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Figure 6.2: The geochemical samples (circles) are plotted on top of the geological map of
the Mackenzie Mountains. The black circles represent all 1,500 locations where Cu and La
measures are available. The red circles represent the 500 locations where only one variable
is sampled, that is, 250 unique measures of Cu or La. The thick line represents the keyout
that delimits the area where estimates are calculated. Geological map provided by the
NTGS.
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Figure 6.3: The clustered (a,b) and declustered (c,d) distributions of Cu and La are shown
in logarithmic scale.

locations of each variable in original units and normal scores are plotted in Figure

6.5.

The spatial distribution of the variables follow the regional structural trend

seen in the geological map of Figure 6.2. High measurements of both variables are

located in two regions of the Mackenzie Mountains, (1) on all the extension of the

Selwyn Basin in the southwest portion of the map and (2) on the centre part of the

mountains on the Windermere Supergroup. Average to high measures are located

to the northeast, in parts of the Mackenzie Mountains Supergroup and Siliciclastic

Basin extensions.
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Figure 6.4: The distribution of the normal scores of Cu and La.

6.3 Linear model of coregionalization

The spatial distribution shows zones of low and high values with the highest con-

tinuity in the northwest to southeast direction. In the presence of collocated data

the variograms are often calculated, and the correlation coefficient is calculated di-

rectly from the data. In the presence of unequally sampled data, covariances are

calculated and the correlation can be estimated from the cross-covariance.

Experimental covariances are calculated at the directions of apparent anisotropy,

with the azimuths of major and minor directions of continuity set respectively to

30 degrees west and 60 degrees east. An LMC is fitted with four structures and

no nugget effect (factors Y1, Y2, Y3, and Y4). The first and last structures receive

contributions from both variables, whereas the second and third structures are fitted

based on NS La. The correlation between NS Cu and NS La is estimated from the

cross-covariance and fitted to the value of C12(0) = ρ12 = 0.515. The fitted LMC

is shown in Table 6.1 and Figure 6.6. The variograms are calculated using the

relationship given in Equation 2.4, and are shown in Figure 6.7.

The fitted LMC yields the matrix A that is used to calculate all the covariances

required for cokriging, as given in Equations 4.12.
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Figure 6.5: Sample locations of Cu and La colored by logarithm of their original units (a)
and (b), and their normal scores (c) and (d).

Table 6.1: Fitted LMC parameters.

Factor (i) Structure type a21,i a22,i Range major (Km) Range minor (Km)

i=1 (Y1) Exponential 0.766 0.203 25 10
i=2 (Y2) Exponential 0.000 0.390 35 25
i=3 (Y3) Spherical 0.000 0.345 80 40
i=4 (Y4) Spherical 0.234 0.062 180 50

109



6. Case study: multivariate modeling of geochemical data with IFS methodology

0 50,000 100,000 150,000 200,000 250,000
Lag Distance (m)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

C(h)

NS Cu x NS Cu

N30W

N60E

(a) Direct covariance NS Cu

0 50,000 100,000 150,000 200,000 250,000
Lag Distance (m)

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C(h)

NS Cu x NS La

N30W

N60E

(b) Cross-covariance

0 50,000 100,000 150,000 200,000 250,000
Lag Distance (m)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

C(h)

NS La x NS La

N30W

N60E

(c) Direct covariance NS La

Figure 6.6: The fitted LMC of the normal scores of Cu and La. The dots and continuous
lines represent the experimental covariances and the fitted model respectively. The major
direction of continuity is shown in red, whereas the minor direction is shown in blue.
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Figure 6.7: The fitted LMC of the normal scores of Cu and La. The dots and continuous
lines represent the experimental variograms and the fitted model respectively. The major
direction of continuity is shown in red, whereas the minor direction is shown in blue.

6.4 Minimum norm solution

The minimum norm solution y0 = ΣyzΣ−1
z z to the system of equations Z = AY

(Equation 4.11) is obtained by cokriging the variables and factors. Cokriging is

performed at the data locations and has all the kriging features introduced in Section

2.3, such as a smoothing effect dictated by the covariances and data configuration.

Such effect is seen in the distribution of the cokriged factors shown in Figure 6.8

and on a map in Figure 6.9. Note that the continuity seen on the map are the ones

fitted in the LMC.

The LMC and cokriging sections cover the steps 1 to 3 of the methodology,

summarized in Section 4.4. These steps involve the calculation of the covariance

matrices for dual cokriging Σz, Σy, Σyz from matrix A. The minimum norm solution

y0 is required in the next steps of the methodology (steps 4 to 7) that are used to

impute the factors at data locations.
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Figure 6.8: Distribution of the cokriged factors at the data locations.

6.5 Imputation of the factors at the data

locations and checking

The orthonormal basis T and its orthogonal complement T⊥ matrices provide a null

solution space to the multivariate distributions, that is, an initial solution to the

problem that ensures the factors are independent. Both matrices are calculated from

the SVD of the A matrix. At this stage, all matrices required for the calculation of

Λ and Σx (Equation 4.14) are already calculated. The Cholesky decomposition of

Σx is used in combination with y0 in 4.16 to generate a total of 200 realizations of

the Y factors at the data locations.

To demonstrate that the factors are standard normal, the average mean and

standard deviation of each factor over all realizations is calculated and shown in

111



6. Case study: multivariate modeling of geochemical data with IFS methodology

400,000 500,000 600,000 700,000 800,000

Easting (m)

6,800,000

6,900,000

7,000,000

7,100,000

7,200,000

7,300,000

N
or

th
in

g
(m

)

−4

−3

−2

−1

0

1

2

3

4

(a) Y1

400,000 500,000 600,000 700,000 800,000

Easting (m)

6,800,000

6,900,000

7,000,000

7,100,000

7,200,000

7,300,000

N
or

th
in

g
(m

)

−4

−3

−2

−1

0

1

2

3

4

(b) Y2

400,000 500,000 600,000 700,000 800,000

Easting (m)

6,800,000

6,900,000

7,000,000

7,100,000

7,200,000

7,300,000

N
or

th
in

g
(m

)

−4

−3

−2

−1

0

1

2

3

4

(c) Y3

400,000 500,000 600,000 700,000 800,000

Easting (m)

6,800,000

6,900,000

7,000,000

7,100,000

7,200,000

7,300,000

N
or

th
in

g
(m

)

−4

−3

−2

−1

0

1

2

3

4

(d) Y4

Figure 6.9: Cokriging of each factor Y at the data locations.

112



6. Case study: multivariate modeling of geochemical data with IFS methodology

Table 6.2. The average correlation between the imputed factors is shown in Table

6.3. Note that there is no correlation between the imputed factors.

Table 6.2: Average mean (µ) and standard deviation (σ) of the imputed factors at the
data locations.

Y1 Y2 Y3 Y4

Average µ 0.008 -0.030 0.032 -0.015
Average σ 0.982 1.029 0.978 1.015

Table 6.3: Average correlation between the imputed factors at the data locations.

Y1 Y2 Y3 Y4

Y1 1.000 -0.022 -0.005 0.024
Y2 -0.022 1.000 -0.010 0.011
Y3 -0.005 -0.010 1.000 0.039
Y4 0.024 0.011 0.039 1.000

The distribution of the imputed factors and their cross-correlation are shown in

Figure 6.10 for realization #50. This realization is randomly chosen for illustration

purpose only. The imputed factors are plotted on a map and shown in Figure 6.11.

Note that the continuity of the factors are as fitted in the LMC, but the smoothing

effect of cokriging (Figure 6.9) is not seen. The imputed factors are standard normal

with a mean of zero and variance of one, and have the correct spatial structure fitted

in the LMC.

Realizations of NS Cu and NS La at data locations are generated by the matrix

operation Z = AY with the different realizations of the y values. For each realization

of the Y s a realization of the Zs is computed. At the collocated data locations the

computed values are exact, that is, for any realization of the Y s the computed Zs

values are equal to the sample values. This is demonstrated in Figure 6.12 in which

the reference sample values are plotted against the computed values.

At the non-collocated data locations, the different realizations of the imputed

Y s are used to compute realizations of the missing variable. One realization of the

computed variables is shown in the histograms and scatterplot of Figure 6.13.
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Figure 6.10: The distribution and cross correlation of the imputed factors in realization
#50. The kernel density estimator is plotted.

The direct and cross variograms of the imputed factors were calculated for all

realizations and are plotted in Figures 6.14 and 6.15 for the major and minor direc-

tions of continuity. Note that the ergodicity is more relevant in the minor direction

and in the structures with longer ranges. The correlation seen in the cross var-

iograms for a few realizations is not a reason for concern since on average the

imputed variograms show no significant departure from zero. Any departure from

the theoretical variograms is explained by the limited number of sample locations.

A good variogram reproduction is expected when simulating the factors on a grid

(next section).

An important practical aspect of the imputation workflow concerns the drawing

of uncorrelated Gaussian random variables used in the simulation of the y values,

see vector r in Equation 4.16. All values from that distribution are equally probable

to be drawn. It was noted during the case study that extreme values yield simulated
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Figure 6.11: Realization #50 of each imputed factor Y at the data locations.
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Figure 6.12: Scatterplot of the original data values and the respective computed values
from any realization of the imputed Y factors at the collocated data locations.
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Figure 6.13: Distribution and correlation of the computed variables at the non-collocated
data locations for realization #50.

factors that departure significantly from the multivariate normal with considerable

cross-correlation. A temporary solution is to discard any set of y values generated

from extreme values in r. In the case study a total of 11 realizations were discarded

and regenerated, that is, approximately 1 every 18 realizations.

The imputed factors can be used to compute missing variables at the data lo-

cations. Another aspect of the IFS methodology is that the imputed factors can

be then simulated on any locations, allowing for the computation of the variables

at unsampled locations. Simulated factors over a large number of locations are ex-

pected to show an improved variogram reproduction when compared to the imputed
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Figure 6.14: Variogram reproduction of the imputed Y factors at the data locations at the
major direction of continuity. The grey lines represent the variograms of the realizations,
the red line represents the average variogram of the realizations, and the green line is the
theoretical variogram of that factor as fitted in the LMC.

factors, as per the central limit theorem.

6.6 Simulation of the factors on a grid and

checking

In this section, the results of the simulation of the factors on a grid are discussed. A

grid containing 248 and 305 nodes respectively in the easting and northing directions,

with a node spacing in both directions of 2 Km is considered. A keyout is used to

ensure that only nodes inside the project area are simulated. The realizations of the

Y factors at the data locations are used as the input data in the simulation of the

factors in the grid. Sequential Gaussian Simulation is used to conditionally simulate
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Figure 6.15: Variogram reproduction of the imputed Y factors at the data locations at the
minor direction of continuity. The grey lines represent the variograms of the realizations,
the red line represents the average variogram of the realizations, and the green line is the
theoretical variogram of that factor as fitted in the LMC.

Y1 and Y2 factors since it shows good reproduction of the exponential structure with

a short range (Manchuk and Deutsch, 2015). Moving average is used to simulate

Y3 factor because of its fast implementation with a spherical structure and good

reproduction when the variogram range is relatively larger than the node spacing

(Cabral Pinto and Deutsch, 2017d). The last factor shows a large range in both

directions of anisotropy and for this reason it is simulated with spectral simulation,

a method more suitable for trend-like structures (Cabral Pinto and Deutsch, 2017b).

The realizations generated by moving average and spectral method are conditioned

by parallel global kriging (Manchuk and Deutsch, 2017). Realization #50 of the

simulated factors on the grid is shown in Figure 6.16.

Reproduction of the direct and cross variograms is also checked in both directions

of continuity and shown in Figures 6.17 and 6.18. There is good reproduction of the
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Figure 6.16: The conditional realization #50 of each factor Y on the grid locations.
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direct variograms in both directions, and that on average, there is no spatial cross-

correlation between the factors as expected. Note that compared to variograms of

the imputed factors (Figures 6.14 and 6.15) most of the correlation seen in the cross

variograms is mitigated and that on average the direct simulated variograms are

very close to the reference models.
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Figure 6.17: Variogram reproduction of the simulated Y factors on the grid at the major
direction of continuity. The grey lines represent the variograms of the realizations, the red
line represents the average variogram of the realizations, and the green line is the theoretical
variogram of that factor as fitted in the LMC.

The simulated factors are used to compute realizations of the variables on the

grid, one realization is shown in Figure 6.19. The simulated histograms are stan-

dard Gaussian with little fluctuation around the reference mean. The correlation

coefficient is also reproduced, with a mean of 0.517 over all realizations, as shown

in Figure 6.20.

The reproduction of the LMC for the computed variables is also checked and

plotted for both directions of continuity in Figures 6.21 and 6.22. There is good
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Figure 6.18: Variogram reproduction of the simulated Y factors on the grid at the minor
direction of continuity. The grey lines represent the variograms of the realizations, the red
line represents the average variogram of the realizations, and the green line is the theoretical
variogram of that factor as fitted in the LMC.

reproduction of the variograms in both directions.

The simulated variable values are back-transformed to their original units and

the reproduction of the histogram is checked and plotted in Figure 6.23. There is

good reproduction of the mean for both variables, the simulated mean of Cu and

La are 0.13% and 1.56% higher than their respective reference declustered mean.

The probabilistic accuracy is evaluated for all realizations by discretizing the

probability interval in nine bins, equally spaced in probability intervals of 0.1. The

calculated predicted frequency in each bin is compared with the actual fraction of

the data in each one of these bins. This analysis is performed on the original units of

the variables at the validation locations. The realizations are sampled at the left out

data locations and compared against the true values of the data. The predicted and

actual fraction in each interval are plotted in Figure 6.24. Points falling on the 45
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Figure 6.19: The conditional realization #50 of each variable on the grid.
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Figure 6.20: Reproduction of histogram and correlation of the normal scores of the vari-
ables over all realizations. The red line in the histogram reproduction plots represent the
reference distribution, and the blue line in the correlation plot represent the mean. The
reference correlation is 0.515.
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Figure 6.21: LMC reproduction at major direction of continuity. The grey lines represent
the variograms of the realizations, the red line represents the average variogram of the
realizations, and the green line is the input variogram from the LMC.

degrees line represent the predictions are accurate and precise. Points falling above

the 45 degrees line indicate that the local uncertainty may be too high, whereas

points falling below the line indicate a low variance in the estimates. The analysis

of Figure 6.24 indicates good accuracy and precision for both variables.

The local accuracy of the simulated variables is examined. The simulated e-

type of all realizations of the original units of Cu and La are compared against the

validation data. The realizations are sampled at the left out data locations and

averaged over all realizations to compute the smooth e-type means of the variables.

The e-type means are then compared against the true values and results are plotted

in the scatterplots of Figure 6.25. For both variables, the root mean square error

(RMSE) is small, the slope of the regression line (SoR) is slightly smaller than one

and may indicate conditional bias. This bias is acceptable at this moment given

the complex nature of the geochemical data and the smoothing nature of the (e-

type) estimates. Overall there is good correlation between the e-type means the
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Figure 6.22: LMC reproduction at minor direction of continuity. The grey lines represent
the variograms of the realizations, the red line represents the average variogram of the
realizations, and the green line is the input variogram from the LMC.
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(b) Histogram reproduction of La

Figure 6.23: Reproduction of histogram of the original unit variables over all realiza-
tions. The cumulative distribution function is shown. The red line represents the reference
distribution.
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(a) Accuracy plot of Cu
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(b) Accuracy plot of La

Figure 6.24: Accuracy plots of the computed distributions of Cu (a) and La (b) over all
realizations at the validation locations.
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(a) Scatterplot of Cu
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Figure 6.25: Scatterplots and summary statistics that compare the computed e-type with
associated true values for Cu (a) and La (b) at the validation locations. The correlation,
root mean square error (RMSE) and the slope of the regression (SoR) (red line) are shown.

In the IFS methodology, the simulation of Cu and La requires fitting an LMC

to the NS transform of the variables. The matrix with the LMC coefficients is then

used in the decomposition of the variables into independent factors. The factors

are imputed at the data locations and can be used to compute missing geological
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6. Case study: multivariate modeling of geochemical data with IFS methodology

variables. The factors can be simulated at any locations and the original variables

computed afterwards. In the IFS methodology the variables are not simulated,

they are rather computed from the imputed or simulated factors. The conventional

approach is to directly simulate the variables with cokriging. The next section

compares the result of IFS and cosimulation with cokriging methods in simulating

Cu and La.

6.7 Conventional cosimulation with cokriging

Cosimulation with cokriging is the conventional method to simulate unequally sam-

pled variables. SGS is often chosen as the simulation algorithm since conditioning is

done on the fly and all variables are simulated simultaneously. Local distributions

are inferred from cokriging and different realizations are generated by sampling

these distributions. Because the same algorithm is used in simulation, the repro-

duction of different structures of the LMC may be affected and departures from the

input reference model may occur. In the IFS methodology, the LMC structures are

simulated independently with the corresponding best algorithm for that structure.

Therefore, a better reproduction of the LMC is achieved.

To compare the IFS method to the conventional approach, SGS is used to cosim-

ulate Cu and La at the same grid locations used in the IFS case study. For consis-

tency, the same declustered distributions and LMC model are used. A large number

of data is used in simulation and a total of 200 realizations are generated. In normal

scores, the simulated variables and correlation from both methods are very similar,

as shown in Figure 6.26. The same average simulated correlation of 0.517 is seen

in the IFS and in the cosimulation methods.

The reproduction of the variograms are shown in Figures 6.27 and 6.28 for

both directions of continuity. Variograms are analyzed for their reproduction for

distances less or equal the variogram range. A visual inspection shows a better

reproduction of the direct variogram of Cu and the cross variogram in the IFS

methodology for both directions of continuity. The direct variogram of La is better
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Figure 6.26: Reproduction of histogram and correlation of the normal scores of the vari-
ables over all realizations with the conventional approach. The red line in the histogram
reproduction plots represent the reference distribution, and the blue line in the correlation
plot represent the mean. The reference correlation is 0.515. To be compared to Figure 6.20.

reproduced with the conventional approach. The error in the simulated variogram

is numerically calculated from the difference between the average simulated vari-

ogram and the reference model for a set of lag distances. The average variogram

error in both directions is calculated and shown in Table 6.4. The calculated error

supports the results from the visual analysis of the variograms. Despite both meth-

ods showing a good overall variogram reproduction, the IFS methodology overtakes

the conventional approach in four of the six variograms.

Table 6.4: Average error of the average simulated variograms and the LMC model. Text
in bold represent the model with the average error closer to zero.

Major Minor

NS Cu x NS Cu NS Cu x NS La NS La x NS La NS Cu x NS Cu NS Cu x NS La NS La x NS La

IFS -0.005 -0.002 -0.012 -0.013 -0.004 -0.023
Conventional -0.016 0.02 -0.001 -0.021 0.005 -0.019

Similar to the IFS method, an overall good reproduction of the histograms of the

original units is achieved, as shown in Figure 6.29. The simulated mean of Cu and

La are respectively 1.27% and 2.90% higher than their reference declustered means.

These values are approximately 9.76 and 1.85 times greater than the simulated

means of Cu and La with the IFS methodology.

In this cases study, the results from the conventional approach are similar to

those generated with the IFS method. The IFS methodology shows a better repro-

duction of the variograms of Cu and the cross variogram between Cu and La. The
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Figure 6.27: LMC reproduction at major direction of continuity of the conventional
approach. The grey lines represent the variograms of the realizations, the red line represents
the average variogram of the realizations, and the green line is the input variogram from
the LMC. To be compared to Figure 6.21.

conventional approach reproduces better the variogram of La. A better reproduc-

tion of the histograms is achieved with the IFS methodology.

6.8 Conclusion

This case study demonstrates in practice the use of the IFS methodology in multi-

variate modeling. An LMC is fitted to the normal scores transform of two unequally

sampled geochemical variables. The LMC is used to decompose the variables into

a set of independent normally distributed factors that are imputed at the data loca-

tions. At locations where both variables are available the computed variables from

any of the 200 realizations of the imputed factors are exactly the same of the exist-

ing variables. At locations where a variable is missing the imputed factors are used

to compute different realizations of the missing variable. Once the factors are im-
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Figure 6.28: LMC reproduction at major direction of continuity of the conventional
approach. The grey lines represent the variograms of the realizations, the red line represents
the average variogram of the realizations, and the green line is the input variogram from
the LMC. To be compared to Figure 6.22.
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Figure 6.29: Reproduction of histogram of the original unit variables over all realiza-
tions. The cumulative distribution function is shown. The red line represents the reference
distribution. To be compared to Figure 6.23.
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6. Case study: multivariate modeling of geochemical data with IFS methodology

puted they are simulated on a grid, each factor is simulated with the best algorithm

for the respective spatial structure. SGS, moving average, and spectral simulation

are used as simulation algorithm. The simulated factors are independent, follow a

standard normal distribution, and reproduce the input spatial structure. The orig-

inal variables are computed from the simulated factors and show good histogram

and variogram reproduction. When compared to cosimulation with cokriging, the

IFS methodology demonstrates a better capacity of reproducing input modeling

parameters such as the histograms and the LMC.
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Chapter 7

Conclusions

This final chapter reviews the contributions, discusses the limitations of the method-

ologies, and propose future work for the developments in this thesis. This thesis

makes primary contributions to the field of multivariate modeling of equally sam-

pled data with the PostPPMT methodology, and unequally sampled data with the

IFS methodology. These two methodologies integrate and expand the use of well

established and recently developed geostatistical tools such as the multiGaussian

approach and PPMT, modernize the use of the LMC, and benefit from the flexi-

bility of cokriging in integrating different multiple data types. These contributions

were motivated by a series of studies and reports carried out on a large data set

of geochemical data collected in the Northwest Territories in Canada. The findings

and developments of these case studies are presented in Chapters 3 and 6.

7.1 Probabilistic assessement of multivariate

criteria

One of the gaps in current multivariate modeling techniques is the lack of a com-

putationally efficient methodology that provides accurate multivariate data-value

dependent measures of local uncertainty. The development of such methodology

provides a solution when local estimates or local uncertainty measures are the goal

of the study. The PostPPMT methodology, developed in Chapter 3, proposes a

framework for assessing the local multivariate joint-probability for a given multi-

variate criteria to occur. Multivariate criteria are rules being applied to many

variables at the same time. Some applications of these criteria in multivariate geo-

statistical modeling are in exploration geology, mine planning and operations. The

PostPPMT methodology provides a way for multivariate modeling in the context
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of such criteria.

The PostPPMT methodology is a hybrid of the post-multiGaussian approach

and the PPMT transform to decorrelate the multivariate data. Considering a single

independent variable in PPMT is equivalent to the multiGaussian approach long

used in geostatistics. The idea is to use the PPMT transform to remove the complex

relationship between the variables and then model each factor independently. The

variograms models are inferred and simple kriging is performed to compute a local

mean and local variance at each unsampled location for each factor. This allows

optimal selection of the kriging parameters such as number of data used for kriging

and search strategies for each factor. The kriged mean and variance fully define the

local conditional Gaussian distribution. The back transformation and post process-

ing of the local distributions are considered for resources, local multivariate criteria

assessment, and for checking simulation. A large number of random quantiles is

recommended to provide stable results. The process of sampling the local distri-

butions and back transform the quantiles with the PPMT transformation table is

highly parallelizable. The calculation of joint-probabilities is fast and efficient even

for a large number of realizations.

The proposed workflow is subject to the standard geostatistical limitations, such

as the requirement for stationarity and usage of the variogram as a measure of two-

point statistics. The assumptions of multivariate Gaussianity are still valid, the

normal scores transformation does not guarantee such assumption, thus the PPMT

transform is used. Within these limitations it is possible to check and verify models

with conformance to modeling assumptions. When the PostPPMT methodology is

considered, the many steps of the workflow can be checked to ensure the method-

ology is correctly being used. Consider the following practical recommendations.

Declustering is recommended to calculate a representative multivariate distribu-

tion that accounts for different sampling density zones. The PPMT factors must

be checked for normality, since they are expected to be standard normal. Check-

ing the correlation of the PPMT factors is also recommended. PPMT guarantees

decorrelation at lag zero but correlation at other lags may exist. The calculation
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of experimental cross-variograms can be used to investigate cross-correlation at

non-zero lag distances. Practice has shown that a correlation of 20% is significant

to introduce potential bias in the model. In such cases, MAF is recommended to

decorrelate the factors at other lags with considerable correlation. Due to all trans-

formations that PPMT imposes to the multivariate data, the PPMT variograms can

be difficult to model. The normal scores variogram is recommended when the cor-

relation between the normal scores and the correspondent PPMT factor is high and

a reliable PPMT variogram cannot be achieved. An important step of the method-

ology is the sampling algorithm and number of realizations. A random sampling

is recommended over a regularly spaced approach because of the potentially high

dimensionality. The sampling algorithm must also be checked to guarantee that

quantiles are drawn uniformly over many realizations. The number of realizations

must be large to avoid significant noise in the variance or any probability sensitive

to the tails of the distributions. Thousands of realizations are recommended to

provide stable results.

The postPPMT is not suitable for situations where multilocation uncertainty

is required. The probability of meeting multivariate criteria is calculated from the

local distributions built from the kriged factors. The kriged factors are calculated

based on the multivariate data inside the search defined by the variograms of the

factors. The probabilities calculated in a location are not used to assess the prob-

ability of the next location, thus the calculation of any multilocation measures of

uncertainty is not possible. Geostatistical simulation is recommended in such cases.

The methodology is limited to cases when all variables are equally sampled because

the PPMT transform requires homotopic data.

Some ideas are suggested for future research to improve the methodology. Fu-

ture work could consider the implementation of PPMT with exhaustive secondary

data. Although the primary variables can be decorrelated, they remain dependent

through the secondary data. A hierarchical decorrelation approach with stepwise

conditional transformation is proposed to address this problem (Manchuk et al.,

2019) and could be implemented into the PostPPMT framework. Although the
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PPMT transform is used, further work could explore other decorrelation techniques

such as PCA, MAF, sphering, stepwise conditional transform, and Gaussian mix-

ture models. The advantage of using PPMT is that the forward and backward

transformations are stored together in the same transformation table and are easily

accessed in the algorithm. In the presence of missing data, multivariate data impu-

tation techniques can be considered (Barnett and Deutsch, 2015; Silva and Deutsch,

2018). Additional work may consider the LMC and cokriging as an alternative to

geostatistical imputation. Cokriging may be used to define the local conditional dis-

tributions. Another interesting area to explore is the use of indicator kriging where

the indicator would take the value one when the multivariate criteria is met at a

data point and zero otherwise. A cross-validation study can be used to compare

both approaches.

7.2 Independent factor simulation methodology

The main contribution of this thesis is in the modeling of multivariate data in

the presence of unequally sampled data. In the presence of missing data, unequal

sampling, or different data types, variables are cosimulated with the LMC and cok-

riging. The LMC is a model of coregionalization that combines multiple data types

at different locations and different data support into the same framework for esti-

mation with cokriging. Fitting a LMC to a large number of variables is challenging.

The problem lies in fitting the LMC to the experimental covariances accounting

for anisotropy in the data while respecting the LMC constraints. Fitting an LMC

may require the use of a large number of nested structures with different covariance

shapes and variance contributions. The current approach is to simulate the vari-

ables with the fitted LMC and cokriging. The simulation is often performed with

a chosen algorithm. Given the complexity of the LMC, using the same algorithm

to simulate all structures of the LMC is not optimal. The development of the IFS

methodology discussed in Chapters 4 and 6 proposes a solution to this problem.

The IFS methodology uses the LMC and BSS to decompose and factorize the
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normal scores transform of the original variables into a set of independent normal

latent variables. The factors are then modeled independently with an appropriate

algorithm and used to reconstruct the original variables. In the context of com-

pletely unequally sampled data, the methodology provides a way to impute factors

at the data locations of all data types facilitating further independent simulation.

Given that the factors are independent and have a single spatial covariance func-

tion, the most appropriate algorithm may be selected and applied to each factor

independently. The modeling of independent factors permits practical and easy

model checking at each step. As a consequence of modeling independent factors,

another contribution of this thesis is the discussion on common Gaussian algorithms

and practical recommendations of optimal algorithm selection. This is discussed in

Chapter 5. Each algorithm has a range of spatial covariance functions and grid

parameters where they perform with high efficiency in terms of variogram and his-

togram reproduction. Using the optimal algorithm leads to a better variogram

reproduction for each factor and better histogram reproduction of each variable, as

shown in the case study with geochemical data.

There are limitations to the IFS methodology, and some ideas for future work

are given to address them. The IFS methodology can be applied to equally and un-

equally sampled data. In the presence of homotopic data, decorrelation techniques

may provide a more efficient and simpler workflow than IFS. However, in cases

where decorrelation techniques do not successfully remove spatial cross-correlation

the IFS methodology may be considered. In the presence of unequally sampled

data, simulation is restricted to the LMC and cokriging. In such cases the IFS

methodology provides an alternative to cosimulation with cokriging that simplifies

modeling check and improve reproduction of the input modeling parameters. Simi-

lar to the PostPPMT, the IFS methodology is subject to the standard geostatistical

limitations, such as the requirement for stationarity. Practice has shown that the

methodology is sensitive to second order non-stationarity. Proper trending mod-

eling must be considered prior LMC modeling. The assumptions of multivariate

Gaussianity are still valid. Such assumptions are difficult to check in the presence
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of different data types and heterotopic data. The normal scores transformation is

a requirement of the methodology and does not guarantee multivariate normality.

Another limitation is that the IFS is restricted to cases when there are more fac-

tors than there are original variables. The number of structures of the LMC must

be always greater than the number of variables. Most software used in the mining

industry limit the number of structures of the LMC to a few, usually less than

five. Practical implementation of the IFS methodology must consider an increasing

number of factors. The singular value decomposition poses another limitation to

the methodology. SVD provides a way to find the two norm solutions of a matrix

A. The algorithm may converge to an approximate solution of A. SVD stands out

from other matrix decomposition techniques because it provides the best approxi-

mation to A. However, this comes at a high cost, SVD is considered an expensive

decomposition (Chan, 1986; Watkins, 2002). The run-time and memory required to

perform SVD is demonstrated in Chapter 4 for a different number of data and fac-

tors. The current implementation limits the number of data and factors to less than

10,000 and 10 respectively. Further work may consider alternatives to SVD, such as

independent component analysis, nonnegative matrix factorization, sparse compo-

nent analysis, eigenvalue decomposition, Cholesky factorization, and uncorrelated

component analysis (Cant et al., 2015; Chang et al., 2006, 1999; Comon, 1994). A

tradeoff between the calculation of low-rank approximations to a matrix and other

solutions for rank-deficient matrices must be found. Only SVD is implemented in

the current methodology.

Finally, future work would improve how the nugget effect is utilized in the

methodology. Proper decomposition of the nugget effect requires the identification

and isolation of all possible combinations of the nugget effect. Each component

would then be considered an isolate factor and modelled separately. The current

implementation considers one completely shared nugget between the variables. Fu-

ture development in the methodology would also consider the integration of param-

eter uncertainty, including histogram, correlation, and variogram uncertainty. No

parameter uncertainty is considered in the current approach.
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7.3 Software

A number of programs are developed for this thesis. They are developed for research

and proof of concept purposes, but permit the application of the methodologies with

large data sets and high resolution models. Major software developed as part of

this thesis are discussed with details in the Appendix.

The postPPMT program implements the PostPPMT methodology in GSLIB for-

mat. The run-time to process the local distributions and back transform the large

number of quantiles is greatly reduced with the postPPMT FORTRAN program (see

section A.1). The program does not perform the PPMT transform but takes the

transformation table as an input.

The IFS methodology is implemented in the GSLIB programs LMC_IMP and

LMC_COMP, see section A.3. Both programs are compiled with INTEL compiler and

multithread libraries. GSLIB subroutines are used for most of the calculations and

data processing. The subroutines for matrix operations and SVD are imported

from the LAPACK library (Anderson et al., 1999). The subroutines are collected

and distributed with the original FORTRAN files to facilitate compilation. The

LMC_IMP program implements all steps of the IFS methodology for factor extraction

and imputation. The LMC_COMP program computes the Z variable values given the

simulated Y factors and the LMC coefficients matrix.

A fast implementation of the moving average algorithm for spherical variograms

is developed, see section A.2.

7.4 Final comments

Recall the thesis statement proposed in chapter 1: The development of geostatistical
modeling with multivariate complex relationships of unequally sampled data modernizes
the use of the LMC and leads to improved high resolution geostatistical property models.
The practical implementation of probabilistic assessment of uncertainty with multivariate
criteria provides ways for multivariate modeling in the context of such criteria and adds
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7. Conclusions

practical value and theoretical insight for more complicated multifactor criteria.
In this thesis, a methodology that uses the LMC to model complex relationships

of unequally sampled data was developed. The LMC and BSS are combined together

to create a framework that allows for independent factor imputation and simulation.

These factors are decomposed from the multivariate data and linked together by

the definition of the LMC. The current approach is to fit the LMC and use the

LMC for cokriging. The IFS methodology proposes a modern use to the LMC. In

this methodology, the variables are not simulated, but rather computed from the

simulated factors. The independency of the factors allow for optimal selection of the

simulation algorithm which improves the reproduction of the geostatistical property

models.

The application of geostatistical modeling in the context of multivariate criteria

is unclear. The implementation of the PostPPMT provides ways for modeling of

complex multivariate rules in the context of estimation and local uncertainty assess-

ment. The results could be used for resource calculation, to support classification

decisions, provide a useful check on simulation-based workflows, provide a measure

of uncertainty, and assessment of the probability of satisfying multivariate rules.

These add practical value and theoretical insight in complex multivariate models.
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Appendix A

Software

The software developed for the methodologies discussed in this thesis are presented

in this appendix. Some of the software use pre-compiled subroutines and mod-

ules written in FORTRAN for the original GSLIB codes (Deutsch and Journel,

1992). Some programs, such as the PostPPMT, make use of subroutines recently

developed for research purposes in other GSLIB programs, such as PPMT (Barnett

et al., 2014). Software for simulation are available within GSLIB and published

under Manchuk and Deutsch (2015) (SGS), Cuba and Silva (2013)(Spectral), and

Deutsch and Journel (1992) (TB). New versions of existing GSLIB programs are

developed to accommodate modern computer practices and research purposes, such

as SpectralSim (Cabral Pinto and Deutsch, 2017b) and TB3D (Cabral Pinto and

Deutsch, 2018). The parameter files of new software developed and used in this

thesis are presented.

A.1 PostPPMT

The PostPPMT program (Cabral Pinto et al., 2018) provides the essential function-

ality described in Chapter 3. The parameter file is given below.

1 Parameters for PostPPMT
2 ***********************
3 START OF PARAMETERS:
4 PostPPMT.out -file for output
5 ppmt.trn -file with input transformation table
6 kt3dn_1.gsb -file with kriged NS mean and variance (Var 1)
7 1 2 - columns with NS mean and variance
8 kt3dn_2.dat -file with kriged NS mean and variance (Var 2)
9 1 2 - columns with NS mean and variance
10 kt3dn_2.dat -file with kriged NS mean and variance (Var 3)
11 1 2 - columns with NS mean and variance
12 -10 1.0e21 - trimming limits
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13 1000 69069 -sampling realizations and seed
14 PROBABILITY TO BE INSIDE A TOLERANCE OF THE MEAN
15 3 -# of inputs to check
16 1 0.15 - var, probability
17 1 0.25 - var, probability
18 2 0.15 - var, probability
19 QUANTILES
20 5 -# of inputs to check
21 1 0.5 - var, percentile
22 1 0.1 - var, percentile
23 1 0.9 - var, percentile
24 2 0.5 - var, percentile
25 3 0.5 - var, percentile
26 SINGLE MULTIVARIATE RULE
27 3 -# of single var. conditions
28 1 1 0.9 - var, rule, threshold
29 2 0 1.6 - var, rule, threshold
30 3 0 1.3 - var, rule, threshold
31 RATIO MULTIVARIATE RULE
32 2 -# of ratio conditions
33 1 2 1 1.1 - var 1, var 2, rule, threshold
34 3 2 0 0.8 - var 1, var 2, rule, threshold

The output file (line 4) is a standard GSLIB-format file. The transformation

table input is from the PPMT program (line 5). Note that there is no standard

approach to save the transformation – legacy transformation files or files from other

software will not likely work. This program uses the transformation table format

compiled in PPMT. The transformation table contains the number of variables. The

user must provide the files and columns with the kriged mean and variance for each

factor, lines 6 to 11. The input files are given in compressed gsb format (Barnett

and Deutsch, 2014) or the standard GSLIB-format file, the file extension specifies

the format. The back transformation will proceed for all entries in the input files –

until the end of file is reached in one or more input files. The trimming limits are

set in line 12. Trimming limits are applied across variables. The number of samples

to draw from the conditional distributions and the random number seed are set in

line 13. A 1000 should be enough in most cases. A larger number could be use

to increase discretization of the tails of the distribution. The random number seed

permits reproducibility of the results.

The calculation in the four blocks starting with PROB, QUAN, SING and RATI

(lines 14, 19, 26, and 31) are optional. Calculations are skipped if the numbers in
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lines 15, 20, 27, and 32 are set to zero. The PROB block calculates the probability

to be within a specified tolerance of the mean for specified variables. The variable

numbers and probabilities are set in lines 16 to 18. The QUAN block calculates

the quantiles for given variables, lines 21 to 25. A joint multivariate rule is defined

by multiple univariate criteria applied to any independent set of variables or/and

their ratios. The probability of all criteria being jointly satisfied is reported to the

output file. Multiple runs could be made for multiple rules or modifications could

be made to consider multiple sets of rules. Single multivariate rules are defined in

lines 28 to 30, ratio rules are defined in lines 33 and 34.

The PostPPMT program always outputs the conditional mean and standard devi-

ation (default). The number and order of the variables are taken from the transfor-

mation table. One file with kriged mean and variance is required for each variable

in the PPMT transformation table. There is no need to specify the file size, the size

is read from the input files, however, all files with the kriged mean and variance

are expected to be of the same size. The multivariate rules are set as 0 = below

threshold and 1 = above threshold. Ratios are calculated as V ar1/V ar2. The pro-

grams accepts GSB functionality for any input file, but the output file is in standard

Geo-EAS and ASCII format.

A.2 MW_SIM

The moving window simulation MW_SIM program (Cabral Pinto and Deutsch, 2017d)

implements the clever update of the indices (section 2.4) for a fast simulation ap-

proach of spherical covariance structures. The code is simple but it offers a fast

and robust implementation of the moving window algorithm. The program was

developed and tested during studies done on Airborne survey (Cabral Pinto and

Deutsch, 2017c).

A classical moving windows algorithm works by visiting each node of the grid,

centring the window at that node, searching for all other nodes inside the win-

dow, and averaging all node data values (including the node at the location being
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simulated). The average step per si is already inefficient, because it requires two

operations, the summation of all values and the division by the number of data in

the window. This process repeats for every node in the cell grid. Another issue

is in the border of the grid cell, that is, the window centred at nodes at the bor-

der of the grid cell contains less data than nodes located in the inner part of the

grid. This usually introduces artifacts because different locations of the grid are

simulated with different number of data. All these setbacks are handled in MW_SIM.

The clever update of the indices saves memory and speed up the code by reducing

the number of data searched and by performing one single average in the end. The

parameter file is given below.

1 Parameters for MW SIM
2 *********************
3 START OF PARAMETERS:
4 mw_sim.out - output file
5 128 0.5 1.0 - grid: nx,xmn,xsiz
6 128 0.5 1.0 - ny,ymn,ysiz
7 1 0.5 1.0 - nz,zmn,zsiz
8 69069 - Random number seed
9 0.0 - Prior mean
10 1.0 - Contribution factor
11 16 16 1 - Window radius (major, semi, minor)
12 0 0 0 - Anisotropy angles (major, semi, minor)
13 NOTES:
14 Use .gsb for binary output

The output file, line 4, is written in standard Geo-EAS format with no data

compression (ASCII format) or in GSB binary format. The simulation grid defi-

nition is defined in lines 5 to 7. A subroutine calculates and pads the grid based

on the window radius and anisotropy angles. The random number seed is set up

in line 8, it is used to populate the padded grid with random standard Gaussian

values. The prior mean and contribution factors are given in lines 9 and 10. The

window radius (not the diameter) and the anisotropy angles are defined in lines 11

and 12. The window radius in any direction must be greater than zero and set to

1 if a dimension is not considered.
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A.3 IFS programs

The IFS methodology is implemented in the GSLIB programs LMC_IMP and LMC_COMP

(Cabral Pinto and Deutsch, 2019; Cabral Pinto et al., 2019). Both programs are

compiled with INTEL compiler and multithread libraries. GSLIB subroutines are

used for most of the calculations and data processing. The subroutines for matrix

operations and SVD are imported from the LAPACK library (Anderson et al., 1999).

The subroutines are collected and distributed with the original FORTRAN files to

facilitate compilation.

LMC_IMP

The LMC_IMP program implements all steps of the IFS methodology for factor ex-

traction and imputation. The data inputs are the normal scores of the variables,

the data locations, and the LMC parameters. The program outputs the minimum

norm solution (dual cokriging) and the imputed Y factors. The program checks

if the LMC factors are adding up to one. The program writes in the terminal

the LMC a and a2 coefficients in addition to the correlation matrix between the

variables calculated from the LMC coefficients. The parameter file is given below.

1 Parameters for LMC_IMP
2 **********************
3 START OF PARAMETERS:
4 nscore.out -file with data
5 1 2 0 - columns for X, Y, Z
6 -10 10 - trimming limits
7 2 - number of variables
8 3 4 - columns for variables
9 69069 -random number seed
10 1 -number of realizations to generate
11 lmc_ys.out -output file with independent factors
12 min_norm.out -output file with minimum norm solution
13 4 -number of LMC factors
14 0.875 0.000 0.000 0.484 -LMC "a" coeff. matrix:1-1, 1-2,...
15 0.451 0.624 0.587 0.249 - 2-1, 2-2,...
16 2 -45.0 0.0 0.0 250 100 1.0 -LMC parameters matrix (*): str. 1
17 2 -45.0 0.0 0.0 350 250 1.0 - str. 2
18 1 -45.0 0.0 0.0 800 400 1.0 - str. 3
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19 1 -45.0 0.0 0.0 1800 500 1.0 - str. 4
20
21 * LMC parameters matrix format:
22 structure type, ang1, ang2, ang3, a\_hmax, a\_hmin, a\_hvert

The input file with the NS transforms of the variables is given in line 4. The

trimming limits, in line 6, are applied to all locations with no variable measurements.

An array with trimmed locations is stored for later use. Locations with at least one

variable available are kept. The number of variables and columns in the input file

are set in lines 7 and 8. The seed number and number of realizations are set in

lines 9 and 10. The output file with the imputed Y factors is set in line 11. The

output file contains one column for factor, with the realizations written row-wise.

To preserve the input file size, the output file will contain the same number of rows

of the input file. Trimmed locations are written in the file as missing -999. The

output file with dual cokriging estimates is set in line 12. The cokriging solution

does not depend on the seed number neither on the number of realizations. There

is an unique solution for the same data configuration and LMC coefficients. The

number of LMC factors is set in line 13. The LMC coefficients matrix (lines 14 and

15) depend on the number of variables and factors. The matrix follows the standard

notation of the theory: ak,i are the coefficients explaining the contribution of the

ith factor to the kth variable. The LMC parameters are defined in lines 16 to 19; for

each factor the user must enter the structure type, and the three angles and ranges

defining the anisotropy.

LMC_COMP

The LMC_COMP program computes the Z variable values given the simulated Y factors

and the LMC coefficients matrix. The program accepts data locations for imputed

factors or gridded data for simulated factors. In both cases the number of data per

realization must be given and set by the variables nx, ny, and nz. If not gridded

data, then nx must be set to the number of locations in the data, and ny = nz = 1.

These variables are used to allocate the array that is used to read-in the data. The

LMC coefficients matrix used in LMC_COMP and LMC_IMP must be the same. The
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parameter file is given below.

1 Parameters for LMC_COMP
2 ***********************
3 START OF PARAMETERS:
4 computed_z.out -output file with computed variables
5 2 -number of variables
6 4 -number of LMC factors
7 0.875 0.000 0.000 0.484 -LMC "a" coeff. matrix:1-1, 1-2,...
8 0.451 0.624 0.587 0.249 - 2-1, 2-2,...
9 -10 10 -trimming limits
10 1 -number of realizations
11 248 305 0 -nx, ny, nz
12 4 -number of files with simulated Y factors
13 usgsim_y1.out - file #1
14 1 1 - number of factors and columns
15 usgsim_y2.out - file #2
16 1 1 - number of factors and columns
17 mwsim_y3.out - file #3
18 1 1 - number of factors and columns
19 spectralsim_y4.out - file #4
20 1 1 - number of factors and columns

The output file with the computed Z variables is set in line 4. The number

of variables and LMC factors are defined in lines 5 and 6. The LMC coefficients

matrix (lines 7 and 8) depends on the number of variables and factors. Lines 5 to

8 must be set to match the same parameters defined in the LMC_IMP program. The

trimming limits in line 10 are used when reading the files with the simulated factors

(lines 13 to 20). The variables are only computed at locations where all factors are

available. Trimmed locations are written out as missing -999 values. The number

of realizations is set in line 10. The model size, either for data locations or gridded

data is set in line 11. The LMC factors can be simulated with different algorithms

and read in the program from different files. The number of files with simulated

factors is set in line 14. The number of factors and columns must be defined for

each file (lines 13 to 20). The program expects the total number of factors in all

files to match the number of factors set in line 6.

161


	List of Abbreviations
	1 Introduction
	1.1 Problem setting
	The problem of unequally sampled data
	Simulation algorithms
	Direct assessement of local multivariate distributions
	Research contributions and thesis statement

	1.2 Thesis outline

	2 Theoretical background
	2.1 Essentials of Geostatistics
	Random variables and functions
	The decision of stationarity

	2.2 Spatial variability
	Linear Model of Coregionalization

	2.3 Estimation
	Kriging
	Cokriging

	2.4 Simulation
	Sequential Gaussian
	Moving average
	Turning bands
	Spectral

	2.5 Multivariate transformations
	2.6 Matrix transformations

	3 Multivariate criteria in geostatistical modeling
	3.1 Motivation
	3.2 Multivariate criteria
	3.3 PostPPMT for estimation and local uncertainty assessment
	PostMG workflow
	PostPPMT methodology

	3.4 Application to exploration geochemistry
	Data
	Multivariate criteria rule
	Geostatistical modeling
	Assessing the multivariate criteria

	3.5 Conclusion

	4 Decomposition of multivariate spatial data into latent variables
	4.1 Motivation
	4.2 Latent factors
	Decomposition of data into factors

	4.3 Blind source separation
	Problem illustration

	4.4 Theory
	4.5 Small example and implementation details
	Problem setup
	Covariances and cokriging
	Singular value decomposition
	Simulation of the factors

	4.6 Limitations
	4.7 Conclusion

	5 Best practices of selection of simulation algorithm
	5.1 Motivation
	5.2 Combining spatial structures
	5.3 The problem of discretization
	Window size and grid discretization for moving average
	Considerations for sequential Gaussian simulation
	Number of lines in turning bands

	5.4 Ergodic fluctuations of different simulation algorithms
	5.5 Recommendations for algorithm selection
	5.6 Conclusion

	6 Case study: multivariate modeling of geochemical data with IFS methodology
	6.1 Motivation
	6.2 Data
	6.3 Linear model of coregionalization
	6.4 Minimum norm solution
	6.5 Imputation of the factors at the data locations and checking
	6.6 Simulation of the factors on a grid and checking
	6.7 Conventional cosimulation with cokriging
	6.8 Conclusion

	7 Conclusions
	7.1 Probabilistic assessement of multivariate criteria
	7.2 Independent factor simulation methodology
	7.3 Software
	7.4 Final comments

	References
	A Software
	A.1 PostPPMT
	A.2 MW_SIM
	A.3 IFS programs
	LMC_IMP
	LMC_COMP



