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Abstract 

Complex fuzzy sets are a recent extension of type-1 fuzzy sets, whose membership 

functions have the unit disc of the complex plane as their co-domain. In the same vein, complex 

fuzzy logic is a new multi-valued logic whose truth valuation set is the unit disc. Prior research 

has indicated that machine-learning algorithms built using complex fuzzy logic could be very 

accurate in time-series forecasting. This Ph.D. dissertation investigates different designs of 

machine learning algorithms based on complex fuzzy logic to develop reliable and fast algorithms 

for time-series prediction.  

The machine learning algorithms designed in this dissertation are inferred from Adaptive 

Neuro-Complex Fuzzy Inferential System (ANCFIS). ANCFIS was the first neuro-fuzzy system 

to combine complex fuzzy sets and rule interference for time-series forecasting. ANCFIS uses a 

hybrid learning rule where consequent parameters are updated on the forward pass, and antecedent 

parameters on the backward pass. Some recent findings, however, indicate that published results 

on ANCFIS are sub-optimal. First, we propose to improve the performance of the ANCFIS by 

changing how we define an input window, or even using sub-sampled windows. We compare the 

performance of ANCFIS using three different approaches to defining an input window, across six 

time-series data sets.  

Then, we evaluate the performance of ANCFIS for univariate time-series prediction using 

a photovoltaic power data set. We compare the results of ANCFIS against well-known machine 

learning and statistical learning algorithms. 

As ANCFIS has not been designed to work with multivariate time-series, we extend the 

ANCFIS learning architecture to the multivariate case. We investigate single-input-single-output, 
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multiple-input-single-output, and multiple-input-multiple-output variations of the architecture, 

exploring their performances on four multi-variate time-series. We also explore modifications to 

the forward- and backward-pass computations in the architecture. We find that our best designs 

are superior to the published results on these data sets, and at least as accurate as kernel-based 

prediction algorithms.  

We also propose and evaluate a randomized-learning approach to training this neuro-fuzzy 

system. A number of recent results have shown that assigning fixed, random values to a subset of 

the adaptive parameters in a neural network model is an effective, simpler, and far faster alternative 

to optimizing those same parameters. We study mechanisms by which randomized learning may 

be combined with our system, and evaluate the system on both univariate and multivariate time-

series. In general, we find that our proposed architecture is far faster than the original system, with 

no statistically significant difference in accuracy. 

Finally, we propose a machine learning algorithm, which is designed for fast training of a 

compact, accurate forecasting model. We use the Fast Fourier Transform algorithm to identify the 

dominant frequencies in a time-series, and then create complex fuzzy sets to match them as the 

antecedents of a complex fuzzy rule. Consequent linear functions are then learned via recursive 

least-squares. We evaluate this algorithm on both univariate and multivariate time-series, finding 

that this incremental-learning algorithm is as accurate and compact as its slower predecessor, and 

can be trained much more quickly. 
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Chapter 1 

Introduction 

Complex fuzzy sets are a recent extension of type-1 fuzzy sets, whose membership 

functions have the unit disc of the complex plane as their co-domain. In the same vein, complex 

fuzzy logic is a new multi-valued logic whose truth valuation set is the unit disc [1, 2]. Prior 

research has indicated that machine-learning algorithms built using complex fuzzy logic could be 

very accurate in time-series forecasting. Adaptive Neuro-Complex Fuzzy Inferential System 

(ANCFIS), previously developed in Dr. Dick’s research group [3], is a time-series forecasting 

algorithm based on complex fuzzy logic, and shows excellent accuracy in univariate time-series 

forecasting  using only a few rules to model even chaotic data sets.  

This dissertation develops several machine learning algorithms inspired by ANCFIS using 

complex fuzzy logic. The evolution of these machine learning algorithms leads to a final system 

applicable for data-stream mining. 

1.1. Contribution of the Thesis 

Briefly, this dissertation mainly focuses on developing machine learning algorithms based 

on complex fuzzy logic for time-series forecasting. In the following, a summary of each chapter 

of the dissertation is given, contributions of the chapters are described, and the papers published 

based on each chapter are listed. 

Chapter 2 presents a complete review on the truth valuation sets and complex fuzzy 

membership functions that have appeared in the literature, the existing results on complex fuzzy 

set operations and complex fuzzy relations, complex fuzzy logic and the existing applications of 
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complex fuzzy sets and logic. the main contribution of this chapter is a systematic review on 

complex fuzzy sets and logic to provide a framework to position new research in the field, 

consolidate the available theoretical results, catalogue the current applications of complex fuzzy 

sets and logic, identify the key open questions facing researchers in this area and suggest possible 

future directions for the research in this field. The Chapter 2 has been published in Fuzzy Sets and 

Systems [3].  

 Chapter 3 provides the background needed to follow this dissertation. 

Chapter 4 investigates different approaches for presenting time-series to the ANCFIS 

machine-learning algorithm. The main contribution in this chapter is comparing three different 

approaches to define input-window for machine learning algorithms based on complex fuzzy set 

and logic. These three approaches are compared against each other by applying them to six 

univariate time-series data sets. Chapter 4 has been published as a book chapter in Frontiers of 

Higher Order Fuzzy Sets  [4]. The input-window approaches presented in this chapter are used to 

create training and testing input vectors to train and evaluate the machine learning algorithms 

designed in this dissertation. 

 In the Chapter 5, ability of the ANCFIS machine-learning algorithm for one-step-ahead 

forecasting of univariate time-series is investigated. The main contribution in this chapter is 

evaluating the existing architecture of ANCFIS for univariate time-series prediction. A shorter 

version of Chapter 5 has been presented in Fuzzy Information Processing Society (NAFIPS),  

Edmonton, Alberta, 2013 [5], and the longer version has been submitted to Journal of Multiple-

Valued Logic and Soft Computing [6]. However, the existing architecture of ANCFIS has been 
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designed for univariate time-series prediction and it cannot be used for multivariate time-series 

prediction. Chapter 6 extends the ANCFIS machine-learning algorithm, designed for univariate 

time-series, for multivariate time-series forecasting. 

Our first contribution in the Chapter 6 is to expand the known design space for machine 

learning algorithm based on complex fuzzy logic, by extending and evaluating the ANCFIS 

architecture for multivariate time-series forecasting. We evaluate three fundamental design 

options, as well as four more minor modifications. These three main options themselves form the 

second contribution: the design and evaluation of three new approaches for multivariate time-

series forecasting. A shorter version of Chapter 6 has been presented in Fuzzy Information 

Processing Society (NAFIPS) held jointly with 5th World Conference on Soft Computing 

(WConSC), Washington, Seattle, 2015 [7], and the longer version has been published in IEEE 

Transactions on Systems, Man and Cybernetics: Systems [8]. However, the main disadvantages of 

ANCFIS is its slow learning algorithm. In Chapter 7, a new machine learning algorithm based on 

complex fuzzy sets and logic is developed that solves the slow learning problem. 

The main contribution in the Chapter 7 is designing and developing a neuro-complex fuzzy 

system implementing randomized learning algorithms. The proposed system is applied for 

univariate and multivariate time-series forecasting. A shorted version of Chapter 7 has been 

presented in World Congress on Computational Intelligence (WCCI), Vancouver, Canada, 2016  

[9], and the longer version has been submitted in IEEE Transactions on Fuzzy Systems [10]. 

However, the weakness of randomized learning algorithms is that there is no way to assure that 

the randomly-chosen parameters are optimal for a given data set; this would manifest as a need for 

a larger number of complex fuzzy sets. This additional complexity is undesirable for large-scale 
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learning. Chapter 8 designs a compact, fast and accurate learning algorithm suitable for data stream 

prediction. 

 The main contribution of Chapter 8 is designing a system for fast training of a compact 

and accurate forecasting model to be used for data streams. We apply this architecture to time-

series stream prediction problem and its performance evaluated on real-world univariate and 

multivariate time-series. A manuscript based on Chapter 8 is currently in preparation.  

 

 

  



 

5 

 

Chapter 2 

Literature Review 

A type-1 fuzzy set is descried by a membership function mapping the elements of a 

universe of discourse X to the unit interval [0,1]. Complex fuzzy sets and logic are an extension 

of type-1 fuzzy sets wherein memberships may be complex-valued. This has been an area of 

growing research focus in the fuzzy systems community for over a decade, with successful 

applications in time-series forecasting and other areas. In this section, we review available 

theoretical results and catalogue the current applications of complex fuzzy sets and logic. 

2.1. Introduction 

In 2002, Ramot et al. [1] defined a Complex Fuzzy Set (CFS) as an extension of type-1 

fuzzy sets in which the co-domain of the membership function was the unit disc of the complex 

plane (the set of complex numbers with modulus ≤ 1). CFS are distinct from Buckley’s fuzzy 

complex numbers, which are type-1 fuzzy subsets of the complex numbers [11]. While complex-

valued memberships had been explored in a few earlier works [12-14], it was Ramot’s paper and 

the companion piece on Complex Fuzzy Logic (CFL) [2] that became the seminal works in the 

topic of Complex Fuzzy Sets and Logic (CFS&L). Additional early theoretical results appeared in 

[15, 16], and the first applications of CFS&L began appearing in 2007 [17, 18].  

In this chapter, we review the truth valuation sets and complex fuzzy membership functions 

that have appeared in the literature, the existing results on complex fuzzy set operations and 

complex fuzzy relations, complex fuzzy logic and the existing applications of CFS&L. 
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2.2. Forms and Values of Membership functions 

In this section, values and functional forms of complex fuzzy membership functions are 

studied.  

2.2.1. Codomains of Complex Fuzzy Membership Functions 

Perhaps the earliest form of CFS was proposed by Nguyen et al., in order to be able to use 

fuzzy logic in fields with true paradoxes such as humanity and philosophy [19]. Moses et al., then, 

introduced a two-dimensional membership grade for fuzzy subsets of the complex numbers, 𝐶 →

[0,1]×[0,1] [12, 13]. [14] studied optimal selections of membership functions for fuzzy complex 

numbers.  

Ramot et al. proposed a complex fuzzy membership degree as [1]: 

𝜇𝑠(𝑥) = 𝑟𝑠(𝑥). 𝑒
(𝑗𝜔𝑠(𝑥)), 𝑗 = √−1 ( 1 ) 

Where  𝑟𝑠(𝑥) is the magnitude and 𝜔𝑠(𝑥) the phase of the complex fuzzy set s and 𝑥 is drawn from 

a universe of discourse 𝑈. The grade is bounded to the unit disc in the complex plane with 𝑟𝑠(𝑥) ∈

[0,1] and any real value for the phase. He suggested that the CFS can be an effective model for 

problems whose semantics change over time (i.e, the phase represents a changing context). 

Moreover, this is a straightforward generalization of type-1 fuzzy sets; when  𝜔𝑠(𝑥) = 0, the CFS 

and all operations in Ramot’s paper reduce to their type-1 counterparts, with the membership 

magnitude playing the role of the type-1 codomain.  

As the complex fuzzy membership grade is two-dimensional (amplitude and phase), a 

complex fuzzy set can be visually represented by a three-dimensional graph where the universe of 

discourse is the third axis. Figure 1 shows the complex fuzzy set: 
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Figure 1: Complex fuzzy set defined in [15]   

The unit disk is projected along the universe of discourse, U, giving a cylinder within which the 

complex fuzzy grades are bounded (the blue cylinder in Figure 1). The membership function itself 

is a trajectory within this cylinder. To obtain the membership degree of an object in the complex 

fuzzy set, the intersection of a unit disk centered at the object and the trajectory of the membership 

function in the cylinder is computed. For example, for x=4 in Figure 1, the intersection of the 

orthogonal unit disk (outlined in red) and a membership function gives the corresponding grade. 

Tamir et al. defined complex fuzzy sets with membership degrees drawn from the unit 

square [0,1][0,1]. The memberships are given in Cartesian form, allowing both components of 

the membership to express type-1 fuzzy information [20], unlike Ramot’s formulation. This 

characteristic makes Tamir’s definition powerful to deal with problems with fuzzy cycle. The sets 

are termed “pure” complex fuzzy sets and the membership grades are defined as [20]: 
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𝜇(𝑉, 𝑧) = 𝜇𝑟(𝑉) + 𝑗𝜇𝑖(𝑧) 

𝜇𝑟 , 𝜇𝑖  ∈ [0,1] 

 

( 2 ) 

where 𝜇𝑟(𝑉) and 𝜇𝑖(𝑧) are the real and imaginary part of the complex fuzzy membership grade, 

𝜇(𝑉, 𝑧), and can take any values from the interval [0,1]. Moreover, Polar presentation of pure 

complex fuzzy grade is defined as [20]: 

𝜇(𝑉, 𝑧) = 𝑟(𝑉)𝑒𝑗𝜎𝜙(𝑧) ( 3 ) 

where r(𝑉) and 𝜙(𝑧) are amplitude and phase of the pure complex fuzzy grade which take value 

from [0,1], and σ is a scaling factor to keep the phase within the interval (0,2𝜋].  

Tamir et al. interpreted pure complex fuzzy grades as a way to define pure fuzzy classes of 

order 1 [20]. General fuzzy classes are fuzzy sets that can contain fuzzy sets and objects. A pure 

fuzzy class of order M is a collection of pure fuzzy classes of order M-1; a fuzzy set is considered 

a pure fuzzy class of order 0. Thus, a pure fuzzy class of order 1 contains only fuzzy sets. A 

complex fuzzy class is defined as a pure fuzzy class of order 1. Assume that Γ is a complex fuzzy 

class, Γ = {𝑉𝑖}𝑖=1
∞ , where 𝑉𝑖 is a fuzzy set having objects on the universe of discourse, U, 𝑧 ∈ 𝑈 ; 

a pure complex fuzzy grade, 𝜇Γ(𝑉, 𝑧) = 𝜇𝑟(𝑉) + 𝑗𝜇𝑖(𝑧), assigns the membership of an object, z, 

to a class, Γ through considering 𝜇𝑖(𝑧) as the grade of membership of z in V and  𝜇𝑟(𝑉) is the 

membership degree of V in Γ. The complex fuzzy class is also presented as [20]: 

Γ = {V, z, μΓ(V, z)|V ∈ 2
U, z ∈ U} ( 4 ) 

Transformation between two proposed forms of pure complex fuzzy grade is defined as [20]: 

𝜇Γ(𝑉, 𝑧) = 𝑇𝑟(𝜇𝑟(𝑉) + 𝑗𝜇𝑖(𝑧)) = 𝜇𝑟(𝑉)𝑒
𝑗𝜃𝜙(𝑧) ( 5 ) 
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𝜇Γ(𝑉, 𝑧) = 𝑇𝑟(𝑟(𝑉)𝑒
𝑗𝜃𝜙(𝑧)) = 𝑟(𝑉) + 𝑗𝜙(𝑧) ( 6 ) 

where 𝑇𝑟 is coordinate transformation function. 

Yager defined Pythagorean membership grades as a pair of grade, (𝐴𝑌(𝑥), 𝐴𝑁(𝑥)), 

assigning membership and non-membership degree of each 𝑥 ∈ 𝑈 to the fuzzy set 𝐴 [21].   

𝐴𝑌(𝑥) = 𝑟(𝑥)𝐶𝑜𝑠(𝜃(𝑥)) ( 7 ) 

𝐴𝑁(𝑥) = 𝑟(𝑥)𝑆𝑖𝑛(𝜃(𝑥)) ( 8 ) 

 where 𝑟(𝑥) = (1 − 𝑑(𝑥))
𝜋

2
 .  𝑟(𝑥) and 𝑑(𝑥) are the strength and direction of commitment at 𝑥, 

respectively, which are bounded in [0,1].  This new definition is considered in the family of non-

standard membership degree along with intuitionistic fuzzy sets. The main difference between 

Pythagorean and intuitionistic fuzzy sets is in how the membership and non-membership 

components are constrained. Intuitionistic fuzzy sets must satisfy  

𝐴𝑌(𝑥) + 𝐴𝑁(𝑥) ≤ 1, while Pythagorean fuzzy sets are constrained by  

𝐴𝑌(𝑥)
2 + 𝐴𝑁(𝑥)

2 ≤ 1  [21]. Yager et al. showed that the Pythagorean membership grades, 

(𝑟(𝑥)𝐶𝑜𝑠(𝜃(𝑥)), 𝑟(𝑥)𝑆𝑖𝑛(𝜃(𝑥))), are drawn from a subset of Ramot’s complex fuzzy grades, 

𝑧 = 𝑟𝑒𝑖𝜃 with the properties 𝑟 ∈ [0,1] and 𝜃 ∈  [0,
𝜋

2
]; Yager terms these the Π − 𝑖 numbers [22]. 

Salleh et al. defined the Complex Intuitionistic Fuzzy Set (CIFS) which is an extension of 

the intuitionistic fuzzy sets [23]. In CIFS, the membership and non-membership grade are drawn 

from a unit disk in the complex plane where  |𝜇𝐴(𝑥) + 𝛾𝐴(𝑥) |  ≤ 1  [24]. 
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In summation, four different codomains – the unit square, the unit circle, the unit positive 

quarter-circle, and the cross-product of the unit disc with itself – have been proposed in the CFS 

literature to date. There is very limited evidence on the properties of these codomains to date, and 

no more general conclusions about what other codomains might be useful can currently be drawn. 

2.2.2. Forms of Complex Fuzzy Membership Functions 

For CFS with the unit disc as codomain, two classes of complex fuzzy membership 

functions have been proposed: sinusoidal and Gaussian membership function. Sinusoidal 

membership function was introduced in [15, 25] as: 

  

𝜇(𝑥) = 𝑟(𝑥). 𝑒(𝑗𝜔(𝑥)) ( 9 ) 

where 

𝑟(𝑥) = 𝑑. 𝑠𝑖𝑛(𝑎(𝑥) + 𝑏) + 𝑐 

𝜃 = 𝑥 

𝜔(𝑥) = 𝜃 

( 10 ) 

where 𝑟(𝜃) is amplitude and 𝜃 is the phase of the membership grade of object x. 𝑎 changes the 

frequency of the sine wave, 𝑏 gives a phase shift whereas 𝑐 shifts the wave vertically, and 𝑑 

changes the amplitude of the sine wave. Since the amplitude of complex fuzzy memberships is 

limited to [0,1], the parameters must satisfy the following conditions: 

 

0 ⩽ 𝑑 + 𝑐 ⩽ 1,       1 ⩾ 𝑐 ⩾ 𝑑 ⩾ 0 ( 11 ) 
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Four different forms of Gaussian membership functions have proposed [26-28]. The first 

function is described as [26]: 

𝑐𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥,𝑚, 𝜎) = 𝑅𝑒(𝑐𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥,𝑚, 𝜎)) + 𝑗𝐼𝑚(𝑐𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥,𝑚, 𝜎)) ( 12 ) 

 

where 𝑅𝑒(. ) and 𝐼𝑚(. )are real and imaginary parts of the membership grade which are defined 

as:  

𝑅𝑒(𝑐𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥,𝑚, 𝜎)) = exp [−0.5 (
𝑥 −𝑚

𝜎
)
2

] 
( 13 ) 

𝐼𝑚(𝑐𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥,𝑚, 𝜎)) = −exp [−0.5 (
𝑥 − 𝑚

𝜎
)
2

]×(
𝑥 − 𝑚

𝜎2
) 

( 14 ) 

where {𝑚, 𝜎} are mean and spread of the Gaussian function, and x is the input. The second 

Gaussian function is [27]:  

  

𝑐𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥,𝑚, 𝜎, 𝜆) = 𝑟𝑠(𝑥,𝑚, 𝜎)exp (𝑗𝜔𝑠(𝑥,𝑚, 𝜎, 𝜆)) ( 15 ) 

where 𝑟𝑠 and 𝑤𝑠 are amplitude and phase of the complex fuzzy grade which are defined as:  

𝑟𝑠(𝑥,𝑚, 𝜎) = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥,𝑚, 𝜎) = exp [−0.5 (
𝑥 − 𝑚

𝜎
)
2

] 
( 16 ) 

𝜔𝑠(𝑥,𝑚, 𝜎, 𝜆) = −exp [−0.5 (
𝑥 − 𝑚

𝜎
)
2

]×(
𝑥 − 𝑚

𝜎2
)×𝜆 

( 17 ) 

where {𝑚, 𝜎, 𝜆} are mean and spread and phase frequency factor for the complex fuzzy set, and x 

is the input. [29] proposed the third version of Gaussian membership function:  
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𝑟𝑠(𝑥,𝑚, 𝜎) = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥,𝑚, 𝜎) = exp [−0.5 (
𝑥 − 𝑚

𝜎
)
2

] 
( 18 ) 

𝜔𝑠(𝑥,𝑚, 𝜎, 𝜆) = −exp [−0.5 (
𝑥 − 𝑚

𝜎
)
2

]×(
𝑥 − 𝑚

𝜎2
) 

( 19 ) 

where {m,σ} are mean and spread of the Gaussian function, x is the input and 𝑟𝑠 and 𝑤𝑠 are 

amplitude and phase of the complex fuzzy grade. 

Lastly, [28] proposed a Gaussian membership function as: 

𝜇(𝑥) = 𝐴(𝑥). 𝑒iP(x) = 𝐴(𝑥)∠𝑃(𝑥) ( 20 ) 

 

where A(x) and P(x) are amplitude and phase of the complex fuzzy membership function and 

defined as: 

𝐴(𝑥) = exp (−(
𝑥 − 𝑐𝐴
𝑎𝐴

)2) ( 21 ) 

 

𝑃(𝑥) = 2𝜋exp ( (−(
𝑥 − 𝑐𝑃
𝑎𝑃

)2) ( 22 ) 

 

CFS membership functions and their properties plainly remain a very young topic. Basic 

properties and manipulations (e.g., what are the core and support of a CFS? What is an -cut?) 

have not yet been defined in general. Other functional forms have not yet been proposed (e.g. what 

are the equivalents to triangular or trapezoidal membership functions?) Furthermore, there has 

been almost no work in how we interpret a CFS. Sinusoids and Gaussian-type membership 

functions clearly have very different semantics. A Gaussian membership by its nature focuses on 

one segment of a universe of discourse; one region of feature space, one moment in time, etc. 

Sinusoids, by contrast, focus on recurring patterns. However, these general observations offer little 
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guidance in associating an intuitive, linguistic meaning to a specific CFS, or even a collection of 

them.  

Linguistic variables – the association of a linguistic term with a type-1 fuzzy set – are a 

key part of the success of fuzzy logic, and we expect that the same will hold true for CFS. However, 

the two-dimensional nature of CFS membership functions has so far made interpreting them 

extremely difficult. We are aware of only three partial suggestions: first, Alkouri’s definition of 

linguistic variables and hedges for CFS[30] ; in the paper, the linguistic variable for complex fuzzy 

sets is characterized as a sextuple in which different linguistic values are considered for uncertainty 

and periodicity. Also, six hedges are defined for CIFS: very A, very-very A, indeed A, a little A, 

slightly A, more or less A and extremely A.  Second, Tamir et al.’s suggestion that a complex fuzzy 

class can be interpreted as a main term and a modifier [31]; it is able to describe propositions as 

“x …A…B” where A and B are linguistic values; e.g. “x is a volatile stock in a strong-portfolio”  

Finally, Dick et al.’s suggestion that non-membership and anti-membership could be used to model 

negations and antonyms [32]. In essence, the space of complex membership functions remains 

largely unexplored except for a few examples. 

2.3. Complex Fuzzy Set Operations and Relations 

In this section, we review complex fuzzy set operations as they apply equally to individual 

fuzzy sets and relations between fuzzy sets. Moreover, the topic of compositions and projections 

of complex fuzzy relations are studied.  



 

14 

 

2.3.1. Complex Fuzzy Set Operations 

Ramot proposed union and intersection operations for his CFS, along with three unique 

operations manipulating the phase of the CFS membership grade [1]. Consider two complex fuzzy 

sets, A and B, with membership degrees of  𝜇𝐴(𝑥) = 𝑟𝐴(𝑥). 𝑒
𝑗𝜔𝐴(𝑥) and 𝜇𝐵(𝑥) = 𝑟𝐵(𝑥). 𝑒

𝑗𝜔𝐵(𝑥), 

respectively. The union and intersection of these two complex fuzzy sets,  are defined as [1]: 

𝜇𝐴∪𝐵(𝑥) = [𝑟𝐴(𝑥)⨁ 𝑟𝐵(𝑥)]𝑒
𝑗(𝜔𝐴∪𝐵) ( 23 ) 

𝜇𝐴∩𝐵(𝑥) = [𝑟𝐴(𝑥) ⋆  𝑟𝐵(𝑥)]𝑒
𝑗(𝜔𝐴∩𝐵) ( 24 ) 

where 𝜇𝐴∪𝐵(𝑥) is union and 𝜇𝐴∩𝐵(𝑥) is intersection of the complex fuzzy sets A and B, 

respectively. ⨁ can be any t-conorms and ⋆ is any t-norms. 𝜔𝐴∪𝐵 and 𝜔𝐴∩𝐵 are application-

dependent, Equation ( 25 ) - ( 31 ) show the possible forms for 𝜔𝐴∪𝐵  that are also applicable for 

𝜔𝐴∩𝐵 [1]: 

𝜔𝐴∪𝐵 = 𝜔𝐴 + 𝜔𝐵  ( 25 ) 

𝜔𝐴∪𝐵 = max (𝜔𝐴, 𝜔𝐵) ( 26 ) 

𝜔𝐴∪𝐵 = min (𝜔𝐴, 𝜔𝐵) ( 27 ) 

𝜔𝐴∪𝐵 = {
𝜔𝐴 𝑟𝐴 > 𝑟𝐵
𝜔𝐵 𝑟𝐵 < 𝑟𝐴

 
( 28 ) 

𝜔𝐴∪𝐵 =
𝑟𝐴. 𝜔𝐴 + 𝑟𝐵. 𝜔𝐵

𝑟𝐴 + 𝑟𝐵
 

( 29 ) 

𝜔𝐴∪𝐵 =
𝜔𝐴 + 𝜔𝐵
2

 
( 30 ) 

𝜔𝐴∪𝐵 = 𝜔𝐴 − 𝜔𝐵 ( 31 ) 
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The three novel operations are reflection, rotation and directional complex (DC) fuzzy 

complement that are defined as [1]:  

𝑅𝑒𝑓(𝜇𝑆(𝑥)) = 𝑟𝑆(𝑥). 𝑒
−𝑗𝜔𝑆(𝑥) ( 32 ) 

where 𝑅𝑒𝑓(. ) indicates reflection of complex fuzzy set, S, with membership grade of 

𝜇𝑠(𝑥) = 𝑟𝑆(𝑥). 𝑒
𝑗𝜔𝑆(𝑥). Equation ( 33 ) defines rotation of the complex fuzzy set, S, with 𝜃 radians 

[1]: 

𝑅𝑜𝑡𝜃(𝜇𝑆(𝑥)) = 𝑟𝑆(𝑥). 𝑒
𝑗(𝜔𝑆(𝑥)+𝜃) ( 33 ) 

where 𝜃 is the rotation of the complex fuzzy set. Based on the rotation and traditional complement 

operations, Ramot et al. proposed directional complex (DC) fuzzy complement as[1]:  

𝜇�̅�𝜃(𝑥) = 𝑐(𝑟𝑆(𝑥)). 𝑒
𝑗(𝜔𝑆(𝑥)+𝜃) ( 34) 

where 𝑐(. ) is any fuzzy complement function. 

Zhang et al. [16] studied different operations on Ramot’s CFS [1] when the membership 

phase is restricted to [0,2𝜋]. The union of two CFS A and B with 𝜇𝐴(𝑥) = 𝑟𝐴(𝑥). 𝑒
𝑗𝜔𝐴(𝑥) and 

𝜇𝐵(𝑥) = 𝑟𝐵(𝑥). 𝑒
𝑗𝜔(𝑥), is defined as Equation   ( 35 ) and proved to be an s-norm [16]: 

𝜇𝐴∪𝐵(𝑥) = 𝑟𝐴∪𝐵(𝑥). 𝑒
𝑗𝜔𝐴∪𝐵(𝑥)

= max(𝑟𝐴(𝑥), 𝑟𝐵(𝑥)) . 𝑒
𝑗𝑚𝑎𝑥(𝜔𝐴(𝑥),𝜔𝐵(𝑥)) 

  ( 35 ) 

The intersection between these two CFS was defined and proved to be a t-norm [16]: 

𝜇𝐴∩𝐵(𝑥) = 𝑟𝐴∩𝐵(𝑥). 𝑒
𝑗𝜔𝐴∩𝐵(𝑥) = min(𝑟𝐴(𝑥), 𝑟𝐵(𝑥)) . 𝑒

𝑗𝑚𝑖𝑛(𝜔𝐴(𝑥),𝜔𝐵(𝑥)) ( 36 ) 

The complement of a CFS, C, with 𝜇𝐶(𝑥) = 𝑟𝐶(𝑥). 𝑒
𝑗𝜔𝐶(𝑥) was proposed as [16]: 
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𝜇�̅�(𝑥) = 𝑟�̅�(𝑥). 𝑒
𝑗𝜔�̅�(𝑥) = (1 − 𝑟𝐶(𝑥)). 𝑒

𝑗(2𝜋−𝜔𝐶(𝑥)) ( 37 ) 

It was shown that the involutive property for the complement function is also satisfied, 𝐶̅̅ = 𝐶. 

Based on the definitions of union, intersection and complement proposed above, the following 

properties were obtained [16]: 

  

𝐴 ∩ 𝐵̅̅ ̅̅ ̅̅ ̅ = �̅� ∪ �̅� ( 38 ) 

(𝐴 ∪ 𝐵) ∩ 𝐶 = (𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶) 

(𝐴 ∩ 𝐵) ∪ 𝐶 = (𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶) 

( 39 ) 

(𝐴 ∪ 𝐵) ∩ 𝐴 = 𝐴 

(𝐴 ∩ 𝐵) ∪ 𝐴 = 𝐴 

( 40 ) 

The following operations were also proposed [16]: 

Complex fuzzy product (t-norm):  

 𝜇𝐴∘𝐵(𝑥) = 𝑟𝐴∘𝐵. 𝑒
𝑗𝜔𝐴∘𝐵(𝑥) = (𝑟𝐴(𝑥). 𝑟𝐵(𝑥)). 𝑒

𝑗2𝜋(
𝜔𝐴(𝑥)

2𝜋
.
𝜔𝐵(𝑥)

2𝜋
)
 

( 41 ) 

Complex fuzzy Cartesian product: 

𝜇𝐴1×𝐴2×⋯×𝐴𝑁(𝑥) = 𝑟𝐴1×𝐴2×⋯×𝐴𝑁(𝑥). 𝑒
𝑗𝜔𝐴1×𝐴2×⋯×𝐴𝑁(𝑥)

= min (𝑟𝐴1(𝑥1), 𝑟𝐴2(𝑥2),⋯ , 𝑟𝐴𝑁(𝑥𝑁)) . 𝑒
𝑗𝑚𝑖𝑛(𝜔𝐴1(𝑥1),𝜔𝐴2(𝑥2),⋯,𝜔𝐴𝑁(𝑥𝑁)),

𝑤ℎ𝑒𝑟𝑒 𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑁) ∈ 𝑈×𝑈×⋯×𝑈⏟        
𝑁

. 

( 42 ) 

Complex fuzzy probabilistic sum (s-norm): ( 43 ) 
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𝜇𝐴+̂𝐵(𝑥) = 𝑟𝐴+̂𝐵(𝑥). 𝑒
𝑗𝜔𝐴+̂𝐵(𝑥)

= (𝑟𝐴(𝑥) + 𝑟𝐵(𝑥)

− 𝑟𝐴(𝑥). 𝑟𝐵(𝑥)). 𝑒
𝑗2𝜋(

𝜔𝐴(𝑥)
2𝜋

+
𝜔𝐵(𝑥)
2𝜋

−
𝜔𝐴(𝑥)
2𝜋

.
𝜔𝐵(𝑥)
2𝜋

)
 

Complex fuzzy bold sum (s-norm): 

𝜇𝐴∪̇𝐵(𝑥) = 𝑟𝐴∪̇𝐵(𝑥). 𝑒
𝑗𝜔𝐴∪̇𝐵(𝑥)

= min(1, 𝑟𝐴(𝑥) + 𝑟𝐵(𝑥)) . 𝑒
𝑗𝑚𝑖𝑛(2𝜋,𝜔𝐴(𝑥)+𝜔𝐵(𝑥)) 

( 44 ) 

Complex fuzzy bold intersection (t-norm): 

𝜇𝐴∩̇𝐵(𝑥) = 𝑟𝐴∩̇𝐵(𝑥). 𝑒
𝑗𝜔𝐴∩̇𝐵(𝑥)

= max(0, 𝑟𝐴(𝑥) + 𝑟𝐵(𝑥) − 1) . 𝑒
𝑗𝑚𝑎𝑥(0,𝜔𝐴(𝑥)+𝜔𝐵(𝑥)−2𝜋) 

( 45 ) 

Complex fuzzy bounded difference: 

𝜇𝐴|−|𝐵(𝑥) = 𝑟𝐴|−|𝐵(𝑥). 𝑒
𝑗𝜔𝐴|−|𝐵(𝑥) = max (0, 𝑟𝐴(𝑥) −

𝑟𝐵(𝑥)). 𝑒
𝑗𝑚𝑎𝑥(0,𝜔𝐴(𝑥)−𝜔𝐵(𝑥))  

( 46 ) 

Complex fuzzy symmetrical difference: 

𝜇𝐴∇𝐵(𝑥) = 𝑟𝐴∇𝐵(𝑥). 𝑒
𝑗𝜔𝐴∇𝐵(𝑥) = |𝑟𝐴(𝑥) − 𝑟𝐵(𝑥)|. 𝑒

𝑗|𝜔𝐴(𝑥)−𝜔𝐵(𝑥)| 

( 47 ) 

Complex fuzzy convex linear sum of min and max: 

𝜇𝐴||𝜆𝐵(𝑥) = 𝑟𝐴||𝜆𝐵(𝑥). 𝑒
𝑗𝜔𝐴||𝜆𝐵(𝑥) = [𝜆min(𝑟𝐴(𝑥), 𝑟𝐵(𝑥)) + (1 −

𝜆)max(𝑟𝐴(𝑥), 𝑟𝐵(𝑥))]. 𝑒
𝑗[𝜆min(𝜔𝐴(𝑥),𝜔𝐵(𝑥))+(1−𝜆)max(𝜔𝐴(𝑥),𝜔𝐵(𝑥))]  

where (0 ≤ 𝜆 ≤ 1). 

( 48 ) 

Moreover, a new definition for distance of complex fuzzy set was introduced by Zhang et 

al. as  [16]: 
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𝑑(𝐴, 𝐵) = max (𝑠𝑢𝑝𝑋∈𝑈|𝑟𝐴(𝑋) − 𝑟𝐵(𝑋)|,
1

2𝜋
𝑠𝑢𝑝𝑋∈𝑈|𝜔𝐴(𝑋) − 𝜔𝐵(𝑋)|) 

( 49 ) 

(1)  

where 𝑑(𝐴, 𝐵) is distance of two complex fuzzy sets A and B. Then, based on this definition, 𝛿-

equalities of complex fuzzy sets were proposed; two complex fuzzy sets, 𝐴 and 𝐵, are 𝛿-equal, 

𝐴 = (𝛿)𝐵, if and only if 𝑑(𝐴, 𝐵) ≤ 1 − 𝛿, 0 ≤  𝛿 ≤ 1. Properties of δ-equality of complex fuzzy 

sets were also discussed in the paper. 

Two aggregation operations have been proposed in order to combine several complex 

fuzzy sets with unit circle codomain. Ramot et al. proposed an aggregation operation which is 

called vector aggregation and defined as [2]: 

𝑣: {𝑎|𝑎 ∈ 𝑪 , |𝑎| ≤ 1}𝑛 → {𝑏|𝑏 ∈ 𝑪 , |𝑏| ≤ 1} ( 50 ) 

𝜇𝐴(𝑥) = 𝑣 (𝜇𝐴1(𝑥), 𝜇𝐴2(𝑥),… , 𝜇𝐴𝑛(𝑥))

=∑𝑤𝑖𝜇𝐴𝑖(𝑥)

𝑛

𝑖=1

 

( 51 ) 

 

where 𝑤𝑖 ∈  {𝑎|𝑎 ∈ 𝑪 , |𝑎| ≤ 1} for all 𝑖, and ∑ |𝑤𝑖| = 1
𝑛
𝑖=1 . The operation is, in fact, a weighted 

vector sum considering effects of complex fuzzy phase on aggregation of complex fuzzy sets. Ma 

et al. introduced product-sum aggregation operation for complex fuzzy sets [33], that is an 

extension of the aggregation operation proposed by Ramot et al. [2]. Let �̃�1, �̃�2, . . . , �̃�𝑛  be complex 

fuzzy sets defined on a universe of discourse, U, with 𝜇�̃�𝑖(𝑢) = 𝑥𝑖(𝑢) + 𝑗𝑦𝑖(𝑢) and 𝑐 =

(𝑐1, 𝑐2, . . . , 𝑐𝑛)   be a complex-valued vector in the unit disk of the complex plane with 𝑐𝑖 = 𝑥𝑖
′ +

𝑗𝑦𝑖
′; the product-sum aggregation operation is defined as [33]: 

𝑝𝑐(𝑢) =  𝑟(𝑝𝑐(𝑢))𝑒
𝑗 arg(𝑝𝑐(𝑢)) ( 52 ) 

where 
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𝑟(𝑝𝑐(𝑢))

= 𝑚𝑖𝑛

{
 

 

1, √(∑(𝑥𝑖(𝑢)𝑥𝑖
′ − 𝑦𝑖(𝑢)𝑦𝑖

′)

𝑛

𝑖=1

)

2

+ (∑(𝑥𝑖(𝑢)𝑦𝑖
′ + 𝑦𝑖(𝑢)𝑥𝑖

′)

𝑛

𝑖=1

)

2
2

}
 

 

 

( 53 ) 

arg(𝑝𝑐(𝑢)) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
∑ (𝑥𝑖(𝑢)𝑦𝑖

′ + 𝑦𝑖(𝑢)𝑥𝑖
′)𝑛

𝑖=1

∑ (𝑥𝑖(𝑢)𝑥𝑖
′ − 𝑦𝑖(𝑢)𝑦𝑖

′)𝑛
𝑖=1

) 
( 54 ) 

 

 Tamir et al. proposed union, intersection and complement operations for  the pure complex 

fuzzy classes (unit square codomain) [20]. Assume a complex fuzzy class, Γ = {𝑉, 𝑧, 𝜇Γ(𝑉, 𝑧)|𝑉 ∈

2𝑈 , 𝑧 ∈ 𝑈}, defined by a pure complex fuzzy grade, 𝜇(𝑉, 𝑧) = 𝜇𝑟(𝑉) + 𝑗𝜇𝑖(𝑧); the complement of 

this class is defined as [20]: 

𝑐(𝜇Γ(𝑉, 𝑧)) = 𝑐(𝜇𝑟(𝑉)) + 𝑗𝑐(𝜇𝑖(𝑧)) ( 55 ) 

where 𝑐(. ) is complement function and can be defined as standard fuzzy complement, 𝑐(𝜇𝑥(𝑦)) =

1 − 𝜇𝑥(𝑦). The union and intersection of two complex fuzzy classes defined as Γ =

{𝑉, 𝑧, 𝜇Γ(𝑉, 𝑧)|𝑉 ∈ 2
𝑈, 𝑧 ∈ 𝑈} and Ψ = {𝑇, 𝑧, 𝜇Ψ(𝑇, 𝑧)|𝑇 ∈ 2

𝑈, 𝑧 ∈ 𝑈} are given by [20]: 

 

𝜇Γ∪Ψ(𝑊, 𝑧) = (𝜇Γ𝑟(𝑉) ⨁ 𝜇Ψ𝑟(𝑇)) + 𝑗(𝜇Γ𝑖(𝑧) ⨁ 𝜇Ψ𝑖(𝑧)) ( 56 ) 

𝜇Γ∩Ψ(𝑊, 𝑧) = (𝜇Γ𝑟(𝑉) ⊙ 𝜇Ψ𝑟(𝑇)) + 𝑗(𝜇Γ𝑖(𝑧) ⨀ 𝜇Ψ𝑖(𝑧)) ( 57) 

where 𝜇Γ∪Ψ(𝑊, 𝑧) and 𝜇Γ∩Ψ(𝑊, 𝑧) are union and intersection functions, respectively; 𝑊 ∈ 2𝑈 

and ⨁ is any t-conorm and ⨀ is any t-norm operation. 

Yager et al. proposed union, intersection and complement operations for two Pythagorean 

fuzzy sets 𝐴(𝑥) = (𝐴𝑌(𝑥), 𝐴𝑁(𝑥)) and 𝐵(𝑥) = (𝐵𝑌(𝑥), 𝐵𝑁(𝑥))  as follows [22]: 

𝐴(𝑥) ∪ 𝐵(𝑥) = (max(𝐴𝑌(𝑥), 𝐵𝑌(𝑥)) ,min(𝐴𝑁(𝑥), 𝐵𝑁(𝑥))) ( 58 ) 
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𝐴(𝑥) ∩ 𝐵(𝑥) = (𝑚𝑖𝑛(𝐴𝑌(𝑥), 𝐵𝑌(𝑥)) ,𝑚𝑎𝑥(𝐴𝑁(𝑥), 𝐵𝑁(𝑥))) ( 59 ) 

�̅�(𝑥) = (𝐴𝑁(𝑥), 𝐴𝑌(𝑥)) ( 60 ) 

 

He also proposed the following function for mapping a Π − 𝑖 number to the unit interval [0, 1] as 

a way of ordering Pythagorean fuzzy values [22]. 

 

𝐹(𝐴) =
1

2
+ 𝑟(𝑥). (

1

2
−
2. 𝜃(𝑥)

𝜋
) 

( 61 ) 

where 𝑟 = √𝐴𝑌
2 + 𝐴𝑁

2
 and 𝜃 = tan−1

𝐴𝑁

𝐴𝑌
. [22] also proposed an aggregation operation based on 

geometric mean for q different criteria that have Pythagorean fuzzy degrees, 𝐶𝑗 , 𝑗 = 1,… , 𝑞, as: 

𝐶(𝑥) =∏𝐶𝑗(𝑥)
𝑤𝑗

𝑞

𝑗=1

=∏(𝑟𝑗(𝑥)𝑒
𝑖𝜃𝑗(𝑥))𝑤𝑗

𝑞

𝑗=1

=∏(𝑟𝑗(𝑥))
𝑤𝑗𝑒𝑖 ∑𝑤𝑗𝜃𝑗(𝑥)

𝑞

𝑗=1

 

( 62 ) 

 

where ∑ 𝑤𝑗 = 1
𝑞
𝑗=1 . 

Dick et al. proposed two new complex fuzzy conjunction and disjunction operators which 

form a triple DeMorgan with the complement operation in Equation. ( 60 ) [32]: 

𝑥 ∧ 𝑦 = (𝑎𝑏𝑠𝑚𝑖𝑛 (𝑥1, 𝑦1), 𝑎𝑏𝑠𝑚𝑎𝑥(𝑥2, 𝑦2)) ( 63 ) 

 

𝑥 ∨ 𝑦 = (𝑎𝑏𝑠𝑚𝑎𝑥 (𝑥1, 𝑦1), 𝑎𝑏𝑠𝑚𝑖𝑛(𝑥2, 𝑦2)) ( 64 ) 

 where 𝑥 = (𝑥1, 𝑦1), 𝑦 = (𝑥2, 𝑦2) ∈ 𝑫 (unit disk), and absmax and absmin are defined as [32]: 

𝑎𝑏𝑠𝑚𝑎𝑥(𝑥, 𝑦) = {

𝑥 𝑖𝑓 |𝑥| > |𝑦|

𝑦 𝑖𝑓 |𝑥| < |𝑦|

|𝑥| 𝑖𝑓 |𝑥| = |𝑦| ∧ 𝑥 ≠ 𝑦
 

( 65 ) 

 

𝑎𝑏𝑠𝑚𝑖𝑛(𝑥, 𝑦) = {

𝑥 𝑖𝑓 |𝑥| < |𝑦|

𝑦 𝑖𝑓 |𝑥| > |𝑦|

−|𝑥| 𝑖𝑓 |𝑥| = |𝑦| ∧ 𝑥 ≠ 𝑦
 

( 66 ) 
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Salleh et al. in [24] extended the complement, union and intersection defined by [1, 16] for 

complex Atanassonov’s intuitionistic fuzzy sets, and [34] extended the intuitionistic possibility 

and necessity measures defined by [23] for CAIFS. 

2.3.2. Complex Fuzzy Relations 

Ramot et al. presents complex fuzzy relations as the degree and phase of association, 

interaction and interconnectedness between elements of different universe of discourses [1]. Let 

U and V be two universes of discourse; the complex fuzzy relation between them is a complex 

fuzzy subset of the product space 𝑈×𝑉, that is characterized by a complex-valued membership 

function which is bounded in a unit disk, 𝜇𝑅(𝑥, 𝑦), and defined as [1]:  

𝑅(𝑈, 𝑉) = {((𝑥, 𝑦), 𝜇𝑅(𝑥, 𝑦))| (𝑥, 𝑦) ∈ 𝑈×𝑉} ( 67 ) 

 

Composition of the complex fuzzy relations either defined on the same product spaces or on the 

different product spaces were proposed in [2]. In the case of the same product space, union and 

intersection operations defined for complex fuzzy sets are applicable otherwise the composition is 

defined as follows. Consider 𝑅(𝑈, 𝑉) with 𝜇𝑅(𝑥, 𝑦) = 𝑟𝑅(𝑥, 𝑦). 𝑒
𝑗𝜔𝑅(𝑥,𝑦) and 𝑆(𝑉,𝑊) with 

𝜇𝑆(𝑦, 𝑧) = 𝑟𝑆(𝑦, 𝑧). 𝑒
𝑗𝜔𝑆(𝑦,𝑧); the composition is determined as [2]: 

 

𝜇𝑅∘𝑆(𝑥, 𝑧) = 𝑟𝑅∘𝑆(𝑥, 𝑧). 𝑒
𝑗𝜔𝑅∘𝑆(𝑥,𝑧) ( 68 ) 

where 

𝑟𝑅∘𝑆(𝑥, 𝑧) = sup
𝑦∈𝑉
[𝑟𝑅(𝑥, 𝑦) ⋆ 𝑟𝑆(𝑦, 𝑧)] ( 69 ) 

𝜔𝑅∘𝑆(𝑥, 𝑧) = 𝑓[𝑔(𝜔𝑅(𝑥, 𝑦), 𝜔𝑆(𝑦, 𝑧))] ( 70 ) 
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where ⋆  and sup refer to a t-norm and supremum (least upper bound) operations, respectively, and  

𝑔 and 𝑓 are the membership phase functions equivalent of those operations, respectively; [2] 

proposed possible choices for the sup operation as: 

𝜔𝑅∘𝑆(𝑥, 𝑧) = sup
𝑦∈𝑉
[𝑔(𝜔𝑅(𝑥, 𝑦), 𝜔𝑆(𝑦, 𝑧))] ( 71 ) 

𝜔𝑅∘𝑆(𝑥, 𝑧) = inf
𝑦∈𝑉
[𝑔(𝜔𝑅(𝑥, 𝑦),𝜔𝑆(𝑦, 𝑧))] ( 72 ) 

𝜔𝑅∘𝑆(𝑥, 𝑧) = 𝑔(𝜔𝑅(𝑥, 𝑦
′), 𝜔𝑆(𝑦

′, 𝑧)) 

𝑦′ = {𝑦| sup
𝑦∈𝑉
[𝑟𝑅(𝑥, 𝑦) ⋆ 𝑟𝑆(𝑦, 𝑧)]}  

( 73 ) 

Complex fuzzy relation operations were introduced by Zhang et al. [35] for Ramot’s 

complex fuzzy relations, again  limiting membership phase to [0,2π] . Let A and B be two complex 

fuzzy sets on the universes of discourse U and V, respectively, with 𝜇𝐴(𝑥) = 𝑟𝐴(𝑥). 𝑒
𝑗𝜔𝐴(𝑥) and 

𝜇𝐵(𝑦) = 𝑟𝐵(𝑦). 𝑒
𝑗𝜔𝐵(𝑦). The complex fuzzy union and intersection of A and B are defined as [35]: 

Union: 

𝜇𝐴⊕𝐵(𝑥, 𝑦) = 𝑟𝐴⊕𝐵(𝑥, 𝑦). 𝑒
𝑗𝜔𝐴⊕𝐵(𝑥,𝑦) = 𝑚𝑎𝑥(𝑟𝐴(𝑥), 𝑟𝐵(𝑦)). 𝑒

𝑗𝑚𝑎𝑥(𝜔𝐴(𝑥),𝜔𝐵(𝑦)) 

( 74 ) 

Intersection: 

𝜇𝐴⊗𝐵(𝑥, 𝑦) = 𝑟𝐴⊗𝐵(𝑥, 𝑦). 𝑒
𝑗𝜔𝐴⊗𝐵(𝑥,𝑦) = 𝑚𝑖𝑛(𝑟𝐴(𝑥), 𝑟𝐵(𝑦)). 𝑒

𝑗𝑚𝑖𝑛(𝜔𝐴(𝑥),𝜔𝐵(𝑦)) 

( 75 ) 

Compositions of the complex fuzzy relations, 𝑅(𝑈, 𝑉) with 𝜇𝑅(𝑥, 𝑦) = 𝑟𝑅(𝑥, 𝑦). 𝑒
𝑗𝜔𝑅(𝑥,𝑦) and 

𝑆(𝑉,𝑊) with 𝜇𝑆(𝑦, 𝑧) = 𝑟𝑆(𝑦, 𝑧). 𝑒
𝑗𝜔𝑆(𝑦,𝑧), are defined as [35]: 
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Sup-min composition: 

𝜇𝑅∘𝑆(𝑥, 𝑧) = 𝑟𝑅∘𝑆(𝑥, 𝑧). 𝑒
𝑗𝜔𝑅∘𝑆(𝑥,𝑧)

= sup𝑚𝑖𝑛
𝑦∈𝑉

(𝑟𝑅(𝑥, 𝑦), 𝑟𝑆(𝑦, 𝑧)) . 𝑒
𝑗 sup𝑚𝑖𝑛

𝑦∈𝑉
(𝜔𝑅(𝑥,𝑦),𝜔𝑆(𝑦,𝑧))

 

( 76 ) 

Sup-product composition: 

𝜇𝑅∘𝑆(𝑥, 𝑧) = (𝑟𝑅(𝑥, 𝑦). 𝑟𝑆(𝑦, 𝑧)). 𝑒
𝑗2𝜋((

𝜔𝑅(𝑥,𝑦)
2𝜋

.
𝜔𝑆(𝑦,𝑧)
2𝜋

))
 

( 77 ) 

Sup-Lukasiewicz composition 

𝜇𝑅∘𝑆(𝑥, 𝑧) = (𝑟𝑅(𝑥, 𝑦) ∗ 𝑟𝑆(𝑦, 𝑧)). 𝑒
𝑗(𝜔𝑅(𝑥,𝑦)∗𝜔𝑆(𝑦,𝑧)) 

𝜔𝑅(𝑥, 𝑦) ∗ 𝜔𝑆(𝑦, 𝑧) = 2𝜋 𝑚𝑎𝑥 (0,
𝜔𝑅(𝑥, 𝑦)

2𝜋
+
𝜔𝑆(𝑦, 𝑧)

2𝜋
− 1) 

( 78 ) 

For two complex fuzzy relations defined on the same product space, 𝜇𝐴(𝑥, 𝑦) =

𝑟𝐴(𝑥, 𝑦). 𝑒
𝑗𝜔𝐴(𝑥,𝑦) and 𝜇𝐵(𝑥, 𝑦) = 𝑟𝐵(𝑥, 𝑦). 𝑒

𝑗𝜔𝐵(𝑥,𝑦), the complex fuzzy union and intersection of 

the relations are defined as [35]: 

Union: 

𝜇𝐴∪𝐵(𝑥, 𝑦) = 𝑟𝐴∪𝐵(𝑥, 𝑦). 𝑒
𝑗𝜔𝐴∪𝐵(𝑥,𝑦)

=  𝑚𝑎𝑥(𝑟𝐴(𝑥, 𝑦), 𝑟𝐵(𝑥, 𝑦)). 𝑒
𝑗𝑚𝑎𝑥(𝜔𝐴(𝑥,𝑦),𝜔𝐵(𝑥,𝑦)) 

( 79 ) 

Intersection: 

𝜇𝐴∩𝐵(𝑥, 𝑦) = 𝑟𝐴∩𝐵(𝑥, 𝑦). 𝑒
𝑗𝜔𝐴∩𝐵(𝑥,𝑦)

=  𝑚𝑖𝑛(𝑟𝐴(𝑥, 𝑦), 𝑟𝐵(𝑥, 𝑦)). 𝑒
𝑗𝑚𝑖𝑛(𝜔𝐴(𝑥,𝑦),𝜔𝐵(𝑥,𝑦)) 

( 80 ) 

Moreover, the distance of two complex fuzzy relations defined on the same product space was 

defined as [35]: 



 

24 

 

𝑑(𝐴, 𝐵) = 𝑚𝑎𝑥 ( sup
(𝑥,𝑦)∈𝑈×𝑉

|𝑟𝐴(𝑥, 𝑦) − 𝑟𝐵(𝑥, 𝑦)| ,
1

2𝜋
sup

(𝑥,𝑦)∈𝑈×𝑉
|𝜔𝐴(𝑥, 𝑦) − 𝜔𝐵(𝑥, 𝑦)|) 

( 81 ) 

 

2.4. Complex Fuzzy Logic 

Complex Fuzzy Logic (CFL) was first proposed by Ramot et al. in [2], using the same unit-

disc codomain as his CFS in [1]. This yields an infinite-valued logic wherein the truth values are 

vectors from the unit disc. This makes CFL one of the very few vector-valued logics in existence. 

Vector logic, Boolean matrices and quantum logic also have multi-dimensional truth values [36] 

[37] [38]. [39] studied harmonic analysis on fuzzy sets by extending fuzzy logic to a unit circle 

{𝑧 ∶ 𝑧 ∈ 𝑪, |𝑧| = 1}.  

Dick in 2005 showed that considering phase as a relative quantity in Ramot’s papers [1, 2] 

can be interpreted as rotational invariance, meaning that if membership grades of two complex 

fuzzy sets are rotated with 𝜑 radians about the origin, the union,  intersection and complement of 

the complex fuzzy sets are also rotated with the same phase, 𝜑. He showed that algebraic product 

and traditional complement, 𝑓(𝑥) = −𝑥, cannot be considered as conjunction and negation 

operations with rotational invariance assumption [15]. He then studied amplitude and phase of 

complex fuzzy sets simultaneously and used vector logic proposed in [36, 40] as framework.  It 

was shown that algebraic product is a possible candidate for conjunction operator, and existence 

of a dual disjunction operator was proved.  

In [41], generalized propositional complex fuzzy logic was introduced based on 

Łukasiewicz logic system by considering Modus ponens as the rule inference and  the following 

connectives: 
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Table 1: Basic complex propositional fuzzy logic connectives 

Operation Interpretation 

Negation 𝑖(′𝑃) = 1 + 𝑗1 − 𝑖(𝑝) 

Implication 𝑖(𝑃 → 𝑄) = 𝑚𝑖𝑛(1,1 − 𝑖(𝑝𝑟) + 𝑖(𝑞𝑟)) + 𝑗.𝑚𝑖𝑛(1,1 − 𝑖(𝑝𝑖) + 𝑖(𝑞𝑖)) 

Conjunction 𝑖(𝑃⨂𝑄) = 𝑚𝑖𝑛(𝑖(𝑝𝑟), 𝑖(𝑞𝑟)) + 𝑗.𝑚𝑖𝑛(𝑖(𝑝𝑖), 𝑖(𝑞𝑖)) 

Disjunction 𝑖(𝑃 ⊕ 𝑄) = 𝑚𝑎𝑥(𝑖(𝑝𝑟), 𝑖(𝑞𝑟)) + 𝑗.𝑚𝑎𝑥(𝑖(𝑝𝑖), 𝑖(𝑞𝑖)) 

[42] proposed an extended complex Post logical system (ECPS) based on the extended Post system 

(EPS) of order 𝑝 > 2 by DiZenzo [43]. One of the possible applications of the proposed system is 

in discrete processes such as digital signal processing (DSP), real-time applications and embedded 

systems. [44] gave a review on the axiomatic-based complex fuzzy logic and sets. 

Dick et al. developed two complete and distributive lattices for Pythagorean fuzzy sets 

(PFS) based on Pythagorean fuzzy union and intersection (see Equations. ( 58 ) - ( 59 )) and ranking 

function (Equation. ( 61 )) proposed in [22]. He then developed two new complete and distributive 

lattices for complex fuzzy sets based on extending PFS to unit disk. This extension needs a 

definition for negations of the two axes in PFS (𝜇,¬𝜇:  membership and non-membership degree 

in PFS) to convert it to a complete unit disk; the negations are called anti-membership and anti-

non-membership (�̅�, ¬�̅�). The first lattice is based on the assumption that 𝜇 = ¬�̅� and ¬𝜇 = �̅�. 

There is, thus, a mapping from unit disk to the PFS. The map is used to define a partial ordering 

over the unit disk leading to form the lattice. The second lattice is based on the assumption that 

𝜇 ≠ ¬�̅� and ¬𝜇 ≠ �̅�; two new complex fuzzy union and intersection (see Equations. ( 63 ) - ( 64 

)) are defined and showed that they form the lattice. Moreover, it is shown that Pythagorean 

negation (Equation. ( 60 )) forms a DeMorgan triple with the new union and intersection operators. 

This logic, also, gives interpretation for both fuzzy negation and antonym [32].  
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Ramot proposed a complex fuzzy implication for the unit-disc codomain in [2]. Consider 

the rule: If x is A then y is B, where 𝑥 and 𝑦 are variables taken from two different universe of 

discourses, U and V, respectively, and A and B are complex fuzzy sets defined on the corresponding 

universe of discourses; a complex fuzzy implication is characterized by the membership function 

𝜇𝐴→𝐵(𝑥, 𝑦) = 𝑟𝐴→𝐵(𝑥, 𝑦). 𝑒
𝑗𝜔𝐴→𝐵(𝑥,𝑦). The implication function is the algebraic product: 

𝜇𝐴→𝐵(𝑥, 𝑦) = 𝜇𝐴(𝑥). 𝜇𝐵(𝑦) = 𝑟𝐴(𝑥). 𝑟𝐵(𝑦). 𝑒
𝑗(𝜔𝐴(𝑥)+𝜔𝐵(𝑦))    ( 82 ) 

Zhang et al. also studied more implication operations for CFS with the unit disk codomain, and 

with membership phase limited to [0,2𝜋], as follows [35]: 

Dienes-Rescher implication operator: 

𝜇𝐴→𝐵(𝑥, 𝑦) = 𝑚𝑎𝑥(1 − 𝑟𝐴(𝑥), 𝑟𝐵(𝑦)). 𝑒
𝑗𝑚𝑎𝑥(2𝜋−𝜔𝐴(𝑥),𝜔𝐵(𝑦)) 

( 83 ) 

Lukasiewicz implication operator: 

𝜇𝐴→𝐵(𝑥, 𝑦) = (𝑟𝐴(𝑥) ∗ 𝑟𝐵(𝑦)). 𝑒
𝑗(𝜔𝐴(𝑥)∗𝜔𝐵(𝑦)) 

𝜔𝐴(𝑥) ∗ 𝜔𝐵(𝑦) = 2𝜋 𝑚𝑎𝑥 (0,
𝜔𝐴(𝑥)

2𝜋
+
𝜔𝐵(𝑦)

2𝜋
− 1) 

( 84 ) 

Zadeh implication operator: 

𝜇𝐴→𝐵(𝑥, 𝑦)

= 𝑚𝑎𝑥 (1

− 𝑟𝐴(𝑥),𝑚𝑖𝑛(𝑟𝐴(𝑥), 𝑟𝐵(𝑦))) . 𝑒
𝑗𝑚𝑎𝑥(2𝜋−𝜔𝐴(𝑥),𝑚𝑖𝑛(𝜔𝐴(𝑥),𝜔𝐵(𝑦))) 

( 85 ) 

Godel implication operator: 

𝜇𝐴→𝐵(𝑥, 𝑦) = 𝑟𝐴→𝐵(𝑥, 𝑦). 𝑒
𝑗𝜔𝐴→𝐵(𝑥,𝑦) 

( 86 ) 
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𝑟𝐴→𝐵(𝑥, 𝑦) = {
1 𝑖𝑓  𝑟𝐴(𝑥) ≤ 𝑟𝐵(𝑦)

𝑟𝐵(𝑦) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝜔𝐴→𝐵(𝑥, 𝑦) = {
2𝜋 𝑖𝑓 𝜔𝐴(𝑥) ≤ 𝜔𝐵(𝑦)

𝜔𝐵(𝑦) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Mamdani implication operator: 

𝜇𝐴→𝐵(𝑥, 𝑦) = 𝑚𝑖𝑛(𝑟𝐴(𝑥), 𝑟𝐵(𝑦)). 𝑒
𝑗𝑚𝑖𝑛(𝜔𝐴(𝑥),𝜔𝐵(𝑦)) 

( 87 ) 

Mamdani product implication operator: 

 𝜇𝐴→𝐵(𝑥, 𝑦) = (𝑟𝐴(𝑥). 𝑟𝐵(𝑦)). 𝑒
𝑗2𝜋(

𝜔𝐴(𝑥)

2𝜋
.
𝜔𝐵(𝑦)

2𝜋
)
 

( 88 ) 

Godel implication operator: 

𝜇𝐴→𝐵(𝑥, 𝑦) = 𝑟𝐴→𝐵(𝑥, 𝑦). 𝑒
𝑗𝜔𝐴→𝐵(𝑥,𝑦) 

𝑟𝐴→𝐵(𝑥, 𝑦) = {
1 𝑖𝑓  𝑟𝐴(𝑥) ≤ 𝑟𝐵(𝑦)

𝑚𝑎𝑥 (1 − 𝑟𝐴(𝑥), 𝑟𝐵(𝑦)) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝜔𝐴→𝐵(𝑥, 𝑦) = {
2𝜋 𝑖𝑓 𝜔𝐴(𝑥) ≤ 𝜔𝐵(𝑦)

𝑚𝑎𝑥 (2𝜋 − 𝜔𝐴(𝑥),𝜔𝐵(𝑦)) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

( 89 ) 

Reichenbach product implication: 

𝜇𝐴→𝐵(𝑥, 𝑦) = (1 − 𝑟𝐴(𝑥) + 𝑟𝐴(𝑥). 𝑟𝐵(𝑦)). 𝑒
𝑗(2𝜋− 𝜔𝐴(𝑥)+2𝜋

𝜔𝐴(𝑥)
2𝜋

.
𝜔𝐵(𝑦)
2𝜋

)
 

( 90 ) 

Ramot et al. used Generalized Modus Ponens for complex fuzzy inference rules. In the 

case of multi-complex fuzzy rules, he proposed using the vector aggregation operation (Equation. 

( 51 )) to combine the rule consequents into a final output. As Equation. ( 51 ) is a vector sum of 

the outputs, it considers phase terms of the outputs into account. If the phase terms are aligned, 

amplitude of the final output increases otherwise they have destructive effect on the amplitude of 

the output. In the defuzzification step, phase term of the final output is ignored and any of the 
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traditional defuzzification methods can be applied on the amplitude in order to obtain a crisp output 

[2].  

Tamir et al. studied the axiomatization of complex fuzzy logic for the pure complex fuzzy 

sets defined in [20]. He developed propositional, first order predicate, generalized propositional 

complex fuzzy logic and a logical system for discrete complex fuzzy sets [31, 41, 42]. Tamir’s 

works are different from the complex valued propositional logic (S-logic) introduced in [45] which 

is a six-valued logic containing imaginary logic variables {𝑖, ¬𝑖}, real logic variables {𝑇, 𝐹} and 

two basic states of S-logic {𝑇 ∨ 𝑖, 𝐹 ∧ ¬𝑖}. 

Similar to fuzzy propositions, complex fuzzy propositions are assigned a truth value, in 

this case from the unit square [0,1]×[0, 𝑖]. A complex fuzzy proposition P can be defined as “x … 

A … B” where A and B are linguistic values, and … shows natural language constants; and it can 

be interpreted as  𝑖(𝑃) = 𝑖(𝑝𝑟) + 𝑗. 𝑖(𝑝𝑖) or  𝑖(𝑃) = 𝑖(𝑟(𝑝)). 𝑒𝑗𝜎𝑖(𝜃(𝑝)) (𝜎 is a scaling factor in the 

interval (0,2𝜋]) where 𝑖(𝑝𝑟) or  𝑖(𝑟(𝑝)) denotes an interpretation of term A, and 𝑖(𝑝𝑖) or 𝑖(𝜃(𝑝)) 

is an interpretation of term B. 

 Propositional and first order predicate complex fuzzy logic are defined in [31], and are 

denoted as ŁΠ CFL and ŁΠ∀ CFL, respectively. Propositional complex fuzzy logic uses a set of  

basic and derived connectives along with a set of axioms from [46] to combine complex fuzzy 

propositions; for two complex fuzzy propositions P and Q, Table 2 and Table 3 denote the 

connectives:  

Table 2: Basic ŁΠ CFL connectives 

Operation Interpretation 
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Ł-Implication 𝑖(𝑃 →𝐿 𝑄) = 𝑚𝑖𝑛(1,1 − 𝑖(𝑝𝑟) + 𝑖(𝑞𝑟)) + 𝑗.𝑚𝑖𝑛(1,1 − 𝑖(𝑝𝑖) + 𝑖(𝑞𝑖)) 

Π-Implication 𝑖(𝑃 →Π 𝑄) = 𝑚𝑖𝑛(0, 𝑖(𝑝𝑟)/𝑖(𝑞𝑟)) + 𝑗.𝑚𝑖𝑛(0, 𝑖(𝑝𝑖)/𝑖(𝑞𝑖)) 

Π-Conjunction 𝑖(𝑃⨂𝑄) = 𝑖(𝑝𝑟). 𝑖(𝑞𝑟) + 𝑗. (𝑖(𝑝𝑖). 𝑖(𝑞𝑖)) 

 

Table 3: Derived ŁΠ CFL connectives 

Operation Interpretation 

Ł-Negation 𝑖(¬𝑃) = 1 + 𝑗1 − 𝑖(𝑝) 

Π-Delta ∆(𝑖(𝑝)) = 1 𝑖𝑓 𝑖(𝑝) = 1 + 𝑗1; 𝑒𝑙𝑠𝑒 ∆(𝑖(𝑝)) = 0 + 𝑗0 

Equivalence 𝑖(𝑃 ⟷ 𝑄) = 𝑖(𝑃𝑟 →𝐿 𝑄𝑟)⨂𝑖(𝑄𝑟 →𝐿 𝑃𝑟)

+ 𝑗. (𝑖(𝑃𝑖 →𝐿 𝑄𝑖)⨂𝑖(𝑄𝑖 →𝐿 𝑃𝑖)) 

𝑃 ⊝𝑄 𝑖(𝑃 ⊝ 𝑄) = 𝑚𝑎𝑥(0, 𝑖(𝑝𝑟) − 𝑖(𝑞𝑟)) + 𝑗.𝑚𝑎𝑥(0, 𝑖(𝑝𝑖) − 𝑖(𝑞𝑖)) 

Modus ponens and product necessitation are the rule inferences of ŁΠ CFL. The first order 

predicate complex fuzzy logic, ŁΠ∀ CFL, extends propositional complex fuzzy logic by including 

predicates, constant, variables, the quantifier ∀, and the identity sign =. It follows axioms defined 

in [46], and also adds generalization as one of the rule inferences. Tamir then extended the 

approach used by Běhounek et al. in [46] and proposed a formal definition for complex fuzzy class 

theory (CFCT) based on ŁΠ∀ CFL [31].   

2.5. Applications of Complex Fuzzy Sets 

In this section, we study the rationale for employing CFS&L and then examine how CFS 

have been operationalized; CFS (or indeed, fuzzy sets in general) are not directly “applied” to a 

practical problem, but are rather a fundamental concept in constructing an intelligent system to 
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solve a problem (e.g., a fuzzy inferential system, or a neuro-fuzzy network). Finally, we review 

the specific applications that have been proposed. 

2.5.1. Rationale for Complex Fuzzy Sets 

Several authors have suggested that certain classes of problems could be solved more 

efficiently and accurately by CFS-based approaches rather than type-1 fuzzy logic. Ramot et al. 

suggested that problems dealing with periodic or recurring phenomena, such as representing solar 

activity or the effect of financial indicators on each other, can be modeled more faithfully by using 

the phase component of CFS memberships [1, 2]. He also suggested that signal processing was 

another area of possible application for CFS [1]. Dick suggested that one of the possible 

applications of the complex fuzzy sets is in representing phenomena with approximately periodic 

behaviour, (which he terms regularity, following some of Zadeh’s concepts in a 2001 keynote 

[47]). These are periodic phenomena that never repeat themselves exactly such as traffic 

congestion in a big city [15]. [26, 48]. Kosheleva et al. found that the complex-valued fuzzy sets 

are computationally efficient, and the approximate nature of t-norm and t-conorm fuzzy operations 

in expressing experts’ beliefs leads to complex-valued degrees [49, 50]. There are also a few 

mathematical results pointing to CFS being an efficient and useful extension to type-1 fuzzy logic. 

Servin et al. showed that the only 2-D distributive extensions of fuzzy logic are interval-valued 

and complex-valued fuzzy logic [51]. [52] showed that if a negative value is selected  for 𝑝 in  the 

Schweize-Sklar implication operator, 𝜇𝐴→𝐵(𝑥, 𝑦|𝑝) = 1 − (𝜇𝐴(𝑥)
−𝑝 + (1 − 𝜇𝐵(𝑦))

−𝑝
− 1)

−
1

𝑝, 

and no exceptions put over the negative outputs of the implication operator, the negative output 

can be presented by complex numbers leading to complex truth values. That also makes it possible 

to have different ranges of selectivity and consensus in implication operators. [53] compared 
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complex fuzzy sets and type-2 fuzzy sets in terms of rationale, applications, definitions, structures 

and operations. 

The measure of any new model, ultimately, is whether or not it provides superior results 

compared to existing ones. Several papers have now demonstrated the utility in time-series 

prediction, due to its power in capturing approximately periodic behaviour [25, 54, 55]. However, 

other papers demonstrate the power of complex fuzzy sets in time-series forecasting from a 

different point of view; they took advantages of two-dimensional membership degree in the 

complex fuzzy sets to obtain more information about a system in order to forecast it better [27, 48, 

56, 57]. Moreover, function approximation, image restoration and knowledge discovery have all 

been efficiently accomplished using CFS-based algorithms [18, 26, 58-60]. CFS have also been 

employed as a very natural mechanism for modeling bivariate time-series; this is known as the 

dual-output property [26] [48]. Tamir et al. showed that events with fuzzy cyclic behavior, such as 

the stock market, can be captured by pure complex fuzzy sets [20].  Yager demonstrated an 

application of Pythagorean membership grade in multi-criteria decision making [21, 22]. Alkouri 

et al. showed that their CAIFS are also effective in multi-criteria decision making [61]. From this 

summary, it is plain that there are indeed practical problems where CFS-based approaches have 

outperformed all other existing models.  

 

2.5.2. Operationalizations and Applications of Complex Fuzzy Sets 

[17, 25] proposed the Adaptive Neuro-Complex Fuzzy Inferential System (ANCFIS), the 

first, inductive, machine-learning realization of the complex fuzzy logic proposed by Dick [15] 
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and Ramot [2]. ANCFIS is a six-layered network based on the well-known ANFIS system 

proposed by Jang; it uses the sinusoidal membership function as defined in Equations. ( 9 ) - ( 11 

) [62]. We will study this system in detail in the Chapter 3. 

[18] proposed a different variation of ANFIS called the Complex Neuro-Fuzzy System 

(CNFS) for function approximation. The system has a 6-layer network and uses a hybrid learning 

of particle swarm optimization (PSO) and recursive least-squares estimation (RLSE). The system 

uses the basic complex fuzzy membership function introduced by Ramot et al. [1]. Consequent 

and premise parameters are updated by RLSE and PSO, respectively. [26] extended the CNFS 

proposed in [18] by using the Gaussian-type complex fuzzy set defined in Equations. ( 12 ) - ( 14 

). This paper also proposed the “dual-output property,” which refers to treating the real and 

imaginary components of the complex output (in Cartesian form) as separate variates. [59]  applied 

the CNFS proposed in [26] for adaptive image noise cancellation, and  [58] used the artificial bee 

colony (ABC) algorithm instead of PSO in the CNFS and applied it for adaptive image noise 

cancellation as well. [60] used CNFS with ABC-RLSE learning method [58] for knowledge 

discovery. 

[27] replaced PSO in the CNFS proposed by [26] with the hierarchical multi-swarm particle 

swarm optimization (HMSPSO) algorithm. That paper uses the membership function defined in 

Equations. ( 15 ) - ( 17 ). The algorithm was implemented for time-series forecasting. [57] applied 

the system proposed in [27] for financial time-series forecasting. [63] devised a new hybrid 

learning algorithm based on PSO-GA (particle swarm optimization and genetic algorithm) and 

RLSE for the CNFS proposed in [27].  [56] proposed a CNFS using the Gaussian membership 

function introduced in [27] which updates the premise and consequent parameters based on PSO-
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RLSE learning algorithm. To minimize the rulebase of CNFS, a clustering algorithm called FCM-

Based Splitting Algorithm (FBSA) is employed [64]. [48]  replaces the linear consequent function 

with an ARIMA model [56]. It took advantage of the “dual-output property” to naturally handle 

bi-variate time-series. [29] uses the membership functions defined in Equations. ( 18 ) - ( 19 ) and 

ABC-RLSE as learning method. The system is applied for adaptive image restoration. 

[28] proposed a five-layer network based on ANFIS which is called adaptive complex 

neuro-fuzzy inferential system (ACNFIS). The network updates its premise and consequent 

parameters with least square estimation (LSE) and Levenberg-Marquardt algorithm, respectively; 

the membership functions used in the network are defined in Equations. ( 20 ) - ( 22 ); they applied 

ACNFIS for function approximation. 

Ma et al. [33] developed a prediction method based on complex fuzzy sets in order to solve 

multiple periodic factor prediction problems in multisensory data fusion applications containing 

semantic uncertainty and periodicity. The method, first, represents observations of each factor by 

complex-valued membership grade; the values are assigned based on historical knowledge of the 

relationship between the factors and the event. Then the complex-valued membership grades are 

combined by the product sum aggregation proposed in the paper (Equation. ( 52 )). In the 

prediction step, a product-sum aggregation of predicted factors is calculated and compared against 

the model; the test input is labeled to match the most-similar observation from the model.   

Alkouri et al. defined linguistic variables for complex fuzzy sets by proposing different 

linguistic values for uncertainty and periodicity semantics. Linguistic hedges (as introduced by 

Zadeh [65]) were also extended to complex fuzzy sets. Hamming, Euclidean, Normalized 
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Hamming, and Normalized Euclidean distances and their boundaries were also obtained for 

complex fuzzy sets [30] . [66] introduced complex intuitionistic fuzzy soft sets which are an 

extension of intuitionistic fuzzy soft sets defined in [67]; different measurements of distance 

between these sets, and definition of entropy for them were developed based on [68]. [69] 

developed the idea of parameterized fuzzy soft sets introduced in [70] based on complex fuzzy 

sets. [71] proposed a conceptual method for modelling residential consumption utility based on 

complex fuzzy sets introduced in [1], and [72] proposed using complex fuzzy sets for modelling 

uncertainty and seasonal features of infrastructure utility consumption in data-driven forecasting 

models of regional infrastructure service demands. Finally, [73] designed a hardware 

implementation for the CFL proposed in [2]. 

Applications of pure complex fuzzy classes in disaster mitigation and management 

(DMM), and epidemical crisis prediction (ECP) were explored in  [74, 75]; as each disaster 

unfolds, there are simultaneous problems of uncertainty and severity. Complex fuzzy logic was 

proposed as a means express these two features together. Karpenko et al. studied the existence of 

a solution for the Cauchy problem for fuzzy differential equations that is defined on pure complex 

fuzzy sets [76]. 

 [77-79] applied t-norm and t-conorm operation of complex fuzzy sets to develop a 

complex-valued version of simplified fuzzy ARTMAP proposed in [78] and termed it as (CV-

SFAM). [80] studies single input rule modules (SIRMs) connected fuzzy inference model [81] 

with complex fuzzy sets and termed it as CV-SIRM model; in this model, complex fuzzy sets are 

applied in the antecedent part. [44] also did a survey on complex fuzzy sets with focus on 

axiomatic-based fuzzy logic and application of CFL. 



 

35 

 

Chapter 3 

Background 

In this chapter, we review architecture of the ANCFIS and all the other approaches we use 

to compare to our systems throughout this dissertation including adaptive neuro-fuzzy inference 

system (ANFIS), radial basis function network (RBFN), support vector regression (SVR) and 

Auto-Regressive Integrated Moving Average (ARIMA). We also study delay embedding 

techniques for univariate and multivariate time-series. Univariate and multivariate time-series used 

in this dissertation and performance evaluation criteria are introduced in Section 3.4 and 3.5. 

3.1. Approaches 

3.1.1. ANFIS 

ANFIS is a layered feed-forward network based on Takagi-Sugeno-Kang (TSK) fuzzy 

inferential system [62]. A hybrid of gradient descent and least-squares estimation is used to learn 

the network weights. Takagi-Sugeno rules have the following format: 

𝑖𝑓 𝑥 𝑖𝑠 𝐴1𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1𝑡ℎ𝑒𝑛 𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1 

𝑖𝑓 𝑥 𝑖𝑠 𝐴2𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2𝑡ℎ𝑒𝑛 𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2 

where 𝑥 and 𝑦 are input variables, 𝐴𝑖and 𝐵𝑖 are fuzzy sets, and 𝑓𝑖 is a linear function of the input 

variables. Figure 2 shows ANFIS network structure [62] : 
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Figure 2: Equivalent ANFIS [62] 

Each layer has a different transfer function, as follows: 

• Layer 1: the output of i-th node of layer 1, 𝑂1,𝑖, is defined as the membership degree of an 

input in a specific fuzzy set: 

𝑂1,𝑖 = 𝜇𝐴𝑖  ( 91 ) 

 

where 𝜇𝐴𝑖, is a membership function in one input dimension (usually we form a fuzzy partition 

of each input dimension). 

• Layer 2: This layer implements the product t-norm, giving us the firing strength of the k-th 

rule 𝑤𝑖 . 

𝑤𝑖 = 𝜇𝐴𝑖(𝑥)×𝜇𝐵𝑖(𝑦),   𝑖 = 1,… , 𝑛 

where n is number of rules. 

( 92 ) 

• Layer 3: Nodes of this layer normalize the firing strength of each rule. 

𝑤𝑖̄ =
𝑤𝑖

∑ 𝑤𝑗
𝑛
𝑗=1

, 𝑖 = 1, . . , 𝑛 

where n is number of rules. 

( 93 ) 

 

• Layer 4: This layer determines the output of each rule as a weighted linear function of the 

inputs. 

 

𝑂4,𝑖 = 𝑤𝑖̄ 𝑓𝑖 = 𝑤𝑖̄ (𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖) ( 94 ) 

where 𝑤𝑖̅̅ ̅ is the output of layer 3 and {𝑝𝑖, 𝑞𝑖, 𝑟𝑖} is the parameter set. 
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• Layer 5: This layer sums the output of each rule, yielding the network output. 

𝑂5,𝑖 = 𝑜𝑣𝑒𝑟𝑎𝑙𝑜𝑢𝑡𝑝𝑢𝑡 =∑𝑤𝑖̄ 𝑓𝑖
𝑖

=
∑ 𝑤𝑖𝑓𝑖𝑖

∑ 𝑤𝑖𝑖
 

( 95 ) 

In the network, there are two kinds of parameters that can be updated. Antecedent 

parameters (parameters of membership functions) are found in Layer 1. For example, in the 

Gaussian membership function: 

𝜇𝑖(𝑥) =
−(𝑥 − 𝑐𝑖)

2

2𝜎𝑖2
 

( 96 ) 

{𝑐𝑖, 𝜎𝑖} are updatable parameters. Consequent parameters are found in Layer 4; these are the 

coefficients of the linear consequent function {𝑝𝑖, 𝑞𝑖, 𝑟𝑖}. Jang et al. [62] determined that using 

only gradient descent in updating parameters is slow and susceptible to being trapped in local 

minima. He proposed implementing hybrid learning procedure in training network in order to 

solve the issues. Consequent parameters are updated in the forward pass by applying least square 

optimization, while membership function parameters (antecedent parameters) are updated in the 

backward pass by gradient descent. 

3.1.2. RBFN 

The Radial Basis Function Network (RBFN) is a single hidden layer neural network where 

the hidden layer has nonlinear transformation and output layer is linear: 

 ∑

x1
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Figure 3: Schematic of RBF network[83] 
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The mapping used in the network from inputs to outputs is [83]: 

𝑓𝑟(𝑥) = 𝜆0 +∑𝜆𝑖𝜑(∥ 𝑥 − 𝑐𝑖 ∥)

𝑛𝑟

𝑖=1

 
( 97 ) 

where 𝑥 ∈ 𝑅𝑛 is the input vector, 𝜑(. ) is a given function from ℝ+ to ℝ, ∥. ∥ denotes the Euclidean 

norm, 𝜆𝑖 are coefficients 0 ⩽ 𝑖 ⩽ 𝑛𝑟, 𝑐𝑖 ∈ 𝑅
𝑛 are the RBF centers, 1 ⩽ 𝑖 ⩽ 𝑛𝑟, 𝑛𝑟is the number 

of centers, and  𝜑(. ) can be a Gaussian function [83]: 

𝜑(𝑥) = 𝑒𝑥𝑝 (
−∥ 𝑥 − 𝑐𝑖 ∥

2

𝛽2
) 

( 98 ) 

where 𝛽 is the spread parameter. We use MATLAB implementation (newrb.m) in which centers 

are selected iteratively from the given data set, and least square is used to determine the weights 

[83].  

3.1.3. SVR 

Support vector regression (SVR) estimates a function from training data, 

{(𝑥1, 𝑦1),… , (𝑥𝑙, 𝑦𝑙)} ⊂ ℝ
𝑑×ℝ, as [84]: 

 

 𝑓(𝑥) = 〈𝑤, 𝑥〉 + 𝑏 ( 99 ) 

where 𝑤 ∈ ℝ𝑑 indicates weights, 𝑏 ∈ ℝ is bias, and 〈. , . 〉 is the dot product in ℝ𝑑. The aim is 

finding 𝑤 and 𝑏 such that the following constraint is satisfied [84, 85]:  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  
1

2
 ‖𝑤‖2 + 𝐶∑𝐿(𝑦(𝑖), 𝑓(𝑥(𝑖),𝑤))

𝑙

𝑖=1

 
( 100 ) 

where the first part,  ‖𝑤‖2 = 〈𝑤,𝑤〉, satisfies flatness of the function. The second part assures that 

the error between the predicted values by the linear regression, 𝑓(𝑥), and actual ones is not more 

than 𝜀, a user-defined parameter. 𝐶 > 0 is also a user-defined parameter, and 𝑦(𝑖) is the desired 
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value. 𝐿(. ) is a loss function defined as [85]. We use the e1071 implementation of SVR in the R 

environment [86].  

3.1.4. ARIMA 

The Auto-Regressive Integrated Moving Average (ARIMA) model is a combination of two 

models: the moving average and the autoregressive models, along with differencing of the data for 

stationarity.  An Autoregressive model of order p,  AR(𝑝), is defined as [87]. 

 

𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 +⋯+ 𝜙𝑝𝑦𝑡−𝑝 + 𝑒𝑡 ( 101 ) 

where 𝑒𝑡 is white noise, c is a constant, and 𝜙𝑖 , 𝑖 = 1,2, … , 𝑝, are parameters of the model. AR(𝑝) 

is a linear regression of p past values of the time-series. Moving average of order q, MA(𝑞), is 

defined as [88]: 

𝑦𝑡 = 𝑐 + 𝑒𝑡 + 𝜃1𝑒𝑡−1 +⋯+ 𝜃𝑞𝑒𝑡−𝑞 ( 102 ) 

where c is a constant, 𝑒𝑡−𝑞 is the one-step forecast error for qth past value, and 𝜃𝑖 , 𝑖 = 1,2, … , 𝑞 

indicate parameters of the MA model. The ARIMA (p,d,q) model is given by [87]: 

(1 − 𝜙1𝐵 −⋯− 𝜙𝑝𝐵
𝑝)(1 − 𝐵)𝑑𝑦𝑡 = 𝑐 + (1 + 𝜃1𝐵 +⋯+ 𝜃𝑞𝐵

𝑞)𝑒𝑡 ( 103 ) 

where 𝑑 is the order of differencing, and 𝐵 is the backshift operator defined as 𝐵𝑘𝑦𝑡 = 𝑦𝑡−𝑘. 

3.1.5. ARFIMA 

ARFIMA (Autoregressive Fractionally Integrated Moving Average) is a generalization of 

the ARIMA (Autoregressive Integrated Moving Average) model. An ARIMA (p,d,q) model can 

be represented as: 

(1 − ∑ 𝛼𝑖𝐿
𝑖𝑝

𝑖=1 ). (1 − 𝐿)𝑑𝑋𝑡 = (1 + ∑ 𝛽𝑖𝐿
𝑖𝑞

𝑗=1 ). 𝜀𝑡  ( 104 ) 
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where p is the order of the auto-regression part of the model, αi is the auto-regression coefficient 

of the i-th lag, L is the lag operator, d is the order of differencing, Xt is the t-th element of a time-

series, q is the order of the moving-average portion of the model, βi is the moving-average 

coefficient of the i-th lag, and t is the t-th error term; errors are assumed to be independent, 

identically distributed random variables drawn from a zero-mean normal distribution [89]. In the 

ARIMA model, p, d, and q are integers, but in ARFIMA model, d is allowed to take non-integer 

values [90]. This makes ARFIMA models particularly useful for self-similar time-series, as the 

parameter d is directly related to the well-known Hurst parameter, which quantifies self-similarity. 

3.2. ANCFIS 

[17, 25] proposed the first inductive machine learning realization of the complex fuzzy 

logic proposed by Dick [15] and Ramot [2]. The ANCFIS architecture is a relative of Jang’s well-

known ANFIS [62]. The main differences are 1) ANCFIS uses a sinusoidal membership function 

as follows: 

𝑟(𝜃) = 𝑑𝑠𝑖𝑛(𝑎(𝜃 = 𝑥) + 𝑏) + 𝑐 ( 105 ) 

where 𝑟(𝜃) is amplitude and 𝜃 is the phase of the membership grade of element x; 2) an additional 

layer implements rule interference, inspired by Ramot’s vector aggregation (Equation. ( 51)) [2]; 

3) network signals are complex-valued up through this rule interference layer; 4) the learning 

algorithm incorporates a derivative-free optimization component.  

 

Figure 4: Two-rule ANCFIS architecture for univariate time-series problems [25] 
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As suggested by Dick [15], one possible application of complex fuzzy logic is capturing 

approximately periodic behaviour of phenomena; [25] suggested that time-series forecasting is a 

good example of such behaviours. Thus, sinusoidal functions are candidate complex fuzzy 

membership functions since a periodic function can be presented by a Fourier series, i.e. a sum of 

sin and cosine functions. In Equation. ( 105 ), the four parameters {𝑎, 𝑏, 𝑐, 𝑑} act as follows: 𝑎 

changes the frequency of the sine wave, 𝑏 gives a phase shift whereas 𝑐 shifts the wave vertically, 

and 𝑑 changes the amplitude of the sine wave. Since the amplitude of complex fuzzy memberships 

is limited to [0,1], the parameters must satisfy the following conditions: 

0 ⩽ 𝑑 + 𝑐 ⩽ 1,       1 ⩾ 𝑐 ⩾ 𝑑 ⩾ 0 ( 106 ) 

The use of a sinusoidal CFS in ANCFIS also implies an important operational difference 

between ANCFIS and ANFIS (and indeed most other machine learning algorithms). In using 

ANFIS and other algorithms for time-series forecasting, input vectors containing lagged values of 

a variate are presented to the network to predict next value of the variate. The components of the 

input vectors are considered orthogonal; thus to predict 𝑓(𝑡), the components 𝑓(𝑡 − 1), 𝑓(𝑡 −

2),… , 𝑓(𝑡 − 𝑛) of an input vector are presented as separate inputs to the system. However, this 

cannot work in ANCFIS, because matching a sinusoidal membership function to an observation 

requires that we keep the phase information in our inputs. Orthogonal lagged inputs destroy this 

phase information by definition. Instead, in ANCFIS, we take a sliding window of the variate as a 

single input, [𝑓(𝑡 − 1), 𝑓(𝑡 − 2),… , 𝑓(𝑡 − 𝑛)], and then match that window to the membership 

functions. This implies that ANCFIS requires only a single input for each variate of a time-series, 

whereas systems using a lagged input require 


n

i

ir
1

 inputs, where ri is the number of lags for a 
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given variate, and n is the number of variates. Thus, ANCFIS significantly reduces the 

combinatorial explosion inherent in time-series forecasting. [25]. 

The ANCFIS architecture has 6 layers as follows [25]: 

• Layer 1: In this layer, the input vector is convolved with the membership function. First, the 

membership function is sampled over one period by: 

𝑟𝑘(𝜃𝑘) = 𝑑𝑠𝑖𝑛(𝑎𝜃𝑘 + 𝑏) + 𝑐,   𝜃𝑘 =
2𝜋

𝑛
𝑘, 

𝑘 = 1,2, . . . , 𝑛 

( 107 ) 

where n is the length of the input vector. Then, the sampled membership functions are convolved 

with the input vector: 

𝑐𝑜𝑛𝑣 = ∑ ∑ 𝑓(𝑗)𝑔(𝑘 + 1 − 𝑗)

min (𝑘,𝑛)

𝑗=max (1,𝑘+1−𝑛)

2𝑛−1

𝑘=1

 ( 108 ) 

where 𝑓(. ) is the input vector, and 𝑔(. ) is the sampled membership function (in Cartesian 

coordinates). To ensure that the convolution sum remains within the unit disc, it is normalized 

using the Eliot function: 

𝑂1,𝑖 =
𝑐𝑜𝑛𝑣

1 + |𝑐𝑜𝑛𝑣|
 ( 109 ) 

• Layer 2: In this layer, the firing strength of a fuzzy rule is calculated: 

𝑂2,𝑖 =∏𝑂1.𝑖
𝑖

, 𝑖 = 1,2, . . . , |𝑂1| ( 110 ) 

where |𝑂1| is the number of nodes in layer 1. For univariate time-series, neurons in this layer 

reduce to identity function. 

• Layer 3: The output of each node represents the normalized firing strength of a rule 
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𝑂3,𝑖 = 𝑤𝑖̄ =
𝑤𝑖

∑ |𝑤𝑗|
|𝑂2|
𝑗=1

,   𝑖 = 1,2, . . . , |𝑂2| ( 111 ) 

where |𝑂2|is the number of rules. This layer only normalizes the magnitude whereas phases are 

unchanged. 

• Layer 4: This layer realizes the property of “rule interference” from [2], using the dot product.  

𝑂4,𝑖 = 𝑤𝑖
𝐷𝑃 = 𝑤𝑖̄ ∙∑𝑤𝑖̄

|𝑂3|

𝑖=1

 ( 112 ) 

where |𝑂3| is the number of nodes in layer 3 and ∑ 𝑤𝑖̄
|𝑂3|
𝑖=1  is the complex sum. Both constructive 

and destructive interference are possible. 

• Layer 5: This layer implements the linear consequent function: 

𝑂5,𝑖 = 𝑤𝑖
𝑆 = 𝑤𝑖

𝐷𝑃 [∑𝑝𝑖,𝑗𝑥𝑗

𝑛

𝑗=1

+ 𝑟𝑖] ( 113 ) 

where 𝑤𝑖
𝐷𝑃 is the output of layer 4, 𝑥𝑗 is the jth data point if the input vector, n is the length of 

the input vector, and 𝑝𝑖,𝑗, 𝑟𝑖 are the parameters of a linear function of xj. {𝑝𝑖,𝑗 , 𝑟𝑖} are obtained 

in the forward pass by least squares estimation. 

• Layer 6: This layer sums all incoming signals.  

𝑂6,𝑖 =∑𝑤𝑖
𝑆

𝑁

𝑖=1

 

( 114 ) 

Where N is number of rules. 

As the network signals in ANCFIS are complex-valued, the backward-pass computations 

in the network must also be different from ANFIS. Like ANFIS, ANCFIS uses a hybrid learning 

rule where consequent parameters are updated on the forward pass, and antecedent parameters on 
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the backward pass. Indeed, as network signals are real-valued at the consequent layer (layer 5 in 

ANCFIS), we employ the same least-squares algorithm as ANFIS. However, the backward pass 

requires back-propagation of complex-valued signals; and ultimately there is no closed-form 

expression for the partial derivative of network error with respect to the CFS parameters in 

Equation. ( 105 ). As described in [25], we use gradient descent to determine the back-propagating 

error signals until Layer 1, and then use a derivative-free optimization technique (a variant of 

simulated annealing) to determine the update to the CFS parameters. This technique is Variable 

Neighbourhood Chaotic Simulated Annealing (VNCSA) algorithm. In chaotic simulated annealing 

(CSA), the generation of new candidate solutions is governed by a chaotic map instead of a random 

number generator. This potentially makes the algorithm faster, as we only search a fractal subset 

of the total solution space. 

Calculating the partial derivatives of the membership parameters is done in two steps. First, 

the derivatives from 𝑂1,𝑖 to the sampled membership functions, 𝑔(. ) in Equation. ( 108 ) is 

calculated: 

∂𝑂1,𝑗𝑖

∂𝑔(𝑘)
        𝑘 = 1,2, . . , 𝑛 ( 115 ) 

where n is the number of samples. Updates for the samples, 𝑔(𝑘), are calculated as: 

𝑔(𝑘)𝑛𝑒𝑤 = 𝑔(𝑘)𝑜𝑙𝑑 − 𝜂
𝜕𝐸

𝜕𝑔(𝑘)
 ( 116 ) 

where 
𝜕𝐸

𝜕𝑔(𝑘)
 is gradient descent of error with respect to the sampled membership functions, and 𝜂 

is the learning rate parameter. Then, the updated samples 𝑔(𝑘)𝑛𝑒𝑤 are given as input to VNCSA 

to obtain the parameters {𝑎, 𝑏, 𝑐, 𝑑} based on the following optimization function: 
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𝐸(𝑎, 𝑏, 𝑐, 𝑑) = ∑[𝑚𝑎𝑔(𝑔(𝑘)𝑛𝑒𝑤)𝑚

𝑟

𝑚=1

− (𝑑 ∗ sin(𝑎 ∗ 𝑝ℎ𝑎𝑠𝑒(𝑔(𝑘)𝑛𝑒𝑤)𝑚 + 𝑏) + 𝑐)]
2 

( 117 ) 

where r is the number of sampled membership functions, and  𝑚𝑎𝑔(𝑔(𝑘)𝑛𝑒𝑤)𝑚 and 

𝑝ℎ𝑎𝑠𝑒(𝑔(𝑘)𝑛𝑒𝑤)𝑚 are the amplitude and phase of the m-th updated sample. 

VNCSA is a chaotic simulated annealing algorithm; like other algorithms in this class, its 

goal is to reduce the size of a search space by limiting the search to a fractal subset of the space. 

This is accomplished by replacing random number generation in classic simulated annealing with 

chaotic maps (which are deterministic but highly irregular functions). VNCSA is initialized using 

the logistic map [25]: 

𝑥𝑖,𝑗+1 = 4×𝑥𝑖,𝑗×(1 − 𝑥𝑖,𝑗) 

𝑥𝑖,𝑗 = 𝑥𝑖,𝑗+1        𝑖 = 1,2,3,4 

( 118 ) 

where 𝑖 is the number of variables in the objective function (Equation. ( 117 )), and 𝑗 is the number 

of iterations of the logistic map. The initial population is constrained to lie within the lower and 

upper bound of the variables as: 

𝑆𝑖,𝑗+1 = 𝑓𝑖 + (𝑘𝑖 − 𝑓𝑖)×𝑥𝑖,𝑗+1 ( 119 ) 

where 𝑓𝑖 and 𝑘𝑖 are the lower and upper bound, respectively. 

After initialization, at each temperature in the annealing schedule [82], 𝐿𝑚𝑎𝑥 iterations of 

the following process are performed: 

An Ulam-von Neumann map is used to generate candidate solutions based on the initial population 

as: 

𝑆𝑖𝑗+1
𝑛𝑒𝑤 = 𝑆𝑖

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝐷𝑖𝑦𝑖,𝑗+1 ( 120 ) 

where 𝑆𝑖
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is updated by  𝑆𝑖𝑗+1

𝑛𝑒𝑤 based on simulated annealing (SA).  𝑖 = 1,2,3,4 is the number 

of variables in the objective function, 𝑗 = 1,2, … ,𝑀 is iterations of the Ulam-von Neumann map 
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and 𝑆𝑖
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is initialized to the initial population.  𝑦𝑖,𝑗 is the random numbers generated by the 

Ulam-von Neumann map and 𝐷𝑖 is the neighbourhood defined  as 

𝑦𝑖,𝑗+1 = 1 − 2𝑦𝑖,𝑗
2 

𝑦𝑖,𝑗 = 𝑦𝑖,𝑗+1 

( 121 ) 

𝐷𝑖 = 0.1×(𝑘𝑖 − 𝑓𝑖) ( 122 ) 

After the 𝐿𝑚𝑎𝑥×𝑀 iterations, the neighborhood and the temperature are updated as below, 

respectively,  

𝐷𝑖
𝑛𝑒𝑤 = (1 − 𝛼)𝐷𝑖

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝛼𝜔𝑅𝑖 ( 123 ) 

where 𝑅𝑖 is the magnitude of the successful change made to the i-th variable, 𝛼 is the damping 

constant controlling the rate at which information from 𝑅𝑖 is folded into 𝐷𝑖 with weighting 𝜔. 

𝑇𝑘+1 = 𝑇𝑘𝛽     0 < 𝛽 < 1 ( 124 ) 

where 𝛽 is a constant factor used to lower the temperature in each of the iterations. 

 

3.3. Delay Embedding of a Time-series 

A variety of authors have employed machine learning for time-series forecasting, e.g. [91-

95]. All of these works share a common assumption: that the time-series is deterministic. 

Specifically, this means that evolution of the system observed to collect the time-series follows a 

single trajectory in state space, and knowledge of the past trajectory and current state allow the 

next state to be uniquely determined; each trajectory corresponds to one evolution of the system 

based on a given initial state. However, the given time-series does not provide information about 

either the system or the state space, but is merely a sequence of observations based on the system’s 

evolution. Thus, to forecast time-series, we need a method to reconstruct the state space by using 

data points in the time-series [96]. 
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Delay embedding is a common technique applied on a time-series to obtain delay vectors 

of it; each delay vector is a lagged representation of the time-series where the dimension and delay 

refer to the number of the previous observations in the vector, and the number of actual 

observations occurring between successive components of a delay vector. Each of the delay 

vectors is a point in a reconstructed state space.  According to Takens’ theorem [96],  if the selected 

dimension is appropriate, the state space constructed by the delay vectors is equivalent to the 

original state space of the time-series, meaning that prediction of the time-series from a trajectory 

in the reconstructed state space is possible.  

Delay vectors in a univariate time-series have the form [97] 

Sm = (sm−(n−1)τ, sm−(n−2)τ, … , sm) ( 125 ) 

where 𝑆𝑚 is a delay vector, whose most recent component is the m-th element of the time-series 

Sm, si is the i-th element of the time-series, and the delay vector contains n components, each 

separated by -1 elements in the time-series. 

Taken’s embedding theorem does not, however, provide a constructive method for 

determining the parameters n and ; instead we need to use heuristics to determine adequate values 

for both parameters. Mathematically, embeddings with different  are equivalent to each other; 

however, in real-world data, the choice of the delay parameter has a significant influence on the 

utility of an embedding. Small values of  generally lead to higher correlations between 

observations in each delay vector; and thus the distribution of delay vectors (and hence the 

apparent state-space trajectory) tend to be concentrated in a small region of the embedding space, 

potentially obscuring important features of the trajectory. On the other hand, large values of  tend 

to make observations in a delay vector poorly correlated. This tends to result in the delay vectors 
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becoming a weakly differentiated cloud of points, with little apparent structure.   For univariate 

data sets, commonly-used heuristics for determining the delay  include the first zero of the 

autocorrelation function, or the first minimum of the time-delayed mutual information function 

[96]. Equations. ( 126 ) - ( 127 ) show autocorrelation function and time delayed mutual 

information, respectively [96]: 

𝑐𝜏 =
1

𝜎2
〈(𝑠𝑛 − 〈𝑠〉)(𝑠𝑛−𝜏 − 〈𝑠〉)〉 

( 126 ) 

 
where 𝑐𝜏 is the autocorrelation between values of 𝑠𝑛 and 𝑠𝑛−𝜏 where there is a time lag of  𝜏 

between them. 〈. 〉 indicates average over time, and 𝜎2 denotes the variance. 

𝐼(𝜏) =∑𝑝𝑖𝑗(𝜏) ln 𝑝𝑖𝑗(𝜏)

𝑖,𝑗

− 2∑𝑝𝑖 ln 𝑝𝑖
𝑖

 ( 127 ) 

 

where 𝐼(𝜏) is the mutual information between 𝑠𝑛 and 𝑠𝑛−𝜏. By considering histogram of 𝑠𝑛, 𝑝𝑖 is 

the probability that 𝑠𝑛 has value in the ith interval, and 𝑝𝑖𝑗 is the joint probability that 𝑠𝑛 has value 

in the ith interval and 𝑠𝑛−𝜏 has values in the jth interval. 

Kennel et.al [98] proposed applying the false nearest neighbors technique to determine 

dimension for univariate time-series. The idea is that if a delay vector is mapped to a neighborhood 

in the embedding space, its one-step-ahead evolution is also mapped to the one-step-ahead 

evolution of that neighborhood. If not, then that point only seemed to fall in the neighborhood due 

to unresolved projections of the true embedding space (it is a “false neighbor”). The Euclidean 

distance between one delay vector and its rth nearest neighbor in the embedding space of 

dimension m is given by [98]: 

𝑅𝑑
2(𝑛, 𝑟) = ∑[𝑠𝑛−𝑘𝜏 − 𝑠𝑛−𝑘𝜏

𝑟 ]2
𝑚−1

𝑘=0

 
( 128 ) 
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where 𝑅𝑑 is the Euclidean distance, and 𝑠𝑛−𝑘𝜏 are elements of the delay vector in the embedding 

space. When the dimension of the embedding space increases to m+1, the delay vectors have one 

more coordinate which is 𝑠𝑛−𝑚𝜏. The Euclidean distance between the delay vectors in the new 

embedding space is calculated as [98]: 

𝑅𝑑+1
2 (𝑛, 𝑟) = 𝑅𝑑

2(𝑛, 𝑟) + [𝑠𝑛−𝑚𝜏 − 𝑠𝑛−𝑚𝜏
𝑟 ]2 ( 129 ) 

 

Thus the false nearest neighbor method can be stated as the following criterion [98]: 

|𝑠𝑛−𝑚𝜏 − 𝑠𝑛−𝑚𝜏
𝑟 |

𝑅𝑑(𝑛, 𝑟)
> 𝑅𝑡𝑜𝑙 

( 130 ) 

 

where 𝑅𝑡𝑜𝑙 is a threshold. That means increasing the embedding dimensionality must not increase 

the distance between two neighbors more than the given threshold. The estimated number of 

dimensions is determined by plotting the fraction of false nearest neighbors in the data set against 

the number of dimensions, for several different values of the threshold Rtol. When all of the curves 

saturate at a low value, we consider that to be the best estimate of the necessary embedding 

dimensionality for the data set. 

Delay vectors of an M-variate time-series with length of N, 𝑋1, 𝑋2, . . . , 𝑋𝑁 where 𝑋𝑖 =

(𝑥1,𝑖, 𝑥2,𝑖, . . . , 𝑥𝑀,𝑖) , are given by [99]: 

𝑉𝑛 = 

( 𝑥1,𝑛, 𝑥1,𝑛−𝜏1 , … , 𝑥1,𝑛−(𝑑1−1)𝜏1 ,
𝑥2,𝑛, 𝑥2,𝑛−𝜏2 , … , 𝑥2,𝑛−(𝑑2−1)𝜏2 ,. . . … ,

𝑥𝑀,𝑛, 𝑥𝑀,𝑛−𝜏𝑀 , … , 𝑥𝑀,𝑛−(𝑑𝑀−1)𝜏𝑀)

 ( 131 ) 

where Vn is the delay vector having = (𝑥1,𝑛, 𝑥2,𝑛, . . . , 𝑥𝑀,𝑛) as its most recent components from 

each variate, and the i-th variate has delay 𝜏𝑖 and dimension 𝑑𝑖  (𝑖 = 1, 2, … ,𝑀), respectively. In 

other words, the delay vector for a multivariate time-series is formed by concatenating delay 

embeddings for each variate together. The same heuristics for the delays 𝜏𝑖 from univariate time-



 

50 

 

series analysis are applied to each variate separately [99-101]. However, the dimensionality of the 

variates is perhaps better determined together. Cao et.al  [99] proposed a nearest neighbor predictor 

to find dimensions, 𝑑𝑖,  for a multivariate time-series. First, for a given set of dimensions and 

delays for each delay vector,  (𝜏𝑖, 𝑑𝑖     𝑖 = 1,2, … ,𝑀), its nearest neighbors are determined using 

the Euclidean norm; second, their one-step prediction error is calculated. Then, the set of 

dimensions with the lowest prediction error is used as the embedding dimension. As we employ 

the KD-tree algorithm for finding nearest neighbors, we refer to Cao’s method as “KDD” hereafter.  

To obtain dimension for univariate time-series, we use TISEAN software package [102]. 

Dimension for multivariate time-series is calculated using Ruby code we have developed. Delay 

for both univariate and multivariate are calculated by Tisean. 

 

3.4. Time-series 

To divide time-series to training set and testing set, we follow a chronologically ordered 

single-split design in which observations in the training set occur earlier that those ones in the 

testing set. 

3.4.1. Univariate Time-series 

3.4.1.1. Solar Power Data Set 

This data set was created in [55], as very few solar-power data sets are publicly available. 

It was developed from a public data set recording air temperature (℃) and total solar radiation 

(W/m^2) measured every one minute from May 30, 2008 to August 12, 2012 at the Lowry Range 

Solar Station. Total solar radiation is the sum of direct irradiance, diffuse irradiance, and ground-
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reflected radiation, and is measured by a LICOR LI-200 Pyranometer mounted 7 feet above ground 

level on a Rotating Shadow Band Radiometer (RSR). Air temperature is measured by a 

thermometer mounted 5 feet above ground level inside a naturally aspirated radiation shield [103]. 

These two measurements are the principal variables affecting power output from a photovoltaic 

cell; we convert them to an estimated power output using the model proposed in [104], following 

the specifications of a Photowatt PW 2650-24V panel. The result is a new time-series recording 

solar-power production at one-minute intervals over a period of five years, giving over two million 

observations, 22122520 observations. For our experiments in this dissertation, we use data from 

July 31, 2012 to August 13, 2012, giving us 20000 measurements. The data set is split to 2/3 and 

1/3 for training and testing set, respectively. 

3.4.1.2. Santa Fe Laser A Data Set 

The Santa Fe time-series forecasting competition held in 1991 has left us six data sets for 

use as benchmarks. The “Laser A” data set is frequently used, as it also exhibits chaotic behavior. 

This data set records the amplitude of an 81.5-micron 14NH3 cw (FIR) laser being controlled by 

the Lorenz system of equations for modeling turbulent flow; with appropriate choices of 

parameters, the Lorenz system is also chaotic. The data set has 1000 data points; we normalize it 

to the range of [0,1] and consider the first 900 data points as the training set, and the last 100 as 

the testing set 

3.4.1.3. Stellar Data Set 

This data set is also made up of observations of a physical system. The time-series records 

the daily observed brightness of a variable star on 600 successive midnights. We normalize the 
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data points to the range of [0 1] and consider the first 480 night measurements as the training set, 

and the remainder form the testing set. 

3.4.1.4. Mackey-Glass Data Set 

This data set is a realization of the Mackey-Glass differential equation, a frequently-used 

benchmark for testing time-series forecasting algorithms. The equation is given by [62]: 

ẋ(t) =
0.2x(t − δ)

1 + x10(t − δ)
− 0.1x(t) ( 132 ) 

This equation is useful because it exhibits chaotic behavior for appropriate choices of the parameter 

. In particular, we follow the design in [62], where 1000 data points are generated for 124 < t <

1123 and then normalized to the range of [0,1] with x(0) = 1.2, τ = 17, and the time step = 0.1. 

The first 500 data points are used as the training set and the remaining data points as the testing 

set. 

3.4.1.5. Sunspot Data Set 

This data set consists of observations of a physical system: it is the average number of 

sunspots observed for each day in a calendar year, recorded from 1700-1979 (280 observations) 

[105]. We normalize the time-series to the range of [0 1] and consider the first 220 year 

measurements, years 1700-1920, as the training set and the remaining points as the testing set. 

3.4.1.6. Wave Data Set 

This data set also records observations of a physical system, but this time in a laboratory 

setting. The time-series measures the oscillation of a cylinder suspended in a tank of water every 

0.15 s. There are a total of 320 data points of which the first 256 data points form the training set 

and the last 64 points are the testing set. 
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3.4.1.7. Software Reliability Growth Time-series 

We study four univariate software reliability growth data sets. The time-series originally 

contain bug reports; however, we have converted them to interfailure times data sets in [10]. The 

time-series normalized to the range of [0 1] and split to 2/3 and 1/3 as training and testing sets, 

respectively. 

3.4.1.7.1. Mozilla Data Set 

Mozilla time-series was derived from the Bugzilla defect-tracking database used by the 

Mozilla project. The time-series has 86,077 data points recording bug reports from1999 to 2003 

which gives 57,385 data points as training and 28,692 data points as testing set. 

3.4.1.7.2. Android Data Set 

Android time-series was extracted from bug reports and changes of 2012 Mining Software 

Repositories Challenge data set which has 20,168 data points. 13,457 data points are in the training 

set and 6,729 data points as the testing set. 

3.4.1.7.3. ODC1 & ODC4 Data Sets 

ODC1 and ODC4 are interfailure times data sets that we develop based on bug reports 

collected by IBM Corporation during their Orthogonal Defect Classification project. ODC1 and 

ODC4 have 1207 and 2008 bug reports, respectively [106]. ODC1 has 805 data points in the 

training set and 402 data points in the testing set. Training and testing sets in ODC4 have 1339 and 

669 data points, respectively. 
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3.4.2. Multivariate Time-series 

3.4.2.1. Motel Data Set 

This bivariate time-series contains monthly records of occupancy of hotels, motels and 

guest room in Victoria, Australia over the period Jan 1980- June 1995 (186 data points) [107]. Its 

variates show the total number of room nights occupied and total revenues (thousands of dollars). 

We split the time-series into 2/3 and 1/3 for training and testing set giving 124 data points in the 

training and 62 data points in the testing sets and normalize them to the range of [0,1]. 

3.4.2.2. Precipitation Data Set 

This trivariate time-series records the monthly precipitation of the east, middle and west 

regions of the state of Tennessee from 1895-1929 (420 data points) [108]. We consider data from 

Jan 1895 to Dec 1924 as the training set (360 data points) and data from Jan 1925 to Dec 1929 (60 

data points) as the testing set and normalize them to the range of [0,1];  this split is same as [109] 

in order to compare their results. 

3.4.2.3. Flour Data Set 

This multivariate time-series has three variates recording the monthly average flour price 

for commodity exchanges in Buffalo, NY, USA, Minneapolis, MN, USA, and Kansas City, KS, 

USA over nine years, 1972-1980, (100 data points) [107]. We split the time-series into 90 data 

points in the training and 10 data points in the testing set and normalize them to the range of [0,1]; 

the split is the same as [110] in order to facilitate comparisons. 
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3.4.2.4. NASDAQ Data Set 

The NASDAQ time-series records the daily opening and closing indices of the NASDAQ 

composite index from January 3, 2007 to December 20, 2010 (1000 data points) [111]; we split 

the time-series equally giving us 500 data points in the training and 500 data point in the testing 

set. 

3.5. Performance Evaluation 

Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) statistics are used to 

compare experiment results. 

 

RMSE = √
1

𝐾
∑𝑀𝑆𝐸𝑖

𝐾

𝑖=1

 

𝑀𝑆𝐸𝑖 =
∑ (yj − yî)

2n
j=1

n
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MAE =
1

𝐾
∑𝑀𝐴𝐸𝑖

𝐾

𝑖=1

 

𝑀𝐴𝐸𝑖 =
∑ |yj − yî|
n
j=1

n
 

( 134 ) 

where K is the number of variates in the multivariate time-series and 𝑀𝑆𝐸𝑖 and 𝑀𝐴𝐸𝑖 are mean 

squared one-step-ahead error and mean absolute one-step-ahead of i-th variate with the length of 

n, where yj shows actual value and yî  is the desired value.  

3.5.1. Significant Test 

Statistical test can be used to compare machine learning algorithms statistically. Demsar 

[112] recommended using non-parametric statistical tests for statistical comparison of machine 
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learning algorithms. He suggests using the Wilcoxon signed ranks test when comparing two 

machine learning algorithms and Friedman test when comparing performances of multiple 

machine learning algorithms on multiple data sets. In this dissertation, as we compare our designed 

machine learning algorithms with various well-known algorithms and apply them on several time-

series, we use Friedman test as the statistical test. 

3.5.1.1. Friedman Test 

The Friedman statistic, S, is calculated as [113]:  

𝑆 =
12𝑛

𝑘(𝑘 + 1)
∑( 𝑅�̅� −

𝑘 + 1

2
)2

𝑘

𝑗=1

 
( 135 ) 

 

where k is the number of approaches applied on n different time-series, and 𝑅�̅� is the average rank 

of the j-th method obtained by applying the method on the n different time-series. The statistic S 

tests the null hypothesis: 𝐻0: [𝜏1 = ⋯ = 𝜏𝑘] against the alternative hypothesis: 

𝐻1: [𝜏1, … , 𝜏𝑘 𝑛𝑜𝑡 𝑎𝑙𝑙 𝑒𝑞𝑢𝑎𝑙] at the α level of significance where 𝜏𝑖 is the i-th method effect. For 

either n or k > 5, S is approximately chi-square distributed with k-1 degree of freedom if 𝐻0 is true; 

therefore, 𝐻0 is rejected if 𝑆 ≥ 𝜒𝑘−1,𝛼
2 where 𝜒𝑘−1,𝛼

2  is the upper α percentile point of a chi-square 

distribution with k-1 degrees of freedom  [113, 114]. 𝜒𝑘−1,𝛼
2  is obtained by the NSM3 package in 

the R environment [115]. 

If null hypothesis 𝐻0: [𝜏1 = ⋯ = 𝜏𝑘] is rejected, the approaches are compared together 

using the Multiple Comparisons with the Best (MCB) method [116]. The null hypothesis is defined 

as:  

𝐻0: 𝜏𝑢 = 𝜏𝑣 where 1 ≤ 𝑢 < 𝑣 ≤ 𝑘. 
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 𝐻0 is rejected if |�̅�𝑢 − �̅�𝑣|  ≥  𝑟𝛼,𝐾,𝑁 where �̅�𝑢 is the average rank of the u-th method, and for 

large-sample approximation 𝑟𝛼,𝐾,𝑁 ≈ 𝑞𝛼√
𝑘(𝑘+1)

12𝑛
  where 𝑞𝛼 is the α percentile point for the 

distribution of the range of k independent standard normal variables. 𝑞𝛼 is estimated by the NSM3 

package in R environment [115]. 
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Chapter 4 

Input Representation for ANCFIS 

ANCFIS is a neuro-fuzzy system that employs complex fuzzy sets for time-series 

forecasting. One of the particular advantages of this architecture is that each input to the network 

is a windowed segment of the time-series, rather than a single lag as in most other neural networks. 

This allows ANCFIS to predict even chaotic time-series very accurately, using a small number of 

rules. Some recent findings, however, indicate that published results on ANCFIS are sub-optimal; 

they could be improved by changing how we define an input window, or even using sub-sampled 

windows.  

In this chapter, we compare the performance of ANCFIS using three different approaches 

to defining an input window, across six time-series data sets. These include chaotic data sets and 

time-series up to 20,000 observations in length. 

4.1. Introduction  

Time-series forecasting has emerged as the first major application of complex fuzzy sets 

and logic, which were first described by Ramot in [1]. Beginning in 2007, complex-valued neuro-

fuzzy systems were developed to inductively learn forecasting models; these include the ANCFIS 

architecture [25], and the family of Complex Neuro-Fuzzy System (CNFS) architectures [18]. 

Both ANCFIS and CNFS are modifications of the well-known ANFIS architecture, in which 

complex fuzzy sets and complex-valued network signals are used. These architectures showed that 

complex fuzzy sets were naturally useful in creating very accurate forecasting models. ANCFIS 
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in particular is also very parsimonious; experiments in [25] showed that this architecture could 

forecast even chaotic systems with no more than three complex fuzzy rules.  

One of the key reasons why ANCFIS is so parsimonious is its input format. Most generic 

machine learning algorithms must use lagged inputs in order to create a forecasting model. While 

this approach is mathematically sound, it means that the number of inputs to the learning algorithm 

has to be equal to the number of lags required to reconstruct the state space of the system that 

generated the time-series (i.e. to form a delay reconstruction in the sense of Takens [96]). This 

directly leads to a combinatorial explosion in the complexity of the model. However, due to the 

nature of complex fuzzy sets, ANCFIS does not use lagged inputs; rather, an entire windowed 

segment of the time-series is taken as a single input to the network, greatly reducing the curse of 

dimensionality. Recent experiments reported in [55] indicated that we might be able to further 

improve the accuracy of ANCFIS by sub-sampling the input windows. This is possible because in 

ANCFIS, we use sinusoidal membership functions for the complex fuzzy sets, which are sampled 

and convolved with the input window. Sub-sampling the input window simply implies that we also 

sample the complex fuzzy sets at a lower rate. Our goal in the current chapter is to determine if 

such sub-sampling generally leads to improved accuracy, or if this was a data set-specific effect. 

We compare the forecast accuracy of ANCFIS using three different approaches to 

identifying and sampling input windows on six time-series data sets. Two of these (a realization 

of the Mackey-Glass map, and the Santa Fe Laser A data set) are known to be chaotic; the 

remainder are observations of physical processes (sunspots, stellar brightness, waves, solar power 

production). All but the last one have been previously studied in the forecasting community and 

in [25]; the solar power data set was developed in our laboratory, and is discussed in depth in [55]. 

In [25] the length of the input windows for each of the five data sets was set at one “period” in the 
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data set, as determined by ad-hoc inspection. We additionally explore the use of heuristics from 

[96] to construct two different delay embeddings of the time-series: one with an “optimal” delay 

between each lag, and one with the delays between each lag fixed at one. These input lags are 

concatenated together in chronological order to form our input windows. 

4.2. Methodology 

4.2.1.  Experimental Design 

The goal of this section is to evaluate alternative time-series representations in forecasting 

with ANCFIS. We explore three different approaches for setting the length of the input windows 

and sub-sampling them. The first is the approach used in [25], the second is the delay embedding 

technique from section 3.3, and the third is a hybrid of the two. Specifically: 

• Method 1 is to make an ad-hoc determination of the length of one “period” in the data set. The 

input window is set to this length, and is not sub-sampled. As this method was used in [25] for 

five of the six data sets, we will use the same period lengths as in that paper. For the sixth data 

set (solar power forecasting) the length of a period is clearly 1 day (see our discussion in 

Section 4.2.1.1 for further details). 

• Method 2 is to form a delay embedding, relying on the heuristics from Section 3.3 to guide our 

selection of the embedding dimensionality and delay. We will use the mutual-information 

heuristic to select the delay, and the false-nearest-neighbors technique to select the 

dimensionality. We can consider this a sub-sampling of an input window; for dimensionality 

m and delay , we select every -th sample from an input window of length ((m + 1)  ) + 1. 
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• Method 3 is to assume that the delay is always equal to 1, and to employ the false-nearest-

neighbors technique for selecting the embedding dimensionality under that assumption. This 

will mean that the input window is again not sub-sampled.    

The embedding dimension and delay are determined from the training set only, and are 

then applied to both the training and testing sets. The results of the three input representations 

are compared in terms of RMSE. 

4.2.1.1.Solar Power Data Set Representation 

In this data set discussed in Section 3.4.1.1, the length of one period is clearly one day, or 

1440 observations. When we attempted to take this entire period as an input window for the method 

1, we found that the computation time is infeasibly long on our computer system (Intel(R) Core™ 

2 Duo CPU E8400 @ 3.00GHz, 4GB of memory). We were thus forced to sub-sample this 

window; we take every tenth measurement, giving us 144 observations, which we concatenate 

together in chronological order. For Method 2, we plot the mutual information statistic versus 

delay in Figure 5. The first minimum of the curve occurs at  = 370, and so we adopt this value as 

our delay parameter. With this delay, the false-nearest-neighbour plot is given in Figure 6. For all 

values of 𝑅𝑡𝑜𝑙 examined (see Equation. ( 130 )), the curves saturate at m = 12, and so we adopt this 

value as our embedding dimension. We can also view this input as a subsampled window of length 

(𝑚 − 1)𝜏 = 4070 data points. For Method 3, we set the delay  = 1, and re-run the false-nearest-

neighbour procedure. This time, the apparent minimum embedding dimension is 15, and so we 

adopt this as our window length. 
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Figure 5: Mutual Information versus delay 

 

Figure 6: Fraction of false nearest neighbours versus dimensionality 
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4.2.2. Experimental Results 

The following tables record the input window parameters and out-of-sample error for each 

of our input representations in Section 4.2.1, over each of the data sets described in Section 3.4.1.1 

- 3.4.1.6. Table 4 presents our results for the solar power data set. Quite plainly, in the solar power 

data set, the traditional delay embedding was superior to the down-sampled “one period” input 

window, even though the smaller dimensionality provides far fewer tunable parameters in the 

consequent layer. It was also superior to the unit-delay input window created from Method 3, even 

though Method 2 again resulted in fewer dimensions. 

Table 5 presents our results on the Mackey–Glass data set; the results for Method 1 are 

taken from [25]. Interestingly, this data set presents a completely different picture than the solar 

power data set. The traditional delay embedding gave—by two orders of magnitude—the least 

accurate predictions, even though the most accurate approach (Method 3) differed only in the delay 

length (reflecting what was stated in 3.3; all values of the delay parameter are theoretically 

equivalent, but in practice a good choice of the delay parameter can significantly impact the 

performance of a forecasting algorithm). 

Table 6 presents our results for the Santa Fe LaserA data set. This time, Method 1 appears 

to be the best, while Method 2 yields the worst results. Table 7 presents our results for the sunspot 

data set. This time, the traditional delay embedding is somewhat worse than Methods 1 and 3; 

however, the difference is not very large. In addition, Methods 1 and 3 are nearly indistinguishable 

from one another. 

Table 8 presents our results for the Stellar data set. This time, method 1 is substantially 

better than methods 2 or 3; furthermore, method 2 is slightly less accurate than method 3.   
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Table 9 presents our results for the Waves data set. Once again, method 1 proved to be the 

most accurate. However, this time method 3 was less accurate than method 2. 

Table 4: Results for the Solar Power  

Method Input Vector Design RMSE 

Dimension Delay 

1 145 10 5.293 

2 12 370 3.1057 

3 15 1 4.847 

 

Table 5: Results for the Mackey-Glass  

Method Input Vector Design RMSE 

Dimension Delay 

1 [25] 44 1 5.57e-4 

2 9 11 0.015 

3 9 1 5.29e-4 

 

Table 6: Results for Santa Fe Laser A  

 

 
Table 7: Results for Sunspot  

Method Input Vector Design RMSE 

# Lags Delay 

1 [25] 12 1 0.091 

Method Input Vector Design  

RMSE # Lags Delay 

1 [25] 8 1 0.033 

2 9 2 0.114 

3 9 1 0.067 
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2 5 4 0.103 

3 6 1 0.089 

 

Table 8: Results for Stellar  

Method Input Vector Design RMSE 

# Lags Delay 

1 [25] 27 1 7.49e-3 

2 6 7 1.4e-2 

3 6 1 1.3e-2 

 

Table 9: Results for Waves 

Method Input Vector Design RMSE 

# Lags Delay 

1 [25] 12 1 0.0032 

2 4 4 0.00866 

3 4 1 0.0104 

 

4.2.3. Discussion 

As with many other experiments in pattern recognition, our general finding is that the 

“best” input representation for ANCFIS is data set-dependent. In five of our six data sets, the 

traditional delay embedding was clearly out-performed by the window-based approaches; but in 

our single largest data set, method 2 was clearly the best. Four times, method 1 was either the best 

approach or virtually identical to method 3 and superior to method 2.  

Our findings do, however, suggest which methods seem more likely to succeed in future 

experiments. Method 3 was the better approach once, and essentially tied with method 1 on two 
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other data sets. This method also seems to lead to lower embedding dimensionalities than method 

1. This still matters in ANCFIS, even though we have reduced the combinatorial explosion of rules 

seen in other machine learning methods using orthogonal lags. A complexity analysis carried out 

in [25] indicates that the running time of both the least-squares estimate of the consequent 

parameters, and the VNCSA optimization of the CFS parameters, depend linearly on the length of 

the input vector (this explains why running ANCFIS on the full input window for the solar-power 

data set took and infeasibly long time). Thus, with method 3 often providing strong results, and 

usually resulting in a significantly smaller input window, this seems to be the most effective initial 

approach to modeling a time-series with ANCFIS. We would recommend that method 1 be tried 

next, and finally the traditional delay embedding. 

4.3. Conclusion 

In this chapter, we have explored three different approaches for representing time-series 

inputs for the ANCFIS machine-learning algorithm. We compared input windows based on an ad-

hoc determination of what constitutes one “period” in the data set; the traditional delay embedding, 

guided by the mutual-information and false-nearest-neighbour heuristics; and the use of only the 

false-nearest-neighbour heuristic, across six time-series data sets. While the “best” method appears 

to be data set-dependent, we found enough evidence that we recommend method 3 as the best 

combination of accuracy and expected computation time. 

The three different time series representation presented in this chapter are used throughout 

the rest of this dissertation to create training and testing input vectors to train and evaluate the 

machine learning algorithms designed and implemented in this dissertation. 
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Chapter 5 

Univariate Time-series Prediction by ANCFIS 

Photovoltaic power is one of the most promising renewable energy sources. However, it is 

also intermittent, and thus short-term forecasts of photovoltaic power generation are needed to 

integrate this power source into the electricity grid. Parametric models of photovoltaic power 

generation have generally not been satisfactory, creating an interest in non-parametric approaches 

such as machine learning. In this chapter, we evaluate ANCFIS algorithm in the photovoltaic 

power forecasting task. We created a new, large-scale data set based on solar irradiance and 

temperature measurements at the Lowry Range Solar Station over a period of 5 years. We then 

used a simulated solar cell to convert these readings into an instantaneous power signal; this is the 

largest publicly-available solar power data set we are aware of (Section 3.4.1.1). We then apply 

three well-known machine learning algorithms (ANFIS, RBFN and SVR discussed in sections 

3.1.1 - 3.1.3), ANCFIS (section 3.2) and ARIMA forecasting (section 3.1.4) in a one-minute-ahead 

forecasting problem. 

5.1. Introduction 

Fossil fuels are by their nature a finite and non-renewable resource. As they are also a 

principal energy source for the world, we will inevitably face major energy shortages in the future, 

unless the world transitions to other, renewable energy sources. Moreover, more than 90% of 

greenhouse gas emissions are associated with production and consumption of fossil fuels [117]. 

Renewable and clean energies such as solar, wind, biomass, and hydropower energy are promising 
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alternative energy sources (and all but biomass have been widely deployed). Solar photovoltaic 

(PV) energy production in particular has grown by 58% annually in recent years [118]. 

 PV power, however, is intermittent; the power produced by PV plants varies with the 

instantaneous solar irradiance and outside air temperature; power output will drop whenever a 

cloud passes across the sun [119]. Furthermore, PV power is zero until dawn, increases during the 

day until reaching a maximum in the afternoon, and then decreases and returns to zero at night. 

Temperature has an inverse effect on the PV power; as temperature increases, the power drops 

[120]. These characteristics are a poor fit for the power grid, in which the instantaneous power 

supply must equal the instantaneous demand. This is an advantage of fossil fuels – the output of 

fossil-fuel plants is steady and relatively easy to adjust. If a PV plant is feeding energy to the grid, 

and its production drops significantly, that deficit must be made up in real-time with only the 

briefest of delays – otherwise the grid’s protection circuits will activate, and customers could 

experience black outs [121]. Thus, in order to dispatch PV power to the electrical grid, an accurate 

prediction of PV power output is needed. 

Development of photovoltaic technologies has been lead to much research in forecasting 

PV power. There are different ways of forecasting PV power. Some studies focus on forecasting 

of wide-area solar irradiance [122-131], which can be applied in PV power forecasting.  However, 

some researches try to predict PV power directly from the time-series of past observations for a 

specific installation. [132] applied regression methods for this purpose. [121] used adaptive time-

series models for on-line forecasting of PV power. [133] used a fuzzy forecasting system which 

works based on class labels assigned to input patterns. [134] proposed an on-line method based on 

Gaussian models, while [135] applied Bayesian methods to solve the problem. [136] developed a 
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Support Vector Machine forecasting model. Increasingly, artificial neural networks are used in the 

prediction of PV power. [137] implements a recurrent neural network (RNN), [138] developed 

neural network models for PV power forecasting in sunny and cloudy days, [139] applied 

multilayer perceptrons and ANFIS, [140] used multilayer perceptron network, [141] developed an 

online PV power prediction by RBF network, and [142] implemented dynamic neural networks, 

FTDNN and DTDNN, on power output data.  [143] compares five forecasting model in prediction 

of PV power including Persistent model (PER), ARIMA, K-Nearest-Neighbors (KNN), neural 

networks and neural networks optimized with a Genetic algorithm. A review of research in this 

area may be found in [128, 144]. 

A key problem in PV power prediction study is that there is no public data set to work with. 

Most research is performed on proprietary data sets provided by private companies. For example, 

[132] employed data obtained from a photovoltaic system installed in the World Exhibition, Aichi, 

Japan in 2005. [121] was applied to data obtained during 2006 from 21 PV systems installed in 

Jutland, Denmark. [133] used data provided by an Italian private company, and [134] used data 

from a rooftop PV plant in Macau. [137] employed data from Okinawa Prefecture, Naha, Japan. 

[136] used data from a PV power plant situated in Kitakyushu, Japan. [138] used data gathered by 

Marmara University, Istanbul, Turkey during 2011. [139] used data from PV plants in the Czech 

Republic. [140] used data from PV plants installed at University of Jaén, Spain. [141] used data 

provided by PV systems installed in the Renewable Energy Research Center (RERS) of Huazhong 

University of Science and Technology (HUST), China.  [142] was applied to power output data 

from a PV plant  in MASDAR city, Abu Dhabi, U.A.E, and [143] used data from the city of 

Merced, California. None of these data sources are publicly available at this time. 
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For this chapter, we use a public-domain data set of solar irradiance and temperature. These 

two quantities are converted to PV power output by using a model presented in [104]. The resulting 

data set has over 2 million observations, sampled at a rate of once per minute. This data set is much 

larger, with a much higher sampling frequency, than the existing public-domain PV power data 

sets we are aware of. (We have made this unique data set freely available1.) In a one-minute-ahead 

forecasting experiment on a subset of this data set, the SVR algorithm was the most accurate, 

followed by ANCFIS.  

5.2. Methodology 

5.2.1. Experimental Design 

For input representation, we use delay embedding techniques discussed in Section 3.3. 

Based on the results from Section 4.2.1.1, a delay of 370 and 12 embedding dimensions is 

appropriate for the solar power data set. 

For ANFIS, RBFN and SVR, we construct (separately for the training and testing sets) new 

data sets consisting of the delay vectors, plus the one-step-ahead value of the time-series at the 

moment of those delay vectors. This latter is the dependent variable, while the 12 delay vector 

components are the independent variables. For ANCFIS, we will treat the delay vector as a single 

input window, with the one-step-ahead value again being the dependent variable. In a previous 

study [4] (see Chapter 4), this input formulation was determined to be the be the best for ANCFIS 

among three different approaches. 

                                                 
1 http://www.ualberta.ca/~yazdanba/ 
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In ANFIS, the number of rules for a complete rulebase is determined by 𝑚𝑟 where 𝑟 is 

number of data points in the input vector and m is the number of membership functions defined 

per input. Having 12 input dimensions with two membership functions each yields 212 = 4096 

rules. This is infeasible, and so we use fuzzy c-means clustering as a structure identification step. 

Training input vectors are clustered by FCM, and the centers of the clusters and membership grade 

matrix obtained by FCM are used to initialize the parameters of membership functions. We used 

MATLAB’s genfis3 function for this step, which produces Gaussian membership functions. The 

number of clusters was determined via trial-and-error exploration. 

We used MATLAB’s built-in function newrb.m to carry out our RBFN experiments.   The 

parameters explored in these experiments are the number of neurons in the hidden layer and the 

spread of each RBF. We implement SVR using the package e1071 [145] in the R environment 

[146]. The best value of 𝜀, C, and the spread of RBF kernel function are obtained by parameter 

exploration. 

For ARIMA, we work with the training and testing data obtained from splitting the data 

set with 20000 data points to 2/3 and 1/3. Our data has an apparent seasonality since it measures 

solar power per minute, which follows changes of solar power during a day; solar power is zero 

until dawn, increases during day till reaching afternoon, and then decrease and return to zero at 

night. Figure 7 shows the training data.  
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Figure 7: The training set containing solar power of 10 days 

We use the Fourier transform to capture seasonality in the time-series [147, 148]; therefore, 

the ARIMA model is designed as [149]: 

 

𝑦𝑡 = 𝑎 +∑𝑆𝑘

𝐾

𝑘=1

+ 𝑁𝑡 
( 136 ) 

where 𝑁𝑡 is a non-seasonal ARIMA model, and 𝑆𝑘 = 𝛼 sin (
2𝜋𝑘𝑡

𝑚
) + 𝛽cos (

2𝜋𝑘𝑡

𝑚
) is the Fourier 

transform. 𝐾 is a user-defined parameter determining the number of harmonics required for 

modeling the seasonality. The ARIMA model is implemented by the “forecast” package in R 

environment  [150]. Finally, the results of the five algorithms are compared in terms of RMSE.  

5.2.2. Experimental Results 

Table 10 shows the RMSE achieved by the five algorithms. The performance of the 

algorithms varies considerably, from 1.9701 for SVR to 6.8105 for RBFN. With over 6600 data 

points in the test set, the differences are all plainly statistically significant. ANCFIS is the most 
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accurate of the neural-network techniques, and the second-best overall. We examine the 

complexity of the neural-network techniques in Table 11; both ANFIS and ANCFIS performed 

well with 2 and three rules each, respectively. A much larger RBFN with 40 hidden nodes was the 

worst-performing algorithm in the entire group. The complexity of SVR and ARIMA models are 

not easily compared to neural networks, as SVR is a regression involving (usually) a large number 

of support vectors, while our ARIMA models also incorporate a Fourier transform of the data. 

Table 10: RMSE of the five algorithms 

Model RMSE 

ANCFIS 3.1057 

ANFIS 3.7101 

RBFN 6.8105 

SVR 1.9701 

ARIMA 4.822 

 

Table 11: Model Complexity for Neural Networks 

Model Complexity 

ANCFIS 3 Rules 

ANFIS 2 Rules 

RBFN 40 neurons 

5.3. Conclusion 

In this chapter, we have explored one-step-ahead forecasting in a subset of the solar power 

data set, using several different machine learning algorithms as well as ARIMA forecasting. We 

found that support vector regression was the most accurate approach on this data set, followed by 

ANCFIS.  
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The existing architecture of ANCFIS employed in this chapter has been designed for 

univariate time-series forecasting. To Apply ANCFIS for prediction of more general time series 

(e.g. multivariate time series), the architecture of ANCFIS needs to be changed. Chapter 6 extends 

the existing architecture of ANCFIS for multivariate time-series forecasting. 
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Chapter 6 

Multivariate Time-series Prediction by ANCFIS 

Multivariate time-series consist of sequential vector-valued observations of some 

phenomenon over time. Time-series forecasting (for both the univariate and the multivariate case) 

is a well-known, high-value machine learning problem, in which the goal is to predict future 

observations of the time-series based on prior ones. Several learning algorithms based on complex 

fuzzy logic have recently been shown to be very accurate and compact forecasting models. 

However, these models have only been tested on univariate and bivariate data sets. There has yet 

been no investigation of more general multivariate data sets. 

We report on the extension of the ANCFIS learning architecture to the multivariate case. 

We investigate single-input-single-output, multiple-input-single-output, and multiple-input-

multiple-output variations of the architecture, exploring their performances on four multi-variate 

time-series. We also explore modifications to the forward- and backward-pass computations in the 

architecture. We find that our best designs are superior to the published results on these data sets, 

and at least as accurate as kernel-based prediction algorithms. 

6.1. Introduction 

Time-series are observations recorded sequentially over time. Internet traffic, 

environmental sensor data, online transaction sequences and stock quotations from financial 

markets are examples of time-series. They are an important sub-category of data streams in which 

the data is not only temporally ordered, but the exact time of an observation is also recorded 

(explicitly or implicitly) [151]. Forecasting time-series is a high-value machine learning problem. 
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For example, internet traffic prediction aids network management; denial of service attacks and 

SPAM can also be detected as variations from the forecast [152, 153]. Precipitation forecasting is 

effective in water resource and drought management [154, 155]. Sales forecasts can be used to 

optimize inventory management and thus reduce costs [156, 157]. Stock market price forecasts 

can guide trading strategies covering tens of trillions of dollars’ worth of assets [158]. 

Forecasting univariate time-series (those in which each observation is a single scalar) has 

been studied extensively, with numerous statistical and machine learning algorithms having been 

proposed, e.g. [159-163]. The more general version of the problem, multivariate time-series 

forecasting (in which each observation is a multi-dimensional vector), has also received 

considerable attention. Generally speaking, collecting a multivariate time-series only makes sense 

if there is some relationship between the data items comprising each component of the observation. 

The presence of this mutual information ought to make the tasks of noise reduction and forecasting 

easier [123, 164-167]. However, each component of an observation is itself a nonlinear projection 

of a complex state space down to a single scalar, and the relations between each component can 

thus be complex. Numerous algorithms have been proposed for multivariate time-series prediction, 

e.g. [99, 101, 168-170]. 

Machine learning algorithms based on CFS&L have shown promising results in time-series 

forecasting. CFS, as introduced by Ramot et al. [1, 2] are an extension of type-1 fuzzy sets in 

which the membership grades are complex numbers (drawn from the unit disc in the complex 

plane). The ANCFIS [25] was the first machine learning algorithm based on CFS whose main 

application is univariate time-series prediction [17, 25, 55, 171]. The family of Complex Neuro-

Fuzzy System (CNFS) architectures are likewise machine learning algorithms based on CFS that 

have been applied to univariate and bivariate time-series prediction [27, 48, 56, 134] (as well as 
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other machine-learning problems, e.g. adaptive noise cancellation ); it is worth noting that CNFS 

cannot be applied to time-series with more than two variables because of its structure. Currently, 

however, no system based on CFS&L exists for general multivariate time-series prediction. 

In this chapter, we extend the ANCFIS architecture for general multivariate time-series 

forecasting. We explore three possible implementations: a set of single-input-single-output (SISO) 

networks, a set of multiple-input-single-output (MISO) networks, and a single multiple-input-

multiple-output (MIMO) network. We also investigate modifications to the forward- and 

backward-pass computations, as well as the time-series embedding techniques we employ, in order 

to further improve the forecast accuracy of our algorithms. The proposed approaches are applied 

to three time-series (having two and three variates), and their results are compared against two 

well-known machine-learning algorithms RBFN and SVR (See sections 3.1.2 and 3.1.3) and 

published forecast results on these time-series. We use the Friedman test to compare the 

performance of the different algorithms and variants across the three data sets. Finally, our MIMO 

ANCFIS design is compared against the only current complex fuzzy algorithm for bivariate 

forecasting on a fourth data set.     

6.2. Methodology 

6.2.1. Network Design 

In this section, three alternative designs for creating a multivariate ANCFIS system are 

studied, SISO ANCFIS, MISO ANCFIS and MIMO ANCFIS. In this case, “single” and “multiple” 

outputs refer to the number of variates of a time-series input to the network(s) as delay vectors, or 

the number predicted as outputs. In SISO ANCFIS, a separate univariate ANCFIS network is 

created for each variate, with the outputs of the networks concatenated into the final output vector. 



 

78 

 

In MISO ANCFIS, there is again one ANCFIS network for each variate and the outputs are treated 

the same as in SISO ANCFIS, but the input is the combined multivariate delay vector. In MIMO 

ANCFIS, only one ANCFIS network is created for the whole multivariate time-series. The input 

is the multivariate delay vector, and the network outputs the entire multivariate prediction vector. 

For example, for a two-variate time-series (x and y) with 𝜏1 = 𝜏2 = 1, and 𝑑1 = 3 𝑎𝑛𝑑 𝑑2 = 2, 

we have the following input vectors: 

Table 12: Delay vectors for SISO ANCFIS 

𝑥3, 𝑥2, 𝑥1, 𝑥𝑡                      Input to the first ANCFIS 

system 

   𝑦2, 𝑦1, 𝑦𝑡                          Input to the second ANCFIS 

system 

 

Table 13: Delay Vectors for MISO ANCFIS 

𝑥3, 𝑥2, 𝑥1, 𝑥𝑡 , 𝑦3, 𝑦2, 𝑦𝑡           

         
 ↑ 

𝑇𝑎𝑟𝑔𝑒𝑡 
    

Input to the first 

ANCFIS system 

𝑥3, 𝑥2, 𝑥1, 𝑥𝑡 , 𝑦3, 𝑦2, 𝑦𝑡     

           
 ↑ 

𝑇𝑎𝑟𝑔𝑒𝑡 
      

Input to the second 

ANCFIS system 

                      

Table 14: Delay Vectors for MIMO ANCFIS 

𝑥3, 𝑥2, 𝑥1, 𝑥𝑡 , 𝑦3, 𝑦2, 𝑦𝑡 

 

Figure 8 shows MIMO ANCFIS architecture for a bi-variate time-series. 
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Figure 8: MIMO ANCFIS architecture for a bi-variate time-series problems with two membership functions 

for each variable. 

 

Moreover, we investigate the effect of using different heuristics to determine the dimensionalities 

for each variate in our data sets. We contrast determining the dimensions separately via the false-

nearest-neighbor technique [98] (FNN) with the combined approach proposed by Cao et al. [99] 

(KDD). The KDD algorithm is implemented here with three nearest neighbors; therefore, for each 

delay vector, the three nearest neighbors are obtained, and the root mean square of their prediction 

errors is used to select the set of dimensions. For both approaches, the time delay is calculated 

separately for each variable by the mutual information heuristic, and then manually cross-checked 

using the phase portrait (phase portraits are a plot of the variate x(t) versus its delay x(t-n) [96]) 

(see section 3.3). The forecast accuracies for these approaches are compared against each other, 

and against the well-known RBFN (see section 3.1.2) and SVR (see section 3.1.3) algorithms.  
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Beyond these network design changes, we also investigate two architectural changes that 

may improve the performance of MIMO ANCFIS. Firstly, we investigate three potential 

modifications to the rule interference operation. Secondly, we investigate a change to the VNCSA 

algorithm, altering the reinitialization of the algorithm at each epoch. 

Our modifications to rule interference involve changing the Layer-3, Layer-4 and Layer-6 

transfer functions in ANCFIS. Recall that Layer 3 normalizes the rule firing strengths using 

Equation ( 111 ), Layer-4 implements a dot product between the current rule’s firing strength and 

the vector sum of all rule firing strengths using Equation ( 112 ), and Layer 6 is a summation of its 

inputs per Equation ( 114 ). We propose the following three variants of ANCFIS: 

• In our first variant (1st ANCFIS), the normalization in layer 3 is applied on both amplitude and 

phase; in other words, the normalization is obtained by the complex sum of the node 2 outputs, 

∑ 𝑂2,𝑗
|𝑂2|
𝑗=1 , instead of the sum of output amplitudes of node 2, ∑ |𝑂2,𝑗|

|𝑂2|
𝑗=1 . In layer 4, 

meanwhile, we take the dot product of each Layer-3 output with the vector 1+0i (this was 

established as the lattice supremum for a complex fuzzy logic having the algebraic product as 

its conjunction in [15]). The new equations for Layers 3 and 4 are: 

  

𝑂3,𝑖 = 𝑤𝑖̄ =
𝑂2,𝑖

∑ 𝑂2,𝑗
|𝑂2|
𝑗=1

,   𝑖 = 1,2, . . . , |𝑂2|             (Layer 3) ( 137) 

𝑂4,𝑖 = 𝑤𝑖
𝐷𝑃 = 𝑤𝑖̄ ∙ 1 = |𝑤𝑖̄ |. cos (𝜃𝑖̄ )               (Layer 4) ( 138 ) 

where |𝑤𝑖̄ | and 𝜃�̄� are the amplitude and phase of the output of Layer 3, 𝑤𝑖̄ . 

• In our second variant (2nd ANCFIS), the Layer 3 transfer function remains as above (Equation 

( 137)). Now, however, we will define Layer 4 as the identity function, making all of the 

internal signals in ANCFIS complex-valued. In Layer 6, we take the dot product of the final 

output with 1+0i in order to obtain a real value. The main difference between this design and 
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the previous ones is that we work with complex values all over the network, and so rule 

interference occurs in the complex sum of Layer 6. (Note that this design is equivalent to 

eliminating Layer 4 from the design entirely.) The new equations are: 

  

𝑂3,𝑖 = 𝑤𝑖̄ =
𝑂2,𝑖

∑ 𝑂2,𝑗
|𝑂2|
𝑗=1

,   𝑖 = 1,2, . . . , |𝑂2|          (Layer 3) ( 139 ) 

𝑂4,𝑖 = 𝑤𝑖
𝐷𝑃 = 𝑤𝑖̄                                              (Layer 4) ( 140 ) 

𝑂6,𝑗 = (∑ 𝑤𝑖
𝑠𝑗∗𝑁

𝑖=1+(𝑗−1)∗𝑁 ) . 1                          (Layer 6) ( 141 ) 

where j is the number of outputs, N is the number of rules. 

• The third design (3rd ANCFIS) is based on the second one; the only difference is in the layer 6 

where instead of the dot product, we use the amplitude of the complex sum as the final output, 

as below.  

𝑂6,𝑗 = |∑ 𝑤𝑖
𝑠𝑗∗𝑁

𝑖=1+(𝑗−1)∗𝑁 |                            (Layer 6) ( 142 ) 

 

In the last modification, we have changes in VNCSA algorithm and forward pass is kept 

same as original ANCFIS (New MIMO ANCFIS). Our modification to the VNCSA algorithm 

concerns the reinitialization of the algorithm at each learning epoch. As discussed, the VNCSA 

algorithm employs the Logistic map to generate an initial set of solutions with high variance. Then 

the Ulam-von Neumann map is used to generate new solutions from those initial ones. Therefore, 

the search space for {a,b,c,d} is wide, and the initial solution set for VNCSA in one epoch might 

be completely independent of the previous one. The question we will investigate is whether it 

might be more advantageous to initialize each epoch with the final results of the previous epoch. 

We propose changing VNCSA as follows: for each epoch after the initial one, the initial population 

generated by the logistic map is replaced with the previous epoch values of the parameters 

{a,b,c,d}. Thus, the Ulam-von Neumann map generates new solutions based on the previous epoch 
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values. As the difference between sampled membership functions in two successive epochs is 

based on Equation ( 116 ) 

𝜂
𝜕𝐸

𝜕𝑔(𝑘)
= 𝑔(𝑘)𝑜𝑙𝑑 − 𝑔(𝑘)𝑛𝑒𝑤, 

( 143 ) 

 

it is reasonable to limit the search space based on the parameters in the previous epoch. Naturally, 

in the first epoch, the original VNCSA is still used to explore the whole search space and find 

initial neighborhood for the parameters. 

6.2.2. Experimental Design 

Our experiments all follow a chronologically ordered single-split design, with all elements 

of the training set occurring earlier in time than testing set elements. We compare our results using 

the RMSE (Equation ( 133 )) and MAE (Equation ( 134 )) statistics. To determine if there is any 

significant difference between the results, Freidman statistic is calculated [113]. If null hypothesis 

𝐻0: [𝜏1 = ⋯ = 𝜏𝑘] is rejected, the approaches are compared together using the Multiple 

Comparisons with the Best (MCB) method [116] (see section 3.5.1). 

 

6.2.3. Data Sets 

We use Motel, Precipitation, Flour and NASDAQ time-series described in Section 3.4.2. 

The delay and dimensions obtained for the two different input vector sets built based on FNN and 

KDD are shown in Table 15-Table 18. 

Table 15: Delay and dimension sets for Motel time-series 

 Delay 

(𝜏1, 𝜏2) 

Dimension (FNN) 

(𝑑1, 𝑑2) 

Dimension (KDD) 

(𝑑1, 𝑑2) 

Motel (6,6) (6,6) (2,2) 
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Table 16:  Delay and dimension sets for Precipitation time-series 

 Delay 

(𝜏1, 𝜏2, 𝜏3) 

Dimension (FNN) 

(𝑑1, 𝑑2, 𝑑3) 

Dimension (KDD) 

(𝑑1, 𝑑2, 𝑑3) 

Precipitation (3,1,3) (4,4,4) (1,3,1) 

 

Table 17: Delay and dimension sets for Flour time-series 

 Delay 

(𝜏1, 𝜏2, 𝜏3) 

Dimension (FNN) 

(𝑑1, 𝑑2, 𝑑3) 

Dimension (KDD) 

(𝑑1, 𝑑2, 𝑑3) 

Flour (1,1,1) (3,3,3) (1,3,2) 

 

Table 18: Delay and dimension sets for NASDAQ time-series 

 Delay 

(𝜏1, 𝜏2) 

Dimension (FNN) 

(𝑑1, 𝑑2) 

 

Dimension (KDD) 

(𝑑1, 𝑑2) 

 

NASDAQ (1,1) (1,3) (1,3) 

We also examine the autocorrelation structure of the time-series using the sample cross-

correlation matrix. Each element of this matrix is the cross-correlation between two of the variates, 

defined as:  







i

i mgmfgf )()())(( *   
( 144 ) 

 

where f and g are two variates in a multivariate time-series,  is the lag, and f* is the complex 

conjugate of f [172]. The ij-th entry in the matrix represents the cross-correlation between the i-th 

and j-th variates. The matrix is computed and presented by the ‘ccm’ routine in the “MTS” package 

in R. The cross-correlation matrices for the four time-series are presented in Figure 9-Figure 12: 



 

84 

 

 

Figure 9: Cross-Correlation Matrix for the Motel Data set with two variates (v1 and v2) 

 

The cross-correlation matrix presented in Figure 9 do not appear to decaying, and so the time-

series is not stationary. However, this dependence on previous values is the kind of non-stationarity 

that learning algorithms should excel at. 

a. Auto-correlation of v1 b. Cross-correlation of v1 and v2 

c. Cross-correlation of v2 and v1 d. Auto-correlation of v2 
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Figure 10: Cross-Correlation Matrix for the Flour Data set with three variates (v1, v2 and v3) 

 

The cross-correlation matrix presented in  

Figure 10 shows the correlations appearing to rapidly decay. This time-series appears 

stationary. 

a. Auto-correlation of v1 

e. Auto-correlation of v2 

i. Auto-correlation of v3 

b. Cross-correlation of v1 and v2 c. Cross-correlation of v1 and v3 

d. Cross-correlation of v2 and v1 f. Cross-correlation of v2 and v3 

g. Cross-correlation of v3 and v1 h. Cross-correlation of v3 and v2 
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Figure 11: Cross-Correlation Matrix for the Precipitation Data set with three variates (v1, v2 and v3)  

 

The cross-correlation matrix presented in Figure 11 shows that the correlations decay swiftly, but 

there seems to be some remaining structure (possibly seasonality) for a longer period. So long as 

the period of this seasonality is much shorter than the length of the time-series (which appears to 

be true), machine learning algorithms should again be able to model this data set. 

g. Cross-correlation of v3 and v1 h. Cross-correlation of v3 and v2 i. Auto-correlation of v3 

d. Cross-correlation of v2 and v1 e. Auto-correlation of v2 f. Cross-correlation of v2 and v3 

a. Auto-correlation of v1 b. Cross-correlation of v1 and v2 c. Cross-correlation of v1 and v3 
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Figure 12: Cross-Correlation Matrix for the NASDAQ Data set with two variates (v1 and v2) 

 

The cross-correlation matrix presented in Figure 12 is very similar to the matrix for the Motel data 

set, and so a learning algorithm should perform well on this data set as well. 

 

6.2.4. Experimental Results 

In this section, one-step-ahead predictions of the four multivariate time-series are 

examined. We first consider a classic Vector Auto-Regression Moving Average (VARMA) model, 

as an initial baseline (we specify the AR and MA orders in parentheses). We then examine the 

alternative designs of ANCFIS, RBFN, SVR, and finally compare against the other studies in the 

a. Auto-correlation of v1 

d. Auto-correlation of v2 

b. Cross-correlation of v1 and v2 

c. Cross-correlation of v2 and v1 
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literature for each time-series. Moreover, the impact of different approaches in selecting the 

dimension for the delay vectors on the multivariate time-series forecasting is discussed. Table 19, 

Table 20 and Table 21 indicate results of Motel, Flour, Precipitation time-series, based on RMSE, 

respectively. 

Table 19: RMSE on the Motel time-series 

Method RMSE 

VARMA(2,2) 0.1849 

 KDD FNN 

RBFN SISO 0.19352 0.19638 

RBFN MISO 0.18422 0.18601 

RBFN MIMO 0.18362 0.18544 

SVR SISO 0.19448 0.20530 

SVR MISO 0.19436 0.20219 

ANCFIS SISO 0.17875 0.18955 

ANCFIS MISO 0.16136 0.21749 

ANCFIS MIMO 0.16471 0.19393 

1st ANCFIS 0.16357 0.23133 

2nd ANCFIS 0.16433 0.21534 

3rd ANCFIS 0.16129 0.17962 

New MIMO ANCFIS 0.15457 0.23019 

 

Table 20: RMSE on the Flour time-series  

Method RMSE 

VARMA(3,1) 0.3602 

 KDD FNN 

RBFN SISO 0.20737 0.1673 

RBFN MISO 0.21672 0.28614 
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RBFN MIMO 0.17773 0.25094 

SVR SISO 0.19878 0.18195 

SVR MISO 0.23142 0.23270 

ANCFIS SISO 0.20943 0.19357 

ANCFIS MISO 0.19756 0.18650 

ANCFIS MIMO 0.20457 0.19107 

1st ANCFIS 0.19553 0.23986 

2nd ANCFIS 0.19710 0.18211 

3rd ANCFIS 0.20225 0.12871 

New MIMO ANCFIS 0.19560 0.17705 

 

Table 21: RMSE on the Precipitation time-series  

Method RMSE 

VARMA(6,0) 0.2098 

 KDD FNN 

RBFN SISO 0.2087 0.21021 

RBFN MISO 0.207 0.19956 

RBFN MIMO 0.2054 0.20068 

SVR SISO 0.20965 0.21311 

SVR MISO 0.20252 0.20464 

ANCFIS SISO 0.20906 0.20791 

ANCFIS MISO 0.20487 0.20339 

ANCFIS MIMO 0.19758 0.19668 

1st ANCFIS 0.20126 0.19142 

2nd ANCFIS 0.19954 0.19253 

3rd ANCFIS 0.19822 0.19530 

New MIMO ANCFIS 0.20170 0.19505 
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In order to see if the 24 approaches (12 KDD and 12 FNN) applied on the 3 time-series are 

significantly different, the Freidman statistic, S, is calculated as Equation. ( 135 ); with k=24 and 

n=3, we obtain S=20.70. With 𝛼 = 0.05, 𝜒𝑘−1,𝛼
2 = 35.172 (for 23 degree of freedom) and so we 

do not reject the null hypothesis. All of our ANCFIS variations, as well as RBFN and SVR exhibit 

no significant difference in prediction accuracy on these data sets. For simplicity, we thus choose 

the single MIMO approach, and the more automated KDD technique for finding dimensions, for 

further comparisons against the literature on these three data sets and the NASDAQ data set. 

Table 22 - Table 24 shows the results of New MIMO ANCFIS KDD with the recent articles 

working on the same time-series used here. Note that we were unable to locate prior work in 

modeling the Motel time-series. In Table 24, we compare New MIMO ANCFIS KDD on the 

NASDAQ data set against the recently-published CNFS-ARIMA, which is a direct, complex-

fuzzy-logic based competitor to ANCFIS. 

Table 22: Flour time-series prediction based on RMSE 

 Buffalo Minneapolis Kansas  

New MIMO ANCFIS 

(KDD) 

0.16043 0.21123 0.21078 

DAN2 [110] 0.61725 0.22804 0.58052 

 

Table 23: Precipitation time-series prediction based on MAE 

 East Middle West 

New MIMO ANCFIS 

(KDD) 

0.15169 0.16329 0.15124 

VTG Scheme[109] 

(Combined Model: 

0.598 0.613 0.613 
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 2nd Lagrange) 

 

Table 24: RMSE on NASDAQ time-series  

Method RMSE 

VARMA(2,2) 77.00 

New MIMO ANCFIS 

(KDD) 

45.10 

CNFS-ARIMA [48] 66.22 

 

6.3. Conclusion 

We have studied the extension of ANCFIS to multivariate time-series prediction. Three 

different ANCFIS architectural designs (SISO, MISO, MIMO) have been examined. A further 

exploration of alternative designs of MIMO ANCFIS is also performed. The designs were 

compared with well-known machine learning algorithms, RBFN and SVR. A Friedman test shows 

no significant difference between any of these methods. However, when we compare ANCFIS 

against the existing literature on these data sets, our method is clearly superior.  

In future work, we will use the MIMO ANCFIS architecture as a testbed to explore 

different logical operations in complex fuzzy systems. Our prior work in [15] indicates that 

“complex fuzzy logic” is likely a family of multi-valued logics (much as type-1 fuzzy logic is). 

This means that the design space for complex fuzzy inferential systems is likely very large. 

However, we expect that not all complex fuzzy logics will be equally effective in any given 

learning problem. Thus, our testbed will be one method by which we can evaluate the utility of a 

new complex fuzzy logic. 
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However, the main disadvantages of ANCFIS is its slow learning algorithm which is a 

combination of forward pass and backward pass to update antecedent and consequent parameters. 

In the Chapter 7, a new machine learning algorithm based on randomized learning algorithms and 

complex fuzzy sets and logic is developed to solve the slow learning problem. 
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Chapter 7 

RANCFIS: Randomized Adaptive Neuro-Complex Fuzzy Inference 

System 

The ANCFIS was the first neuro-fuzzy system to combine complex fuzzy sets and rule 

interference for time-series forecasting. The induced forecasting models are accurate and 

parsimonious. However, the training algorithm (a hybrid of gradient descent and derivative-free 

optimization) is extremely slow. Thus, a different training algorithm is needed; one that is 

substantially faster, but also preserves the advantages of accuracy and parsimony. 

In this chapter, we propose and evaluate a randomized-learning approach to train this 

neuro-fuzzy system. A number of recent results have shown that assigning fixed, random values 

to a subset of the adaptive parameters in a neural network model is an effective, simpler, and far 

faster alternative to optimizing those same parameters. We study mechanisms by which 

randomized learning may be combined with our system, and evaluate the system on both univariate 

and multivariate time-series. In general, we find that our proposed architecture is far faster than 

the original system, with no statistically significant difference in accuracy.  

 

7.1. Introduction 

Big Data, analytics, and business intelligence are today key elements of any major 

corporation’s business strategy; they are either in place already, or a priority investment. Analysts 

expect total revenues in the Big Data / Analytics market were $122 billion USD in 2015, and this 

is projected to grow to $187 billion by 2019 [173]. Of this, the Business Intelligence (BI) / 
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Analytics software segment earned $17.9 billion in 2014, and this is expected to reach $26.8 billion 

in 2019 [174]. Notably, by 2020 40% of the BI/Analytics market will be for predictive and 

prescriptive analytics; this works out to $10.7 billion using the 2019 revenue forecast [175]. Of 

this, only $1.1 billion is expected to be spent on prescriptive analytics, and so the predictive 

analytics software market should be $9.6 billion by 2020. Thus, it is literal truth to say that 

forecasting in BI/Analytics will be a ten-billion-dollar industry within five years. 

The focus of the current chapter is on designing forecasting algorithms based on CFS&L. 

Inductive forecasting algorithms such as the ANCFIS [7, 25, 54, 176], have proven to be accurate, 

parsimonious time-series forecasting algorithms. In a systematic review [177], we determined that 

these are currently the principal means by which CFS&L may be applied to real-world problems. 

The main alternative approach in fuzzy systems is to elucidate fuzzy rulebases from subject-matter 

experts. However, there has been very little progress in this direction in CFS&L (with the 

exception of [178]), likely because there are as yet no widely-accepted interpretations of complex 

fuzzy sets; and hence, linguistic models are very difficult to express. Thus, research into the 

applications of CFS&L must perforce follow the inductive learning approach, and are thus 

sensitive to the time and space complexity of those algorithms.   

ANCFIS is based on the ANFIS architecture [62] (see section 3.1.1), and like its 

predecessor uses a hybrid learning algorithm combining least-mean-squares optimization in the 

forward pass with gradient descent in the backward pass, with the addition of a final derivative-

free optimization step. This hybrid algorithm is relatively slow, which is a barrier to its more 

widespread use; slow algorithms have little future in a Big Data world. Thus, our goal is to develop 

a CFS&L-based algorithm that maintains the accuracy and parsimony of ANCFIS, but with 

dramatically reduced training times. 
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We propose a new training algorithm based on randomized learning for ANCFIS. We 

choose to randomly select and fix the parameters of our complex fuzzy set Membership Functions 

(MFs) in Layer 1 of ANCFIS, and optimize only the linear consequent function parameters. As 

these two are the only adaptive parameters in the network, and only the Layer-1 parameters are 

updated on the backward pass, randomizing them thus eliminates the backward pass in this 

network entirely, allowing for a very large speedup. The proposed approach is evaluated on three 

univariate and two multivariate time-series, and its results are compared against an earlier version 

of our current approach [176], ANCFIS, and other well-known approaches previously applied on 

these time-series. 

Our contributions in this chapter are: 1) The design and implementation of a randomized-

learning algorithm for the ANCFIS neuro-fuzzy system; 2) A comparative evaluation of this new 

training algorithm against other variants of ANCFIS and the existing literature.  

7.2. Background 

7.2.1. Randomized Learning Algorithms 

From a theoretical point of view, randomized learning algorithms should be just as accurate 

in forecasting as conventional deterministic ones [179-182]. Consider a generic forecasting task 

of the form [183]: 

𝑥1, 𝑥2, … , 𝑥𝑑  ↦ 𝑓(𝑥1, 𝑥2, … , 𝑥𝑑) ( 145 ) 

where 𝑥𝑖 ∈ ℝ, 𝑖 = 1, 2, . . , 𝑑, is the i-th observation in a time-series, and 𝑓:ℝ𝑑 → ℝ is an 

unknown functional relation between those prior observations and the (presently unknown) next 

observation for which  
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𝑓(𝑥) =∑𝑐𝑖𝑔(𝑤𝑖
𝑇𝑥 + 𝑏𝑖)

∞

𝑖=1

,   ∑𝑐𝑗 = 1

∞

𝑗=1

, 𝑐𝑗 ≥ 0 
( 146) 

where 𝑔() has a finite L2 norm . Barron and Jones have shown that such original functions can be 

approximated with high accuracy through finite linear combinations of tunable basis functions g() 

[184, 185]: 

𝑓(𝑥) ≃ 𝑓𝐾(𝑥) = ∑𝛼𝑘g(𝑤𝑘
𝑇𝑥 + 𝑏𝑘)

𝐾

𝑘=1

 
( 147 ) 

 

where 𝑤𝑘𝑗, 𝑏𝑘, 𝛼𝑘  ℝ, j = 1,2,…,m are respectively the m weights, bias of one basis function, 

and the weighting of that basis function in the overall summation of K basis functions, K a finite 

number. Traditionally (for example, in a neural network model), determining the approximation 

involves fitting all of these parameters to the available data (e.g. via gradient descent). Plainly, 

however, this is time consuming for large data set, or large parameter vectors. Per [183, 186], 

however, the original function can also be approximated using linear combinations of functions 

with randomly selected parameters. In Equation. ( 146), let us consider the parameter set of 𝑓𝐾: 

𝜔𝐾 = (𝐾, 𝛼1, … , 𝛼𝑘, �⃗⃗� 1, … , �⃗⃗� 𝑘, 𝑏1, … , 𝑏𝑘, ). Choose a subset of these parameters to be set 

randomly; for simplicity, we choose the weights and biases of the basis functions, and denote this 

random-parameter set as 𝜆𝐾 = (�⃗⃗� 1, … , �⃗⃗� 𝑘, 𝑏1, … , 𝑏𝑘). 𝜆𝐾 is a distribution defined on the 

probabilistic space 𝑆𝐾(Ω, 𝛼) with probability measure 𝜇𝐾,Ω,𝛼 and expectation E. Suppose that 

𝑆𝐾(Ω, 𝛼) and 𝜇𝐾,Ω,𝛼 depend on the deterministic parameters (Ω, 𝛼), to be which should be 

determined in the learning stage. For any compact, 𝑁,𝑁 ⊂ 𝐼𝑑, 𝑁 ≠ 𝐼𝑑, where 𝐼𝑑 = [0,1]𝑑 ⊂ ℝ𝑑 

is the unit hypercube, and any activation function of the form of Equation. ( 147 ) for which 

0 <  ∫ g2

ℝ

(𝑥)𝑑𝑥 <  ∞ 
( 148 ) 



 

97 

 

there exists a sequence 𝑓𝐾(𝑥) and a sequence of probability measures 𝜇𝐾,Ω,𝛼 such that the distance 

between the original 𝑓(𝑥)and the approximated function 𝑓𝐾(𝑥) converges to zero for large N [183, 

186]: 

𝜌𝑁(𝑓, 𝑓𝐾) = √𝐸 ∫ |𝑓(𝑥) − 𝑓𝐾(𝑥)|2𝑑𝑥𝑁
 
𝑘→∞
→  0  

( 149 ) 

The key insight here is that the number of basis functions K is variable, and a sufficiently 

large number of randomly-chosen basis functions still approximates the target function f(x). 

Intuitively, one might expect that we would require a larger number of random basis functions 

than of optimally-chosen basis functions to achieve the same approximation error; however, such 

an analysis is beyond the scope of this article. Other authors have studied other classes of original 

functions as well [187, 188]. 

At a practical level, randomized learning has been shown to be an effective means of 

compensating for the slow convergence of existing neural network training algorithms. 

Randomization can be applied in a neural network by fixing the network configuration randomly; 

assigning random values to some of the adaptive parameters; and adding noise to input data or 

parameters in the training stage [189].  In the single hidden layer feed-forward network (SLFN) 

[190], the weights between the input and hidden layers are selected randomly, and the weights 

between the hidden and output layers are determined via linear regression. The well-known family 

of Extreme Learning Machines (ELM) are based on SLFN [191] [192-195]. Albers et al. [196] 

studied feed-forward neural networks in which the weights are selected randomly [196]. 

Functional link neural networks with random weights and biases were studied in [186, 197-199]. 

Maass et al. proposed the Liquid State Machine, which is a recurrent neural network with randomly 

chosen input and internal weights [200]. The Random Neural Network is a fully connected neural 
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network in which neurons exchange positive and negative signals; if an neuron is excited, its 

activation has a positive value, and it may fire (based on a draw from an exponential distribution) 

[201]. Vincent et al. proposed stacked denoising autoencoders for deep neural network learning; 

they add random noise to each incoming signal during training for a layer, and then train the 

neurons to remove that noise [202]. Random weights in back propagation for deep neural networks 

have been studied in [203]. Randomized learning of convolutional neural networks has been 

studied in [204-207]. More on randomized learning in neural networks can be found in[191, 192, 

208-210]. 

The Random Vector Functional Link Network (RVFLN) applies a nonlinear 

transformation to its inputs in order to enhance them before feeding them to the input layer. The 

weights connecting the original to enhanced input nodes are selected randomly, and the output 

weights are optimized by minimizing the system error as [198]: 

𝐸 =
1

2𝑁
∑(𝑡𝑖 − 𝐵𝑡𝑑𝑖)2
𝑁

𝑖=1

 

( 150 ) 

 

where 𝐵𝑡 is the vector of output weights, d is the enhanced input and there are N input data. A 

number of other studies have been conducted on RVFLN; recent examples include [210-212]. A 

Recurrent Neural Network (RNN) has at least one cyclic path in its connections. Echo-state 

networks [213] and Liquid State Machines[200] select the input and internal weights randomly, 

and calculate the output weights by the Recursive Least Squares (RLS) algorithm. 

7.2.1.1. Extreme Learning Machines 

The Extreme Learning Machine (ELM) algorithm defined in [191] is based on the SLFN 

architecture [190]. SLFN uses randomized learning, where the input weights are selected from 
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uniform random values in [-1, 1] and the output are determined by minimizing the following error 

[189, 190]: 

𝜀2 =∑(𝑦𝑖 −∑𝑤𝑗𝑓𝑖𝑗

𝑘

𝑗=0

)2
𝑁

𝑖=1

 

( 151 ) 

where N is the number of data points, 𝑦𝑖 is target, k is number of hidden neurons in the hidden 

layer, 𝑤𝑗 is the output weight and 𝑓𝑖𝑗 is the activation value of the j-th hidden neuron on the i-th 

data point. The output weights (w) are obtained as [189, 190]: 

𝑊𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑅−1𝑃    

𝑅 =∑𝐹𝑖

𝑁

𝑖=1

𝐹𝑖
𝑇;      𝑃 =∑𝑦𝑖𝐹𝑖

𝑇

𝑁

𝑖=1

;       𝐹𝑖 = [𝑓𝑖0, 𝑓𝑖1, … , 𝑓𝑖𝑘 ]
𝑇 

( 152 ) 

where 𝑓𝑖0 is the bias term. In the ELM architecture, the output weights are calculated as: 

�̂� = 𝐻†𝑌 ( 153 ) 

where 

𝐻(𝑤1, … , 𝑤�̃� , 𝑏1, … , 𝑏�̃� , x1, … , x�̃�) =

= [
𝑔(𝑤1. x1 + 𝑏1) ⋯ 𝑔(𝑤�̃� . x1 + 𝑏�̃�)

⋮ ⋱ ⋮
𝑔(𝑤1. x𝑁 + 𝑏1) ⋯ 𝑔(𝑤�̃�. x𝑁 + 𝑏�̃�)

]

𝑁×�̃�

 

( 154 ) 

𝛽 = [
𝛽1
𝑇

⋮
𝛽�̃�
𝑇
]

�̃�×𝑚

 

( 155 ) 

 

𝑌 = [
y1
𝑇

⋮
y𝑁
𝑇
]

𝑁×𝑚

 

( 156 ) 

where �̃� is number of neurons in the hidden layer , N is the number of  pairs of samples (x𝑖 ∈

ℛ𝑛, y𝑖 ∈ ℛ
𝑚), (𝛽𝑖) is the vector of output weights, and 𝐻† is the Moore-Penrose generalized 

inverse of 𝐻. This network is a universal approximator if each neuron has an activation function, 

𝑔, which is infinitely differentiable. Logistic, exponential, sine and cosine functions can all be 

considered candidate activation functions. 
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Online Sequential ELM (OS-ELM) is an incremental-learning variation on the ELM 

architecture, in which output weights (𝛽𝑖) are estimated via the Recursive Least Square (RLS) 

algorithm [192]: 

�̂� = (𝐻𝑇𝐻)−1𝐻𝑇𝑌 ( 157 ) 

 
The OS-ELM incorporate a “boosting” step (parameter initialization for RLS),  and a 

sequential learning step [192]. 

• Boosting Step: First a small initial training set {(x𝑖, yi)|x𝑖 ∈ ℛ
𝑛, yi ∈ ℛ

𝑚,   𝑖 = 1,… , �̃� }, 

selected, and random input weights and biases are drawn. Then  𝐻0 = [ℎ1, … , ℎ�̃�]
𝑇is 

computed, where ℎ𝑖 = [𝑔(𝑤1. x𝑖 + 𝑏1),… , 𝑔(𝑤�̃�. x𝑖 + 𝑏�̃�)]
𝑇. The initial output weights 

are estimated as: 𝛽(0) = 𝑀0𝐻0
𝑇𝑌0 where 𝑀0 = (𝐻0

𝑇𝐻0)
−1 and 𝑌0 = [𝑦1, … , 𝑦�̃�]

𝑇. 

• Sequential learning Step: For each sample (x𝑖, yi), ℎ𝑘+1 = [𝑔(𝑤1. x𝑖 + 𝑏1),… , 𝑔(𝑤�̃� . x𝑖 +

𝑏�̃�)]
𝑇 is obtained and the output weights are calculated based on the RLS algorithm as: 

𝑀𝑘+1 = 𝑀𝑘 −
𝑀𝑘ℎ𝑘+1ℎ𝑘+1

𝑇 𝑀𝑘

1 + ℎ𝑘+1
𝑇 𝑀𝑘ℎ𝑘+1

 
( 158 ) 

𝛽(𝑘+1) = 𝛽(𝑘) +𝑀𝑘+1ℎ𝑘+1(𝑦𝑖
𝑇 − ℎ𝑘+1

𝑇 𝛽(𝑘)) ( 159 ) 

A review of ELM architectures, including the fully complex ELM [214], incremental ELM [215] 

and pruning ELM [216] can be found in [194]. 

 

7.3. Methodology 

7.3.1. ANCFIS-ELM Network Design 

ANCFIS-ELM is our first design in combining ANCFIS and randomized learning which is 

proposed in [176] as a five-layer network based on ANCFIS [25]. 
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Figure 13: ANCFIS-ELM network for a univariate time-series with two membership functions 

 

ANCFIS-ELM introduces a randomized learning algorithm ANCFIS. The sinusoidal MF 

parameters are selected randomly, thus eliminating the backward pass entirely. ANCFIS-ELM and 

ANCFIS are identical in structure for Layers 1-4: membership grades for an input are obtained, the 

firing strength of each rule is computed, then normalized, and rule interference is implemented. 

However, ANCFIS-ELM is based on the zero-order Takagi-Sugeno model (constant consequents); 

thus, it does not have ANCFIS’s layer 5, and the outputs of layer 4 are directly connected to a 

weighted sum in the output layer. The output weights are obtained by the recursive least squares 

algorithm following ELM’s sequential learning step [192] (Equation ( 158 )- ( 159 ) ).The initial 

output weights are determined by [217]: 

 

𝛽(0) = 0 ( 160) 

𝑀0 = 𝜆
−1𝐼,   ( 161) 

where 𝜆 is a small positive constant, and I is the identity matrix.  
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7.3.2. RANCFIS Network Design 

The Randomized Adaptive Neuro-Complex Fuzzy Inference System (RANCFIS) is a six-

layer feed-forward network using the same neuron transfer functions as ANCFIS [25], but with 

adaptive weights added on the connections between Layers 5 and 6. 

 

Figure 14: RANCFIS Architecture for a univariate time-series with two membership functions 

 

RANCFIS randomly selects the sinusoidal membership function parameters {a, b, c, d}; as with 

ANCFIS-ELM, this eliminates the backward pass in training completely. Parameters are drawn 

from a uniform distribution, and then held constant throughout training and testing. In RANCFIS, 

however, Layer 5 is a linear function as in ANCFIS, rather than a constant as in ANCFIS-ELM. 

Layer 5 is fully connected to layer 6, with each connection weighted by the coefficient 𝛽𝑖. Thus, 

the i-th input to a Layer 6 neuron is: 

 

𝐼6,𝑖 = 𝑤𝑖
𝐷𝑃 [∑∑𝑝𝑖,𝑘𝑙𝑥𝑘𝑙

𝑛

𝑙=1

𝑗

𝑘=1

+ 𝑟𝑖] . 𝛽𝑖 = 𝑤𝑖
𝐷𝑃 [∑∑γ𝑖,𝑘𝑙𝑥𝑘𝑙

𝑛

𝑙=1

𝑗

𝑘=1

+ η𝑖] 

( 162 ) 

where γ𝑖,𝑘𝑙 = 𝑝𝑖,𝑘𝑙. 𝛽𝑖 and η𝑖 = 𝑟𝑖. 𝛽𝑖. The output of the layer 6 is summation of the inputs to this 

layer (similar to ANCFIS) and defined as: 
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𝑂6,𝑗 = ∑ 𝐼6,𝑖

𝑗∗𝑁

𝑖=1+(𝑗−1)∗𝑁

 

( 163 ) 

where j is the number of outputs and N is the number of rules. This output can be reformulated as: 

 

T = H. β ( 164 ) 

where 

T𝑇 = [𝑂6,1 ⋯ 𝑂6,𝑗]  

H𝑇 =

[
 
 
 
 
𝑤𝑖
𝐷𝑃𝑥11 𝑤𝑖

𝐷𝑃𝑥21 … 𝑤𝑖
𝐷𝑃𝑥𝑗1

⋮ ⋮ ⋮ ⋮
𝑤𝑖
𝐷𝑃𝑥1𝑛 𝑤𝑖

𝐷𝑃𝑥2𝑛 … 𝑤𝑖
𝐷𝑃𝑥𝑗𝑛

𝑤𝑖
𝐷𝑃 𝑤𝑖

𝐷𝑃 ⋯ 𝑤𝑖
𝐷𝑃 ]

 
 
 
 

 

β𝑇 = [

γ11 𝛾12 … 𝛾1𝑛 𝜂1
⋮ ⋮ ⋮ ⋮ ⋮
γ𝑗1 γ𝑗2 … γ𝑗 𝜂𝑗

] 

( 165 ) 

β is estimated as ANCFIS-ELM by using RLS algorithm [218] (Equation ( 158 )and ( 159 )) and 

initial weights are obtained by Equation ( 160) and ( 161).  

7.3.3. Experimental Design 

As discussed, ANCFIS is designed to accept an input window rather than lagged inputs of 

the time-series. However, in [171], we considered possibility of subsampling the input windows 

(see Chapter 5). The delay embedding methods (Section 3.3) were studied there as an approach to 

obtain subsamples of the input vectors (which we again refer to as delay vectors). Note, however, 

that we have not returned to the orthogonal-input interpretation of a delay vector; we still provide 

the entire vector as a single input to ANCFIS. The goal is merely to eliminate redundancy in the 

input vectors; the approach used in [25] was to take one entire approximate “period” (an 

approximately repeating subsequence) of the time-series as an input window. We found the 

subsampling approach to be effective, and to substantially speed up training. We will be using the 

subsampled input windows in our experiments in the current chapter; note that this also makes our 
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results directly comparable to standard machine learning algorithms using lagged inputs. As a 

cross-check, we will also use the full “one period” input windows for a subset of our data sets. 

All of our experiments follow a chronologically ordered single-split design, with all the 

data points in the training set are earlier in time than the ones in the testing sets. For univariate 

time-series, the downsampling rate and the dimensionality of the delay vectors are obtained by the 

mutual information [96] and false nearest neighborhood (FNN) [98], respectively, and for 

multivariate time-series, mutual information [96] and the dimensionality-estimation approach 

presented in [99]  (KDD) are used for delay and dimension, respectively, (see section (3.3)). The 

results are compared using the RMSE (Equation. ( 133 )). To find out if there are significant 

differences between performances of RANCFIS, ANCFIS-ELM and ANCFIS, the Friedman test 

is applied. The Friedman statistic, S, is calculated as [113]. If null hypothesis 𝐻0: [𝜏1 = ⋯ = 𝜏𝑘] 

is rejected, the approaches are compared together using the Multiple Comparisons with the Best 

(MCB) method [116] (see section 3.5.1.1). 

Moreover, to compare learning speed of RANCFIS, ANCFIS-ELM and ANCFIS, we run 

an experiment with the same number of membership functions for each of the structures; two 

membership functions is considered for this experiment. To obtain the execution time for each of 

the architectures, we use clock function in the C language which returns the processor time 

consumed by the program. The function starts as the program runs and ends at the end of the 

training section before passing the testing set. 
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7.3.4. Data Sets 

To study performance of RANCFIS and ANCFIS-ELM, ten time-series are considered 

including six univariate and four multivariate time-series. Solar Power, Santa Fe Laser A, Stellar, 

Mackey-Glass, Sunspot and wave are the univariate time-series discussed in Section 3.4.1.1 -

3.4.1.6. Motel, Precipitation, Flour and NASDAQ are multivariate time-series introduced in 

Section 3.4.2. Delays and dimensions for delay vectors are obtained as Table 25: 

Table 25: Delays and dimensions for the univariate and multivariate time-series. 

Time-series Delay Dimension 

Solar Power 370  12 

Santa Fe Laser A 2 9 

Stellar 7 6 

Mackey-Glass 11 9 

Sunspot 4 5 

Wave 4 4 

Motel [6 6] [2 2] 

Precipitation [3 1 3] [1 3 1] 

Flour [1 1 1] [1 3 2] 

NASDAQ [1 1] [1 3] 

 

7.3.5. Experimental Results 

In this section, we first compare one-step-ahead prediction by RANCFIS against ANCFIS-

ELM and ANCFIS in Table 26: 

Table 26:  Comparing Results of RANCFIS, ANCFIS-ELM and ANCFIS in terms of RMSE 

 RANCFIS ANCFIS-ELM ANCFIS 

Solar Power 1.949 42.759 3.106 [171] 

Santa Fe Laser A 0.0523 0.263 0. 114 [171] 
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Mackey-Glass 0.021 0.198 0.015[171] 

Stellar 0.0120 0.216 0.014 [171] 

Sunspot 0.112 0.205 0.103 

Wave 0.121 0.225 0.009 

Motel 0.041 0.197 0.155[7] 

Flour 0.198 0.215 0.196 

NASDAQ 23.49 87.285 23.50 

Precipitation 0.206 0.204 0.198 

In order to determine significant differences between the RANCFIS, ANCFIS-ELM and ANCFIS 

applied on the 10 time-series, the Friedman statistic, S, is calculated as Equation ( 135 ) with k=3 

and n=10, we obtain S=15. With 𝛼 = 0.05, 𝜒𝑘−1,𝛼
2 = 6.2 (for 2 degree of freedom); that shows 

that the null hypothesis is rejected and there is significant difference between the approaches. 

Therefore, we compare the approaches using MCB method; for α=0.05, we obtain 𝑞𝛼 = 3.315 

giving 𝑟𝛼,𝐾,𝑁 = 1.048. By considering 𝑅1̅̅ ̅, 𝑅2̅̅ ̅ and 𝑅3̅̅ ̅ as average rank of RANCFIS, ANCFIS and 

ANCFIS-ELM, respectively, we have: 

|𝑅1̅̅ ̅ − 𝑅2̅̅ ̅| = 0 < 𝑟𝛼 

|𝑅2̅̅ ̅ − 𝑅3̅̅ ̅| = 1.5 ≥ 𝑟𝛼 

|𝑅1̅̅ ̅ − 𝑅3̅̅ ̅| = 1.5 ≥ 𝑟𝛼 

which clears that there is no significance difference between RANCFIS and ANCFIS; however 

RANCFIS and ANCFIS outperform ANCFIS-ELM substantially.  

Table 27 shows the time spent in seconds for each algorithm to complete training with two 

membership functions, and the ratio between RANCFIS and the other structures.  

Table 27: Comparing learning speed of RANCFIS, ANCFIS-ELM and ANCFIS in terms of second 

 RANCFIS ANCFIS-ELM ANCFIS RANCFIS

ANCFIS-ELM
 

ANCFIS

RANCFIS
 

Solar Power 2.222 0.699 5.388 3.179 2.425 
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Santa Fe Laser A 0.137 0.043  3.362 3.186 24.540 

Mackey-Glass 0.070 0.024 3.161 2.917 45.157 

Stellar 0.044 0.023 1.624 1.913 36.909 

Sunspot 0.019 0.009 1.039 2.111 54.684 

Wave 0.017 0.009 0.771 1.889 45.353 

Motel 0.034 0.010 0.831 3.4 24.441 

Flour 0.215 0.016 1.232 13.438 5.730 

NASDAQ 0.126 0.027  0.255 4.667 2.024 

Precipitation 0.634 0.042 1.341 15.095 2.115 

Table 27 shows that the training execution time for RANCFIS in all of the univariate time-series 

except Solar Power (the largest one) is faster than ANCFIS by one order of magnitude; in the Solar 

Power data set, it is more than twice as fast as ANCFIS. In the multivariate time-series, RANCFIS 

is again faster than ANCFIS. As one would expect, RANCFIS is slower than the simpler ANCFIS-

ELM model in all the time-series, but is also more accurate. 

Table 28 compares RANCFIS against other well-known approaches were applied recently 

on each time-series in the literature. RANCFIS is superior to all others on 4/10 data sets. 

Table 28: Comparing RANCFIS results with other approaches 

 RANCFIS Other Approaches 

Solar Power 1.949 6.8111 

Santa Fe Laser A 0.0523 0.0372[219], 

Mackey-Glass 0.021 0.00473[220] 

Stellar 0.0120 0.0184[220] 

Sunspot 0.112 0.0364[220] 

Wave 0.121 0.007[171] 

                                                 
1 RBFN 
2 Fuzzy Boolean Neural Network 
3 TSK-NFIS 
4 Neural Net 
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Motel 0.041 0.1842[7] 

Flour 0.198 0.1782[9] 

NASDAQ 23.49 33.111 [48] 

Precipitation 0.206 0.203 2[9] 

 

To see the effect of period-based input vectors, we apply RANCFIS to the Santa Fe Laser A and 

Mackey-Glass data sets, and compare the results to ANCFIS [25]. The input vector lengths for 

Mackey-Glass and Santa Fe Laser A are 44 and 8, respectively [25]. 

Table 29: Performances of RANCFIS and ANCFIS on period-based input vectors in terms of RMSE. 

 RANCFIS ANCFIS [25] 

Santa Fe Laser A 0.082 0.033 

Mackey Glass 0.00039 0.00055 

 

7.4. Conclusion 

In this chapter, we have proposed a new machine learning algorithm based on CFS&L. It 

is a feed-forward neuro-complex fuzzy systems which employs randomized learning. This 

modification eliminates the backpropagation learning step, and leads to a fast learning rate. 

Comparing the performance of RANCFIS with the other variations of neuro-complex fuzzy 

systems (ANCFIS-ELM and ANCFIS) in Table 26 shows that among the ten time-series under 

study, RANCFIS is superior in half of them and ANCFIS is better in the rest.  The Friedman test 

confirms that there is no significant difference between the RANCFIS and ANCFIS, while both 

are clearly superior to ANCFIS-ELM. 

                                                 
1 CNFS-ARIMA 
2 SVR 
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RANCFIS’s speed and accuracy compared to the other neuro-complex fuzzy systems 

makes it a suitable choice for studying data stream mining. In comparison with other approaches 

that have been attempted on these time-series (Table 28), RANCFIS is the best on four out of ten 

time-series. We are, however, unable to comment on the comparative execution times of these 

algorithms. In future work, we will examine RANCFIS as a general stream-mining algorithm, for 

both forecasting and classification problems. 

However, the randomized learning algorithms do not assure that randomly-selected 

parameter are optimal parameters for the system; in RANCFIS, this may manifest as a need for a 

large number of complex fuzzy sets. This would limit application of RANCFIS for large-scale 

learning. In the Chapter 8, we design a compact, fast and accurate learning algorithm suitable for 

data stream prediction. 
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Chapter 8 

FANCFIS: Fast Adaptive Neuro-Complex Fuzzy Inference System 

Large-scale time-series forecasting is an increasingly important problem, with sensor 

networks pouring out sampled data at unprecedented rates, petabytes of transactional data coming 

every day from giant stores such as Walmart, and terabytes of data generated over Facebook each 

day. While these are only examples of the much larger domain of general data streams, the 

uniformly-sampled time-series still remains a very large and important subdomain. Extensive 

research has shown that machine-learning algorithms can often be very effective forecasting 

models, but many of these algorithms do not scale well. The ANCFIS is one such approach; built 

to leverage complex fuzzy sets, it is both an accurate and parsimonious forecasting algorithm. 

However, its scaling is poor due to a relatively slow training algorithm (gradient descent 

hybridized with chaotic simulated annealing). Before the algorithm can be used for large-scale 

forecasting, a fast training algorithm that preserves the system’s accuracy and compactness must 

be developed.  

We propose the Fast Adaptive Neuro-Complex Fuzzy Inference System, which is designed 

for fast training of a compact, accurate forecasting model. We use the Fast Fourier Transform 

algorithm to identify the dominant frequencies in a time-series, and then create complex fuzzy sets 

to match them as the antecedents of a complex fuzzy rule. Consequent linear functions are then 

learned via recursive least-squares. We evaluate this algorithm on both univariate and multivariate 

time-series, finding that this incremental-learning algorithm is as accurate and compact as its 

slower predecessor, and can be trained much more quickly. 
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8.1. Introduction 

Data streams are continuous flows of information arriving over time. These include sensed 

data, web clickstreams, stock market quotes, Internet traffic, and more. The data could be used for 

real-time decision applications, retrospective analyses, condition monitoring, entertainment, etc. 

Working with data streams is more challenging than conventional data sets because of their 

volume, velocity and volatility [221, 222]. Volume is the amount of data collected over time, the 

velocity of the data refers to the rate at which data is generated transmitted on the stream, and the 

volatility relates to changes in data distribution or data meaning over time. The volume and 

velocity of data in the modern world are famously huge and increasing rapidly. In 2012, over 2.8 

ZB of data were generated and processed and this amount will increase by 15 times by 2020 [223].  

Every minute, 2 million posts are shared on Facebook, 277,000 tweets are generated by Twitter, 

and 4 million search queries are submitted to Google [224]. Volatility, in the meantime, refers not 

only to a distributional shift in the data stream, but possibly to a change in its semantics as well.  

For example, a spam email can come to be considered a regular email over time due to changes in 

the content of the spam email, in the behaviour of the spammer and in the perspective of the 

receiver regarding a spam category [225]. The volume, velocity and volatility of stream data imply 

that models must be incrementally learned for a limited historical time window. The model must 

furthermore be accurate, and quick to train; the latter usually implies compactness as well, since 

smaller models can be trained faster (all things being equal).  

A time-series is one particular case of streaming data. While the questions of volume, 

velocity and volatility remain the same, a time-series carries extra information in the form of 

timestamps for each observation; most commonly, these are the result of a sampled data-collection 
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process. This being the case, analysts can (and do) employ state-space and auto-regressive models 

for forecasting that might not be viable for more general streams. Both statistical models (e.g. 

FARIMA [226], GARCH [227], etc.) and machine-learning models [228-230] have been 

employed in forecasting, and found to be effective on a wide variety of data sets.  

As one example, machine learning algorithms based on CFS&L have been shown to be 

very accurate and parsimonious forecasting models [25, 54, 55, 171]. The ANCFIS was the first 

machine learning algorithm based on Ramot’s CFS&L [25] and Dick’s findings in [15]; the system 

is based on Jang’s ANFIS [231], modified to employ complex fuzzy sets in its rule antecedents 

and rule interference in its inferential process. Results in [25] showed that ANCFIS was very 

accurate even with a very small rulebase; univariate chaotic time-series were modeled well even 

with three or fewer rules. However, the backwards pass in ANCFIS is a hybrid of gradient descent 

and chaotic simulated annealing, which makes the algorithm relatively slow (See section 3.2) 

The RANCFIS is a variant of ANCFIS that employs randomized learning; in which some 

of the adaptive parameters in the system are picked randomly and the other parameters are learned 

[6, 218] (see Chapter 7). RANCFIS was shown to learn much faster than other variations of 

ANCFIS, while being just as accurate [9]. The weakness of RANCFIS, however, is that (like other 

random learning algorithms) there is no way to assure that the randomly-chosen parameters are 

optimal for a given data set. We expect this would manifest as a need for a larger number of 

complex fuzzy sets (and therefore rules) than an optimal ANCFIS would require. Thus, RANCFIS 

models are quite likely to be less compact that ANCFIS models achieving the same accuracy. The 

added complexity of a RANCFIS model that matches the accuracy of an ANCFIS model is 

unlikely to lead to an overall increase in training time; however, additional complexity is 
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undesirable for large-scale learning.  The question, therefore is: can a variant of ANCFIS with fast 

incremental learning be developed that retains the accuracy and compactness of the original? 

In this chapter, we develop fast incremental algorithms for time-series forecasting based 

on ANCFIS [25]. The Fast Adaptive Neuro-Complex Fuzzy Inference System (FANCFIS) is a 

classic incremental-learning algorithm, drawing inspiration from radial basis function networks. 

In an initialization step, a Fast Fourier Transform (FFT) is used to determine the dominant 

frequencies in a time-series, and a CFS matching each one is added to the model. Then, the 

consequent parameters of the FANCFIS model are updated incrementally via recursive least 

squares. In our experiments, we find that both FANCFIS and RANCIS are as accurate as the 

ANCFIS technique, and significantly faster.  

Our main contribution in this chapter is designing accurate and fast systems based on the 

ANCFIS architecture for data stream prediction.  Our second contribution is to compare learning 

with randomized vs. induced complex fuzzy sets in the ANCFIS architecture, to provide new 

evidence on the advantages and disadvantages of randomized learning.    

8.2. Background 

8.2.1. Data Stream Mining 

Data stream mining shares with all other data mining approaches the goal of turning vast 

amounts of data into useful, actionable knowledge. The problems of volume, velocity and 

volatility, combined with the permanent incompleteness of stream data, are the defining challenges 

of the stream mining field [221, 222]. The volume problem, for instance, directly implies that the 

entire historical data stream cannot be stored, and so any model trained on the data stream will 

have to be “single pass” [222]. The velocity problem indirectly reinforces this single pass 
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requirement, as training in a single pass over the data tends to be faster than multiple passes. The 

model must also be able to adapt to concept drifts in the data over time, which essentially means 

that older data must be “forgotten” in favor of new observations [232]. Again, a single pass 

algorithm generally lends itself to this adjustment. Beyond this, different techniques have been 

proposed to deal with the large volume of the data stream including load shedding, different 

sampling techniques, and windowing the data [233-236] [237] [238] [239, 240] [241] [242]. 

Various scaling techniques have been studied to address high volume and high velocity in stream 

data [243-246]. Volatility has been examined in many studies [247-250] [225, 251]; time 

windowing, instance weighting, and evolving classifier ensembles seem to be the three principal 

approaches to explicitly detecting and adapting to concept drifts [252].   

Machine learning has of course been employing in data stream mining; plainly, existing 

algorithms need to be modified – or entirely new ones developed – to work with data streams. 

Various clustering, classification and prediction techniques have been developed for data streams 

[221]. A wide variety of specialized stream clustering algorithms have been developed over the 

years, with CluStream [242] being one of the earliest and best-known. The algorithm is a k-means 

clustering approach, applied over microclusters; small clusters of observations that are close in 

time as well as in feature space. The k-means algorithm then runs over the prototypes of the 

microclusters. More recently, algorithms such as STRAP [253] and AutoClust [254] have been 

developed. Other clustering techniques have been discussed in [255] [241] [256] [257] [242].  

Stream classifiers are often developed from the familiar algorithms for tabular data. As 

these are not generally single-pass or incremental-learning algorithms, time windowing is used to 

temporarily retain a limited amount of historical data for training the classifiers. Numerous 

algorithms, including decision trees, neural networks, support vector machines and ensemble 



 

115 

 

learning have thus been adapted for the stream classification task [238] [258] [259] [239, 260]. 

Similarly, stream prediction algorithms are often built from classic tabular algorithms, again using 

the windowing approach [261] [262] [263] [264]. Surveys of machine learning in data streams 

mining may be found in [151, 237, 265-268]. 

8.2.2. Discrete Fourier Transform 

According to the Fourier Theorem, any periodic signal can be represented by a (possibly 

infinite) sum of sine and cosine terms. Building on this result, the Fourier transform re-expresses 

a time-domain signal as a complex-valued function of frequency, with each frequency representing 

a different sinusoid in the sum above. The Fourier transform of a non-periodic signal can be 

obtained by considering the signal’s period to be infinite [269]. In the case of discrete signals such 

as time-series with finite points, the discrete Fourier transform is used; only a limited number of 

sine and cosine terms is needed to represent the discrete signals precisely. The Fourier transform 

of a time-series with N data points, 𝐴(𝑘) 𝑘 = 1, 2, … ,𝑁, is calculated as  [270]: 

𝐹𝐴(𝑛) = ∑
𝐴(𝑘)

𝑁
𝑒−𝑖2𝜋𝑛𝑘/𝑁

𝑁−1

𝑘=0

 
( 166 ) 

where 𝐹𝐴(𝑛) is discrete Fourier transform (DFT) and is a complex number where its real and 

imaginary part are amplitude of sine and cosine wave, respectively. 𝑛 is frequency and N is number 

of data points in the time-series 𝐴(𝑘). Inverse of the Fourier transform reconstructs time-series as 

[270]: 

𝐴(𝑘) = ∑ 𝐹𝐴(𝑛)𝑒
𝑖2𝜋𝑛𝑘
𝑁

𝑁−1

𝑛=0

 
( 167 ) 
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= ∑ 𝐹(𝑛)𝑟𝑒𝑎𝑙

𝑁−1

𝑛=0

cos (
2𝜋𝑛𝑘

𝑁
) −∑ 𝐹(𝑛)𝑖𝑚𝑎𝑔

𝑁−1

𝑛=0

sin (
2𝜋𝑛𝑘

𝑁
) 

where 𝐹(𝑛)𝑟𝑒𝑎𝑙 and 𝐹(𝑛)𝑖𝑚𝑎𝑔 are real and imaginary parts of the Fourier transform, respectively. 

Plainly, a time-series with N data points needs n-1 waves with different frequencies to be 

reconstructed (n=0 is mean of the time-series).  

Power spectrum of a frequency captures how much of the variance of a time-series is 

related to the given frequency (without consideration of phase) and  is calculated as [270]: 

|𝐹𝐴(𝑛)|
2 = [𝐹(𝑛)𝑟𝑒𝑎𝑙]

2 + [𝐹(𝑛)𝑖𝑚𝑎𝑔]
2
 ( 168 ) 

 

It should be noted that discrete Fourier transform assumes the full period of the time domain signal 

is presented; thus, the first and last point in the time-series should be almost similar. Otherwise the 

endpoint mismatch distorts power spectrum, creating a spurious spike at high frequencies. one 

solution to this problem is to multiply the time-series with a window function that smoothly decays 

to zero at the beginning and end of the time-series [271]. Alternatively, the end-to-end mismatch 

software in Tisean, instead of using a window function, finds a subsequent of the time-series whose 

endpoints more closely match [272]. 

Fast Fourier transform (FFT) is an efficient algorithm for calculating DFT. The complexity 

of regular DFT for N point is 𝑂(𝑁2); however, FFT reduces it to 𝑂(𝑁𝑙𝑜𝑔(𝑁)) [273]. Cooley et 

al. proposed the first FFT algorithm [274]; they showed that it is possible to divide a DFT 

computation of length 𝑁 to smaller computations of size 𝑁/2 [273]: 
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𝐹𝐴(𝑛) = ∑ 𝑎𝑛𝑒
−𝑖2𝜋𝑛𝑘/𝑁

𝑁−1

𝑘=0

= ∑ 𝑎2𝑛𝑒
−𝑖2𝜋(2𝑛)𝑘/𝑁

𝑁/2−1

𝑘=0

+ ∑ 𝑎2𝑛+1𝑒
−𝑖2𝜋(2𝑛+1)𝑘/𝑁

𝑁/2−1

𝑘=0

= ∑ 𝑎𝑛
𝑒𝑣𝑒𝑛𝑒−𝑖2𝜋𝑛𝑘/(

𝑁
2
)

𝑁/2−1

𝑘=0

+ 𝑒−𝑖2𝜋𝑛𝑘/𝑁  ∑ 𝑎𝑛
𝑜𝑑𝑑𝑒−𝑖2𝜋𝑛𝑘/(

𝑁
2
)

𝑁/2−1

𝑘=0

 

( 169 ) 

where the smaller parts are similar to a smaller DFT which can be divided to smaller parts as well.  

DFT has been used for similarity search in a time-series. Sequences are transformed to the 

frequency domain; then the first few frequencies (ordered by the power spectrum) are compared 

against each other  [275, 276]. [277] used DFT for similarity search over time-series stream. [278] 

proposed a monitoring system based on DFT for time-series which is able to detect similarity in 

multiple time-series stream in real time.  Periodic pattern recognition has been investigated using 

autocorrelation function and fast Fourier transform [279] and power spectral density estimation 

using DFT and tree index [280]. Online clustering of data streams was performed in [281] by using 

a preprocessing step in which DFT is applied to obtain the distance between data streams. [282] 

used DFT in its structure in order to capture recurrent concepts in data streams; Decision Tree 

models are transformed by DFT when concept drift occurs.[283] proposed a system for anomaly 

detection in RFID tags which employs Fourier transform for outlier detection. [284] proposed a 

change detection algorithm for unsupervised data stream based on Fourier transform.  
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8.3. Methodology 

8.3.1. FANCFIS 

FANCFIS is a six-layered feed forward neural network inspired by RANCFIS; the latter’s 

speed advantage over ANCFIS comes from eliminating the backwards learning pass in the network 

in favor of a random selection of CFS parameters. the fundamental difference between them is that 

FANCFIS does not employ randomized learning algorithm in its structure. Instead, the sinusoidal 

membership functions are determined by an FFT of a portion of the given time-series. We suspect 

that this would lead to a more compact network, as the CFS would be specifically tuned to the data 

set under analysis, and we will thus need fewer of them for the same level of accuracy. The actual 

neuron transfer functions in each layer are identical between RANCFIS and FANCIS. 

The FANCFIS learning algorithm is a two-step process including an initialization step and 

an incremental learning step. Briefly, in the initialization step, membership functions parameters 

and the delay and dimension of the delay vector are determined. Then, the initial output weights 

of FANCFIS are calculated. In the incremental learning, the output weights are updated after each 

new data point is observed. 

In the initialization step, a portion of the time-series is processed as a batch; We know that 

in the DFT, a time-series is represented by a limited number of coefficients in the frequency 

domain, and that frequencies with highest power spectrum give more information about the time-

series [270, 285]. Thus, to create k CFS, we will select the k frequencies with the highest poser 

spectrum. We use the Tisean software [272] to identify a subsequent of the initialization data with 

a minimal endpoint mismatch. Then, the FFT of that subsequence is calculated and the k 
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frequencies with the highest power spectrum are identified. Membership functions are determined 

as: 

𝑟(𝜃) = 𝐹(𝑛𝑖)𝑟𝑒𝑎𝑙 cos(𝜃 = 𝑥) − 𝐹(𝑛𝑖)𝑖𝑚𝑎𝑔 sin(𝜃 = 𝑥) + 𝐷𝐶   𝑖 = 1,2, … , 𝑁𝑚𝑓 

𝜃 =
2𝜋𝑛𝑖𝑘

𝑁
   𝑘 = 1,2, … ,𝑁  

( 170 ) 

 

where  𝑟 and 𝜃 are amplitude and phase of the complex membership grade, respectively, x  X is 

an object of the universal set X,  𝑛𝑖 indexes frequencies with the highest power spectrum, 𝑁𝑚𝑓 is 

the total number of membership functions,, 𝐹(𝑛𝑖)𝑟𝑒𝑎𝑙 and 𝐹(𝑛𝑖)𝑖𝑚𝑎𝑔 are respectively the real and 

imaginary parts of the FFT for frequency of 𝑛𝑖, N is length of the length of the subsequence 

determined by Tisean and DC is zero frequency component, 𝐹𝐴(0) = ∑
𝐴(𝑘)

𝑁

𝑁−1
𝑘=0 . We use the FFT 

implementation in [286]. 

We estimate the delay vectors’ parameters (delay and dimension) using the whole of the 

initialization data. We use the time-delayed mutual information heuristic to find our delay   [96], 

and the approach in [99] is used to determine the dimension m (see section 3.3). As FANCFIS has 

been written in C++ language, we have classes responsible for calculating delay and dimension 

and creating the delay vectors in the initialization learning step. The delay class is based on 

implementation of mutual information in Tisean software [102] and the dimension class finds the 

best dimension based on [99] and K-nearest neighbors (KNN) search implementation in [287]; we 

consider 15 as the maximum dimension to be considered. 

After estimating the membership function parameters and the delay vectors, we can 

calculate the initial output weights for FANCFIS using the RLS algorithm (Equations. ( 158 ) - ( 

161)). Thereafter, we keep a sliding window of delay vectors constructed from the last w 

observations in the time-series. In the incremental learning step, we first form a new delay vector 
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as a new observation arrives, and simultaneously drop the oldest delay vector from the sliding 

window. We then use the RLS algorithm to update the output weights on FANCFIS for the new 

delay vector. 

8.3.2. Complexity Analysis 

We will study the time complexity (order of growth) for FANCFIS and stream version of 

RANCFIS in this section. Table 30 and Table 31 show FANCFIS and RANCFIS algorithm, 

respectively. 

Table 30: FANCFIS Algorithm 

FANCFIS Algorithm 

A. Initialization Step: 

1. Normalize the training set as: 

𝑥𝑖 −max (𝑋)

max(𝑋) −min (𝑋)
 

( 171 ) 

 

where X is a univariate time-series and 𝑥𝑖 is the i-th data point in the time-series. To 

normalize a multivariate time-series, Equation ( 171 ) repeats for each variate. 

 

2. Obtain delay and dimension for delay vectors 

a. Use the mutual information heuristic to estimate  (Equation. ( 127 ) ) 

b. Use the k-NN approach to estimate the dimension m as proposed in [99]. The 

nearest neighbor search is carried out by a KD-tree algorithm.  

3. Form the delay vectors. Equation.( 131 ) for multivariate time-series and Equation. ( 

125 ) for univariate time-series 
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4. Calculate membership functions 

a. Perform an FFT of the training set. 

b. Select the frequencies with the highest power spectrum, and create a CFS for 

each following Equation ( 170 ) 

5. For N epochs repeat: 

a. Calculate output weights (Equation ( 158 )-( 159 )) 

B.  Incremental Learning Step 

 

6. For each new data point, delete the oldest data point and re-normalize the training set 

7. Create a new delay vector for the new data point 

8. Update the output weights 

 

 

Table 31: RANCFIS Algorithm 

RANCFIS Algorithm 

A. Initialization Step: 

1. Normalize the training set per Equation ( 171 ). 

2. Obtain delay and dimension for delay vectors 

a. Use mutual information to estimate  

b. The approach from [99] to estimate m 

3. Form the delay vectors. Equation.( 131 ) for multivariate time-series and Equation. ( 

125 ) for univariate time-series 
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4. Select random parameters for membership functions 

5. For N epoch repeats: 

a. Calculate the output weights 

B.  Incremental Learning Step 

6. For each new data point, delete the oldest data point and re-normalize the training set. 

7. Create a new delay vector for the new data points 

8. Update the output weights 

 

We will study the running time relative to six different inputs: the number of variates in 

the time-series (NumVar), the number of membership functions (NumMF), the number of network 

outputs (NumofOut), the number of training data examples used for the initial learning step 

(NumTr), the maximum allowed dimension (from [99])  (DMax), and number of delays to find the 

optimum delay from them using mutual information (D) . We assume that NumMF is the same for 

all the variates in the time-series.  

For FANCFIS, based on Table 30, in each step, we have the following maximum number 

of operations: 

1. 𝑁𝑢𝑚𝑇𝑟 ∗ 𝑛𝑢𝑚𝑉𝑎𝑟 

2. 𝐷𝑀𝑎𝑥𝑛𝑢𝑚𝑉𝑎𝑟 ∗ (𝑁𝑢𝑚𝐷𝑉 ∗ 𝑛𝑢𝑚𝑉𝑎𝑟 ∗ 𝐷𝑀𝑎𝑥) ∗ 𝐾𝑛𝑛𝑆𝑒𝑎𝑟𝑐ℎ + 𝐷 ∗ 𝑛𝑢𝑚𝑉𝑎𝑟 

where (𝑁𝑢𝑚𝐷𝑉 ∗ 𝑛𝑢𝑚𝑉𝑎𝑟 ∗ 𝐷𝑀𝑎𝑥) is the number of operations to obtain delay vectors 

for 𝐷𝑀𝑎𝑥𝑛𝑢𝑚𝑉𝑎𝑟sets of dimension. The running time of KnnSearch based on KD-Tree is 

estimated as 𝑂(𝐾𝑛𝑒𝑎𝑟. log(𝑁𝑢𝑚𝐷𝑉)) where 𝐾𝑛𝑒𝑎𝑟 is the number of the nearest 

neighbors considered in Knn search and NumDV is the number of delay vectors for a given 
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delay and dimension. By considering DMax and D as the dimension and delay for all the 

variates, 𝑛𝑢𝑚𝐷𝑉 = 𝑁𝑢𝑚𝑉𝑎𝑟 ∗ (𝑁𝑢𝑚𝑇𝑟 − 𝐷 ∗ (𝐷𝑀𝑎𝑥 − 1)). 

3. 𝑁𝑢𝑚𝐷𝑉 ∗ 𝑛𝑢𝑚𝑉𝑎𝑟 ∗ 𝑛𝑢𝑚𝐷𝑖𝑚 where numDim is the dimension calculated in the 

initial learning step (step 2). 

4. 𝑛𝑢𝑚𝑉𝑎𝑟 ∗ 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 

where running time of discrete Fourier transform is estimated as 

𝑂(𝑁𝑢𝑚𝑇𝑟. log(𝑁𝑢𝑚𝑇𝑟)) 

5. 𝑒𝑝𝑜𝑐ℎ ∗ (𝑛𝑢𝑚𝑉𝑎𝑟 ∗ 𝑛𝑢𝑚𝑀𝐹 ∗ 𝐷𝑀𝑎𝑥2 + 𝑛𝑢𝑚𝑉𝑎𝑟 ∗ 𝑛𝑢𝑚𝑀𝐹 + 𝑛𝑢𝑚𝑀𝐹𝑛𝑢𝑚𝑉𝑎𝑟 ∗

𝑛𝑢𝑚𝑉𝑎𝑟 + 𝑛𝑢𝑚𝑂𝑢𝑡 ∗ (𝑛𝑢𝑚𝑀𝐹𝑛𝑢𝑚𝑉𝑎𝑟 ∗ 𝐷𝑀𝑎𝑥𝑛𝑢𝑚𝑉𝑎𝑟 + 𝑛𝑢𝑚𝑀𝐹𝑛𝑢𝑚𝑉𝑎𝑟)2) 

Where 𝑛𝑢𝑚𝑉𝑎𝑟 ∗ 𝑛𝑢𝑚𝑀𝐹 ∗ 𝐷𝑀𝑎𝑥2 + 𝑛𝑢𝑚𝑉𝑎𝑟 ∗ 𝑛𝑢𝑚𝑀𝐹 shows number of operations 

for calculation of membership degrees, 𝑛𝑢𝑚𝑀𝐹𝑛𝑢𝑚𝑉𝑎𝑟 ∗ 𝑛𝑢𝑚𝑉𝑎𝑟 is the number of 

operations for obtaining firing strength of the rules and 𝑛𝑢𝑚𝑂𝑢𝑡 ∗ (𝑛𝑢𝑚𝑀𝐹𝑛𝑢𝑚𝑉𝑎𝑟 ∗

𝐷𝑀𝑎𝑥𝑛𝑢𝑚𝑉𝑎𝑟 + 𝑛𝑢𝑚𝑀𝐹𝑛𝑢𝑚𝑉𝑎𝑟)2is the maximum number of operations for calculating 

the output weights. 

At the end of the initial learning, we have the following number of operations: 

𝑁𝑢𝑚𝑇𝑟 ∗ 𝑛𝑢𝑚𝑉𝑎𝑟 + 𝐷 ∗ 𝑛𝑢𝑚𝑉𝑎𝑟 + 𝐷𝑀𝑎𝑥𝑛𝑢𝑚𝑉𝑎𝑟 ∗ (𝑁𝑢𝑚𝐷𝑉 ∗ 𝑛𝑢𝑚𝑉𝑎𝑟 ∗ 𝐷𝑀𝑎𝑥)

∗ 𝐾𝑛𝑛𝑆𝑒𝑎𝑟𝑐ℎ + 𝑁𝑢𝑚𝐷𝑉 ∗ 𝑛𝑢𝑚𝑉𝑎𝑟 ∗ 𝑛𝑢𝑚𝐷𝑖𝑚 + 𝑛𝑢𝑚𝑉𝑎𝑟 ∗ 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 + 𝑒𝑝𝑜𝑐ℎ

∗ (𝑛𝑢𝑚𝑉𝑎𝑟 ∗ 𝑛𝑢𝑚𝑀𝐹 ∗ 𝐷𝑀𝑎𝑥2 + 𝑛𝑢𝑚𝑉𝑎𝑟 ∗ 𝑛𝑢𝑚𝑀𝐹 + 𝑛𝑢𝑚𝑀𝐹𝑛𝑢𝑚𝑉𝑎𝑟

∗ 𝑛𝑢𝑚𝑉𝑎𝑟 + 𝑛𝑢𝑚𝑂𝑢𝑡 ∗ (𝑛𝑢𝑚𝑀𝐹𝑛𝑢𝑚𝑉𝑎𝑟 ∗ 𝐷𝑀𝑎𝑥𝑛𝑢𝑚𝑉𝑎𝑟 + 𝑛𝑢𝑚𝑀𝐹𝑛𝑢𝑚𝑉𝑎𝑟)2) 

 The most time-consuming part is calculation of Fourier transform (𝑛𝑢𝑚𝑉𝑎𝑟 ∗ 𝐹𝑜𝑢𝑟𝑖𝑒𝑟). Thus, 

the complexity is: 𝑂(𝑁𝑢𝑚𝑇𝑟. log(𝑁𝑢𝑚𝑇𝑟)).  For incremental learning, we have the following 

number of operations for each step. 
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6. 𝑁𝑢𝑚𝑇𝑟 ∗ 𝑛𝑢𝑚𝑉𝑎𝑟 

7. 𝑛𝑢𝑚𝑉𝑎𝑟 ∗ 𝑛𝑢𝑚𝐷𝑖𝑚 where numDim is the dimension calculated in the initial 

learning step (step 2). 

8. 𝑛𝑢𝑚𝑉𝑎𝑟 ∗ 𝑛𝑢𝑚𝑀𝐹 ∗ 𝐷𝑀𝑎𝑥2 + 𝑛𝑢𝑚𝑉𝑎𝑟 ∗ 𝑛𝑢𝑚𝑀𝐹 + 𝑛𝑢𝑚𝑀𝐹𝑛𝑢𝑚𝑉𝑎𝑟 ∗

𝑛𝑢𝑚𝑉𝑎𝑟 + 𝑛𝑢𝑚𝑂𝑢𝑡 ∗ (𝑛𝑢𝑚𝑀𝐹𝑛𝑢𝑚𝑉𝑎𝑟 ∗ 𝐷𝑀𝑎𝑥𝑛𝑢𝑚𝑉𝑎𝑟 + 𝑛𝑢𝑚𝑀𝐹𝑛𝑢𝑚𝑉𝑎𝑟)2 

Thus, the operations for the step are: 

𝑁𝑢𝑚𝑇𝑟 ∗ 𝑛𝑢𝑚𝑉𝑎𝑟 + 𝑛𝑢𝑚𝑉𝑎𝑟 ∗ 𝑛𝑢𝑚𝐷𝑖𝑚 + 𝑛𝑢𝑚𝑉𝑎𝑟 ∗ 𝑛𝑢𝑚𝑀𝐹 ∗ 𝐷𝑀𝑎𝑥2

+ 𝑛𝑢𝑚𝑉𝑎𝑟 ∗ 𝑛𝑢𝑚𝑀𝐹 + 𝑛𝑢𝑚𝑀𝐹𝑛𝑢𝑚𝑉𝑎𝑟 ∗ 𝑛𝑢𝑚𝑉𝑎𝑟

+ 𝑛𝑢𝑚𝑂𝑢𝑡 ∗ (𝑛𝑢𝑚𝑀𝐹𝑛𝑢𝑚𝑉𝑎𝑟 ∗ 𝐷𝑀𝑎𝑥𝑛𝑢𝑚𝑉𝑎𝑟 + 𝑛𝑢𝑚𝑀𝐹𝑛𝑢𝑚𝑉𝑎𝑟)2 

the most time-consuming part is normalizing the time-series for the new data points; thus 

the running time for the incremental learning is estimated as 𝑂(𝑁𝑢𝑚𝑇𝑟). 

For RANCFIS-Stream, based on Table 31, all the steps are same as the steps in DS-

ANCFIS except the step four (determining membership functions); in this step, complexity for 

choosing random values for membership function is O(1). Thus, the complexity in the initial step 

is equal to the calculation of dimension for the delay vectors which is the most time-consuming 

section, 𝑂(𝐾𝑛𝑒𝑎𝑟. log(𝑁𝑢𝑚𝐷𝑉)), and for the incremental learning, the running time is estimated 

as 𝑂(𝑁𝑢𝑚𝑇𝑟). 

8.3.3. Experimental Design 

In all of our experiments, we follow a chronologically ordered single-split design in which 

observations in the training set occur earlier that those ones in the testing set. To simulate data 

streams, for the initialization step, we use the chronologically earliest portion of the training set 

and the remaining observations are passed one by one to the system in the online learning. We do 
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explore the size of the initialization set; 10%, 20% and 50% of the training set are considered in 

our experiments. The explorations also consider different number of membership functions; we 

examine 1 to 5 membership functions for each variate in the time-series.  

Our results in RANCFIS and FANCFIS are compared by RMSE and MAE statistics 

(Equations. ( 133 ) and ( 134 )). To determine if there is significant difference between 

performances RANCFIS and FANCFIS, the Friedman test is applied. The Friedman statistic, S, is 

calculated as [113] (see section 3.5.1.1). 

8.3.4. Data Sets 

To study FANCFIS and RANCFIS performance in time-series stream prediction, 14 time-

series are considered: ten univariate time-series (including four software reliability growth data 

sets) and four multivariate time-series (section Error! Reference source not found.) 

8.3.5. Experimental Results 

The one-step ahead prediction of time-series stream by FANCFIS and RANCFIS are 

compared against each other. Table 32 shows the best parameter set identified for each algorithm 

on each data set: the number of membership functions, delay and dimension of delay vectors and 

portion of data saved in the initial learning set. Table 33 shows the results of comparing of these 

two methods 

Table 32: Number of membership functions, delay vector’s parameters and portion of data saved 

 FANCFIS RANCFIS 

 Num 

of 

MF 

Delay Dimension Portion Num 

of 

MF 

Delay Dimension Portion 
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Solar Power 3 0 1 50% 1 0 1 50% 

Santa Fe  4 3 4 10% 1 3 4 10% 

Mackey-Glass 2 9 3 50% 1 6 2 10% 

Stellar 3 5 3 50% 1 5 3 50% 

Sunspot 5 1 8 10% 1 1 8 10% 

Wave 5 3 13 50% 2 3 13 50% 

Mozilla 4 6 12 50% 1 6 12 50% 

Android 5 2 15 50% 3 2 12 10% 

ODC1 5 2 5 20% 3 2 5 20% 

ODC4 1 2 8 50% 3 2 8 50% 

Motel 2 [2 2] [10 3] 50% 2 [3 2] [2 1] 20% 

Flour 1 [2 3] [3 2] 20% 3 [3 1]  [1 4] 10% 

NASDAQ 3 [6 7] [5 7] 50% 1 [6 7] [5 7] 50% 

Precipitation 1 [1 1] [6 15] 50% 1 [1 1] [6 15] 50% 

 

Table 33: Comparing FANCFIS and RANCFIS 

 FANCFIS RANCFIS 

Solar Power 4.8948 

 

4.8960 

 

Santa Fe Laser A 0.0557 

 

0.0648 

 

Mackey-Glass 0.0136 

 

0.0184 

 

Stellar 0.01560 

 

0.01563 

 

Sunspot 0.0988 

 

0.1031 

 

Wave 0.0622 

 

0.0741 
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Mozilla 0.0273 

 

0.0274 

 

Android 0.0639 

 

0.0624 

 

ODC1 0.0299 

 

0.0304 

 

ODC4 0.0325 

 

0.0322 

 

Motel 0.1928 

 

0.2433 

 

Flour 0.1447 

 

0.1697 

NASDAQ 23.957 

 

24.027 

 

Precipitation 0.20206 

 

0.20206 

 

In order to determine significant differences between FANCFIS and RANCFIS in time-series 

stream prediction, we calculate the Friedman statistic, S, in Equation. ( 135 ) with k=2 and n=14. 

We obtain S=6.3 with 𝛼 = 0.05, 𝜒𝑘−1,𝛼
2 = 4.57 (for 1 degree of freedom); this shows that the null 

hypothesis is rejected and there is a significant difference between RANCFIS and FANCFIS. 

To compare the execution time of FANCFIS and RANCFIS, Table 34 indicates the time 

taken for the initialization step in terms of second with 10% of portion of time-series saved in and 

by using two membership functions, respectively. We use Clock function in the C language to 

obtain the processor time consumed by the program. 

Table 34: Time Taken for FANCFIS and RANCFIS in the initialization step for 2 membership functions 

and 10% of the data (seconds) 

 FANCFIS RANCFIS 
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Solar Power 122.028 121.255 

Santa Fe Laser A 0.333488 0.323909 

Mackey-Glass 0.030464 0.027915 

Stellar 0.036497 0.037076 

Sunspot 0.0182 0.018151 

Wave 0.012745 0.013863 

Mozilla 3965.68 3785.41 

Android 199.018 197.41 

ODC1 0.388585 0.373142 

ODC4 1.2848 1.27255 

Motel 0.010225 0.013563 

Flour 0.07884 0.051655 

NASDAQ 2.34974 1.63312 

Precipitation 8.26981 8.334 

Table 35 shows performance of FANCFIS against batch learning algorithms including 

batch learning version of RANCFIS  [218] (see Chapter 7), ANCFIS, and other approaches in the 

literature. 

Table 35: Performance of FANCFIS against other approaches 

 FANCFIS RANCFIS 

[218] 

ANCFIS  Other 

Approaches 

Solar Power 4.8948 

 

1.949 3.106 [171] 6.8111[6] 

Santa Fe Laser 

A 

0.0557 

 

0.0523 0. 114 [171] 0.0372[219], 

Mackey-Glass 0.0136 0.021 0.015 [171] 0.00473[220] 

                                                 
1 RBFN 
2 Fuzzy Boolean Neural Network 
3 TSK-NFIS 
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Stellar 0.01560 

 

0.0120 0.014[171] 0.0181[220] 

Sunspot 0.0988 

 

0.112 0.103[171] 0.0364[171] 

Wave 0.0622 

 

0.121 0.009 [171] 0.007[171] 

Mozilla 0.0273 

 

- - 0.02672[9] 

Android 0.0639 

 

- - 0.0665 [9] 

ODC1 0.0299 

 

- - 0.0285[9] 

ODC4 0.0325 

 

- - 0.0335[9] 

Motel 0.1928 

 

0.041 0.155[7] 0.18411[7] 

Flour 0.1447 

 

0.198 0.196[7] 0.1781[7] 

NASDAQ 23.957 

 

23.49 23.50[7] 33.113 [48] 

Precipitation 0.20206 

 

0.206 0.198[7] 0.203 4[7] 

 

                                                 
1 Neural Net 
2 ANCFIS-ELM 
3 CNFS-ARIMA 
4 SVR 
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8.4. Conclusion 

In this chapter, we have proposed FANCFIS, a fast learning variant of the ANCFIS 

neuro-complex -fuzzy system. The system first uses an FFT on an initialization window to 

determine optimal CFS membership functions for the complex fuzzy rule antecedents, then 

recursive least squares to update the consequent parameters. The performance of the system was 

compared against a stream version of RANCFIS (see Chapter 7). Our experimental results in 

Table 33 show that there is a significant difference between FANCFIS and RANCFIS 

performance, with FANCFIS being more accurate. However, FANCFIS will be asymptotically 

slower than RANCFIS based on the complexity study in Section 8.3.2. 

The proposed systems are able to deal with volume and velocity in the data stream as it 

works on a window of data; thus, there is no need to save the whole data set. Moreover, the 

complexity study shows that they are fast enough to work with high velocity data stream. In the 

future work, we will modify the system to be able to deal with concept drifts in a data stream. 

 

Chapter 9 

Conclusions and Future Directions 

9.1. Conclusions 

Complex fuzzy sets and logics are developing in the recent years and more researchers are 

working in this filed. Machine learning algorithms based on complex fuzzy sets and logic are 

showing promising results in different areas specifically time-series prediction. In this dissertation, 
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we first reviewed the latest research in the area and then designed and developed machine learning 

algorithms based on CFS&L. 

Machine learning algorithms used for time-series prediction mostly work with input 

windows of time-series which is lagged representation of the time-series. In this dissertation, we 

compared three different input representations for machine learning algorithms based on CFS&L. 

Input windows based on an ad-hoc determination of what constitutes one “period” in the data set, 

the traditional delay embedding, guided by the mutual-information and false-nearest-neighbour 

heuristics, and the use of only the false-nearest-neighbour heuristic were studied and compared 

against each other by applying on six univariate time-series data sets. While the “best” method 

appears to be data set-dependent, we found enough evidence that we recommend the latter method 

as the best combination of accuracy and expected computation time. 

Before designing any new algorithm, we have evaluated the performance of the existence 

machine learning algorithms based on CFS&L. ANCFIS was designed to work on univariate time-

series; thus, we have explored one-step-ahead forecasting ability of ANCFIS on photovoltaic 

power data set. Its results are compared against several different machine learning algorithms as 

well as ARIMA forecasting. We found that support vector regression was the most accurate 

approach on this data set, followed by ANCFIS.  

In the next step, we have developed ANCFIS architecture for multivariate time-series 

prediction. Three different ANCFIS architectural designs (SISO, MISO, MIMO) have been 

examined. A further exploration of alternative designs of MIMO ANCFIS is also performed. The 

designs were compared with well-known machine learning algorithms, RBFN and SVR. A 
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Friedman test shows no significant difference between any of these methods. However, when we 

compare ANCFIS against the existing literature on these data sets, our method is clearly superior. 

The main disadvantage of ANCFIS architecture is its slow learning algorithm. To speed up 

this neuro-fuzzy system, we have designed a new algorithm (RANCFIS). The algorithm is a feed-

forward neuro-complex fuzzy system which has taken advantages of randomized learning 

algorithm in its structure. This modification in the structure eliminates the back propagation 

learning and leads to a fast learning rate. Our results showed that RANCFIS learning rate is faster 

than ANCFIS, and RANCFIS is slower that ANCFIS-ELM. Comparing performance of RANCFIS 

with the other variations of neuro-complex fuzzy systems (ANCFIS-ELM and ANCFIS) showed 

that among ten understudy time-series, RANCFIS outperforms in half of them and ANCFIS is 

better in the rest.  However, the statistical significant tests cleared that there is no significant 

difference between RANCFIS and ANCFI. ANCFIS-ELM cannot compete with these two 

architectures.  

In our last design, we have designed a fast and compact learning algorithm based on 

CFS&L suitable for data stream mining. The FANCFIS has a two-step learning step: initialization 

step and incremental step. The membership functions in this design is determined using FFT. Our 

experimental results showed that there is a significant difference between the FANCFIS and the 

stream version of RANCFIS performance, with FANCFIS being more accurate. However, 

FANCFIS will be asymptotically slower than RANCFIS. The FANCFIS is able to deal with 

volume and velocity in the data stream. 
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9.2. Future Directions 

The FANCFIS design can be improved. The system is currently able to deal with volume 

and velocity in data streams but it does not have any structure to detect concept of Drift. Comparing 

two window of a time-series, implementing instance weighting or evolving the FANCFIS over 

time can be the solution to this problem. 

Moreover, the machine learning algorithms designed and developed in this dissertation 

have been applied on time-series prediction. Applications of the algorithms in other areas need to 

be investigated such as classification, clustering and image processing.  
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