
Finding Surprisingly Frequent Patterns of Variable Lengths in Sequence Data

by

Reza Sadoddin

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science
University of Alberta

c©Reza Sadoddin, 2014

Abstract

We address the problem of finding ‘surprising’ patterns of variable length in sequence

data, where a surprising pattern is defined as a subsequence of a longer sequence,

whose observed frequency is statistically significant with respect to a given distri-

bution. Finding statistically significant patterns in sequence data is the core task in

some interesting applications such as Biological motif discovery and anomaly detec-

tion. We investigate the problem of ‘redundant patterns’, where the presence of few

‘true’ anomalous patterns in the data could cause a large number of highly-correlated

patterns to stand statistically significant just because of those few anomalous pat-

terns. Identifying ‘true’ anomalies in a set with many ‘redundant patterns’ can be

challenging. Our approach to solving this problem is based on capturing the depen-

dencies between patterns through an ‘explain’ relationship where a set of patterns

can explain the statistical significance of another pattern. The ‘explain’ relationship

allows us to address the problem of redundancy by choosing a few ‘core’ patterns

which explain the significance of all other significant patterns. We propose a greedy

algorithm for efficiently finding an approximate core pattern set of minimum size.

To extend the utility of our method to a broader class of applications, the proposed

framework is generalized by allowing the ‘surprising patterns’ to represent a class

of subsequences with a certain amount of variation w.r.t a core pattern. Using both

synthetic and real-world sequential data, chosen from different domains including

Medicine, Computer Security, and Bioinformatics, we show that the proposed no-

tion of core patterns very closely matches the notion of ‘true’ surprising patterns in

data. We also compare our method with five other well-known anomaly detectione

techniques. The results show a better matching of our predictions with the ground

truth compared to those of our comparison partners. When compared with 14 well-

known methods on the interesting application of the Biological motif discovery, and

on a widely-used benchmark, our proposed method achieves better or comparable

results in finding motifs, a special case of our surprising patterns.

ii

Acknowledgements

It is my great pleasure to thank and appreciate the awesome people who have
given me help, support, encouragement, and guidance during my journey as a PhD
student.

I was very very lucky to be supervised by two of the greatest people and profes-
sors in the Department of Computing Science, professor Joerg Sander and Davood
Rafiei. Joerg Sander and Davood Rafiei were incredibly patient and supportive dur-
ing all this time, not only in my research activities when I was encountering obstacles
which resulted in slow progress in some periods of my research, but also in my life
and career challenges. They were very understanding and helpful during the time I
had to work remotely because of my personal life. Joerg Sander has contributed sub-
stantially to this thesis by bringing new ideas and directions, constructive criticism,
getting involved in details when necessary, and careful reviews of the manuscripts
and the thesis generated from this research study. Davood Rafiei has contributed a
lot during research work by asking thoughtful questions, encouraging to get deeper
in problems, bringing new ideas for application of our research work, and being
very responsive in reviewing the manuscripts. I was supported jointly by Joerg and
Davood during most of my PhD study.

I would like to thank my examiners, professor Lukasz Kurgan and professor
Guohui Lin for giving me useful feedback during my candidacy examination. Dr.
Lukasz Kurgan encouraged me to extend the proposed methodology to be applicable
on the Biological motif discovery, and Dr. Guohui Lin helped me to investigate
some theoretical aspect of the algorithms, which resulted in the NP-Complete proof
of the main problem in this thesis. Also, I would like to thank Denilson Barbosa for
reading my candidacy proposal and providing me with valuable suggestions. Thanks
to Proferssor Jian Pei for giving me the pleasure to be an external member of my
committee. I am also thankful to Ian Parsons from Syncrude for attending our
regular biweekly research meetings, and giving valuable insights and suggestions in
my research work.

During my PhD study in Edmonton, I had the chance to meet some of my best
friends in life. I am always proud of my lab-mates in the Database lab, Pirooz
Chubak, Vahid Jazayeri, Mojdeh Jalali, and Davoud Moulavi, with whom I have
a lot of good memories. Also, I would like to thank my wonderful friends Yavar
Naddaf and Fariborz Kiasi who were great companions during my PhD study in
Edmonton.

My parents, and my two sisters are my greatest treasure in the life, from whom
I have always received tremendous support and unconditional love. They have been
encouraging and inspiring me from the first day I entered the primary school and
all the time during my long journey in Academia. My deepest thank and warmest

iii

appreciation goes to my family. Also, it is my great pleasure to thank my girlfriend,
Elaheh Ehsani, for helping me wrapping up my PhD thesis, especially in the last
year of my PhD study when I was working as a full-time employee.

This research was enabled in part by support from Westgrid (www.westgrid.ca)
and Compute Canada Calcul Canada (www.computecanada.ca).

iv

Table of Contents

1 Introduction 1
1.1 Motivating Applications . 2

1.1.1 Biological Motif Discovery . 2
1.1.2 Anomaly Detection in Sequences 3

1.2 Challenges . 5
1.3 Contributions of the Thesis . 6
1.4 Thesis Organization . 7

2 Related Work 8
2.1 Anomaly Detection in Sequence Data 8

2.1.1 Window-based Techniques . 9
2.1.2 Markovian Techniques . 11
2.1.3 Hidden Markov Model-based Techniques 13
2.1.4 Similarity-based Techniques 13
2.1.5 Anomaly Detection in Time Series Data 14

2.2 Biological Motif Discovery . 16
2.2.1 Pattern-based Algorithms . 19
2.2.2 Probabilistic Algorithms . 20
2.2.3 Machine Learning Algorithms 21

2.3 Non-Redundant Subspace Clustering in High Dimensional Data . . . 22
2.4 Motif Discovery in Time Series Data 23
2.5 Mining Frequent Patterns in Sequence Data 24

3 Background and Problem Statement 27
3.1 Markov Chain Model . 27
3.2 Smoothing for Markov Models . 28

3.2.1 Additive Smoothing . 29
3.2.2 Good-Turing Estimate . 29
3.2.3 Katz Estimate . 30
3.2.4 Witten-Bell Estimate . 31

3.3 Statistical Significance Testing . 32
3.4 Correction for Multiple Hypothesis Testing 33

3.4.1 Classic Benferroni Method . 34
3.4.2 Holm-Benferroni Method . 34
3.4.3 The False Discovery Rate Method 35

3.5 General Problem Statement . 37

v

4 Proposed Method 41
4.1 Computing P-Values . 43
4.2 Computing a Core Pattern Set . 47
4.3 Smoothing Model Parameters . 48
4.4 Example Run of the Core Pattern Set Algorithm 48

4.4.1 Step 1: Learning the Parameters of the Markov Chain Model 49
4.4.2 Step 2: Extracting Subsequences 49
4.4.3 Step 3: Computing P-values and Identifying the Significant

Patterns . 49
4.4.4 Step 4: Greedy Search Algorithm for Finding a Core Pattern

Set . 49

5 Model Extension for Approximate Pattern Matching 55
5.1 Extended Motif Model . 55
5.2 Computing P-values for Approximate Patterns 57
5.3 Implementing Explain Relations Using Poisson Binomial Distribution 58

6 Complexity Analysis 61
6.1 Time Complexity of the Proposed Algorithms 61

6.1.1 Simple String Model . 61
6.1.2 Mismatch String Model . 63

7 Experimental Evaluation 65
7.1 Evaluation Partners . 66
7.2 Experiments on the Synthetic Data 68
7.3 Experiments on the ECG Dataset . 72
7.4 Experiments on the Masquerading User Dataset 77
7.5 Evaluating the Extended Model: An Application to the Motif Dis-

covery Problem . 78
7.5.1 Benchmark Explanation . 78
7.5.2 Evaluation Metrics . 79
7.5.3 Evaluation Partners on Motif Discovery 81
7.5.4 Multiple Test Correction Using False Discovery Rate 84
7.5.5 Selecting a single best motif from a core pattern set 85
7.5.6 Reporting binding sites from a core pattern 85

8 Conclusions and Future Work 95
8.1 Research Summary . 95
8.2 Directions for Future Work . 97

Bibliography 99

Appendices 108

A List of single best motifs found by CPS on motif discovery bench-
mark 108

B Conjecture: Constructing a Core Pattern Set is NP-Hard 110

vi

C Speeding-up Strategies and Implementation Issues 113
C.1 Early Abandonment of Exact P-value Computation 113
C.2 Approximating P-values . 113

C.2.1 Gaussian Approximation . 114
C.2.2 Poisson Approximation . 115

C.3 Exploiting Pattern Locality in the Explain Relation 116
C.4 Using Prefix Tree to Speed-up Probability Computations 117
C.5 Parallel Implementation on the Westgrid Cluster 119

C.5.1 Parallel Statistical Test Analysis 119
C.5.2 Parallel Core Pattern Set Construction 121

vii

List of Figures

2.1 Steps of Gene Regulation (adapted from [108]). 17

3.1 Increasing number of significant patterns with length. 40

4.1 Proposed framework for finding surprisingly frequnet patterns in sequence

data. 44

7.1 Performance comparison between methods in ExpVarLen, varying the
β of anomaly models. 71

7.2 Performance comparison between methods in ExpVarLen, varying the
β of anomaly models. CPS vs. performance of other methods com-
puted in the avg threshold mode (i.e. MCC averaged over different
window lengths and different probability threshold values and also
the K parameter for the KNN method). 72

7.3 Performance comparison between methods in ExpVarLen, varying the
β of anomaly models. CPS vs. performance of other methods com-
puted in the avg len best threshold mode (i.e. MCC averaged over
different window lengths while the best probability threshold values
and the best K for the KNN method are selected for each length.) . 73

7.4 Performance comparison between methods in ExpFixLen, varying the
β of anomaly models. 74

7.5 Performance comparison between methods in ExpFixLen, varying the
β of anomaly models. CPS vs. performance of other methods com-
puted in the avg threshold mode (i.e. MCC averaged over different
window lengths and different probability threshold values and also
the K parameter for the KNN method). 75

7.6 Performance comparison between methods on ECG dataset. 89
7.7 Performance comparison on Masquerading User data computed in the

heu threshold mode. 90
7.8 Combined measures of correctness over all 56 datasets, based on the

evaluation metrics defined by Tompa et el. in [109], including the nSn
(nucleotide-level Sensitivity), nPPV (nucleotide-level Positive pre-
dictive value), nPC (nucleotide-levelPerformance coefficient), nCC
(nucleotide-level correlation coefficient), sSn (site-level Sensitivity),
sPPV (site-level Positive predictive value), and sASP (site-level Av-
erage site performance). 91

7.9 Combined correlation coefficient (nCC) over all 56 datasets. 92
7.10 Combined correlation coefficient (nCC) by different species. 92

viii

7.11 Combined correlation coefficient (nCC) by different backround sequences. . 93
7.12 Combined correlation coefficient (nCC) for CPS and Weeder on top 32 cho-

sen motifs. 93
7.13 Combined site-level sensitivity (sSn) for CPS and Weeder on top 32 chosen

motifs. 94

B.1 Set covert problem to dominating set problem reduction: An illustra-
tion . 112

C.1 A prefix tree data structure storing the probability of patterns. . . . 118
C.2 The prefix tree data structure C.1 after adding the patternW =“abcda”.120
C.3 Parallel Implementation of Our Framework on Westgrid Canada. 122

ix

List of Tables

1.1 List of binding sites for the hypothetical protein BUH (adapted from
[29]) . 3

1.2 List of binding sites for genome belonging to Human [109]. 4

3.1 Random Variables in testing m null hypotheses 36
3.2 Example run of the Benjamini-Hochberg procedure 37
3.3 Significant patterns of different lengths, with their p-values and fre-

quencies . 40

4.1 Probabilities and backoff values generated by theWitten-Bell Smooth-
ing technique in the log scale . 50

4.2 Example run of the Holm-Benforreni procedure 51
4.3 Conditional p-value for significant patterns w.r.t E = {“44334334′′} . 52
4.4 Conditional p-value for significant patterns w.r.t E = {“44334334′′,

“535′′} . 53
4.5 Conditional p-value for significant patterns w.r.t E = {“44334334′′,

“535′′, “1322212′′} . 53
4.6 The set of significant patterns (after correction for multiple testing)

and the Core Pattern Set returned by our algorithm 54

5.1 List of binding sites for a transcription factor 56

7.1 Summary of Comparison Partners 66
7.2 Paired-sample t-Test for Synthetic Experiment ExpV arLen (signifi-

cance level α = 0.01) . 76
7.3 Paired-sample t-Test for Synthetic Experiment ExpFixLen (signifi-

cance level α = 0.01) . 76
7.4 Discovered patterns vs. true Arrhythmia in MIT-BIH records 77
7.5 Summary of the comparison partners used in the motif discovery

experiments (adapted from table 1 in [109]) 81

x

Chapter 1

Introduction

Sequence data are found in a wide variety of application domains such as Computer
networks, Bioinformatics, Web applications, Financial transactions, Weather mea-
sures, Medicine, etc. The volume and diversity of sequence data has been increased
as new applications have been emerged (e.g. high-throughput DNA sequencing,
Web clickstream analysis) or traditional applications have been made available on-
line (e.g. online shopping stores). The sequence data has been the target for a

diverse set of data mining tasks, where the main goal is to analyze the data from
different perspectives, discover interesting patterns in the data, and summarize it
into useful information. These tasks encompass a wide range of spectrum, from more
traditional association rule mining and frequent pattern mining tasks to newer ones,
such as intrusion detection, customer behaviour analysis in online stores, and Bio-
logical motif discovery.

Core to a data mining task on the sequence data is the type of patterns that can
be discovered, and the characteristics of an interesting pattern. While in the tradi-
tional data mining problems the patterns were characterized based on user-defined
and domain-dependent parameters (e.g. support in frequent pattern mining), the
newer problems define interesting patterns based on the data characteristics itself
(e.g. Chi-square statistics [100]). In general, it will be appealing to develop methods
which require less input parameters or behave more robust with respect to input

parameters.
Our research concerns with finding unexpectedly frequent patterns of variable

lengths in a long sequence data. We call these patterns surprising because of the
fact that they are observed more frequently than one would expect under normal
conditions. Finding surprising patterns in sequence data is a key problem in many
applications domains as diverse as Bioinformatics, Computer security and medicine.

In Bioinformatics, the surprising patterns, often referred to as “motifs”, are believed
to have some important biological significance and regulate gene expressions [27].
Motif discovery in this domain is the problem of finding subsequences in a DNA se-
quence that are overrepresented relative to a background distribution. In Computer
security, surprising patterns may correspond to a sequence of commands or system
calls executed by an attacker or a malicious program [37]. In time series data, a
surprising pattern might correspond to a “discord”, which has been defined as a

subsequence in a longer time series that is of maximal distance to its nearest neigh-
bour(s) and is shown to capture anomalies in ECG data (e.g. heart arrhythmia)

1

and Space telemetry (e.g. failures in spacecrafts) [23, 58].

1.1 Motivating Applications

In the following, we review two important applications of finding surprising patterns
in sequence data, including the Biological motif discovery and anomaly detection in

sequence data.

1.1.1 Biological Motif Discovery

A motif is a nucleotide or amino-acid sequence pattern that has some biological sig-

nificance, such as being DNA (deoxyribonucleic acid) binding sites for a regulatory
protein, i.e., a transcription factor. Transcription factors are proteins that bind to
specific DNA sequences and regulate the gene expression by activating or inhibiting
the transcription machinery. Gene expression is the process by which information
from a gene is used in the synthesis of a functional gene product, such as proteins.

Understanding the procedures that regulate gene expression is a major challenge

in biology. A key part of this task is to find the regulatory elements, specially the
binding sites for transcription factors, or motifs. This is a necessary first step in
determining which factors regulate the gene and how. Also, finding the same motifs
in multiple genes’ regulatory regions suggests a regulatory relationship amongst
those genes. Due to biological significance and functions assigned to these regulatory
elements, they occur multiple times in the same genome, and they are very likely
to be conserved during the evolution. There is an important hypothesis that the

transcription factor binding sites are “over-represented” in the regulatory regions
of DNA sequences [26]. A statistically overrepresented motif means a motif that
occurs more often than one would expect by chance.

A practical consequence of this hypothesis is that plenty of computational motif
discovery tools have been developed to find these regulatory elements. These algo-
rithms search for overrepresented motifs in this collection of regulatory sequences.

Efficient computational tools can potentially provide high-quality prediction of bind-
ing sites and reduce the time needed for experimental verification. The assumption
behind the motifs is very similar to that of the ‘surprising patterns’ in our research
study. As discussed already, and will be defined more formally in Section 3.5, the
surprising patterns are subsequences which are statistically significant with respect
to a background distribution. The proposed methods in our research study provide
a means for finding motifs in Biological sequences, and particularly address the issue

of the motif lengths.
However, this apparently simple approach for finding motifs based on the over-

representation assumption is complicated by several factors. First, most of binding
site motifs are short patterns (5 to 20 base pair long) in the presence of a great
amount of statistical noise (a typical input might be a regulatory region of length
1000 of each gene). More importantly, there are usually some variations between

the binding sites of a transcription factor, in the form of insertions, deletions, and
mutations. Also, the nature of these variations is not unknown. Example of binding
sites for the hypothetical protein BUH and human genome are shown in tables 1.1
and 1.2. As it can be observed, the amount of variations in some cases can be in

2

the level of just mutations (e.g. Table 1.1), and in other cases, the binding sites can
be of different lengths with lots of variations (e.g. Table 1.2), making it harder for
computational tools or even domain experts to identify them.

Table 1.1: List of binding sites for the hypothetical protein BUH (adapted from
[29])

ATGACATCAT
ATGCTGCCAA
ATGCGATAGG
ATCGACGTAC
ATTCGCTAAT
GCTAGCTCAC
TAGCTAGCAT
ATCGCGCCAT
ATCGCTACAT
ATTGCGAGAT
ATGCTGATAT
TTGTGATGAT
TTAGCATGCC
ATTGCATCAG
GTGTGATCAT
GTACTGACAT
ATGCATTCAG
ATGAATACTT
ATGGACCCCT
ATGGACCCCT
ATGTTGCCAG
ATGAGATTAT
ATCAGACCAT
ATGACAGCAT
ATGATGACTT

1.1.2 Anomaly Detection in Sequences

Anomaly detection is “the identification of items, events or observations which do
not conform to an expected pattern or other items in a dataset” [18]. Anomaly
detection has applications in a wide variety of applications such as fraud detection
for credit cards, insurance or health care, intrusion detection for cyber-security, fault
detection in safety critical systems, and military surveillance for enemy activities.

Anomalies are also referred to as outliers, novelties, noise, deviations and exceptions.
Due to wide range of applications of anomaly detections methods, detection

methods could be different based on the different aspects of the problem. This
includes the nature of the input data (e.g. categorical, numerical), type of the
anomaly (e.g. point-based anomalies, collective anomalies), operation mode of the
detection method (e.g. supervised, unsupervised), and the output of an anomaly
detection method (e.g. score, label).

When dealing with anomalies in sequence data, the following scenarios are pos-
sible in practice:

3

Table 1.2: List of binding sites for genome belonging to Human [109].
ATGACATCAT
TGACGTCA
TGCGTCA
GTGACATCAT
ATGAGTCAGA
GCCTGCGATGATTTATACTCACAGGA
CTAAGGGGTCA
GTGACTAA
TGAATGACTCACCTTGGCACAGACACAATGTTCGGGGTGGGCACAGTGCCTGCT
GGCATAATGGGTCTGTCTCATCGTC
CCAAGCGTGACTGC
TGAATCA
TGCGTCA
ATGAATCATC
GCAAGGATGAGTCAAGCTGCGGG
TGAGTAA
ATGAATCAT

• Detecting anomalous subsequences in a long sequence: In this scenario, a long
data sequence is given which represents the normal behaviour of a process,

except possibly at some locations, where the normal process is intervened by
anomalies. The goal is to detect subsequences which are different from the rest
of the sequence. An example of this scenario is to detect anomalous intervals
in an ECG recording of a patient which might correspond to heart arrhythmia.

• Detecting anomalous subsequences in a set of sequences : In this scenario, a
database of sequences are given and the goal is to find the sequences which
deviate from the rest. Although the sequences are not generally of the same
length, but the assumption is that they capture the same process. A repre-
sentative example is the motor power recordings of an industrial device which
is doing a repetitive task, in which the recording of the power in each period
results in a time series sequence.

As it was discussed, the anomaly detection in sequence data has many variations,
with wide range of applications in different domains. Our research study concerns
with the first scenario discussed above, where the goal is to find anomalous subse-
quences in a long sequence data. In terms of the nature of input data, our main

focus is on symbolic data. Even though the proposed method in our research work
can be applied on time series data after a discretization, we have not evaluated our
proposed method on such input. We assume the presence of a reference data, which
represents the normal behaviour of the process, and can be used for learning the
parameters of the model. Also, our proposed method assigns a final label to each
position of the sequence in the format of anomalous or normal without requiring

any additional parameter to make predictions based on the anomaly scores.

4

1.2 Challenges

Most of the previous works for finding surprising patterns (e.g. transcription fac-
tor binding sites in DNA sequences, anomalies in long sequence data) expect the
user to provide the length of the anomalous patterns. Finding surprising patterns

without knowing their lengths poses several challenges. The length parameter is not
intuitive and difficult to set, in many applications. For instance, motifs in DNA se-
quences typically vary between 6 to 20 bp in length, but they could also be 100-200
bp in length. Without knowing the true length(s), one should run the particular
algorithm exhaustively, each time for a specific length. Our study shows that run-
ning a length-dependent method with different lengths of patterns will result in a

large number of “highly-correlated” patterns. The correlation is due to the fact that
the overlap between patterns results in similar outcomes (e.g. anomaly score) for
partially similar patterns. The set of patterns generated using theses methods is
typically so large that the true anomalous patterns in the data cannot be revealed
easily. We refer to such presence of highly correlated patterns as the “redundant
patterns” problem. The problem of redundancy becomes more crucial when there
are more statistically significant patterns in a sequence or there is a degree of vari-

ation in different instances of surprising patterns . This results in a significantly
larger number of correlated patterns with true surprising patterns standing out as
significant.

The second drawback of previous methods is the robustness of their results. The
definition of surprising patterns and the required parameters have a large impact
on the convenience of use and the robustness. For instance, a true surprising pat-

tern might be observed a few times in a sequence. A definition that compares the
observed frequency of a pattern (i.e. the number of times a pattern occurs in a
sequence) with a threshold might or might not capture the pattern based on a se-
lected threshold value. The proposed methods for finding surprising patterns in the
literature depend on different input parameters. An example is the neighbourhood
parameter K for KNN-based anomaly detection methods [20]. Some of the methods
for approximate frequent patterns depend on the support (frequency) threshold to

consider a subsequence as a candidate surprising pattern [35, 126]. These parame-
ters are in addition to the parameter “length” of the patterns, which largely impacts
the effectiveness of these methods. Coming up with suitable parameter settings be-
comes more challenging when multiple parameters are involved. Our experiments
show that different parameter settings produce largely deviating results, making
these methods less reliable in a real setting where the best parameter settings are

unknown.
Our work addresses the aforementioned problems by eliminating the need for

non-intuitive input parameters (such as length, frequency threshold, etc.) and
producing robust results represented by a concise, non-redundant set of relevant
patterns. Another important factor in the utility of a surprising pattern finding
technique is the variations allowed in the signature of a surprising pattern. In many
applications, such as motif discovery, a surprising pattern (e.g. motif) is char-

acterized by a group of subsequences which look ‘similar’ to each other noticeably,
with a degree of ‘variation’. Most traditional anomaly detection methods [20] (e.g.
t-STIDE, HMM, KNN) which are based on a simple string representation of pat-

5

terns allow no variations among pattern occurrences, hence they fail to detect these
generalized patterns.

1.3 Contributions of the Thesis

The contributions of this thesis can be summarized as follows:

1. We provide a domain-independent formulation of the problem of finding sur-

prising patterns in sequence data based on statistical hypothesis testing, which
does not require the length of the patterns as an input parameter.

2. We investigate the problem that a few embedded anomalous patterns can lead

to a large number of “redundant” patterns, from which the ‘true’ anomalous
patterns cannot be revealed easily.

3. We propose a statistical method that captures an “explain” relationship where
a set of patterns can explain the statistical significance of another pattern.

4. Using this “explain” relationship, we address the problem of redundancy by

choosing a few ‘core’ patterns which explain the significance of all other signif-
icant patterns. The “explain relation” is an important statistical tool which
allows to us to characterize the solution to finding ‘true’ surprising patterns
as a minimum set of patterns which can explain the frequency of all the other
(redundant) patterns in the data

5. We propose a greedy algorithm for efficiently finding a minimal core pattern
set as an approximate solution.

6. We extend the basic model (i.e. the model based on a string representation
of patterns) in order to capture patterns with a degree of variation (i.e. ap-
proximate patterns). The proposed techniques in previous sections are also
extended to find these approximate surprising patterns and to cope with the
model complexity.

7. We analyze the time complexity of our proposed method based on the basic
model and the extended approximate matching model.

8. We investigate strategies to improve the running time of our proposed method.
We develop a new strategy for speeding-up the exact p-value computation, and
using approximate p-values as a filtering step to avoid costly exact p-value
computations. We investigate the properties which characterise the correla-

tion between significant patterns. This allows us to speed-up the construction
of a core pattern set by limiting the score of ‘correlation’ tests for a pattern.
Using these properties, the computationally expensive correlation tests are
performed just for patterns which are likely to be correlated with respect to
a given pattern. In addition, a Prefix tree data structure is used to speed-
up heavy probability computations for patterns based on the extended ap-

proximate model. We develop a parallel architecture of our framework in the
Westgrid cluster, which results in a significant speed-up in running time of our
proposed method by leveraging the parallelism capabilities of computationally
expensive components of our framework.

6

9. Finally, we evaluate the performance of our methodology on both synthetic
and real-world data. The synthetic data is generated based on a Random
walk model which is used as a modelling some real-world processes such as
time series of the financial markets and dynamics of the Blogosphere [95].
The settings allow evaluating important aspects of a surprising pattern find-
ing algorithm, such as the variations in the length of the patterns, and the

deviation of the patterns from the background distribution, by changing the
parameters of the model. The real-world datasets are chosen from three differ-
ent domains including the Medicine, Computer Security, and Bioinformatics,
which represent three interesting applications of our method. Compared to
the general anomaly detection techniques, our proposed method based on the
basic model (i.e. exact pattern matching) achieves a higher matching with

the ‘true’ anomalous patterns on the synthetic, ECG and Masquerading users
datasets. Our extended method for fining approximate significant patterns is
evaluated on a well-known motif discovery benchmark, and is compared with
14 well-known motif finding algorithms from the domain of Bioinformatics.
In 2 out of the 3 experimental studies, our proposed method performs better
than or as good as the Weeder motif finding algorithm (the best performing
method on the this benchmark).

1.4 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we review the most
relevant research works to our work, including the works on anomaly detection
in sequence data, finding Biological motifs, subspace clustering, motif discovery in

sequence data, and frequent pattern mining in sequence data. We present a problem
formulation and demonstrate the challenges of the problem using a synthetic dataset
in Chapter 3, after giving a background on basic concepts used in our methodology,
including the statistical significance testing, Markov chain model, and smoothing
techniques for Makov models. In Chapter 4, we provide a more formal definition
of our problem through a core pattern set which characterises the ‘true’ significant
patterns in the data, and present the definitions which characterise the correlation

between statistically significant patterns. In Section 4.1, we present an exact formula
to compute the correlation between significant patterns by computing the p-values
of patterns in a long sequence data in the presence of some constraints. In Section
4.2, we propose an algorithm for constructing an approximate core pattern set as the
solution to our problem. A more generalized definition of surprising patterns is given
in Chapter 5 and new algorithms are derived for computing the p-value of new motif

models and capturing the correlation between the extended patterns. We analyze
the time complexity of our method in Chapter 6. In Chapter 7, we evaluate the
performance of our proposed method on synthetic and real-world datasets selected
from the domain of Medicine, Computer Security and Bioinformatics. Finally, we
discuss the strengths and weaknesses of our work and propose some ideas for further
research in Chapter 8.

7

Chapter 2

Related Work

2.1 Anomaly Detection in Sequence Data

Anomaly detection is a broad research topic with applications in different domains
and the related work in the literature differ from each other based on the type of
the defined anomalies, nature of the input data, and the proposed techniques. The
proposed method in our research work can be used for detecting a class of anomalies
in the sequence data, in which the anomalous subsequences are observed more than
their expected frequencies.

Four main aspects of the anomaly detection problem can be summarized as

follows [18]:

1. Nature of Input Data: The input data can be of type categorical or nu-
merical. In the case of categorical, values or observations can be sorted into
groups or categories [28]. The eye color, gender and the swimming level are

examples of categorical data. In numerical data, the values or observations can
be measured, and can be placed in ascending or descending order [28]. Height,
time, and temperature are examples of the numerical data. The numerical
data can be further divided into the discrete and continuous categories. A
set of data is said to be discrete if the values belonging to it are distinct and
separate (e.g. the number of people in a room), whereas in continuous data
the observations may take on any value within a (finite or infinite) interval

(e.g. the time required to run a mile) [28]. In addition to the type, each value
or observation might represent a single attribute or multiple attributes, which
introduces the univariate or multivariate sequences, respectively. The nature
of input data affects the applicability of anomaly detection techniques. For
example, for statistical techniques different statistical models have to be used
for numerical and categorical data (although discretization is an alternative to

convert numerical data to categorical data, this does not change the different
nature of applicable methods. Moreover, there is no guarantee that the inter-
esting features in the original numerical data format will be preserved after
transformation). Similarly, for nearest neighbour-based techniques, the nature
of attributes would determine the distance measure to be used. The common
distance measure used for numerical data is Euclidean distance, whereas cate-

gorical attributes require overlapping-based metrics such as hamming distance.

8

2. Type of Anomaly: Anomalies can be divided into two main categories based
on their deviation from the normal behaviour: 1) Point-based anomalies are
those anomalies in which data instance can be considered as anomalous with
respect to the rest of data. This is the simplest type of anomaly and has been
the focus of majority of previous research on anomaly detection. An example
of this type of anomaly is a credit card transaction for which the amount spent

is very high compared to the normal range of expenditure for the card holder.
2) Collective anomalies are types of anomalies in which a collection of related
instances is anomalous with respect to the entire dataset. An example of a
collective anomaly is a sequence of port scans from a remote machine against
a network, followed by ssh, buffer-overflow, and ftp, which could be indicative
of a web-based attack. In this case, the observed data points individually are

not typically indicative of anomalous behaviour.

3. Data Labels: Based on the availability of the labels for normal or anomalous
behaviour, anomaly detection techniques can be grouped under one of the two
schemes:

(a) Supervised anomaly detection: The main assumption in this mode is the

availability of a training data set, which has labeled instances for normal
and anomaly classes. Predicitve modeling techniques, mainly based on
classification, can be used to train models from the provided labeled data
and classifying unseen instances.

(b) Unsupervised anomaly detection: Techniques that operate in unsuper-
vised mode do not require training data, and thus are most widely ap-
plicable. However, the implicit assumption behind the techniques in this
category is that the data is dominated by normal instances and anomalies

are just exceptions in the test data. If this assumption is not true, these
techniques will result in high false alarm rate.

4. Output of Anomaly Detection: An anomaly detection technique can pro-
duce results in the form of Score or Label. Scoring techniques assign an
anomaly score to each instance in the test data depending on the degree

to which that instance is considered an anomaly. Thus the output of such
techniques is a list of instances sorted based on their anomaly scores. A user-
dependent threshold is usually required in this case to either consider top K
anomalous instances or select the anomalies based on a cut-off threshold. La-
beling techniques, on the other hand, produce a deterministic outcome with a
label (e.g. anomaly, normal) based on an internal mechanism for classification.

The anomaly detection techniques can be divided into five main groups [19],
including the Window-based techniques, Markovian techniques, Hidden Markov
Model-based techniques, Similarity-based techniques, and time series-based anomaly
detection techniques.

2.1.1 Window-based Techniques

Window-based techniques are generally based on extracting windows of a fixed
length using a sliding window technique from a test sequence, and assigning an

9

anomaly score to each window. This approach can be used to identify anomalous
susbequences in a long sequence data, or finding entire test sequences which are
anomalous by aggregating the anomaly scores of its windows. These techniques
are particularly useful when the cause of anomaly can be localized to one or more
shorter substring within the actual sequence [37].

In a windows-based technique, a training data and a length k of the window is

given as input. The general scheme for a window-based technique is as follows: in the
training phase, k-length sliding windows are extracted from all training sequences
and the frequency of occurrence of each unique window in the training data set is
maintained (as a normal profile). In the test step, sliding windows of length k are
extracted from the test sequence. An anomaly score can be assigned to each window
by comparing the observed frequency of the sequence enclosed by the window to its

expected frequency, which is derived from the training data. More formally, for a
pattern A which has been observed t times in the test sequence Stest, and e times in
the training sequence Strain, the anomaly score can be derived using the following:

Anomaly Score =
t× |Strain|
e× |Stest|

(2.1)

where |S| represents the length of a sequence S. This gives us a means to locate
anomalous subsequences in a long sequence of data using an anomaly threshold λ.
Alternatively, we can aggregate (e.g. compute the average) the anomaly scores of
windows along the sequence and compute the anomaly score of the entire sequence.

The basic window-based technique has been originally used for operating sys-
tem call intrusion detection in a system called t-STIDE (Threshold-based Sequence
Time Delay Embedding) [52, 112]. Different variants of the t-STIDE method have
been proposed in literature [15, 43, 44], differing from the basic method in how an
anomaly score is calculated for a window, and which aggregation functions are used
to compute the anomaly score over the entire sequence from window’s scores.

Analysis and Comparison to Our Research: The Window-based techniques

are simple to implement, and can be used to identify the anomalies which are local to
specific regions in a sequence. However, storing the profile of normal subsequences
requires large memory. Also, the windows-based techniques are highly reliant on the
size of the window that is chosen. If the size of the window is too small compare to
true anomalies in the sequence, all the selected windows have a high probability of
occurrence in the training data, and therefore a large number of anomalies might be

missed by a technique in this category. On the other hand, if the size of the window
is too large, every subsequence in the test sequence might be detected as an anomaly,
and will result in a highly-redundant solution. The techniques in this category are
similar to our proposed method for finding surprisingly frequent patterns in the
sense that we also use sliding windows to extract patterns and use an anomaly
notion that is based on frequency of the patterns. However, we address the issue of
choosing the right size of the window by finding the core patterns in the data. The

issue of the redundancy will be addressed automatically as a result of selecting the
right length.

10

2.1.2 Markovian Techniques

The Markovian techniques approximate the ‘true’ distribution of the data using a
Markov Chain model, in which the probability of occurring a symbol in a sequence
depends on the last m symbols in the sequence, where m is the order of the Markov
chain model. More formally, the probability of observing a symbol ai, given the
sequence observed so far can be computed as follows:

P (ai|a1a2...ai−1) = P (ai|ai−mai−m+1...ai−1) (2.2)

In the training phase, the parameters of the Markov chain model of order m
are derived by counting the number of occurrences (e.g. frequencies) of all the
subsequences upto length m. The conditional probabilities of a symbol ai after a
subsequence of length at most m can be derived using the Markov chain rule. The
simplest form of computing the conditional probability of a symbol ai followed by
a subsequence ai−kai−k+1ai−k+2...ai−1 is as follows:

P (ai|ai−kai−k+1ai−k+2...ai−1) =
f(ai−kai−k+1ai−k+2...ai−1ai)

f(ai−kai−k+1ai−k+2...ai−1)
(2.3)

where f(W) is the frequency of the string W in the training sequence Strain.
Different variants of this basic Markovian model have been proposed in the liter-

ature, based on the way the conditional probabilities are computed in the interest of
space required for storing the frequencies, and also the methods used for addressing
the sparsity of the data.

For an alphabet size of |∑ |, and Markov chain model of order m, the total
number of frequencies required by the basic technique will be (|∑ |−1)|∑ |m. This

could lead to huge amount of space (exponential in the order m of the model), and
some research works have addressed this issue. One such a model is proposed by
Michael et al. [77]. The proposed model, called the Extended Finite State Automata
(EFSA), by Michael et al. is like a traditional Finite State Automata (FSA), but
with frequencies associated with the nodes and the number of transitions from one
node to another. Each node of a EFSA corresponds to a substring of length k, and

there is a transition from node A to another node B if the suffix of length k − 1
of node A is equal to the prefix of length k − 1 of node B. Only those nodes and
transitions that are observed in the training sequences are stored in the EFSA. Thus,
the size of EFSA is typically smaller than the total possible size of (|∑ |− 1)|∑ |m.
Marceau et al. propose a similar method which utilizes a suffix tree for storing the
substrings and their frequencies, and a FSA for state transition of the model [75].

Another challenge in building Markovian models is the data sparsity. The esti-

mation of conditional probabilities based on the formula 2.3 is reliable if sufficient
amount of training data is available to provide a realistic estimation of frequencies
of substrings in practice.

Example 1 Assume that the substring “aabbb” occurs once across all training se-
quences and is followed by symbol b in that single occurrence. The Formula 2.3 will

assign a conditional probability of 1 to P (b|aabbb). However, this conditional proba-
bility might not be reliable considering the fact that the occurrences of other symbols
after the subsequence “aabbb” might be possible in practice, but don’t happen to be
observed in the training data. This poor estimation might give undesirable results.

11

One solution to addressing this problem is to allow symbols to be conditioned
on a variable length of history subsequences. For the example 1, the probability
P (b|aabbb) can be substituted with P (b|aabb) if the probability associated with his-
tory subsequence “abbb” is more reliable based on a given pruning criterion (e.g.,
frequency of the subsequence“abbb” is greater than a certain threshold). The Prob-
abilisitic Suffix Trees (PSTs) [93] and Interpolated Markov Models (IMM) [47] have

been utilized to efficiently compute the variable length conditional probabilities of
a symbol.

Another solution to the sparsity problem is to estimate the conditional prob-
ability of a symbol a based on the previous m symbols which are not necessarily
contiguous or immediately preceding to a. In other words, the symbols are con-
ditioned on a sparse history. Referring to the example 1, if the sequence “aabbb”

occurs rarely in the training data, the conditional probability P (b|aabbb) can be re-
placed with P (b|aXbXb) where X can be replaced with any symbol of the alphabet.
Eskin et al. propose the Sparse Markov Transducers (SMT s) model based on the
idea of sparse history and extending the probabilistic suffix trees (PST s) to allow
wild cards in the history subsequences [30].

Lee et al. utilize the RIPPER rule learner [24] to address the issue of data spar-
sity [65]. The main idea behind their method is to model the task of probability

estimation of a symbol ai based on a history subsequence of length k with a classifi-
cation technique in which every symbol in the history subsequence is treated as an
input feature and the symbol ai is treated as the target label. The RIPPER is used
to learn rules from this categorical data set to predict the (k+1)th symbol given the
first k symbols. In the test phase, the first rule that matches the history subsequence
ai−kai−k+1...ai−1 is chosen. If the target of the selected rule is ai, then the prob-

ability P (ai|ai−kai−k+1...ai−1) is set to 1. Otherwise, the inverse of the confidence
associated with the selected rule is assigned to the conditional probability.

Analysis and Comparison to Our Research: The Markovian techniques
take advantage of probabilistic models to build a normal profile from the training
data, which can result in more efficient memory consumption using data structures
such as probabilistic suffix trees. The techniques in this category use a similar under-
lying model (Markov model-based) to capture the temporal nature of sequences and

computing the probabilities of occurrence of sequences under the model. However,
the Markovian techniques also rely on the window length that is chosen for extract-
ing the subsequences and estimating their likelihood. Therefore, the techniques in
this category suffer from the same problems of the Window-based techniques in
missing partial anomalies or producing large number of redundant anomalies based
on the length of the chosen window. The techniques employed by the Probabilisitic

Suffix Trees (PSTs) [93] and Interpolated Markov Models (IMM) [47] to use a vari-
able length of the history in estimating the probability of occurrence of a symbol
is more helpful in addressing the issue of data sparsity rather than finding the true
length of the anomalies. Chandola et al. [18] compare a fixed Markovian technique
with a variable and a sparse Markovian technique on data from different application
domains and show that the fixed Markovian technique (using EFSA) outperforms
the variable (using PST) and the sparse (using RIPPER) techniques on many data

sets. The same comparative study also suggests scenarios in which the variable and
sparse Markovian techniques can perform better than the fixed Markovian tech-

12

niques. In our proposed method, we find the length of ‘true’ anomalies by selecting
a core pattern set which can explain the significance of other overlapping patterns,
and avoid the problem of redundancy.

2.1.3 Hidden Markov Model-based Techniques

A Hidden Markov Model (HMM) is a statistical Markov model in which the system
being modeled is assumed to be a Markov process with unobserved (hidden) states.
In simpler Markov models (like a Markov chain), the state is directly visible to the
observer, and therefore the state transition probabilities are the only parameters.
An HMM is parameterized by a hidden state transition matrix and an observation

(emission) matrix.
The simplest way to use an HMM for anomaly detection is use the training data

to learn an HMM that best describes the normal process that generates the data.
The learning step can be done using the Baum-Welch algorithm [10], in which the
transition and emission probabilities can be derived using the training data. In the
test phase, and for each given test subequence, the probability of occurrence of it

can be estimated using the Forward algorithm. Lane has utilized this approach
to identify anomalous computer usage in system call data corresponding to user
behaviour [62]. Yamanishi et al. use a similar approach for identifying anomalies in
system log data [119], in which a mixture of HMMs are used to model the normal
sequences.

Other variations of the HMMs have been applied for anomaly detection by an-
alyzing the most likely or optimal hidden state transitions from the training data,

which can be derived using the Viterbi algorithm [36]. Once the most likely state
transitions are derived for a test datasets , any sequence anomaly detection technique
(that has been discussed in previous sections) can be applied to find anomalies in
the test sequence. As an example work, Qiao et al. apply a window-based technique
on the transformed hidden state sequence [118].

Analysis and Comparison to Our Research: The HMM-based techniques

are similar to our research work in that they can be used for finding anomalouse
subsequences in a long sequence data. The HMM-based techniques are able to
model complex systems, even in the case that the normal observation sequences
are significantly different from each other. A comparison performed by Forrest et
al. shows that the HMM-based methods perform comparable to or better than the
Windows-based and Markovian techniques for detecting anomalies in system call
sequences [112]. However, deriving the parameters of an HMM is computationally

expensive. This can be a real obstacle in the utility of these techniques in practice.
In our experiments, we had to abandon the model training in some cases when the
training was not terminated after a day. Moreover, the HMM-based techniques suffer
from the same problem of relying on the length parameter which were attributed to
the previous categories of techniques.

2.1.4 Similarity-based Techniques

The main idea behind similarity-based techniques is to use a distance measure to
compute the similarities of test sequences, or their subsequences, to the sequence(s)
in the training data. An anomaly score can be derived from the inverse of similar-

13

ities. The general scheme for a similarity-based technique is as follows: In a test
phase, the similarity of a test sequence, or its subsequences, to each sequence or
subsequnce in the training set is computed. The similarities are then aggregated to
derive a similarity measure between the test sequence and the training data. The
anomaly score is the inverse of the similarity.

The K-th Nearest Neighbour (KNN) method is the most common aggregation

function which combines the similarities by selecting the K-th most similar sequence
in the test data and its inverted distance as the aggregated similarity [20]. Clustering
can be used to avoid point-wise distance measure computations and improve the
running time during test phase. Budalakoti et al. [13, 14] utilize a clustering-based
technique in which the training sequences are first clustered into a fixed number of
clusters using the K-medoid algorithm [56]. In the test phase, the anomaly score of

a test sequence is computed based on the distance to its closest mediod.
Distance computation is a core part in every similarity-based method. The most

common similarity measure of two discrete subsequence is the Simple Matching
Coefficient (SMC) [99], which computes the similarity of two subsequences of equal
length as the number of positions in which the two subsequences match. Other
similairty measures have been proposed which do not require the subsequences to be
of equal length. The nLCS defines the length of the longest common subsequence

within two sequence si and sj as their similarity and has been used in several
anomaly detection techniques [13, 14, 20]. Liu et al. use a variation of the edit
distance to find anomalies from a database of protein sequences corresponding to
different organisms [39].

Analysis and Comparison to Our Research: The techniques in this cat-
egory are highly reliant on the parameter K, in addition to the parameter length,

in detecting the anomalies, and this is not an intuitive parameter to be provided
by a user. Our experimental study show that different values of K usually result
in highly deviating results. This input parameter is in addition to the parameter
length, which has to be provided by the user, and results in a highly redundant set of
anomalous patterns without addressing the dependencies between the overlapping
patterns.

2.1.5 Anomaly Detection in Time Series Data

Dealing with time-series data is different from the discrete data in many aspects
mainly due to the fact that continuous values in a time series sequence makes it
challenging to make direct correspondence between “states” and a limited number of

symbols. Moreover, different distance functions are required to capture the similarity
between time series sequences.

Keogh et al. introduce the problem of finding ‘discords’ in a long time series
sequence [58]. Discords are defined to be “subsequencs of a longer time series that
are maximally different from the rest of the subsequences” [58]. In this work, first all
k-length windows are extracted from the given sequence S and stored as a database

of fixed-length windows. In the second step, each window is assigned an anomaly
score, which is the distance to its Kth nearest neighbour in the database. The
subsequences with highest anomaly scores can be returned as top discords.

Variations of the basic discord discovery algorithm have been investigated in the
literature by using different measures for assigning anomaly scores to subsequences,

14

and making efforts to improve the running time of the basic algorithm. The Window
Comparison Anomaly Detection assigns an anomaly score to each subsequence using
an information theoretic measure called Compression-Based Dissimilarity (CDM)
[60]. The main idea behind CDM is that a subsequence is assigned a higher anomaly
score if excluding it will lead to a significant compression in the remaining of the
time series sequence. Wei et al. compare the bitmap of the current window with

the bitmap of the previously adjacent window to derive an anomaly score for the
susequence in the current window [115].

Naive computation of the basic discord discovery is quadratic in the length of the
time series sequence. One general scheme for reducing the time complexity is based
on computing the anomaly score of subsequences which are more likely to be discord.
A simple way of implementing this idea is to abandon the distance computations for

a subsequence if at any point of calculation its distance to its current Kth nearest
neighbour becomes lower than the anomaly score of current mth discord (assuming
that we are interested in top m discords). This technique and its variations have
been used to the problem of discord discovery in several research works [70, 114].
Since a vast majority of windows tend to be normal, the proposed technique based
on early abandonment has the potential for substantial pruning, especially if the
anomalous windows are discovered early.

Analysis and Comparison to Our Research:
The techniques in this category are similar to our work in that they can be used

for detecting anomalous subsequences in a long sequence. However, most of the
anomaly detection techniques in time series data focus on finding anomalies based
on their deviation from their nearest neighbours, rather than the deviation from
the expected frequencies. This makes the techniques in this category different from

our research work. Moreover, the techniques in this category target the continuous
time series data, and are different from our research which focuses on the symbolic
data. Even though the models and the techniques proposed in our research can be
potentially used for finding anomalies in the time series data after transforming it
into a symbolic sequence, the original features in the time series data might not
be maintained after transformation. Therefore, finding anomalies in the time series
data and the symbolic data require different treatments. The techniques in this

category suffer from the same problems attributed to the similarity-based methods.
This includes the reliance on the parameters K and the length of the windows used
for extracting the patterns.

Chandola et al. perform a comparative evaluation of anomaly detection tech-
niques on sequence data [20]. They divide the previously proposed techniques into
three main categories: Kernel-based, Windows-based, and Markovian. The Kernel-

based category includes the Nearest Neighbour-based technique, which was discussed
in Section 2.1.4. In the Window-based techniques (e.g. t-STIDE [112]), a normal
profile is created from a dataset of normal sequences by extracting all windows of
a fixed length w. This normal profile captures the expected frequencies of subse-
quences in the training data. In the test phase, all subsequences of length w are
extracted from each test sequence and a ‘likelihood score’ is assigned to each window
based on its expected frequency in the training data. The Markovian techniques,

which were discussed in Section 2.1.2, and are used in this comparative study are
chosen from different models including Hidden Markov Model (HMM) [112], Prob-

15

abilistic Suffix Tree (PST) [103], RIPPER [65], Finite State Automaton (FSA) [77],
and FSAz (a variant of FSA [20]). The methods in this category often use param-
eters such as length, probability threshold and K, which may not be easy to set.
For instance, Chandola reports that the value of the length parameter is critical in
the performance of the methods used in their comparative study [20], and selecting
very low or very high values for the length results in poor performances. Moreover,

all the methods used in this study consider a definition of a pattern with exact
matching, which means that all occurrences of a pattern in the data sequence must
exactly match with the subsequence represented by the pattern.

2.2 Biological Motif Discovery

The problem of motif discovery in the field of Bioinformatics is a close research topic
to our work. Based on the hypothesis behind the motif discovery methods, and our
definitions of unexpectedly frequent patterns, the core challenge in both problems is
to find subsequences in the data which are over-represented with respect to their
expected frequencies.

A motif in the field of the Bioinformatics refers to a nucleotide or amino-acid
subsequence that is widespread and has a biological significance, such as being DNA

binding sites for a regulatory protein, i.e., a transcription factor. Transcription
factors are proteins that bind to specific DNA sequences and regulate the gene
expression. The Gene expression is the process by which information from a gene
is used in the synthesis of a functional gene product, such as proteins. Regulation
of gene expression refers to the control of the amount and timing of appearance of
the functional product of a gene. Control of expression is vital to allow a cell to

produce the gene products it needs when it needs them. The gene is the basic unit
of inheritance in DNA, and is defined as a template for the copying process called
transcription. Every gene contains a regulatory region typically stretching 100-1000
bp (base pair) upstream of the transcriptional start site.

The main elements involved in the gene expression regulation and two main steps
of the regulation are shown in Figures 2.1(a), 2.1(b), 2.1(c). The gene expression is
initiated when a transcription factor is bound to a regulatory element (i.e. binding

site). This makes it possible for an RNA polymerase protein to bind to the promoter
of the DNA sequence. The promoter is a special DNA sequence in the beginning of
the gene to be expressed. The RNA polymerase protein is an enzyme which produces
primary transcript RNA, and is necessary for constructing RNA chains using DNA
genes as templates. The RNA polymerase transcribes mRNA (messenger RNA)
from the DNA template. The resulting mRNA is a single-stranded copy of the gene,

which is next translated into a new protein molecule in the translation step. The
purpose of translation is to synthesize proteins, which are the final products and are
used for for millions of cellular functions.

The input of a motif discovery algorithm is a collection of regulatory regions
of DNA sequences that are believed to contain motifs. Core to every motif finding
method is the model that is used for representing motifs. Due to large variations in
binding sites of a single transcription factor, representing them is a challenging and

important task. If a motif model is too specific (e.g. an exact string in the most
extreme case), it cannot capture the variations of the binding sites. If a motif model

16

(a) Main elements involved in the gene expression.

(b) Gene Expression Step 1: Binding of transcription factor to the regulatory
element.

(c) Gene Expression Step 2: Transcription.

Figure 2.1: Steps of Gene Regulation (adapted from [108]).

17

is too general on the other hand, it might match with too non-regulatory elements
leading to many false positives.

Three types of models have been already used for motif representation:

• Mismatch String: is a tuple< s, d >, where s is a string in Σ∗ = {A,C,G, T},
and d represents the maximum number of mismatches allowed for a binding
site, with respect to the reference motif, to be considered a hit (match).

• Position Weight Matrix (PWM): a PWM is a tuple < M, t >, in which
M is a 4 × n matrix, where n is the length of the motif, and each column
of the matrix represents the probability distribution of the nucleotide vector

[A,C,G, T]. A candidate string of length n is considered to be a hit if the sum
of probabilities in log scale over respective rows are greater than the threshold
t.

• Consensus: is a string s of length n where each position is a non-empty
subset of {A,C,G, T}. These subsets correspond to the IUPAC (International
Union of Pure and Applied Chemistry) symbols for DNA sequences [2] (e.g.
W stands for {A, T}). A candidate string c is said to be a hit (match) against

s if every position of c is a subset of respective positions in s. Otherwise, it is
a not a hit.

Based on the model that is used for motif representation, two main groups of

algorithms can be employed for finding the parameters of the model. Pattern-
based (string-based) methods are applicable on the Mismatch String or Consensus
models. This group of methods mostly rely on exhaustive enumeration of candidate
patterns of different lengths and evaluating the statistical significance of patterns
based on measures such as p-value, z-score, or information content. Probabilistic
algorithms on the other hand work with Position Weight Matrices and estimate the

model parameters using Maximum-likelihood principle or Bayesian inference. Once
the parameters of a motif model are estimated by a motif finding algorithm, the
binding sites can be reported as all strings in the input sequences which match a
motif.

Many computational tools have been proposed for finding motifs of a specific
length that are statistically overrepresented with respect to the background distri-
bution of DNA sequences. Examples include AlignACE [55], ANN-Spec [117], Con-

sensus [51], GLAM [38], Improbizer [5], MEME [8], MITRA [31], MotifSampler [105],
oligio/dyad-analysis [110], QuickScore [88], SeSiMCMC [33], Weeder [85], YMF [97],
and Seeder [32]. These tools differ in several key aspects such as in their model for
representing motifs (e.g. Consensus [85], Position Weight Matrix [8, 33, 117], IU-
PAC [31], or Mismatch model [85]), and the way the statistical significance of a
motif is measured (e.g. p-value [97], E-value [8], information content [51]), and

the algorithms used to find statistically overrepresented motifs (e.g. Expectation-
Maximization [5,8], exhaustive search [85,88,97], Gibbs sampling [38,55,105,117]).

From the algorithmic point of view, the computational methods for motif dis-
covery can be divided into three main categories:

• Pattern-based algorithms: are based on (exhaustively) enumerating of candi-
date motifs and evaluating the statistical significance of the these motifs based
on a significance score.

18

• Probabilistic algorithms: are based on a probabilistic representation of motifs
in which the model parameters are estimated using the maximum likelihood
principle or the Bayesian inference.

• Machine learning algorithms: use genetics algorithms for searching the space

of motifs

In the following, we review the proposed methods in each category, and compare
them with our proposed research work in the end.

2.2.1 Pattern-based Algorithms

The patten-based search methods guarantee global optimality and are appropriate
for short motif. They are useful for motif finding in genomes where motifs are gen-
erally short (e.g. eukaryotic). Implementations based on the data structures such

as suffix trees can make pattern-based methods fast and therefore these methods
are good choices for finding totally constrained motifs. However, for typical tran-
scription factor motifs that often have several weakly constrained positions, pattern-
based methods can be problematic and the results often need to be post-processed.
Another characteristic of Pattern-based methods is that they generally produce too
many spurious (correlated) motifs. This is due to the fact motifs are evaluated
individually, and a significant number of other patterns which have overlaps with a

‘true’ motif might appear in the result set which need to be post-processed
Tompa et al. [107] propose a method for enumerating motifs of specific length

k, while allowing a small and a fixed number c of mismatches, and evaluating the
significance of a motif with a given observed frequency t in the test sequences.
The significance test is based on how likely it is to have t occurrences of a motif
if the background sequences are generated based on a random or a Markov chain

distribution. The proposed score in this work is the z-score, which measures the
number of standard deviations by which the observed frequency value t exceeds its
expected value.

Sinha et al. [97] extend the motif model to add support for gaps (spacers) be-
tween conserved parts of the motifs, and propose the YMF algorithm which uses
a similar approach for evaluating the statistical significance of motifs based on the
z-score measure. The inputs to the YMF algorithm are a set of upstream sequences,

the number of non-spacer characters in the motifs to be enumerated, and the tran-
sition matrix for a Markov chain model of order m (which is constructed from the
regulatory regions of genome in yeast). The YMF algorithm then selects motifs with
greatest z-scores.

The Weeder algorithm [85] enumerates the motifs of different lengths (e.g. 6, 8,
10, 12), allowing a small percentage of the sequence for mismatches, and calculates a

significance score for each motif which roughly compares the observed frequencies of
motifs with their ‘expected’ frequencies. A suffix tree data structure is used to speed-
up pattern enumeration. The MITRA (Mismatch Tree Algorithm) [31] proposed by
Eskin et al. also uses the suffix tree data structure for motif enumeration. Other
graph-theoretic data structures are combined with pattern-based algorithms such
as WINNOWER [87] and cWINNOER [68].

19

2.2.2 Probabilistic Algorithms

In this category of approaches, the motifs are modeled by probabilistic models,
mainly the well-known position weight matrix (PWM). A PWM has one row for
each symbol of the alphabet (e.g. 4 rows for nucleotides in DNA sequences). A
basic PWM using relative frequencies is constructed by counting the occurrences of
each symbol at each position and then normalizing the values across each column.
The main assumption behind the probabilistic algorithms is that sequences follow

a background distribution (e.g. modelled by a Markov chain for instance) except
at positions of transcription factor binding sites, in which the sequence contains an
instance of a motif following another distribution which is modelled by a probabilistic
PWM.

Probabilistic methods have the advantage of requiring few search parameters but
rely on probabilistic models of the regulatory regions, which can be very sensitive
with respect to small changes in the input data. The algorithms developed based

on the probabilistic models have been used to find longer or more general motifs
than are required for transcription factor binding sites. Therefore, these methods are
more appropriate for motif discovery in species where the motifs are generally longer
(e.g. prokaryotes). However, these algorithms are not guaranteed to find globally
optimal solutions, since they are based on some form of local search methods, such
as Gibbs sampling, Expectation-Maximization (EM) or greedy algorithms that may

converge to a locally optimal solution.
Hertz et al. use a greedy algorithm based on a probabilistic model to find the

binding site with the highest information content. The assumption in their algo-
rithm was that there is a common motif in every sequence. This algorithm has been
substantially improved over the years. Notably, in their latest algorithm (Consen-
sus), Hertz and Stormo [51] propose a method to iteratively find motifs with highest

information contents without the initial assumption of existence of a motif in each
input sequence.

Most of the proposed probabilistic methods use Expectation-Maximization (EM)
or Gibbs-sampling for estimating model parameters. The EM algorithm was first
used by Lawrence et al. [64] based on the assumption that each sequence must
contain at least one binding site. This assumption was relaxed in a later work by
Bailey et al. [7, 8]. Moreover, subsequences that actually occur in the biopolymer

sequences were used as starting points for PWM s to increase the chance of finding
globally optimum motifs.

The Gibbs sampling is another widely used method for estimating the parameters
of the model in probabilistic approaches. The Gibbs sampler is a Markov Chain
Monte Carlo (MCMC) approach. In the basic Gibbs sampling technique proposed
by Lawrence et al. [63], it is assumed that we are given a set of N sequences S1,...,SN

and we seek within each sequence mutually similar segments of specified length ℓ.
The algorithm maintains two evolving data structures. The first one is the pattern
model (e.g. in the form of a PWM), and the second one is the alignment model,
constituting the positions of patterns in the sequences. The algorithm starts by
choosing random starting positions within the various sequences, and goes through
many iterations of “Predictive update” and “Sampling” steps to locate the alignment
that maximizes the ratio of the corresponding pattern probability to background

probability.

20

Other variations of the basic Gibbs sampling algorithm have been proposed in
the literature. The AlignACE (Aligns Nucleic Acid Conserved Elements) algorithm
[55] is one such a method that is different from the basic Gibbs sampling algo-
rithm in using an improved near-optimum sampling method, and using the MAP
(maximum a priori log-likelihood) score to judge different motifs sampled. The
MAP is a measure of the degree of overrepresentation of a motif as compared to

the expected random occurrence of that motif in the sequence under consideration.
The MotifSampler algorithm developed by Thijs et al. [105], extends the Gibbs
sampling algorithm to support background distributions with higher-order Markov
chain models. The BioProspector algorithm [72], developed by Liu et al., uses a
Gibbs sampling strategy, but allows for the modeling of spaced motifs and motifs
with palindromic patterns, and also provides support for Markov models of order 0

to 3. The GibbsST algorithm utilizes the Simulated tempering technique (from the
field of thermodynamics) to reduces the vulnerability of the basic Gibbs sampling
algorithm to local optima [96].

2.2.3 Machine Learning Algorithms

Liu et al. [53] apply genetic algorithms (GAs) to the problem of motif discovery. In
their proposed algorithm FMGA, the mutation and cross-over operators are defined
to reserve the completely conserved positions in position weight matrices, as well as
the specially designed gap penalties to produce the optimal child patterns. Rear-
rangements in a PWM is also performed to avoid local optima. A self-organizing
neural network is proposed by Liu et al. for motif discovery in DNA and protein

sequences [71]. The neural network contains several layers, with each layer per-
forming classifications at different levels. The top layer divides the input space into
a small number of regions, and the bottom layer classifies all input patterns into
motifs and non-motif patterns. The network will grow as needed, and depending
on the number of input patterns to be classified, several layers between the top layer
and the bottom layer might be added to perform intermediate classifications.

Hu et al. [58] employ an ensemble approach for motif finding to improve the
prediction power of the motif finding algorithms. The main idea of an Ensemble
approach is to take advantage of superb predictions of every component algorithm,
while hoping that the weak predictions of an algorithm can be covered by predictions
made by other algorithms. Hu et al. propose a novel clustering-based ensemble
algorithm named EMD for motif discovery by combining multiple predictions from
multiple runs of one or more arbitrary motif finding algorithms. The authors use

five component algorithms namely AlignACE [55], Bioprospector [72], MDScan [73],
MEME [8] and MotifSampler [105] in their study.

Analysis and Comparison to Our Research: As it was discussed, the main
challenge in the motif finding problem and the problem addressed in our research is
to find subsequences in the data which are over-represented with respect to an ex-
pected distribution. However, our work is different from the proposed motif finding

methods in several aspects. While these computational tools have been developed
particularly for finding motifs in Biological sequences, our work presents a general
framework for finding surprising patterns in sequence data (not limited to Bioinfor-
matics data). Also, the motif discovery methods use biology-motivated heuristics
for finding the length of true binding sites from a large number of statistically sig-

21

nificant patterns. Researchers in this domain [85] have verified that the patterns
with highest scores do not necessarily correspond to true binding sites. In contrast,
we mathematically formalize the problem of finding core surprising patterns from
a large number of significant patterns and present a greedy algorithm for finding
these core patterns among all other redundant patterns.

2.3 Non-Redundant Subspace Clustering in High Di-

mensional Data

Our research work also shares some challenges with the projected and subspace clus-

tering in high-dimensional data. Projected clustering computes several disjoint clus-
ters so that each cluster exists in its own subset of attributes. Projected clustering
seeks to assign each point to a unique cluster, but clusters may exist in different sub-
spaces. Subspace clustering enumerates clusters of points in all subsets of attributes.
This means that a point might be a member of multiple clusters, each existing in
a different subspace. One of the challenges of clustering in the high-dimensional
data is that lots of overlapping clusters might be created by projected or subspace

clustering methods. Identifying the ‘true’ clusters among a large set of overlapping
clusters is not an easy task. Moreover, the number of possible subspace projections
is exponential in the number of dimensions, and this makes the task of finding rele-
vant clusters more challenging. A long sequence is an example of a high-dimensional
dataset, and the same issue of redundancy is encountered by methods seeking to find
statistically significant subsequences in the data without knowing their lengths. The

redundancy occurs, as it was discussed shortly and will be demonstrated through
an experimental study in Section 3.5, due to the fact that the subsequences which
partially overlap with true statistically significant patterns are likely to be rendered
as significant patterns in the result set.

Some efforts have been made by researchers to mitigate the issues of redundancy
and improve the relevance of the clustering results. In their proposed Density-

Unbiased Subspace Clustering (DUSC) model, Assent et al. [6] introduce the notion
of redundant subspace clusters, as a cluster which is repeated in a higher dimen-
sional subspace cluster. They argue that users are generally only interested in seeing
a lower dimensional subspace cluster if the number of new objects in this lower di-
mensional projection is sufficiently large, whereas more dimensions describe a more
specific and thereby informative pattern than the trivial patterns in only few di-
mensions. Using the DUSC model, Assent et al. propose a new algorithm (INSCY :

indexing subspace clusters with in-process-removal of redundancy) for removing re-
peated (redundant) clusters. The issue of large number of possible clusters is ad-
dressed by adopting a depth-first search strategy, so that high-dimensional subspace
clusters are detected first.

Muller et al. introduce a new global relevance model, called RESCU, for subspace
clustering [82]. Their goal is to find all interesting clusters, and only non-redundant

ones. In this work, a new interestingness function for subspace clusters is combined
with a coverage criterion for an overall redundancy removal. By reducing from
the Set Cover problem, it is shown that the defined relevant subspace clustering
problem is NP-hard, and an approximation algorithm is proposed to generate cluster
candidates in the best-first order according to their relevance.

22

Moise et al. [79] formulate the problem of finding non-redundant clusters in
high-dimensional data. Assuming a uniform distribution for data, they propose an
algorithm for finding the minimum number of statistically significant axis-parallel
regions. Intuitively, a statistically significant region is a region that contains signif-
icantly more points than expected.

Analysis and Comparison to Our Research: Our work is similar to the

problems of high-dimensional subspace and projected clustering in the sense that
we have to deal with high-dimensional data and address the issue of redundancy
in the result set, which is encountered similarly in clusters in different subspaces.
However, finding statistically significant patterns in sequences are different from
high-dimensional clustering in several aspects. The main difference between our
problem and the works in this category is that the temporal relation which is inherent

in every sequence data does not exist in subspace clusters. In order to capture
the temporal and ordered relation between data points, different models (such as
Markov chain models) should be employed. A different underlying model changes
the concepts of statistically significant subsequences, and the correlations between
patterns in our problem with those defined in the subspace clustering. Also, the
models required to capture the concept of approximate matches in sequences are
very different from those in the subspace clustering. As a result, finding statistically

significant patterns in long sequence data introduce new challenges that have not
been addressed already in the domain of subspace clustering.

2.4 Motif Discovery in Time Series Data

Another line of research related to our work is ‘motif’ discovery in time series data.

Motifs are defined as similar subsequences in time series data that are observed fre-
quently. The motifs, as defined in this lines of work, are similar to the unexpectedly
frequent patterns that we intended to find in our research work.

This problem was first formalized by Patel et al. [84] and an algorithm was
proposed for finding subsequences of fixed length with highest counts of neighbours.
A new type of motifs that is invariant to uniform scaling is proposed by Yankov et
al. [122]. Chiu et al. propose a probabilistic approach to finding motifs of a given

length in time series data [22]. Castro et al. propose a method for evaluating the
significance of subsequences of given lengths using statistical tests [16]. These works
are different from our work in the definition of patterns, the type of the data, and
also the required input parameters.

Some works have addressed the problem of motif discovery in time series with-
out knowing the lengths of the subsequences to be discovered [34,67]. Ferreira et al.

introduce approximate motifs, as clusters that contain a minimum number of time
series subsequences with a minimum similarity [34]. Li et al. propose a method for
identifying approximate variable-length time series motifs [67]. Their approach is
based on a grammar-based compression algorithm that can discover frequent pat-
terns in the data. The definitions of patterns in these works are either based on some
user-defined parameters (e.g. minimum count, minimum similarity, etc.) or repre-
sent a summarized view of the data, which makes them different from statistically

significant patterns in our work.
Analysis and Comparison to Our Research: While the works in this cat-

23

egory also intend to find frequent subsequences in time series sequences, they are
different from our research in several aspects, including the notion of interesting
patterns, the nature of the input data, and the input parameters.

2.5 Mining Frequent Patterns in Sequence Data

Mining unexpectedly frequent patterns in sequence data is another close research
topic to our research study. Numerous works have been published around this topic
addressing different aspects such as what measure is used to define unexpectedness,
what defines a pattern, how a data sequence is defined, and how the performance
of a method is evaluated.

Dutta et al. propose a method for mining statistically significant patterns in

a long sequence dataset [100]. Their notion of significant patterns is based on the
Chi-square statistic (χ2) and two heuristics are developed for returning the top-
k substrings with the largest χ2 measure. To improve upon the naive algorithm
which computes the chi-square for each substring individually, the local maxima of
a string is introduced. The local maxima is defined to be a substring such that
while traversing through it, the inclusion of the next symbol does not decrease the
χ2 value of the resultant substring. Two algorithms, All-Pair Refined Local Maxima

Search (ARLM) and Approximate Greedy Maximum Maxima Search (AGMM), are
proposed based on the notion of a local maxima to efficiently search and identify
statistically significant patterns within a long sequence. The definition of patterns
in this work is again limited to simple string representations (i.e. no mismatch
allowed in the definition of a pattern) which makes this method incapable of finding
approximate patterns. Moreover, this work does not address the issue of selecting

the length of true deviating (i.e. statistically significant) patterns, which can lead
to generating highly correlated patterns in the top-k solution and possibly missing
some of the ‘true’ significant patterns.

A more generalized notion of patterns has been used in some research works, in
which the patterns represent an approximate set of subsequences in sequence data
sets. Floratou et al. [35] have proposed FLAME as a motif mining framework
in sequence datasets. The proposed motif model in this work depends on four

parameters (L,M, s, k), where L denotes the length of the pattern, M denotes the
distance matrix (which is used to compute the similarity between a given string and
the reference motif), s denotes the maximum distance threshold, and k denotes the
minimum support required for a pattern to qualify as a motif. The proposed motif
model is supposed to represent the set of strings of length L with minimum frequency
of k whose distance to the reference motif with respect to the distance matrix M is

less than the threshold s. To improve upon the naive algorithm (e.g. exploring all
possible motifs and computing the support for each of them), two suffix trees are
used to guide the search strategy in a more efficient way. The first tree is based on
the input data sequences, which is referred to as the data suffix tree, and the second
one is based on all possible motif strings, which is referred to as the model suffix
tree. The computed supports on the data suffix tree are used to prune branches
of the model suffix tree which are guaranteed not to produce any results under the

model. The model proposed in this work depends on some input parameters (e.g.
distance matrix M , minimum support k) which are domain-dependent, and cannot

24

be determined intuitively. Moreover, the evaluation of the method has been focused
on the run-time performance rather than the matching extent to the ‘true’ motifs
in the data, which is the focus of our work.

In another work in this category, Zhu et al. propose a method for finding approx-
imate sequential patterns, in which variations between patterns is represented by
the Hamming distance [4]. The motif model presented in this work as well depends

on two input parameters minimum support and maximum distance which affect the
robustness of the method. The main focus of this work is to enumerate the motifs
and compute their supports efficiently. The proposed search strategy consists of two
steps break-down and build-up. The break-down step is based on the observation
that all occurrences of a frequent pattern can be classified into groups, which are
called strands. The strands are mined out by an iterative growth. In the build-up

step, these strands are combined together to form the support sets from which all
approximate patterns can be identified. Similar to FLAME, the proposed work by
Zhu depends on some non-intuitive input parameters such as support, and focuses
on improving the running time rather than accuracy in terms of matching with the
ground truth.

Yang et al. propose a method for finding surprising patterns in sequence data
[121]. Their notion of surprise is modelled based on the information gain and they

allow some ‘don’t care’ positions in the pattern specification. Even though the pro-
posed notion of surprise in this work allows them to compare the significance of
patterns of different lengths, the type of patterns discovered by this method is dif-
ferent from those in our work. The main focus of Yang’s work is on finding patterns
which occur frequently within a period (i.e. repetitive patterns) in a sequence. Our
work, on the other hand, does not impose any constraint on distances between oc-

currences of a pattern. The work proposed by Keogh et al. [59] for finding surprising
patterns in a time series database is similar to ours in that the discovered patterns
should be observed more frequently than expected. However, the score used in this
work for measuring the extent of surprise of patterns is based on the raw counts of
observed patterns compared with their counts in the training data, and using a user-
provided threshold for choosing the surprising pattern. In our proposed method, we
estimate the p-values of patterns, which gives a more robust means to choose the

patterns based on a significance level. Also, the patterns in Keogh’s work [59] are
extracted based on different window lengths, and no attempt is made in choosing
the right length of discovered patterns.

Sequential pattern mining is a close research area to finding statistically signif-
icant patterns in sequence data. This topic has been addressed in numerous pub-
lications, including the seminal work by Agrawal et al. [4] and the improvements

proposed over Agrawal’s work in algorithms such as SPADE [124] and BIDE [111].
The primary focus in this line of research is on mining a sequence of symbols with
arbitrary gaps between them, whereas our work is focused on finding contiguous
patterns. Some algorithms such as cSPADE [123], CloSpan [120], PrefixSpan [86],
Gap-BIDE [66], and Gap-Connect [66] allow certain constraints on the maximum
gap between two consecutive symbols, and as such can be adapted to mine for con-
tiguous subsequences, as defined in our work. However, the applications of these

algorithms are limited to finding exactly matching subsequences due to the fact that
no notion of noise or approximation is allowed in the pattern definition.

25

Gwadera et al. address the problem of finding significant episodes in an event
sequence [47], where the definition of an episode is limited to subsequences occurring
in a time window of fixed size. In another work, Tatti et al. address the problem
of summarizing a data sequence with the “best” set of serial episodes based on the
MDL principle [104]. There is no notion of the deviation from a model in these types
of patterns, making them different from statistically significant patterns in our work.

Webb et al. propose a method for finding statistically significant association rules
assuming a database of transactions [113].

Gwadera et al. propose a method for evaluating and ranking the significance
of sequential patterns (itemset-sequences) compared to a reference model [48]. In
another similar work [74], Low-Kam et al. propose a method for finding statisti-
cally significant sequential patterns to reduce the set of discovered patterns. They

introduce the new measure of interestingness of sequential patterns based on their
frequency under the null model, and also use the notion of unexpected closed sequen-
tial patterns to limit the set discovered patterns to the most interesting patterns.
In another proposed work for finding surprising sequential patterns, Chakrabarti et
al. propose a method for finding unexpected sequential patterns in market basket
data [17]. The notion of interestingness used in this work is derived from the min-
imum description length principle, and replaces the domain knowledge parameters

such as support, confidence, or window length. However, these methods are pro-
posed for finding sequential patterns in sequences of itemsets (e.g. transaction-based
databases), rather than the contiguous sequence data model assumed in our work.

26

Chapter 3

Background and Problem

Statement

3.1 Markov Chain Model

A Markov chain model is a discrete stochastic process with the Markovian property.

More formally, a Markov chain is a sequence of random variables X1, X2, X3, ...
with the property that, given the present state, the future and past states are
independent:

P (Xn+1 = x|X1 = x1, X2 = x2, ..., Xn = xn) = P (Xn+1 = x|Xn = xn) (3.1)

Note that we are not saying that, for example X10 and X1 are independent.
They are not. However, given X9, X10 is conditionally independent of X1. This
specific kind of “memorylessness” is called the Markov property. A Markov chain
is stationary if at any time, it has the same transition probabilities.

The changes of state of the system are called transitions, and the probabilities
associated with various state changes are called transition probabilities. A Makov

chain model is characterized by three parameters state space, a transition matrix,
describing the probabilities of transitions, and the distribution of initial state.

A more general class of Markov chains adds a new parameter m to the model
stating the depth in the history of the states the next state depends on. A Markov
chain of order m (or a Markov chain with memory m) is a process in which the
future state depends on the past m states:

P (Xn+1 = x|X1 = x1, ..., Xn = xn) = P (Xn+1 = x|Xn = xn, ..., Xn−m+1 = xn−m+1)
(3.2)

Markov chains have many applications as statistical models of real-world pro-
cesses such as stock prices, web page navigations, and probabilistic moves in games.
In many real-world applications, the distribution of the process which generates

the data are unknown, and we just approximate this distribution using a Markov
model. Assuming a Markov chain of order m as the underlying model for a pro-
cess, the probability of a sequence S = x1x2...xn of length n under this model is
calculated as follows:

27

P (S) = P (x1)P (x2|x1)P (x3|x1x2)...P (xn|xn−mxn−m+1...xn−1) (3.3)

The initial probability P (x1) and the following conditional probabilities are cal-

culated from the model parameters, including the initial distribution of states and
the transition matrix, correspondingly. In practice, the model parameters are de-
rived from a reference data (i.e. training data) which represents the normal be-
haviour of the process or should be provided by the user. In the following chapters,
we are using a stationary Markov chain as the underlying model for sequence data.

3.2 Smoothing for Markov Models

Accuracy of probabilities in the Markov Chain model depends on the training data
available for learning the model. Achieving accurate probability estimation is chal-
lenging in cases where sufficient data is not available or a higher-order Markov model
should be learned. To address this issue, we are using the smoothing techniques that
are originally used in the domain of Language Modelling. The dominant technol-

ogy in language modelling is n-gram models, and smoothing methods are used to
better estimate probabilities when there is insufficient data to estimate probabilities
accurately [21].

A language model is usually formulated as a probability distribution p(s) over
strings s that attempts to reflect how frequently a string s occurs as a sentence. The
most widely-used language models, by far, are n-grams. For a sequence s composed

of the symbols (or ‘words’ which are building units of language models) w1, ..., wl,
we can express p(s) as

p(s) = p(w1)p(w2|w1)p(w3|w1w2)...p(wl|w1...wl−1) =

l
∏

i=1

p(wi|w1...wi−1) (3.4)

As an example, for n = 2 these models are called bigrams. This corresponds to a
Markov Chain of order m = 1 (in general, an n-gram model can be interpreted as a
Modev model of order n−1), in which we make the assumption that the probability
of each symbol depends only on the preceding symbol, giving us

p(s) =
l

∏

i=1

p(wi|w1...wl−1) =
l

∏

i=1

p(wi|wi−1) (3.5)

To make p(wi|wi−1) meaningful for i = 1, we can pad the beginning of the sentence
with a distinguished token <BOS>; that is, we pretend w0 is <BOS>, as proposed

in [21]. To estimate p(wi|wi−1), the frequency with which the word wi occurs given
that the last word is wi−1, we can simply count how often the bigram wi−1wi occurs
in some text. Let c(wi−1wi) denote the number of times the bigram wi−1wi occurs
in the given text. Then, we can calculate the conditional probability as follows:

p(wi|wi−1) =
c(wi−1wi)

∑

wi∈Σ
c(wi−1wi)

(3.6)

where Σ represents the alphabet of symbols. A training data is required for learning
model parameters. The estimate for p(wi|wi−1) given in equation 3.6 is called the

28

maximum likelihood (ML) estimate of p(wi|wi−1) because this assignment of proba-
bilities yields the bigram model that assigns the highest probability to the training
data of all possible bigram models. Estimation of conditional probabilities based on
ML models highly depends on the training data. This means that some probabilities
might be evaluated to 0 just because a specific sequence of symbols (or ‘words’) are
not seen in the training data.

A smoothing technique intends to address this problem. The name smoothing
comes from the fact that these techniques tend to make distributions more uniform,
by adjusting low probabilities such as zero probabilities upward, and high proba-
bilities downward. Smoothing refers to methods that assign probabilities to events
(N-grams) that do not occur in the training data. According to a pure maximum-
likelihood estimator these events would have probability zero, which is plainly wrong

since previously unseen events in general do occur in independent test data. Because
the probability mass is redistributed away from the seen events toward the unseen
events the resulting model is “smoother” (closer to uniform) than the ML model.
Discounting refers to the approach used by many smoothing methods of adjusting
the empirical counts of seen events downwards.

3.2.1 Additive Smoothing

Additive smoothing is the simplest type of smoothing used in practice. The simple
idea behind this technique is that the frequency of each n-gram is pretended to be
a constant value δ more that it is actually observed in the training data, where
typically 0 < δ ≤ 1, i.e.,

padd(wi|wi−1
i−n+1) =

δ + c(wi
i−n+1)

δ|V |+∑

wi
c(wi

i−n+1)
(3.7)

where V is the vocabulary, the set of all symbols being considered, and the no-
tation wi

j (i < j) represents the substring starting from index i to index j (i.e.
wjwj+1...wi−1wi).

Even though the additive smoothing provides a simple fix to the problem of
unseen n-grams, it comes with a cost in performance. Gale and Church have argued
that in order for additive smoothing to work the frequencies of frequencies of n-
grams should follow a geometric law (linear on semi-log), an assumption that is
violated quite often in practice [40,41]. As a result, the additive smoothing generally
performs poorly, and it can even produce worse results than the Maximum-likelihood
estimate.

3.2.2 Good-Turing Estimate

The Good-Turing estimate [46] is central to many smoothing techniques. The main
idea behind this estimate is that that for any n-gram that occurs r times, we assume

that it occurs r∗ times, where

r∗ = (r + 1)
nr+1

nr
(3.8)

such that rn is the number of n-grams that occur exactly r times in the training data
(i.e. frequencies of frequencies). To derive a probability value from this adjusted

29

count, we normalize using the total counts of n-grams. More formally, for an n-
gram α which is observed with frequency r, the Good-Turing estimate is calculated
as follows:

pGT =
r∗

N
(3.9)

where N is the total number of frequencies of frequencies, i.e. N =
∑∞

r=0 nrr
∗.

In practice, the Good-Turing estimate is not used by itself for n-gram smoothing,

because it does not include the combination of higher-order models with lower-
order models necessary for good performance, as discussed in the following sections.
However, it is used as a tool in several smoothing techniques.

3.2.3 Katz Estimate

Katz smoothing (1987) extends the intuitions of the Good-Turing estimate by adding
the combination of higher-order models with lower-order models [57]. The katz
smoothing works by calculating the adjusted counts of n-grams. As an example, for
a bigram wi

i−1 with count r = c(wi
i−1), its adjusted count is calculated using the

following formula:

ckatz(w
i
i−1) =

{

drr if r > 0

α(wi−1)pML(wi) if r = 0
(3.10)

This means that all bigrams with a nonzero count r are discounted according to
a discount ratio dr and the discounted value is distributed among the zero-count
bigrams. The discount ratio dr is approximately r∗

r
, the discount predicted by

the Good-Turing estimate. The counts subtracted from the nonzero counts are
then distributed among the zero-count bigrams according to the next lower-order
distribution, i.e., the unigram model in the case of estimating the counts of bigrams.
The value αwi−1 is chosen so that the total number of counts in the distribution
∑

wi
ckatz(w

i
i−1) is unchanged; i.e.

∑

wi
ckatz(w

i
i−1) =

∑

wi
c(wi

i−1). Also, the sum
of probabilities of all bigrams starting with wi−1 (

∑

wi
pkatz(wi|wi−1)) should equal

to 1, and considering the fact that part of probability mass is discounted from the
seen bigrams and added to the unseen bigrams with factor αwi−1 , the value αwi−1 is
derived as follows:

αwi−1 =
1−∑

wi:c(wi
i−1)>0 pkatz(wi|wi−1)

∑

wi:c(wi
i−1)=0 pML(wi)

=
1−∑

wi:c(wi
i−1)>0 pkatz(wi|wi−1)

1−∑

wi:c(wi
i−1)>0 pML(wi)

(3.11)
In Katz smoothing, the large counts are believed to be reliable, and therefore, the
discount ratio dr is considered to be 1 for all r > k (Katz suggests a value of 5 for k).
Based on the ideas from the Good-Turing smoothing, Katz proposes the following

formula for computing the discount ratios for all counts less than k:

dr =
r∗

r
− (k+1)nk+1

n1

1− (k+1)nk+1

n1

(3.12)

30

From the corrected ratio dr in equation 3.12 and the equation 3.11, the smoothed
probabilities can be can be computed by normalization, as follows

pkatz(wi|wi−1) =
ckatz(w

i
i−1)

∑

wi
ckatz(w

i
i−1)

(3.13)

As we can see in equation 3.10, the bigram model is defined in terms of the

unigram model; in general, the Katz n-gram model can be defined in terms of the
Katz (n-1)-gram model in a similar way. To end the recursion, the Katz unigram
model is taken to be the maximum likelihood model.

3.2.4 Witten-Bell Estimate

Witten-Bell smoothing was originally developed for the task of text compression
[116]. The main idea behind the Witten-Bell estimate is to use the information in
the lower-order n-gram model in order to estimate the probabilities in the higher-
order models. More formally, the higher-order n-gram models are interpolated based
on the lower-order n-gram models, as follows:

pWB(wi|wi−1
i−n+1) = λ

wi−1
i−n+1

pML(wi|wi−1
i−n+1)+ (1−λ

wi−1
i−n+1

)pWB(wi|wi−1
i−n+2) (3.14)

That is, the nth-order smoothed model is defined recursively as a linear inter-
polation between the nth-order maximum likelihood model (i.e. pML(wi|wi−1

i−n+1))

and the (n− 1)th-order smoothed model (i.e. pWB(wi|wi−1
i−n+2)).

To motivate Witten-Bell smoothing, we can interpret equation 3.14 as saying:

• with probability λ
wi−1

i−n+1
we should use the higher-order model, and

• with probability 1− λ
wi−1

i−n+1
we should use the lower-order model.

The parameters λ
wi−1

i−n+1
in the Witten-Bell smoothing are computed by counting

the number of unique words that follow the history wi−1
i−n+1. This value is denoted

by N1+(w
i−1
i−n+1•), formally defined as

N1+(w
i−1
i−n+1•) = |wi : c(w

i−1
i−n+1wi) > 0| (3.15)

where N1+ represents the number of words with a count of one or more, and the

symbol ‘•’ represents a free variable which can take any value in the vocabulary V .
The parameters λ

wi−1
i−n+1

is the probability that a symbol not observed after the his-

tory wi−1
i−n+1 in the training data occurs after that history in a test sequence. Witten

et al. show that this probability can be estimated using the following equation:

1− λ
wi−1

i−n+1
=

N1+(w
i−1
i−n+1•)

N1+(w
i−1
i−n+1•) +

∑

wi
c(wi

i−n+1)
(3.16)

This gives us the following recursive formula for calculating a discounted condi-
tional probability with Witten-Bell smoothing:

31

pWB(wi|wi−1
i−n+1) =

c(wi
i−n+1) +N1+(w

i−1
i−n+1•)pWB(wi|wi−1

i−n+2)
∑

wi
c(wi

i−n+1) +N1+(w
i−1
i−n+1•)

(3.17)

To end the recursion, we can take the smoothed 1st-order model to be the maximum
likelihood distribution, or we can take the smoothed 0th-order model to be the
uniform distribution.

Smoothing is generally done in one of two ways. The Interpolated models take
lower-order counts into account no matter if the query word is seen in the training
data or not. However, the backoff models only consider lower-order counts when

the query word is not seen in the training data.
The backoff version of the Witten-Bell smoothing technique is calculated as

follows:

pWB(wi|wi−1
i−n+1) =

{

f(wi−1
i−n+1wi) if c(wi−1

i−n+1wi) > 0

bow(wi−1
i−n+1)pWB(wi|wi−1

i−n+2) if c(wi−1
i−n+1wi) = 0

(3.18)
where the functions bow(.) and f(.) represent the back-off value and the conditional

probability without back-off to the lower-order model, respectively, and are defined
as follows:

bow(wi−1
i−n+1) =

1−∑

wi:c(wi
i−n+1)>0 f(w

i−1
i−n+1wi)

1−∑

wi:c(wi
i−n+2)>0 f(w

i−1
i−n+2wi)

(3.19)

f(wi−1
i−n+1wi) =

c(wi
i−n+1)

∑

wi
c(wi

i−n+1) +N1+(w
i−1
i−n+1•)

(3.20)

3.3 Statistical Significance Testing

A statistical hypothesis test is a method of supporting or rejecting claims based
on a sample data. In statistics, a result is called statistically significant if it is
determined as unlikely to have occurred by chance alone, with respect to a pre-
determined threshold probability, the significance level.

Every significance test begins with a null hypothesis H0. The null hypothesis
represents a theory that is either believed to be true or because it is to be used as
a basis for argument, but has not been proved. For example, in a clinical trial of a

new drug, the null hypothesis might be that the new drug is no better, on average,
than the current drug. We would write H0: “there is no difference between the
two drugs on average”. The alternative hypothesis H1 is the opposite of the null
hypothesis; this is usually the hypothesis that is set up to investigate. For example,
in a clinical trial of a new drug, the alternative hypothesis might be that the new
drug has a different effect, on average, compared to that of the current drug. It is

written as Ha: “the two drugs have different effects, on average”.
After establishing the hull hypothesis and the alternative hypothesis, the p-value

probability is calculated. The p-value is the estimated probability of rejecting the
null hypothesis (H0) of a study question when that hypothesis is actually true. The

32

p-value is then compared to a significance level α. Typical values for α are 0.05, 0.01,
and 0.001. If the p-value is less than the significance level α, the null hypothesis
is rejected at the significance level α and the alternative hypothesis is accepted.
Otherwise, the null hypothesis is accepted, which means the test has no result (i.e.
the evidence is insufficient to support a conclusion).

In summary, the statistical significance testing consists of four steps as follows:

1. Establish the hypotheses: This involves stating the null and alternative hy-
potheses. The hypotheses are stated in such a way that they are mutually
exclusive. That is, if one is true, the other must be false.

2. Compute from the observations the observed value tobs of the test statistic T ,
and select a significance level α.

3. Calculate the p-value, the probability of observing a test statistic at least as
extreme as that which was observed, under the null hypothesis.

4. Interpret results: reject the null hypothesis, in favour of the alternative hy-
pothesis, if and only if the p-value is less than the significance level α threshold.

Two types of errors can result from a hypothesis test:

• Type I error (False Positive): A Type I error occurs when the a null hypothesis
is rejected and it is actually true. The probability of committing a Type I error
is called the significance level (α).

• Type II error (False Negative). A Type II error occurs when the researcher
fails to reject a null hypothesis that is false. The probability of committing a
Type II error is called Beta, and is often denoted by β.

3.4 Correction for Multiple Hypothesis Testing

Multiple testing refers to any instance that involves the simultaneous testing of sev-
eral hypotheses. In a statistical test, the significance level α represents the probabil-
ity of the null-hypothesis being rejected when in fact it is true (i.e. the probability
of a “false positive” or Type I error) for a single statistical test. However, in many
applications the significance of multiple observations should be compared against a
null hypothesis. When performing multiple tests simultaneously, the probability of
false positives is not equal to α. If one does not take the multiplicity of tests into

account, then the probability that some of the true null hypotheses are rejected by
chance alone may be large.

Example 2 Consider a case where 20 hypotheses have to be tested, and a signif-
icant level is set at 0.05. Given this, and assuming independence of the tests, the

probability of observing at least one significant result just due to chance is calculated
as follows:

33

Pr(at least one significant result) = 1− Pr(no significant results)

= 1− (1− 0.05)20

≈ 0.64

So, with 20 tests being considered, we have a 64% chance of observing at least
one significant result, even if all of the tests are actually not significant. In genomics
and other biology-related fields, it’s not unusual for the number of simultaneous tests
to be much larger than 20, and the probability of getting a significant result simply
due to chance keeps going up. In statistics, this problem is referred to as multiple

hypothesis testing [78].
Methods for dealing with multiple testing are usually based on adjusting the

significance level in some way, so that the probability of observing at least one
significant result due to chance remains below your desired significance level.

3.4.1 Classic Benferroni Method

A definition of statistical significance for multiple hypothesis tests involves the prob-

ability of making one or more Type I errors among the family of hypothesis tests,
called the family-wise error rate (FWER). The classic Benferroni correction is a
an example of the FWER class of methods. The Benferroni method adjusts the
significance level α for a single test by dividing it by the number of performed tests
[49]. This approach guarantees a false positive rate of α after all tests. For example,
in the example above, with 20 tests and α = 0.05, you’d only reject a null hypoth-
esis if the p-value is less than 0.0025. The Bonferroni correction tends to be a bit

too conservative in rejecting null hypotheses in the interest of controlling the false
positives. To demonstrate this, let’s calculate the probability of observing at least
one significant result when using the correction just described:

Pr(at least one significant result) = 1− Pr(no significant results)

= 1− (1− 0.0025)20

≈ 0.0488

We benefit here from assuming that all tests are independent of each other.
In practical applications, that is often not the case. The Bonferroni correction
can be somewhat conservative if there are a large number of tests and/or the test
statistics are positively correlated. This correction approach controls the probability
of false positives only. The correction ordinarily comes at the cost of increasing the
probability of producing false negatives, and consequently reducing statistical power.

3.4.2 Holm-Benferroni Method

An alternative, less conservative approach in the category of methods which con-
trol the family-wise error rates is the Holm-Benferroni method [53]. The Holm-
Benferroni method is a sequential approach whose goal is to increase the power of

34

the statistical tests while keeping under control the Type I error. Let H1, ..., Hm

be a family of hypotheses, with corresponding p-values of P1, ..., Pm. The Holm
algorithm works as follows:

• Sort the p-values in the increasing order. Let the sorted values are denoted

by P(1), ..., P(m) and let the associated hypotheses be H(1), ..., H(m).

• Let k be the smallest index such that P(k) >
α

m+1−k
, where α is the significance

level.

• Reject all the null hypotheses H(1)...H(k−1) (the hypotheses corresponding to
indices 1 to k − 1) and accept the rest.

Example 3 Assume that the sorted p-values for five null hypotheses H1, H2, H3,
H4, H5 are equal to 0.005, 0.011, 0.02, 0.4, and 0.13, correspondingly. For a signif-
icance level of α = 0.05, the Holm procedure will adjust the p-values as follows:

• Adjusted p-value for H1 is equal to 0.005 ∗ 5 = 0.025 < α: Reject H1.

• Adjusted p-value for H2 is equal to 0.011 ∗ 4 = 0.044 < α: Reject H2.

• Adjusted p-value for H3 is equal to 0.02 ∗ 3 = 0.06 > α: Accept H3, stop, and
accept the remaining hypotheses H4 and H5.

The Holm-Bonferroni method is more powerful than the regular Bonferroni,

and can always be used as a substitute. In our proposed method, we are using this
method for adjusting the significance level in all experiments except the experiments
on the Motif discovery datasets.

3.4.3 The False Discovery Rate Method

The classic Benferroni and Holm-Benferroni methods are examples of FWER con-
trolling procedures. These procedures intend to control the probability of making
one or more false discoveries (Type I errors) among all the hypotheses (a family of

hypotheses) when performing multiple hypotheses tests. As a result, the FWER
procedures generally take a more conservative approach in selecting significant ob-
servations in favour of reducing false positives (Type I errors). In contrast, False
Discovery Rate (FDR) procedures take a less conservative approach in identifying
the important few significant observations from thousands of null hypotheses tested.

The modern widespread use of the FDR is believed to stem from, and be moti-
vated by, the development in technologies that allowed the collection and analysis of

a large number of distinct variables in several individuals (e.g., the expression level
of each of 10,000 different genes in 100 different persons) [11]. As technology made
it possible to generate more datasets with relatively small sample sizes (e.g. few
individuals being tested) and large numbers of variables being measured per sample
(e.g. thousands of gene expression levels, or motifs), the development of alternative
control procedures to classic FWER methods became more crucial. In these cases,

too few of the measured variables show statistical significance after classic correction
for multiple tests with standard multiple comparison procedures.

The FDR is designed to control the expected proportion of incorrectly rejected
null hypotheses (‘false discoveries ’) [12]. More formally, let the number of errors

35

when testingm null hypotheses are represented by the random variables summarized
in table 3.1, where,

Table 3.1: Random Variables in testing m null hypotheses
Null is True (H0) Alternative is True (H1) Total

Declared significant V S R

Declared non-significant U T m−R

Total m0 m−m0 m

• m is the total number of hypotheses tested

• m0 is the total number of null hypotheses that are true

• m−m0 is the total number of alternative hypotheses that are true

• V is the number of false positive (Type I error, also called “false discoveries”)

• S is the number of true positive

• T is the number of false negatives (Type II error)

• U is the number of true negatives

• R is the number of rejected null hypotheses

Based on these notations, the FDR is given by

FDR = E(
V

V + S
) = E(

V

R
) (3.21)

The goal of an FDR control procedure is to guarantee that the expected value of
false discoveries is less than a fixed rate α.

Most control procedures for FDR analyze the sequence of null hypothesis tests

H1,H2, ...,Hm, and their corresponding p-values P1, P2, ..., Pm. Then, a condition is
required to call a null hypothesis statistically significant whenever its corresponding
p-value is less than or equal to some threshold, t ∈ (0, 1]. This threshold can be
fixed or data-dependent, and the procedure for determining the threshold involves
quantifying a desired error rate.

Let us denote the sorted p-values by the sequence P(1), P(2), ..., P(m). There

are two main approaches to controlling the FDR. The first one, due to Benjamini
and Hochberg [12], seeks to find a cutoff t given the target FDR proportion α. The
second one, due to John Storey [101], estimates the FDR given a cutoff value.

The Benjamini−Hochberg Procedure

In one of the earliest control procedures, called the Benjamini-Hochberg procedure
[12], the p-values are sorted in increasing order and an index k is estimated such
that by rejecting all null hypotheses corresponding to p-values P(1), P(2), ..., P(k)

the FDR will be less than α. More specifically, for a target false discovery rate α

and the total number of m tests, the procedure works as follows:

1. Find the largest k such that P(k) ≤ k
m
α

36

2. If such a k exists, reject all H(i) for i = 1, ..., k. Otherwise, reject nothing.

Example 4 For a false discovery rate α = 0.05, the results of the Benjamini-
Hochberg procedure is shown in the table 3.2:

Table 3.2: Example run of the Benjamini-Hochberg procedure

Rank (j) P-Value j
m

× α Reject H0?

1 0.0008 0.005 Y

2 0.009 0.010 Y

3 0.165 0.015 N

4 0.205 0.020 N

5 0.396 0.025 N

6 0.450 0.030 N

7 0.641 0.035 N

8 0.781 0.040 N

9 0.900 0.045 N

10 0.993 0.050 N

The Storey Procedure

A follow-up approach was proposed by Storey et al. [101] to take into account
the distributions of all p-values and increase the discovery power of the Benjamini-
Hochberg procedure. The Storey method is an example of a technique in which
the point FDRs are calculated for a given cutoff value. In this method, Stoery et
al. introduce the notion of a q-value as the FDR analog to a p-value. A q-value is
calculated corresponding to each p-value, and each q-value Qi gives us the maximum

FDR that we should expect if we reject all the null hypotheses corresponding to
smaller q-values than Qi. In other words, the q-value for a given P(i) is defined to
be the minimum FDR at which the test is called significant:

q-value(P(i)) = min
t>P(i)

FDR(t) (3.22)

The reason for using the minimum value in the above formula is that unlike
the type I error, the FDR is not necessarily strictly increasing with an increasing
significant threshold. Hence, the minimum is used to accommodate this property.

For example, in testing a microarray for differential expression of genes, if gene
X has a q-value of 0.013, it means that 1.3% of genes that show p-values at least as

small as gene X are expected to be false positives.

3.5 General Problem Statement

Intuitively, our goal is to find subsequences in a symbolic data sequence S that occur
more frequently than expected — based on some model of how sequences like S
would look like under “normal conditions”, i.e., without containing the “deviating”

subsequences we are looking for.

37

To formalize this notion, we can conceptually model the sequence S, consisting of
symbols of a finite alphabet set Σ, as being generated by some random process Θ, in
which, at certain positions, subsequences may occur that are generated by a process
different from Θ. We can think of Θ as describing the normal behaviour of the
process, and we refer to Θ in the rest of the paper as the “background” distribution.
We can think of the set of the subsequences of S that are not generated by Θ as

anomalies in the process modelled by Θ (e.g., failures or intrusions), and we refer
to these subsequences, which we want to identify, as deviating patterns.

It is necessary to distinguish between a subsequence u as a pattern and its occur-
rences (or instances) in a sequence S. For instance, given the alphabet {1, 2, ..., 9},
u =“123” is a pattern occurring in S =“123764123913” at positions 0 and 6.

We do not make any specific assumptions about the length of the deviating

patterns nor the characteristics of the process that generates them. The only as-
sumption is that the anomalies are generated by processes, which are sufficiently
different from the background distribution. Under this condition, i.e., in the pres-
ence of anomalies, it is expected that the characteristics of a sequence produced
by the background distribution will, in general, have changed in a way that allows
us to detect those anomalies as deviating patterns. However, we can also expect
that, in addition to the embedded deviating patterns, many other subsequences of

S (of different lengths), which are partly generated by the background distribution
but partly overlap with deviating patterns, may also look deviating. Such pat-
terns are a form of redundant deviating patterns. In fact, this phenomenon poses a
challenge when trying to identify the truly embedded, deviating patterns. We will
demonstrate this challenge after we introduce a more precise (but in parts still very
general) formulation of our problem and describe our general approach.

General Problem Statement: Given a symbolic data sequence S and a model
Θ from which sequences can be generated, find a set of patterns O with the following
properties:

1. the patterns in O have instances in S;

2. the patterns in O are (with high probability) not generated by Θ;

3. every part of S that does not belong to the instances of O is generated with
high probability by Θ;

4. among all sets that have properties 1 to 3, O is a smallest set (in terms of
cardinality) of patterns with these properties.

In general, we do not know the background distribution for a sequence S, nor
do we know the distributions that possibly generate deviating patterns in S. We

assume instead that we have access to some “reference” or “training” sequences like
S, which can be considered to represent “normal behaviour” of the process, and
from which we can learn a model Θ̂.

To represent an unknown background distribution for a sequence, we use a
Markov chain model of some order m. Markov chain models have been widely used
in different fields to capture the distribution of data within sequences. A Markov
chain of order m models the dependency between symbols by the conditional proba-

bility of seeing a symbol at a certain position i in a sequence, given the subsequence

38

of m symbols occurring at positions i − 1, . . . i − m. We denote a Markov chain
model of order m by Θm.

The approach we propose to detect deviating patterns is based on statistical
hypothesis testing. Our Null Hypothesis H0 is that a given data sequence S is
generated only by a background distribution, described by a stationary Markov
chain model Θm. We can then estimate a p-value for a given subsequence u that

occurs in S t times, which is the probability that u occurs at least t times in S under
the Null Hypothesis. The p-value is then compared with a significance level α, a
typically low threshold (e.g. 0.01 or even lower); if the p-value is less than α, which
means that the probability that the occurrences of u have been generated by Θm

is very low, the null hypothesis is rejected and the results is said to be statistically
significant. Throughout this paper, a subsequence that has a lower p-value than a

given significance level threshold is simply refereed to as a significant pattern.
In this approach, the mentioned problem of redundant deviating patterns be-

comes the problem of redundant significant patterns. Many patterns may pass the
significance test only because they overlap with one of the truly embedded, devi-
ating patterns, and determining which of all the significant patterns constitute the
true deviating patterns is a challenge.

Example 5 To illustrate the problem, consider a time series sequence of length
10,000 generated by a random walk model given by the formula y(t) = y(t− 1) + λ,
where y(1) = 0, and λ is drawn from a random distribution with mean µ = 0 and
standard deviation σ = 2. Suppose the time series data is discretized using SAX [69]
with input parameters segment size and alphabet size set to 8 and 6, respectively.

The result is a sequence of size 1250 with symbols in the set {1, 2, ..., 6}. Suppose
the Markov model parameters (i.e. transitional probablilities and stationary prob-
abilities) are learned from the discretized data. Now suppose two subsequences of
lengths 4 and 6 are inserted (implanted) at random locations in the sequence. Let
“6545”, and “112233” be the implanted subsequences that are inserted at different
locations into S with frequencies 5 and 4, respectively. Consider extracting all sub-
sequences in S of lengths 2 to 10 and computing the p-value for each subsequence

(details of the p-value calculation are described in Subsection 4.1). Figure 3.1 shows
the number of statistically significant patterns of lengths 2 to 10, at a significance
level α = 0.001. We can observe that (1) the number of distinct, statistically sig-
nificant patterns increases when the length of subsequences increases, (2) the bins
corresponding to lengths of the implanted patterns (4 and 6) do not stand out in
any way from the overall trend (and represent in fact a comparatively low number

of patterns), and (3) the number of significant patterns overall is considerably larger
than 2, the number of implanted patterns. Table 3.3 shows the implanted pattern
“112233” of length 6 and two other patterns “1122331” and “1223311” of lengths 7
as well as their frequency and p-value, all of which are very similar.

39

� � � � � � � � 	

�

�

��

�

��

�

��
���������������

�
��
��
�
��
�
��
��
�
�
��
�
�

�
�
�
�
�
�
�
�
�

� � � � � � � � 	 �

�

�

��

�

��

�

��������	�
������

�
��
	�

��
�
�	
��
�
�
��

�
��
�
��

Figure 3.1: Increasing number of significant patterns with length.

Table 3.3: Significant patterns of different lengths, with their p-values and frequen-
cies

Length Pattern info (subsequence, frequency, pvalue)

6 (‘112233’, 3, 4.16722E-9)

7 (‘1122331’, 3, 3.11404E-9)

7 (‘1223311’, 3, 3.11404E-9)

40

Chapter 4

Proposed Method

As discussed in Section 3.5, the traditional method of testing the significance of all
candidate patterns will result in a solution with significant number of redundant
patterns, from which the ‘true’ anomalous patterns cannot be revealed. To address
this problem, we propose a method for capturing the relationship between embed-
ded significant patterns in a sequence and those patterns in the sequence that are
statistically significant only because they overlap with embedded patterns.

Our assumption is that a sequence S, consisting of symbols of a finite alphabet
set Σ, is generated by a normal process Θ, in which, at certain positions, subse-
quences may occur that are generated by a process different from Θ. The back-
ground distribution of the sequence S is modelled by a Markov chain of order m
(e.g. Θm).

If we would know the set of embedded patterns E, we could try to “explain” the

statistical significance of a pattern u in S by this set E. The main intuition behind
this idea of an explain relationship is to devise a statistical test for the frequency
of u with respect to a different Null Hypothesis; the new Null Hypothesis assumes
that a set of sequences are generated by Θm, with the additional constraint that
each sequence must contain the patterns in a set E at the exact same locations as
they occur in S.

Definition 6 Given a set of patterns E and the instances of those patterns in a
sequence S, let the total number of the instances be K, and suppose each instance
has a start index ij and a length lj, 1 ≤ j ≤ K. The constraint set CE,S on
an arbitrary sequence S

′
of length |S| is the conjunction of constraints as follows

∧

1≤j≤K(
∧

0≤x≤lj
(S

′
[ij +x] = S[ij +x])) (i.e. the sequence S

′
has the same symbols

as S at locations of instances in E
(

S
′
[i1] = S[i1] ∧ S

′
[i1 + 1] = S[i1 + 1] ∧ ... ∧

S
′
[i1+ l1] = S[i1+ l1]

)

∧
(

S
′
[i2] = S[i2]∧ ...∧S

′
[i2+ l2] = S[i2+ l2]

)

∧ ...∧
(

S
′
[iK] =

S[iK] ∧ ... ∧ S
′
[ik + lk] = S[ik + lk]

)

).

To illustrate this concept, assume an alphabet set {1, . . . , 9}, a model Θm,
and a data sequence S =“12135443512132351” of length 17. When computing
the p-value of a subsequence u which is observed t times in S (e.g., u=“12”,

t = 2) with respect to Θm we consider the probability of having at least 2 oc-
currences1 of u in all sequences that can be generated by Θm and that have the

1Throughout the text, the frequency and the number of occurrences of a pattern are used inter-
changeably and refer to the number of times a pattern is observed in a sequence

41

form S′ = , , , , , , , , , , , , , , , , (i.e., the only constraint is the length of the se-
quence). In contrast, given a set of patterns E = {121, 44} with their instances
occurring at positions {0, 5, 9}, and with the constraint set CE,S , we consider all
sequences of length 17 of the form S′′ =121 , ,44 , ,121 , , , , , where the symbols
at “open” positions are generated by Θm. The constraint set CE,S is specified
by (S′′[0] = S[0]) ∧ (S′′[1] = S[1]) ∧ (S′′[2] = S[2]) ∧ (S′′[5] = S[5]) ∧ (S′′[6] =

S[6]) ∧ (S′′[9] = S[9]) ∧ (S′′[10] = S[10]) ∧ (S′′[11] = S[11]).
The p-value of a pattern u with frequency t under a Null Hypothesis with con-

straint set E, is the probability P = Prob(frequency(u) ≥ t|CE,S) that the pattern
u occurs at least t times in a sequence that satisfies the constraint set CE,S , and is
otherwise generated by Θm. Given this probability, we define an explain relationship
≻ as follows:

Definition 7 Given a model Θm and a sequence S, we say a set E explains (the sig-

nificance of) a pattern u with frequency t in S, formally E ≻ u, iff Prob(frequency(u)
≥ t|CE,S) is higher than the given significance level α. When E explains all patterns
u in a set of patterns U , i.e., if ∀u ∈ U : E ≻ u, we also say that E explains U and
write E ≻ U .

Example 8 Assume that the patterns “535”, “44334334”, and “555355” are found
to be statistically significant with the significance level of α = 0.01 in a synthetic
dataset generated with a similar settings to those of Example 5. The p-value of

pattern “555355” with the number of occurrences of 4 without a constraint is equal
to 2.104E-6, which is less than α. Considering a constraint set CE,S, where E =
{“535”, “44334334”}, and calculating the p-value in the presence of the constraint
set CE,S is equal to 0.6218. More formally,

Prob(frequency(“555355”) ≥ 4|CE,S) = 0.6218 (4.1)

The fact that the computed probability is greater than α implies that E ≻ {“555355”}.

We define the cover set for a given subset A of patterns as follows:

Definition 9 Given a model Θm, a sequence S and the set O of significant patterns
of S, the covering set of a subset A ⊆ O is defined to be the set of all patterns in
O which can be explained by A. This is denoted by CA. More formally, CA = {o ∈
O|A ≻ {o}}.

This explain relationship allows us to define a non-redundant set of significant
patterns of possibly variable-lengths as a subset of significant patterns in S that
explains the statistical significance of all significant patterns in S. It is easy to
verify that E ≻ E, and it is clear that there may be several sets of patterns E
that can then explain all significant patterns. For our purpose, we are interested in
explaining sets E that are solutions to our general problem statement and satisfy

the minimality condition.

Definition 10 Given a model Θm and a sequence S, a core pattern set is a set
E that explains all significant patterns in S, and that has the minimum cardinality
among all such sets.

42

Finding a core pattern set can be formulated as an optimization problem in
which we look for the smallest set of significant patterns that explains all other sig-
nificant patterns. To solve this problem efficiently we propose a greedy algorithm for
constructing an approximate solution incrementally. Given our specific approach to
testing the significance of subsequences, and to determining “explain” relationships
between them, we can formulate a more specific version of our problem statement:

Specific Problem Statement: Given a symbolic data sequence S and a
Markov model Θm of order m (which could have been learned from reference se-
quences), find a set of subsequence patterns O with the following properties:

1. the patterns in O have instances in S;

2. the patterns in O are statistically significant assuming Θm as the generating
model;

3. every statistically significant subsequence of S with respect to Θm is either
in O, or is not statistically significant with respect to (Θm, CO), i.e., when

given the occurrences of patterns from O in S as additional constraints on the
sequences generated by Θm;

4. O is a set of smallest size that have properties 1 to 4.

The overall method that we propose to solve this problem, after we estimate the
parameters of a Markov model of order m (i.e. stationary and transition probabili-
ties) from a ‘training ’ sequence, consists of the following steps:

1. Extract all subsequences in a desired range of lengths from the data sequence

S, using a sliding window, and determine their frequencies in S.

2. For every extracted subsequence u with frequency t, calculate the p-value
Prob(frequency(u) ≥ t), i.e., the probability that the pattern u occurs in a
sequence of length length(S), generated by model Θm, at least t times.

3. Add all subsequences whose p-value is smaller than the significance level α
(after adjustment for multiple statistical tests) to the set of significant patterns
Psig.

4. Find a core pattern set E ⊆ Psig.

The steps of our proposed framework for finding surprisingly frequent patterns
in sequence data are shown in Figure 4.1. The details of computing p-values and
finding a core pattern set are in the next two sections.

4.1 Computing P-Values

The problem of computing p-values of a pattern in a sequence, assuming a Markov
model as the background distribution, has been studied in previous work (e.g. [25,
83,125]). To the best of our knowledge, this problem has not yet been investigated for
models where the generated sequences are additionally constrained by a constraint

set. Here we propose to extend the method by Robin et al. [90] to derive a formula

43

!
"#$%&'(! !)%*+(

&!

+!

,,!

!

-#$%&'(! !

&!&!

&!+!

&!.!

,,!

!

/#$%&'(! !

!! !

!"#$%$%&'(#)#' !"#$%$%&')*+',-.+/'!

0!"#"!1&%2*3!45&67!1*89:;!

!+0)'(#)#'

1#))+"%'23)"#4)$-%!

5)#)$0)$4#/'!+0)'6%#/70$0!

09,$!)#3&:<9=!>#3&:<9=!

?7@*%'&A6*7!.*7A97A;

8-""+4)$-%'9-"',:/)$;/+'!+0)$%&!

0!"#"!B*:'#C97@9%%*76=!DA*%9E=!!;!

!

DA9)!"F!

G(*:H"! I!

C!
DA9)!-F!!

G(*:HJIK!

DA9)!/F!

G(*:HJI=!CK!
!,!

8
-
"+
'1
#
))
+
"%
'5
+
)'
8
-
%
0)
":
4)
$-
%
!

0!
"#
"$
L
%9
9
8
E
!D
9
&
%.
5
!;
!

Figure 4.1: Proposed framework for finding surprisingly frequnet patterns in sequence data.

44

for p-values with constrained sequences. Let the function fW (j, n) be the probability
(w.r.t. Θ) that the nth occurrence of a pattern W of length k occurs at index j in a
data sequence S. Assume that Θ is a Markov model of order m, and assume for the
moment that we already know how to calculate the function f . Then, the p-value
of an arbitrary pattern W with observed frequency t (w.r.t. Θ) can be computed as
follows:

p-value(W, t) =

l−k+1
∑

j=1

fW (j, t) (4.2)

where l represents the length of the data sequence S, and k represents the length of
the pattern W . Intuitively, equation 4.2 gives the sum of probabilities that the t-th
occurrence of W is at any location in S (i.e., the probability that the t-th occurrence
of W is at location 1, or 2, ..., or at location l − k + 1). These are the probabilities
of mutually exclusive events, and therefore the sum in equation 4.2 is equal to the

probability of observing at least t occurrences of the word W .
In order to use this scheme for computing p-values given a constraint set CE,S ,

we have to compute the probabilities of patterns at different locations given the
instances of the patterns in E —which are assumed to occur in any generated
sequence at the same locations they occur at in S. For simplicity, we derive the
formula for a Markov chain of order 1.

Let Wn
j represent the event that the nth occurrence of a pattern W occurs at

index j and assume that Wj represents the event that the pattern W occurs at
location j, when generated under the constraint set CE,S and the model Θ. The
event Wj under these conditions can be decomposed into the following (mutually-
exclusive) events:

1. The occurrence of W at location j is its nth occurrence.

2. The occurrence of W at location j is its mth occurrence, for m < n.

3. The occurrence of W at location j is its mth occurrence, for m > n. This is
the event that the nth occurrence of W is at some location i < j and there is
another occurrence of W at location j.

Thus, the following equation holds for all n ∈ {1, ..., |S|}:

P (Wj |CE,S) = P (Wn
j |CE,S) +

n−1
∑

m=1

P (Wm
j |CE,S) +

j−1
∑

i=1

P (Wn
i ∩Wj |CE,S) (4.3)

where the terms in the right-hand side of the equation, in the specified order, cor-
respond to the items (1), (2), and (3) of the decomposition, respectively. The last
term in Eq. 4.3 can be rewritten as follows:

j−1
∑

i=1

P (Wn
i ∩Wj |CE,S) =

j−1
∑

i=1

(P (Wn
i |CE,S)× P (Wj |Wi, CE,S))

Let us denote the probability P (Wn
j |CE,S) by the function f

′

W (j, n|CE,S); then,
based on the equation 4.3 we can use the following recurrence formula for computing
f

′

W (j, n|CE,S):

45

f
′

W (j, n|CE,S) = P (Wj |CE,S)−
∑n−1

m=1
f

′

W (j,m|CE,S)−
∑j−1

i=1
f

′

W (i, n|CE,S)× P (Wi|Wj , CE,S)

f
′

W (1, 1|CE,S) = P (W1|CE,S)

This recurrence formula allows us to compute the function f
′

W (j, n|CE,S) us-
ing dynamic programming if we know how to compute P (Wj |CE,S), which we will
explain in the following.

Let I = {0, 1, ..., |S|−1} represent the set of all indices in S, and let IE represent

the set of indices occupied by instances of patterns in E. This means that all indices
in IE are assumed to have known symbols, and the unknown symbols in locations
I − IE are generated by the distribution Θm. Let S′ be an arbitrary sequence of
length |S| that satisfies the constraint set CE,S and is otherwise generated by the
distribution Θm. Assuming a Markov chain of order 1, the probability of occurrence
of an arbitrary symbol c at location i of S′ (i.e. S′[i] = c) , given CE,S , can be
specified as follows:

1. i ∈ I − IE : In this case, the probability just depends on the symbol located at
the largest index of IE before i (i.e. the last symbol of the closest instance of
a pattern before i) and the symbol located at the smallest index of IE after i
(i.e. the first symbol of the closest instance of a pattern after i).

2. i ∈ IE : In this case the probability equals 1, if c matches with symbol S[i];
and 0, otherwise.

Stated more formally, for a specific location i, let li be the largest index in IE
for which li ≤ i and ui be the smallest location index in IE for which ui ≥ i. Then,

the probability (w.r.t. (Θ1, CE,S)) of seeing an arbitrary character c at location i in
the sequence S′ can be formalized as follows:

P (S
′

[i] = c |CE,S) =











P (S
′

[i]=c|(S′[li]=S[li], S
′[ui]=S[ui])) if li < i < ui

1 if ((i ∈ IE) ∧ (c = S[i]))

0 if ((i ∈ lE) ∧ (c 6= S[i]))

(4.4)

For a Markov chain of order 1, this property allows a more efficient implemen-
tation by limiting the dependency of occurrences of a character c to at most two
known symbols occurring before and after c. The extension to higher-order Markov
chains is straightforward. Having a formula for computing f

′

w(x, n|CE,S) (using dy-
namic programming), the p-value with respect to (Θ, CE,S) of any pattern W with
frequency t can be calculated as:

p-value(W, t|CE,S) =

l−k+1
∑

j=1

f
′

w(j, t|CE,S) (4.5)

46

4.2 Computing a Core Pattern Set

A Core Pattern Set should be computed from the set of significant patterns, after
correction for multiple testing, which are the statistical tests performed for evaluat-
ing the significance of different subsequences. A naive, exhaustive search for a core

pattern set is computationally expensive (exponential in the number of significant
patterns) and impractical even for a dozens of patterns. We present an algorithm for
constructing an approximate solution for a set of significant patterns P , following a
greedy forward selection strategy. The approximate solution Psol is constructed by
adding one pattern at a time from P . At each step, let Prest be the set of patterns
that cannot be explained by the current solution Psol. We choose a pattern from

Prest that explains the largest number of remaining patterns. In other words, we
select a pattern q∗ so that {q∗} ∪ Psol explains at least as many of the remaining
patterns Prest than any other choice. In case of a tie, a pattern whose length is not
longer than any other candidate is selected (If several patterns satisfy this condition,
one pattern is selected randomly) The process continues by removing the newly se-
lected pattern q from Prest and adding it to Psol. Initially, Psol = ∅ and Prest = P ;
The algorithm terminates when Prest becomes empty. 2

The following Pseudocode shows the outline of the algorithm.

Greedy approximation of core pattern set
Input: A set P of statistically significant patterns
Output: Approximate core pattern set Psol

Psol = ∅;
Prest = P ;
while Prest 6= ∅ do
q∗ = ∅;
nCover∗ = 0;
//Choosing q∗, the “best” pattern from Prest

for all pi ∈ Prest do
CSi = {pj ∈ Prest|(Psol ∪ {pi}) ≻ pj}
if (|CSi| > nCover∗) OR (|CSi| = nCover∗ AND length(pi) <length(q∗))
then
q∗ = pi;
nCover∗ = |CSi|;

end if
end for
Psol = Psol + {q∗};
Prest = Prest − {q∗};

end while
return Psol;

2We have not investigated the approximation factor of the proposed greedy algorithm theoreti-
cally. This is left as an open problem for future work.

47

4.3 Smoothing Model Parameters

Computing the probability of observing a symbol given a history of symbols before
it (i.e. the conditional probability p(wi|wi−l+1...wi−1)) is a required calculation in
testing the explain relation between statistically significant patterns. More specif-

ically, for two patterns u =“abc” and v = “abcd” which happen to be statistically
significant after correction for multiple testing, we need to estimate the probability
p(v|u) in order to evaluate the explain relation u ≻ v. On the other hand, esti-
mating the conditional probabilities based on the Maximum likelihood (ML) model
highly depends on the training data. Assume that the substring “abcd” is not seen
in the training data (e.g. all the occurrences of the string “abc” are followed by

symbols other than ‘d’), but it is likely to observed in the test data. According
to a pure maximum-likelihood estimator these events would have probability zero,
which is plainly wrong since previously unseen events are likely do occur in inde-
pendent test data, and the maximum-likelihood model does not provide a correct
estimation This means that some probabilities might be evaluated to 0 just because
a specific sequence of symbols are not seen in the training data. This is particularly
very likely if we are dealing with some ‘surprising’ patterns, and their overlapping

patterns. Conditional probabilities with zero values make explain relation evalua-
tion problematic because it makes a potential ‘true surprising pattern’ incapable of
explaining a containing pattern. In the example of two patterns u and v mentioned
above, and for a Markov chain of order 2, the probability of observing an instance of
pattern v at index i in sequence data, given that an instance of pattern u is already
observed at index i, is calculated as follows:

p(v|u) = frequncy(abcd)

frequency(abc)
(4.6)

The probability p(v|u) will be equal to 0 if the substring “abcd” is not observed
in the training data, and as a result, the explain relation test for u ≻ v cannot be
performed properly. Note that in practice, the pattern u is likely to explain the
frequency of the pattern v.

A smoothing technique is required to address this problem by adjusting the prob-
abilities. As discussed in Section 3.2, the main idea of smoothing is to adjust low
probabilities such as zero probabilities upward, and high probabilities downward. In
our proposed model, we used the backoff version of the Witten-Bell smoothing pre-
sented in Section 3.2.4 to adjust the probabilities due to its efficiency in a recursive
implementation using dynamic programming.

4.4 Example Run of the Core Pattern Set Algorithm

In this Section, we will demonstrate an example run of our Core Pattern Set al-
gorithm on a synthetic data set with implanted motifs, with a similar approach to
what described in Chapter 3

Example 11 A time series sequence of length 10,000 is generated by a random walk
model given by the following formula

y(t) = y(t− 1) + λ (4.7)

48

where y(1) = 0, and λ is drawn from a random distribution with mean µ = 0 and
standard deviation σ = 2. The time series data is discretized using SAX [69] with
input parameters segment size and alphabet size set to 10 and 5, respectively. The
result is a sequence of size 1000 with symbols in the set {1, 2, ..., 5}. The resulting
dataset is used as the training dataset for learning the parameters of the Markov
chain model and will be referred to as Strain. The test dataset Stest is generated by

inserting (implanting) two subsequences of lengths 3 and 6 at random locations in
the original sequence Strain. Let “535” and “132221” be the implanted subsequences
that are inserted at (different) random locations into Strain with frequencies 4 and
3, respectively.

4.4.1 Step 1: Learning the Parameters of the Markov Chain Model

In the first step of our Core Pattern Set algorithm, we use the training data to learn
the parameters of a Markov Chain model of order 1. We use the backoff version
of the Witten-Bell smoothing technique presented in Section 3.2.4 to smooth the 1-
gram and bigram probabilities. The probability values for 1-gram and bigrams and

the backoff values for 1-grams generated by the Wittern-Bell technique are shown
in the table 4.1.

4.4.2 Step 2: Extracting Subsequences

In the second step of the algorithm, we extract all the unique subsequences in the
length range between 3 and 15 in the test sequence (Stest) and compute the observed
frequencies of these subsequences. This step is straightforward.

4.4.3 Step 3: Computing P-values and Identifying the Significant

Patterns

In the third step of the algorithm, we compute the p-value for each subsequence using

the techniques presented in Section 4.1. Using a significance level α = 0.01, a total
number of m = 95 patterns are found to have a p-value less than α. Following that,
we apply the Holm-Benforreni method to correct for multiple hypothesis testing.
The first few corrections using the Holm-Benforreni method are shown in the table
4.2.

After correction for multiple hypotheses testing, only 45 (out of 95) patterns are

selected by our algorithm for which the null hypothesis is rejected.

4.4.4 Step 4: Greedy Search Algorithm for Finding a Core Pattern

Set

In the next step of the algorithm, we use a greedy search strategy, as outlined in
the Pseudocode 4.2, to find a Core Pattern Set from the set of significant patterns.
In the beginning of the greedy search algorithm, Psol is empty (i.e. Psol = ∅), and
the set Prest consists of the all the 45 significant patterns.

After the pair-wise explain relation testing between patterns, the pattern which
explains the highest number of remaining patterns is selected as the best pattern
in this step of the search (q∗). In our running example, the pattern “44334334′′ is
selected as the best pattern by explaining 17 pattern among the remaining significant

49

Table 4.1: Probabilities and backoff values generated by the Witten-Bell Smoothing
technique in the log scale

Probability (log) n-gram Backoff (log)

1-grams:

-0.7675011 1 -1.664769
-0.530273 2 -1.551823
-0.7526095 3 -1.366187
-0.8507411 4 -1.351233
-0.6685757 5 -1.66921
-2.702 <BOS>
-99 <EOS> -0.196177

2-grams:

-0.03938902 1 1
-1.124103 1 2
-1.361728 2 1
-0.05571544 2 2
-1.174641 2 3
-0.9542425 3 2
-0.1029842 3 3
-1.079181 3 4
-0.9822713 4 3
-0.08648048 4 4
-1.255273 4 5
-1.435367 5 4
-0.02458927 5 5

patterns and including itself. The conditional p-values for some of the significant

patterns with the constraint set CE,Stest , where E = {“44334334′′} are shown in
the table 4.3. In table 4.3, the first column represents the pattern pi for which the
explain relation E ≻ pi is investigated, the second column represents the conditional
p-value in the presence of the constraint set CE,Stest , and the last column represents
the result of the explain relation, taking the values of ‘Y ’ (explains) or ‘N ’ (does
not explain).

At the end of the step 1 of the greedy search algorithm, pattern “44334334”
is selected as the best pattern (q∗) and will be added to the set Psol, and the 17
patterns which are explained by this pattern are removed from the Prest, leaving
only 28 (= 45− 17) patterns in the set Prest.

The second step of the greedy search algorithm starts with Psol = {“44334334′′}
and updated set Prest which has 28 patterns. In this step, the pattern “535′′ is se-

lected as the best pattern by explaining 14 patterns among the remaining significant
patterns in Prest. The conditional p-values for some of the significant patterns with
the constraint set CE,Stest , where E = {“44334334′′, “535′′} are shown in the table
4.4.

At the end of the step 2 of the greedy search algorithm, pattern “535” is selected
as the best pattern (q∗) and will be added to the set Psol, and the 14 patterns which
are explained by this pattern are removed from the Prest, leaving only 14 (= 28−14)

50

Table 4.2: Example run of the Holm-Benforreni procedure
Rank(j) and Pattern P-Value m+ 1− j Adjusted P-value Reject H0?

1: “555535” 0.00000201 95 0.000190 Y

2: “535555” 0.00000201 94 0.000190 Y

3: “555355” 0.00000210 93 0.000195 Y

4: 92

patterns in the set Prest.
The third step of the greedy search algorithm starts with Psol = {“44334334′′,

“535′′} and updated set Prest which has 14 patterns. In this step, the pattern
“1322212′′ is selected as the best pattern by explaining all the 14 remaining patterns.
The conditional p-values for the significant patterns with the constraint set CE,Stest ,
where E = {“44334334′′, “535′, “1322212′′′} are shown in the table 4.5.

At the end of the step 3 of the greedy search algorithm, pattern “1322212” is
selected as the best pattern (q∗) and will be added to the set Psol. The algorithm
stops as the set Prest will be empty at the end of this step, and the set Psol consists
of the patterns “44334334”, “535”, and “1322212”, which explain all the significant
patterns in the test sequence Stest.

The set of significant patterns and the final Core Pattern Set are shown in the

table 4.6. The set of all significant patterns consists of 45 patterns while the core
pattern set contains only 3 patterns. The set of significant patterns can be divided
into three groups: 1) The groups of patterns that has the pattern “132221” as a sub-
string, the group of patterns that contain the pattern “535”, and another group that
included the pattern “44334334” as a substring. The first two substrings are exactly
the patterns implanted in the test data during data generation. Our investigation
shows that the pattern “44334334” stands as a significant pattern in the original

random walk data sequence (Strain) even without implanting any subsequence and
is a false positive. It is worth mentioning that the statistically significant patterns
are unlikely (less than 0.01 in our experiment) to have occurred solely by chance.
However, it is not impossible that some patterns pass the significance tests on the
random walk data that, by construction, should not have significant patterns. Ex-
cluding the pattern “44334334”, the patterns returned by the approximate core

pattern set algorithm closely match the implanted motifs.

51

Table 4.3: Conditional p-value for significant patterns w.r.t E = {“44334334′′}
Pattern pi p-value (E ≻ {pi})?
“444444444334334” 0.0831 (> α = 0.01) Y

“444444443343344” 0.0832 (> α = 0.01) Y

“44444444334334” 0.1186 (> α = 0.01) Y

“44444443343344” 0.1187 (> α = 0.01) Y

“4444444334334” 0.1693 (> α = 0.01) Y

“4444443343344” 0.1694 (> α = 0.01) Y

“444334334” 0.7013 (> α = 0.01) Y

“443343344” 0.7017 (> α = 0.01) Y

“43343344” 0.7114 (> α = 0.01) Y

...

...

“5355555” 1.611E-6 (< α = 0.01) N

“5555535” 1.611E-6 (< α = 0.01) N

“5535555” 1.681E-6 (< α = 0.01) N

“55535” 2.669E-6 (< α = 0.01) N

“55355” 2.784E-6 (< α = 0.01) N

“53555” 2.669E-6 (< α = 0.01) N

“5355” 3.434E-6 (< α = 0.01) N

“5535” 3.434E-6 (< α = 0.01) N

“535” 4.414E-6 (< α = 0.01) N

...

...

“1113222122” 7.2819E-11 (< α = 0.01) N

“113222122” 9.9217E-11 (< α = 0.01) N

“111322212” 3.0677E-7 (< α = 0.01) N

“13222122” 1.3517E-10 (< α = 0.01) N

“132221222” 3.2844E-7 (< α = 0.01) N

“11132221” 3.2251E-7 (< α = 0.01) N

“1132221” 4.3847E-7 (< α = 0.01) N

“132221” 5.9602E-7 (< α = 0.01) N

52

Table 4.4: Conditional p-value for significant patterns w.r.t E = {“44334334′′,
“535′′}

Pattern pi p-value (E ≻ {pi})?
“5355555” 0.5356 (> α = 0.01) Y

“5555535” 0.5322 (> α = 0.01) Y

“5535555” 0.5334 (> α = 0.01) Y

“555355” 0.6218 (> α = 0.01) Y

“55355” 0.7278 (> α = 0.01) Y

“53555” 0.7309 (> α = 0.01) Y

“5355” 0.8547 (> α = 0.01) Y

“5535” 0.8533 (> α = 0.01) Y

...

...

“1113222122” 4.05E-11 (< α = 0.01) N

“113222122” 5.542E-11 (< α = 0.01) N

“111322212” 6.136E-11 (< α = 0.01) N

“13222122” 7.585E-11 (< α = 0.01) N

“132221222” 2.224E-7 (< α = 0.01) N

“11132221” 1.885E-7 (< α = 0.01) N

“1132221” 2.572E-7 (< α = 0.01) N

“132221” 3.509E-7 (< α = 0.01) N

Table 4.5: Conditional p-value for significant patterns w.r.t E = {“44334334′′,
“535′′, “1322212′′}

Pattern pi p-value (E ≻ {pi})?
“1113222122” 0.0392 (> α = 0.01) Y

“113222122” 0.0705 (> α = 0.01) Y

“111322212” 0.0780 (> α = 0.01) Y

“13222122” 0.6218 (> α = 0.01) Y

“11322212” 0.1255 (> α = 0.01) Y

“11132221222” 0.2053 (> α = 0.01) Y

“11113222122” 0.2154 (> α = 0.01) Y

“1132221222” 0.3452 (> α = 0.01) Y

“1111322212” 0.3825 (> α = 0.01) Y

“132221222” 0.7924 (> α = 0.01) Y

“11132221” 0.0825 (> α = 0.01) Y

“1132221” 0.1313 (> α = 0.01) Y

“132221” 1.000 (> α = 0.01) Y

53

Table 4.6: The set of significant patterns (after correction for multiple testing) and
the Core Pattern Set returned by our algorithm

All Significant Patterns

“1113222122”,“113222122”,“111322212”,“13222122”,
“11322212”,“1322212”,“11132221222”,“11113222122”,
“1132221222”,“1111322212”,“132221222”,“11132221”,
“1132221”,“ 132221”,
“5355555”,“5555535”,“5535555”,“5555355”,“5553555”,
“535555”,“555535”,“553555”,“555355”,“53555”,“55535”,
“55355”,“5355”,“5535”,“535”,
“444444444334334”,“444444443343344”,
“44444444334334”,“44444443343344”,
“4444444334334”,“4444443343344”,
“444444334334”,“444443343344”,“44444334334,
“44443343344”,“4444334334”,“4443343344”,
“444334334”,“443343344”, “44334334”,“43343344”

Core Pattern Set

“44334334”,“535”,“1322212”

54

Chapter 5

Model Extension for

Approximate Pattern Matching

In many applications, ‘surprising’ patterns occur in data sequences with variations.
Well-known examples are DNA binding sites of transcription factors (motifs), which
vary both in length and sequences of nucleotides (building blocks of nucleic acids).
In this section, we extend our proposed model and framework in order to allow
some degree of variation in pattern specification. Thus, our proposed model can
be extended to capture a wider class of applications, including some interesting
problems in Bioinformatics.

5.1 Extended Motif Model

As it was discussed, the exact nucleotide sequence that is recognized by the same
transcription factor varies at different binding sites. A transcription factor can
bind to a number of partially similar looking sequences. Some positions in the

binding sequence are highly conserved, which means that base substitutions in these
positions can reduce or completely eliminate the binding of the transcription factor.
Whereas some other positions in the binding sequence are relatively less conserved
and can be mutated without affecting the binding capability. This variation is useful
as it allows different degrees of interaction with the transcription factors at different
DNA binding sites, which in turn results in different expression levels of various

genes regulated by the same transcription factor.
Three types of models have been already used for motif representation:

• Mismatch String: is a tuple < cs, d >, where cs represents a string from

the alphabet
∑

= {A,C,G, T}, and d represents the maximum number of
mismatches allowed for a binding site to be considered a hit. (match).

Example 12 For a mismatch string < “ACGTGAACG′′, 2 >, the strings
“TCGTGAACG”, and “AAGTGAACT” are hits, however the strings “CATT
GAACG” and “ATGTGTTCG” are not considered as hits for this motif.

• Position Weight Matrix (PWM): The main idea behind the Position
Weight Matrix model is that it captures the base preferences at each position

55

of the binding sequence of the transcription factor. More formally, a PWM is
a tuple < M, t >, where M is a matrix of 4 × n where n is the length of the
motif, and each column j of the matrix represents the probability distribution
of the nucleotide vector < A,C,G, T > at position j of the binding sequences.
A candidate string of length n is considered to be a hit of the multiplications
of probabilities in respective rows are greater than the threshold t. Often the

elements in PWMs are calculated as log likelihoods. That is, the elements of
the PWM are transformed using a background probability distribution b so
that:

Mk,j = ln(
Mk,j

bk
) (5.1)

The simplest background model assumes that each letter appears equally fre-
quently in the dataset. That is, bk = 1/|∑ |, where |∑ | is the number of
symbols in the alphabet (e.g.

∑

= {A,C,G, T}).

Example 13 Assume that the set of binding sites for a transcription factor
are shown in Table 5.1

Table 5.1: List of binding sites for a transcription factor
GAGGTAAAC
TCCGTAAGT
CAGGTTGGA
ACAGTCAGT
TAGGTCATT
TAGGTACTG
ATGGTAACT
CAGGTATAC
TGTGTGAGT
AAGGTAAGT

The PWM can be derived by computing the frequency matrix and normalizing
each column of the matrix, as follows:

M =

A
C
G
T









0.3 0.6 0.1 0.0 0.0 0.6 0.7 0.2 0.1
0.2 0.2 0.1 0.0 0.0 0.2 0.1 0.1 0.2
0.1 0.1 0.7 1.0 0.0 0.1 0.1 0.5 0.1
0.4 0.1 0.1 0.0 1.0 0.1 0.1 0.2 0.6









(5.2)

Given the Position Weight Matrix M , the probability of the sequence S =
“GAGGTAAAC ′′ can be calculated as follows:

P (S|M) = 0.1× 0.6× 0.7× 0.1× 1.0× 0.6× 0.7× 0.2× 0.2 = 0.0007 (5.3)

The calculated probability should be compared against the motif threshold to
determine if the given string is a hit for the motif or not.

56

• Consensus: is a string ds of length n where each position is a non-empty
subset of {A,C,G, T}. These subsets correspond to the IUPAC (International
Union of Pure and Applied Chemistry) symbols for DNA sequences [2] (e.g.
W stands for {A, T}). A candidate string s is said to be a hit (match) against
ds if every position of s is a subset of respective position in ds. Otherwise, it
is a non-hit (non-match).

Example 14 Based on the IUPAC table [2], the motif AYNBR corresponds
to {A}{C, T} {A,C,G, T}{C,G, T}{A,G}.

Among the motif models that have been used for motif representation, we chose
to use the mismatch string model for representing generalized surprising patterns.
The reason is that the mismatch string model is more similar to the simple string
model used in our basic model, and requires less changes for extension. We represent
the model by Qs,d, where s represents a string of symbols and d is the maximum
number of allowed mismatches, w.r.t the string s. In other words, Qs,d represents the

set of all subsequences that deviate from s by at most d mismatches. All instances of
the mismatch pattern Qs,d are assumed to be of the same length |s|. The definitions
presented in Chapter 4 can be adapted to mismatch patterns as well when taking
into account that the instances of a mismatch pattern Qs,d are allowed to have up
to d mismatches w.r.t. string s.

The proposed mismatch model poses several challenges, particularly in the way

the p-value of a mismatch pattern is calculated in the presence of a constraint set.
We discuss the p-value calculation in two different cases:

1. Calculating the p-value of a mismatch pattern in a sequence without a con-
straint set

2. Calculating the p-value in the presence of a constraint set

In the first case, we are interested in calculating Prob(freq(Qs,d) ≥ t), where
t is the observed frequency of the mismatch pattern Qs,d. The observed frequency

t should be computed considering the maximum number of allowed mismatches d
for pattern Q. In Section 4.1, we proposed a method for calculating the exact p-
value of a pattern without a mismatch. Calculating the exact p-values for mismatch
patterns is too time-consuming and impractical in applications with a large number
of candidate patterns. The practical alternatives to exact p-value calculation are
approximation methods, which are widely used in the literature [92,98]. In practice,

p-values of mismatch patterns are estimated using a Poisson distribution, a Normal
distribution, or a Compound-Poisson distribution [16, 91].

5.2 Computing P-values for Approximate Patterns

In this paper, we choose to approximate the p-values of mismatch patterns using
Poisson distribution because of its fast computation time and fairly accurate results

[16, 91]. In this approach, the frequencies of the patterns Q are assumed to be
random variables following a Poisson distribution with parameter λ (N(Q) ∼ ρ(λ)
). The parameter λ is equal to nµ, where n is the length of the input sequence and

57

µ is the probability of occurrence of the pattern at any location. For a mismatch
pattern Qs,d, the probability of the occurrence of the pattern at any location is the
sum of probabilities of the occurrences of all the strings s

′
of length |s| which have

at most d mismatches w.r.t. string s. More formally,

µ = Prob(Qs,d|θm) =
∑

s
′
∈Σ|s|,dis(s

′
,s)≤d

Prob(s
′ |Θm) (5.4)

where Σ is the alphabet (set of symbols), dist is the edit distance between two
strings, and θm is the background distribution of the data sequence. The p-value of
the mismatch pattern Qs,d with the observed frequency t in a data sequence can be
approximated using the following formula [16]:

Prob(ρ(λ) ≥ t) = 1− e−λ
t−1
∑

i=0

λi

i!
(5.5)

5.3 Implementing Explain Relations Using Poisson Bi-

nomial Distribution

In the presence of a constraint set, approximating the p-value of a pattern becomes
more complicated because the probability of occurrence of a pattern varies at differ-
ent positions of a given data sequence. The counts of patterns should be modelled
using a distribution which captures trials with different outcomes that can occur
with different probabilities. We use the Poission binomial distribution to model the

count of a mismatch pattern.
The Poisson binomial distribution is the distribution of the sum of independent

and non-identical random indicators [54]. Each indicator follows a Bernoulli distri-
bution with individual success probability. When all success probabilities are equal,
the Poisson binomial distribution is a binomial distribution. Let Ij , j = 1, ..., n, be
a series of n random indicators, each following Bernoulli distribution:

Ij ∼ Benourlli(pj), j = 1, ..., n (5.6)

where pj = Pr(Ij = 1) is the success probability for indicator Ij . We will refer
to the sequence of probabilities pj as ‘point probabilities’. The Poisson binomial

random variable N is defined by N =
∑n

j=1 Ij and can take any value in {0, 1, ..., n}.
Therefore, the expected value of N is equal to

E(N) =
n
∑

j=1

pj (5.7)

For a given mismatch pattern Qs,d and a data sequence S, if the probabilities
pj , 1 ≤ j ≤ |S| are known, the Poisson binomial distribution model of counts pro-
vides a means to calculate the probability mass function (pmf) ξk = Prob(N =
k), k = 1, 2, ..., |S| of the pattern count recursively. The recursion is based on two
parameters, the count k and the length of the data sequence. We first assume

that the point probabilities pj are known and present a method for calculating the
probability mass function based on the formula introduced by Hong et al. [54].

58

Let Nj = Σj
m=1Im represent the sum of random indicators Im up to the index

j of the data sequence, where the random indicator Im is defined as in equation
5.6. Also, let ξk,j = Prob(Nj = k). In other words, ξk,j represents the probability
that the sum of indicators Im up to the index j of the data sequence is equal to k.
When calculated recursively, the function ξk,j gives us the desired probability mass

function given that ξk = Σ
|S|
j=1ξk,j . It can be verified that the function ξk,j can be

defined using the following recursive formula

ξk,j = (1− pj)ξk,j−1 + pjξk−1,j−1, 0 ≤ j ≤ |S|, 0 ≤ k ≤ t (5.8)

where t is equal to the count for which the probability mass function is desired.
The boundary conditions for formula 5.8 are defined as follows:

ξ−1,j = ξj+1,j = 0, j = 0, 1, ..., |S| − 1

ξ0,0 = 1
(5.9)

Using the probability mass function ξk, which can be calculated efficiently using
dynamic programming, it is easy to calculate the p-value of a mismatch pattern Qs,d

with observed frequency t, as follows:

p-value(Qs,d, t|CE,S) = Prob(N(Qs,d) ≥ t|CE,S) = 1−
t−1
∑

k=0

ξk (5.10)

In the presence of a constraint set CE,S , the point probabilities should be cal-
culated based on the assumption that some positions of the data sequence S are
constrained with instances of patterns specified in the set E. Let IE represent the
union of all indices in the data sequence S that are occupied by any instance of
a pattern in E. In order to estimate the probability of occurrence of a mismatch
pattern Qs,d at an arbitrary index i of the data sequence S, we have to consider
the effect of constraints for indices IE . Let Lmin(Q, i|CE,S) represent the minimum

distance between an index i in sequence S and all indices in IE , either to the left or
right of the index i. More formally, Lmin(Q, i|CE,S) is defined as follows:

min

(

min
k∈IE

{|i− k|}, min
k∈IE

{|i+ |s| − 1− k|}
)

(5.11)

in which i+ |s|−1 represents the index of the last symbol of a pattern instance Qs,d,
if it occurs at index i. Also, let Prob(Qs,d|θm) represent the probability of occur-
rence of a mismatch pattern Q in a sequence without any constraint, as specified in
equation 5.4. We refer to Prob(Qs,d|θm) as a constraint-free probability.

Using the Fundamental theorem of Markov chains [81], it can be verified that
as the distance Lmin(Q, i|CE,S) is increased, the probability pi (the point proba-
bility of pattern Qs,d at index i) will converge to the constraint-free probability
Prob(Qs,d|θm). We use this property of a stationary Markov chain model to limit
the number of different point probabilities that should be calculated for a mismatch
pattern in a constrained data sequence S. The key idea is that we calculate a spe-

cific point probability for those indices which are very close to a constraint in the
data sequence. In other cases, we approximate the point probability of the pattern
with its constraint-free probability. More specifically, for a given mismatch pat-
tern Qs,d, and for any index i, we calculate Lmin(Q, i|CE,S) and compare it with

59

a distance threshold dθ. If Lmin(Q, i|CE,S) < dθ, we calculate the point probability
for index i based on the closest constraint to index i and a similar method that is
presented in formula 4.4. Otherwise, we approximate the point probability pi with
the constraint-free probability Prob(Qs,d|θm). In this way, the point probabilities
for a mismatch pattern are equal to Prob(Qs,d|θm) except at indices which are at
distance less that θm from a constraint index in IE .

60

Chapter 6

Complexity Analysis

6.1 Time Complexity of the Proposed Algorithms

We analyze the complexity of our algorithms separately for the simple string model
and the mismatch string model. In the following we make the assumption that we
are interested in finding surprising patterns in a test sequence S. The length of the
desired patterns are assumed to vary in the range [ℓ1, ℓ2].

6.1.1 Simple String Model

The analysis is done for each step of the algorithm:

• Statistical Test Analysis: This step involves computing p-values for all
the extracted subsequences from the test sequence. The number of extracted

patterns using the sliding windows in a sequence S is of complexity O((ℓ2 −
ℓ1)|S|), where |S| denotes the length of the test sequence S. For a pattern qi
of length ki and the observed frequency ti, the exact p-value computation is
of time complexity O(kiti|S|) [91]. Therefore, the worst-case time complexity
of exact p-value computation for extracted patterns is equal to:

O(|S|
∑

i∈W

kiti) (6.1)

where W is the set of all the extracted subsequences (patterns) from the
sequence S. The number of extracted patterns was shown to be of order
O((ℓ2 − ℓ1)|S|). It is reasonable to assume that the length of the patterns are
constant with respect to the length of the sequence. Therefore, the specified
time complexity can be simplified as O(|S|2 ×∑

i∈W ti).

In the case that an approximation technique is used for computing the p-values

using the Poisson distribution, as will be discussed in more details in Section
C.2.2, the p-value computation for a pattern qi with observed frequency ti
can be reduced to O(ti). Therefore, the worst-case time complexity of p-value
computation using the Poisson distribution for all the extracted patterns is
equal to:

O(|S| ×
∑

i∈W

ti) (6.2)

61

where W is the set of all the extracted subsequences (patterns) from the test
sequence S.

• Correction for Multiple Testing: The complexity of this step depends on
the method used for correction, but in the case that the correction method

involves sorting the computed p-values (e.g. Holm-Benferroni, Benjamini-
Hochberg procedure), it can be easily verified that the worst-case time com-
plexity of this step is equal to

O(C × log(C)) (6.3)

where C represents the number of patterns whose p-value is less than the
significance level α.

• Core Pattern Set Construction: The time complexity of the core pattern
set construction depends on outcomes of the greedy search algorithm in differ-
ent steps; e.g. how many significant patterns are explained in each step, and
how many of the pattern are passed to the next step. Therefore, we just give
the worst-case time complexity by assuming that the number of core patterns
returned by the algorithm in the end is equal to R. In the first step of the

greedy search algorithm, the explain relation should be tested for all patterns
against each other. Assuming that the number of significant patterns (after
correction for multiple testing) is equal to Nsig, the number of explain relation

tests required in the first step of the greedy search is equal to
Nsig(Nsig−1)

2 .
The core part of an explain relation is a p-value computation, which is imple-
mented based on the exact computation method when the underlying model is
a simple string. Therefore, the time complexity of the first step of the search
algorithm is equal to

O(N2
sig × |S|2 ×

∑

j∈Nsig

tj) (6.4)

Based on the assumption that the number of core patterns returned by the
algorithm is equal to R, the greedy search is repeated R times even though
the number of the input significant patterns to each step of the greedy search
is decreased as the search continues (e.g. the number of patterns in the second
step of the search algorithm is less than Nsig). Therefore, the worst-case time

complexity of the core patter set construction can be specified as follows:

O(N2
sig × |S|2 × (

∑

j∈Nsig

tj)×R) (6.5)

Based on the equations 6.1, 6.2, 6.3, and 6.5, it can be verified that the overall
time complexity of our proposed algorithm based on the simple string model and

using the exact p-values is equal to

O(|S|2 ×
∑

i∈W

ti + Clog(C) +N2
sig × |S|2 × (

∑

j∈Nsig

tj)×R) (6.6)

62

and in the case of the approximated p-values using the Poisson distribution, it is
equal to

O(|S| ×
∑

i∈W

ti + Clog(C) +N2
sig × |S|2 × (

∑

j∈Nsig

tj)×R) (6.7)

6.1.2 Mismatch String Model

In case of the mismatch string model, the time complexity analysis is similar to the
simple string model, except in the Statistical Test Analysis and the Core Pattern
Set Construction steps. Again, we go through the analysis step by step:

• Statistical Test Analysis: For a mismatch pattern q with maximum number

of mismatches di, length ki, and the observed frequency ti, the worst-case time
complexity of computing the probability of occurrence is equal to

O(

(

ki
di

)

|Λ|di × |ki|) (6.8)

where |Λ| represents the size of the alphabet. Assuming an observed frequency

ti for pattern qi, and using the Poisson approximation, the complexity of the
p-value computation for all the extracted patterns can be specified as follows:

O(|S| ×
∑

i∈W

(ti ×
(

ki
di

)

|Λ|di × |ki|)) (6.9)

As it was discussed, it is reasonable to assume that the length of the patterns
are constant with respect to the length of the sequence. Therefore, the specified

time complexity can be simplified as follows:

O(|S| ×
∑

i∈W

(ti ×
(

ki
di

)

|Λ|di)) (6.10)

• Correction for Multiple Testing: The complexity of this step is similar to
the case of a simple string model:

O(Clog(C)) (6.11)

where C represents the number of patterns whose p-value is less than the
significance level α.

• Core Pattern Set Construction: As it was discussed in Section 5.3, the
explain relation in the case of the mismatch string model is computed using
the Poisson Binomial distribution. Based on the equations 5.8 and 5.10,

computing the p-value of a mismatch pattern qi of length ki with observed
frequency ti and the maximum number of mismatches di in the presence of a
constraint set involves filling the cells of a matrix of dimensions |S| × ti using
dynamic programming, in addition to the point probabilities which should

63

be computed for each index in the data sequence S. Therefore, the time
complexity of probability computation for each pattern pi is equal to

O(|S|×|ti|+ |S|×(

(

ki
di

)

|Λ|di ×|ki|)) = O(|S|(|ti|+(

(

ki
di

)

|Λ|di ×|ki|))) (6.12)

Given that the explain relation should be tested for each pattern against any
other pattern in the first step of the greedy search (for simplicity and for the
worst-case complexity analysis we ignore the explain relations that can be
discarded based on the Theorem 18), the time complexity of the first step of
the search algorithm is equal to

O(Nsig × |S|
∑

j∈Nsig

(|tj |+ (

(

kj
dj

)

|Λ|dj × |kj |))) (6.13)

where Nsig is the number of significant patterns passed to the greedy search

algorithm. Based on the assumption that the number of core patterns re-
turned by the algorithm is equal to R, the greedy search is repeated R times.
Therefore, the worst-case time complexity of the core pattern set construction
can be specified as follows:

O(Nsig × |S|
∑

j∈Nsig

(|tj |+ (

(

kj
dj

)

|Λ|dj × |kj |))×R) (6.14)

Using equations 6.10, 6.11, and 6.14, the overall worst-case time complexity of
our proposed framework based on the mismatch string model can be specified
as follows:

O(|S| ×
∑

i

(ti ×
(

ki
di

)

|Λ|di) + (6.15)

Clog(C) +

Nsig × |S|
∑

j∈Nsig

(|tj |+ (

(

kj
dj

)

|Λ|dj × |kj |))×R)

(6.16)

64

Chapter 7

Experimental Evaluation

To evaluate the performance of our method, we ran experiments on both real and
synthetic data. Our synthetic datasets are constructed by implanting (i.e. insert-
ing) motifs of different lengths in background sequences that are generated using a
Markov model of order 1. In order to control the amount of deviations of motifs
from the background distribution, a transition probability matrix is used to describe
the background distribution and another transition probability matrix that differs

from the background, is used to model an anomaly.
For real data, we use three publicly-available datasets; the first one is a log

of Unix commands executed by a group of users [94]. This dataset is used for
detecting masqueraders (i.e. people who use somebody else’s computer account
without authorization). A training and a test dataset is provided for each user U
[94]. The training data contains the commands executed by the user U . The test

data consists of commands executed by user U seeded with masquerading users
(i.e. with commands from other users). The commands executed by each user
represent the usage pattern of that user while commands seeded from other users
represent different usage patterns, and can be considered as anomalies. The second
dataset is an ECG recording [45], showing the electrical impulses of a heart during
electrocardiogram tests, and we want to detect anomalies in the form of arrhythmias.
The third dataset is a motif discovery benchmark that is widely used for evaluating

motif finding algorithms [109], and we use it to evaluate our extended model for
approximate pattern matching.

For the experiments with the Synthetic data, the ECG data, and the Masquerad-
ing users data, we run our pattern discovery method based on the simple model (with
exact matching definition of patterns). In all the experiments, the p-values are cal-
culated using the Poisson approximation technique presented in formula C.5, except

in the experiments on the synthetic datasets, in which exact p-values are calculated.
In these experiments, the Matthews Correlation Coefficient (MCC) [76] is used as a
measure of matching between the true positions of anomalies in the data with those
positions predicted by our test methods. This measurement has been widely used
for measuring two-class prediction tasks [9]. The MCC metric is defined as:

MCC =
TP × TN − FP × FN

√

(TP + FP)(FP + FN)(TN + FP)(TN + FN)
(7.1)

In order to calculate the MCC, the predictions are converted to a binary vector

65

in which every position that overlaps with a detected anomaly is marked as 1 and
every other position is marked as 0.

For experiments on the Synthetic data, the exact p-values are calculated, based
on the techniques presented in Section 4.1. In all other experiments, the p-values
are approximated using the Poisson distribution, as it is presented in more details
in Section C.2.1 (Appendix C).

7.1 Evaluation Partners

In order to choose proper comparison partners for our method in finding significant
patterns of unknown length in a sequence, two main criteria should be considered.
First, a comparison method should be able to detect surprising subsequences (such

as local anomalies) of different lengths in a long sequence. Second, a comparison
method should be general enough to detect surprising patterns based on their distri-
bution, instead of relying on domain-specific properties of the surprising patterns.

We compared the performance of our method (based on the simple exact match-
ing model) with the five best methods from a comparative evaluation study per-
formed by Chandola et al. [20]. Our competitors include the KNN, t-STIDE
(STIDE), FSA, FSAz, and HMM, which are summarized in Table 7.1. We chose

these methods as our evaluation partners because these methods meet the above-
mentioned comparison criteria and have been used in a similar comparative study of
anomaly detection techniques for sequence data (the implementations of the com-
petitors were provided as part of this comparative study by Chandola et al. [20]).

All of these methods require a length parameter, which is the size of the window
used for scanning a test sequence and estimating the probability of the subsequence

within that window. The KNN method requires an additional parameter K for the
Kth nearest neighbour. Also, all of these methods generate a probability vector; the
vector represents for each position i the probability of occurrence of a subsequence
of specific length starting at index i of the test sequence. In order to derive a binary
vector representing the positions of anomalies, an additional probability threshold
parameter is needed. For a given threshold α, the positions in the probability
vector with values higher than α are labelled as 0 (i.e. normal) and other positions

are labelled as 1 (i.e. anomalies).

Table 7.1: Summary of Comparison Partners

Method Principle Details

KNN [20] Similarity-based
Anomaly Detection,
which is based on com-
puting the distance to
closest ‘matches’ in the
training data.

A model is trained using normal
sequences in a training phase. In
the test phase, each test sequence
is compared against the trained
model and the closest ‘distance‘ (or
Kth nearest distance, in general)
with the model is considered as the
anomaly score of the test sequence.
The likelihood score is the inverse of
the anomaly score.

Cont’...

66

Table 7.1 –

Method Principle Details

t-STIDE [112] Window-based
Anomaly Detection,
which is based on
assigning a likelihood
score to each window
based on its expected
frequency observed in
the training data.

A normal profile is created from
a dataset of normal sequences by
extracting all windows of a fixed
length w. This normal profile cap-
tures the expected frequencies of
subsequences in the training data.
In the test phase, all subsequences
of length w are extracted from
each test sequence and a ‘likelihood
score’ is assigned to each window
based on its expected frequency in
the training data.

FSA [77] Markovian Anomaly
Detection, the proba-
bility of observing each
symbol a in the test
sequence is conditioned
on a limited number of
symbols preceding the
symbol a.

In training, subsequences of length
n+1 are extracted using sliding win-
dow, and a Finite State Automata
(FSA) is constructed in which ev-
ery node corresponds to a unique
subsequence of n symbols that form
the first n symbols of such n + 1
length subsequences. Local values
are stored in each node which de-
note the number of observed subse-
quences corresponding to this node
and also the transitions from the
current node to other nodes based
on the training data. During test,
the FSA is used to determine a like-
lihood score for every subsequence
q of length n + 1 which is ex-
tracted from a test sequence Stest.
This score is equal to the condi-
tional probability associated with
the transition from the state corre-
sponding to first n symbols of q to
the state corresponding to the last
n symbols of q. If there is no state
in the automaton corresponding to
the first n symbols, the subsequence
is ignored.

Cont’...

67

Table 7.1 –

Method Principle Details

FSAz [20] Markovian Anomaly
Detection

A variant of the FSA, in which if
there is no state corresponding to
the first n symbols of a subsequence
of length n + 1, a low score is as-
signed to that subsequence, instead
of ignoring it.

HMM [112] Hidden Markov Model-
based Anomaly De-
tection, in which the
anomalies are discov-
ered by deviations
from the normal state
transitions and emis-
sion probabilities of an
HMM

The training phase involves learn-
ing an HMM with hidden states,
from the normal sequences using the
Baum-Welch algorithm. During the
testing phase, subsequences of a spe-
cific length are extracted using a
sliding window technique, and the
likelihood score of each subsequnece
is computed using the forward algo-
rithm.

7.2 Experiments on the Synthetic Data

Our synthetic data is generated using a Markov model of order 1, where we first
generate a transition probability matrix that describes the background and an-
other transition probability matrix that differs from the background, modelling an
anomaly. The transition probability matrix has most of its transition probability

mass in the diagonal, describing the behaviour of a random walk process where with
high probability the walk stays in the same state and with small probability it moves
to a different state. To capture this intuition, we use the following conditions in gen-
erating the transition probabilities out of a state si: (1) P (si|si) >

∑

i6=j P (sj |si),
i.e. it is more likely to stay in the same sate rather than changing the state, and

(2)
P (sj |si)
P (sk|si)

= |j−i|
|k−i| , i.e. the chance of a move from a state si to any other state is

proportional to its distance from si, assuming that the states are ordered based on
their indices.

We ran several experiments, keeping the background distribution fixed and vary-
ing the distributions of the anomalies. The self-transition probability is defined as

P (si|si) =
1 + β(n− 1)

n

where n is the number of states of the Markov model (which is also the number
of symbols we use for generating sequences) and 0 ≤ β ≤ 1. We set β at 0.9 for
the background distribution and used the values 0.7, 0.5, 0.3 and 0.1 of β for the
distributions of the anomalies, resulting in increasing amount of deviation from the
background distribution. This gave us a range of anomaly models, each shaving some

probability mass from the diagonal and spreading it to the rest of the transition
matrix. For each experiment, we generated a sequence of a fixed length (set at
400) using the background distribution and implanted shorter sequences that were
generated by the anomaly models. In one experiment, referred to as ExpVarLen,

68

the implanted sequences in each test sequence varied in length from 4 to 10, whereas
the frequency and the number of unique subsequneces were set to the fixed value 4.
In another experiment, ExpFixLen, the implanted sequences in an individual test
sequence were of the same length. Separate experiments are performed for each
value of length in the range [4 : 10], where the frequency and number of unique
subsequences were set to 4, and the anomaly distributions were varying according

to different values of β. The main difference between these two experiments is that
in the experiment ExpVarLen the implanted motifs in a test sequence are of different
lengths. However, in the experiment ExpFixLen all motifs in a test sequence are
of the same length. Another key difference between these two experiments is that
in the experiment ExpVarLen the lengths of implanted patterns are unknown to all
methods; However. in the experiment ExpFixLen our competitors know the true

lengths of patterns while our method does not know (and not require) it.
We generated a sequence using our background process for training. For evalua-

tion, independent sequences with embedded anomalies as described above were used.
We generated 10 datasets under each setting and measured the average performance
of methods on these 10 datasets.

The values of the parameters for the comparison methods usually are not known
in a real setting and our method does not require these parameters. To compare with

methods that require such parameters, we explore a reasonable part of the parameter
space and report their ‘best’ and ‘average’ performances. To that end, we ran these
methods for all lengths in the range [4 : 10] in ExpVarLen. In ExpFixLen, we
set the window length parameter of our competitors to the true length of implanted
anomalies which is fixed in ExpFixLen. We also ran the KNN method for all values of
K in the range [1 : 10]. As a probability threshold, we considered all the distinct values

in the probability vector that is generated by a competitor, and used these threshold
values for reporting the ‘best‘ and the ‘average’ performance of our competitors.
We chose the threshold which results in the highest MCC value for reporting the
‘best’ performance of our competitors. The ‘average’ performance of competitors
are evaluated in two ways.

1. avg threshold: In this mode, we compute the average of MCCs on all the
threshold values which were explored.

2. heu threshold: In this mode, we use a heuristic to choose a ‘suitable’ thresh-
old among all the threshold values, and compute the MCC based on the esti-

mated threshold. In this heuristic, referred to as MaxGap, the probability val-
ues of a sequence are sorted in the ascending order and the differences between
consecutive values are calculated. The estimated threshold is the mean of two
consecutive probability values which results in the largest difference. The in-
tuition is that a suitable threshold should provide a larger gap between the
probability values corresponding to normal and anomalous positions compared
to those between two normal probability values or two anomalous probability

values.

In the ExpVarLen experiments, we also used another method for computing the
‘average’ performance of our competitors, in addition to the ‘average’ performance
measuring methods presented above. In this method, which we will refer to as the

69

avg len best threshold, the probability threshold value (and similarly the value
of K in the case of the KNN method) which results in the highest MCC for each
window length is selected, and the final MCC is averaged over all window lengths.
The purpose of this setting is to evaluate the sensitivity of our competitors solely on
the parameter length while the other parameters are selected in a way which results
in the highest MCC (for a particular window length). This method for computing

‘average’ performance is not applicable in the ExpFixLen experiments because the
value of the parameter length is known to each competitor.

The results of the ExpVarLen and ExpFixLen experiments are shown in Fig-
ures 7.1(a)/7.1(b) and 7.4(a)/7.4(b), respectively. All plots show the result on 4
different sequences with different anomaly models (decreasing values for β, corre-
sponding to decreasing deviations of the anomalies from the background model).

Figures 7.1(a) and 7.4(a) show the results when providing the comparison meth-
ods with the ‘best’ parameter settings (which would not be known in real settings),
and Figures 7.1(b) and 7.4(b) compare our results with the ‘average’ performance
of each comparison method in which the probability threshold values are computed
using the heu threshold heuristic (which represents a more realistic expected perfor-
mance). One can clearly see that our method outperforms all the other methods,
even when giving them the “unfair” advantage of providing the ‘best’ parameter

setting.
Comparing with the expected performance, our method dominates the compar-

ison methods to an even larger extent. Figures 7.2 and 7.5 compare our results
with the ‘average’ performance of each comparison method in which the probability
threshold values are computed using the avg threshold heuristic. Similar results can
be observed on these comparisons on domination of our method over the comparison

partners when another method is used for computing the average performance for
our competitors. Moreover, it shows that the heu threshold method delivers rela-
tively better results compared to those of the avg threshold heuristic in most of the
settings.

The results achieved by the CPS, when compared with the average performance
of other partners computed using the avg len best threshold method in the Figure
7.3, show that our method perform better than the average results of our competitors

when the best probability threshold (and the best of value of the parameter K in
the case of the KNN method) are used. This can be considered as a comparison
between our method and our competitors solely on the parameter length, in settings
in which other parameters except the value of the length are set to the ‘best’ possible
value for our competitors.

The results of the experiments also demonstrate that as the deviation between

the background model and anomaly models increases (i.e. as the β value decreases),
it becomes easier to detect anomalies, and as a result most of the methods perform
better for smaller values of β.

Given that in synthetic experiments 1 (ExpV arLen) and 2 (ExpFixLen) 10
datasets is generated for each settings of parameters, we measure the significance of
difference between the results of our proposed method (CPS) and our competitors
using paired-sample t-Test.

The results of paired-sample t-Tests between CPS and other competitors on
synthetic experiments 1 and 2 are shown in Tables 7.2 and 7.3, respectively. The

70

!"# !"$!"% !"&

!

!"#

!"'

!"$

!"(

!"%

!")

!"&

!"*

+,-

.-/

.-/0

-1234

566

788

9

6
+
+
:;
+
<
==
>
?@
AB
<
C
:+
<
>
DD
BE
B>
C
AF

(a) CPS vs. best performance of other methods.

!"# !"$!"% !"&

!

!"#

!"'

!"$

!"(

!"%

!")

!"&

!"*

+,-

.-/

.-/0

-1234

566

788

9

6
+
+
:;
+
<
==
>
?@
AB
<
C
:+
<
>
DD
BE
B>
C
AF

(b) CPS vs. average performance of other methods computed in the
heu threshold mode.

Figure 7.1: Performance comparison between methods in ExpVarLen, varying the β
of anomaly models.

71

!"# !"$!"% !"&

!

!"#

!"'

!"$

!"(

!"%

!")

!"&

!"*

+,-

.-/

.-/0

-1234

566

788

9

6
+
+
:;
+
<
==
>
?
@A
<
B
:+
<
>
CC
A?
A>
B
@D

Figure 7.2: Performance comparison between methods in ExpVarLen, varying the
β of anomaly models. CPS vs. performance of other methods computed in the
avg threshold mode (i.e. MCC averaged over different window lengths and different
probability threshold values and also the K parameter for the KNN method).

first column in each table shows the pairs of methods on which the test is performed.
We consider the ‘best’ and ‘average’ performance of each competitor separately.
The second column in each table represents the p-value, that is the probability that
the null hypothesis is rejected by chance. At a significance level α = 0.01, the

null hypotheses are rejected for all the paired t-Tests, in which the p-values range
between 3.6136e−21 and 0.001, and are generally much smaller than the significance
level 0.01. The weakest results belong to the paired-sample t-Test between CPS
and KNNbest in both of the synthetic experiments, whereas the strongest results
belong to the comparison of our method with KNNavg and HMMavg in the synthetic
experiments 1 and 2, respectively.

7.3 Experiments on the ECG Dataset

Anomalies in ECG data can be observed within individual heartbeats or in a se-
quence of heartbeats. If abnormalities persist over consecutive heartbeats, an ar-
rhythmia occurs. Examples of heartbeat types include the Normal(N), Atrial pre-
mature (A), Premature Venctricular contraction(V) and missed (M) beats. Atrial

bigeminy(AB) and Ventricular trigeminy (T) are examples of arrhythmias. For
our experiments, we used the MIT-BIH Arrhythmia dataset [80] which contains 48
half-hour excerpts of ECG recordings, obtained from 47 subjects.

We randomly selected 4 patient records, and for each record, we used part of
the data that does not include any arrhythmia for training. The test data consists

72

!"# !"$!"% !"&

!

!"#

!"'

!"$

!"(

!"%

!")

!"&

!"*

!"#

$#%

$#%&

#'()*

+,,

-..

+

,
-
-
./
-
0
11
2
34
56
0
7
.-
0
2
88
69
62
7
5:

Figure 7.3: Performance comparison between methods in ExpVarLen, varying the
β of anomaly models. CPS vs. performance of other methods computed in the
avg len best threshold mode (i.e. MCC averaged over different window lengths
while the best probability threshold values and the best K for the KNN method are
selected for each length.)

73

!"# !"$!"% !"&

!

!"#

!"'

!"$

!"(

!"%

!")

!"&

!"*

+,-

.-/

.-/0

-1234

566

788

9

6
+
+
:;
+
<
==
>
?@
AB
<
C
:+
<
>
DD
BE
B>
C
AF

(a) CPS vs. best performance of other methods.

!"# !"$!"% !"&

!

!"#

!"'

!"$

!"(

!"%

!")

!"&

!"*

+,-

.-/

.-/0

-1234

566

788

9

6
+
+
:;
+
<
==
>
?@
AB
<
C
:+
<
>
DD
BE
B>
C
AF

(b) CPS vs. average performance of other methods computed in the
heu threshold mode.

Figure 7.4: Performance comparison between methods in ExpFixLen, varying the β
of anomaly models.

74

!"# !"$!"% !"&

!

!"#

!"'

!"$

!"(

!"%

!")

!"&

!"*

+,-

.-/

.-/0

-1234

566

788

9

6
+
+
:;
+
<
==
>
?@
AB
<
C
:+
<
>
DD
BE
B>
C
AF

Figure 7.5: Performance comparison between methods in ExpFixLen, varying the
β of anomaly models. CPS vs. performance of other methods computed in the
avg threshold mode (i.e. MCC averaged over different window lengths and different
probability threshold values and also the K parameter for the KNN method).

75

Table 7.2: Paired-sample t-Test for Synthetic Experiment ExpV arLen (significance
level α = 0.01)

Pairs p-value

(CPS, FSAbest) 8.3052e-10

(CPS, FSAavg) 2.1530e-15

(CPS, FSAzbest) 9.0129e-11

(CPS, FSAzavg) 4.1352e-17

(CPS, STIDEbest) 4.5743e-09

(CPS, STIDEavg) 2.6041e-15

(CPS, HMMbest) 1.5723e-04

(CPS, HMMavg) 5.7493e-17

(CPS, KNNbest) 4.6182e-05

(CPS, KNNavg) 3.6136e-21

Table 7.3: Paired-sample t-Test for Synthetic Experiment ExpFixLen (significance
level α = 0.01)

Pairs p-value

(CPS, FSAbest) 1.2742e-07

(CPS, FSAavg) 8.3487e-10

(CPS, FSAzbest) 7.7841e-08

(CPS, FSAzavg) 1.9875e-09

(CPS, STIDEbest) 5.4365e-06

(CPS, STIDEavg) 2.0451e-12

(CPS, HMMbest) 5.4365e-06

(CPS, HMMavg) 6.3542e-15

(CPS, KNNbest) 0.0015

(CPS, KNNavg) 9.7907e-10

of both normal and arrhythmia intervals. For our competitors, the parameter space
was explored as follows. For each dataset, a competitor was run for all window

values in the range [2 : 10]. For the KNN method, the experiments were also run
for all KNN values in the range [1 : 10] for any given length. We compared the
performance of our method again with the ‘best’ and ‘average’ performance of our
competitors, based on the same definitions of the ‘best’ and ‘average’ results given
in Subsection 7.2.

Figure 7.6(a) compares the results of our method and the ‘best’ possible perfor-

mance of our competitors on records 231, 201, 124, and 223, in which the possible
probability thresholds are explored using the Thsall method. The results reveal
that our method outperforms or performs close to the best results achieved by other
methods when giving them the advantage of knowing best parameter settings. When
comparing to a more realistic expected performance of our competitors in Figure
7.6(b), we can observe that our method achieves significantly higher MCCs in all
cases, except for the record 231, on which most methods perform well.

Table 7.4 shows the patterns found by our method (column 2) and true arrhyth-
mias in the data (column 3). The results show that the notion of a core pattern set

76

in our method closely matches with the definition of arrhythmias. For instance, the
pattern VNNV in record 201 precisely corresponds to the definition of a “T” (Ven-
tricular trigeminy) arrhythmia, which happens when two normal beats are observed
between two V beats. Also, the pattern V V V in record 124 precisely specifies the
definition of an “IVR” (Idioventricular rhythm) arrhythmia, which happens when
three (or more) V beats are observed consecutively. An interesting observation is

that the patterns found by our method capture the core part of an arrhythmia,
though the arrhythmia might last for a longer time interval. An example is the
“BII” arrhythmia that might last for a long interval of the form MRMRM..., MN-
MNM..., or a combination of both. This arrhythmia is represented in our method by
two concise patterns MRM and MNM, capturing the core parts of this arrhythmia.

Table 7.4: Discovered patterns vs. true Arrhythmia in MIT-BIH records
Rec Discovered patterns True arrhythmias
201 1)VNNV 2) jNjAj 1) T : VNNVNNV... 2) NOD: jNjAj
223 1) VVV 2) VNV 1) IVR : VVV... 2) B : NVNVNV... 3) T : VNNVNNV...
124 1)VVV 2) NNV 1) IVR : VVV... 2) T : VNNVNNV...

231
1)MRM 2) MNM 1) BII : MRMRMRM... 2) BII : MNMNMN

3) BII : MRMRM...MNMNMN...

7.4 Experiments on the Masquerading User Dataset

The masquerading dataset consists of commands for 50 users. For each user, 15,000

commands are collected, of which the first 5,000 commands do not contain any
masquerader commands. The next 10,000 commands might contain commands from
other users (i.e. masqueradors) in blocks of size 100. Commands from other users
are inserted in the test dataset so that only a small portion of the data is anomalous
[94]. To use this dataset for detecting anomalies of variable lengths, we generate
a smaller dataset by sampling data from the masquerading user dataset so that
anomalous sequences of different lengths exist in the data and also the properties of

the original dataset are maintained. To achieve this, the test sequence for each user
is generated from the provided test sequence as follows: the size of seeded anomalous
subsequences is chosen to be distributed uniformly in the range [3:10]; the size of
normal subsequences are distributed uniformly in the range [20:90], and the number
of anomalous subsequences in each test sequence is distributed uniformly in the
range [2:5]. We used the original training sequence, unchanged, for the purpose of

training.
The results of our experiments are shown in Figures 7.7(a) and 7.7(b). The

‘best’ performance corresponds to the highest MCC achieved by a competitor when
different values of the length and probability threshold parameters are explored (as
well as the parameter K, in case of KNN). In the reported ‘best’ case performance
in Figure 7.7(a), the probability thresholds are explored using the Thsall method.
For the ‘average’ performance, the reported MCC is the average MCC value for

a competitor over all possible values of the length parameter (and possible values
of K, in case of KNN); the probability threshold is estimated using the MaxGap
heuristic. As the results of the experiments show, our method clearly dominates

77

the average performance of other competitors in most of the cases, except one in
which our performance is still a close second. In the case when the competitors
are given the unrealistic advantage of using the best parameter setting, our method
performs still better (in different degrees) in 5 out of the 8 cases; in the remaining
3 cases some of the other methods produced slightly better results. For this set of
experiments, we could not report the results for the HMM-based method because

the model did not converge after a long time.

7.5 Evaluating the Extended Model: An Application to

the Motif Discovery Problem

In this section, we evaluate the performance of the extended model in comparison
to a motif discovery benchmark that is widely used for evaluating motif finding
algorithms [109]. The goal of a motif discovery method is to identify regulatory
elements, notably the binding sites in DNA sequences, for transcription factors. In
molecular biology and genetics, a transcription factor is a protein that binds to
specific DNA sequences, thereby controlling the flow (or transcription) of genetic

information.
Little is known about most transcription factors and their target binding sites.

Computational tools have been developed for discovering novel motifs, where noth-
ing is assumed a priori of the transcription factor or its preferred binding sites.
Co-regulated genes are known to share some similarities in their regulatory mecha-
nism, possibly at transcriptional level, so their promoter regions might contain some

common motifs that are binding sites for transcription factors. Thus, a way to de-
tect these regulatory elements is to search for statistically overrepresented motifs in
the promoter region of such set of co-expressed genes. Automatic identification of
these motifs is a challenging task. The binding sites of a single transcription factor
have different lengths and sequence codings, in the presence of a great amount of
noise.

7.5.1 Benchmark Explanation

For the evaluation of our method (with approximate pattern matching model), a
well-known dataset is used that was presented by Tompa et al. in order to assess

the performance of 14 motif discovery tools [109]. This dataset has become a major
benchmark for the motif discovery problem and has been widely used in the liter-
ature. The datasets in this benchmark were generated based on real transcription
factors contained in the TRANSFAC database [3]. Each selected real transcription
factor from the TRANSFAC database gives rise to three datasets. These datasets
are the same with respect to the binding sites they contain (and the positions of
the binding sites), but differ in the type of the background sequences containing

the binding sites. The background sequences are of three types: 1) ‘real ’, which are
selected from binding sites’ real promoter sequences, 2) ‘generic’, which are based
on randomly chosen promoter sequences from the same genome, and 3) ‘markov’,
which are generated randomly from a Markov chain of order 3. The transcription
factors in this benchmark are selected from 4 species, including yeast, fly, mouse,
and human.

78

The resulting benchmark contains 56 datasets, including 6 datasets from fly, 26
from human, 12 from mouse and 8 from yeast. As negative control, 4 datasets of
type markov (background sequence) contain no motifs. The number of sequences
per dataset varies between 1 and 35 with mean 7, the individual sequence length per
dataset varies from 500 bp (base pairs) to 3,000 bp. The total size of each dataset
varies from 1 to 70 kb with mean 8 kb. The number of implanted binding sites per

dataset varies from 0 to 76 with mean 9.
The dataset is available online at the assessment website [1]. For each dataset,

a prediction tool is supposed to select the single best motif and report the positions
of that motif’s binding sites, or to report that the dataset contains no significant
motif.

We ran our proposed method for finding generalized surprising patterns on this

benchmark. To learn the background distribution, we used the regulatory sequence
tools available in the RSAT database (http://rsat.ulb.ac.be/rsat/) [106]. For each
species, the first 1000 base pairs of genome sequences were used as input in order
to learn the parameters of a Markov chain model of order 3.

7.5.2 Evaluation Metrics

In order to compare the computational tools, 7 metrics are proposed by Tompa et al.
[109] which consider the matching of predictions and true binding sites both in the
level of nucleotides and sites. The proposed metrics include the Sensitivity, Positive
predictive value, Performance coefficient, correlation coefficient, and Average site
performance.

At the finest granularity level, the matching between predicted binding sites
and the known (true) binding sites can be measured at the level of nucleotides.
According to [109], the following raw measures are defined at the nucleotide level:

• nTP: the number of nucleotide positions that are in both predicted sites and

known sites

• nFN: the number of nucleotide positions in known sites that are not in pre-
dicted sites

• nFP: the number of nucleotide positions in predicted sites not in known sites

• nTN: the number of nucleotide positions in neither known sites nor predicted
sites

The metrics can also be defined at the level of sites rather than nucleotides. Ac-
cording to Tompa et al. [109], a predicted site ‘overlaps’ a known site if they overlap
by at least one-quarter of the length of the known site. Then, the corresponding
raw statistics at the site level can be defined as follows [109]:

• sTP: the number of known sits that are ‘overlapped’ by predicted sites

• sFN: the number of known sites that have no ‘overlap’ with predicted sites

• sFP: the number of predicted sites not ‘overlapped’ by known sites

79

Based on the nucleotide-level and site-level statistics defined above, the following
measures can be defined at the site level (x = s) or nucleotide level (x = n) according
to [109]:

1. Sensitivity: defines the fraction of known sites or nucleotides that are pre-
dicted:

Sensitivity: xSn =
xTP

xTP + xFN
(7.2)

2. Positive Predictive Value: defines the fraction of predicted sites or nu-
cleotides that are true predictions (known) :

Positive Predictive Value: xPPV =
xTP

xTP + xFP
(7.3)

3. Specificity: defines the fraction of negative nucleotide positions (non-motif
positions) which are correctly predicted as such:

Specificty: nSP =
nTN

nTN + nFP
(7.4)

4. Performance Coefficient

Performance Coefficient: nPC =
nTP

nTP + nFN + nFP
(7.5)

5. Correlation Coefficient: which is the Pearson correlation coefficient in the

particular case of binary classification, in which the predicted nucleotide po-
sitions and the known nucleotide positions are considered as binary sequences
of 1s and 0s, and this statistic measures the correlation between these 1s and
0’s. The value of nCC ranges between −1 (indicating perfect anti-correlation)
and +1 (indicating perfect correlation). This measure is also referred to as
the Matthews Correlation Coefficient, as defined in the equation 7.6.

Correlation Coefficient (nCC) = (7.6)
TP×TN−FP×FN√

(TP+FP)(FP+FN)(TN+FP)(TN+FN)

6. Average Site Performance

Average Site Performance : sASP =
sSn+ sPPV

2
(7.7)

The above-mentioned statistics are undefined in case an algorithm predicts no
motif. In this case, TP + FP = 0, and therefore the measures nCC, nPPV, sPPV,
and sASP are undefined. Moreover, a technique is required to aggregate the statis-
tics over a collection of datasets. For instance, we might need to aggregate a statistic

such as nCC over all datasets which belong to a particular species such as yeast,
or we might be interested to have an aggregated results for a statistics over all
datasets with Markov background distribution. To address these issues, the follow-
ing method is used by Tompa et al. for evaluating the methods on the proposed

80

benchmark [109]. For a computation tool T , statistic M , and each collection of C of
datasets, the combined measure of each of the 7 statistics defined above are calcu-
lated as follows. The raw statistics nTP , nFP , nFN , nTN , sTP , sFP , and sFN
are added up for all datasets in C as if C is a long sequence containing the sequences
of all datasets contained in it. The values of measures calculated using aggregated
statistics are referred to as the combined measures. Using the combined measures,

the probability of getting an undefined value for a measure is reduced greatly. The
reason is that the undefined value happens only if a motif finding algorithm does
not predict a motif in any of the datasets in a collection C, which is unlikely to
happen.

7.5.3 Evaluation Partners on Motif Discovery

The tools compared in Tompa’s assessment include AlignACE [55], ANN-Spec [117],
Consensus [51], GLAM [38], Improbizer [5], MEME [8], MITRA [31], MotifSampler
[105], oligio/dyad-analysis [110], QuickScore [88], SeSiMCMC [33], Weeder [85], and
YMF [97]. A short description of each method is provided in Table 7.5.

Table 7.5: Summary of the comparison partners used in the
motif discovery experiments (adapted from table 1 in [109])

Algorithm Principle Details

AlignACE [55] Gibbs sampling al-
gorithm that returns
a series of motifs as
weight matrices that
are over-represented in
the input set

Judges alignments sampled during the
course of the algorithm using a max-
imum a priori log likelihood score,
which gauges the degree of overrepre-
sentation. Provides an adjunct mea-
sure (group specificity score) that takes
into account the sequence of the en-
tire genome and highlights those motifs
found preferentially in association with
the genes under consideration

ANN-Spec [117] Models the DNA-
binding specificity of
a transcription factor
using a weight matrix

Objective function based on log like-
lihood that transcription factor binds
at least once in each sequence of the
positive training data compared with
the number of times it is estimated to
bind in the background training data.
Parameter fitting is accomplished with
a gradient descent method, which in-
cludes Gibbs sampling of the positive
training examples

Consensus [51] Models motifs us-
ing weight matrices,
searching for the
matrix with maximum
information content

Uses a greedy method, first finding the
pair of sequences that share the motif
with greatest information content, then
finding the third sequence that can be
added to the motif resulting in greatest
information content, and so on.

Cont’...

81

Table 7.5 –

Algorithm Principle Details

GLAM [38] Gibbs sampling-based
algorithm that auto-
matically optimizes
the alignment width
and evaluates the
statistical significance
of its output

Since the basic algorithm cannot find
multiple motif instances per sequence,
long sequences were fragmented into
shorter ones, and the alignment was
transformed into a weight matrix and
used to scan the sequences to obtain the
final site predictions

Improbizer [5] Uses expectation max-
imization to determine
weight matrices of
DNA motifs that oc-
cur improbably often
in the input sequences

As a background (null) model it uses
up to a second-order Markov model of
background sequence. Optionally, Im-
probizer constructs a Gaussian model
of motif placement, so that motifs that
occur in similar positions in the input
sequences are more likely to be found.

MEME [8] Optimizes the E-value
of a statistic related
to the information con-
tent of the motif

Rather than sum of information con-
tent of each motif column, statistic used
is the product of the P-values of col-
umn information contents. The motif
search consists of performing expecta-
tion maximization from starting points
derived from each subsequence occur-
ring in the input sequences. MEME
differs from MEME3 mainly in using a
correction factor to improve the accu-
racy of the objective function.

MITRA [31] Uses an efficient data
structure to traverse
the space of IUPAC
patterns.

For each pattern, MITRA computes the
hypergeometric score of the occurrences
in the target sequences relative to the
back-ground sequences and reports the
highest scoring patterns.

MotifSampler [105] Matrix-based, motif-
finding algorithm
that extends Gibbs
sampling by modeling
the background with
a higher order Markov
model

To improve the robustness of the Gibbs
sampling algorithm on noisy data sets,
this algorithm is extended for motif
finding with a higher-order background
model, and it is shown that the use of
a higher-order model considerably en-
hances the performance.

oligio/dyad [110] Detects overrep-
resented oligo-
nucleotides with
oligo-analysis 15 and
spaced motifs with
dyad-analysis

These algorithms detect statistically
significant motifs by counting the num-
ber of occurrences of each word or
dyad and comparing these with expec-
tation. The Most crucial parameter is
the choice of the appropriate probabilis-
tic model for the estimation of occur-
rence significance. In this study, a neg-
ative binomial distribution on word dis-
tributions was obtained from 1,000 ran-
dom promoter selections of the same
size as the test sets.

Cont’...

82

Table 7.5 –

Algorithm Principle Details

QuickScore [88] Based on an ex-
haustive searching
algorithm that esti-
mates probabilities of
rare or frequent words
in genomic texts

Incorporates an extended consen-
sus method allowing well-defined
mismatches and uses mathematical
expressions for efficiently computing
z-scores and P-values, depending on
the statistical models used in their
range of applicability. Special attention
is paid to the drawbacks of numerical
instability. The background model is
Markovian, with order up to 3.

SeSiMCMC [33] Modification of Gibbs
sampler algorithm that
models the motif as a
weight matrix, option-
ally with the symmetry
of a palindrome or of a
direct repeat, and op-
tionally with spacer

Includes two alternating stages. The
first one optimizes the weight matrix for
a given motif and spacer length. The
algorithm changes the positions of the
motif occurrences in the sequences and
infers the motif model from the cur-
rent occurrences. These changes are
used to optimize the likelihood of se-
quences as being segmented into the
(Bernoulli) background and the motif
occurrences. The optimization is orga-
nized via a Gibbs-like Markov chain,
which samples positions in sequences
one by one, until the Markov chain con-
verges. The second stage looks for best
motif and spacer lengths for obtained
motif positions. It optimizes the com-
mon information content of motif and
of distributions of motif occurrence po-
sitions.

Cont’...

83

Table 7.5 –

Algorithm Principle Details

Weeder [85] Consensus-based
method that enu-
merates exhaustively
all the oligos up to
a maximum length
and collects their
occurrences (with
substitutions) from
input sequences

Each motif is evaluated according to
the number of sequences in which it ap-
pears and how well conserved it is in
each sequence, with respect to expected
values derived from the oligo frequency
analysis of all the available upstream
sequences of the same organism. Dif-
ferent combinations of canonical motif
parameters derived from the analysis
of known instances of yeast transcrip-
tion factor binding sites (length ranging
from 6 to 12, number of substitutions
from 1 to 4) are automatically tried by
the algorithm in different runs. It also
analyzes and compares the top-scoring
motifs of each run with a simple cluster-
ing method to detect which ones could
be more likely to correspond to tran-
scription factor binding sites. Best in-
stances of each motif are selected from
sequences using a weight matrix built
with sites found by a consensus-based
algorithm.

YMF [97] Uses an exhaustive
search algorithm to
find motifs with the
greatest z-scores

A P-value for the z-score is used to as-
sess significance of motifs. Motifs them-
selves are short sequences over the IU-
PAC alphabet, with spacers (Ns) con-
strained to occur in the middle of the
sequence.

To cope with the constraints defined in this competition and to deal with domain-
specific characteristics of patterns for the motif discovery problem, some modifica-
tions are necessary in our general framework for finding surprising patterns. The
modifications are performed in different steps of our methodology, including multiple

test correction, selecting a single best motif from a core pattern set, and reporting
the final binding sites for a core motif. These are discussed in the following subsec-
tions.

7.5.4 Multiple Test Correction Using False Discovery Rate

As mentioned in Section 4.2, we use in our general framework for pattern discovery
the Holm procedure [53] to correct for multiple hypothesis testing. The Holm pro-
cedure is an example of a ‘family-wise error rate’ (FWER) procedures, which take
a conservative approach in selecting significant observations in favour of reducing
false positives (Type I errors). In contrast, the False Discovery Rate (FDR) proce-

dures take a less conservative approach in identifying the important few significant
observations from thousands of null hypothesis tested.

In the following experiments on the motif discovery benchmark, we used the
Storey procedure [101] with threshold 0.05 on the q-values of the patterns to deter-

84

mine the patterns for which the null hypothesis is rejected. The selected patterns
are passed as input to the core pattern set selection algorithm.

7.5.5 Selecting a single best motif from a core pattern set

In our general framework for pattern discovery, the result of our algorithm is a core
pattern set which might consist of several patterns. In the benchmark chosen for
evaluation, only a single motif (transcription factor) is expected to be returned. To
meet this condition, we select the pattern that is found in the first step of the greedy
search algorithm 4.2 (i.e. the pattern which explains the highest number of other
significant patterns) as the single best motif.

7.5.6 Reporting binding sites from a core pattern

In order to evaluate a motif discovery method on the given benchmark, the binding
sites and their locations in the input sequences should be reported as final predic-

tions. The binding sites are instances of the discovered motif which exist in the
data based on the defined matching criteria. When a mismatch pattern Qs,d is se-
lected as the top pattern in a core pattern set by our algorithm, the binding sites
can be reported as all instances of Q which appear in the input sequences (i.e. all
subsequences of length |s| in the data sequences with edit distance less than d w.r.t
string s). This approach leads to some binding sites being reported, which are false

positives. To mitigate this problem, we excluded binding sites that look dissimilar
to the majority of the other binding sites. To characterize this property, we used a
concept similar to a Position Weight Matrix (PWM) model [102] that was simplified
to a frequency matrix by Pavesi et al. [85].

The pruning procedure using a frequency matrix can be summarized as follows.
For a mismatch pattern Qs,d, a frequency matrix M is of size 4× |s|, and initialized
with 0 values in all cells. The matrix has 4 rows, one for each of the 4 nucleotides A,

C, G and T in a DNA sequence. Each cell mi,j in a frequency matrix represents the
number of times a nucleotide x, corresponding to the ith row of the matrix, appears
in the jth position of an occurrence of amismatch pattern. The matrix can be derived
by scanning all occurrences (binding sites) of the pattern Q in the data sequence
and updating the corresponding cells of the matrix. For each hit (occurrence) h of
the pattern Q, and for each character hj in this hit, let i represent the row number

which matches with character hj . Then, the corresponding cell of the matrix M is
updated as Mi,j = Mi,j + 1. Then, for each occurrence h = h1, h2, ..., h|s| a score is
computed by matching this occurrence against the frequency matrix M :

Z(h) =

|s|
∑

j=1

log(mi,j) (7.8)

where mi,j is the entry of the matrix corresponding to the jth nucleotide of h. The

maximum and minimum scores in M , represented by Zmax(M) and Zmin(M), are
also computed by summing up the maximum and minimum entries of each column
of M in the logarithm scale. The score of each occurrence h can be then scaled to
a percentage value between 0 and 100 using the following formula:

85

Z
′
(h) =

100 ∗ (Z(h)− Zmin(M))

Zmax(M)− Zmin(M)
(7.9)

This matching score gives us a means to prune all the occurrences (binding sites)
with matching scores less than a threshold. We used a threshold value of 90% for

pruning.
Figure 7.9 compares the overall performance of CPS (our proposed core pat-

tern set method) with all 14 competitors on the given benchmark. The overall
performance has been computed on all the 56 datasets. The reported metric is the
correlation coefficient measure defined in equation 7.6. The combined nCC in Figure
7.9 stands for the correlation coefficient on a single sequence created by appending
all the sequences in the 56 datasets. The results of the comparison between the CPS

algorithm with other computational tools based on different measures (introduced
by Tompa et al. in their comparative study [109]) is provided in Figure 7.8.

As it is shown in Figure 7.9, our proposed method achieves a performance close
to Weeder [85], which performs the best among the other competitors overall. The
detailed performance of each method on different species (Fly, Human, Mouse, and
Yeast) is shown in figure 7.10. It can be observed that the performance of most motif

discovery methods is significantly better on the yeast datasets. The CPS algorithm
achieves the best results compared to all other methods on the mouse datasets.
Also, it achieves comparable results to Weeder on the human and fly datasets.

The performance of the methods separated based on different background se-
quence types (Real, Markov, Generic) is shown in Figure 7.11. The CPS algorithm
stand as the second best method on Generic background data, and the third best on
Markov background data. All the methods perform very poor on datasets with real

background sequences, on which the CPS algorithm achieves a performance close
to best results.

Even though motif discovery is a challenging problem and still an active topic
of research, the low measure of combined correlation in the reported results should
not be considered as inefficiency of computational methods for motif discovery as
discussed by providers of the benchmark [109]. One of the reasons is that each

method is supposed to return the best motif in each dataset (or none). This makes
the selection process a very challenging task. In practice, it might be more effective
to investigate the top motifs rather than the single best motif. As we will discuss
in the following, this setting will increase the prediction power of a motif discovery
tool.

Another feature of the benchmark which makes prediction harder is that many

of the binding sites cataloged in the TRANSFAC database are usually long (e.g.
35 of the binding sites used in the benchmark dataset are 31-71 bp in length).
This makes binding site modelling more challenging due to the fact that variety
between binding sites generally increases with their lengths. Also, the datasets with
real background sequences might not be fully annotated, and the existence of other
transcription factor binding sites is possible in these datasets. This might lead to an
unfair evaluation of some methods which discover the unknown binding sites (i.e.

the binding sites that have not been annotated in the TRANSFAC database).
In practice, it might be useful for a motif discovery method to return a list of top

K motifs based on an internal likelihood score, which can later be verified by domain

86

experts. This could potentially increase the number of ‘true’ binding sites which
can be found by a motif discovery method, regardless of false positives. To pursue
this scenario, we designed a new experiment using the same benchmark where we
evaluated the performance of the ‘best’ motif among the top 32 motifs returned by a
discovery tool. The comparison metric is the same combined correlation coefficient
used in previous experiments on this benchmark. As comparison partner, we selected

Weeder [85] which achieved the best performance among the competitors on this
benchmark.

The Weeder algorithm works by computing the ‘significance score’ for a class of
motifs. Each class of motif is defined by the length of the string it represents (6,
8, 10, 12), the number of mismatches allowed (depends on the length of the motif
and takes a value between 1 and 4), and a threshold on the minimum percentage of

DNA sequences that a pattern should occur in, to be considered as a candidate motif
(50%, 100%). This gives rise to 16 classes of motifs in total. The Weeder algorithm
computes a ‘significance score’ for a motif m, which roughly compares the observed
frequencies of m in the test sequences with their ‘expected’ frequencies (This score
captures a notion of the ‘over-representation’ of motifs, but is different from the
concrete p-value measure that is used in our proposed CPS method). Five motifs
with highest scores are selected in each class, and a single best motif among them

is selected through some heuristics. These heuristics try to select a motif which
has the highest score in its class, and is both vertically-redundant and horizontally-
redundant (The details of these heuristics can be found in the parameters document
submitted for each competitor along with binding sites in the assessment webiste
[1]). Then, the binding sites of the best selected motif are selected and pruned by
computing their score against a frequency matrix model as in Equation 7.9. The

source code for the main step of finding top motifs in different classes has been
made available by the authors. We used the Weeder program to return the top 2
motifs in each class, giving rise to a total of 32 motifs which are used in the top-K
experimental evaluation.

The result of the comparison between Weeder and CPS is shown in Figure 7.12.
As can be observed in this figure, our proposed CPS algorithm performs better
than Weeder on all types of species, except on the human datasets in which both

techniques achieve comparable results. We observed that the performance of Weeder
in the top-K experiment is weaker than in the ‘best’ motif selection settings used in
the original competition. In an effort to investigate the issue, we implemented the
Weeder’s heuristics in a Matlab script. Despite all the efforts, we could not reproduce
the reported results for Weeder algorithm in the original ‘best motif’ experiments
on this benchmark. However, the candidate motifs used in the top-K experimental

settings are solely derived from the Weeder source code (made available by the
authors), and the results of comparison with the CPS algorithm demonstrate the
superiority of our proposed algorithm compared to Weeder, when used in a top-K
motif evaluation settings.

In previous experiments, we evaluated the performance of methods solely based
on the nucleotide-level Correlation Coefficient (nCC) because it provides a compar-
ison at a fine granularity between predicted binding sites and true binding sites. We

can look at other measures to evaluate the performance of a motif discovery tool
in terms of its ability to match (even partially) with true binding sites regardless

87

of false positives. One of these measures that is introduced and used by Tompa et
al. in their comparison study is Site-level Sensitivity (sSn) [109], which is defined
as follows:

Site-level Sensitivity =
sTP

sTP + sFN
(7.10)

in which the site-level true positive, and site-level false negative are defined as fol-
lows:

• sTP: the number of known sits that are overlapping with predicted sites

• sFN: the number of known sites that have no overlap predicted sites

By definition, a predicted site overlaps a known site if they overlap by at least
one-quarter the length of the known site [109].

Figure 7.13 shows the performance of the top-32 motifs chosen by the CPS and
Weeder algorithms in terms of their site-level sensitivity. The results show that

despite a very low measure on the nucleotide-level correlation coefficient, these two
motif discovery methods perform fairly good in (partial) matching with true binding
sites. The achieved statistics show that we are able to partially match with around
half of the true binding sites of transcription factors if we just look at the top 32
motifs returned by these two methods. It is worth mentioning that even in this
comparison we just consider the performance of the best motif among the top 32

motif returned by each method and the aggregated recall over all the top 32 motifs
might be even higher than 50%. The performance of our proposed CPS algorithm
is comparable to that of Weeder, which performs the best among the methods used
in Tompa’s comparative study [109].

88

!"#$% !"#&% !"%#' !"##$

&

&(#

&('

&()

&(*

%

%(#

+,-

.-/

.-/0

-1234

566

788

6
+
+
9:
+
;
<<
=
>?
@A
;
B
9+
;
=
CC
AD
A=
B
@E

(a) CPS vs. best performance of other methods.

!"#$% !"#&% !"%#' !"##$

&

&(#

&('

&()

&(*

%

%(#

+,-

.-/

.-/0

-1234

566

788

6
+
+
9:
+
;
<<
=
>?
@A
;
B
9+
;
=
CC
AD
A=
B
@E

(b) CPS vs. average performance of other methods computed in
the heu threshold mod.

Figure 7.6: Performance comparison between methods on ECG dataset.

89

!"#$%
!"#$&

!"#$'
!"#$()

!"#$%*
!"#$%+

!"#$%,
!"#$&(

*

*-(

*-&

*-+

*-,

.

.-(

/01

213

2134

15678

9::

;
/
/
<=
/
>
$$
#
?@
AB
>
C
</
>
#
DD
BE
B#
C
AF

(a) CPS vs. best performance of other methods.

!"#$%
!"#$&

!"#$'
!"#$()

!"#$%*
!"#$%+

!"#$%,
!"#$&(

*

*-.

*-(

*-%

*-&

*-)

*-+

*-'

*-,

*-/

.

012

324

3245

26789

:;;

<
0
0
=>
0
?
$$
#
@A
BC
?
D
=0
?
#
EE
CF
C#
D
BG

(b) CPS vs. average performance of other methods.

Figure 7.7: Performance comparison on Masquerading User data computed in the
heu threshold mode.

90

!
"#
$
%
!
&
'

!
(
(
)*
+
,
-

&
.
%
/
,
%
/
0
/

1
2
!
3

45
+
6.
7
#8
,
6

3
'
3
'

3
'
3
'
9

3
4:
;
!

3
.
<#
=*
>
5
+
",
6

?
"#
$
.
@
A
>
@
)>
%
>
"A
/
#/

B
0
#-
C
*
-
.
6,

*
,
*
#3
&
3
&

D
,
,
@
,
6

E
3
F

&
G
*

H

HIHJ

HIK

HIKJ

HIL

HILJ

HI9

HI9J

%*%

%GGM

%G&

%&&

/*%

/GGM

/!*G

Figure 7.8: Combined measures of correctness over all 56 datasets, based on the eval-
uation metrics defined by Tompa et el. in [109], including the nSn (nucleotide-level
Sensitivity), nPPV (nucleotide-level Positive predictive value), nPC (nucleotide-
levelPerformance coefficient), nCC (nucleotide-level correlation coefficient), sSn
(site-level Sensitivity), sPPV (site-level Positive predictive value), and sASP (site-
level Average site performance).

91

!"#$%!&'

!(()*+,-

&.%/,%/0/

12!3

45+6.7#8,6

3'3'

3'3'9

34:;!

3#<.=*>5+",6

?"#$.)@A>@)>%>"A/#/

B0#-C*-.6,

,#3&3&

D,,@,6

E3F

&G*

!

!
"!
#

!
"!
$

!
"!
%

!
"!
&

!
"'

!
"'
#

!
"'
$

!
"'
%

!
"'
&

!
"#

&.57#%,@H%&&F
igu

re
7.9:

C
om

b
in
ed

correlation
co
effi

cien
t
(n
C
C
)
over

all
56

d
atasets.

!"#$%!&'

!(()*+,-

&.%/,%/0/

12!3

45+6.7#8,6

3'3'

3'3'9

34:;!

3#<.=*>5+",6

?"#$.)@A>@)>%>"A/#/

B0#-C*-.6,

,#3&3&

D,,@,6

E3F

&G*

!"
#"
$ "

"
#"
$

"
#%

"
#%
$

"
#&

"
#&
$

"
#'

"
#'
$

"
#(

"
#(
$

)
*+

,
-
.
/
0

1
2
-
3
4

5
4
/
3
6

7
2
6/
*

&.57#%,@H%&&

F
igu

re
7.10:

C
om

b
in
ed

correlation
co
effi

cien
t
(n
C
C
)
b
y
d
iff
eren

t
sp
ecies.

92

!
"#
$
%
!
&
'

!
(
(
)*
+
,
-

&
.
%
/
,
%
/
0
/

1
2
!
3

45
+
6.
7
#8
,
6

3
'
3
'

3
'
3
'
9

3
4:
;
!

3
#<
.
=*
>
5
+
",
6

?
"#
$
.
)@
A
>
@
)>
%
>
"A
/
#/

B
0
#-
C
*
-
.
6,

*
,
*
#3
&
3
&

D
,
,
@
,
6

E
3
F

&
G
*

!"#"$

"

"#"$

"#%

"#%$

"#&

"#&$

'()*

+),-./

0(1(,23

4.5)*

&
.
5
7
#%
,
@
H%
&
&

Figure 7.11: Combined correlation coefficient (nCC) by different backround sequences.

!""#"$ %&'

!

!"!#

!"$

!"$#

!"%

!"%#

!"&

!"&#

'()

*+,-.

/0+12

32-14

504-(

%
(
)
*
+,
"
#
-,
%
%

Figure 7.12: Combined correlation coefficient (nCC) for CPS and Weeder on top 32 chosen
motifs.

93

!""#"$ %&'
(

()*

()+

(),

()-

().

()/

()0

123

45678

9:5;"

<"7;=

>:=72

%
:
6
?
@8
"
#
A;
'
8

Figure 7.13: Combined site-level sensitivity (sSn) for CPS and Weeder on top 32 chosen
motifs.

94

Chapter 8

Conclusions and Future Work

8.1 Research Summary

We investigated the problem of finding surprising patterns in sequences without
knowing the lengths of the patterns. The notion of ‘surprise’ was formalized by the
statistical significance of observed frequency of a pattern compared to its ‘expected’
frequency. We demonstrated the drawbacks of doing multiple statistical tests on
subsequences of all possible lengths, which is an alternative when the lengths of
‘true’ surprising patterns are unknown. We showed that multiple tests on subse-
quences of all possible lengths will result in a set of highly correlated patterns, from

which it is difficult to extract the ‘true’ surprising patterns. In the light of this
observation, we developed statistical methods to capture the dependencies between
patterns through an “explain” relationship. These methods not only allow us to
justify the correlation between patterns, but also provide basic tools to construct a
redundancy-free set of surprising patterns explaining the frequency of all other pat-
terns in the data. Moreover, we developed a new method to compute the p-values

of pattern frequencies in sequence data under the new settings, in which specific
constraints are imposed at some positions in the data sequence.

The core pattern set is introduced as our solution to the formalized problem,
which is the smallest set of patterns that can ‘explain’ the frequency of any other
pattern in the sequence. The problem of constructing an exact core pattern set was
shown to be NP-complete. Therefore, we proposed a greedy search algorithm to
construct an approximate core pattern set. We extended the definition of patterns

from a simple string model to a mismatch string model which allows some variations
in instances which belong to a pattern (motif). The algorithms for finding correla-
tions between significant patterns and finding a core pattern set were extended to
the problem of finding these approximate patterns. This extension provides support
for a broader class of applications in which an approximate representation of surpris-
ing patterns are required, including the interesting problem of finding transcription

factor binding sites in DNA sequences.
We used several strategies to improve the running time of our proposed method.

Some approximation and early abandoning techniques were developed to speed-up
p-value calculation of patterns, which is a computationally expensive operation in
our proposed method. We also characterized the necessary conditions for correlation
between two patterns, which gave us a means to prune the expensive explain relation

95

tests for patterns which are not correlated. The prefix tree data structure was
employed to speedup the probability computations for patterns, and reusing the
calculations that have been done for prefixes of patterns. We also re-implemented
the proposed method in a parallel architecture, which gave us a significant speed-up
in the running time of our method by parallel implementation of time consuming
tasks of p-value computations and ‘explain relation’ tests.

The proposed method was evaluated using both synthetic and real-world datasets
in the fields of Medicine, Computer Security, and Bioinformatics, for solving interest-
ing problems such as characterizing arrhythmia in ECG recordings of heart patients,
finding ‘masqueraders’ in user command sequences, and identifying transcription
factor binding sites (i.e. ‘motifs’) in DNA sequences.

Our proposed method based on the simple string model was compared against 5

well-known anomaly detection methods to evaluate the performance of our method
in detecting the anomalous patterns in the synthetic data generated under different
settings, which were controlled by the length of implanted motifs and the degree of
deviation from the background distribution. Our method outperformed the com-
petitors even though they are given the unrealistic advantage of using the best
parameter settings. In a more realistic case, in which the best parameter setting
is not known, our proposed method dominated the expected performance of our

competitors.
The core pattern set algorithm based on the simple string model was also eval-

uated on the ECG and the Masquerade user datasets for detecting anomalous sub-
sequences. The experimental study demonstrated the effectiveness of our proposed
method for characterizing heart arrhythmia in ECG dataset. The discovered core
pattern sets by our algorithm very well matched with the definitions of arrhyth-

mia. Compared to expected performance of other competitors, the CPS algorithm
achieved a better matching to the ground truth. Compared to the ‘best’ perfor-
mance of other competitors, which was chosen by exploring the space of different
parameters and represents a biased setting, our proposed method achieved compa-
rable results in most of the cases. Similar behaviour was observed by our method
for finding anomalous patterns in the Masquerade user datasets.

A widely-used motif discovery benchmark was selected to demonstrate the appli-

cation of our proposed method based on the extended model to the motif discovery
problem. Our proposed method was used for the problem of motif discovery with
few adjustments, which were required to comply with the constraints defined by the
benchmark publishers [109], and also to cope with some of the domain-dependent
properties of the significant patterns in the field of Bioiformatics. The evaluation
partners were selected from 14 well-known motif discovery tools which submitted

their results to the competition based on the benchmark. The results demonstrated
that our method achieves a performance which is better or comparable to the Weeder
motif finding method, which performed the best among the other motif finding tools
in a published performance evaluation on the same benchmark [109]. This result
is promising considering the fact that our general framework for finding suprising
patterns could easily be extended to the challenging problem of biological motif
discovery, and was able to achieve results that were comparable to or better than

results of some of the well-known methods in this domain.

96

8.2 Directions for Future Work

The proposed techniques and applications in this research study can be extended in
several aspects:

1. The core pattern set approximation can be explored more thoroughly. One

interesting issue to investigate is to explore other strategies for breaking the
ties in the search algorithm. Currently, we are choosing the pattern with
shortest length in case several patterns ‘explain’ an equal number of patterns.
Other choices are possible in case of a tie and we have gotten better results
in some experiments when the longest pattern is selected. Another interesting
avenue of research is the theoretical analysis of the current greedy algorithm to
investigate its approximation factor, and to understand the conditions under

which the greedy algorithm delivers comparable result to that of an optimum
solution. Also, it is interesting to investigate search strategies other than the
greedy search algorithm to approximate a core pattern set solution.

2. The number of significant patterns which are passed as input to the core patter
set algorithm might be large. This involves a substantial number of explain
relation tests. On the other hand, the explain relation test might return a

negative answer for a large number of pairs, as we discussed in Section C.3.
Investigating the condition(s) which can limit the scope of explain relation
tests, especially in case the patterns are allowed to have mismatches sounds
challenging and interesting. Perhaps clustering the set of significant patterns
could limit the scope of ‘explain’ relationship tests to a cluster (as opposed to
the set of all remaining patterns), and reduce the number of required p-value

calculations as a result.

3. A major computationally intensive component of our framework is to calculate
p-values for all ‘candidate’ patterns, which might be a massive set in some
domains such as Bioinformatics. A useful research study is to investigate how
the intensive p-value computation for a pattern Q, or a group of patterns, can
be reduced based on the outcomes of calculations done for some other patterns

which are ‘correlated’ with new patterns in question (i.e. have partial overlaps
with each other).

4. The framework in this research study gives us a ‘template’ for finding unex-
pectedly frequent patterns, and we studied two sample instantiations of this
template using the basic string and mismatch string models, and evaluated
them on sample datasets mainly for the problems of anomaly detection and

Biological motif discovery. Investigating other instantiations of the template
can introduce new avenues of research. Of particular interest to the domain
of Bioinformatics is exploring other models for motif representation. For in-
stance, probabilistic models such as ‘PWM’s can be used instead of the mis-
match string model. The challenges that are still to be addressed are the
problems of setting a threshold for a PWM and characterising the explain

relation between PWM ’s.

5. In making efforts to apply our proposed framework to the problem of motif
discovery, we tried to use a general mismatch string to allow variations in a

97

pattern, without leveraging other domain-specific characteristics of patterns.
However, Biologically-motivated properties of motifs can be captured to make
the patterns more specific and guide the pattern enumeration process. Bi-
ological motifs are known to have specific structures. For instance, a large
number of motifs are known to be the palindromic. A palindromic motif is
a subsequence that is exactly the same as its own reverse complement, e.g.,

“CACGTG”. A Spaced Dyad motif is another common type of motif which
consists of two smaller conserved sites, separated by a spacer (i.e. gap). The
spacer occurs in the middle of the motif because the transcription factors bind
as a dimer. This means that the transcription factor is made out of two sub-
units that have two separate contact points with the DNA sequence. The
parts where the transcription factor binds to the DNA are conserved but are

typically rather small (3-5 bp). An interesting extension of our work is to in-
vestigate how incorporating these structures in our motif definitions can limit
the search space or decrease the false positives by ignoring the binding sites
which don’t match the common structures.

6. Pattern enumeration techniques for motif discovery suffer from the false posi-

tive problem. In Section 7.5.6, we used a simple method based on the frequency
matrix score and an arbitrary threshold 90% to prune some of the binding sites
which are less similar to other binding sites, and decrease the false positives.
Investigating other approaches to reducing false positives is of great benefit to
a pattern-based motif finding algorithm. Biology-motivated constraints such
as palindrome property could reduce the number of false positives. More sys-
tematic approaches have been proposed in the literature [50], which are based

on identifying all the potential matching sites using a pattern-based enumera-
tion, converting these binding sites to a PWM, and then deriving a threshold
for the PWM based on the order statistics. A direct extension of our proposed
method is to study how other alternatives such as Hartmann’s method [50] can
be used as a post-processing step in our methodology to make the motif more
‘specific’, and improve the matching of reported binding sites to the known

motifs.

98

Bibliography

[1] Assessment of computational motif discovery tools. http://bio.cs.
washington.edu/assessment/.

[2] Abbreviations and Symbols for Nucleic Acids, Polynucleotides and Their Con-
stituents: Recommendations 1970. International Union of Pure and Applied
Chemistry, 1970.

[3] TRANSFAC: A Database on Transcription Factors and Their DNA Binding
Sites. Nucleic Acids Research, 24(1):238–241, January 1996.

[4] R. Agrawal and R. Srikant. Mining sequential patterns. In IEEE International
Conference on Data Engineering, pages 3–14, 1995.

[5] W. Ao, J. Gaudet, W. J. Kent, S. Muttumu, and S. E. Mango. Environ-
mentally induced foregut remodeling by pha-4/foxa and daf-12/nhr. Science,
305(5691):1743–1746, 2004.

[6] I. Assent, E. Mller, S. Gnnemann, R. Krieger, and T. Seidl. Less is more: Non-
redundant subspace clustering. In International Workshop on Discovering,
Summarizing and Using Multiple Clusterings, 2010.

[7] T. L. Bailey and C. Elkan. Unsupervised learning of multiple motifs in biopoly-
mers using expectation maximization. Machine Learning, 21(1-2):51–80, 1995.

[8] T. L. Bailey and C. Elkan. The value of prior knowledge in discovering motifs
with MEME. In International Conference on Intelligent Systems for Molecular
Biology, pages 21–29, 1995.

[9] P. Baldi, S. Brunak, Y. Chauvin, C. A. Andersen, and H. Nielsen. Assessing
the accuracy of prediction algorithms for classification: an overview. Bioin-
formatics, 16(5):412–424, 2000.

[10] L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique
occuring in the statistical analysis of probabilistic functions of Markov chains.
Annals of Mathematical Statistics, 41(1):164–171, 1970.

[11] Y. Benjamini. Discovering the false discovery rate. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 72(4):405–416, 2010.

[12] Y. Benjamini and Y. Hochberg. Controlling the False Discovery Rate: A
Practical and Powerful Approach to Multiple Testing. Journal of the Royal
Statistical Society. Series B (Statistical Methodology), 57(1):289–300, 1995.

[13] S. Budalakoti, A. Srivastava, R. Akella, and E. Turkov. Anomaly detection
in large sets of high-dimensional symbol sequences. NASA Ames Research
Center, NASA TM-2006-214553, 2006.

[14] S. Budalakoti, A. N. Srivastava, and M. E. Otey. Anomaly detection and
diagnosis algorithms for discrete symbol sequences with applications to air-
line safety. IEEE Transactions on Systems, Man, and Cybernetics, Part C,
39(1):101–113, 2009.

99

[15] J. B. D. Cabrera, L. M. Lewis, and R. K. Mehra. Detection and classification
of intrusions and faults using sequences of system calls. SIGMOD Record,
30(4):25–34, 2001.

[16] N. Castro and P. Azevedo. Time Series Motifs Statistical Significance. In
SIAM International Conference on Data Mining, pages 687–698, 2011.

[17] S. Chakrabarti, S. Sarawagi, and B. Dom. Mining surprising patterns using
temporal description length. In International Conference on Very Large Data
Bases, pages 606–617, 1998.

[18] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM Computing Surveys, 41(3):15:1–15:58, July 2009.

[19] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection for discrete
sequences: A survey. IEEE Transactions on Knowledge and Data Engineering,
24(5):823–839, 2012.

[20] V. Chandola, V. Mithal, and V. Kumar. Comparative evaluation of anomaly
detection techniques for sequence data. In IEEE Internation Conferenece in
Data Mining, pages 743–748, Washington, 2008.

[21] S. F. Chen and J. Goodman. An empirical study of smoothing techniques
for language modeling. In Annual Meeting on Association for Computational
Linguistics, pages 310–318, 1996.

[22] B. Chiu, E. Keogh, and S. Lonardi. Probabilistic discovery of time series
motifs. In ACM SIGMOD international conference on Management of data,
pages 493–498, 2003.

[23] M. C. Chuah and F. Fu. ECG anomaly detection via time series analysis. In
IEEE International Symposium on Parallel and Distributed Processing with
Applications, pages 123–135, 2007.

[24] W. W. Cohen. Fast effective rule induction. In International Conference on
Machine Learning, pages 115–123, 1995.

[25] P. G. da Fonseca, K. S. Guimarães, and M. F. Sagot. Efficient representa-
tion and P-value computation for high-order Markov motifs. Bioinformatics,
24(16):160–166, 2008.

[26] E. Davidson, J. Rast, P. Oliveri, A. Ransick, and C. etc. Calestani. A genomic
regulatory network for development. Science, 295(5560):1669–1678, 2002.

[27] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Anal-
ysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge Univer-
sity Press, 1999.

[28] V. J. Easton and J. H. McColl. Statistics glossary. http://www.stats.gla.
ac.uk/steps/glossary/time_series.html.

[29] I. Erill. A gentle introduction to information content in transcription factor
binding sites. Technical report, Department of Biological Sciences, University
of Maryland Baltimore County (UMBC), 2012.

[30] E. Eskin. Modeling system calls for intrusion detection with dynamic window
sizes. In IEEE DARPA Information Survivabilty Conference and Exposition,
pages 165–175, 2001.

[31] E. Eskin and P. A. Pevzner. Finding composite regulatory patterns in dna
sequences. Bioinformatics, 18(1):354–363, 2002.

100

[32] François Fauteux, Mathieu Blanchette, and Martina V. Strömvik. Seeder:
discriminative seeding DNA motif discovery. Bioinformatics, 24(20):2303–
2307, 2008.

[33] A. V. Favorov, M. S. Gelfand, A. V. Gerasimova, D. A. Ravcheev, A. A.
Mironov, and V. Makeev. A gibbs sampler for identification of symmetrically
structured, spaced dna motifs with improved estimation of the signal length.
Bioinformatics, 21(10):2240–2245, 2005.

[34] Pedro G. Ferreira, Paulo J. Azevedo, Cndida G. Silva, and Rui M. M. Brito.
Mining approximate motifs in time series. In International Conference on
Discovery Science, pages 7–10, 2006.

[35] A. Floratou, S. Tata, and J. M. Patel. Efficient and Accurate Discovery of
Patterns in Sequence Data Sets. IEEE Transactions on Knowledge and Data
Engineering, 23(8):1154–1168, 2011.

[36] G. D. Forney. The viterbi algorithm. Proceedings of the IEEE, 61(3):268 –
278, 1973.

[37] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense of self for
unix processes. In IEEE Symposium on Security and Privacy, pages 120–128,
1996.

[38] M. C. Frith, U. Hansen, J. L. Spouge, and Z. Weng. Finding functional
sequence elements by multiple local alignment. Nucleic Acids Research,
32(1):189–200, 2004.

[39] Liu G., McDaniel T.K., S. Falkow, and S. Karlin. Sequence anomalies in the
cag7 gene of the helicobacter pylori pathogenicity island. Proceedings of the
National Academy of Sciences USA, 96(12):7011–7016, 1999.

[40] W. A. Gale and K. W. Church. What is wrong with adding one? In Corpus-
based Research into Language, pages 189–198. 1994.

[41] W. A. Gale, K. W. Church, and M. Hill. Estimation procedures for language
context: poor estimates are worse than none. In Computational Statistics,
pages 69–74, 1990.

[42] Michael R. Garey and David S. Johnson. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1990.

[43] A. K. Ghosh, A. Schwartzbard, and M. Schatz. Learning program behav-
ior profiles for intrusion detection. In Workshop on Intrusion Detection and
Network Monitoring, pages 51–62, 1999.

[44] A. K. Ghosh, A. Schwartzbard, and M. Schatz. Using program behavior pro-
files for intrusion detection. In SANS Conference and Workshop on Intrusion
Detection and Response, pages 6–6, 1999.

[45] A. L. Goldberger et al. PhysioBank, PhysioToolkit, and PhysioNet: Compo-
nents of a new research resource for complex physiologic signals. Circulation,
101(23):215–220, 2000.

[46] I.J. Good. The population frequencies of species and the estimation of popu-
lation parameters. Biometrika, 40(3):237–264, 1953.

[47] R. Gwadera, M. J. Atallah, and W. Szpankowski. Markov models for iden-
tification of significant episodes. In SIAM International Conference on Data
Mining, pages 404–414, 2005.

101

[48] R. Gwadera and F. Crestani. Ranking sequential patterns with respect to
significance. In Pacific Asia Knowledge Discovery and Data Mining, pages
286–299, 2010.

[49] S. Hanhijärvi. Multiple hypothesis testing in pattern discovery. In Interna-
tional conference on Discovery science, pages 122–134, 2011.

[50] H Hartmann, E. W. Guthöhrlein, M. Siebert, S. Luehr, and J. Söding. P-value-
based regulatory motif discovery using positional weight matrices. Genome
research, 23(1):181–194, 2013.

[51] G. Z. Hertz and Gary D. Stormo. Identifying dna and protein patterns
with statistically significant alignments of multiple sequences. Bioinformatics,
15(7):563–577, 1999.

[52] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection using se-
quences of system calls. Computer Security, 6(3):151–180, 1998.

[53] S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian
Journal of Statistics, 6(2):65–70, 1979.

[54] Y. Hong. On computing the distribution function for the sum of indepen-
dent and non-identical random indicators. Computational Statistics & Data
Analysis, 59(2):41–51, 2011.

[55] Jason D. Hughes, Preston W. Estep, Saeed Tavazoie, and George M.
Church. Computational identification of Cis-regulatory elements associated
with groups of functionally related genes in Saccharomyces cerevisiae1. Molec-
ular Biology, 296(5):1205–1214, March 2000.

[56] A. K Jain and R.C. Dubes. Algorithms for Clustering Data. Prentice Hall,
1988.

[57] S. M. Katz. Estimation of probabilities from sparse data for the language
mode component of a speech recognizer. 35(3):400–401, 1987.

[58] E. Keogh, J. Lin, and A. Fu. HOT SAX: efficiently finding the most unusual
time series subsequence. In IEEE International Conference on Data Mining,
pages 226–233, 2005.

[59] E. Keogh, S. Lonardi, and B. Y. Chiu. Finding surprising patterns in a time
series database in linear time and space. In ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 550–556, 2002.

[60] E. Keogh, S. Lonardi, and C. A. Ratanamahatana. Towards parameter-free
data mining. In ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 206–215, 2004.

[61] J. Kleffe and M. Borodovsky. First and second moment of counts of words
in random texts generated by Markov chains. Computer Applications in the
Biosciences, 8(5):433–441, 1992.

[62] T. Lane. Machine Learning Techniques for the Computer Security Domain of
Anomaly Detection. PhD thesis, Purdue University, 2000.

[63] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald, and
J. C. Wootton. Detecting subtle sequence signals: a gibbs sampling strategy
for multiple alignment. Science, 262(5131):208–214, 1993.

[64] C. E. Lawrence and A. A. Reilly. An expectation maximization (EM) algo-
rithm for the identification and characterization of common sites in unaligned
biopolymer sequences. Proteins, 7(1):41–51, 1990.

102

[65] W. Lee, S. J. Stolfo, and P. K. Chan. Learning patterns from unix process
execution traces for intrusion detection. In AAAI Workshop on AI Approaches
to Fraud Detection and Risk Management, pages 50–56, 1997.

[66] C. Li, Q. Yang, J. Wang, and M. Li. Efficient mining of gap-constrained
subsequences and its various applications. ACM Transactins on Knowledge
Discovery from Data, 6(1):1–39, 2012.

[67] Y. Li and J. Lin. Approximate variable-length time series motif discovery
using grammar inference. In Workshop on Multimedia Data Mining, pages
1–9, 2010.

[68] S. Liang, M. P. Samanta, and B. A. Biegel. Cwinnower algorithm for finding
fuzzy DNA motifs. Bioinformatics and Computational Biology, 2(1):47–60,
2004.

[69] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representation of time
series, with implications for streaming algorithms. In SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery, pages 2–11, 2003.

[70] J. Lin, E. J. Keogh, A. W. Fu, and H. V. Herle. Approximations to magic:
Finding unusual medical time series. In IEEE Symposium on Computer-Based
Medical Systems, pages 329–334, 2005.

[71] D. Liu, X. Xiong, B. DasGupta, and H. Zhang. Motif discoveries in unaligned
molecular sequences using self-organizing neural networks. IEEE Transactions
on Neural Networks, 17(4):919–928, 2006.

[72] X. Liu, Douglas L. Brutlag, and Jun S. Liu. Bioprospector: Discovering
conserved dna motifs in upstream regulatory regions of co-expressed genes. In
Pacific Symposium on Biocomputing, pages 127–138, 2001.

[73] X. Liu, Douglas L. Brutlag, and Jun S. Liu. An algorithm for finding protein-
dna binding sites with applications to chromatin-immunoprecipitation mi-
croarray experiments. Nat Biotechnol., 20(8):835–839, 2002.

[74] C. Low-Cam, C. Rassi, M. Kaytoue, and J. Pei. Mining statistically significant
sequential patterns. In IEEE International Conference on Data Mining, pages
488–497, 2013.

[75] C. Marceau. Characterizing the behavior of a program using multiple-length
N-grams. In Workshop on New Security Paradigms, pages 101–110, 2000.

[76] B. W. Matthews. Comparison of the predicted and observed secondary struc-
ture of T4 phage lysozyme. Biochimica et Biophysica Acta, 405(2):442–451,
1975.

[77] C. C. Michael and A. Ghosh. Two state-based approaches to program-based
anomaly detection. In IEEE Annual Computer Security Applications, pages
203–237, Washington, DC, 2000.

[78] R. G. Miller. Simultaneous Statistical Inference. Springer-Verlag, New York,
1991.

[79] G. Moise and J. Sander. Finding non-redundant, statistically significant re-
gions in high dimensional data: a novel approach to projected and subspace
clustering. In ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pages 533–541, 2008.

[80] G.B. Moody and R.G. Mark. The impact of the MIT-BIH arrhythmia
database. IEEE Engineering in Medicine and Biology, 20(3):45–50, 2001.

103

[81] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, New York, NY, USA, 1995.

[82] E. Mller, I. Assent, S. Gnnemann, R. Krieger, and T. Seidl. Relevant sub-
space clustering: Mining the most interesting non-redundant concepts in high
dimensional data. In IEEE International Conference on Data Mining, pages
377–386, 2009.

[83] G. Nuel. Effective p-value computations using finite markov chain imbedding
(FMCI): application to local score and to pattern statistics. Algorithms for
Molecular Biology, 1(1):5–5, 2006.

[84] P. Patel, E. Keogh, J. Lin, and S. Lonardi. Mining motifs in massive time
series databases. In IEEE International Conference on Data Mining, pages
370–377, 2002.

[85] G. Pavesi, P. Mereghetti, G. Mauri, and G. Pesole. Weeder Web: discovery
of transcription factor binding sites in a set of sequences from co-regulated
genes. Nucleic Acids Research, 32(Web-Server-Issue):199–203, 2004.

[86] J. Pei, J. Han, B Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and
M. Hsu. Mining sequential patterns by Pattern-Growth: The PrefixSpan ap-
proach. IEEE Transactions on Knowledge and Data Engineering, 16(11):1424–
1440, 2004.

[87] P. A. Pevzner and S. Sze. Combinatorial approaches to finding subtle signals
in DNA sequences. In International Conference on Intelligent Systems for
Molecular Biology, pages 269–278, 2000.

[88] M. Régnier and A. Denise. Rare events and conditional events on random
strings. Discrete Mathematics and Theoretical Computer Science, 6(2):191–
214, 2004.

[89] John A. Rice. Mathematical Statistics and Data Analysis. Duxbury Press,
Belmont, CA, 2nd edition, 1995.

[90] S. Robin and J. J. Daudin. Exact distribution of word occurrences in a random
sequence of letters. Applied Probability, 36(1):179–193, 1999.

[91] S. Robin and S. Schbath. Numerical comparison of several approximations
of the word count distribution in random sequences. Computational Biology,
8(4):349–359, 2001.

[92] S. Robin, S. Schbath, and V. Vandewalle. Statistical tests to compare motif
count exceptionalities. BMC Bioinformatics, 8:84–93, 2007.

[93] D. Ron, Y. Singer, and N. Tishby. The power of Amnesia: Learning probabilis-
tic automata with variable memory length. Machine Learning, 25(2-3):117–
149, 1996.

[94] Matthias Schonlau. Masquerading user data. http://schonlau.net/
intrusion.html.

[95] M. Z. Shafiq and A. X. Liu. A random walk approach to modeling the dynamics
of the blogosphere. In International IFIP TC 6 Conference on Networking,
pages 294–306, 2011.

[96] K. Shida. GibbsST: a gibbs sampling method for motif discovery with en-
hanced resistance to local optima. BMC Bioinformatics, 7:486–496, 2006.

[97] S. Sinha and M. Tompa. YMF: A program for discovery of novel transcription
factor binding sites by statistical overrepresentation. Nucleic Acids Research,
31(13):3586–35888, 2003.

104

[98] M. D. Smucker, J. Allan, and B. Carterette. A comparison of statistical
significance tests for information retrieval evaluation. In ACM Internationl
Conference on information and knowledge management, pages 623–632, 2007.

[99] R. R. Sokal and C. D. Michener. A statistical method for evaluating systematic
relationships. University of Kansas Science Bulletin, 38(1):1409–1438, 1958.

[100] D. Sourav and A. Bhattacharya. Mining statistically significant substrings
using the Chi-Square statistic. The Proceedings of the Very Large Database
Endowment, 5(10):1052–1063, 2012.

[101] J. D. Storey. A direct approach to false discovery rates. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 64(3):479–498, 2002.

[102] G. D. Stormo, T. D. Shneider, L. Gold, and A. Ehrenfeucht. Use of ‘percep-
tron’ algorithm to distinguish translational initiation sites in E. coli. Nucleic
Acids Research, 10(9):2997–3010, 1982.

[103] P. Sun, S. Chawla, and B. Arunasalam. Mining for Outliers in Sequential
Databases. In SIAM International Conference on Data Mining, pages 94–105,
2006.

[104] N. Tatti and J. Vreeken. The long and the short of it: summarising event
sequences with serial episodes. In ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 462–470, 2012.

[105] G. Thijs, M. Lescot, K. Marchal, S. Rombauts, B. De Moor, P. Rouze, and
Y. Moreau. A higher-order background model improves the detection of pro-
moter regulatory elements by Gibbs sampling. Bioinformatics, 17(12):1113–
1122, 2001.

[106] M. Thomas-Chollier, M. Defrance, A. Medina-Rivera, O. Sand, C. Herrmann,
D. Thieffry, and J. van Helden. RSAT 2011: regulatory sequence analysis
tools. Nucleic acids research, 39(Web Server issue):86–91, 2011.

[107] M. Tompa. An exact method for finding short motifs in sequences, with
application to the ribosome binding site problem. In International Conference
on Intelligent Systems for Molecular Biology, pages 262–271, 1999.

[108] M. Tompa. Motif discovery for predicting regulatory elements. Department
of Computer Science and Engineering, University of Washington, USA, 2011.
Lecture Notes in CSE 427: Computational Biology.

[109] M. Tompa et al. Assessing computational tools for the discovery of transcrip-
tion factor binding sites. Nature Biotechnology, 23(1):137–44, 2005.

[110] J. van Helden, B. Andr, J. Collado-vides, Fijacin De Nitrgeno, and Univer-
sitg Libre De. Extracting regulatory sites from the upstream region of yeast
genes by computational analysis of oligonucleotide frequencies. Molecular Bi-
ology, 281(5):827–842, 1998.

[111] J. Wang and J. Han. BIDE: Efficient mining of frequent closed sequences. In
IEEE International Conference on Data Engineering, pages 79–90, 2004.

[112] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intrusions using
system calls: Alternative data models. In IEEE Symposium on Security and
Privacy, pages 133–145, 1999.

[113] Geoffrey I. Webb. Discovering significant patterns. Machine Learning, 68(1):1–
33, July 2007.

105

[114] L. Wei, E. Keogh, and X. Xi. SAXually explicit images: Finding unusual
shapes. In IEEE International Conference on Data Mining, pages 711–720,
2006.

[115] L. Wei, N. Kumar, V. Lolla, E. J. Keogh, S. Lonardi, and C. Ratanamahatana.
Assumption-free anomaly detection in time series. In International Conference
on Scientific and Statistical Database Management, pages 237–240, 2005.

[116] I. H. Witten and T. C. Bell. The zero-frequency problem: Estimating the
probabilities of novel events in adaptive text compression. IEEE Transactions
on Information Theory, 37(4):1085–1094, 1991.

[117] C. T. Workman and G. D. Stormo. ANN-Spec: a method for discovering
transcription factor binding sites with improved specificity. Pacific Symposium
on Biocomputing, 5:467–478, 2000.

[118] Y. Bin Y. Qiao, X. W. Xin and S. Ge. Anomaly intrusion detection method
based on HMM. Electronics Letters, 38(13):663–664, 2002.

[119] K. Yamanishi and Y. Maruyama. Dynamic syslog mining for network fail-
ure monitoring. In ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining, pages 499–508, 2005.

[120] X. Yan, J. Han, and R. Afshar. CloSpan: Mining closed sequential patterns
in large databases. In SIAM International Conference on Data Mining, 2003.

[121] J. Yang, W. Wang, and P. S. Yu. Infominer: Mining surprising periodic
patterns. In ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 395–400, 2001.

[122] D. Yankov, E. Keogh, J. Medina, B. Chiu, and V. Zordan. Detecting time se-
ries motifs under uniform scaling. In ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 844–853, 2007.

[123] M. J. Zaki. Sequence mining in categorical domains: Incorporating con-
straints. In ACM International Conference on Information and Knowledge
Management, pages 422–429, 2000.

[124] M. J. Zaki. SPADE: An efficient algorithm for mining frequent sequences.
Machine Learning, 42(1-2):31–60, 2001.

[125] J. Zhang, B. Jiang, M. Li, J. Tromp, X. Zhang, and M. Q. Zhang. Computing
exact P-values for DNA motifs. Bioinformatics, 23(5):531–537, 2007.

[126] F. Zhu, X. Yan, J. Han, and P. S. Yu. Efficient discovery of frequent approxi-
mate sequential patterns. In IEEE International Conference on Data Mining,
pages 751–756, 2007.

106

Appendices

107

Appendix A

List of single best motifs found

by CPS on motif discovery

benchmark

Datasets best motif (pattern|mismatch) Correlation Coefficient

yst01g ACGTGAACG|2 0.161317

yst02g GGCGCACTC|2 0.366508

yst03m CTGACTGCCT |4 0.143583

yst04r CGGGCTTCC|2 0.413408

yst05r No motifs found NaN

yst06g CCTAATTGG|2 0.459297

yst07m No motifs found 1.000000

yst08r CCCAGACCG|2 0.317129

yst09g AGCCGCCGA|2 0.402748

yst10g No motifs found 1.00000

hm01g ATCGAT |1 0.0003

hm02r ACACACACA|2 -0.022845

hm03r ATCTATCTA|2 -0.004013

hm04m TCGATCGCC|2 -0.008672

hm05r GCGCCGTCG|2 -0.042911

hm06g CACGTGACC|2 0.428752

hm07m TAGCCATGG|2 0.111794

hm08m CTAACGTCA|2 0.464688

hm09g ATCTATAAA|2 -0.012551

hm10m CTTTTCGCG|2 0.359909

hm11g CGTCGT |1 0.020063

hm12r TATAGGACT |2 0.242943

hm13r ATCATTAAC|2 0.309013

hm14 ATCTATTTA|2 0.199734

hm15r AAATCGGAA|2 -0.015190

hm16r TACGTA|1 0.019723

hm17g TCGGGAATT |2 0.453401

To be continued

108

Table A.1 – Continued

Datasets best motif (pattern|mismatch) Correlation Coefficient

hm18m CGCGAATCG|2 -0.008618

hm19g AGCGACGGG|2 -0.032698

hm20r ATCGAACTC|2 -0.01

hm21g CCGGTCGCT |2 -0.020455

hm22m CGCACGTGA|2 0.623910

hm23r GGCAGGATGG|3 0.121116

hm24m CGTTTCGGG|2 0.134159

hm25g CTATAGTAC|2 0.304641

hm26m CCGTGACGC|2 0.025258

mus01r No motifs found NaN

mus02r TAAGACTAA|2 -0.021814

mus03g CCGCCACTCC|4 0.014435

mus04m TTGCGCAA|2 0.211805

mus05r GTAAAACCA|2 0.088244

mus06g ACACAAGGG|2 0.108647

mus07g CGNNNN |1 -0.004119

mus08m No motifs found NaN

mus09r TATGTAAAA|2 0.587622

mus10g ACTCCGCAC|2 0.214365

mus11m GCGCGGGCG|2 0.385669

mus12m TTTCCAATG|2 0.179836

dm01g GGGATCGCT |2 0.043744

dm02g CTTAACCCG|2 0.138071

dm03m TGGTTAACG|2 -0.018730

dm04g CGCACGTAC|2 -0.000856

dm05g GTCCGCGTT |2 -0.020431

dm06r TAGATACCT |2 -0.032318

dm07m GTGAGGGTT |2 NaN

dm08m TACCGTTAG|2 NaN

109

Appendix B

Conjecture: Constructing a

Core Pattern Set is NP-Hard

As it was formalized in Definition 10, the Core Pattern Set for a set of significant
patterns O is a subset E that explains (Definition 7) all significant patterns in O,
and that has the minimum cardinality among all such subsets. In this section, we
show that the decision version of the Core Pattern Set problem is likely to be NP-
complete. The main intuition behind this conjecture is that the decision version of
the Core Pattern Set problem is very similar to the problem of the Dominating Set
problem.

In graph theory, a dominating set for a graph G = (V,E) is a subset D of V such
that every vertex not in D is adjacent to at least one member of D. The domination
number γ(G) is the number of vertices in a smallest dominating set for G. The
decision version of the dominating set problem concerns testing whether γ(G) ≤ K
for a given graph G and input K; it is a classical NP-complete decision problem
in computational complexity theory [42]. Therefore it is believed that there is no

efficient algorithm that finds a smallest dominating set for a given graph. In the
following, we first prove that the dominating set problem is also NP-Complete in
a directed graph. Then, we present our conjecture on the NP-Completeness of the
core pattern set problem.

Theorem 15 Given a directed graph G = (V,E) and an integer K, the problem of
deciding whether G contains a dominating set of size at most K is NP-Complete.

Proof. We give a proof of NP-completeness by reducing the set cover problem
to the dominating set problem. It is easy to prove that the directed dominating set
is in NP. For a given solution, we just need to verify that each node of the graph is
either in the solution, or is connected by a node in the solution through an incoming
edge. This can be done in polynomial time.

Reduction: The reduction from the set cover to the dominating set problem in
the directed version works similar to the case of an indirected graph. Let (S,U) be
an instance of the set cover problem with the universe U and the family of subsets
S = {Si : i ∈ I}. Construct a directed graph G = (V,E) as follows:

• The set of vertices is V = I ∪ U

• There is a directed edge (i, j) ∈ E between each pair i, j ∈ I. There is also a

110

directed edge (i, u) for each i ∈ I and u ∈ Si. This results in I being a clique
and U being an independent set.

Now, if C = {Si : i ∈ D} is a solution of the set cover problem for some subset
D ⊆ I, then D is a dominating set for directed graph G, with |D| = |C|. The reason

is that for each node u ∈ V two cases are possible. If u ∈ U , there is an index
i ∈ D such that u ∈ Si, and due to the reduction properties, there is an edge between
i towards u in the directed graph G. In the case that u ∈ I, every such a node is
either in D or has an incoming edge from a node in D, again due to the fact that I
is a clique, and D ⊆ I.

Conversely, let D be a dominating set for the directed graph G. Then, we can

construct another dominating set X such that |X| ≤ |D|, and X ⊆ I. In other
words, we can construct a dominating set of size at most |D| such that every node
in this dominating set are selected from the set of nodes in I. To do so, we simply
replace each u ∈ D∩U with a node in i ∈ I so that there is a directed edge from i to
u (there should be at least one node in I with this property or no set cover is feasible
for this instance of the problem). Then, C = {Si : i ∈ X} is a feasible solution of
the set cover problem, with |C| = |X| ≤ |D|.

An example reduction from the set cover problem to the dominating set prob-
lem is illustrated in Figure B.1. In this example, the union set is defined as
U = {a, b, c, d, e}, and I = {1, 2, 3, 4}. Four different sets are defined as S1 =
{a, b, c},S2 = {a, b}, and S3 = {b, c, d}, and S4 = {c, d, e}. Based on these defini-

tions, the set C = {S1, S4} is a set cover. This corresponds to the dominating set
D = {1, 4}.

The decision version of the core pattern set problem is very similar to the min-
imum dominating set problem, as we have to decide if all the patterns in a set of
significant patterns can be explained by a subset of cardinality at most K. This will
lead to the following conjecture, whose proof is left as an open problem.

Conjecture 16 For a set of significant patterns O, the problem of deciding whether
a subset E of size at most K exists which explains (as formalized in Definition 7)
all patterns in O is NP-Complete.

111

!"

#"
$" %"

&" '" (")" *"

Figure B.1: Set covert problem to dominating set problem reduction: An illustration

112

Appendix C

Speeding-up Strategies and

Implementation Issues

In this section, we present some of the techniques employed for speeding-up the
running time of our algorithm, by speeding-up the P-value calculation and the core
pattern set construction steps of our algorithm.

C.1 Early Abandonment of Exact P-value Computation

We use Formula 4.2 for calculating the exact p-values and finding statistically sig-

nificant patterns in the first step of our algorithm. The values of functions f(i, j)
are stored in a two-dimensional matrix with l rows and t columns, where l is length
of the data sequence, and t is the observed frequency of the pattern in the data
sequence. The cells of the matrix can be filled horizontally (smallest rows first) or
vertically (smallest columns first) following a dynamic programming technique. As
shown in the formula 4.2, the p-value of a word W is equal to the sum of values in

the last row (i.e. the row with index t). In calculating the p-values, when evaluating
the significance of a pattern or in the case of testing for an explain relation where
the p-value of a pattern should be computed in the presence of a constraint set, we
are only interested to determined if the p-value is smaller than a significance level α.
Because we are only interested in patterns whose p-values are less than a significance
level α (usually a very small value such as 0.01), we can fill the matrix vertically and
abandon the calculations as soon as the sum of the cells in the last row exceeds the

significance level α. This strategy could save unnecessary calculations especially in
a long data sequence. The same strategy can be used in formula 4.5 for calculating
p-values in a sequence with a constraint set.

C.2 Approximating P-values

Calculating the exact p-values of patterns could be a time consuming task when the
input sequence is very long and/or the size of the alphabet (i.e. number of unique
symbols) is very large. Unfortunately, exact results are not adapted in practice for
long sequences because of heavy numerical calculation, but they allow the user to
assess the quality of the stochastic approximations when no approximation error

113

can be provided.
Even though the early abandoning strategy improves the running time for some

patterns, an exact p-value calculation seems impractical if we have to do it for
a very large number of candidate surprising patterns. In practice, approximation
techniques are used to compute the p-value of patterns in a reasonable time [92,
98]. Three common approximation approaches to computing p-values which are

used in practice include the Gaussian, the Poisson, and the Compound Poisson
approximation.

We are concerned with the distribution of counts of a k-letter word W = w1...wk

in a sequence S of length ℓ. Let N be a random variable representing the number of
counts of a k-letter word W . For a given word W with observed frequency t, we are
interested in the probability distribution function pdf(N, t) = Prob(N = x), ∀x ≥ 0,

and the cumulative distribution function C(N, t) = P (N ≤ t).
Let π(W) represents the probability of occurrence of W at any location of se-

quence S. At it was presented in Section 4.1 and equation 4.2, the exact distribution
of counts of W can be obtained via the distribution of the position i of the n-th
occurrence of W in S. The computation time is in O(ktlog(ℓ)) in most cases, but
for the sake of numerical stability, an elementary algorithm of complexity O(ktℓ) is
often more satisfying [91], where k is the length of the work W , ℓ is the length of

the sequence S, and t is the observed frequency of the word W in the sequence S.
The distribution of counts of the word W , represented by the random variable

N , depend on the overlapping structure of the word W , which are captured in some
approximation techniques such as the Gaussian approximation. The period of a
word W is defined as follows:

Definition 17 A period of the word W = w1w2...wk is an integer p ∈ {1, ..., k− 1}
such that wi = wi+p, ∀i = 1, ..., k − p. We denote the set of periods of W by P(W).

Let P ′
(W) be the set of the principal periods of W , i.e. the periods that are

not strictly multiple of a minimal period of W . We define the quantities Ai(W) and
AW as follows:

Ai(W) = π(w1...wi) for i = 1, ..., k (C.1)

A(W) =
∑

p∈P
′
(W)

Ap(W)

C.2.1 Gaussian Approximation

Kleffe et al. show that the first (mean) and the second (variance) moments of counts
of W can be computed using the following formulas [61]:

Eµ(N) = (ℓ− k + 1)π(W) (C.2)

Vµ(N) = Eµ(N) + 2
∑

p∈P

(ℓ− k − p+ 1)π(w1...wpw1...wk)

+π2(W)[ℓ(1− 2k) + 3K2 − 4k + 1] (C.3)

114

where P ′
(W) is the set of the principal periods of W . Using the central limit theorem

[89], the distribution of N converges to a Gaussian distribution as the length of the
sequence grows to ∞. The distribution of N is then approximated by the Gaussian
distribution with mean Eµ(N) and variance Vµ(N), as follows:

P (N = t) =
1

√

2πVµ(N)
e
−

(t−Eµ(N))2

2Vµ(N) (C.4)

which gives us a simple tool to compute the p-value of a word W with an observed
frequency of t using the cumulative probability function. The Gaussian approxima-
tion of the count of a word is based on the fact that the expected count is a linear
function of the length of the sequence, which is valid only for frequent words.

C.2.2 Poisson Approximation

The countN of a word occurrence can be approximated using a Poisson distribution,
where the events (i.e. word occurrences) are assumed to be independent of each

other, and the random variable N represents the number of events among a total
number of trials (i.e. length of the data sequence). The approximation comes from
the fact that the probability of occurrence of words are independent from each other,
where in practice it does not hold.

Based on this model, the p-values can be approximated using the Poission dis-
tribution (N ∼ ρ(λ)), with λ as the parameter of the distribution being equal to

ℓ× π(W), where ℓ is the length of the input sequence and π(W) is the probability
of occurrence of the word W at any location.

The p-value of a word W with an observed frequency t in the data sequence can
be approximated using the following formula [16]:

P (N ≥ t) = P (ρ(λ) ≥ t) = 1− e−λ
t−1
∑

i=0

λi

i!
(C.5)

Among the presented approximation methods, we implemented the Gaussian
and the Poisson approximation techniques for computing p-values. We adopted to

use the Poisson approximation because it proved to be much faster than the Gaus-
sian approximation in our experiments. Approximations of p-values can be used in a
filtering step for exact p-value calculations. In our method, the maximum difference
ǫ between an exact p-value and its approximate value based on the Poisson distri-
bution is estimated using a subset of the data. Then, a two-step filter-refinement
procedure is used for selecting statistically significant patterns. First, the p-value
of a pattern is approximated using the Poisson distribution. If the approximate p-

value is less than α+ ǫ, the exact p-value of the pattern is calculated for a statistical
test w.r.t the significance level α. Otherwise, the pattern will be considered as not
being statistically significant.

Given the fact that in real-world settings most of the subsequences in the data
are normal, an approximation using a method such as Poission distribution will
avoid costly exact p-value calculations for a large number of patterns in the data.

It is worth mentioning that in our experimental evaluation (Section 7), we use
approximate p-values as filter step only for experiments on the Masquerading user
dataset, in which the large number of symbols in the dataset made an exact p-value

115

calculation too time consuming. In other experiments, we calculated the exact
p-values using the early abandoning strategy. Our approach to calculating the p-
values in the extended model (i.e. mismatch string model), which is also based on
a Poission distribution, was discussed in more details in Chapter 5.

C.3 Exploiting Pattern Locality in the Explain Relation

In the pseudocode provided in Section 4.2, every pair of patterns pi and pj in the
set of unexplained patterns Prest are considered, to see whether adding a pattern
such as pi to the current solution can explain the significance of another pattern pj ,
i.e. we check if (Psol ∪ {pi}) ≻ pj . This involves p-value calculations with a new
constraint set for each pair in Prest, which is a time consuming task.

The information about overlapping between patterns can be exploited to avoid
unnecessary p-value calculations. The idea is that if two patterns pi and pj don’t
have any overlap (i.e. no prefix/suffix of pi is a suffix/prefix of pj and none of
the patterns is a substring of the other one), and also the current solution cannot
explain the significance of the pattern pj , then the new solution which is constructed
by adding the pattern pi to the existing solution (i.e. (Psol ∪ {pi})) cannot explain
the pattern pj as well. This justification is formalized in the following theorem:

Theorem 18 Assume that a set O of patterns cannot explain the significance of
another pattern pj. If a pattern pi /∈ O does not intersect the pattern pj, then the
set of patterns N = O ∪ {pi} cannot explain the significance of pj.

Proof. In order to prove that the set N cannot explain the significance of the

pattern pj, we have to show that Prob(frequency(pj) ≥ t|CN,S) ≤ α, where S is
the data sequence, t is the observed frequency of pj in S, CN,S is the constraint set
resulting from the set N , and α is the significance level used for statistical tests.

We use the Poisson Binomial distribution, as introduced in Chapter 5, to approx-
imate the p-value of the pattern pj in the presence of a constraint set. For simplicity,
we assume that the input sequence has a uniform background distribution.

Let Q = {q1, q2, ..., qn} and R = {r1, r2, ..., rn} represent the success probabilities

of occurrence of the pattern pj in locations l = 1, ..., n of sequence S under constraint
sets CO,S and CN,S, respectively, where n is the length of the input sequence S. Using
the fact that the patterns pi and pj don’t have any intersection, it is easy to verify
that ql ≥ rl, where 1 ≤ l ≤ n. The reason is that the constraint set CN,S includes all
the constraints specified by CO,S, as well as new constraints that are due to addition
of the new pattern pi to the constraint set CO,S. Let I represent the set of indices

occupied by instances of the pattern pi in sequence S. The fact that the constraint
set CN,S should comply with symbols in S at all locations specified by I, and the fact
that the patterns pi and pj cannot have any intersection with each other, imply that
the probability of occurrence of pj is equal to 0 at all indices specified by I under
the constraint set CN,S. On the other hand, the probability of occurrence of pj is
equal to Prob(pj) > 0 at all indices specified by I under the constraint set CO,S.

Therefore,

Prob(frequency(pj) ≥ t|CN,S) ≤ Prob(frequency(pj) ≥ t|CO,S) (C.6)

116

On the other hand, the fact that the set O of patterns cannot explain the signif-
icance of the pattern pj implies that

Prob(frequency(pj) ≥ t|CO,S) ≤ α (C.7)

Using C.6 and C.7, we can conclude that Prob(frequency(pj) ≥ t|CN,S) ≤ α.

This completes the proof of the theorem.

The useful consequence of the this theorem is that it can help reduce the scope
of explain relation tests for a pattern. In other words, in the process of testing the

patterns that can be explained by a new set of patterns, the search space can be
limited to the set of patterns which have intersection with the newly added pattern
(i.e. pi) to the new solution.

Example 19 In the Example 11, and for 3 patterns A = “44334334′′, B = “55535′′,

and C = “5535′′, the explain relation tests ({A} ≻ {B})? and ({A} ≻ {C})? can be
skipped based on the theorem 18 and the fact that the pattern A does not have any
intersection with patterns B and C.

It is worth mentioning that the intersection property based on what formalized

in theorem 18 might not be as helpful as the general model (i.e. exact string match-
ing) in avoiding the explain relation tests in the extended model (i.e. mismatch
string model). The reason is that the proposed mismatch model for motifs allows a
mismatch at any location of a pattern as long as the total number of mismatches
is less than a threshold. Therefore, in order to exclude an explain relation test
U ≻ {P}, we have to make sure that the pattern P does not have an intersection
with any of the patterns in the set U considering all possibilities of mismatches in

the patterns contained by set U .

C.4 Using Prefix Tree to Speed-up Probability Compu-

tations

The statistical significance of patterns depends on the probability of occurrence of
the patterns at any location of the sequence, given the underlying model that is
learned using the training data. No matter which measure is used for evaluating the
statistical analysis of the patterns (e.g. p-value, E-value, information content), we
we need to compute the probability of occurrence for a large number of potential

significant patterns. This involves an extensive computation for long sequences.
Efficient computations of these probabilities is crucial in the overall running time of
a method.

We use a Prefix tree data structure to speed-up the computation process. The
application of a prefix tree data structure for p-value computation speed-up is based
on two main observations: 1) many patterns share the same prefix; and 2) calculation
of the probability of a pattern based on a Markov chain model will depend on the

probability of their prefixes. This makes a prefix tree a suitable data structure for
reducing the time complexity and space complexity.

117

A Tri, or a Prefix Tree, is an ordered tree data structure that is used to store
a dynamic set of keys which are usually strings, and have the potential of sharing
a prefix. The root of the prefix tree is associated with the empty string. All the
descendants of a node have a common prefix of the string associated with that node,
and each node has a maximum fan-out equal to the length of the alphabet. Unlike
a binary search tree, no node in the tree stores the key associated with that node;

instead, its position in the tree defines the key with which it is associated. It can be
verified that the widely-used operations ‘insert’ and ‘lookup’ can be implemented in
O(m), where m is the length of the pattern.

We use the nodes of the prefix tree to store additional data, in addition to the
key of the node which corresponds to a symbol in the alphabet

∑

. In each node
V of the tree, we store the probability of occurrence of the pattern corresponding

to the list of symbols from the root to node V . Figure C.1 shows an example of a
prefix tree used for storing the probability of occurrence of patterns.

!"#$% !"&$%'"($%

!"##$%
'"(#$%

!"#($%
!"&($%

#%

(%

&%

#% (% #% (%

!"#(&$%

&%

Figure C.1: A prefix tree data structure storing the probability of patterns.

For a new pattern W = w1w2...wm, we first query the prefix tree data structure
to see if the pattern is already in the tree. The lookup involves matching the symbols

of the pattern W against the branches of the tree until either all the symbols of the
pattern W have been consumed, in which we have a hit, or until the point where
no child node can be matched against the current symbol in the pattern W , in
which we have a mismatch. If the pattern is already stored in the tree, we are done.
Otherwise, we insert the pattern in the tree from the last node in the tree which has
been matched against the current symbol in the pattern.

Example 20 Assume that we are going to insert a new pattern W =“abcda” in the
prefix tree example in Figure C.1. Also, assume that the underlying distribution of

118

the data is represented by a Markov chain model of order 2. The insertion procedure
of pattern W in the tree consists of the following steps

1. The substring Q =“abc” matches with a path in the tree, ending in node V ,
and as a result no branching is required up to symbol c.

2. No child node of V matches the next symbol of W , which is d. As a result, a
new node U is created under node V with connecting edge d. The probability
of occurrence of substring X =“abcd” is equal to P (Q)× P (d|bc), assuming a
Markov chain of order 2, which is easily derived from the probability transition
matrix of the Markov chain model. The computed probability for substring X

is stored in the newly created node U (as shown in Figure C.2).

3. Again, no child node of U matches the next symbol of W , which is a. As a
result, a new node Z is created under the node U with connecting edge a. The
probability of occurrence of the substring “abcda” is equal to P (X)× P (a|cd).
The computed probability is stored in the newly created node Z (as shown in

Figure C.2). This completes the insertions procedure. The new prefix tree
after the insertion is shown in Figure C.2.

C.5 Parallel Implementation on the Westgrid Cluster

Computing the probability of occurrence for patterns with larger mismatch degrees
is a time-consuming task, despite all the improvements achieved through the tech-
niques proposed in Section C.4. To remedy this problem, and to improve the running
time of our proposed method with the extended mismatch model, we investigated
the parallel implementation of our proposed framework. The parallel implementa-

tion was used to run our experiments on the motif discovery benchmark, which will
be discussed in Section 7.5.

Due to the fact that the probability computations of mismatch patterns are the
bottleneck of our method, we tried to identify the components which rely on theses
probability computations, and make them as parallel as possible. Referring to the
Figure C.3 which represents the components of our proposed framework, we can see
that the Statistical Test Analysis and Core Pattern Set Construction components

involve computing p-values of patterns, which in turn relies on computing the prob-
ability of occurrence of a pattern. These two components are redesigned for parallel
implementation.

C.5.1 Parallel Statistical Test Analysis

The goal of this component is to compute the p-values of all extracted patterns from
the sequence data. In the parallel implementation, we divided this component into
two sub-components which run sequentially, as follows:

• Fast, Selective P-value Computation: In this component, we scan the

extracted patterns, and compute the p-value of the patterns for which the
computation can be completed fast (i.e. less than a few seconds). The com-
putation speed is mainly derived by the number of mismatches and the length

119

!"#$% !"&$%!"'$%

!"##$%
!"'#$%

!"#'$%
!"&'$%

#%

'%

&%

#% '% #% '%

!"#'&$%

&%

!"#'&($%

!"#'&(#$%

)%

*%

+%

(%

#%

,%!"#'&$-!"(.'&$%

,%!"#'&($-!"#.&($%

Figure C.2: The prefix tree data structure C.1 after adding the patternW =“abcda”.

of the pattern. In our experiments on motif discovery benchmark, we calcu-
lated the p-value for patterns whose length is less than 10 and the maximum
number of mismatches are less than 3. The remaining patterns are passed to
the next step to be processed in parallel.

• Costly P-value Calculators: A separate job is created for patterns whose
p-value computation is time-consuming, and is assigned to a costly p-value
calculator component. These components can be executed in parallel, and
contribute significantly to reducing the running time for heavy p-value com-
putations. In Figure C.3, these components are represented by small compu-
tation boxes chained in a row in the Statistical Analysis Test component.

120

C.5.2 Parallel Core Pattern Set Construction

The Core pattern set construction is another component of our framework which
relies heavily on p-value computations. In each step of our greedy search strategy,
we want to select the best explaining pattern (i.e. q∗), which explains the largest
number of remaining patterns. In each step of the greedy search algorithm, the
number of patterns explained by a specific pattern A, in the presence of a constraint
set, is independent of the number of patterns which can be explained by another

pattern B (Conceptually, we might be able to draw some conclusions on one explain
count from another explain count, but the way the explain relations have been
implemented in our framework, they are independent of each other). Therefore,
these processes can be executed in parallel.

In the parallel implementation of the core pattern set component, two sub-
components are identified as follows:

• Explain Relation Testers: In each step of the greedy search algorithm,
a separate job is created to count the number of patterns explained by any
pattern in the set Prest. Every such a job is assigned to a sub-component
explain relation tester, which is executed in parallel to other sub-components
of this type. In Figure C.3, these components are represented by computation

boxes chained in a row in the Core Pattern Set Construction component.

• Aggregator: The goal of an aggregator component is to select the best ex-
plaining pattern q∗, which explains the largest number of remaining patterns,
based on the output of the explain relation tester jobs for different patterns.

Upon selection of the best pattern q∗, the sets Psol and Prest are updated,
and passed through the next step of the greedy search algorithm. In Figure
C.3, these components are represented by wide boxes in the Core Pattern Set
Construction component, which get their input from all the explain relation
testers in the same step of the search algorithm.

The parallel implementation of the core pattern set component involves alternate
execution of sub-components explain relation testers, which are run in parallel, and
the aggregator. The algorithm stops when the set Prest becomes empty after an
execution of an aggregator sub-component.

The parallel architecture of our core pattern set framework is represented in Fig-
ure C.3. The parallel components of heavy p-value calculators and explain relation

testers are denoted in a single horizontal layer, and are connected to each other in
dotted lines.

We used the Westgird Canada computational resources for running our parallel
core pattern set framework. The Westgrid framework provides utilities for submit-
ting, scheduling, and allocating the resources for jobs. In particular, we used the
“grex” and “hermes” clusters for running our experiments on the Westgird Canada.

121

!

!

!

!

!

!

!

!

!

!

!

!

!"#$%&'$'%

('$$")*%+,$)'-$./*!

!

0/))"-$./*%1/)%234$.54"%!"#$.*6!!

!

"#$%!&'!

()*+,!!

"#$%!-'!!

()*+,./0!

"#$%!1'!

()*+,./2!30!

"4! 0
/
)"
%(
'
$$
"
)*
%7
"
$%
0
/
*
#$
)3
-$
./
*
!!

8'#$9%7"4"-$.:"%5;:'43"%0/<53$'$./*%

7
$'
$.
#$
.-
'
4%
!
"
#$
%=
*
'
4>
#.
#%

%5&! %5-! %51! %56!
!!!!!!!!!!!!!!!!!!!!!%

?
"
'
:
>
%5
;:
'
43
"
%

-'
4-
3
4'
$/
)#
%

!!!!!!!!!!!!!!!%

=66)"6'$/)!

!!!!!!!!!!!%

=66)"6'$/)!

!!!

+
,
5
4'
.*
%@
"
4'
$.
/
*
%!
"
#$
"
)#
%

+
,
5
4'
.*
%@
"
4'
$.
/
*
%!
"
#$
"
)#
%

+
,
5
4'
.*
%@
"
4'
$.
/
*
%!
"
#$
"
)#
%

Figure C.3: Parallel Implementation of Our Framework on Westgrid Canada.

122

