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Abstract A multi-dimensional, compressible fluid flow solver, valid in both chan-
nel and porous media, is derived by volume-averaging the Navier-Stokes equations.
By selecting an appropriate average density/velocity pair, a continuous, stable so-
lution is obtained for both pressure and velocity. The proposed model is validated
by studying the pressure drop of two commonly used experimental setups to mea-
sure in-plane and through-plane permeability of fuel cell porous media. Numerical
results show that the developed model is able to reproduce the experimentally mea-
sured pressure drop at varying flow rates. Further, it highlights that previously
used methods of extracting permeability, which rely on the use of simplified one-
dimensional models, are not appropriate when high flow rates are used to study
the porous media. At high flow rates, channel-porous media interactions cannot
be neglected and can result in incorrect permeability estimations. For example, at
flow rates of 1 SLPM a discrepancy of 12% in pressure drop was observed when
using previous permeability values instead of the values obtained in the article
using the proposed 3D model. Given that at high flow rate one-dimensional mod-
els might not be appropriate, previous estimations of Forchheimer permeability
might not be accurate. To illustrate the suitability of the numerical model to fuel
cell applications, fluid flow by-pass in serpentine and interdigitated fuel cell flow
channels is also investigated.
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1 Introduction

Analysis of fluid flows in porous media is required in many engineering applica-
tions such as fuel cells, enhanced oil recovery, chemical reactors, and environmental
problems. Mass, momentum, and energy transport in porous media are governed
by its internal porous structure. Despite the significant growth in computational
resources, the computational effort required to model transport phenomena in
such complex geometries is still beyond their capacity. Therefore, macroscopic
porous medium approximations, based on averaging the pore-scale over a repre-
sentative elementary volume, are still commonly used (Whitaker (1999); Gray and
Lee (1977); Whitaker (1969); Hendrick et al. (2012)).

The first macroscopic empirical model for one-dimensional incompressible flows
through porous media was proposed by Darcy (1857). Darcy equation provides the
simplest linear relationship between fluid flow parameters in porous media under
the physically reasonable assumption that fluid flows are very slow. A nonlin-
ear correction to Darcy equation for higher pore-scale flow velocity was proposed
by Forchheimer (1901).

Many practical engineering applications, as for example polymer electrolyte
fuel cells, deal with the systems composed of free flows in channels coupled with
flows in porous media. Since both Darcy equation and Forchheimer-extended
Darcy flow model do not contain a shear-stress term (i.e., µ∇2v term), they cannot
be used at the interface between channels and porous media because they do not
accept the use of no-slip or partial-slip boundary conditions at the interface be-
tween impermeable walls and porous media (Beavers and Joseph (1967)). Starting
from the original experimental work of Beavers and Joseph (1967), the coupling of
free channel flows governed by incompressible Stokes/Navier-Stokes equations with
porous medium flows governed by either Darcy equation or Darcy-Forchheimer
equation has been extensively studied in the literature. The key idea of these cou-
pling techniques assumes imposing some sort of special boundary conditions on the
channel-porous medium interface. Examples of such interface conditions are Levy
and Sanchez-Palencia (1975), Beavers and Joseph (1967), and Saffman (1971).

Most of the finite element formulations developed for the coupled problem are
based on appropriate combinations of stable elements in both flow regions. Very
often the Navier-Stokes equations in the fluid domain are discretized by Taylor-
Hood elements and the Darcy equations in the porous medium are discretized by
Raviart-Thomas elements. Alternatively, mortar finite element techniques, discon-
tinuous Galerkin schemes, and stabilized formulations have also been applied to
solve the coupled problems. The coupled Stokes and Darcy models have been stud-
ied for example in Burman and Hansbo (2007); Bernardi et al. (2008); Urquiza
et al. (2008). The Navier-Stokes and Darcy coupling has been analyzed by Discac-
ciati and Quarteroni (2009); Badea et al. (2010); Chidyagwai and Rivière (2009).
Since the velocity in the Darcy equations is curl-free while in the Stokes/Navier-
Stokes equations it is not, their coupling at the common interface is not very
natural and therefore non-trivial. It brings additional problems at the lines of in-
tersection of impermeable walls and the interface between the fluid and porous
domains. Indeed, from the porous side, only the normal component of the velocity
can be prescribed while from the fluid side, both components are to be prescribed.
Additionally, the use of different types of discretization in the two different areas,
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and the special care needed to couple them, complicates the implementation of
such algorithms.

If the porosity of the porous media is high, as for example in fibrous materials
and foams (Auriault (2009)), an alternative to the Darcy equation is given by
the Brinkman equation. The Brinkman equation can be naturally coupled with
incompressible Stokes/Navier-Stokes flows in the fluid domain and can be sup-
plemented with appropriate boundary conditions at the impermeable walls of the
porous domain. Since the porosity of the gas diffusion layer of polymer electrolyte
fuel cell is relatively high, the Brinkman model is widely used to model it. In or-
der to account for inertial effects and non-linear drag in the porous medium, the
steady-state Brinkman momentum equation is often corrected by adding a con-
vective term and a Forchheimer drag force term (see for example Hsu and Cheng
(1990); Vafai and Tien (1981)).

Srinivasan and Rajagopal (2014) and Rajagopal (2007), starting from the com-
pressible Navier-Stokes equations, and invoking more and more severe restrictions,
obtained first the Brinkman, and then the Darcy models of flows in porous media.
Many articles have used the Brinkman equations to model the coupled flow in the
gas channel and the gas diffusion porous layer in polymer electrolyte fuel cells. The
effect of porous matrix permeability on convective transport in a gas diffusion layer
(GDL) was studied by Pharoah (2005); Saha and Oshima (2012), and Park and Li
(2007). The pressure drop along with cross flow behaviour in polymer electrolyte
fuel cells with serpentine gas channels was investigated by Saha et al. (2008); Park
and Li (2011); Salahuddin et al. (2013), and Zhang et al. (2019b). The system
composed of serpentine gas channels with a trapezoidal cross-sectional shape and
underlying GDL was studied by Sun et al. (2006). Numerical investigation of the
cross flow effects on the performance of polymer electrolyte fuel cells was carried
out by Salahuddin and Oshima (2013); Hashemi et al. (2012); Nguyen et al. (2004).
In most of these studies, an incompressible form of the Navier-Stokes/Brinkman
equations was used. Only a few of these studies considered the compressible form
of the momentum equation (Nguyen et al. (2004); Hashemi et al. (2012); Salahud-
din and Oshima (2013); Zhang et al. (2019b)). The permeability coefficients were
either estimated from empirical correlations (Gebart (1992)) or obtained from lit-
erature data based on a simplified model (Gostick et al. (2006); Pant et al. (2012);
Carrigy et al. (2013); Mangal et al. (2015)).

The use of an incompressible form of the Navier-Stokes/Brinkman equation in
fuel cells is puzzling since the changing composition of the reacting gas mixture
can lead to large changes in the mixture density as it flows through the channels
and the porous media, especially in the anode channel. Santamaria et al. empha-
sized the importance of using a compressible fluid flow model for flow-field designs
that force the gas flow through the porous material, such as interdigitated chan-
nels (Santamaria et al. (2013)), and many other studies in the literature have also
considered a compressible fluid flow model when analyzing fuel cells with interdigi-
tated channels (e.g., Yu et al. (2009); Jian et al. (2014); Mahmoudi et al. (2016); Li
and Sundén (2018)). A compressible form of the Navier-Stokes/Brinkman equa-
tion appears therefore to be more appropriate. Using the compressible Navier-
Stokes/Brinkman equation in channels and porous media might however lead to
unstable numerical schemes depending on the volume-averaging technique used
to define the density and velocity in the porous media. Therefore, an objective
of this paper is to develop a numerically stable volume-averaged discrete model
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based on the steady-state, compressible Navier-Stokes equations, and use it to
study gas flows in a channel interfaced with a porous layer. In the process, a clear
interpretation of the solution variables will be provided.

Experimental methods for measuring permeability usually involve the use of
a one-dimensional porous media model developed using either Darcy or Darcy-
Forchheimer equation. The permeability coefficient is estimated by fitting the ex-
perimentally measured pressure drop across the porous media at different mass flow
rates to the one-dimensional model predictions. A compressible form of the fluid
flow equations is usually used to estimate the permeability tensor K̂ and nonlinear
Forchheimer correction tensor β̂, e.g., Feser et al. (2006); Gostick et al. (2006);
Gurau et al. (2007); Ismail et al. (2009); Pant et al. (2012); Carrigy et al. (2013).
Under the conditions typically used in experiments, the incompressible assump-
tion has been shown to underestimate the through-plane and in-plane permeability
components by 9% (Ismail et al. (2009)) and 23% (Ismail et al. (2010)), respec-
tively. Using a one-dimensional model to estimate the permeability also presumes
that multi-dimensional effects such as fluid flow patterns in the channel and chan-
nel/porous media interactions are negligible. Given the assumptions used to obtain
the permeability coefficients, its appropriateness for use in multi-dimensional fuel
cell models requires further studies. Furthermore, it appears that a more appropri-
ate methodology to obtain the permeability coefficient would be to use the same
multi-dimensional model that would then be used in a fuel cell simulation.

In this article, a multi-dimensional, compressible fluid flow solver based on
the Navier-Stokes equations is derived using the volume-average method proposed
by Whitaker (Whitaker (1999)). The fluid flow solver, valid in both channel and
porous media, is used to estimate the most appropriate density/velocity pair for
averaging, and then to simulate the fluid flow in a through-plane and in-plane
experimental permeability setup. The latter results allow us to analyze the validity
of the previous one-dimensional models used to extract the permeability tensor,
and to obtain a more accurate estimation of the tensor. The numerical model
and newly estimated permeability coefficients are finally used to study fluid flow
by-pass in serpentine and interdigitated channels.

To the authors’ knowledge, this is the first attempt in the literature to evaluate
four pairs of volume-averaged variables and discuss a) the volume-averaged solu-
tion variable pairs that result in discontinuities between the porous media and the
channel and their numerical stability; b) the relationship between volume-averaged
solution variables and permeability, and their impact on pressure drop predictions;
and, c) the appearance of three-dimensional channel-porous media interactions in
experimental setups used to measure permeability, which can result in incorrect
permeability estimates at high velocity.

2 Mathematical Model
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Fig. 1 An example of the computational domain.

2.1 Preliminaries

Let Ω ⊂ Rd, d = 2, 3, be an open connected domain with boundary Γ . The domain
Ω is split into two parts: channels (Ωc) and porous media (Ωp). The boundary Γ
consists of three parts: the inflow boundary Γin, the outflow boundary Γout, and
solid impermeable walls Γwalls such that Γ = Γin ∪ Γout ∪ Γwalls. The interface
between channels and porous media is denoted by Σ. The outer normal vector on
Γ is denoted by n and a pair of tangential vectors by {τα}d−1

α=1. The tangential
vectors are chosen such that the set (n, τ1, ..., τd−1) builds an orthonormal basis
in d-dimensional space. The normal vector on Σ directed from channels to porous
media is denoted by ncp. An example of the computational domain is shown in
Figure 1.

2.2 Governing Equations in the Channels

In order to model the fluid flow in the channels, the steady-state compressible,
isothermal, and barotropic Navier-Stokes equations are used. The equations read
as

∇ · (ρv) = 0 in Ωc, (1)

∇ · (ρv⊗ v) = ∇ ·
(
−pÎ + σ̂

)
+ ρg in Ωc, (2)

p = ρRT, (3)

σ̂ = 2µ∇sv + λ (∇ · v) Î , (4)

λ = −2

3
µ, (5)

where ρ is the fluid density, v is the fluid velocity, p is the fluid pressure, σ̂ is
the fluid Newtonian shear stress tensor, g is the gravity acceleration, R is the
specific gas constant, T is the fluid constant temperature, µ and λ are the fluid
constant dynamic and bulk viscosities respectively, Î is the identity tensor, and
∇s = 1

2

(
∇+∇T

)
is the symmetric gradient.
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Fig. 2 Representative Elementary Volume

2.3 Governing Equations in Porous Media

2.3.1 Method of volume averaging

It is a challenging problem to determine all details of fluid flows inside a network
of pores and some type of averaging procedure is commonly used to develop the
governing equations of the fluid inside the porous media. The method of volume
averaging (Whitaker (1999)) is based on the assumption that locally averaged
properties will suffice for design purposes. The method proceeds by associating
each point r in a porous domain Ωp (see Figure 2) with a small volume, called
a representative elementary volume (REV). The size of the REV is chosen such
that l � diam (REV) � L, where l and L are the characteristic micro- and
macro- sizes of the porous region respectively. The volumes occupied by fluid and
solid phases within the REV are denoted by Vf (r) and Vs (r) respectively with
VREV = Vf (r) + Vs (r), where VREV is the total volume of the REV. The total
area of the interface between the fluid phase within the REV and the fluid phase
surrounding the REV is denoted by Af(r). The total area of the interface between
the fluid and solid phases that is within the REV is denoted by Afs(r).

2.3.2 Local averaging procedure

Generally, two averages of a function φ are used in the method of volume averaging,
the phase average and the intrinsic phase average. The phase average is defined as
(Whitaker (1999))

<φ>=
1

VREV

∫
Vf(r)

φ dV. (6)
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The intrinsic phase average is defined as (Whitaker (1999))

<φ>f=
1

Vf (r)

∫
Vf(r)

φ dV. (7)

The obvious relationship between these two averages is

<φ>= ε <φ>f, (8)

where ε = Vf(r)
VREV

is the porosity of the REV. Using definitions (6) and (7) the
following relations can be shown

<Aφ+Bψ> = A <φ> +B <ψ>, (9)

<Aφ+Bψ>f = A <φ>f +B <ψ>f, (10)

where A and B are arbitrary constants and ψ is a function. If δφ is a deviation of
φ from the expected mean value <φ>f such that ∀ξ ∈ Vf (r) : φ =<φ>f +δφ and
<δφ>=<δφ>f= 0, then it can also be shown that

<φψ> =
1

ε
<φ><ψ> + <δφδψ>, (11)

<φψ>f = <φ>f<ψ>f + <δφδψ>f . (12)

If the size of the REV satisfies the condition diam (REV)� l, then the averages
of products of deviations δφ and δψ in the right hand side of equations (11) and
(12) can be neglected and the equations themselves reduce to

<φψ> ≈ 1

ε
<φ><ψ>, (13)

<φψ>f ≈ <φ>f<ψ>f . (14)

2.3.3 Spatial averaging theorem

The connection between the equations governing single phase transport phenom-
ena in pores, i.e., equations (1)-(5), and those averaged over the REV is established
by means of the spatial averaging theorem (Gray and Lee (1977); Whitaker (1969);
Howes and Whitaker (1985)). Let <∇φ> be a phase average of the gradient of
some continuous function φ. The spatial averaging theorem can be obtained by
using the divergence theorem. The divergence theorem applied to the <∇φ> yields

1

VREV

∫
Vf(r)

∇φ dV =
1

VREV

∫
Af(r)

φnf dA+
1

VREV

∫
Afs(r)

φnfs dA. (15)

where nf denotes the unit normal vector outwardly directed from fluid to fluid
phase, and nfs is the unit normal vector directed from fluid to solid phase within
the REV. Then it can be shown that (Howes and Whitaker (1985))

1

VREV

∫
Af(r)

φnf dA =
1

VREV

∇
∫
Vf(r)

φ dV (16)

and finally

1

VREV

∫
Vf(r)

∇φ dV =
1

VREV

∇
∫
Vf(r)

φ dV +
1

VREV

∫
Afs(r)

φnfs dA (17)
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or

<∇φ>= ∇ <φ> +
1

VREV

∫
Afs(r)

φnfs dA. (18)

It is easy to show that the following extensions of equation (18) are also
valid (Whitaker (1999))

<∇a>= ∇ <a> +
1

VREV

∫
Afs(r)

a⊗ nfs dA, (19)

<∇ · a>= ∇· <a> +
1

VREV

∫
Afs(r)

a · nfs dA, (20)

<∇ · T̂>= ∇· <T̂> +
1

VREV

∫
Afs(r)

T̂nfs dA, (21)

where a and T̂ are some continuous vectorial and tensorial fields respectively. It
should be noted that the nabla operator in ∇φ and ∇ <φ> has different meanings
and length scales. While in the former case ∇ is applied to the fluid phase within
the REV and scaled as 1

l , in the latter case ∇ relates to the sequence of control
volumes continuously occupying the space of porous domain Ωp and therefore it
is scaled as 1

L .

2.3.4 Volume-averaged governing equations

In this section, the pore-scale point-wise governing equations (1)-(5) are averaged
over the REV located in the neighbourhood of a spatial point r. We start with
the mass conservation equation (1). Since ∇ · (ρv) = 0 in Vf (r), it follows that
<∇ · (ρv)>= 0, and an application of the spatial averaging theorem (20) leads to
the following equality

∇· <ρv> +
1

VREV

∫
Afs(r)

ρv · nfs dA = 0. (22)

The surface integral in this expression is equal to zero because of the orthogonality
of vectors v and nfs. Taking into account equation (13), the following form of the
volume-averaged mass conservation equation is obtained:

∇ ·
(

1

ε
<ρ><v>

)
= 0, (23)

where <ρ> and <v> are the phase averages according to equation (6).
The same procedure is applied to the momentum conservation equation (2) to

obtain the following volume-averaged equation:

∇ ·
(

1

ε2
<ρ><v> ⊗ <v>

)
+

1

VREV

∫
Afs(r)

(ρv⊗ v)nfs dA =

∇ ·
(
− <p> Î+ <σ̂>

)
+

1

VREV

∫
Afs(r)

(
−pÎ + σ̂

)
nfs dA+ <ρ> g (24)

with
<p>=<ρ> RT (25)
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and

<σ̂>= 2µ

(
∇s <v> +

1

VREV

∫
Afs(r)

(v⊗ nfs)s dA

)
+ λeff

(
∇· <v>

)
Î . (26)

The boundary integral in the left hand side of the equation (24) is identically equal
to zero because of the orthogonality of vectors v and nfs, i.e.,

(ρv⊗ v)nfs

∣∣∣
Afs(r)

= ρvi
∑
j

vjnfs,j

∣∣∣
Afs(r)

= 0 (27)

It is then assumed that no-slip boundary conditions are applied at the fluid-solid
interface within the REV such that the integral over Afs(r) in equation (26) van-
ishes. The last integral term in equation (24) contains the information on how
the microstructure of the porous matrix affects the fluid flow through exerting
pressure and friction forces. Its estimation entirely depends on the local geome-
try and flow regime. Several attempts have been made to constitutively correlate
this integral term with the macroscopic volume-averaged velocity and microstruc-
ture properties for incompressible flows (Hsu and Cheng (1990); Liu and Masliyah
(1996); Whitaker (1996); Rajagopal (2007)). Whitaker (1999) approximated this
term with Darcy’s law. In the fuel cell context, however, the extended Darcy-
Forchheimer law should be considered to account for inertial effects in the porous
layers. Thus, in the present paper the following closure relation is used:

1

VREV

∫
Afs(r)

(
−pÎ + σ̂

)
nfs dA ≈ −µK̂

−1
<v> −β̂ <ρ> | <v> | <v>, (28)

where K̂ is the porous matrix permeability and β̂ is frequently referred to as
the Forchheimer permeability and relates to the nonlinear correction allowing for
higher pore-scale fluid velocity.

Equations (23) and (24) are obtained in terms of both phase-averaged density
<ρ> and velocity <v>. As discussed below, it is more appropriate to use an
intrinsic phase-averaged velocity <v>f such that the volume-averaged steady-state
compressible and isothermal Navier-Stokes equations become

∇ ·
(
<ρ><v>f

)
= 0 in Ωp, (29)

∇ ·
(
<ρ><v>f ⊗ <v>f

)
= ∇ ·

(
− <p> Î+ <σ̂>f

)
−

µK̂
−1
ε <v>f −β̂ <ρ> |ε <v>f |ε <v>f + <ρ> g in Ωp, (30)

<p>=<ρ> RT, (31)

<σ̂>f= 2µ∇sε <v>f +λ
(
∇ · ε <v>f

)
Î , (32)

λ = −2

3
µ. (33)

2.4 Boundary Conditions at the Interface Between Channels and Porous Media

Both systems of equations governing the fluid flow in the channels (1)-(5) and the
porous media (29)-(33) are coupled to each other through boundary conditions
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imposed on the interface between channels and porous media, i.e., the interface Σ.
Generally, there are four different combinations of solution variables that one can
use in the structure of volume-averaged equations (29)-(33) governing fluid flow in
porous media. The physics of the problem clearly requires the continuity of mass,
momentum, and diffusive fluxes across this interface, i.e.:

ρv · ncp

∣∣∣
Σ

= <ρ><v>f ·ncp

∣∣∣
Σ
, (34)

(ρv⊗ v)ncp

∣∣∣
Σ

=
(
<ρ><v>f ⊗ <v>f

)
ncp

∣∣∣
Σ
, (35)(

−pÎ + σ̂
)
ncp

∣∣∣
Σ

=
(
− <p> Î+ <σ̂>f

)
ncp

∣∣∣
Σ
. (36)

Solving equations (34) and (35) with respect to densities ρ and <ρ> and normal
velocity components vn and <vn>

f yields the following boundary conditions at
the interface Σ

<ρ>
∣∣∣
Σ

= ρ
∣∣∣
Σ
, (37)

<vn>
f
∣∣∣
Σ

= vn

∣∣∣
Σ
. (38)

As it can be seen from equations (37) and (38), both density and velocity fields are
continuous across the interface Σ. Some combinations of density and velocity how-
ever yield non-zero jump boundary conditions at the interface between channels
and porous media. For example, using a pair (<ρ>,<v>) leads to a discontinuity
in the velocity field. The information on different sets of solution variables along
with associated jump boundary conditions at the interface Σ is reported in Table
1. It should be noted that only the set of solution variables

(
<ρ>,<v>f

)
provides

no jumps in both density and velocity fields across the interface Σ, and therefore
it is used in the spatially averaged equations (29)-(33).

2.5 Single Domain Approach and Boundary Conditions

The two systems of equations (1)-(5) and (29)-(33), abusing notations somewhat,
can be written as a single system of governing equations, valid in both subdomains
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Table 1 Solution variables in porous media and associated jump boundary conditions at the
interface Σ.

Solution variables Jump boundary conditions

<ρ> and <v>

<ρ>
∣∣∣
Σ

= ρ
∣∣∣
Σ

<vn>
∣∣∣
Σ

= εvn

∣∣∣
Σ

<ρ> and <v>f

<ρ>
∣∣∣
Σ

= ρ
∣∣∣
Σ

<vn>f
∣∣∣
Σ

= vn

∣∣∣
Σ

<ρ>f and <v>

<ρ>f
∣∣∣
Σ

= ρ
ε

∣∣∣
Σ

<vn>
∣∣∣
Σ

= εvn

∣∣∣
Σ

<ρ>f and <v>f

<ρ>f
∣∣∣
Σ

= ρ
ε

∣∣∣
Σ

<vn>f
∣∣∣
Σ

= vn

∣∣∣
Σ

Ωc and Ωp of the domain Ω, as follows:

∇ · (ρv) = 0 in Ω, (39)

∇ · (ρv⊗ v) = ∇ ·
(
−pÎ + σ̂

)
+ F + ρg in Ω, (40)

p = ρRT, (41)

σ̂ = 2µ∇sv + λ (∇ · v) Î , (42)

λ = −2

3
µ, (43)

F =

{
0 in Ωc

−µK̂−1
εv− β̂ρ

∣∣εv∣∣εv in Ωp

, (44)

ρ :=

{
ρ in Ωc

<ρ> in Ωp

, (45)

v :=

{
v in Ωc

<v>f in Ωp

, (46)

where density ρ and velocity v fields have point-wise values in channels and REV-
wise values in porous media and F is the Darcy-Forchheimer drag force. To be well-
posed, equations (39)-(46) are supplemented with appropriate boundary conditions



12 Jarauta, Zingan, Minev and Secanell

at Γin, Γout, and Γwalls boundaries defined as

v
∣∣∣
Γin

= vin, ρ
∣∣∣
Γout

= ρout, v
∣∣∣
Γwalls

= 0 (47)

as well as the internal boundary conditions (34)-(36) at the interface between
channels and porous media. In addition, a vanishing normal component of the
shear stress σ̂ is assumed at Γout, that is

σ̂n
∣∣∣
Γout

= 0. (48)

Alternatively, another set of boundary conditions at the outer boundary Γ can
also be used

ρ
∣∣∣
Γin

= ρin, ρ
∣∣∣
Γout

= ρout, v
∣∣∣
Γwalls

= 0, σ̂n
∣∣∣
Γin

= σ̂n
∣∣∣
Γout

= 0. (49)

3 Numerical Procedure

3.1 Finite Element Approximation

The domain Ω is discretized into the set Th of non-overlapping finite elements K

such that
⋃

K∈Th

K̄ = Ω̄. The elements are assumed to be either quadrilaterals in

two space dimensions or hexahedra in three space dimensions. Choosing a proper
pair of discretization spacesMd

h and Vh for the velocity and density, the following
standard discrete Galerkin formulation is obtained:

Find a (ρh, vh) ∈ Vh ×Md
h such that

∀qh ∈ Vh :

−
∫
Ω

∇qh · ρhvh dΩ +

∫
Γ

qhρhvh · n dΓ = 0 (50)

and

∀ωh ∈Md
h :

−
∫
Ω

∇sωh : ρhvh ⊗ vh dΩ +

∫
Γ

(ωh ⊗ n)s : (ρhvh ⊗ vh) dΓ =

−
∫
Ω

∇sωh :
(
−phÎ + σ̂h

)
dΩ +

∫
Γ

(ωh ⊗ n)s :
(
−phÎ + σ̂h

)
dΓ

+

∫
Ω

ωh · Fh dΩ +

∫
Ω

ωh · ρhg dΩ, (51)

For the spatial approximation we use the Q2 − Q1 Taylor-Hood element, that
satisfies the inf-sup condition (Donea and Huerta (2003); Gresho and Sani (1998)),
and provides a continuous, piecewise bi-quadratic polynomial approximation for
the velocity and a continuous, piecewise bi-linear approximation for the density.
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3.2 Linearization

The discrete problem (50) and (51) is a nonlinear system of equations with respect
to the solution variables ρh and vh. To solve it, a Newton-Raphson method is used.
Starting from some arbitrary initial guess, a sequence of numerical approximations
is built such that ∀n = 0, 1, 2, ..., N ,

ρn+1
h ≈ ρnh + δρnh, (52)

vn+1
h ≈ vnh + δvnh. (53)

The expansions (52) and (53) are substituted into the discrete weak formulation
(50) and (51) and the terms of order O (δρnh, δv

n
h) or higher are neglected.

3.3 Linear Algebra Solvers

At the end of each stage of the Newton-Raphson iterative procedure, the following
linear system of algebraic equations is obtained

M (ρnh, v
n
h) δxnh = r (ρnh, v

n
h) , (54)

where M (ρnh, v
n
h) and r (ρnh, v

n
h) are a sparse nonsymmetric tensor and residual

vector respectively and δxnh = (δρnh, δv
n
h)T is the nodal vector of unknown correc-

tions. The direct methods implemented in either Unsymmetric Multifrontal Sparse
LU Factorization Package (UMFPACK) (Davis (2004)) or Multifrontal Massively
Parallel Sparse Direct Solver (MUMPS) (Amestoy et al. (1998)) are used to solve
the linear system (54).

3.4 Implementation Details

The linearized discrete weak formulation of governing equations along with ap-
propriate boundary conditions, iterative procedures, and other related routines
have been implemented in the Open-Source Fuel Cell Simulation Toolbox (Open-
FCST, Secanell et al. (2014)). OpenFCST is an open-source, finite element method
based, multi-dimensional mathematical modeling software for polymer electrolyte
fuel cells. The primary goal of this software is to develop a platform for collabo-
rative development of fuel cell mathematical models. The linear solvers and finite
element routines are provided by the finite element library deal.II (Bangerth et al.
(2007)). The program can run in either serial or parallel mode (using the MPI
protocol).

4 In-Plane and Through-Plane Permeability Measurements

Equations (39)-(46) governing the fluid flow in channels and porous media include
two porous media-related parameters, which are the permeability tensor, K̂, and
nonlinear Forchheimer correction tensor, β̂. Through-plane and in-plane compo-
nents of these two tensors have been measured by many research groups. For fuel
cell diffusion media, through-plane and in-plane properties have been measured
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Fig. 3 Schematic view of the through-plane permeability experimental setup (3a) and in-plane
permeability experimental setup (3b) used in Mangal et al. (2014) and Mangal et al. (2015).

for example by Gostick et al. (2006); Ismail et al. (2010, 2009); Orogbemi et al.
(2018); Gurau et al. (2007); Tamayol et al. (2012); Pant et al. (2012); Carrigy
et al. (2013); Mangal et al. (2014), and Mangal et al. (2015). In this study, the
experimental setup in Mangal et al. (2014) and Mangal et al. (2015) is analyzed.
The schematic representations of both through-plane and in-plane permeability
experimental setups are shown in Figure 3. The porous layer is coloured in grey
and the inlets and outlets of the channels are marked by arrows. For the in-plane
experiments, a strip of porous media of dimensions 1×5 cm2 was placed between
two stainless steal plates that formed the channels. Porous media compression was
controlled by using stainless steal shims between plates, such that the gap between
plates was well known. In the experimental data in the paper, the porous media
was compressed between shims with a thickness of 270.23 µm. For through-plane
experiments, three GDL samples of dimension 20×25 mm2 were stacked together
and sandwiched within a lamination sheet with a hole of 9.5 mm in diameter to
allow the gas to pass through the porous media.

In-plane and through-plane experiments of Mangal et al. (2014) and Mangal
et al. (2015) involved varying mass flow rates, ṁ

[
kg s−1

]
, and recording the

respective pressure drop across the porous media, ∆p [Pa]. These values were used
to evaluate the in-plane and through-plane components of the permeability tensor,
K̂. The nonlinear Forchheimer correction tensor, β̂, is not estimated here since, as
it will later be discussed, non-uniform flow in the channel is observed at high flow
rates leading to channel effects on the pressure gradient. A detailed description of
the in-plane and through-plane experimental setups are given in references Mangal
et al. (2014) and Mangal et al. (2015), respectively.

Most experimental studies, e.g., Gostick et al. (2006); Ismail et al. (2010, 2009);
Orogbemi et al. (2018); Gurau et al. (2007); Tamayol et al. (2012); Pant et al.
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(2012); Carrigy et al. (2013); Mangal et al. (2014), and Mangal et al. (2015),
recovered the tensors K̂ and β̂ by assuming the three-dimensional systems in Fig-
ure 3 could be treated as a one-dimensional porous layer thereby neglecting any
channel, boundary layer, inertial, and wall effects. Under the assumptions above,
a one-dimensional steady-state compressible and isothermal Darcy-Forchheimer
model was used to couple measurable flow parameters with unknown permeabil-
ity coefficients. The model itself can be obtained from the more general multi-
dimensional equations (29), (30), and (31) by neglecting inertia and shear stress
terms. Let us consider only the x-direction (Mangal et al. (2014)):

dp

dx
= − µ

Kxx
v − βxxρv2 (55)

where p is the phase-averaged pressure, and v is the x-component of the phase-
averaged velocity. The mass flux is defined as:

N = ρv (56)

where N is measured in kg m−2 s−1. Assuming that the fluid is an ideal gas,
and considering equation (56) in the x-direction, equation (55) can be re-written
as (Mangal et al. (2014)):

dp

dx
= −1

ρ

(
µ

Kxx
N + βxxN

2

)
= −RT

p

(
µ

Kxx
N + βxxN

2

)
(57)

where N is the mass flux in the x-direction. Since no chemical reactions are consid-
ered in the present model, the mass flux is constant. Thus, integrating from x = 0
to L, and p = p1 to p2, equation (57) becomes the compressible Darcy-Forchheimer
equation:

p2
1 − p2

2

2RTL
=

µ

Kxx
N + βxxN

2 (58)

This equation differs from the equation that would be obtained using the one-
dimensional version of equation (40) after canceling inertial, gravitational, and
viscous effects, and with the stable pair <ρ>, <v>f (as shown in Table 1), which
would lead to:

p2
1 − p2

2

2RTL
=

µ

Kxx
εN + βxxε

2N2 (59)

Since equation (59) is different from the most commonly used expression in the
literature Feser et al. (2006); Gostick et al. (2006); Gurau et al. (2007); Ismail
et al. (2009), i.e., equation (58), the reported permeability data in the literature
must be corrected to be used in the proposed model as follows:

K̂model = εK̂experiment (60)

Depending on the averaging solution pair used, a similar correction might be
needed for other implementations of equation (40) such as those used in commercial
software and used in fuel cell simulations, e.g., Pharoah (2005); Park and Li (2007);
Nguyen et al. (2004); Park and Li (2011); Saha et al. (2008); Saha and Oshima
(2012); Salahuddin et al. (2013); Salahuddin and Oshima (2013); Qin et al. (2018);
Zhang et al. (2019b).
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5 Computational Studies

In this section, first a discussion on the channel/porous media interface coupling,
and the subsequent stability issues with the formulations proposed in section 2.4 is
presented. Then, the through-plane and in-plane experimental setups from Mangal
et al. (2014, 2015), and Xu (2019) are studied in order to verify that the assump-
tions required to estimate the permeability using a one-dimensional model are
valid. Finally, to illustrate the capabilities of the model, the fluid flow pattern in a
gas diffusion media under a serpentine and an interdigitated fuel cell gas channel
is studied.

5.1 Validation of the Computational Code

In order to guarantee the correct implementation of the developed fluid flow solver,
the well-known lid-driven cavity flow benchmark problem is first solved. Appendix
A provides a summary of the validation results.

5.2 In-plane Permeability Setup in Two Dimensions

The effects of the choice of solution variables on the accuracy of the numerical solu-
tion in the computational domain are studied in this example. The two-dimensional
computational domain is composed of two gas channels and a porous layer. The
domain is shown in Figure 4(a). The porous layer is colored in green, and the
inlet and outlet gas channels are coloured in red and blue, respectively. The chan-
nel inlet and outlets are marked by arrows. The porous media is considered to
be a Toray 090 20% PTFE sample, with a porosity of 0.7, and a permeability of
6×10−12 m2, taken from Mangal et al. (2014). Nitrogen at a temperature of 298
K is used as the fluid.

No-slip velocity boundary conditions are applied at all solid walls of the com-
putational domain. A parabolic velocity profile with a maximum value of vx = 1
m s−1 is prescribed at the inlet of the high-pressure channel (i.e., red channel in
Figure 4(a)), which corresponds to Re = 640. A relative pressure of 0 Pa and
vanishing normal components of shear stresses are assumed at both outlets of the
low-pressure gas channel (i.e., blue channel in Figure 4(a)).

The system of governing equations (39)-(46) is solved in serial in an Intel(R)
Xeon(R) E5-2690 v2 CPU with a clock speed of 3.00 GHz, and the average com-
putational time is 1 minute. The computational grid for this study (Figure 4(b))
contains 7×104 degrees of freedom (DOFs). A grid independence study shows that
pressure and velocity solutions change less than 1% compared to a once globally
refined grid with 1.4×105 DOFs.

5.2.1 The Effect of Channel - Porous Media Interface

Section 2.4 highlighted that there are four possible choices for the averaged solution
variables in porous media, see Table 1. The choice of solution variables affects
the stability of the numerical solution. In this section, results using the different
formulations are discussed.
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(a) Geometry of the in-plane permeability setup

(b) Computational mesh

Fig. 4 (a) Geometry of the in-plane permeability setup, and (b) computational mesh.

Solving the system of governing equations (39)-(46) in terms of the
(
<ρ>,<v>f

)
solution pair in the porous layer results in a stable and non-oscillatory numeri-
cal solution. The pressure and velocity fields are shown in Figure 5(a) and 5(b),
respectively. The pressure field depicted in Figure 5(a) shows that most of the
pressure drop occurs across the porous layer.

Solving the system of governing equations (39)-(46) with either
(
<ρ>f, <v>

)
or
(
<ρ>f, <v>f

)
solution pairs in the porous domain results in either an unsta-

ble or a highly oscillatory numerical solution in both gas channels and porous
layer. According to Table 1, in order to satisfy mass and momentum conservation,
both combinations

(
<ρ>f, <v>

)
and

(
<ρ>f, <v>f

)
must introduce a jump in the

density field at the interface between gas channels and porous medium. Since the
solution approximation is assumed to be a continuous function, this jump is dif-
ficult to capture and it tends to propagate back into the gas channels resulting
in an unstable solution. Therefore, these pairs of variables should not be used as
they do not produce a stable solution.

The remaining set, i.e., (<ρ>,<v>), results in a stable solution, however, oscil-
lations and a discontinuity in the normal component of the velocity can be observed
at the channel/porous media interface (Figure 5(d)). The numerical solution for
the two stable solution variable pairs, plotted over the channel centerline AB (Fig-
ure 4(a)), is shown in Figure 6(a). When the pair (<ρ>,<v>) is used (Pair B, red
dashed line), the numerical approximation of the normal velocity component, vy,
is discontinuous at the channel/porous layer interface. The ratio of the two ve-
locities in the porous media (Pair A, black solid line, and Pair B, red dashed
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(a) Pressure field obtained with(
<ρ>,<v>f

) (b) Velocity field obtained with(
<ρ>,<v>f

)

(c) y-velocity field obtained with(
<ρ>,<v>f

) (d) y-velocity field obtained with
(<ρ>,<v>)

(e) Tangential component of the stress ten-
sor obtained with

(
<ρ>,<v>f

) (f) Velocity field obtained with coupled NS
and NS/Brinkman

Fig. 5 (a)-(c) Distribution of pressure, velocity and y-velocity obtained with
(
<ρ>,<v>f

)
, (d)

y-velocity distribution obtained with (<ρ>,<v>), (e) Tangential component of the stress tensor
obtained with

(
<ρ>,<v>f

)
, and (f) Comparison of velocity profiles in the central region with

the fully coupled Navier-Stokes equations and the Navier-Stokes/Brinkman equations (porous
media marked with a dashed box).
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Fig. 6 (a) Normal velocity distribution along the symmetry line AB for two pairs of solution
variables A:

(
<ρ>,<v>f

)
, and B: (<ρ>,<v>), and (b) tangential velocity distribution at the

channel/porous layer interface in the symmetry line AB.

line) is the porosity. The difference in velocity is due to the averaging method
used. The distribution of the tangential velocity component, vx, does not show
any discontinuities and/or oscillations, and the pressure distribution is identical
in both simulations (Figure 5(a)). The convergence of the nonlinear solver and the
computational time are similar between both pairs.

The continuity of the tangential component of the velocity at the channel-
porous medium interface has been studied in literature (e.g., Beavers and Joseph
(1967); Dobberschütz (2015); El-Jarroudi and Er-Riani (2018)). Numerical mod-
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els that consider Stokes or Navier-Stokes equations in the channel and Darcy’s
law in the porous medium require the imposition of the Beavers-Joseph condition
for the jump in the tangential velocity component at the channel/porous medium
interface (Beavers and Joseph (1967)). Since the current study considers the fully-
coupled Navier-Stokes equations in the channel and porous medium, continuity
of the velocity components is naturally imposed by the governing equations for
the stable pair

(
<ρ>,<v>f

)
. Figure 5(e) displays the tangential component of the

stress tensor, showing a large value close to the channel/porous medium interface.
The model used in this study is able to capture the non-zero value of the tangen-
tial velocity component at the channel/porous medium interface, as well as the
continuous transition of the velocity field from the channel region to the porous
layer (Figure 6(b)).

The in-plane permeability simulation is repeated using the compressible Navier-
Stokes equations in the channels and the Brinkman equation in the porous media.
Comparison of the velocity profiles in the vicinity of the symmetry line AB (Fig-
ure 4(a)) obtained with the fully coupled Navier-Stokes equations and the Navier-
Stokes/Brinkman equations is shown in Figure 5(f). For this particular problem,
no significant changes in the velocity profiles are observed, and the number of
iterations of the nonlinear solver is identical. Therefore, the more accurate fully
coupled Navier-Stokes equations are recommended.

In summary, the combination of solution variables
(
<ρ>,<v>f

)
generates a

stable and non-oscillatory numerical approximation and therefore it is the most ap-
propriate pair of volume-averaged variables to study channel/porous media prob-
lems.

5.3 Study of the Experimental Through-Plane Permeability Setup

In order to study channel and inertial effects on the through-plane setup developed
by Pant et al. (2012), a three-dimensional model of the through-plane permeabil-
ity experimental setup is developed. For simplicity, only half of the geometry is
considered due to its symmetry with respect to the xz-plane. The computational
domain is shown in Figure 7. The porous layer is shown in green, whereas the
high pressure and low pressure channels are colored in blue and red, respectively.
The lamination sheets used in the experimental setup are also considered in the
geometry. The fluid considered is nitrogen with a density and dynamic viscosity
of ρ = 1.14 kg m−3 and µ = 1.782 × 10−5 Pa s, respectively. These properties
correspond to a constant temperature of T = 298 K and an outlet pressure of pout
= 101000 Pa. The porous material is a GDL Toray 090 20% PTFE sample with a
porosity of ε = 0.7. The same boundary conditions as in Section 5.2 are used with
the exception of the inlet velocity, which is given by

vy

∣∣∣
Γin

= vz

∣∣∣
Γin

= 0, vx

∣∣∣
Γin

=
Q̇

A

∣∣∣
Γin

, (61)

where Q̇ is the volume flow rate measured experimentally by a mass flow controller,
and A is the cross-sectional area. A no-slip boundary condition for velocity is
imposed on the channel and GDL walls. A perfect slip boundary condition for
velocity is imposed at the symmetry plane, with v · n = vy = 0.
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(a) Geometry of the through-plane perme-
ability setup

(b) Computational mesh of the through-
plane permeability setup

Fig. 7 Geometry and computational mesh used in the through-plane simulations.

Table 2 In-plane and through-plane values of permeability tensor K̂ obtained from experi-
mental and numerical data

Kxx × 10−12 [m2] Kyy × 10−12 [m2] Kzz × 10−12 [m2]
Experimental (1D model) 6.645 6.645 4.62

Calibrated (3D model) 7.128 7.128 4.05

The system of governing equations (39)-(46) is solved in parallel using 7 cores in
an Intel(R) Xeon(R) E5-2690 v2 CPU with a clock speed of 3.00 GHz, and the av-
erage computational time is 1 hour. The computational grid for the through-plane
permeability study (Figure 7(b)) contains 4.3×105 DOFs. A grid independence
study shows that the pressure drop changes less than 0.4% compared to a once
globally refined grid with 9×105 DOFs.

5.3.1 Through-plane permeability parametric study

A series of experiments were performed in Mangal et al. (2015) and Xu (2019) to
obtain the pressure drop across the porous media in the z-direction, ∆p, at varying
mass flow rates, ṁ, for a Toray 090 20% PTFE sample. The pressure was measured
at the top and bottom walls of the high and low pressure channels (points A and B
in Fig. 7(a)), respectively. To estimate the porous media permeability, numerical
simulations with a constant flow rate of 1.0 SLPM are performed with varying
values of Kzz, until the pressure drop across the porous medium coincides with the
experimental data reported in Mangal et al. (2015) and Xu (2019). The pressure
variation along the y-direction line ĀB (dashed vertical line in Figure 7(a)) is
considered. The pressure drop for varying permeability values at Q = 1 SLPM is
displayed in Fig. 8(a). The value of Kzz = 4.05× 10−12 m2 provides the best fit.

After estimating the through-plane permeability, simulations with varying flow
rates from 0 to 1 SLPM are performed and compared to experimental data in Man-
gal et al. (2015) and Xu (2019). Results obtained in the experiments (orange
squares) with the error bars for the measurements, and the numerical results (solid
black line) using data in Table 2 are displayed in Figure 8(b). The figure shows
excellent agreement between model and experimental results.



22 Jarauta, Zingan, Minev and Secanell

Most experimental studies, e.g., Feser et al. (2006); Gostick et al. (2006); Gu-
rau et al. (2007); Ismail et al. (2009); Hussaini and Wang (2010); Ismail et al.
(2010, 2011); Pant et al. (2012); Carrigy et al. (2013); Mangal et al. (2014, 2015),
used equation (58) to extract the permeability coefficient from the experimental
results thereby ignoring any channel effects. In order to assess the validity of the
1D model to extract a permeability value, the same simulation is performed with
the permeability value obtained using equation (58) with βzz set to zero and once
Kzz has been corrected by porosity as discussed in Section 4. Figure 8(b) shows
the simulations cannot reproduce the experimental values with the permeability
obtained from equation (58) indicating channel effects must be considered, espe-
cially at high flow rates. The error on the permeability estimation leads to an error
of 9% at 1 SLPM. This error increases with increasing flow rate values, which indi-
cates that predictions of the Forchheimer tensor components might not be accurate
for 1D models that consider a Darcy-Forchheimer regime in the porous material
unless channel-porous media effects are minimized.

Velocity and pressure distributions in the yz symmetry plane at two different
gas flow rates are shown in Figure 9. Most of the pressure drop occurs across the
porous medium, as shown in Figures 9(a) and 9(c). At low flow rates, the gas enters
the porous material without a complex flow pattern in the high pressure channel
(Figure 9(b)). At increased flow rates however, a complex flow pattern develops in
the high-pressure channel, as depicted in Figure 9(d). This complex flow pattern
is likely responsible for the discrepancy between permeability predictions in the
proposed experimental setup.

5.4 Study of an Experimental In-Plane Permeability Setup

The numerical model is used to extract the in-plane permeability of the GDL
sample, i.e., Kxx and Kyy, by simulating the three-dimensional geometry of the
experimental setup in references Gostick et al. (2006); Mangal et al. (2014); Xu
(2019). In this case, the geometry is symmetric with respect to the xy-plane and
therefore only half of the domain is considered. The computational domain is
shown in Figure 10. The porous layer is again colored in green, the high pressure
channel in blue, and the low pressure channel in red. The same boundary conditions
as in Section 5.3 are used with the exception of the lateral GDL walls (i.e., walls
parallel to the Y Z-plane), where a perfect slip boundary condition for velocity is
imposed.

The system of governing equations (39)-(46) is solved in parallel using 7 cores
in an Intel(R) Xeon(R) E5-2690 v2 CPU with a clock speed of 3.00 GHz, and
the average computational time is 45 minutes. The computational grid for the in-
plane permeability study (Figure 7(b)) contains 6.2×105 DOFs, which is enough
to achieve a grid independent solution.

5.4.1 In-plane permeability parametric study

The experimental results from references Mangal et al. (2014) and Xu (2019) of
varying mass flow rates for a Toray 090 20% PTFE sample are analyzed next. The
in-plane components of the permeability tensor, i.e., Kxx and Kyy, are estimated
by performing a parametric study with varying permeability values at Q = 0.6
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Fig. 8 (a) Pressure drop obtained in the numerical simulations for different through-plane
permeability values at Q = 1 SLPM, and (b) comparison between numerical and experimental
results for the through-plane permeability setup.

SLPM and selecting the permeability value that reproduces the pressure drop be-
tween channels. In the experiments of Mangal et al. (2014) and Xu (2019), pressure
was measured at the top wall of the channels (points A and B in Figure 10(a)).
The pressure is measured at the center of the channels in the numerical simulations
since the pressure variations in the channel are negligible. The resulting in-plane
permeability values are Kxx = Kyy = 7.128× 10−12 m2.

Once the in-plane permeability components are estimated, a series of simula-
tions with varying flow rate values from 0 to 0.6 SLPM are performed. Results
obtained in the experiments in references Mangal et al. (2014) and Xu (2019), and
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(a) Pressure distribution, Q = 0.2 SLPM

(b) Velocity distribution, Q = 0.2 SLPM

(c) Pressure distribution, Q = 1.0 SLPM

(d) Velocity distribution, Q = 1.0 SLPM

Fig. 9 Pressure and velocity profiles for (a)-(b) Q = 0.2 SLPM, and (c)-(d) Q = 1.0 SLPM.

simulations are displayed in Figure 11. The simulations are also performed consid-
ering the fitted permeability value obtained with the 1D model in equation (58).
At high flow rates, the discrepancy between the predicted pressure drop using the
3D estimated and the 1D estimated values can be as high as 8%.

Figures 12(a) and 12(b) show the pressure and velocity distributions for the
Q = 0.5 SLPM case in the xy symmetry plane. Most of the pressure drop occurs
along the porous media, as in the through-plane study. An interesting feature is
the predicted high gas velocity in the porous material due to the reduced cross-
sectional area of the GDL. This high velocity in the porous material results in a
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(a) Geometry of the in-plane permeability
setup

(b) Computational mesh of the in-plane per-
meability setup

Fig. 10 Geometry and computational mesh used in the in-plane simulations.
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Fig. 11 Comparison between numerical and experimental results for the in-plane permeability
setup.

jet-like flow pattern at the low pressure channel resulting in several recirculations
even at low flow rates of 0.5 SLPM. Therefore, channel effects are important even
at moderate flow rates and are likely responsible for the discrepancy between the
in-plane permeabilities obtained with a 1D and a 3D model, i.e., 6.645×10−12 m2

vs. 7.128×10−12 m2. These results also cast a large doubt regarding Forchheimer
permeability predictions in literature using a 1D model as channel/porous media
interactions are clearly affecting results at high flow rates. When the gas enters
the low-pressure channel, it recirculates in the direction parallel to the yz-plane
(Figure 12(c)), and these vortexes tend to vanish towards the channel exit. Ex-
tremely fine meshes are required to capture this complex flow pattern for flow rate
values larger than Q = 0.6 SLPM.
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(a) Pressure distribution

(b) Velocity distribution

(c) Velocity profile slices along the low-pressure channel (left)

Fig. 12 (a) Pressure and (b) velocity distributions in the XY symmetry plane, and (c) velocity
profiles in the Y Z-planes along the high and low-pressure channels.
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(a) Geometry (b) Computational mesh

Fig. 13 (a) Geometry and (b) computational mesh used for the simulation of a fuel cell
serpentine channel and a gas diffusion layer.

5.5 Study of a Three-Dimensional Fuel Cell Serpentine Channel

Serpentine gas channels mounted on a permeable gas diffusion layer are one of the
most commonly used channel layouts in fuel cells. The pressure difference between
straight sections of the serpentine channels leads to a cross flow induced in the
GDL, which facilitates oxygen transport to the catalyst layer. The aim of this test
case is to predict the fluid flow occurring through the GDL under the rib of a
serpentine channel.

Several numerical studies in literature have used a compressible fluid flow
solver to study mass transport phenomena in fuel cell serpentine channels (Nguyen
et al. (2004); Hashemi et al. (2012); Salahuddin and Oshima (2013); Zhang et al.
(2019a)); however, the above-mentioned studies did not include any discussion on
volume-averaging of the governing equations in the porous media, considered the
porous media to be an isotropic material, and used permeability values from lit-
erature obtained with one-dimensional models (Feser et al. (2006); Gostick et al.
(2006); Ismail et al. (2009, 2010); Carrigy et al. (2013); Mangal et al. (2014, 2015)).
Therefore, the advantages of using a realistic value for the permeability of the GDL,
and the consideration of porous media anisotropy are highlighted.

The considered geometry for the channel consists of two straight channels with
a cross-sectional area of 1×1 mm2 and a length of 22 mm, connected at one end
(similar to the geometry used by Pharoah (2005)). The channels are mounted on
a Toray 090 20%PTFE GDL sample, as shown in Figure 13(a). The serpentine
channel and the GDL are displayed in blue and red, respectively. Parameters
characterizing the channel and GDL geometries are detailed in Table 3, as well as
the ambient conditions and properties of nitrogen. The permeability values for the
GDL have been obtained in Sections 5.3 and 5.4, and are detailed in Table 2.

The gas flow rate at the inlet is varied between Q = 0.09 and 0.37 SLPM
corresponding to Reynolds numbers between 100 and 400. This range of Reynolds
numbers is usually chosen in numerical studies (Pharoah (2005); Salahuddin and
Oshima (2013), although gas flow rates in an operating fuel cell can be much
higher. At higher flow rates, the proposed model is not able to find a steady-state
solution due to the complexity of the flow pattern as also observed by Pharoah
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Table 3 Geometry, operating conditions and gas properties for the serpentine channe simu-
lation

Paraneter Value Units
Channel length 22 mm
Channel width 1 mm
Channel height 1 mm
Channel pitch 1 mm
GDL thickness 290 (Xu (2019)) µm
GDL porosity 0.7 (Xu (2019)) -

Pressure 101000 Pa
Temperature 298 K

Nitrogen density at channel outlet 1.14 kg m−3

Nitrogen dynamic viscosity at channel outlet 1.782 × 10−5 Pa s

(2005). A constant pressure of 100 kPa is set at the channel outlet. A slip boundary
condition for velocity is imposed at the lower wall of the GDL (parallel to the xy-
plane), which represents the interphase between the GDL and the catalyst layer.

The system of governing equations (39)-(46) is solved in parallel using 9 cores
in an Intel(R) Xeon(R) E5-2690 v2 CPU with a clock speed of 3.00 GHz, and the
average computational time is 2 hours. The computational grid for the serpentine
channel study (Figure 13(b)) contains 6.5×105 DOFs. A grid independence study
shows that the pressure drop changes less than 2% compared to a once globally
refined grid with 1.3×106 DOFs.

5.5.1 Effects of the GDL on the pressure drop in the channel

The effect of the presence of a GDL on the pressure drop in the gas channel
is studied by considering the serpentine channel without GDL and with GDL.
Figure 14 displays the pressure drop along the serpentine channel at varying gas
flow rates. The pressure drop at a given mass flow rate is shown to be lower in the
presence of the GDL, which has been previously observed in literature (Pharoah
(2005); Saha and Oshima (2012); Park and Li (2011)). The difference in pressure
drop can be as high as 11% at flow rates of 0.37 SLPM. Pharoah (2005) studied
the pressure drop on the channel for varying permeability values and a Reynolds
number of 100. For Kxx = 10 × 10−12 m2 a pressure drop of 1625 Pa m−1 was
predicted. In our numerical simulations, a pressure drop of 1710 Pa m−1 with an
in-plane permeability of Kxx = 7.128 × 10−12 m2 is obtained, which is in good
agreement.

Three-dimensional pressure and velocity streamline distributions are depicted
in Figures 15(a) and 15(b), respectively. The pressure field along the serpentine
gas channel monotonically decreases from its inlet towards the outlet. The velocity
field exposes the flow cross-over under the rib of a serpentine channel. Figure 15(c)
provides the information on the velocity field over the GDL xy-plane at the bottom
of the domain, i.e., z = 0, at the highest mass flow rate. For permeability values of
Kxx = 5 × 10−12 m2 and a GDL thickness of 250 µm, Pharoah (2005) predicted
that approximately 5% of the inlet flow crosses the GDL under the land. Our
model reveals that for a Toray 090 20%PTFE sample, this bypass is 4.3%, which
is in agreement with the numerical simulations of Pharoah (2005). The bypass
is calculated by computing the difference between the mass fluxes at the inlet
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Fig. 14 Pressure drop in the serpentine gas channel at varying Reynolds numbers with and
without a GDL.

and outlet faces (i.e., faces perpendicular to the x axis) in the first channel, and
then dividing this difference by the mass flux at the inlet. For permeability values
lower than 10−11 m2, Pharoah (2005) observed that this bypass was the same for
different flow rates. In our simulations, we also have found that the amount of flow
bypassing under the land is constant for the considered flow rates.

The three-dimensional fuel cell serpentine channel simulation is repeated us-
ing the compressible Navier-Stokes equations in the channels and the Brinkman
equation in the porous media. The resulting velocity profile in the porous me-
dia is displayed in Figure 15(d). Although there are no significant differences in
the velocity distribution obtained with the fully coupled Navier-Stokes equations
(Figure 15(c)), the resulting profile exhibits oscillations in the numerical solution.
Moreover, the nonlinear solver, in this case, needs 7 iterations to converge, whereas
the simulation with the fully coupled Navier-Stokes equations converges in just 2
iterations. These results indicate that considering the compressible Navier-Stokes
equations in the channel coupled with the Brinkman equation in the porous media
may lead to numerical instabilities for three-dimensional problems.

5.5.2 Effects of GDL anisotropy

The simulation considered in Section 5.5.1 is reproduced without taking into ac-
count the anisotropic nature of the porous material. Therefore, the permeability
components in this case are all equal to the in-plane components in Table 2, i.e.,
Kxx = Kyy = Kzz = 7.128× 10−12 m2.

The difference in the predicted pressure drop along the channel varies less than
1% with respect to the results shown as a red dashed line with circle markers in
Figure 14, which means that for fuel cell channels, the mass transport through
the gas diffusion layer is governed by the in-plane component of the permeability
tensor. This observation is in agreement with the work of Pharoah (2005); Hashemi
et al. (2012); Salahuddin and Oshima (2013)).



30 Jarauta, Zingan, Minev and Secanell

(a) Pressure distribution

(b) Velocity streamlines

(c) Velocity profile in the plane z = 0

(d) Velocity profile in the plane z = 0 obtained with NS/Brinkman equa-
tions

Fig. 15 (a) Pressure and (b) velocity streamline distributions in the serpentine channel and
GDL, (c) velocity profile in the XY -plane at the bottom of the domain (z = 0), and (d)
velocity profile at z = 0 obtained with the Navier-Stokes/Brinkman equations.
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(a) Geometry (b) Computational mesh

Fig. 16 (a) Geometry and (b) computational mesh used for the simulation of a fuel cell
interdigitated channel and a gas diffusion layer.

5.5.3 Interdigitated channel design

In serpentine channel designs for fuel cell flow fields the amount of gas bypassing
the channel is small as already discussed in Section 5.5. An alternative to serpentine
channels to enhance convective flow in the GDL is an interdigitated design, which
forces the gas to flow through the GDL, thus improving the performance at the
cost of increasing the pressure drop along the channels. This example considers an
interdigitated channel design to quantify the pressure drop at different flow rates,
and estimate the velocity inside the GDL.

The geometry considered in this section is depicted in Figure 16(a), with two
inlet channels at both sides of an outlet channel. Due to the symmetry of the
geometry, only half of the two inlet channels is used. The two inlet channels and
the outlet channel have only one end open, as displayed in Figure 16, and they
are connected only via the gas diffusion layer. Channel and GDL size, GDL type,
and fluid properties are detailed in Table 3.

The system of governing equations (39)-(46) is solved in parallel using 9 cores
in an Intel(R) Xeon(R) E5-2690 v2 CPU with a clock speed of 3.00 GHz, and the
average computational time is 2 hours. The computational grid for the interdig-
itated channel study contains 5×105 DOFs (Figure 16(b)). A grid independence
study shows that the pressure drop changes less than 0.6% compared to a once
globally refined grid with 1×106 DOFs.

Pressure drop in the domain for the Re = 400 case, i.e., Q = 0.37 SLPM, which
would correspond to a current density of 1.58 A cm−2 at a stoichiometry of 15, is
depicted in Figure 17. Velocity slices along the channel direction (i.e., x-direction)
reveal that the gas enters the two lateral channels, it diffuses through the GDL, and
it finally exits the domain through the central channel outlet (Figure 17(b)). The
velocity in the inlet channels gradually reduces in the along-the-channel direction,
and the opposite is observed for the velocity in the outlet channel.

Figure 18 shows a comparison of the observed pressure drop at varying flow
rates for the serpentine and the interdigitated channels. It can be observed that the
pressure drop obtained with the latter design is approximately six times higher
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(a) Pressure distribution

(b) Velocity profile slices along the domain

(c) Pressure profile in the plane z = 0

(d) Velocity profile in the plane z = 0

Fig. 17 (a) Pressure and (b) velocity distributions in the interdigitated channel and GDL,
and (c) pressure and (d) velocity profiles in the XY -plane at z = 0 for the Re = 400 case.
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Fig. 18 Pressure drop in the serpentine and interdigitated gas channel designs at varying
Reynolds numbers.

than the serpentine case, therefore, even though more gas will be available in
the GDL, there is a substantial penalty in terms of pressure drop when using
interdigitated designs.

In order to study compressibility effects, an incompressible solver was used
to solve the mass transport problem with the interdigitated flow-field design. In
this case, convergence could not be achieved thereby further justifying the use
of a compressible formulation for these types of problems as already discussed in
reference Santamaria et al. (2013), even though lack of convergence was not given
as a justification.

6 Conclusions

A compressible, steady-state, isothermal fluid flow mathematical model is pre-
sented that is valid in both gas channel and porous media. The governing equa-
tions are obtained using the volume averaging technique. It is shown that if the
phase average density and intrinsic phase average velocity are used, a continuous
solution is obtained. Only this combination of averaged quantities leads to a stable,
oscillation-free solution when Q2-Q1 Lagrange finite elements are used.

The numerical model is used to study two experimental setups developed to
measure through-plane and in-plane gas permeability of fuel cell porous media.
Numerical results can reproduce the experimental pressure drops reported in liter-
ature at varying flow rates in both setups. In these setups, channel-porous medium
interactions are observed at high flow rates. Due to these interactions, the use of
one-dimensional models to extract permeability values from experimental results
can result in substantial errors, especially at high flow rates. For example, for the
through-plane experimental setup under study, at flow rates of 1 SLPM a dis-
crepancy of 12% in pressure drop was observed when using permeability values
estimated with a 1D model compared to the proposed three-dimensional model.
For the in-plane permeability setup, similar discrepancies are observed.
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Fig. 19 Lid-driven cavity flow configuration and boundary conditions.

The suitability of the mathematical model for fuel cell applications is finally
illustrated by estimating the change in pressure drop in serpentine and interdigi-
tated flow fields in contact with a gas diffusion media.
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Appendix A - Lid-Driven Cavity Flow Test Case

A standard benchmark problem for testing Navier-Stokes equations is the lid-driven cavity
flow problem (Donea and Huerta (2003); Cremonesi et al. (2019)), which consists in the flow
of an isothermal fluid in a square cavity, as shown in Figure 19. The fluid contained inside the
cavity is set into motion by the top wall which is sliding at constant velocity from left to right,
while the other sides are fixed.

The steady-state compressible numerical solution is computed at Re = 1000 on a 128×128
grid by using Q1 and Q2 approximations for density and velocity, respectively. The tolerance of
the Newton method is set to 10−10. The fluid flow patterns generated in this computation are
shown in Figures 20(a) and 20(b). The streamlines depicted in Figure 20(a) show the formation
of three vortexes, which have been already observed in previous numerical studies Donea and
Huerta (2003); Ghia et al. (1982); Erturk et al. (2005); Cremonesi et al. (2019).

The numerical results are compared to those previously obtained by Ghia et al. (1982).
Figure 21 shows the variation of the horizontal and vertical velocity components along the
vertical and horizontal centerlines (i.e., y/L = 0.5 and x/L = 0.5), respectively. The compu-
tational results obtained by the present model are in very good agreement with the available
numerical data.
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