
Pyrosome consumption by benthic
organisms during blooms in the
northeast Pacific and Gulf
of Mexico

In the fall of 2016 large populations of pyrosomes, pre-
liminarily identified as Pyrosoma atlanticum (P�eron,
1804), bloomed in the Gulf of Mexico (C. Du Preez, per-
sonal observation) and, in the spring and summer of 2017,
a bloom occurred in the shelf and off-shore waters from
Alaska, through British Columbia, and south to Oregon
(I. Perry and M. Galbraith, personal communications).
Pyrosomes are a member of the Thaliacean class of colo-
nial pelagic tunicates that also includes salps and dolio-
lids. Pyrosomes are historically rare in northern waters
(Van Soest 1981) because they typically live in warm
waters from 50° N to 50° S, such as in the Gulf of Mex-
ico. The bloom that occurred in British Columbia during
the summer of 2017 is the first recorded pyrosome bloom
in these waters. Like other gelatinous zooplankton, these
free-floating colonies sink rapidly when they die (Lebrato
et al. 2013) and P. atlanticum undertake daily vertical
migrations (Andersen et al. 1992). It is very likely, there-
fore, that these blooms affect benthic food webs.
In September 2016 and May and July of 2017, three

research expeditions collecting benthic imagery sailed the
areas of these pyrosome blooms. The first of these expedi-
tions took place within the Northern Gulf of Mexico, in
the Bureau of Ocean Energy Management (BOEM) lease
block Vioska Knoll 906 (VK906; 29°04.1910 N, 88°22.5730

W). VK906 is typified by a known Lophelia pertusa reef.
This survey was conducted on board the DSV Ocean
Inspector using the Global Explorer remotely operated
vehicle (ROV), between 17 September and 5 October
2016. The second survey aboard the CCGS John P. Tully
and using the ROV ROPOS sailed within the Hecate
Strait and Queen Charlotte Sound Glass Sponge Reefs
Marine Protected Area (HSQCS-MPA) during 9–23 May
2017. The HSQCS-MPA is located on the continental
shelf of British Columbia and has discontinuous glass
sponge reefs between 53°24.0840 and 51°14.5650 N and
128°40.5930 and 130°54.4030 W. The third survey, also on
board the CCGS John P. Tully using the “BOOTS” drop
camera system (Bathyal Ocean Observation and Televideo
System), sailed off-shore of Vancouver Island between 18
July and 1 August 2017 over the Dellwood (50°44.8170 N,

130°54.3220 W) and the Union (49°32.7630 N, 132°42.1500

W) seamounts within the Offshore Pacific Area of Interest
(a potential future Marine Protected Area).
On and around the L. pertusa reefs in the Gulf of

Mexico, we repeatedly observed a squat lobster,
Eumunida picta (Smith, 1883) (Fig. 1a), a sea urchin,
Cidaroida sp. (Fig. 1b), two species of anemones, an
unidentified Actinaria sp. 1 (Fig. 1b, c) and Ceriantheop-
sis americana (Carlgren, 1912) (Fig. 1c), and the crab cf
Bathynectes longispina (Stimpson, 1871) (Fig. 1d) feed-
ing directly on pyrosomes between 395 and 412 m depth
(Video S1). On the sponge reefs, we also observed a
longhorn decorator crab, Chorilia longipes (Dana, 1851),
feeding on a pyrosome at 172 m depth (Fig. 1e; Video
S2). On the seamounts, two species of anemones, cf
Cribrinopsis fernaldi (Siebert & Spaulding, 1976)
(Fig. 1f, 573 m) and Actinaria sp. 2 (Fig. 1g, 1,429 m),
tanner crabs, (Chionoecetes sp.: Fig. 1h, two observa-
tions at 572 and 1,821 m), brittle stars (Ophiuroidea sp.:
Fig. 1i, 2,102 m), and a sea star (cf Cheiraster dawsoni
(Verrill, 1880: Fig. 1j, 573 m) were directly feeding on
pyrosomes (Video S3). These species, which were
observed across a wide depth range (172–2,102 m), rep-
resent three phyla. These observations suggest that a
wide variety of organisms in a large portion of the deep
sea can directly consume pyrosomes. Our observations
are, to the best of our knowledge, the first published
reports of benthic organisms consuming pyrosomes in
the Gulf of Mexico and northeast Pacific. These obser-
vations expand the work begun by Roe et al. (1990) and
Lebrato and Jones (2009) and greatly increase the num-
ber of benthic species known to consume pyrosomes
(from 22 to 33, Table 1). Despite the wide geographic
distance between our observations and those of Lebrato
and Jones (2009) (Table 1), there is a great deal of taxo-
nomic similarity in the species observed consuming
pyrosomes. This apparent global similarity may help
guide research into the impacts of blooms on benthic
systems where previous observations are lacking.
Benthic marine communities outside of the euphotic

zone largely rely on the sinking of particulate organic car-
bon (predominantly plankton) from surface waters for
food. Global climate change is predicted to change the
composition of plankton assemblages from diatoms to
microscopic picoplankton (Bopp et al. 2005). This shift
will likely transfer less energy to the seafloor, raising ques-
tions about the consequences for deep-sea communities
that are already food limited (Sweetman et al. 2017).
However, in some regions, episodic blooms of gelatinous
zooplankton and the resulting “jelly falls,” or the large
depositions of gelatinous material to the benthos, may
help balance the energy deficit in deep waters (Smith
et al. 2014). Consequently, understanding how benthic
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organisms use the energy provided by sinking gelatinous
zooplankton may help us predict how these systems will
respond to a changing ocean.
There are two pathways through which jelly falls can

enter the benthic food web. The first is through microbial
decomposition and entrainment in the microbial loop
(Lebrato et al. 2012). But microbial decomposition can
also decrease oxygen levels (West et al. 2009) and poten-
tially limit the organisms that can benefit from the episo-
dic pulse of food. The second pathway is as a direct food
source for some benthic organisms (Roe et al. 1990,
Bulman et al. 2002, Lebrato and Jones 2009, Lebrato
et al. 2012). The effect of gelatinous zooplankton detritus
on benthic food webs was long thought to be minimal due
to their relatively low energy content compared to other
common allochthonous sources (e.g., fish, algae). How-
ever, P. atlanticum is among the most energy dense
gelatinous zooplankton studied (~35% of dry mass is
organic carbon) and has high sinking rates, which reduces
the amount of remineralization during its descent through
the water column. This rapid sinking rate maximizes the
amount of energy and nutrients exported from pelagic
zones to the benthic system (Lebrato and Jones 2009,
Lebrato et al. 2013). Visual observations of jelly falls con-
firm that the amount of carbon delivered to the seafloor
by these bloom events can approach, or even exceed, the
estimated annual downward flux of non-gelatinous car-
bon in the system (Billett et al. 2006, Lebrato and Jones
2009). Accordingly, pyrosome blooms likely have signifi-
cant implications for the structure and function of benthic
communities. For example, food falls can stimulate repro-
duction and immigration in food-limited fauna, thereby
increasing the populations of organisms capable of capi-
talizing on this episodic food source (Wigham et al. 2003).
Although we present observations of direct consumption
by organisms based on high-definition visual observations,
these blooms certainly transferred energy to the benthos
via microbial decomposition as well. In systems with
filter-feeding foundation species, such as the glass sponge
and L. pertusa reefs where many of our observations
occurred, stimulation of the microbial community by this
influx of energy may have interesting cascading conse-
quences for the food web, such as an increase in dissolved
organic carbon available for sponges and corals.

FIG. 1. Benthic organisms observed feeding on Pyrosoma
atlanticum during (a–d) a mass bloom in the northern Gulf of
Mexico in the fall of 2016 and (e–j) an anomalous bloom off of
the coast of British Columbia, Canada in the spring and sum-
mer of 2017. Eumunida picta (a), an unidentified Actinaria (spe-
cies 1, b, c), an unidentified Cidaroida sp. (b), Ceriantheopsis
americana (c), and cf Bathynectes longispina (d) were observed
feeding on pyrosomes on Vioska Knoll 906 in the Northern

Gulf of Mexico. Chorilia longipes (e) was observed in the Hecate
Strait and Queen Charlotte Sound Glass Sponge Reef Marine
Protected Area (MPA) while cf Cribrinopsis fernaldi (f), an
unidentified Actinaria (species 2, g), Chionoecetes sp. (h),
unidentified Ophiuroidea (i), and cf Cheiraster dawsoni (j) were
observed feeding on pyrosomes on Dellwood and Union Sea-
mounts in the Offshore Pacific Area of Interest (potential
MPA). All scale bars represent 10 cm. In images a–d, scale bars
are approximate and were estimated from known size ranges of
benthic organisms present in the photos.

(Fig. 1. Continued)
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Targeted research is needed to determine if large
rare events like the P. atlanticum blooms observed in the
Gulf of Mexico in the fall of 2016 and in the Northeast
Pacific in the spring and summer of 2017 stimulate ben-
thic productivity and thus have cascading impacts on
benthic food webs. However, our ability to direct such
research is limited by our knowledge of which species
directly consume gelatinous zooplankton and by logisti-
cal difficulties of working in the deep-sea combined with

the often unexpected nature of gelatinous zooplankton
blooms. Consequently, reports of observations of deep-
sea taxa directly feeding on gelatinous zooplankton
increases our understanding of how benthic marine
communities may respond to climate change and help
direct future research into the consequences of “jelly
falls” for benthic food webs.
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