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- ABSTRACT -
\ ' ‘ /
The problem of optimal load ‘low in powenJS/ 1 1S is

oonsidered 'Based on Carpentier's formu]at1on the prob]em is re-’
-formu]ated to ach1eve a reduction -in the number of system variables,

by treat1ng a]] generator nodes as swing busses Reduced system

var1ab1es are also c]e551f1ed into contro’! and dependent var1ab]es
The set of equa11ty constraints is assoc1ated w1th the ob3ect1ve

Afunct1on us1ng Lagrang1an mu]t1p11ers, and funct1ona] 1nequa]1ty

q

constralnts are 1nc1uded as pena1t1es

f

The set of contro] var1ab1es is’ 1terat1ye1y adJusted

using Newton's method to minimize the ob3ect1ve function, wh11e

-

the set of dependent var1ab1es 1s evaluated by so]v1ng the set of

b'equa11ty constra1nts after each such adJustment

-

The reduct1on in: the number of system var1ab1es and their .

c]ass1f1cat1on as such prov1de 2 great sav1ng in computer storage

i

requ1rement as compared to other estab]1shed methods Furthermore,v-

.. the use of.Newton s method prov1des an exce]]ent convergenCe behaviour.
éa S o

The. deve]oped m1n1m1zat1on a]gor1thm is app11ed to the

we]] knovn m1n1mum generat1on cost and m1n1mum system loss problem

-

In add1t1on, the m1n1mum fue] consumpt1on, and combined . fue]-cost

m1n1m1zat1on prob]ems are def1ned and solved.

H

iv
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Vo : T Co T~ . . :
s . s ., . : ' " i —7 )
An optimal ordering-scheme of system nodes, for use with

\ 1arge systems, is é1SOgdeve1oped and ‘compared to two other effective .
. schemes. The new scheme proved to be generally comDafab]e to‘botn

scnemes for'thé cases studied.

- The concept of f1xed pena1ty factor developed in assocat]on
w1th the minimization a1gor1thm is 1nvest1gated and compared to
the usua] cgncept of monoton1ca]1y 1ncrea51ng sequence of penalty

factors The former .proved to be superior from e.pract1ta1 point ofl

7
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'CHA'PTERI e
INTRODUCTION :
With we rapid growth of demand of e]ectr1ca1 energy,
power sys .S hnveshad to expand. ,Assoc;ated with < eh expansion
are prob]ems-mhich have not been enc0untered before, or encountered
only to a mtnor‘exteht.‘ These problems are related to the question °
of howvtO‘operate'Or expand a power system re]iah]y and economica]]y;

Today, w1th the vast‘s1zes of power pystems that ex1st ‘many, 1f not

, a]], of these: pxoblems st111 have to be faced and dealt With.

L

’ whf1é gn of-these prob]ems ‘such as-stabi]ity'and associated

o prob]ems, are re. Jd to the transwent behav1our of the power system,

 some others are re]ated to the steady state operat1on of the system.
These ]atter prob]ems include, - among others, the prob]em of optimal
load f]ow, i.e. the problem of obta1n1ng .a ]oad flow so]ut1on_wh1ch_'

B

'optimizes'a certa1n operating cr?ter1on.

. The 1mportance of the optimal load flow problem is e a~nt
.1f one cons1ders the very s1mp1e case of two generators supp1\ g a
ccommon 1oad, and recognwzes that cost sav1ngs can be effected if
R generatTon-1s sh1fted from the less efficier= generator to'the more F
eff1c1ent one. However, an immediate cuestion ar1ses how much genenat1on
is to be sh1fted to accomp11sh the most sav1ngs? Th1s 1s the heart of .

the optimal Toad flow prob1e¢.



o .

w
1.1 Development of the 0pt1maT Load- FTow Problem

The optTmaT load flow probTem was f1rst recognTZed in a

: restr}cted sense 1n the form of the economic reaT power dispatch probTem

As ment1oned before, the aim was to obta1n a generat1on scheduTe that

w1TT meet the demand most econom]caTTy Generator voTtages were kept

“f1xed thus no controT on react1ve generation coqu be effected

F1rst attempts to s§§ve this: problem negTec \d the system s

transmiss1on losses., The resuTt was a generat1on schedule that requires’

__aTT generators to operate at the same, 1ncrementaT cost[]]

The advent of 1ntegrated systems and the 1nterconnect1on

between power compan]es for the purpose of economy 1nterchange, rendered _

th's approach unsat1sfactory Transm1ss1on Tosses became s1gn1f1cant

and . their effect had to be taken Tnto account ThTS Ted to the -
mod1f1cat1on of the 1ncrementaT cost method using penaTty factors and

loss: coeff1c1ents[2 ]]] R

!

ATthough exact coord1nat1on of 1ncrementaT loss and incremental

'cost was ach1eved[] ], the method suffers from the fact that the methods

used to determine‘these Toss coefficients (B - constants) are approximate

in nature and depend on particular Toad TeveTs and generator voTtages

ReTat1veTy recentTy an exact transmlss1on Toss formuTa was ‘

. deveToped u51ng the bus 1mpedance matr1x of the system, and the results
of a Toad fTow soTut1on[] ] Transm1ss1on Toss was: expressed in terms

_of reaT and reactive powers at aTT nodes Coeff1c1ents of the fonnuTa




f every and a]] parts of the system

[

3

-are notlconstants but change-asinode voitages and angles change. The

formula was used in conjunction with the exact co-ordination equations

to produce the exact solution of the economic real power dispatch problem.

In the same reference, an extension’to the method to
economical]y'a]locate reactiVe generation is presented. By mov1ng a]ong
the negative of the gradient of . transm1ss1on 1oss with respect to

~

reactive generations3 these }osses can be reduced By alternating rea]

»and react1ve power d1spatch processes,‘1t 1s c1a1med that the more

—- .

general problem of exact economic d1spatch can’ be solved. However, it

has been 1acer shown that a]though this extens1on, will a]]ow the

contro] of reactive generation, it will fail to Tocate the - opt1mum

so]ut1on[]3]. N B

~i

i
[

1.2 The General Optimal Load Flow Prob]em:.Carpentier Formulation

Inv1962‘a breakthrough-in the problem of . opfimal load flow

_was obta1ned b Carpent1er[]4], who deve]oped an- exact and: genera]

formulat1on of the econom1c d1spatch prob]em

" An N,bus-power‘system-is considered;. At each‘node there may”/

be_generation‘P and Q » and consumpt1on C and D, of active and reactive

S ) g
LT*respect1ve1y Each node is a]so character1zed by 1ts vo]tage V

“and phase angle §. These var1ab1es are 1nterre]ated, in a nonL/near

fash1on, by the network re]at1ons wh1ch gOVern the f]ow of power in =

: Qf_tourse, tota?jproducffon ) Pg cand § Qg , must equal the -
. . ) . ) i . i ' i .i i . B



o v -

: Eal

total consumption Z C; and Z D » Plus the respect1ve transmlss1on lossesy
i

T"%s can be guaranteed by the sat1sfact1on of the above ment1oned network \

relations.

Further, due to engineering and physical considerations,

"some variabies can only change within a sbecified range. For. examp]e,

a generator can not -produce any power beyond a certa1n value determ1ned
SN

by the capac1ty of the bo11er and turb1ne dr1v1ng 1t o

~

; . F1na11y, the cost of operat1ng the power system is a function

of real power generat1ons Pg , but not of react1ve generat1ons Qg
i i

which are cost free once the equ1pment requ1red for the1r product1on has™ ¥

been 1nsta]1ed

Thus the prob]em cons1sts of m1n1m1z1ng the operat1ng cost
f(P_,...,P ') subJect to the fo]]ow1ng
v 9y |
1) Sat1sfact1on of equa]1ty constra1nts formed by the power L

f]ow equat1ons (network re]at1ons)

-Pgif . g vi_va Y., cos(éi-dajeia) N <]f])
O | | . &
Qgi-Di - g Vi'vu‘yia”S]h(éi"éabeia) - (1.2)
| , “ o
where Yi,&  is the term in the node .admittance matrix

corresponding to nodes. i and a, -

A



[

2) Satisfaction of inéquality constraints\imposed‘by the

operating. Timits of the various variables: ’ ;J/
‘.P. . <P <P ' o : (]3)
'min T 9T Tmax o B o
1min gi ‘max | S x“' o |
DR TR S S N | (1.5) °
—~ min - Lmax. : : ' :

- Other ‘inequality constraints can a]so-be~imposed.

vA]though Carpent1er presented the prob]em in the form of
_economic . d1spatch, chang1ng the function fto any other power system
fun6t1on (e g total rea] geherat1on), and using the appropr1ate
‘lconstrajnts, will resu1t 1n a d1fferent power system opt1m1zat1on

problem of the same genera] form. e k -

\

1.3 Optimal Load—F]ow‘So]ution'Methods

- Apart from the methods”that so]ve on]y spec1a] cases. of the :'

‘ ‘dbt1ma1 1oad f]ow prob1em, some of which have been descrlbed in Sect1on

. most genera] form

1.1, severa] methods have been deve]oped to tack]e the prob]em in 1ts
[]5 22] A compar1son between some of" these methods

can be found 1n reference 13.

In this sect1on two of these. methods,_due to Dommel and
T1nney[]5], and Sasson, ”110r1a and Aboytes[2 ], will be descrlbed in
_ some deta11 because of the1r relevance to the work presented in th1s |
_thes;s _ However, a br1ef out11ne of the other methods w111 be g1ven f1rst

[16 17]

Sasson and Ramamoorty and Rao[]gj emp]oyed non]1near

programm1ng methods to so]ve the problem. Severa] techn1ques have been

' descr1bed for fncorporat1ng the prob]em constra1nts as pena]t1es on

9 : ' L LB

R . [P



" the cost function, thus transforming the problem of constrained

optimal load flow to an unconstrained problem.

. g o N o
While in reference 18 a %ﬁrst order gradient technique was

{

‘used for the unconstra1ned minimization process, references 16 and ]7
used the F]‘Eﬁaer Powel] a]gor1thm[ 3] which represents one of the

;;most powerful techn1ques in what is known. as the var1ab1e metr1c ' o #/j R

«[24] !

"methods Though th1s method worked qu1te we]] for sma]] systems,

it deve]oped convergence and computer storage prob]ems as system s1ze
1ncreased, and decompos1t1on techn1ques had to be used[25ﬂ

[19 20]

B1]]1nton and Sachdeva used a suboptima] technque

9.
for so]v1ng the prob]em With an as;umed real power schedu]e, and

4

e keep1ng generator poWers and re]at1ve phase ang]es between system nodes =
fjxed, vo]tage magnitudes are optimized using transm1ss1on 1osses, a

b_ function—of‘thevVoltages.only, as an objectfve function,.reactive power ;
equat1ons as equa11ty constralnts, and the 11m1ts on. react1ve generation

| and vo]tage magn1tudes as 1nequa11ty constra1nts With the resu]t]ng_
'vo1tage magn1tudes f1xed, a real power dispatch is obtained optimizfngv f

the cost of . generat1on under the usual equa11ty and 1nequa]1ty constra1nts

- The process is then repeated until no further 1mprovements can be obta1ned

'A]though the method is simiTar to that of reference‘12, the

' way ‘the problem is formulated guarantees an’dptima11s01Ution "However,-v;

%

th1s opt1ma1 so]ut10n w111 depend on the cho1ce of the sw1ng bus[zo]

Re1d and Hatsdorff[2 ] app]1ed quadrat1c programm1ng to solve .

”
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the-probTem. 'Since the méthod reouires a quadratic cost function and
linear equality constra1nts, new var1ab1es had to be 1ntroduced to
.transform system operat1ng cost 1nto a quadrat1c funct1on of system
variables 1nc1ud1ng those newly def]ned These new var1ab1es also
includes the var1ab1es 1ntroduced to transform the 1nequa]1ty

- constraints into equality constra1nts

The niethod worked very n1ce1y for, systems of up to 118
'busses in size. Mo ment1on of storage requ1rements was g1ven however.
But since the number of var1ab1es involved far exceeds those of any
| other method, storage requ1rements can Jeoparad1ze the method’ s success

for large rea]1st1c systems.

'Dommel and Tinney S method[ ]<centres:arOund ordinary Toad
f]ow so]ut1on by Newton 's, method[2 ] Lagrang1an mu1t1p11ers are used .
to associate the equa]1ty constra1nts with the obJect1ve funct1on -

' Inequa11ty constra1nts are 1nc1uded as pena]t1es

- The" equa]1ty constra1nts cons1st of all equat1ons forming
“the ord1nary ]oad -flow prob]em, i.e. one real pover equat1on for each
‘generator node, and two real -and react1ve power equat1ons for each

1oadtnode.' Slack. node equat1ons are not 1nc]uded

Apart from fixed parameters and those which can be read11y
obta1ned from g1ven equat1ons, e.g. react1ve generatnons, system E
var1ab1es are real power generat1ons, with that of the slack node
expressed 1n terms of he system vo]tages and ang]es wh1ch form the rest
of the var1ab1es Thgrvar1ab1es qre c]ass1f1ed as. control or -

v1ndependent var1ab1es.”u" cons1st1nq of. generator vo]tages and rea]

/

powers, and dependent var1ab]es "x" formed by voltages and ang]es ‘of 10ad '
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nodes as well asiang]es of generator nodes.” -
) . w . . » '
The Lagrangian function is thus formed as:

3 (u,x) = f(u,x) + AT

a(u,x) S “(1.6)

 where - f(u 5), gjg_x) and X are the objective funct1on, equality
constraints and the Lagrangian multipliers, - respect1ve]y Cond1t1ons

for the minimum of thevbbjective function are: -

&,
oL ’ : v R \\; ‘
5% - 9ux) =0 . N G V)
(22 o
°og : o - _
oL ._3f =17, . .
. ox axtlaxliaze | (1.8)
Fa °g R , L
oL _of L . |
sutaptlagglare (1:9)

Given an est1mate for the contro] var1ab]es "u", eq4§t1ons
(1. 7) wh1ch are the 1oad -T1low equat1ons, are first solved for the
2 vdependent var1ab]e5'"5ﬁ. The Jacobian is then used in (1.8) to so1ve
for "A". "Equations (] 9) w111 then give the gradient v.L of the
Lagrang1an funct1on w1th respect to the contro] var1ab]es u 'A
correction 1s then app11ed to these control var1ab]es by a move a]ong
ithe negat1ve direction of N wh1ch is the d1rect10n of maximum decrease
of Lat that pq1nt. This correction is g1ven,by, . N ’

| pus=-cou, R . 10)

‘where ¢ is an acce]erat1on factor determ1n1ng the size of the move.

V'The process is repeated unti]vho fUrther'improvements can be’

-



. achieved.

§

¢

The method, although theoretically sound, suffers from the
poor convergence characteristicscof the steepest descent method and
its sensitivity to acce1eratjon ¢ . Storage requirements.cou1d'a1so
pose a prob]em for large syStemé, due to‘the 1arge number of equa11ty

constra1nts, even 1f on]y non zero .elements of the Jacob1an matrlx are
S

stored Another problem is that the so]ut]ons obta1ned for some

o _ s]ack
on the location of the slack node.

‘The major drawback of the method -is, hoWever,'its inability
to handle'complex objective-functiOns[ZZJ, oo§§db1y because oﬁ the

1

inadequacy of»the Steepest descent direction Comp]ex1ty of the cost

1nequa]1ty constra1nts wh1ch bad]y deform the hypercontours 1n thi{/

have been pub]1shed us1ng this method

Sasson[ ]d1d not distinguish between equa11ty and 1nequa]1ty

constraints, and pena11zed the obJect1ve funct1on for-both types

Generator equations. were first. removed from the equa11ty constra1nts and
subst1tuted into the obJect1ve funct1on ‘and 1nequa]1ty constra1nts to:
eliminate generator real and reactive powers as variables. To mjnimi;e
fhe'cost function, corrections to‘thetvolcages and ang1e$ of all nodes

are app11ed at the sameé t1me us1ng the Hessian” matr1x of second order

K

part1a] der1vat1ves of the panallzed obJect1ve function.

. ] : ‘ N . . lv
b u = - H ._u.f, R o (1.11)

‘prob1ems, e.g. the minimum loss problem (f = (v, 6)); are_dependent

iﬁgi“t1on can resu]t from pena]ﬁ& terms introduced by v1o]ated non11near -

' estate space.- Th1s is poss1giy why no resu]ts 1nvo]v1ng such cons a1nts'
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-

where u, Hand v A f are. the vector of voltages and angles, the Hessian

\ —_—

ratrix and the grad1ent of the penalized -objective function with respect

bl

to the vector u) respect1ve1y.

The- method requ1res ‘even more storage than Dommel and Tinney's

: method thus 1ts success cou]d be 1imited for 1arge systems. S1nce
equa11ty constra1nts are not sat1sf;ed unt11 the 1ast 1terat1on they
=re always present as pena1t1es in the obJect1ve funct1on w1th the
;.ObV1OUS adverse effects on the method S convergence Th1s can be. seen
~from the less than adequate satisfaction of these equa11ty constra1n§§
“After a solution is c1a1med to be obta1ned[22] , . ‘ ',\

1.¢5Research Objective

As shown in Sect1ons 1.1 and 1 3 every method suffers from
~one drawback or another Th1s ]1m1ts the]r use in. the power 1ndustry
either due to their storagerrequ1rements or poor convergence Thus it

© was cons1dered worthwh11e to 1nvest1gate the poss1b1]1ty of deVeloping

another method wh1ch possesses the advantages of the prev1ous methods

and at the same t1me does not have, at 1east their maJor shortcomm1ngs

A]so 1nvest1gated, is a new approach to opt1ma]Aorder1ng of
system nodes to minimize the number of new off- d1agona] e]ements
1ntroduced dur1ng the elimination process used in Newton s -method.

The 1dea is to locate as much off- d1agona] e]ement of the or1g1na1

-‘matr1x as- poss1b]e in the ]ower r1ght hand “corner of such matrix.

Thegoa] of th#s work 1s, thus, to deve]op a method and” 1ts



&1
J o
supporting mechanisms thathcan bevreadi1y implemented by the powet.:‘

industry.

4

‘
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. CHAPTER L -
PROBLEM R ULATION AND ITS SOLJTIOI |

“ : As mentioned ‘in Sect1on 1. 4 the object ve of t¥e solution o

~.b

..method is two fo]d first, to reduce computer ste age requ1rement,

and second, to obta1n better convergence behav1our . The f1rst obgect1ve

/
/s

“can be ach1eved by refonnu]atlng the prob]em to e11m1nate some - of the
var1ab]es, and us1ng a so]ut1on method that does not hand]e a11 the
rema1n1ng var1ab]es simultaniously. The second obJect1ve .can be

fu]f11]ed by choos1ng a m1n1m1zat1on cr1ter1on which prov1des a better

» stx

m1n1m1zat1on d1rect1on »

2 ProbTem‘Reformation'

4

The bas1c Carpent1er formu]at1on was- stated 1n Sect1on 1 2.
It was’ a]so ment1oned that ]th0ugh Carpent1er presented hlS formu]at1cn
in the form(of the econom1% d1spatch problem,;chang1ng the ogject1ve —
funct1on w11] 1eéd to a d1fferent power system opt1m1zat1on prob]em '
‘This means that the ob3ett1ve function f 1s not bound to be a function of
real. power generat1ons on1y Therefore, it would be preferrab]e to'
'restate the prob]em in the following form, which d1ffers from that of
Section ] 2.in: on]y the def1n1t1on of the obJect1ve funct1bn

~ M1n1m1ze the sca]ar functlon f of system var1ab]es subJectj

to the fo]]ow1ng constra1nts
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. i . n A—K
. Equality constraints: .
! Pi(V.8) - (P -C;) = o (2.1)
. i
: | i= 1,0 N
0;64,8) - (0 -D;) = o (2.2)"
S
Inequality constraints _ .
o P <P <P, N - (2.3)
s Imin T 98 T T v _ . T
) - . o _ i for generator .
S T . ‘> ~busses, j for all
Q; <Q =< Qi - busses v (2.4)
min 95 max - : ) o
. v ‘.. ‘}y”
V.. = v, = vy C (2;‘5’)')~
_Jmin .J Jmax-~ :
.:where, at a bus i (V o) and Q (V,8) arebr a] and reactive power
1nJect1ons given by. the r1ght hand s1des of eqyat1ons (1 ]) d(1.2)

respect1ve1y

©

The equa11ty constra1nts (1oad 1ow equatwons) cons1st of
2N equat1ons Th1s number can be reduced 1f those equat1ons correspond1ng
| to generator nodes are removed. Th1s can be accomp]IShed by subst1tut1ng
_.or Pg1ys and Q g s of generator nodes 1n the ob3ect1ve funct1on and/or
the appropr1ate 1nequa11ty constra1nts Th1s 1eaves two equat1ons per
each 1oad node &o form the equa]1ty constraints. : Th1s 1s “N -1
equat1ons less than an. ord1nary Toad flow equat1ons set where N
. the number of generator busses Note that 1n an ord1naty load flow
prob]em, reactive power: equat1ons of generator busses a"e a]ways exc]uded

-

due to f]xed generator vo]tages A]so excluded is the rea] power
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equat103&of the s]ack node due to the fact that its ang]e is f]xed/as

_Q:\
reférence, and 1ts power 1s,4eft f]oat1ng to absorb system losses.

. | ’
‘Elimination of Pg‘ and Q in such a way, and the fact. that
f i -
a]ﬁéét all system var1ab1es can be expressed in terms of system voltages
G

.and ang]es, transform the prob]em 1nt0 the fo]]ow1ng form.

. Minimdze the scaiar‘function#§5y3§) subject to the fo]]owjng

|
AN

constraints:
- o Equality constraints ‘at a 1qadubus'i:
/ Pi(V,8) +vC.o= o N R
LY +Dy=o T g

hInequaiity,constraﬁnts”at*a generatqr hus Joo

p! < P.(V,s) <PL (2.8)
min. J - Jmax °

Q! < (¥,8) <Gt : (2.9)

Imin J 7 Imax

Inequa]ity constraint, at any bus:k:

eV, <V _ | L T (2.10)
min = K~ kmax" e T S

L9

~ *Note that Pg and Qé are“zeroAat a‘Tead bus.

i 9

12 .

Y
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The pr1me on the upper and lower limits of generator powers
_1nd1cates that these Timits are mod1f1ed to. account for local loads
It will be om1tted from now on, but the forego1ng shou]d be emphas1zed

Note also that the main var1ab]es of the system have been reduced to

'1nc]ude on]y the vo]tage magnitudes and ang]es

| E]imjnation of Pg{ and Qgi also meanz that'a]] generator‘ |
busses are treatéd'as swing busses in the sense that their powers are..
: determ1ned from the vo]tage d1str1but1on in the system Th1s w1]1
e]1m1nate the dependence of the so]ut1on of some prob]ems\\e g.. the
m1n1mum ]oss prob]em, on ‘the cho1ce of a part1cuTar swing bus. Any
one of these busses can be chosen as a reference bus and its angle set
to zero Note here that the vo]tage magn1tude at any of these busses
is free to change (w1th1n prescr]bed ]1m1ts) and the voltage level in

the system is no 1onger determ]ned by a fixed vo]tage at a sw1ng bus

Load flow equations (2.6) and (2.7) are, in Vector'fonn:

C9(¥s8)= 0 SRR T (2.11)

'The ord r of ‘the vector g is 2 N, where NL

‘bUSSGS So]ut]on of (2 11) will provide the values of 2NL unknowns out

fN—Ng is the-number of load

. of 2N 1 Var1ab1es thus the rema1n1ng 2Ng-] var1ab]es shou]d-be assumed
This prov1des the bas1s of var1ab]e c]ass1f1cat1on 1nto |
a) Contro] or sRech1ed var1ab]es, 2Ng—] in numben | N
o N ) b) Dependent or unknown var1ab]es, 2NL in number a
;,The most 1og1ca1 .and natura] ch01ce is that the first - set - denoted by the

"‘vector u," should 1nc]ude 1e vo]tage magn1tude and angles -at generator

v

o
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busses.. They'are exactly 2Ng—1‘in number (note that the angle of the
reference bus ié'fixed at zero) The‘seCOnd set, denoted by the vector
X, Will consist ofﬁiae vo]tage magn1tudes and ang]es at 10ad/Busses
The number of these quant1t1es is- exact]y 2NL
Thus, Toad flow equations (2.11) becor
glu,x) =0 - - - " (2.12)
and the statemgntjof the pfob]em.fakes the form: | R

Minimi e the scalar function f(u,x) subject fo:

Equality constraints:

gwx)=e c o (202)
- L o o ' R ’
Inequality constraints; ,
P'i < P, (u,x) < Py , . ‘ (2. 13) /1
min . max . - - .
Imin < Qlwx) <Q | (2.14)
P . ma/ R . - B ".,
V.o <V, <V, o : . ‘ (2.]5) \
‘ Jm1n max : oo
where i is a generator bus, and j.is any bus s .

2.2 Snlution of the-Optima] Load Flow Problem

Any qpnstraihed noh]inear_brogramming probiemq“1ike”the one
described.invthe previoUS‘seFtion,-éan'be solved by conver}ing it ihto an v
uhcoﬁstﬁained prob]em"and then épplying one'of the numerous methods
‘developed for unconstralned m1n1m1zat1on The convéﬁsion isvachievéd
by def1n1ng an appropr1ate aux111ary funct1on, in terms of the. or1g1na1

' prob]em funct1ons, and ‘using it as a .new unconctra1ned obJect1ve funct1on

‘There are two’ways'to 1hc0rporate the prob]em constraints

“

1into. the objective functionbto ft£T.th1s new ani]iéry fuh¢tion. The

first'is ‘to use the Lagrangian multiplier theorem_forfthe equality
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dhii:i;:;s, and the Kuhn - Tucker theorem[2 1 for 1nequa11ty A
const s. This requ1res that the equality constra1nts are exp11c1t1y

'sat]sf1ed Also requ1red is the satlsfact1on of what is known as the

o exc]us1on equat1ons" of the Kuhn Tucker theorem

_pena1ty function are ava11ab1e in the 11terature

[13]

The m1n1m1zat1on

Y

.process thus moves from one feasible point' to another \{2t1] the

minimum of the'obqect1ye funct1on is-located.

The second way 1s to pena]ize.the objective fwnction for both'
S ’ b

types.gf constraints, as Sasson et. al. did[zz]. Many forms for the
24, 28, 29]

T

In this

‘case, one moves{X"}%he who]e space rather than the feas1b]e reg1on unt11

the opt1mum 1§/Abta1ned. .

-

To choose between these two approaches, one should recognize

T

- . that un]ess the equa11ty,corutraints are‘exp11cit1y‘satisfied, they will

always be present as pena]fies withlthe:obvious adversegeffectsnon*

_convergence as mentioned before. Thus the idea of penalizing the cost

‘funCtiOn for'thfs fype.of‘constraint is ruled out. Furthermore, very

few 1nequa]1ty constra1nts are ‘violated s1mu1taneous]y, S0 the1r

1nc1u510n as penalties 1s not as*bad as it wou]d be in the case of

\5‘

. equa11ty cons@ra1nts. Moreover, the eva]uat1on of Kuhn-Tucker dua]

variables and the associated change of node type, wh1ch wou1d'mncrease/c

the number of equa11ty constra1nts, and the ordg¥ of. the ]oad flow

'port1on, is av01ded

" as:

4

For‘thefprob]em at hand:kthe’Lagrangian‘function is defined

plux) = ke g - (2.16)



where,ef(gﬁx) is the obJect1ve funct1on wh1ch 1ncorporates the penalty
terms arising from the violated 1nequa]1ty constralnts (1f any) as will
:'be discussed later, and X is -the vector of the Lagrang1an mu1t1p11ers

‘assoc1ated w1th the equallty constra1nts

It is 1mperat1ve to say that m1n1m1zat1on of the Lagrangian
L w1th the equality constra1nts satisfied means in fact the minimization
' of f Thus at the minimum of f(u, X), the fo]]ow1ng cond1t1ons must be

sat1sf1ed g1v1ng the opt1ma] so]ut1on

g—‘i—’=_g_(ﬁa£) = 0 - (2.]7)
ag- ' R o »..

L=t [ a0 T2ae)

X —_— —-_— .

L .

susut Lagl 2 0. S o (2.19)

LA]thodghdequationS (2.16) ~ (2.19) are‘identica] toieodations
(1.6) - (] 9) of'Domme1 and‘Tinney[]SJ, one shou]d emphas1ze the | B
d1fference in the order of matr1ces and vectors 1nvo]ved, as well as
the d1fferences in the def1n1t1on of ‘these various quant1t1es Th1s is .
' ‘what g1ves this method the advantage as far as computer storage 1s_

' concerned as w11] be deta]]ed ]ater

Equat1ons (2 17) - (2. 19) are non11near and 1terat1ve methods}.
are necessary to so]ve “them. The genera]1zed Newton s  method has been
»xknown to be the most powerfu] of a]] m1n1m1zat1on techn1ques[ ], resu]ting

~in a super1or convergence behay1our The on]y theoret1ca1 d1ff1cu1t1es
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.a§sociated,with %his method is the amount of storage required for. the

_Jacobian matrix and the expehsive'efforts to 1nveff-it; However, these
'djffiCu]tﬁés are drastically reduéed‘in power éystem studies becadse _
of»the extreme sparsity of the Jacobian so tHat Newton's method has
become .a standard procedure.‘in the power ihdusffy.' o

Thus, based_pn this method, the so]utioh_a]gorithm is as
'fo]lows.v A f]ow‘chart'is a1so.gjveh in Fig. ?J]; \ ‘
1) An arBﬁtrary.set of values is assumed for system

voltages and éng]es.

2) Load flow equations (2.17) are solved using Newton's
method[26]. * THe ovifer of this prbbTem is 2NL.

3) Lagrangian multipliers,) are obtained from equation

(2.18) as:
R 'R B ' D ' S
. = - ——— T _a_f._ : ’
Ax-lgy ] w1 o (220)
S - T : ‘ 99
The equations are Tinear in A and the Jacobian matrix'[giﬂ

is already available from step 2).. If the Jacobian. is

5vai]ab1e in factored form (upper and lower triangles)*

* ' 3 , - e o
- This is computationally equiga]ent to the inverse or transposed
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bas is usually the case for large systems, this step
‘rrepresents one repeat solution of a lineer system.’
4) At this point the'va]ues of u, x and A_satisty equations
(2. 17) and (2.18). They w1]1 not, in-general,
sat1sfy equationsl(2;19) which wi]],'then, give the
gradient v f, of the objective function f witﬁ”respect
: to the contro}’var1ab1e/7u when equality constra1nts are
”@“set;sf1ed[]5] Thus a correct1on Au in u is poss1b1e
using the relation:

bu = - W7 R, - - ; (2.21).

- where H is the Hess1an matr1x of the second order part1a}
der1vat1ves of the Lagrang1an funct1on w1th respect to
u. Its order is 2Ng 1° Formula (2. 21) 1s 1dent1ca1 |
to Newton S formu]a It g1ves not only the d1rect1on of
the move, but a]so 1ts size. ’
5) The new va]ues of the contro] var1ab1es u 1s then g1ven by
(2.22)
'whererthe superscriot ingjcates‘the iteration numberA
6)'If some convergence cr1ter1on s sat1sf1ed the so]ut1on
| has been found otherwise return to step 2)
For convergence cr1ter1on, one: may use .one of the following:
a) The change in the value of' the obJect1ve funct1on is
less than a prescr1bed va]ue vThe accuracy of_th1s

r - ‘ cr1ter10n is doubtful in cases whevre the‘objective function~
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happens to be‘very flat near its minimum reso1ting

in a suboptimal so1utton}

Each component of the correction vector Au is smaller
than a preaSSUmed value. This will produce the

most accurate results because one 1s check]ng the "/ 

movement of the operatwng point 1tse1f‘ o ///

Each component of the grad1ent vector Vf ts 13&?/

“than a set to]erance Th1s is the,pract1ca1f€ouiva1ent

to the theoretical requifement of zero gradient which

._is-the condition for an optimal solution. However due

Q.

to the premu1t1p11cat10n by the 1nverse Hess1ah

the fact that, in pract1ce the gradient w111 never be

§1dent1ca11y zero, the correct1on“vector Au’ may not

sattsfy criterion (b) if it were used 1nstead Moreover,‘

care must be taken because a component au of the -
.i
gradlent vector Vf w1]1 not be zero if the control

= 4

: var1ab1e u1 is on one of 1ts hm1ts[]5:I

C2.2.1 So]ut1on of Equation (2.17)

Newton s method is we11 known and 1ts deve1opment 1nto the

is no ev1dence to the contrary although very many d1fﬁerent systems

most powerful. methods of load f]ow solution by exploiting the spars1ty ’
“of the Jacob1an matrix of 1oad flow equat1ons 1s ‘well documented[26]
The fact ‘that the Jacob1an matr1x should be pos1t1ve def]nwte for assured

uconvergence seems to be sat]sf1ed for pract1ca] power systems as there_



have beeglstudied.
In. equat1ons (2 17) the vector u is fixed at the 1n1t1a]

guess, or thgkcof?ected va1ue The vector X is set at an initial

gest1mate, or. the va]ue from the prev1ous 1terat1on, and. the vector

j1t W111 not equa1 to zero. Correct1ons in the vector X. are then

carr1ed out us1ng the re]at1ons

. g0 S
1 _ 1 (1 'i 1 /!
AX = - ¢ AU X 7(2.23
e [foas
’ +] i i$“b” '
_1 ax 5 (2.24)

WHere J is the Jacobian - matr1x eva]uated at the 1th iteration, and

v the superscr1pts indicate the 1terat1on number The process is

repeated until the mlsmatches g are iess than a prescr1bed va]ue

(e g 10 5) |

fkagGations (2.23) are written in more detail as:
q 21 ¢ ,

F : —“1‘@ . o -1
7| dpy 8Py ap,  3p F‘ |
1 °Hy 1 1|
”A 5-] ) E a—VT e e e e s‘SK m : p]
. _ S L
L R R T I R
. a ] a -] . - - ' e GN a N - ]
ey L L . .
, 3p, 9 _— apy. “dpy - | | - o
5oy N O NN
N 35, V. ¢ 36 W Py
1 ] N, °'N L
| L L
E 3g, 23qy 13q gy,
AV M oM ]
] NLJ ] 38, IV éBNL avNLqi ] NL_
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where all subscr1pts belong to the set of load nodes, and p ; and q
are real and reactive m1smatches (form1ng the vector g) at ]oad node

li. The e]ements of the Jacob1an matr]x are given in Append1x A

Even though the Jacob1an matr1x of load f]ow equat10ns is
extremely sparse (3.5% fu]] for the IEEE ]]8—bus test system) due
to the fact that each node is connected to on]y few adJacent nodes,

the computer t1me requ1red to invert 1t in the case of a 1arge power

“”system would be proh1b1t1ve Moreover, the inverse proper will be a

‘fu]] matrTx requ1r1ng a large couputer storage area.

These prob]ems have been a]]ev1ated by the use of Gauss1an

' e]1m1nat1on resu1t1ng 1n an upper triangular matrix, then using

back subst1tut1on to obtain the so]ut1on Ax Forward operat1ons may
be stored 1n the ]ower tr1ang]e for the purpose of repeat so]ut1ons[30]
It has been shown that for an nxn full matrix the number of - operat1ons ,7'
(mu1t1p11cat1on add1t1on) requlred for tr1angu]1zat1on is of the

1 3 3 [31] 2
order §-n compared to. n for proper inversion - Back subst1tut1on
wou]d requ1re the same number of operat1ons, n2, as the premu]t1p11cat10n 4

W1th the 1nverse So it is ev1dent that Targe sav1ngs in. computer o

tlme can be effected

* see closure ‘of ref. 22.
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N

| §§£ks approach combined-uith'an optimal ordering scheme of
PN

the nodes to preserve the spars1ty of the Jacob1an durin ian uT1zat1on
9 9

and the use of compact storage techn1ques of sparse matr1ces, in_
which only hon-zero elements and the1r pos1t1ons are stored, will
also result 1n great sav1nqs of computer storage wh1ch would be

requ1red othe?W1se

2.7. 2 SoTut1on of Equat1ons (2 18)

After equatiOns (2.17) have been sblved, a by product is

the Jacobian matrix. The vector gf«can aTso be computed Its

components are g1ven in Appendix A for a cost funct1on which is
- quadrat1c in real power generat1ons The ava11ab111ty of‘these
two quant1t1es means that,\at thl‘present operat1ng\po1nt equat1ons
(2. T8) are linear in the Lagran51an nJTt1pT1ers A They can be

soTved by. v1rtue of equation (2. 20). Whether the Jacobian is ava1TabTe

RS

\n

1n factored form or as expT1c1t inverse Jacob1an, the determ1nat1on
of x amounts to a repeat soTut1on of the transposed system In this
”. case the vector g;-repTaces the m1smatch vectdr q The numbcr of

0perat1ons requ1red 1n e1ther case is n2 if the matr’x 15 fuT], or

: ;much Tower 1f the sparsity of the Jacobian is. ‘taken adva tage of,

i.e. the factored Jacob1an is used instead of the inverse.,

AP

2.2.3 The Hess1an Matr1x .

Lo ‘In~equations (2.21) the Hess1an matr1x of the .second order

partial derivatives of the obJect1ve funct1on w1th respect to the '

Q

control variables u, is used to compute the correct1ons AU, The matr]x

‘is symmetricaT, and thus, only the d1agona1 .and upper ‘triangle

_e]ements need to be stored. Moreover the matr1x is extremeTy sparse

N



as shown in Figure 2.2"Thisbis due to the fact that the‘contrdTW

variabTé% consiSt'of the voltages and angles of generator nodes only.

~ Unless there is a d1rect tie between two such nodes, the Lagrangian

" function- w1TT be free from any:. torm 1nvoTv1ng the var1abTes at these

nodes s1muTtaneousTy Hence, no cross term (off d1agona1),
2 ' o

gv 6 , will appear 1n the Hess1an“except in the case where there
1s a t1e between generator i and. generator J _In,practice these ties

are rare, and the Hessian reduces almost to 2 x 2 submatrices, along

2 2 S Z2 ,
the main d1agonﬂﬂ§trepresent1ng the terms 3 L., oL s g L
R T R T
_ 2 ‘&{g _ _ . -361 i1 aviaéi‘
and 2L In Figure 2.2 node j is connecked to node k whereas all
CavL T LA ’ .
I

i

. - . lv .
other nodes are'?ree from any connectionjwith'other generator nodes.

Furth?rmore, the eTewents offthe Hess1an matr1x are very

Y

simple and easy to compute (see Appendﬁx A) Th1s, together with the w

prev1ous anaTys1s of 1ts structure, shows that equat1ons (2. 21) are

p

easy to handTe, and no probTem as far as storage and t1me requTrementf

has to be ‘faced.

- As;mentioned'earTier eqUation‘(Z 21) is identicanto

Newton's relation (2. 23)\f Thus one expects a/convergence behaviour

as. good as Newton g method The Hess1an matrix should bermos1t1ve

t

definite to assure such convergence, a cond1t1on which waseﬁrue 1n all

:cases stud1ed The pos1t1ve def1n1teness of the Hessian can also be

N assured if the start1ng point 1s cTose to the opt1maT soTut1on Th1s

requirement is aTways.sat1sf1ed in a.fTat starting point*. The fact is

N

* A flat start means aTT voTtages are set to its spec1f1ed vaTue or- at

T 0 p.u. and aTT angles set at zero. ¢ -
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;
that_in any power system ‘the voltage magnitudé at any“bus will neuer
change béyond the: range 0.9 - 1.1 p. u. , and the phase ang]es amount

to a few degrees away - from the zero reference +

2.3 Inequality Constraints

In the formulation of section 2.1, system variables were ..

classified into.control and dependant variables.  As their name f'il’"

indicates, the value of any control variable is under control by
‘yirtue of equations (2.21) and (2.22) or any other valid regu]ating

'condition On the other hand there is no d1rect contro] over the

,d"“
dependent var1ab1es, as they are comp]ete]y determ1ned by the Toad

jf]ow so]ut1on A]so, control of the value that any generator power
'-'can assume is e11m1nated by treating all generators as swing generators

_ Therefore, 1nequa11ty constraints, which determ1ne the'operat1ng range

of all these var1ab1es, can be c]ass1f1ed 1nto parameter (or contro])

and funct1ona1 constralnts

o

Cing each var1ab1e to 1ts operat1ng range, i.e. no contro] var1ab1e v

vby:' RN

2:3.1 Parameter or.Contro1 Constraints AU

These are the 11near 1nequa11ty constra1nts app]lcab]e to :

-each 1nd1v1dua1 contro] var1ab1e Typ1ca1 constra1nts are upper -and

o

Tower 11m1tsipn vo]tage magn1tudes at generator nodes

Th1s type ofconstna1ntscan be eas11y sat1sf1ed by restr1ct—
5

is a]]owed to exceat 1ts 11m1t ‘ Thus equat1ons (2.22) are repiaoed

>
3
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1

G

u. ' if u, + au. > u.
‘ Imax - , ? _ b Inax _
S o) u. . o iful o+ oAl <uy . -~ (2.27)
J : Imin o J qmin ' : :
i i i . '
u. + Au. . otherwise
J J - g

The use of th1s approach not only will keep the success1ve ’

»

-moves within the feas1b1e reg1on as far as contro] variables are

"_‘concerned but w1]1 a]so reduce the number of 1nequa11ty constra1nts

to be treated by the pena]ty functlon approach, thus reducing the

‘chanre of 1ntroduc1n93pena1ty t§rms into the objective funct1on

j2.3.2 Funct1ona1 Constra1nts

.These'consist of.a11 problem constraints except parameter
constraints. .In genera] they are the 1nequa11ty constra1nts, Tinear
or non11near, 1nv01v1ng dependent var1abLes and/or two of more of the

contro] variables. . Typical constraints are upper and 1ower 11m1ts on

7;generator powers, and. upper and’ 1ower ]1m1ts on vo]tage magn1tude at

load nodes S .

As mentioned'betore “the pena]ty function approach is used
to hand]e this type of constraints,particularly because very few

such constra1nts are s1mu]taneou5AJ v1o]ated Th1s, in 1tseTf‘1s a.

. reason to rule out the use of 1nter1or po1nt penalty funct1on[29]

Q""i

' wh1ch requ1res that a]] 1nequa]1ty constra1nts, whether sat1sf1ed 6r

‘not, be mon1tored and the1r der1vat1ves ca]culated Another reason to

, back this dec1s1on is the requ1rement of a feasible po1nt to start an
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interior penalty function prob]em. To 10catedsuch a point for a

high order systém is indeed a,very tedious-tésk .

Th1s 1eaves’the exterlor po1nt meth ds[ ] as the su1tab1e
way to handle these functienal constra1nts For one, they do not
need a feas1b]e point to start the m1n1m1zat1on process Second]y,
'the der1vat1ves of only the v101ated constra1nts need to be computed
‘F1na1]y, in the present practical prob]em as may be the casé in most .
pract1ca1 problems, a functional constra1nt is seldom a r1g1d 11m1t
in the strict mathemat1ca1 sense but 1s, rather, a soft 11m1t For
1nstance V<1 0 p.u. ona 1oad bus means. that V should not exceed _
1.0 p.u. by too much, and V=1. 01 may still be perm1ss1b]e Exterior

po1nt methods do just that (see F1gure 2. 3)

" Rigid Limits

.—> i

Soff Limits -

PENALTY

- Xmin ' - Xmax S
N L e .

Figure 2.3 Exterior Penalty Function



To hanqbé iﬁequa11ty constraints (2.13) - (. 15), each |
such re]at1on shou™d be sp11t into two. 1nequa11ty re]at1ons, one of

] wh1ch coul

e'act1ve at a time, as:

°
h = p (u,x) - P > 0 (2
Py TS min
- - '
or .
h == p, - . P.(u,x) > o (2
Pi Tmax !

~ ' )i for generator
busses

fv

or .

o
|
-
1
P
[v
(]
_——
N

or .}, for load busses

AN

'Where'i Stands'for ViOIated constraints only

~r; is a penalty factor

: hi 1s the va]ue of constra1nt v1o]at1on g1ven by one .

of re]at1ons (2. 28) - 2 33

N X- . O _ : e (2.
q1 o . ]min \ L S

31

.28)

29)

30)

.31)

.32)

33)

h o=y -V, > o b e f(Z- '
Vi Tmax t \

w=7J r. b T (2.
i | o I

34)
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. ‘ . b ‘ .
Us1ng pena]ty\funct1on (2 34) thelobjecttye function is -
‘given by; \ | “ .

T

where fo'ts the. original objective function.. The function f %é the
one to_be used in the minimization process. Note that if all
constratnts are satisfied (wh1ch is true at the opt1ma] so]ut1on)

the funct1on f is 1n fact the function f .

ATthough proper m1n6m1zat1on requ1res the so]ut1on of a
sequence of unconstra1ned m1n1m1zat1on prob1ems for monoton1ca11y
increasing ris it was observed that for pract1ca] power system prob]ems
.'two or three such sequences, each consisting of two or three iterations,
would be suff1c1ent[22]. Furthermore, as'will be shown in th1s thes1§“
even one such sequencé WOuld be enouqh However to do this the |
factor r; should be chosen in such a way that the 1ncrease in the ,
va]ue of the obJectlve funct1on due to constra1nt v101at1ons is ]arge
| enough to be sensed by the so]ut1on a]gor]thm but not S0 1arge as
 to divert the prob]em into constrajnt sat1sfact1on rather than cost

funct1on m1n1m1zat1on A]] of th1s means that An the 1atter case the

factor r; shou]d depend on the va]ue of the ob3ect1ve funct1on f

2.4 Acce]erat1on

A]though~re1ation (2. 21) qtves both- the direction and the
%2
'hs1ze of the m1n1m1zat1on step, acce]erat1on would be in order due to

1, '

-i the fact that the ob3ect1ve funct1od is not rea]]y quadrat1c in system



variables, and that the quadratic approxtmation;that Newton's method

vl \ ' ' .
agetimes, might not be‘satisfactory to-produce the appropridte step

size. Relation (2.22) is repT éﬁd,by:
(2.36) "

where Au is given by (2.?2),~and c is an acceleration factor;

~

 The scheme used here to determ1ne ¢ for any 1terat1on 151,*
aimed to minimize overshoot1ng and oscillation around the opt1ma]
so]ut1on or a constra1nt boundary ‘The factor c is a]ways kept at
unity unt1] the m1n1mum nroa boundary of a° funct1ona1 constra1nt 1s
approached from 1ns1d~ - is then reduced in such a way as to-damp
any poss1b1e overshoot ‘ oscf11ation.v In more detajl, this is

achieved as fo]]oWs. .

Before app1y1ng the correct1on Au to the contro] var1ables,
a test s made with c=1 to assure- ‘that a decrease in the obJect1ve ' t
funct1on wou1d~resu1t If this 1s not the case, it means that over-

&~
shoot1ng the so]ut1on or constra1nt v1o]at1on would resu]t c is,
thus, halved and:the . process is repeg\ed as many times as necesgaryf
“until a decrease 1n‘the‘objective function is achieved or the convergence
criterion is satisfied. Co
- To perform the above mentioned test,dit wou]d be necessary -

to solve a Toad_fT_ roblem to obtain the va]ue of the X vector

) eorrespOndingmtoj he v Tue u + c Au S1nce the value of C 1is not as

critical with.Newto‘ s\gethod as . 1t would be with other methods, such

9y
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as steepest descent, it wou]d suffice to solve a 11near1zed 1oad

f]ow prob]em rather than the exact one. The 11near1zed.solut1on

corresnonding .0 a change,ég_ in control variables is obtained as:

iiﬂ =2{_i + ‘Q(_i o - | : (2.37)>

with =5 ] S A (2.38)

‘where S is the sensitivityfméirix given by:

g

o -1 39 - | S
5-_-_[8—][@—] L - (2.39)

Note that the first matrix on the r1ght hand 51de of equat1on

(2. 39) is ‘the inverse Jacobian which is, a]ready ava11ab1e either

g .
exp11c1te1y or in a factored form. Only the'second matrix [ EJ'];;’

needs to be.computed._ [ts elements are-very simple astshown in

Appendix A. = - o I _%5*

Sdbs§%tution of (2.39) into (2.38) gives:
i . g_ L : . - . .
axl = - ['7] [ *] au’ ' . (2.40)

A vector u is then defined as:

1

u [.—JAu B o (2.81)

. L J X . .
‘ ' -89 S
'Notebthat‘this‘product exists since [ SU-] is a 2NL

(2N -1) rect--
x ( g ) re§\



'ahgular matrix and ég} is . a (2Nq—1) order vector.

' Eduation (2.40) can now be written as:

. 3 4 . : g
B = L (2.42)

which is of the form (2 24) with u rep]ac1ng a. It represents only

a linear repeat so]ut1on us1ng the same Jacobian matrlx

Although the objective of the acce]erat1on scheme is to
eliminate, as completely as poss1b1e, overshoot1ng and osc11]at1ons, h
'these may st11] occur due to one or both of the fo]]ow1ng reasons |
1) The so]ut1on of the ]1near1zed ]oad flow prob]em may not qu1te
agree w1th the exact so]ut1on The former may 1nd1cate no.over-
.V‘shoot1ng, whereas after applying the 1atter at the beg1n1ng of f_-
the next 1terat1on, overshoot1ng does occur. A]though th1s can
be avoided by us1ng the exact solution throughout the t1me
-‘consumed to ‘obtain one or more such solutions per, test wou]d be
'def1n1te1y ]arger than the time. consumed in one or two extra
1terat1ons that ‘may be. needed otherw1se Moreover the d1sagree— .
ment between the two so]ut1ons will* be m1n1ma1 1n the final stages
of the process,~due to sma]] Au when}overshoot1ng is more»lee]y

é o )

‘to happen.

i
N

o 2) It may happen that overshoot1ng occurs and yet f +] <'f Th]s “
1nd1cates that the overshoot is, sma]], or, if a constra1nt v1o]at1on'

is. 1nvo]ved that r is sma]] and a so]ut1on well outside the
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- feasible region will eventually be obtained.

-

An optimal acce1eratton factor (tn the sense that it
mintmizes f in the'dihection ég).may be used resulting 1n‘feWer
iterations. Howeverb the extra time required to solve an associated
non]1near load f]ow problem and therfact that the oh{ect1ve function
shou]d for the purpose of comput1ng this opt1ma1 acce]erat1on factor,
be approx1mated to a second or th1rd degree po1ynom1a1 in ¢, may ©
lead to a]most the same convergence behaviour. Add to that that the
second reason. above is genera] and app]1es ﬁo any acce]erat1on

mechan1$m Therefore, the extra comp1ex1t1es in programm1ng such

opt1ma] acce1erat1on scheme do not appear be Just1f1ed
? |

1

s

2.5»V01tage Controlled Busses

A voltage cqntro]]ed bus is a bus at wh1ch the vo]tage
‘magnitude 15 controlled through the 1ntrdduct1on of react1ve power
generat1on. .As a resu]t, voltage magn1tude dﬁ%ﬁﬂd'be considered ‘as’
‘a specified or control variahTe, and heactive poweh‘at the‘bus is
1eft to change within the operat1ng 11m1ts of the generat1on equ1pment
- This means that a number of var1ab]es (vo]tage magn1tude) correspond1no
to +4e number: of such busses will be moved f%om the dependent variable
“vector. X. to the contro1 variable vector ud/ A]so jntroduced at each

KA

" such bus- is a functional constraint of the form (2.]4)~defining the |
‘ranqe in whfch reactive genehatdon.at that node~can change; Since the.
.vo]tage magn1tude is no 1onger a dependent var1ab]e and react1ve

~ power ceases to be a f1xed amount the reactive power equat1on

correspond1ng to each of these nodes is removed from Toad flow equat1ons

(2.12). .~
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In other words, a vo]tage controlled bus is to be treated
as a generator (or sw1ng) node as far as react1ve power lis concerned

and as a ]oad node as far as real power is concerned

m‘ - The order of the different vectors in cases 1nvo]v1ng Nq

‘such nodes will be 2Ng—1 + Nq for the contro] variab]es u, and

_2NL—Nq for each of the vector g_represent1ng the Toad flow equations

and the vector'x of the dependent var1abTes
g

G

2.6 Qua1itatiVe Evaluation

The aim of the solution method is to reduce computer ;1‘

storage requ1rement, and to achieve better convergence characteristics

‘ than other methods Based on these two objectives, a qua11tat1ve '

‘ eva]uat1on of the method can be carr1ed out. The methods of

Dommel and T1nney[ 5], “and Sasson et al[z ] were considered for
{
compar1son purposes. A]so given 6E\a/gough estimation of computat1on

time requ1rements as compared to these two methods

2 6.1 Computer Storage

It 1s‘customary, when one speaks of computer storage, to
cons1der ]arge systems, and est1mate the amount of storage required
for non -zero e1ements on]y Since d1fferent matr1ces d1ffer in their
spars1ty character1st1cs, and even the spars1ty of the same matr1x
differs from one system to another it would be approprlate when

compar1ng storage requ1rements of d1fferent methods to use the concept

" of a fﬁgﬁ matrlx and then to comment on what effects sparsity will have

on €ach. .

7
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Apart from storage requ1rement of the vectors X, U and
other common quant1t1es as power generations and 1oads which shou]d
. be the same for all mothods, computer storage requirements of the
.deve]oped method and the other two are shown in Figure 2.4 and Table
.2.]. For s1mp11c1ty no vo]tage controlled busses are asSumed to “be
‘present. Tab]et2.2‘also gives theuamount of storage required for
five:standard test systems. Voltage controTTedhbusses were considered
in this case,- | |
As can be seen, ‘the method of Sasson et al[ J requires
the most’ storage for the1r Hessian matrix. Domme1 and Tinney's
 method may require more or less stogage depending on the size of the
system and‘the number of its generator busses. Most of thejr |
,storage area is for the Jacobian'matrix, however The proposethethod—
: requ1res the least storage of the three methods.” Moreover, as in
) the case of Domme] and T1nney S method most of the requ1red storage

<r

‘1s for the Jacob1an,matr1x.

As for sparsity, it has been shown ‘that for typica] power
'systems the Hessian matrices are more full than the Jacob1an matr1ces*.
Therefore, sparsity techn1ques of storage w1]1 give more advantage to

those methods where the Jacob1an occupjes-most of the storage, Hence,

* Closure of Reference 22.
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SyStem_

2

Storage ReQdiF@d

Sasson et. al.

" Dommed and
- Tinney

"P?oposed

5-Bus

81 -

84

Method

b

75.

IEEE 14-Bus

729"

682

ITTEE 30-Bus -

— -

¢ 3481

- [[EEE 57-Bus-

Il

12769

IEEE 1T8-Bus

55225

Table 2.2 ;Storagé:Requiremént‘foggTés :
I : - : L

Systems |

4]
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B
storage sav1ngs effected by the proposed&method can be emphas1zed even

' fUrther Lo o

o

2.6.2 Convergence

o

S1nce the- 1terat1on cyc]e of the proposed method and that

of Domme] and T1nney are 1dent1ca],‘converqence behav1our as

Judged by the number of iterations requ1red .to obta1n the so]ut1on
wild- depend on the way the controT ;hr1ab]es are ‘modified. 'Instantly,.
second order gradient methods, as/used 1n1th1s thesis, emerge as the

super1or . compared to the steepest descent correct1on as used in

Dommel and Tinney's a]gor1thm Moreover, that 1atter method is so

Vsens1t1ve to the acceleration factor Cs that it will not converge in.-

a reasonab]e number of 1terat1ons, or at all, unless the factor C is.

' carefu]]y chosen This type of sensitivity does. not exist in Newton S.

/

<

method.. . o _~" S

Sasson et a] used Newton' 'S formu]a as used here One theh

]

shou]d expect that the two methods will. have the same convergence

character1st1cs However, Since in the1r method & séarch of the who]e‘ .

space rather than the feas1b1e region is requ1red more 1terat1ons

w111 be needed to arrive at the solution.

RN . -

”2 6.3 Computat1on T1me’

——

Accurate assessment of the proposed and -‘the two other methods as
-t
far as the computat1on time needed to obta7n a so]ut1on s poss1b1e o

p on]y if programs of- compat1b1e eff1c1ency were wr1tten 1?? each
A

a1gor1thm and run on the same computer However, a rough comparison

4

@o
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is- still possible in the following way:

1) Whi]ehthe proposed method uses the Hessian matrix of'the second
order partial der1vat1ves of the obJect1ve funct1on with respect '
to the contro] var1ab1es to compute the corrections in these _\,
“contro] var1ab1es Domme] and Tinney's method[ 5] uses on1y the
grad1ent However, as ment1oned before this Hessian matrix’is
of Tow order, extreme]y sparse and its e]ements are very easy to
compute’, © Moreover “the 1oad f]ow problem, wh1ch is to be so]ved

' 1nfboth methods, 1s of much ]ower order in the proposed method than
“1in Domme] and T1nney s, thus requ1r1nq 1ess computer time.

A]thouoh part\of\th4s_tlme sav1ng w111 def1n1te1y be used in

hand11nq the Hess1an, in no case w1]] total t1me per 1terat1on'

cJ"

'requ1red by.: the proposed method exceed that requ1red by Domme]

L and T]nney s method.

2) A1though the proposed method and that of Domme] and Ti nney requ1re
1oad flow so]ut1on each iteration (such so]ut1ons Lsua1]y requwre
*one or two Newton 1terat1ons) - Sasson et a][ 2] uses a much 1arger

nd 1ess sparse matr1x, and, thus, will not offer any savings in |

'4the t1me requ1red per 1terat1on

‘vOne can now éStimate that the three methods. will require
,'about the same amount of t1me per iteration. The tot/y\tIme requ1red
“e to obtaln ‘the so]ut1on w111 then depend on the number of>1terat1ons
needed to produce that. so]utﬂon Here the dec1s1on will be in favour

(9

of the proposed method
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CHAPTER 111
OPTIMAL SOLUTIONS OF SMALL‘SYSTEMS'_

This chapter deals with the‘app]icationaof_the method
developed in the last chapter to small power systems. Ih hand]ing
these small systems‘one does not have to‘uorry aboutvsome of thev
oroblems encountered'with,1arge systems;vlﬁor 1h$tance, the matrices
involved are of 1ow-orderﬂahd prOpervmatrix'inversion, for whtch ready
* routines are-avai1ab]e, rather than factorization, can be used
Furthermore, storage requ1rements are very limited resu]ttng in that -
the natural- order of nodes. would be sat1sfactory, and an optimal '

'vorder1ng scheme can be om1tted< The result jis a s1mp]e computer

| code and quick assessment of the success or fa11ure of the method

Cd

g

Two standard test power s%stems were stud1ed, a 5-bus system[32]

"-and the IEEE 14- bus test system Data of the two systems is g1ven 1n’

I

Appendix B. Four 0pt1m14at1on problems were solved for each. system )
using the Un1vers1ty of A]berta 1BM 360/67 Computer The prob}ems are.
'h;m1n1mum operat]ng cost, m1n1mum fosses, m1n1mum fuel comsumpt1on, and
combined cost-fuel minimization The -two 1atter prob]ems are defined

and formu]ated in th1s thests for the. ftrst t1me | ;fda‘;

3.1 Minimum Operating'Cost Prbb]em., o e
4 ) " B ‘ ) Al » ‘ ’ T ] ,‘1

This 1s the exact econom1C'd1spatch prob]em The: obJect1ve

funct1on 1S°the total cost of generat1on, wh1ch is aSSumed to be of

o
Y

the formu» i,f.f," ; fd < _u



‘.

_ ’ ) 2 . i ‘. ‘; ’ .
f=] (ai + bi-Pg. t ey Pg. ) $/Hr. i S\ (3.1)
i i i o , \
v o . b ‘ . ‘ 4, T ' . \‘
* The constants & and C; for both test systems a> g1ven
in Table 3-1 Since, in the method, generator and 1oad nodes ake
hand]ed separate]y, the natura] order of nodes 1in both systems i Q?;
changed SO that generator nodes are numbered f1rst, vo]tage contrb]led

busses follow, and at the end -come ]oad busses

Tables 3.2 and 3.3 give the solut1on of “the prob]em , for’
"~ the 5- bus and 14-bus systems respect1ve]y, when vo]tage magn1tudes

at generator and vo]tage contro]]ed busses were kept f1xed In the
case of the 5-bys system a f]at start ‘was used However, 1n the case
of the H4-bus system, a different start1ng po1nt was chosen, Since .
‘the flat start proved to be too. far from the optimal so]ut1on, resu]t1ng
in a s]ow convergence This behav1our 1s ‘typical of any 1terat1ve |
‘method It did show, however, that the algorithm can eas1]y hand]e
sv1o]ated funct]ona] Aonstra1nts The operating po1nt wh1ch was outs1de
the feas1b1e reg1on for the f]at start was brought instide 1n two

1}erat1ons . After that convergence was - s]ow

S1nce the opt1ma] so1ut1ons mere inside the feas1b]e reg1on, i\
and to test the a]gor1thm 3 ab1]1ty to hand]e functtona] constra1nts -
if they are v1o]ated near the so]ut1on, wh1ch 1S a more sens1t1ve
problem, severa] runs. were - carrled out on the Sebus system. _‘The

4_resu1ts of these runs are given- 1n Tab]es 3 4 - 3 8

~ In Table 3.4, the voltages at generator busses not ]}é“d 2. -

- e
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Bus. a b
No.
1| 44,40 | 351.00
2 | 40.60 | 389.00 | 50.00
1105200 | 245.00 | 50.00
2 | 4h60 | 351.00 | 50,00
3. | 40.60 | 389.00 | %0.00
e ' _},
Tab]e 3 1 Cost Coeff1c1ents of 5— and Té- Bys
Systems '
2 : ‘
5 © \\
\
Busty, T s b P e . q -
Noj min |- - max min max { min - “max
[T7[-02 1oz 102 | 0.0 0.3 |o.967 -2 10.0 [ 0:276) 0.6
2- [1.04 |1.04 |1.04 -2:14010.3 | 0.685 1.2 0.0 0.531] 0.6
3.40.9 10.955 1.05 |:6.413 Fo.6 | -0.3
4 (0.9 Jo.923 [1.05 [-9.461 o.4 "[-0.1.
5 0.9 Jo.993 [i.05 |-4.163 0.6 0.2
i
f = -Total Cost of Generator = 760.95 $/Hr.
. : A - § ’ ’ : (;’

To

Tab]e 3 2 Opt1ma1 So]ut1on of M1n1mum Cost Problems fgr the 5- Bus

System (f]xed Cenerato

VO1taqes)
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£ = Total Cost of Generation =

1136.14 $/Hr.

' Bﬁz. Vain ]V max | - & Pmin P hvpm%g? Qﬁih Q Unax :
1 {1.06 {1.06 [1.06 | 0.0 0.0 | 157] 2200 |-0.2 |-0.002]1.0
12  1;045 045 [1.045 |- 3.209 0.2 "d.67:43.o,, 0.4 4 0201 0.5
3 °1.07 {1.07 [1.07 |- 7.8630.2 | 0.43d 1.0 |-0.06 | 0.032}0.45
4 | 1.0 fr.ov [@er |-10.419 -0.942 0.4 | 0.207]0.6
5 |1.09 [1.09 |1.09 |[= 9.7%8 0.0 - ~0.06 | 0.174]0.45
6 | 0.9 |1.024 1.1 |-"7.652 -0.474 | 0.039
7 {09 froer i |- 6146 £0.076 -0.016
8 |o0.9 ;062f 1.1 - 9.778 * 0.0 0.0
9 109 [1.053 f1.1  |-10.890 ~0.245 -0.166
10 [ 0.9 [1.008 1.1 [-10.642 ~0.09 , -0.058
1 o9 fross [1.0 |- 6,30 -0.035 ’/ . |-0.018
12 0.6 D.oss [1.1 |- s.880 -0.061 '/{ | l-0.016
13 (0.9 [1.049 [1.1 |- 9,124 -_-0.135/// -0.058
|14 fo9 {03 11 [-10.138 01sd/ T'0.05
, P
~

_fab]e 3.3 Optimal Sd]dtion of Minimum Cost Problem

A

for the 14-Bus System,

(Fixed Generator Vo]tagéé)
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& U
Bus Vmin v ymax § Pmin P Pmax Qmin g9 QUnax
P10 089 111 100 1 0.3 | 0.994f1.2 |00 |o0.30a) 0.6 1
e 1o posr 11 11786 [ 0.3 [ 065112 0.0 |o.386] 0.6
3 10,9 [1.013 {1.05 |-5.654 -0,6 0.3
4 1o.9 p.oss [1.05 |-g.302 0.4 b
5 10.9 [1.050%|1.05 |-3.657 -0.6 Fo.2
f = Total Cost of Generation = 757.78 $/H.
% Constrajnt'vioTationl= 9x107° p.u. ’ ‘
Table 3.4 Optimal Solution of Minimum Cost Problem for the 5-
| . Bus System (Fréé“GenerétOr Voltages) .
) ;
17 Lo



were freevtd ehange Within the 1imits shown.” In this case the
‘unconstrained optimal solution was outéide the;feasjb1e,regﬁon resulting
in a voltage constraint violation at 10ad.hbde no. 5. HoWever, the-
algorithm was able to 1ocete theAconstrainéd so1utioqvhb1d1ng fhe ~
voltage magnitude at that'hoqe within“Qx]d_S p.u. of the constraint.
boundary. As a resu]tvgenepator‘vo]tagee could not‘rise‘to'tﬁeir

| maximuh Timit ae one expects in such a case.

\ In Tab1es 3.5 - 3.8, node no. 3 was ehehged into a voltage
controlled bus where reactive géneré%ion'was introduced and the
voltage was allowed to change within the Timits ehown. The fntentien
_ v : e

- is to ‘show how nonlinear functional constraints, such as real or

L]

reactive power limits, are handled if violated. Two ranges of reactive

generation at node no. 3 were assumed: -0.5 to + 0.5, and - 0.4 to +_O.4;

Tab1e5.3.5 and 3.6-giye,5respective1y, the so]utidhs‘of -
- these. two cases when voTtage magnftudes of 'generator nodes were kept

fixed In the first case, the so]ut1on is we]] inside the feas1b]e

1

'reglon, and it represents the unconstra1ned (as far as funct1ona1
e

node no. 3 exceeded its maximum limit by only 2.55x1053, which showsle

Tab]es 3.7 and 3 8 g1ve the resu]ts for the same cases when
- voltage magn1tudes at generator nodes no. 1 and 2 were ‘allowed to

change as well. Although in the first case, reactive bower_generation’



AV

. : P . ’ .
No me v Vmax min - max min max

1 ploz f1.02 |1io2 [ 6.0 fo.3. [10.9691.2 | 0.0 | 0.070]0.6
2 {r.04 {104 [1.06 |-2.114)0.3 |-0.68d1.2 | 0.0 | 0.23 0.6

3 0.9 {1.013 {1.1 “ |-6.904 0.6 |05 gﬁ?ﬁ73 0.5% |

, R S . - ;o , R : -

4 10.9 {0.960 {1.05 |-9.437 “f-0.4 i 1-0: 1‘ﬂ= L1
1l N e Y ol N T s B

5 10.9 6.993 |1.05 |-4.150 ] - -0.6 | & ]-0.2

“f = Total Cost of Generation = 757.57/S/Hrﬁ

=

Table 3.5 Optimal Solution of Minimum Cost Problem for Modified
 5-Bus System (Fixed Generator Voltages)
-0.5<Q4<0.5 |

?ES Vinin Vo Vinax S A Pmin | P | Prax |%min max
Q : . E

1|10z fioz [0z | fo o3 | oosdiz |00 [o.010]06
2 (104 fros f1.04 |-2.055 |0.3 | 0.6871.2 |00 |0.275 0.6

[ /
3 0.9 froos |11 f-6795 | f-0.6 -0.4 [0.4034 0.4
2 o9 fo.oss | 1.05 |-9.413 | 1-0.4 0.1

5 10.9 - {0.993 | 1.05 |-4.120 -|-0.6 Loz

f ="Total Cost of Generation-= 757.65 $/Hr.

* Constraint vid]ation = 2.55x1073 p-
Tab]e 3.6 0pt1ma1 Solution of Minimum. Cost Prob]em for Mod1f1ed

5- Bus System (F]xed Generator Vo]tages)
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Tota] Cost of Generat1on

755.02 $/Hr

8§Z Vinin v Viax |9 Poin P Prax [Qin Q Qmax
1.0 |ross 1.1 0.0 fo.3 fo.s3]1.2 0.0 | 019806
2 11.0 J1.082 1.1 |-1.700 0.3 |0.655| 1.2 | 0.0 | 0.115]0.6
37 0.9 1065 1.1 |-6.053 -0.6 -5 | 01442 0.5
4 109 |1.022 |1.05 |-8.306 0.4 | 0.1
5t [rosilios |-3.612 0.6 1-0.2
. - : : v
f-= Total CS%t»df:Generat%On,= 754,93 $/Hr.
| . i "
*‘Constraint violation: 5. 19x10—4 D.U.
Table 3. 7 Optimal So]ut1on of Minimum Cost Prob]em for Mod1f1ed
5‘Bus.Sys§em (Free Generator Voltages)
-0.5 < Q3205 .
ot |V MV | 0 Pmin | P | o {%uin | O % Oa |
1o [ 10BN o0 o3 [o.9e6[1.2 | 0.0 | 0.262] 0.6
2o fromfa fassalos fo.ers].e | 0.0 ]0.099f 0.6
3|09 | 1.058{ 1.1 |-5.508 0.6 -0.4 | 0.394| 0.4
4 |0.9 | 1.020]1.05 [-8.171 lo.a 0.1
5 {0.9 |1.050 1,05 |-3.441 o6 | " oz
£ -

* No Constra1nt v1o]at10n

Tab1e 3.8 Opt1ma1 Solution of M1n1mum Cost Prob1em for Mod1f1ed

5-Bus System (Free Generator Vo]tages)

-0'4 = Q3 = 0.'4'. -




| 52

at node no. 3 stayed we]] w1th1n its 11m1to, the vo]tage magn1tude

\\

at»node no. 5 exceeded 1ts maximum ]1m1t by on]y 5. ]9x10 4 i

Y.
the second case, 1n wh1ch the constra1nts on reactive generation at
node no. 3 and vo]tage magn1tude at node no. 5 were viclated during
the minimization process, the so]ut1on obta1ned was just inside these

'COﬂStrdTﬂt boundar]es o ‘ ‘ - Y

- 3.2 Minimum Loss Problem

This is actua11y the problen of m1n1m1z1ng total rea] power
. generat1on which s determined by the total load p]us system losses.
The prob]em 1s often termed ”optwma] reactive power f]ow” because
it is mainly the react1ve flow in the" transm1ss1on system that
determ1nes the:1osses., FSL Tower losses, reactive generations should

be close to’the loads.

o - -
The objective function is given by:

(3.2)

The solvjor: "~v the S—Aand-14;bus systems are given in

Tables 3.9 ar 10 vrespecti.. In the 5-bus system the only
constrain® iolation was i. the v -age magnitude at bus no. 5§ which
exceer' . fs muxirum 1imit b. only  85x10”% p;u.'thus holding

gener or vo agec from reaching fne . maximum 1imits where the -
uncc  rainec (w th respect 5 func onal constraints) minimum is

Toca 4 In the l+-pus system, - ] generations at generators 1 and 2.
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o
fi; y_fV | o
— T _
’ BEZ Yiin |V Vnax | Pmin P Poax [%min Q Unax
1 1.0 1}086éﬂ1.1 0.2 o.832|1.2 | 0.0 | 0:39]0.6
2 |10 1080 11| 0,008 0.3 }o.812{1.2 | 0.0 | 0.385]0.6
3 (0.9 [1.014 [1.05 |-4.588 Los - 0.3
4 ,6.9 0.990 [1.05 |-7.684 Lo.a < RN
5 10.9 11.051%1.05 |-2.762 0.6 ~0.2

f = Totai System'Losses_

= 0.0438 p.u.

* Constraint violation = 7.85x10'4 p.u.

Table 3.9 Solution of Minimum Loss Problem for the 5-Bus

~ System (

Free Generator Vol

&

ETET
A

tages)
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Bus | : : S .
No. 'vmin v vmax : 8 Pmin P- Pmax Q max

™y,

106 |1.06 | 706 1 0.0 o5 | 0.648 2.0 |-0.2 o:]éb 1.0
1.045 | 1.085 1.045| 1,038 0.2 | 1 0ot 1.0 [-0.4 |-0.023] 0.5
1.07 |1.07 | 1.07 0.144) 0.2 | 1.00% 1.0 | -0.06-0.030. 0.45
[1.01 | 1.0 1.0 | -7.598] < |-0.949" 0.4 o84 06
109 1109 1109 [ soa6) g0 | -0.06 | 0.163%.0.45
0.9 |tozg v | ases| o | 0.039| -
0.9 [1.033[ 1.1 | -2.852] -0.076 i 0.016] -
0.9 1.060] 1.1 [-5.316 'b.d "‘ - }oo ok
RO ) AT BR=2] R CPC: R N P
10 0: [1.0a2[ 1.1 | -5.070 o0t Loess
log [1.050]1.1 |-2.618 -0.0350 - | | j-0.018
A12‘ 0.9 1,055 11 o] -0.061] o0t
13lo.g |12047)10 | o108 -0.135 |l Lo.oss
14109 |1.028]1.7 . -4.975( -0:149.. f loos

Wi .
g e

f =,Tota};Systém Losses = 0.06678 ﬁ,&. v ' ':‘f E o T

* Constraiht;vidiation ='7.56x]O~3 p.u. tr”@%ﬁstfaint violation 58.9X]O%4p;u.

TabTe 3.10 Solution of Minimum Loss Problens fop . o~
. “the 14~ Bus Sys-tem' . }:
v'_‘(FiXed'Generafor Vo]tagéé);i o

| | ene ol tages ),
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exceeded thefr 1imits However, these constra1nt v1o1at1ons were

successfu]]y contro11ed dur1ng the m1n1m1zat1on process, such that
at the solutior maximum v10]at1on was 7. 56x]0 -3 p.u., 1;,
_ ’ -

¢ .
F . . a

3.3 Minimum Fuel Problem = . . : S | o

P

' A]though generat1on cost at a power p]ant cons1sts most1y
. [ .
of fuel cost, it 1nc1udes the cost of 1abour, malntenance, etc.

This port1on is not the same for, a]] p]ants within -a system.. Eon T

:;1 N .

1nstance, an o]d p]ant needs ma1ntenance more frequent]y than a. new

D
one, a gas turb1ne powerfp1ant needs a d1fferent amount of 1abour

than a steam p]ant of the same capac1ty Furthermore, fue] transportatiOn:n

“costs are d1fferent for d1fferent ptants. Therefore, generat]on -

cost funct1ons are not 1nd1cat1ve of the true fue] consumpt1on in

®u v

¥

T a g1ven system, and schedu11ng generat1on accordtng to a cr1ter1on of
m1n1mum generatwon cost does not necessar11y mean that fue] consumpt1on

is a1so ‘at a minimum. - : o : R
o - 1‘,}

iy
i .

“The importance.of thevminimum fue}“probiem-evoJVes £rom
renvironmenta1 and resdurce‘conservation\gr0unds; dn one hand ox1des
-emission- w111 be held as ]ow as poss1b]e s and on. the other hand by .
consum1ng a m1n1mum amount of fuel for a g1ven ]oad cond1t1on, it 1sf

poss1b1e to pro]ong the “1ife t1me of dep]et1ng fuel resources _ The |

" : - — ‘
In fact ox1desem1351on does not depend only on the amount of fue]

burned but a]so on (he type of fue] and how perfect]y 1t 1s burned..

Q9
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._ funct1on (3.5). "cvf'{"
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o8

1dea s to make use of efficient power p]ants to produce most of

" the load requ1rement 1rrespect1ve of the cost of such product1on

;o

Thus, “in return for the above ment1oned advantages one is to pay a

spremium in the form of more expens1ve energy.

Let a] be the proport1on of non fuel costs 1n the generation

4

cist funct1on of generator i. Also assume that generator i rece1ves

1ts fue] at a cost of Y; do]]ars/m11]10n B T.U.'s. If generat1on cost

s assumed-to be of the form (3. ]), then, fuel consumpt1on of

generator 1 in m1111on B.T.U. /Hr is given by

(a; + by Py + c; P.9) ! o (3.3)

:The objective function Tn'thjs'ease will be

i
]
-

~~

fol)

+

o

. o
_A—l.<
+

(9]

O
N
—
w

e
S

The problem was solved for-the 5- and 14—5u$ systems. The

coefficients a, and y; are assumed as given in Table .11, The :;

.coeff1c1ents a}, b and- c; are kept as’ g1ven<jn Table 3.1. Also shown

%

in Table 3.11 are the coefficients a; ,\b{1 ahd'ci' of theupbjeefTVé'””‘“>F(

- B "3y
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N

/)p\\ Bus |- . - » —

' //// N _qno.| o oy I b' - ‘cf ;
- | 5-Bus 1 ]0.25| 0.4083.25 | 658.125 | 93.75 o
System |2 [ 0.2 0.50 65.0 [ 622.5 80.0 '
14-Bus < |1 | 0.2 | 0.40 [210.0 | 490.0 J100.0
System 12 10.25!7°0.40 | 83.25 | 658.125 | 93.75
|3 |02 | 0.50 | 65.0 | 622.5 80.0

5 \
Tab]e 3 11 Coeff1c1ents of the ObJect1ve Funct1on of ~

the M1n1mum Fue] Prob]em for: the 5— and

o

14-Bus Systems

- Tables 3.12 and 3 TB g1ve the solution for the 5-bus o
' system for f1xed and free geTerator vo]tages respect1ve1y Table 3.14

g1ves the solution’ for the 14- bus system ‘

~

3.4 Combined Cost-Fuel MinfmizatiOn\
. i : T
Each of:thelmﬁnﬁmtm cost and minimum fuel problems is based.

/ xe

‘on one global m1n1m1zat1on/cr1ter1on governing the whole system,
'consequent]y the so]ut1on/w1]] satisfy this cr1ter1on g]oba11y rather _
than at .each 1nd1v1dua] g%nerat1ng p]ant Somet1mes, thut is not :

‘qu1te what 1S»des1red For 1nstance,v1n add1t1on to schedu11ng 4

generat1on to ach1eve g1oba] m1n1mum cost one p]ant, a group of p1ants,

. or a&] p]ants may be requ1red to consume a m1n1mum amount of fue] to'

fovercome a fue] shortage cond1t10n, or to ach1eve a- reduct1on in
pol]ut1on 1eve1 1n same 10ca]1ty Th1s means that schedu11ng of
: generat1oh m0u1d be based on tweﬁtr1ter1a In other words, a comprom1se

Vshould be arr1ved at wh1ch may ngt quite sat1sfy each crﬂter1on .

. 1nd1v1dua11y, but yet 1t minimizes the1r sum. One of these two criteria |

£y
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“ Bus|:

1319.00 Hillion BUT/Hr.

No Vmih) : V Vmax 0 ﬁninA P Pmax .Qmin Q Qmax'
#£§~. 1:02 | 1502 | 1.2 0.0 [o;2 Jos92{ 1.2 | 0.0 0.321] 0.6
"2 {1200 | 100 | 100 | 1,058 003 | 0,95 1.2 0.0 | 0.483 0.6
30 0.9 | 0.058 1.05 | -a. 265 - o -0.3
4 0.9 | 0.923 1.05-8.197 -0.4 -0.1

5[ 0.9 [ 0.993 1.05]-2.346 20.6 -0.2

f = Tofa1 Fuel Consumpfioh =

\

Tab]e 3.12 So]ut1on of M1n1mum Fuel Prob]em for 5-Bus System

(F1xed Generator Voltages)

!

. v
. : _,..,‘L" : _ ) '
Bxi Vmﬁh‘ v max o[ .S \Pmin.r ? Prax [Qmin | 0 i Unax
1p10 Jreso | 1 oo los [ouces| 10 0.0 0.347] 0.6
2010 [1.001 1.1  1;381 0.3 |0.950 1.2 | 0.0 | 0.432f 0.6
3109 [1.015 ] 1.05 | -3.764 o6 f-0.3 |
41 0.9 {0.988 | 1.05|-7:20 20.4 -0.1
5 0.9 [1.051% 1.05 | 2,070 |6 . [-0.2
f = TotéT ?ue] Coﬂ!umptiOn-= 1314:27,M11Tion BTU%H%.'
E bonst}a1nt Qggﬁéﬂvon 8.12 x 107°
ST \
“fabje‘§ﬁl3 So]utﬁon of Minimum.Fue] Problem for “j‘.
| 5-Bus System (Free'Géneratoﬁ Voltages) “ ‘Vf

|
|

| .
'
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- i g,
us |y . vy § P . N S 'M,Q
No.| .min max min max - mip & max
1] 1.06 .06 1 1.06 | 0.0 0.5 1.276 2.0 [-0.2 {0.00T] 1.0
2 11.04511.045] 1.045[-2.662 | 0.2 0;57& 1.0 |0 o.1§% 0.5
3 .97 .07 | 107 =3.165 | 0.2 | 0.8141.0 | -0.06]-0.017] 0.45
FRRN 01 { 1:01 [-9.334 -0.047 0.4 | 0.191 »O.6 '
5 11.09 {1.09 "1.09 |-7.488 0.0 | L-0.06]0.179 }0.45
6 10.9 |1.027{1.1 {-6.140 -0.474 | 0.039]
7109 | 1.031] 11 [-4.590 0.0 | -0.016
g o9 |10e1] 11 |o7aee 0.0 | i-o.o .
9 {0.9 [1.089] 1.1 [-8.198 -0.295 -0.166] - -
10] 0.9 044 1.1 -7.598’ S T R ~b.058:v
Mfo.9 1052|110 |-5.53 {-0.035 |-0.018
12 0.9 055 1.1 [-4.323 -0.061f - 40.616,'¥:L )
1310.9 0a8| 1.1 |-a.706 -0.135 - |-0.058 S »
1 afos {100f 1.1 |-7.680 -0.149 | .o oos | T |
B - . S N .
= Total Fuel Consumption€¥ 2117,S6uMi]110n BE;/Hfgi:V vﬁf?.,
| . . - W

' Téb]e 3.14;So]utfon of Mihimum Fuel ProbTem‘for‘14-

"Bus System (Fixed Generator Vo]fsggz)'

v

&

~

R O
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‘should be global while, the other may be only of local .concern.

The objective function at a generating ‘node woutld, then,

be:

Wheée filiand fif aré;the Eost'anafue1 fuhctioﬁsyét hode i,‘and
di "and gi are priority factbrs.
c o f
‘ It 1s 1mportant that both furictions  be in the same units .
otherwise one w111 dom1nate the other.(see Tables 3.1 and 3 10) One
possibility \is to transform generat1on cOst into fuel un1;s by d1vidiﬁg
, thefgeneratfon coSt_function at’eéch gehérator by fue] price.at thatj
node. However, s1nce cost. m1n1m1zat1on is usually of g]oba] rather
than 1oca1 1nterest, and, 1t is more: 11ke1y that fuel m1n1m17at1on 1s'
of 1oca1,concern only, it is more Qpproprgﬁte to cb%ver;&ﬁqe]
consumpt1on into do]]ars/Hr | Mere1y multiplying f@ef}fﬂﬁc£f§ﬁ§-by
\correspond1ng fue] prices will not be sat1sfactory THéMré;ulting g
fuﬁct1ons-1n'th1s-case w111.not be ]ndjcat1ve of re]ativé full | _
cbhéumption'at system'b1ants, since sUch pﬁ%teéidepend on the type of"
fuel and 1nc1ude dyfferent transportat1on and hahd11ng costs Thus,'é
‘base price should be used instead. The functions f. > w111 :then;'Be:'
, - | r:_

SR . (3.7)

- ey e
R U LIRS I N
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where Y is the selected base fuel price.

The total objective function in this case will, then, be

given by:
’ '\/‘
f=17)0: (a +E;P+c P2) /
i i i
1 ¢
. 1-o, 2
+ Z‘oj by (a] + b, P, + ¢ P.%)
T of
A @, . .
RN K Sy S - (3.8)
S e e e A ‘ ST )
]\\\' If, at a p]ant, a certa1n cr]ter1on is of no concern, its
pr1or1ty factor is set to zero. \
® fﬁﬁ Based on a base fué] price of 0.40 $/m11110n B.T.U. ‘cost-

te

fuel funct1on coeff1c1ents for the 5- and: 14 bus systems are g1ven in
Tab]e 3. 15 It shou]d be stressed here that these coeff1c1ents are 3

used only when both cr1ter1a are act1ve at a g1ven node Otherw1se,

-the coeff1c1ents of Tab]e 3. 1 shou]d be used

BUS LI’;' - 1 " "
| no | & [Py
. 5-Bus 1 77.7 614.25° 1 87.5

System .| 2 |66.6 | 638.0 82.0

14-Bus |1 [189.0 | aa1.0 | ¢
System |2 |77.7 | 614.25 | 87.5
3 |66.6 | 638.0 | 8

_Table 3.15 Cost-Fuel Coefficients of the 5-

and 14-Bus Systenms’

£
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Several runs. were carried out for different s1tuat1ons
It is assumed that whenever a cr1ter1on is active at a p]ant, 1t 1S,
cons1dered to be as 1mportant as the g]oba] cr1ter1on, i. e. pr1or1ty

factors are taken as ‘unity when their correspond1ng cr;terwa are of
conce:n.;

.-Two situations were considered for the 5-bus system. _Tno
‘cases corresponding to fixed and free generator voltages were .run.
‘foh each; In the first situation, 1t is assumed thotvthe objective_
is,to‘achieve an overa]]'economy in‘hoth generatjon cost and fue1
consumption. The coeffftients of the ohjective'function wOu%d then,

be those of Tab]e 3.15. The so1ut1ons formth&s situation are g1ven

Sy : _ .
in Tables 3. 16 and 3.17. | SR R S

In the second'situation what 1s required 1s to achieve an - -
overall economy in generat1on cost such that economy 1n fuel” consumpt1on
of generator no. 1-is a]so rea]1zed Therefore, objective function
coeff1c1ents;for generator.no. 1 would bc drawn from Tab]e 3. ]5, wh11e -
those for generator no. 2° from~Tab1e 3 1 The so]ut1ons for th1s case
are given in'Teoies 3.18 and 3719. Observe how generator no. 2 has
picked its maximum sharerf the lToad -to allow the m1n1m1zat1on-of fuel
| cénsumption.of generator'no; 1. | | »

In the case of the 14- bus system, three d1fferent obJect1ves

‘ were cons1dered The f1rst is the same as the f]rst case of the 5-

bus system, i.e. an overa11 economy 1n'COst and fuel 1s‘ﬁesirgd. Tab]e_
~3.20 gives its’so1ution. Ehe.second is to achﬁeve an overall cost

k3
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Bus ' :
No Vmin v Vmax. § ‘:ﬂpmin P Pmax Qmin Q Qmax
1| 1.7tz f1.02 | oo | 0.3 ]0.849) 1.2 0.0 |0.293 0.6
2| 1-04 |1.04 |1.04 |-0.603] 0.3 |'0.801| 1.2 }0.0 |0.508]0.6
3| 0.9 |0.955 |1.05 |-5.494 0.6 | to.3
4| 0.9-10.923]1.05 |-8.919} -0.4 - o
5| 0.9 |0.993 |1.05 |-3.386 -0.6 | o2
o f"= Total (Cost and: Fuel Consumpt1on) = 1292.68 $/Hr
| Total:Cost of Generation - = 762.75 $(Hr; .
kS fg= Tota? Fue] Consumption. = 1324.78 Million BTU/Hr.
Tab]e 3 ]6 So]ut1on of M1n1mum Cost Fue] Problem for the
5-Bus System (Fl%ed Generator Vo]tages)
f\\l 2 S
| Busty L v“~ -v' & : p P Q'} ) AQ 1
Noj min ©jrmax e min “Tmax. | Tmin _ | “max-
1]1.0 | 1.0861.1 | 0.0 |03 [o0.868| 1.2 | 0.0°| 0.376 0.6
2 {1.0 | 1.086/1.1 |-0.247| 0.3 | 0.775{ 1.2 | 0.0 .| 0.400| 0.6 |
31 0.9 | 1.01501.05 |-4.850 0.6 f e o |
4|09 | o0.99%1.05 |-7.83| “l-0a || ~l-on
N ' . * > ’ ] ’ i, ‘ . “.. .. o '
51 0.9 1.05111.05 | -2.985 0.6} - o 1-0.2

Total (Cost and Fuel:Consumption)

287§71 $/Hr'7

f_ = Total Cost of Generation = 759217 §/Mr.. T
ff = Tota] Fuel Consumption - o= 1321.26 - Ml]]]Oﬂ BTU/Hr )
3' e o
* Constra1nt v101at1on = 1 37 x. 10 CPeus ". .‘,/*ﬁ:

Tab]e 3 ]7 So]ut1on of M1n1mum Cost Fue] Prob]em for the ‘.17 L

5= Bus . System (Free Generator Vo]tages) R
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Btuui Vmin v Vmax : Pnn’n P . Pmax’» Qr‘m"r; 0 Qm'a>.<
1 1.02 {1.02 | 1.02] 0.0 0.3 0.457] 1.2 0.0 0.375] 0.6
@5 1.04 11.04 1.04 1 4.608 0.3 1.207 1.2 0.0 0.455 0.6
3 (0.9 |0.954 | 1.05[-2.302|  |o.6 0.3 |

4 10.9 10.923 | 1.05}-7.105 4OJQ$ -0.1 -*?
5109 [o.992 | 1.05]-0.761| " fos 0.2 | 1
f = Total Cost and Fuel Consumption at Gen. no. 1 = 956.76 $/Hr.

f. = Total Cost of Generation. = 794.58 $7hr. N
_ff = f]f = Fuel Consumption of Gen. no. 1 = 405.43 Million BTU/Hr.

* Constraint vio]atjon ='71.04x]1

0

-3

Tub1e 3 18 So]utlon of Minimum Total Cost and Fue] Consumpt1on |

~of Generator no.

] for the 5-Bus System

e (F1xed Generator Vo]tage5)

, .

of Generator no

5 77 X. 10

1 for the 5 Bus System 7

(Free Generator Voltages)

Bﬁi Ymin v 'Vnﬁax' . 'Pmin P B Pmax, Qmir;’-" q 'Qma‘x |
1l 1o rosy 11 | oo | 0.3 |o0.a46] 1.2 | 0.0 | 0.228) 0.6
~2 1.0 | 087l 11| 4506 0.3 | 1.208) 1.2 | 0.0 Pro.359]. 0.6
3109 | 1.013 1.05]-1.926 1-0.6 | Joo3 |
4| 0.9 | 0.989 1.05]-6.140 0.4 -0
5 0.9 | 1.050| 1.05-0.512 0.6 l-0.2 |
-.f = Total Cost and Fuel Consumpt1on of Gen. no. 1 = 951 36 $/Hr .
fc = Tota] Cost of Genmeration . - = 793.20.$/Hr
ff=f =" Fuel Consumpt1on of Gen no. T = 395. 37 M1]]1on BTU/Hr

-ﬂp"u
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f/§§3: Vmih [ vmax é Q Qmax
1| 106 1.06 1.06 . 0.0 -0.0261 1.0
2| 1.045 1.045] 1.045(-2.992 182 o.é%
3| 107 )07 [1.07 |-5.032 | 0.009 0.45‘
s | vor|ror [1.00 |-9.978 1i0.200{ 0.6
5 | 1.09{T1.09°}1.09 |-8.839 175 0.45
6 | 0.9 |1.025 SRR B ).039
7 1 0.9 |1.02901.1 |-5.511 -0.076 L0.016
8 | 0.9 |1.062| 1.1 |-8.830 0.0 0.0
9 | 0.9 |1.052|1.1 |-9,785 20.295 f 0.166
10| 0.9 |1.046 | 1.1 |-9.393 -0.09 § -0.058
111 0.9 |1.054 11 |7.8120 -0.035 -0.018
121 09 |1.055)1.1 |-7.007 -0.061 0.016
13 0.9 |1.009 1.1 |-7.308 0.135 L0.058
14| 09 1.032 1.2 |-9.715 -0.149 005
.f :'TOtal_(Cbstxand.Fuei Consumption ) = 1991.42 $/Hr.
f. = Total Cost of Generation = 1139.87 $/Hr.
ff = Total Fuel Consumption - =

2128.88 Million BTU/Hr %

Table 3.20 Solution of Minimum Cost-Fuel Problem for

the 14-Bus System.

(Fixed Generator Voltages)

. y

L —
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-
ﬁ;. Viin v Vmax~ e Pﬁ;n ‘Pméx" men ' Q Qnax
1 [ros [1.0s [1.06 0.0 los |1.210] 2.0 -0.2 [-0.005| 1.0
2 [1.045 |1.045 |1.005 [-2.618 0.2 |0.448] 1.0 | -0.4 | 0.16 0.5
SN07 o7 107 o915 [0z [ 1.01T | 1.0 | -006]-0. 030 0.45.
4o [1or 101 [-g.90 -0.942 ~0.4 | 0.185] 0.6
5 1109 [1.09 {1.09 |-6.497 0.0 | -0.06{ 0.184| 0.5
6 Q;g [1.028 {11 |-5.549 ~ la.azs 10.039
7 0;9 1:033 (1.1 |-3.058 | lo.ove 'a‘ycamwmfio,OIG
8109 oo f11 Jsaer| o0 0.0
9 Jo.9  [1.047 {1.1  |-6.908 fo.295, -0.166
100.9 [1.081 [1.1 -6.2131 . ' Lo.o9 -0.058
Jonfos [1.oso 1. 320) 10,035 -0.018
12009 [1.055 1.1 bl Lo.os 1-0.016|
1300.9 (1,087 [1.1 10.135 -0.058|
140.9  [1.028 |11 149 " |-0.05

,':h

Tota] Cost and Fuel Consumpt1on W Gen. 1 &2

Tota] Cost of Generation
Fuel Consumption of Generators-1 & 2 .

Y 4

'1709.28 $/Hr,

1171.03 /M. |
1345.65 I1]]1on BTU/hr;,f

* Constraint violation = 1.089x10°2 p.g

~Table 3.21 Solution of Minimin Total Cost arid Fuel

Consumption of Generators no,

14-Bus System

(Fixed Generator Voltages)

]_th,Z for-thé .
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,ﬁ;_ mihéﬁéﬁv “max 5 Piin p'max Urin

106 | 10s | 1206 | 0.0 |o.s 17751 2.0 | 0.2 [-0.114]7.0

2| 1.0a5) 1,085 1.045-3.985 [ 0.2 |o.185( 10 0.4 | 0.318 0.54¥
307 {107 | 107 [ 556 | 0.2 | 0n 725 .0 L-;q.oé.~b.oos 0.457

4| 101 f 1.01 | 1.01 }10.654 | Lo.942 | -0.4 | 0.195/0.c
5| 1,09 1.09 | 1.00 -8.955 0.0 -0.06| 0.1780.45

6 0.9 | 1.026| 1.1 |-7.439 0.478 | 0,039
7109 +f 1.030] 1.1 [-5.816 -0.076 -0.016
809 | 1.061] 1.1 |-8.055 0.0 0.0

o | oto | 1.050] 1.1 |-0.752 L0.295| -0.166|

10{ 0.9 | 1.085 1.1 |-9.230 -0.09 -0.058]

1] 0.9 | 1.083 1.1 [-7.385] -0.035 ~0.018
12 0.9 | 1.055) 1.1 |-6.283 0,61 -0.016

13{ 0.9 |'1.048] 1.1 |-6.636 10.135 -0.058],

141 0.9 1 1.031| 1.1 |-9.406| - |-0.149 -0.05

Total Cost of Generatiqn v

Fuel Consumption of Generator 2

~ Total Cost and Fuel Consumption of Gen. 2

a2

1157.59

128119 §/Hr.

$/Hr.

209.01 Million BTU/Hr.

¥ Constraint violation =

1.385 x 10°

p.u.

Table 3.22 Solution of Minimum Cost and Fuel Consumption

—

of Generator no. 2 for the 14-Bus System

(Fixed Generator'V01t§geé)
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economy and-dlso-to economize in fuel consumption of generators

"no. 1 and-2; The intention was to show that generator no. 3, whose'

fuel consumpt1on is of no interest, w11] pﬁgyide its "x1mum generat1on,

“and the rest of the 1oad w111 be schedu]ed between generators 1 and 2.

/
The so]ut1on of th1s case is given in- Table 3.21. The Iast case is
that overa]] cost economy is sought such that at the same t1me fue]

‘ consumpt1on of on]y generator 2 is econom1zed _ The purpose here is: to
‘show that generator 2 w111 prov1de 1ts m1nrmum generat1on and the

rest of the Toad w111 be schedu]ed by generators 1 and\3, where fuel

consumpt1on is of no concern Table 3.22 g1veirthe solution.

‘3.5 Convergence Behaviour

WTab]es 3.23 and 3 24 show the. number of 1terat1ons needed
.to obtain the so1ut1on of" the cases studied and reported 1n the prev1ous
| sect1ons, for the 5- and 14-bus systems, respect1ve1y " Also shown ‘is
the max1mum v1o]at1on in funct1ona1 1nequa]1ty constramtsl .Parameter p

,constra1nts were str1ct1y observed by v1rtue of equat1on (2. 26).

: Equa]1ty constra1nts were cons1dered to be sat1sf1ed when power m1smatch

- :of,lo -5 or less was obta1ned in the 1oad f]ow port1on of the prob]em

In all cases of the 5-bus system; a flat startlng point was.”'fl
’used' However, in a]] cases of the 14 bus- system it was too far from
the . opt1ma1 operat1ng cond1t1ons resu1t1ng in s]ow convergence (e.g. 32
iterations in- the minimum cost. prob]em) However th1s does not detract
vfrom the effectiveness of the method The flat start is not a rea11st1c

operat1ng po1nt as a]] generators are in phase w1th the reference

v
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~” % For the modified 5vbus system, 0.9<V,<1.1 -~

* System

Table 3.23 Cbnvergehcé Characteristics for

‘FrProposed Me thod | Saéson,et(a]
N . : . : 3 a .
Iter. Max. Viol. - Iter.  Max.Viol.
Fixed Vg S 7 ‘ - 5 _ 1.2x1073
) . N ‘ . —5 . N .
1.0<V _<1.1 -6 9x10- v . - -
0 o= e
Min. | ‘LFixed v 's.f 7 _ _ _
Cost —O.Sng3i9.5
Fixed Vg S‘*‘ 9 2.55x107% | - -
-0.4<Q_ <0.4 " : -
* REL-USINES P 5.19x1074
D -0.5<Q . <0.5 |: o '
e E A
" -0.4<Q . <0.4 .
_ — 95— o
'Miﬁf Loss 4].05Vgi1.]. 7 -f7.85xj0_4i - ‘ . ;" 
— P
Fixed V 's G - - - -
g’ L= 5
Min.Fuel : , "_4_ :
~1.0<V <1.1, 12° 8.12x10- " . | - -
%] . . i ‘ .
~ Min.(Cost | Fixed Vg's G -
. and — : = 3
Fuel 1.0<V <1.1 11 1.37x10. 7 - - -
ue gt * ) !
. ‘ - “ -
QMin.xCost "Fixed V 's 5 C1.0ax1073 - -
+ Fuel 3 B -
iof Gen. : ’ v -3
ho.1 [ 1-0sVgel1 '5.77x10 - _
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-Proposed Method

Sasson

ks

et.

aie

For flat start

\\\/

3

T

3

t

\,Tab]e 3 24 Convergence Character1st1cs fon the 14—

Bus System

. Iter. ~Max.VJ’O]. Iter. Max.Viol.
" Min. Cost 5(32)% - 6. | 1.ap™
~/Min. Loss 10 7.sexiotd | - -
Min. Fuel ) o3 ; - ; ?
‘Min?'(Coét'and'Fuel)* | 3. - - -
’ . (Cost and Fue1 of Geﬁ. 9 11.099x107 L | -
- ] & 2) Lo 3 g - “ ." S ‘j“j’h’i«» ‘\‘\'
= : » . ‘ )
- {Cost and Fuel of |4l |\ 13esx07? | - _
 Gen.-2) - : :
. ‘.,, ——

5N
g
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' J',‘poss1b1e w1th ‘the™ ]ack of the same start1ng po1nt*, those-f1g§res

" the so]ut1on 1s ue11 1ns1de the feas1b1e reg1on the v1o]at1ons gre

71

generatOr It also- does not take into cons1derat1on the available
1nformat1on and the exper1ence gained on the system unde{‘study, and -
1t is ]1Pe1y that’ a d1fferent starting point will be choseh based on
.pract1ca1_3udgement of what va]ue each var1ab]e 1sv11ke1y to assyme.
Even with‘the 1ack‘of this 1nformatibn the resu1ts of preliminary

P

studies can be used.

vRecognizing that,‘it can be seen that the method possesses

. an eQCetﬂeht COnvergence'rate _ Furthermore, th1s rate does not depend

on the size of the system, since for both systems, solutions are : i

- obta1ned 1n a comparab1e number of 1terat1ons

_ N : : : _
= It should be meﬁ%1oned here that in the. cases wh1ch required
S o
Vmore than 6 or 7 1terdtf/ns, the obJect1ve funct1on was . a]most f]at

near the so]ut1on, and & Targe number of iterations were used for
3

Tittle 1mprovement The m1n1m1zat1on process wou]d have term1nated *

much ear11er if the 1mprovement was taken as the convergence test

»

Tab]es 3.23 and 3.24 a]so show the number of 1terat1ons

rrequ1red to obta1n the so]ut1o 0. the m1n1mum cost prob]em, and the1r>'

assoc1ated max1mum constra1nt v1o]atgons, by ‘the method of. Sasson et a1[22]

M !

Th1s is the. on]y prdb]em SOﬂVed in the1r paper “Since in both cases, ,Q-,"

in %he eq§a11ty constra1nts These f]gures are praet1ca11y unaccept—

ab]e and a few extra qterat1ons are needed to 1mprove on them

A]though exact compar1son between the two methods is not

- E = - 7
,“‘ Lo . D . ‘5
* no_ starting point is mentioned in ref. [22].

To



~ are-a rough indication of the relative effectiveness ,of the methods.

= 3.6 Solution Qualification

By'the tehm hso]btioh quaﬁification” is meant.the invest-
1gat1on of whether or not a so]ut1on of a problem does meet the )
problem requirements. To ach1eve this qua]1f1cat1on, one should, first
1nvest1gate the power schedu]e of each 1nd1v1dua] so1ut10n to se /iF‘
it agrees v1th simple 1ntu1t1on provided by the\prob]em itself.

- Secondly, a comparat1ve study of the so]ut1ons 0 d1fferent prob]ems
in terms‘of the va]ue of the d]fferent objective functions is carr1ed out.
Finaf]y, one s to show that the so]ut1ons obta1neq are 1ndeed the opt1mum
in their respect1ve cases. It shou]d be mentiored hat from the
point of v1gy of. constra1nt sat1sfact1on, a]] so]ut1ons desp1te the
v1o]at1ons involved in some, are qu1te acceptab]e for all pract1ca1

w

purposes g%nsequent1y, each so]ut1on is cons1dered tg satﬂity its

: ' o
constra1nt requ1rements S - . . N
. . ¥

Tab]es 3. 25 and 3.26 g1ve power generat1on schehule, and

sthe va]ues of the d1ﬁferéh2 ob3ect1ve ~functions 1nvoTved iin each case

R4

‘ %
_for the 5— and the 14 bus sx;tems, respect1ve1y For easx reference

~the- d1fferent cases were numbered though the1r nther< da not agree

)

= w1th the. order‘of thewr presentat1on in ¢h15 chapter 4{2§T.1nc1uded 5
in Tab]e 3 &5( )JIS the so]ut1on of the m1n1mum*1oss pro ems of the
'« —5 bus system for fixed generator vo]taqo , which wehe extr%me]y c]ose i

to the flat start1ng po1nt ) D . j

( of a]l tases studied on the two .test systems; power generation
. , o |

|

¥
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a .
r Gen. FueT 4o
ip p Cost | Losses | 106 Fuel of
E 1 2 | §/Hre | p.u. BTU/Mr. | Gen.1
1 | Min. Cost 0.967 | 0.685| 760.95 | 0.05167 | 1335.99| 806.97
"2 | ‘Min(Cost + Fuel) | 0.849] 0.801| 762.81 | 0.05021 | 1324.68 799.82
3 | Min.Fuel 0.692| 0.958 | 770.76 |-0.05083 | 1319.00| 583.94
4 | Min(Cost-+ Fuel | 0.457| 1.201.| 794.99 | 0.057%6 | 1331.28 403.24
of Gen.-})‘ ' .
5 | Min.. Loss 0.803 | 0.847 | 764.49 | 0.05008 | 1321.89| 672.18
6 | Min. Cost 0.962| 0.682 | 757.57 | 0.02471 | 1330.02 | 8d3.27 -
‘—O.SiQBiO.S : ' : :
7 | mit. Cost <&\84426 1329.59 | 799.36.
-0.4<Q,<0.4 , .
432V ' -
e
Fu%] i
10 Fuel of
L BTU/Hr. | Gen. 1
"8 | Min. Costs 0.04512 | 1334.30 {'830.11
9 | Min(Cost. + Fuel) 0.04381 | 1321.26 | 7p5.51
10| Min.Fuel . - 0.04469 | 1314.27 |'s86.01 |-
“ 11| Min(Cost + Fuel, 0.05171 | 1327.28 | 395.37
“ 1of Gen. 1) . “ S L B
12 | Min. Loss 1 0.04379,| 1318.78 | 695.93
13| .Min. Cost 0.03874 | 1328.42 1.821 705 -
1 -0.5<Q . <0.5 R ‘ . ’
Lo T 9% L
Sl MR cost b A L R
| % ]-0.4<Q <045 0.03868 | 1326741 | 806.35
N T | ST T
R 2,
N )

Table 3.25 3P0wér,Schedu1e and Value of Objective - {(‘— \ 7(_

Functions of the 5-Bus System

‘? (a)'Fixed Generator VoTtggesA‘

s (b)‘FtéewGenefator_Voitageé~*

-
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"3.26).ﬁ In such cases oné, expects'that 2 Dart1cu1ar generator - (or

. schedule of only a few can be readily predicted from the statement"
of the -problem. Im.all other cases however, a study of the objective
funct1on would produce an idea of how generation is shared by the
various generators of the syst m.

......

o The first categor agRnsists of all cases whdke Tocal

cr1ter1a wexe 1nvoked LItJ' 'aSes no. 4 ahd‘]l of the 5- bus

{&;.

a group of generators) will orOV1de m1n1mum generai&on wheh it is
(they are) requ1red to cohsume 2 minimum amount of’ fue], prov1ded

that the ba]ance of the Foad cah be absorbed by the other generators

.~of the system If. this is not the case; those other generators w111

provide the1r max1mum share, and the constrained generatqr( ) must
absorb’ the balance. Invest1gat1on of Tab]es 3.25 and 3.2% shoWs that

th1s is exact?y what has been ach1eved in the above ment1oned cases

&
" e .

‘ y The second cateqory compr1se& all other cases where m1n1m1- :

o b

: zat1on cr1ter1a were q]oba] AJthQQgh generat1on schedu1e5°1n these

- ,'.’sm
cases are less pred1ctab1e, one should be able to pred1ct the vay

generat1on will be shared between various generators by study1ng the1r

resoect1ve contc1but1on to the obJech1ve funct1on" A genérator :

\
contr1but1ng 1ess to the obJectTve functTon w111 ﬁefan1teTy carry

S5

a ]argershare of the ]oad ‘ Thws is- exactTy what happened in all cases
of th1s category _ven in case no. 5 of the 14 bus system qenerators
1 and 3 shared the balance of the ]oad 1n such ‘a way. as éb minimize

the total cost of generat1on the gﬂoba] criterion.'

L2
-,



Invest1gat on of the va]ues of the tgta] cost of generat1on
system losses, and tota1 fuel consumption as given in Tables 3.25
and 3 .26 shows that any of these quant1t1es are m1n1m1zed at the expense
of the two others. A comprom1se solution can be obtained if a1] |

o part1c1gate in the object%ve function, as was in the case of the cost-

) ’ ) . "'F'
. fuel problem. .

Invok1nq the Tocal m1n1u1zat1on cr1ter1a resu]ted 1n a
cvns1de;ab1e increase in the cost of generation for both systems, andv
also in fue1.consumpt1on in ohe of the 14-bus system cases. The reason
is that generat1on was forced\to sh1ft to the more expensive source,

SO that the Tocal cr1ter10n can be observed It should be ment1oned
l, here that the cho1ce of these 1oca1 cr1ter1a was 1ntended to show such

effect: This may or may not be the case in a rea11st1c s1tuat1on

depend1ng on the cost funct1ons assocuated w1th the various’ qenerators

of the system . - v f‘g- o
,/i'i PN Invest1gat1on of Tab1e 3 25 will a]so show that the solut1ons
/A did not fa11 in show1ng the we11 known effects’ of 1ncrea51ng the i: A

L[: \\ vo]tage 1eye1 1n a- system, and those of 1ntroduc1ng react1ve generat1on
v.\ .

/ )~ﬂ7 Observe that gererat1on cost system 1osses'and fue] consumpt1on are.

]ower in the cases of free Jenerator vo]tages than those of fixe

generatop»yo1tage A]so they'are 1ower in the cases where th is

react1ve qenerat1on at bus no 3 than the cases wh1ch do not have - such

4

generatTon

"NhatAis left now is to show'that these solutions are'indeed_

e
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the opt1ma1 so1ut10ns and not §ust a boundary po1nt v F1rst, 1nvest—
1gat1ng Tables 3.25 and 3. 26 shows that the m1n1mum of each 0b3ect1Ve
funct1on local or g]oba] does occur oppos1te the case requ1r1ng

the m1n1m1zat1on of such an obJectwve

Secondly,” the convergence behav1our, as 1nd1cated by the. v
va]ue of the acce]erat1on factor po1nts out that these so1ut10ns are
the opttma]. The acce]erat1on factor 1n most cases stayed at un1ty,
_ﬁwh11e in the rest it decreased gradua]]y when the so]yt1on vas
approached Shou]d 1t change sharp]y 1t wou]d be “an 1nd1cat1on that
a boundary point, -rather than the opt1ma1, w1]1 be obta1ned‘ Th]S will

be d1scussed 1ater

- Thtrd1y, F1gure 3. 1 shows the equ 11ty constratnt curve of

“the 5- bus system, w1th f.ixed generator volfdges, on the P] P2 plane.

'A1so shown are some constant total generation cost contours The P

:d1agram represents the m1n1mum generat1on cost. prob]em A11 opedating
points of the system, including those resu1t1ng durlng the m1n1m17at1on
process, must Tie on the equa]1ty constralnt curvee Th1s curve w111 .
-vcross many constant cost contours representlng d1fferent cost However,
'.1t is the po1nt at which- the curve is tangent to one of these contours

T nrrresents the opttma] so]ut1oh - The optimal Operatingvcost Wi

L8 that “epresented by that c@ntour Th1s was 1ndeed the case. For

1o

1nstan e contour correspond1ng to a cost of 700 $/Hr represe ts
. Tower . ust thanzthe opt]ma1 However, any po1nt on that curve does 38

not satisfy the e ua11ty constratnts thus, that cost can not be *ealtzed

1
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The ]owe t realizable bost is that represented by the 767 $/Hr. contour
which Zouches the ‘curve of the equa]1ty constra1nts at the opt1ma]
solution. H1gher cost contours will each-intersect with that curve

at two points resulting 1n_subopt1ma] solutions.

v
For a lossy system the curve of equa11ty constra1nts will

. be concave upwards, whereas the constant cost contours are concave
downwards. Th1s will ensure that a single minimum occurs ) In th1s
case, however, since system 1osses are small (typical for power
systems) and there is 11tt1e d1fference between the ]1qht load costs -
‘at the two Qenemators this curvature is small. The resu]t is that
the ttue.minimUm point 1s difficult to ]ocate with’ any rea11st1c
convetgence criterion. However, in practice, th1s is unimportart as
theVCOst,(or the operating point depending on'the cohvergence griterion) -
Will be within the preset tolerance of the actua] minimUmf

Similar diagrams can be drawn for the %ther ob3ect1ve
functions of this case*._ However, a]though ‘the ﬂases of the 5- bus

system w1th free generator vo]tages, and those of‘the 14- bus system-

=3 In the minimum loss problem, the constant 1oss ontours will be
d1scont1nuous, and each will reduce to two points bracket1nq the
o] |

oo/}ma] po1nt This is bec.use system losses are def1ned on]y

on the curve of equa11ty constra1nts ' | ' Lo ) 4'mv

i’k\"‘ _,.s - C- o . - - - e . - ) -.‘ ' v
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follow the same theory, it is difficult to draw such diagrams as they

are nultidimensional.

Finally, other methods[21’22’33] have treated two of the

problems presented in this chapter,gname]y, the minimum cost problem

of the 5- and 14- bus systems. For all practical purposes their

solutions agree with the solutions obtained By'the proposed method” o
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,CHAPTER'IV
OPTIMAL ORDERING OF LARGE: SYSTEMS . -

/

VQ“AQ?thh any solution method, in applying the proposed.

o method to a large system, one has to dea] with several problems

~that are not 1nvo1ved in the case of sma11 systems For instance, the._.

computer storage requ1red to store the system matrix would be
prohibitive and the efforts of 1nvert1ng such™ a matr1x very expens1ve
However, as ment1oned b re, these prob]ems have been great]y eased
in the case . of power s}Z:Z;s due to the exc;eme spars1ty of the
mat-ices involved, e. g the Jacebian matr1x On1y non zero e]ements
of ¢ > matrix would be_stored, but %hen, onejnas to keep track of-
JANERE positions in the ordginai matrix AMatr1x 1hvers1on as such’
must be aVO1ded 1ead1ng to the use of an e]iminatioh 5rocess (e.gt
Gauss1an e]1m1nat1on) to tr1angu1]ze the matrix-and“then'using_backfi;*5“
substitution to obta1h the splutton; An optimal brdering_scheme |
to order the rows of such a matrix would beein order tb preserve its .
sparsity ddrtng the elimination process,jthuS'reduc1ng the extra

storage that would be needed.

In this chapter a new method ﬂ; optima] ordering is

descrfbed and compared to two other esthblished methods Three

‘ stahdard-test systems are used, They are the IEEE 30— ’57- and

118- bus test systems. Data of these systems is given 1n Appendix -

B. 0pt1ma] c05t solut1on of the 30- bus system is also presented as. a

f

representat1ve,of optwmal/so]ut1ons of_large“systems.-
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4.1 Optimal Ordering - - : S . S 4
An abso]ute optima] ordering scheme of the\e11m1nation

process, throagh reorder.ng system nodes, would resu]t in the '

least possible terms in the tab]e of factors* An‘eff1c1ent

' a]gor1thm for determ1n1ng such abso1ute opt1ma1 order has not been

4

deve]oped "and it appears to be a pract1ca1 1mposs1b111ty _However,

several -effective schemes to determine’a near—ogt1matfqrdervhave’f///ii

been deveToped. Although these schemes do - not prodnce the true

optimal order, they are knOWn,'qnd hereafter~are'feferred to, as

oﬁtimai,ordering schemes. An extensive comnanatﬁvecstudy of these

schemes is. found in reference 34.

w

'@ : There afe*tno.basfc approaches to ogjimal ordering. The

first {s preordering, -and it amounts to reAumbering. system nodes, i.e.

thelrows,and>co1umns'of the system matnix, accordinq‘to the order !

u

, required in the e]imination proress‘ So]ut1ons can then be obta1ned

by choos1ng successive p1vots down the ]ead1ng d1agona] The main

advantages of suchwschemes are that they are s1mp1e.to-progrém

~—

'(conseduently they are fast to execute) and that the onTy 1nformat1on

needed to perform them is a node- branch connect1on list.

_ The best knowncordehing scheme-dsjng‘this_abproach Tshq one

in whfch system nodes are numbered starting.with that having the

A

N

" * The table df"actors refers to the triangulized matpix when -

"\\forwan7Qbenations are stored in the lower triangle.

.'.f'\\ . /

\
'

) / .

' . / N - k) .

L e s ¢ |
4 Te— .

ST \.
. . . . ,/-‘ R
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fewest number of cofinected branches,-and ending with that having' &

the” most It does not, however, take into account 5nythingfthqt,,

happens ‘during the elimination process[26 27]

-

“This scheme will
be Feferred‘to as scheme I for the.purpose of comparison later 1n '

the. chapter. . _ )

‘§The second approéch is knoWnAas dynamic ordering ' System'

" - nodes are ordered accord1ng to the way the tab]e of factors deve]ops K

: dur1ng the e11m1nat1on process, rather than from the structura]

propert1es of the or1g1na] systgm matr1x Programm1ng of such

methods is, therefore, more comp11cated ° as ordering takes p]ace

G

-du in the actual. e11m1nat1on process or at 1east sing ]tS

simula on. Execut1on of ‘such schemes is s]ower than preorder1ng !

schemes, however, they do produce an order c1oser to -the abso]ute,

In;the g8

to be el

1n“the ,,@ext var1ab1e to be. e11m1na}edsls‘;__; -
_that.assiz : ' , i &jcolumn of the reduced ma?rix .{
'contann1ng-'. ' non‘zeno off diagonal e]ements Ln the sec0nd

/-

scheme, the next node to be e11m1nated is the one wh1ch w111

1ntroduce the fewest new equ1va1ent 11nes Th1s scheme not on]y
f

requ1res,the s1mu1at1on of the e]1m1nat1on proceSSgaccord1ng to the

natural order of the remd1n1ng nodes, but of every feas1b1e ,§]"

e L

"



' “\ . . .
v - e ’ - *5 ' ’
alternative at each step. Th1stcheme is referred to as scheme

. S ‘.g ,

- ' - J - ) - ' o ) o
The cho1ce of scheme is thade—off between speed of
TN

execut1on and the number of t1mes ‘the resu]t 1s to be used Scheme
o1, for 1nstance, is good for prob]ems requ1r1ng a s.ngle so]utwon
with no 1terat1ons Scheme IT1, on the other hand,;1s good for

'prob1ems Fequ1r1ng a largd number of iterations to Just1fy the -
/" AN
extra twne used in its execut1on For 1oad f10w stud1es, schemg, \

[T was found to be the best of the threeL26 27, 30 34]

4.2 The Proposed Method

The main d1sadvantage of preorder{ng schemes is that ’
they do not take into account the chénges that- occur in the tab]e
of facto: Skiﬂﬁlﬂgzihe elimination process This makes suc% schemes
'unsu1tab]e for 1terat1ve so]ut1ons On the other hand, dynam1c

ordering schemes requ1re 1onger time to éxecute which makes them

re]at1ve1y unsu1ted to so]ut1ons that requ1re only few 1terat1ons

N

‘The.proposed method fa]]s withﬁn the”category of pre-' o
ordering SChemes However, order1ng is carr1ed out in such a way K
to reduce, as- much ‘as possibTe, the structura1 changes in the tab]e
fj'factors, thus reducing the number of the new e]ements 1ntrodnced

dur1ng the e11m1nat1on process

: «r ~ L ’)
jg%?‘“ 1t wou]dfﬁ\ 1nstruct1ve to show that in a sparse symmetr1c,

,.?
. v <
O‘.

Rl
§<~ or 1nc1dent symmetr1c, matr1x, 1f t\e rows are ordered such that

, aaq off- d1agona1 e]ements become more and more dense as one moves down

.

Tt
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"a1ong the major diagonal, that the chance of. 1ntroduc1ng new -

Q@

elements dunﬁng the~ e}1m1nat1on process becom[s more and mote
un]1ke]y A s1mp1e reason is that very few open1ngs are 1eft for
“fill1-1in terms The e]1m1nat1on process W1]] mere]y mod1fy a]ready
L/existing elements. In power systems, each row ha? at least one
\§ offfd1agona1 e]ement*, and it is unavoidable for such terms . to appear

/( o

\in every row. The strategy will, then, be to restr1ct these

‘ Xé ments to® the tr]angu]ar port1on below the m1nor d1agona1,vand E >
A;\\as befote, to make them more concentrated in the ]over right hand Il
“‘corner af the matrix. This would be the 1deal stnucture for the |
elimination proce§s 1n such cases[27 35] B "3-5’"7 ‘ " f |
An orderlnﬂ scheme of system nodes to ach1eve(such a Q 4 ‘
stnucture is given as fo]]ows \ ' ' o o
1) If{therevare any nodeswith'no conneCted branches, they are
‘ nunbered first. As a matter of factathese nodes w11] not affect
® 'i the e]1m1nat1on process, and can take any order However, they
R arevnumbered f]rst for simplicity. ] | o .‘ . 5 )
2) Numbered next is the node connected to the 1east number bf
branches// If more than one qua]1fy, the cho1ce could be either .
a}b1trary, or-acc WA descend1ng order of the number of\vﬁf : t'&

branches co#nec L N other end nodes.

bl

— : < _
* For the present formulation of the opt1ma1 load- f]ow prob]em, it cou]d

' happen that a node, part1cu1ar]y a generator node, may: not have any - ///
connected branch 1ead1ng to another node of the same set of nodes,

" because 1oad nodes. and generator nodes are treated.separate1y.
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\iy‘Theﬂnode (or nodes) which is (are)'COnnected to the node just/
-ordered, and which is (are) not prev1ous]y numbered, is- (are),
.,then given the h1ghest order( ) ava11ab1e, accord1ng to a
dé%cend1ng order of the numbe r of branches connected to each
é)IOf the remaining nodes, the node hav1ng the least Ghmber of
branches 1§Lp1cked up If no more than one qua]1$y, steps 2)
and 3) are repeated However, if more than One are found they

o

are searched for a node connected to the h1ghest ordered node

If ohe 1s found, 1t is g1ven the ]owest ava1]ab1e order nd
f-step 3) is repeated If no one 1s found, .the search is repeated
| for a connect1on w1th the second highést ord??%d\node, and S0
| off, - When these h1ghest ordered nodes are covered, steps 2)

: and 3) are repeated The process is conttnued unti]ja11 nodes

v

«~ have been numbered

It can be seen that once a low order node 1% numbered
all 1ts connect1ng nodes are. moved away to the minor d1agona]

.and beyond Furthermore, such connect]ng nodes are numbered such

*

; that thé node having the h1ghest number of connected branches is

g1ven the h1ghest order, Th1s will ensure that‘the targer the

~ number of the off- d1agona] e]ements, the 1ower they will appear—

*

‘1n the matr1x be1ng ordered

o

o For re]ative]y sma]lusystems, the method may not work’ as .

g4

- well as descr1bed The number of nodes which are connected to on]y -

one other node is qu1te sma]] Some of these%nodes may be connected

:to the same node and the chances are that one may have to order a

: B

-

i



|
B '..numbered and the off: d1agon11 e]ements w111 be Tocated about the

_ a]most corresponds to an 1ncreas1ng number of off—d1agona] e]ehents

%

hode connected td two ore more nodes: of whtch nonehas been prev1ous]y

i

numbered The resu]t will be qutte a few off diagona] e]ements

appear1ng to, the ]eft of th minor d1agona] The opposite is true

| ':for ]arge systems Thc numbgr of\“ho*or ieswh1ch are connected -

to on]y one node 15 re]at1ve1y ]arge and scattered around the system,
such that when nodes connected to two or rore nodes have to be

ordered some of these connect1ng nodﬁ\\wou1d have been already

A

.
m1nor d1agona1 and to 1ts r1ght -|he number of the off—d1agona]

e]ements to the 1eft of . the minor d1agona1 w111 be very sma]]

TN

however

Th1s is illustrated in Eggure 4.7. The shaded area

represents the area of the ordered matr]x where off- d1agona1 e]ements

Y

w11] appear. . For ]arge systems, an arka to the right of the minor -

‘_d1agona1 will have no elements. It corresponds to those nodes w1th

_ only one connected branch wh1ch will be ]ocated on the minor-

d1agOna1 itself. Th1s area may not!eX1st for sma1] systems due to-
the very small number of such- nodes Note a]so that etements 1ocated

to the Teft of the minor d1agona1 w1]1 appear h1gh in the matrix

systems = | s | .

The shaded area is not full of off-d1agona] e]ements

Rather, the concentrat1on of these e]ements 1ncreases as one moves

-dOWn a]ong the main dxagonal Th1s is because 1ncrea51ng row number

w7

' Structure in the case of sma]] systems as opposed to the: case of ]arge .

y

4 . x



——

.

A T N

.%‘

fatrix Structure After Ordering

ma11 Systems
arge Systems

........

- Figure 4.1



An exceptjon Woqu”be/ancase inﬁuhjch TightTy_connected nodes are
connected together (e g. cha1n c1rcu1t) ‘In thisbcase heav1Ty
-connected nodes will appear in the m1ddTe rows, resuTt1ng in a large
nuinbér of f]TT 1n terms dur1ng the eT1m1nat1on process., The success '
‘of the method will, thus, depend on system structure, a character1st1c

of any pract1caT order1ng schemes[30] | ,

4 3 Storage Bookkeep1ng Techn1que - . (;

Shoqu system nodes be numbered as one un1t, speciaT"
programm1ng techn1ques, apart from compact storage, woqu have not ?
been necessary‘ Systcm data, ‘e.g. the bus adm1ttance matr1x, could
be rearranged 1n the new. order, and-used, d1rectTy However, in the.
present method of soTution, generator nodes and Toad nodes are \'

‘handTed separateTy, and, thus, shoqu be so numbered VoTtage-

, controTTed busses have dual ‘roles. They are contro] nodes since
the1r voTtage is a controT variable. They are aTso dependent nodes,
since the1r reaT powerskare f1xed, and the voTtage anéTes are - - v
determlned from the Toad fTow soTut1on Therefore, these nodes w1TT .

__part+t7pate in- both node . groups, and/each of them will end up with |
Awo’ numbers to determ1ne its order. w1th1n each group. Rear ging’

: the bus admittance network, say to meet such a’ s1tuat1on woqu,be '

s

impossible. N I

To soTve th1s probTem, system data are T@Tt in the or1g1naT
.arrangement Correspondence arrays are formed | These arrays

?

determine the or1g1naT order of a g1ven node, based on which group‘it - \\



B LT S

’read1]y used . Furthermore thé"or1g1na1 node bhanch connect1on

connecteu to each generator nodé Thef

(excLuding"the dssOCiateq

AY

be]ongs to, and- 1ts order w1th1n that group | Once the or1g1néﬁ

’order of -a node is determ1ned thé o%tg1na1 dahe arrays can be .

v v

. : (0"
S

Ea -

obJect1ve funct1on (exc]udig

fth assoc1ated equaL1ty constra1nts)

e E ,\_'

within: Qhe»group of load nodes, wh11e4the other ¢ ves the Tist of

1r-

m]oad nodes, \Hn te of the1r optjma1‘o'der'W1ti,n-the1rkown group, .

brmer array is used‘fon
'iénd the ]atter 1n‘;» o
:wé of’the cost functgon

e g ! -
JeQUalityvconstra1nts) w1th respect . to the

. dependent var1ables, It ¥s a]so used in comput1ng the matr1x [qg/au]

h
and 1ts contr*but1on in the Hess1an ma L1 X.

I l

To 1]1ustrate the Just descl1bed techntq@e"

“consider “the.

IEEE ]4 bus test system shown in F1gure 4.2, .gote tha

* It shou]d be understood that reference to generator nodes, or.

N >

/..

Toad nodes, means. the co]]ect1on of such nodes p]us voltage

contro]]ed nodes L “,;// , R -

Jeach of nodes

s
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»*{a) BUS:CODE DIAGRAM |
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/\ OPTIIMAL ORDER OF GENERATORS
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Figure 4.2’IEEE>14-éus Test System Optfma11y Ordered
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willy then, be g1ven as 1n F1gure 4 3 (a and'b) F1gures 4 3( )

-‘array wh1ch glves the start1ng posi
list, of the ]1st of node

concerned. - For example, referr1n

~in the connect1on~]1st in view ‘of 1ts 1so1at1on from other generator

' no. 3 and 4.

S o s B 93

-no,J4 and 5 (originai order), wh*zh are vo]tage contro]]ed nodes,
, has assumed two opt1ma1 0 ders JFor 1nstance the node originally
< pos 5 s the segond gode in the gr0up of generator nodes, while it

Ts’ the. th1rd 1n the 1oad nodes group. The conrespondence arrays

'g1ves the correspondence for generator nodes, while F1gure 4.3(b)

is for load nodes. In both B nhe pos1t1on of an entry

. | - 0y
e ‘ermihes.the node number i worder, while the entry is
. - ?' 4 o V )
Hts number in the or1gtna] grder. -

The d1fference node- branch connect1on 11sts are shown in
Figure 4. 3 (c,.d and e). Assoc1ated w1th each Tist is an dndex

\.'\j‘<\ -

ion, fin the respe8t1ve connectlon

-

on ected-to ach node of.the node group

vto Figure 4.3(c ), wh1ch gives

‘the node branch connections w1th1n generator nodes, generator node

'Ano;_1 (optwma] order, no. 3 in the or1g1na] order) has no entry

nodes On. the other hand the 11st of generator nodes connected to

: generator node no.: 5 (optlma] order) starts at pos1t1on 3 of the_

:econnect1on list.: Th1s.means that node no. 5’15 connected to nodes

\“7434 Compar1son 0 0rder1ng SchemeS'_

e
A compar1son between the proposed method and schemes i

and II of opt1ma1 order1ng (see sect1on 4 ]) ‘Was’ carrled out - The

o -

.resu]ts of th1s compar1son are presented 1nalab1es 4 1 - 4, 4
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ASyitem '

Scbeﬁe-l.

SCheme Ii

‘.Prbposed ,

Method

. 3 .0;}) us
57-bus -
" | 118-bus’

0.84
1,46
3.42

»
"

].055'

2.33

6.15 -

10.95
1.57
6.43

o Tap1eb4:1 Ordering Times

»

>

Required Storage \

| System.

 Watyral |

Scheme [
& IT

Proposed
hethod'l

e

'30—5&§’ i
57-bus

118-bus.

859.
1855
‘2794

£a

475
1059
1125

. 603

1211..'

L2720 i/

~

Table 4.2 Storage.of'the Table of

>

'Factors

',l‘.”

94.
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Tab]e 4 ] g1ves the t1mes requ1red for order1ng the
L, . A -
%?—ir - three systems by the three methods The times shown cons1st‘of'the ST
b v N

t1me required to, order the tivp- grouwr of nodes mégtwoned before, as A
o

well as all t1mes requ1red tg)’oad the pre-ram and read system data.

A‘,t~ - ’ .. /
= L;These 1at§$r port1ons”are the same for the hree\methods o |
LY ' . .
SN R, { It can be seen that scime I ds def1n1te]y the f%étest
e E‘ - of the three schemes tested &¢Zh1s is a well estab11shed resu]t[26j

IWh1]e the p*oposed method and scheme II requ1red about the same amount -

P

of t1me in the .cases of the- 303 and ]]8 bus systems, thegoroposed»

-

1od was much faster 1n the 577 bus system case This means

H that the speed of e1ther the. proposed scheme or scheme II 1s not _ [/f
o

2

only dependtnt on system size only, &8s in the case of scheme I but-‘ o

a]so én system configuration This shou]d be expected s1nce in

“both schemes order1ng very much depends on how the system nodes are

>

tied together

g

Tab]e 4 2 gives the amount of storage requ1red for thé

tab]e of factors of the Jacoblan matr1x of the three systems us1ﬂg
the three methods, as- well as for the natura] order. Sﬁ@rage required

- for the Hess1an matrix 1s not chown s1nce 1t represents a very sma]]

A

EE _ fract1on of that requ1red by the ‘above ment1oned table of factors*

] .

- In the case of natura] order wh1ch usuh]ly requ1res the 1argest

A amount of storage—of all cases, the Hess1an,required on]y‘26

e 10cat1ons« S KR R '.-{ N o . C e

.Jﬁf !:“. tﬁ;
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7, .

‘ 'Stohage'SaVings %

3 ow

-

 PfopoSed_—
Method .

Schemes-T, "~
& IT <« -

113—bUS

)

- 44e7

42,9 N o
59.7 VT kT s0.9 | T

L 29.87

o

- . -

\b‘ X .' e <

T Table 4.3 Pe?%entqge Savings 1in Storage *

Oveﬁ'tha@{of\Natural Order

. Scheme .~ | -II .

- e
. \
“

Proposed | - Scheme

@Bo—bus'
'57-bus
“ 1118-bus

f.1901.275$

P

'8815.53

572.85 - |- 500
2467.47
6918.75

B N

5 n(ifze?

¥

Table 4.4 Product of Ordering Time by

Stohage Required for Orderin

* Schemes

96

N



stud1es

, the ahove conc]us1on ™

- 97

\ ! . a-g_ i
Storage requ1rement for the [ ——-] matr]x 1s the same in a]] cases

' A1though the proposed method requ.red between 14 and 27

more storage than that requ1red by schemes I or II the non-monotontcv

. ~nature of such extra storage, backed ‘up by the fact that scheme II

was not better than scheme I 1n these casei, 1nd1cates that the

requ1red storage by an opt1ma] schem? is dependent on system
\«..\“,_

conf1gurat1on, as ment1oned before

Based on the amount of storage requ1red by the natura]

e -~

order, the sav1ngs effected by the three schemes are shown in

Tab]e 4.3. These ures, coup]dd with the re]at1ve speed of each

,order1ng scheme suggeyts that the proposed scheme is,in generat

-

comparab]e to schem% IT, which is weﬁﬁ/accepted for load f]ow
[26 27,30, 34] o T

The product of - the t1me requ1red for order1ng by the

T

S

_amount of storage requ1red is often used as a cr1ter1on to compare
"order1ng schemes[-353 Th1s product is ‘given 1n Table 4. 4 for the

' j.jthree systems for scheme“II and the proposed method It hacks up

.'?

B NV A def1n1te conc]us1on on the super1or1ty of. one scheme

over the “other shou]d involve the cons1derat1on of a ]arge number of

-power z&%}pms Th1s was not poss1gfe\;n_the\preseptAstudy

. 4.5 M1n1mum Cost Solut1on of the 30 Bus System

. '<‘
[l

The opt1ma1 so]ut1on of the minimum- cost prob]em for the

: IEEE 30~ bus test system is shown in Tab]e 4 5. Theusystem inc]udes

o " |, o b

_—

—



AT : ’ . i -
v o _ i
. R Y e ‘ ‘
"3 generating nodes whose generation cost is the same as those of the
e L, l) ) . . - ’ - I . ' .
14> bus systei-and are given in Tab]e 3.1./ Several starting
cond1t1ons~have been used for which the so]ut1on has been obtg1ned 1n
5 to‘]Z iterations. The 12 1terat1ons f1gure refers to the flat.
s art which, as mentioned before; i< not a realistic operating point.

This convergence vate confirms the ea..ier conclusion that it ids

o

| %ndependent.of system size. . N4 .

t Y

Table“4 6 shows: a comparison between the proposed so1ution_
“method and the methG1 ‘of reference 22. Although the mfnimum
generat1on cost as obta1ned by that latter method is 1ower, it W111 \ '
-probably 1ncreése if better sat1sfact1on of equa]1ty constraints
' yieved. : B , |
/. L _ . o

—
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Tab]é 45 _M.in'imum Cost Solutivn of the IEEE 30-8us Test S‘ystem"-
A T " . S
- . :
ﬁgs Ymin |V max S P'hn'n, P Prax %0 | @ Tmax
1 [%.06 |1.06 1.06 [ 0.0 Jo:5 [ 1.680]3.0 [-0.6 l0.023 |00
"l [1.0a5 {1,045 [ 1,085 32285 f0.2 | 0749 1.5 |-0.6 |0.305 |0.6
Bofos hoesiia [sair| 0 |gioes| Fo.o2
4y 10.9 11,017 [ 1.7 | Z6.505 -0.076 -0.076
o (1o [1.on e -0.942 -0.6-]0.336 | 0.6
6 oo |rois |1 | 7650 0.0 oo
77 o9 |1.005 |11 |-9.704 -0.228| £0.109 |
B o o o |-sa] 0.3 | -0.6 [0.243 | 0.6
9 Jo.9 [1.053 [ 1.1 {7 202 0.0 | 0.0
10 Jo.9 [1.050 1.1 | -0.08s |-0.058| 002
11,082 11,082 | 1.082-1.655 0.2 | 0.530[1.5 [-0.6 |0.175 | 0.6
he ‘q,g loss |11 [ -10.764 -0.112 . [0.075
3 fr.on [1.om | 1.on -10.76( 0.0 -0.6 }0.097 [0.6
1409 Dross |10 [anaed o062 10,016
.,is 0.9 1,041 1.1 31,44 -0.082 -0.025
16 0.9 [1.088 | 1.1 | 10071 -0.035 [0.018
17109 [1.085 | 1.1 <1001 |oi0s 0058
18 0.9 [1.03 |11 fanesd o |a0.03 0,009
19 0.9 {1,030 1.1 -11.589 -0.095 _ -0.034
oo o [1.039 | 11 |-17.264 -0.22 T “ }0.007
pr olo.s |toss | 1 [0.5ed |o0.17s o112, |
22 0.9 "[1.038 | 1.1 [-10.572 0.0 0.0
3 fo.9 [1.oso] 11 {1160 -0.032| 0,016 } ~
24 10,9 [1.025 | 1.1 [-11.467 -0.087 0067

N4
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~ .

. "

s . : ~ -
25 0.9 1.019° -]].6]% 0.0 0.0
L 1 : 4
26 0.9 1.001 -12.035 -0.035 -0.023 |
27 (0.9 |1.02a {1.1 "|-11.454 0.0 . 0.0
28 (0.9 1.010 -8.180 0.0 0.0
29 0.9 1,003 | 12.682 -0.024 0.009-
30 [0.9 .0.993 J1.1  }13.564. -0.106 0.019
.‘, R . ‘.
| f°= Total Cost of Generation = 1245.25 $/Hr.
Tab]e‘4>§\ﬁeﬁﬁarisoh Betwéén_the.Proposed Method and the Method
of Reference 22 for the 30-Bus System | |
~No. of|Maximum " Minimum |
[ter [Mismatch ‘Cost Ty
. ‘ ’ . ; ~5* : uv . /
_ Proposed 6 <0.22x10 ° 1245.25 o
"Method : ‘ e
| of /
Method of - | 5 1.5x107° - | 1242.5 /
Ref.22
X v
* Typical Mismatch: 0.3x107'3 - 0.2x07 '8
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CHAPTER V. | C—
EFFECT OFQPENALTY AHD ACCELERATION FACTORS

In this chapter the effect of pena1ty and acce]erat1on

factors on the converqence of the proposed method is discussed.
Since, pract1ca11y, it is always possible, but not necessar11y
e;sentia}, tn start the minimization proce: ‘xth a feas1b]e operat1ng
. point, only the effect of theseffwo.factprs when a boundary of

~ the feasible regfon'is ehéouhtered from inside is considered.
. ' . . ! .
Furthermore, the concept of a f1xed pena]ty factor. b )

deve]oped wwth the method, is compared to the usua] conceﬁt of a |
° o o '

L monoton1ca11y 1ncreas1ng sequence'of penalty factors
Since the.effects of.pena]ty and acce]eration factors
‘comp1ement one another, no attempt has been madé to consider each

‘separately. . ; f .;ng? E

51 Effect of Penalty and Acceleration: Factors on -Convergence -

,_Réﬁ?iring to Figure 5.1, which represents‘schematica]Ty »

ax

7

et

SR L | o
Figure 5.1 Effect of Penalty ang Acceleration Factors

~
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_ t
the m1n1m)zat1on process, let curve A represent a boundary/of the 4

feas1b1e region due some functional constraint. Let points a and a'
represert, respect1ve1y, the unconstrained, and constra1ned optimal

points. Also, let- po1nt b represent the operat1ng po1nj/at the

[

start of a part1cu]ar iteration. : . . e

Assume that the unacce]erated move at that 1terat1on

moves the operat1ng po1nt b to a new point c_ outs1de the feas1b1e N

Ve region. ‘If thekpenalty factor 1s'sma]1 point c is 11Pe1y to have

:::1\;-a Tower cost (plus péna]ty) than po1nt b, thus becom1ng the

starting po1nt of the next 1terat1on S1nce the pena]ty factor 1s
kept fixed, point ¢ w111 cont1nue to move toward po1nt a, with very
- Tittle attent1on to the sat1sfact1on of funct1ona] constra1nts

No acce]erat1on will 11ke]y be 1ntroduced, and eventua]]y an un-

’

~-§eas1b1e so]ut1on will be obtained.

As. Tong as the vaTUe of the penalty factor is not h1gh
enough to fu]]y actlvate the acceleration mechan1sm described in .

Chapter II the m1n1mﬁzat10n pattern will be similar to the one'

o

\f‘d1scussed above Convergence, as- measured by the number of 1terat1ons,

will become worse as the penalty factor is 1ncreased

Suppose, now, that the va]ue of the pena]ty factor is h1gh
“'enough, S0 that po1nt ¢ is of higher cost than po1nt b. The acce]eratwon‘

‘imechan1sm W11] start funct1on1ng and the m1n1m1zat1on ‘move w1]1 be
!

bd rather than bc. ‘This pattern is cont1nued bd d'd". .;, unt11 the

Opttma] point-a' is 1ocated In th1s case, constra1nt v1o]at10n may

.. ’ . \(& ’ .

be'allzﬁ?d, as long as the decrease in the- ob3ect1ve funct1on over-
§ i ‘ t



comes such violation. Furthermore, a move\from a po1nt such as d"
) -o

will try to produce a decrease in both the obJectlve function and

constraint violation. In such:a way the operattng point will stay

Jc]ose to the Soundaxy, resu1t1ng in a better éonvergence rate

If the pena1ty factor is higher than necessary, the
:?¥1n1mlzat1on process may converge to a point” such as e, which will,
then be a subopt1ma1 so]ut1on However, 1t will be—characﬁer1zed.
'by a sudden or conttnued decrease in the va]ue of the acce]erat1on
factor, 1nd1cat1ng a premature convergence The reason is that any
-s]1ght violation of a constra1nt w1d1 resu]% in a 1arge increase in'
the ob3ect1ve funct1on, and the acce]erat1on faCtor will cont1nue to
_decrease to avo1d suc%’vwohat1on, and to keep the. operat1ng po1nt(
(w1thrn\the feasible reg1on CIf *h/ ope ating po1nt at the start of
the 1terat1on is close to the bozlaary, it is- 11ke1y that the va]ue
of the acce]erat1on factor will (vop to a véry low level and cou]d
resu]t in the sat1sfact1on of the ¢« ,rqence criterion, without [:
hactual]y 1ocat1ng the opt1ma1‘po1nt On the other hand, if constraint
1v1olat1on does occur in the ear]y stages -of the process, when the ‘
'fobJect1Ve function changes rapad]y, the emphas1s w1]1 be on the
sat1sfact1on of the v1o1ated constra1nt, and- very 11tt]e attent1on is
g1ven to the m1n1m1zat1on of the or1g1na1 obJect1ve funct1on The .

operat1ng point’ will be pu]]ed well 1ns1de the feas1b1e reg1on, far

from the opt1ma] so]ut1on; 'The result is a very s1ow'convergence to



- R 104

poooe !

' adsuboptimal-so1ution. This is shown by trajectory bob]bz.ifﬁ?h.

Figure 5.1.- =~ = -~ -

Th1s behaviour is demonstrated in Tab]es 5. l and 5 2,'wh1ch
refer to two - d1fferent cascs of the 5- bus system S1m11ar behav1our

is a]so exper1enced 1n the cases of the 14 bus system ' T

. In Tab]e 5. ], it s clear that, acceleration. did not take

CFUTY effect upto r —104; any thus, as expected convergence became

(4

worse as the pena]ty factor is 1ncreafed Constra1nt v1o]at1on was
'sma11er, however. - In the case of r -105, acce]erat1on took fu]]

action resulting in an excellent convergence behaviour in both rate

- &nd constraint violation. - - c o - : L -

', o Similer behav1our 1s exper1enced in. Tab]e 5. 2 However
‘ S :

in the case of rQ =5 X 103, acce]eration took effect dur1ng the 1terat1on

',vpx)cess rather than at 1ts end: The fact that the process converged

‘w1th unity acce]erat1on factor and 1arger cost shows, as have a1so

bﬁen d1scussed in Chapter III that the cost contours are - very f]at
'and the sat1sfact1on of a pract1ca1 convergence cr1ter1on, ax Au <1O 3
can-oceur in a reg1on rather than a po1nt In this part1cu r case a
range of values between 103 and 5x103 for the‘penatty tactor 1s

"sattsfactory.

»

10?

5

~The behav1our ‘of the 1terat1on process for r and ]0

Q
‘was typical of one w1th h1gher than necessary pena]ty factor. W1th
the forzﬁr va]ue the operat1ng point was repeated]y moved we]] 1ns1de
the fea 1b1e reg1on whenever constra1nt v1o]at1on occur, whereas with

/

the 1atter, it was not al]owed to 1eave the feas1b1e region in: the
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Tdb]e 5.1 Convergencé Behaviour for Different Penalty Factors:

Min. Cost Problem, 5- Bus System, Frée Gen. Voltages
{8 . 4 .
Penalty No. of = Acc. Violation of Cost at
factor Iter. Factor Vg Constraint Solution
102 - ‘ - : -2 '
r,~10 .9 1.0 1.582x10 . 75717
r,=10° 100 1.0 1.351x1072 757.22
rv=104 ‘Oscil‘u ry Solution. Acc.”Factor = 0.5
e 100 6 S 0025 ooieoxiot 757,78

2]

. 1able 5.2-Convergence Behavidur for Différent Penalty Factors:

én

M?n Cost Prob]em Mod1f1ed 5-Bus System -O 4< Q3<O 4 -

2

F1xed Gen Vo]taoes

Penalty

Violation of Cost at-

No. of  Acc.

Factor u-Iter;q 'Facth 'Q3 Constraint Solution
"rg=0.0 7 1.0 7.30x107° 757,57
rg16° 7 S0 13102 757,63

rge10° e 1.0 2!55x16%3rwax‘ 757.65 .
rg=2x10° 10 1.0 2.06x1073 T o
rgesxi0? 9 1o 170 758.31

f05104 7 10.0625 , 1.72x107% 758.86

rg10° N T




. 5.2 FactorsAffecting the Choice of the-Pena1ty Factor

- hand, too small

& . 106

»

first place. Both solutions are supoptimal.

The main factor that determines whether or not acce1er "n
. A

will take Pplace 1s the value of the penalty function due to v1o]ated

constra1nts, and whether ar not,_when added to the obJeCtive function,

ce o L e . .o
1t increases. the value of such objective function over the previous

value. Too large a penalty will certainly eat,Up any decrease that
. . h - ¢

would be effected in the,ortqinal ~objective function byvthe

minimization pro;/ss, forc1ng a premature convergence ~ On the other

pena]ty w111 contrlbute a ]1tt1e, and a so]ut1on

~outside the feasible region would be obtained.

Since .the 4ecrease‘1n the \pject1ve functlon part1cu1ar1y'
at the 1ast stagey-of the process, is a very sma]] fract1on of that.
funct1on, the pena]ty factor, wh1ch determ1nes the &%;fe of the

pena1ty funct1on,,shou]d be chosen‘accord1ng.to such ‘*change.' This

‘ _means that it is dependent on ‘the va]uegof the objective'functionv

itself. The 1arger this va]ue is, “the 1argerhthe penalty factor
<should be. R o i 'v;)
Tab]e 5 3 shows the convergence behav1our of two ob3ect1ve ,

funct1ons for vary1ng pena]ty factor. Part (a) ofhthe Tab]e refers

to the minimum. cost prob]em of the 5- bus system when generator ,"

vo]tages are free It is drawn from Tab]e 5.1. Part (b) is obta1ned "=§i

for the same case except the. obJect1ve function was divided by a

factor of 100. This factor should not affect the m1n1m1zat1on process '

or. the so1ut1on since it w1]1 cance1 in the equat1on
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auo= - g gr | O (5.0)

which gives the minimization move. oL ‘\\\\N\

It cén be seén that parts (a) and (b) wou]d be identical

A1f the . factor of 100 is also taken into cons1derat1on in the value

of tI ounalty factor. The same convergence behav1our is obta1nedf %
for both objective funct1ons when the pena]ty factor in both cases

are re]ated by th1s factor of 100.

It should a]so be ment1oned here that a penalty factor of

200 was found acceptable for-the minimum 1055 prob1em of the 5- bus

;system (Table 39 ) ~as companedvto 1000 and 105 for the two cases*'

presented nere, The value of the ob3ect1ve function in the three

i Cases is 1. 644 7.59 and 759. 78 respectively. Corre]at1on between

the va]ues of the ob3ect1ve funct1on and the pena]ty factor is ev1dent

The pena]ty factor is about 100 t1mes ]arger than the ob3ect1ve funct1on

-This rat1o vias a]so sat1sfactory for a]] other cases for this type

of constra1nt

~ Another factor affect1ng the cho1ce of the pena]ty factor

is the' type of constra1nt It ‘can be observed from Tables 5.1 and
i

»5 2 that wh11e a value of 105 was acceptable for the vo]tage constralnt

L

-

at 1oad node no, 5, a va]ue of 103 to 5 x 103 was sat1sfactory for
react1ve generat1on constra1nt at vo]tage contro]]ed node no. 3.
Th1s d1fference can be expia1ned in the}fc 1ow1ng way

_One_Shou]d“f*“st‘recpgnité\that the,fdrmer type of constréiﬁt

e i

'\

~

L
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SN

.

i3 a ]1near constra1nt of

( vo1tage at a 1oad node, w

wh1ch .is a funct1on of Qp

]oad flow pnob]em In view of'the c_Jat1ons‘~ﬂ\

or = 3(ftw)
=% T
I (“f+W)
vf, = LU,

o _i;)

. 1}

wh1ch represent the gradaWMts of the pena11zed ob3ect1ve funct1on i

w1th respect-to dep%ndent

WUy e g
on cne'dependent'vani5b1e i.e. the
here a~ the latter is a non11near constra1nt

th conzrol and dependent var1ab1es ,These_"

are thg two types of funcynonal ons.ra1nts 1nvoHved in the optimal

\ RN

L Ve . -

+ [ ;3_2(_”] _)Lv= 0 . (5 2)
39 T: ) N

+ [ 5@:] A =0 \ (5.3)

and contro] var1ab]es respect1ve]y*, it can

be seen. that the f1rst type of constratnt, which has on]y a f1rst

order der1vat1ve with ‘respect to a part1cu1ar dependent var1ab1e

w1]1 have on]y anjind1rect contr1but1on, through the vector Py to:_r

Jthe grad]ent vf equat

'

Ton.(5'3) On the other h7nd the second

type of/constra1nt, w111 “have both such 1nd1rect contr1but1on and

a d1rect one thTough the der1vat1ve-§g_. A lower pena]ty factor

»

for that 1atter type shou]d then, be expected An acceptab]e vglue

for the pena]ty factor 1n

of the obJect1ve fUnct1on

th1s case is about 2 to 10 t]mes the va]ue

except a pena]ty functwon W 1s~%ﬂded to ‘the obJect1ve function

: ﬁo&eoﬁ§t1ons (2. 18) and (2.79)
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5. 3;Coﬁpar1son of Pena]ty Factor Schemes‘

4 ~ 'Y

\K proper mathemat1ca] way to-solve a constra1ned

m1n1m1zat1on problem us1ng pena]ty funct1on approach s to start the

: m1n1m1zat1on process w1th a sma]] pena]ty factor and then.- 1ncrease

1ts va]ue after convergence is achieved. Th1s .process is contlnued

unt11 an -acceptable so]ut1on is obta1ned Th1s process w1]1 then, h
requ1re a 1arge number of 1terat1ons as 1t cons1sts of severa1 |

m1n1m1zat1on subprob]ems : Thws is 1n contrast w1th on]y oné- such
m1n1m1zat1on prob]em, when_the'concept of a f1xed pena]ty factor-

~

is ‘used.

If. the ob3ect1ve functlon has a d]st1nct1ve constr§1ned

opt1ma1 so]ut1on, it cou]d be aXQued that the former method will be

\ def1n1te1y the super1or However, th1s is not the case in mﬁn1m1zat10n

'prob1ems of power‘sys;ems \ The contours of the ob3ect1ve function

f:are yery.flat and any pract1ca] convergence cr1terion w1]] 1ocate a (fj '

‘ "ne1qhbourhood of the opt]maT so]ut1on rather than the so]ut1on po1nt

| from a pract1ca1 po1nt of view, the extra effort requ1red to Tecate

itself, W1th1n such ne1ghbourhood Cost var1at1on is m1n1ma1 and S =

( | . . A .

. the true opt1mum 1s not worthwh11e }‘ ‘ 6_“ _ S .

y . : & B - ! « . S

N

' Cons1der Tab1e 5 4 whlch shows the number of 1terat10ns

'reqU1red to obta1n the so]utﬁ/h of the m1n1mum cost - prob]em for the 2

' 5 bus and the mod1f1ed 5- bus systems u51nq both pena]ty factor aoproaches

In the f1rst case, generator voltages were free wh11e in the second ‘.

KRN

. H

case they were fixed® and O 4<Q3<O 4.



.

™ . .
No. of |, . . TCost at
v = _Iter, Max,V1o]at1op Solution
Fixed Penalty| | s '
Factor | 6 | 9x10 757.78. n
- s : : \
2, [r,=10 |x10 | 44 7.4x107 757.76 ‘
SN} :
L bl g e N
3 .rfiJO '|x100|- Did not converge in 35 iterations
w6 . ‘ ‘ '
Fixed Penaltyl o 15 551073 | 757.65
. ~ Factor : o . '
. : - ~
,rél‘ o \3
O Eir =10, |x10 | 14 1.12x10° 757.88
) 'Q)vm. i >
R | |
T R =107 |x100] 13 ¢ | 1.19x1073 759.16. -
=~ . ’

L

Table 5.4'"Compar1$on_of Penalty Factor

Approaches
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it is quite clear that for all pract1ca1 reasons,
the concept of f1xed pena]ty factor is more acceptab]e In the
J f1rst case the d1fference°1n optimal cost 1ndeed does not justify.
the extra iterations. In the second case a vary1ng penalty factor
-~ approach was not accéptab]e‘with regard to both convergence rafe
and the so]uﬁion obtained. It does po1nt out, however, the

'sens1t1v1ty and cruc1a11ty of the growth rate of the pena]ty factor.

i \
ES
; . c
o
‘_)»u
""T’
o
N
a . .
<
. A
3 - :
N .
s
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CHAPTER VI
~ - CONCLUSIONS o );,
_ & In this thesis the problem of optimal Toad flow of power
systems is investigated. A brief r /i ow of the devel spment of the_
problem and its solution methods is giver. The Cxrpentier s

formulation of the exact economic dispatch prob “m, which is the -

‘ basie starting point of all recent developme~ts, is also presented.
The solution method proposed.in'this thesis, which is

.also based on Carpengier formulation, is characterizeg by:

~

1) A]]vgeherators afe treated as swing busees. N
- 2) NeWton'é‘method*_qsing/the'Heséian matfjx ef‘the 6bjective CZ vrv,
4 function, is Jged N cohbute_the adjustments to the“comtrolv

variables. .", o | , —
3) Aesimﬁle acceieratfbn scheme s used.

4) A fixedfpena1ty factor is used th%oughout,the iterative pkocess.

N

' By treat]ng all generators as sw1ng busses, severa]"

advantages have been ach1eved

‘

a) The séncitivity of some problems to the 1ocation;of one particular

swing‘bUS'is eliminated. - o . 5.
5) Storage requ1rement is great]y reduced, as compared to other
h methods, due to the e]1m1nat1dn of generator equat1ons from the
-~ set of load flow equat1ona. The Jacobian matr1x of ]oad,f}ow
equations is‘mUCh smailsr, resulting also in.a large reduqtion‘}

e
. t
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in cemputation efforts required to solve the Toad flow portion of
the prob]em.

c) In addition, generator vo1tage magn1tudes are kept free to adjust

m1n1m1zat10n. A1though this is possible Wth other methods,

themse]ves w1th1n the prescr1bed range, f;qach1eve true
the only results “that have been reported are those of B1]11nton
and Sachdeva[ 0] us1ng a suboptimum techn1que of sequent1a]

real/reactive power’ d1spatch.

The use of Newton's method to adjust the set of control
variables, as detined in this thesis, provided excellent convergence

-
rate "The Hess1an matrix needed for this purpose is of a low order

and is extremely sparse, thus posing no problems in its hand]1ng or

SEEEY

‘storage.

By using the s1mp]e acce]erat1on scheme descr1bed in. th1sl
the51s, “the. comp]ex1t1es and efforts needed to eva1uate an opt1ma]
acce]erat1on factor is e]1m1nated Yet both meyproduce the same
resq]ts. | . : L | |

- The fixed pena]ty factor approach, comp11mented by the"
&L - .
5

acceleration scheme, proved to be ' superJor to the usuaTVWay 1n-which,<

penalty factors are used The process(converges in fewer 1teratlons

with 11tt]e or no sacr1f1ce 1n the f]na] cost. Th1s 1atter po1nt is

pract1ca]]y of _no_conceng, because of the- f]atness of the cost- contours

" and the 1mposs1b111ty of Tmp]ement1 ‘ exact]y, the true mathemat1ca1

- optimal so]ut1on

By re]at1ng ‘the cho1ce of s fixed pena]ty

- factor to the obJec 1ve 4urct1oh and the type - constratht, a'rough.
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guide to estimate its value was pgékibie.

The method is extensively tested using two standard‘test
systems. Four basic problems-are solved: the minimum cost

problem, or the exact economic dispatch, the minimum loss prqblem;—

Ve

- the minimum fuel problem, and the combined cost-fuel minimization

problem. - The first two problems are we]],esteblished, whereas the

last two are newly defined and formu]ated for power systems.

“An optimaT ordering sCheme,“fok use with 1afge systems,

is also deve1oped in this thesis. Near-optima1 order is ach1eved

by mov1ng off d1agona] e]ements to the r1ght of the m1nor d1agona1

and as far below. it as,poss1b . The scheme was found to be

comparab]e with two of the we. uccepted schemes. _1‘ e

‘For future considerations, itVES‘worthwhi]e investigating

' '~_the feas1b111ty of app1y1ng the method to the problem of hydro- :

therma1 d1spatch, in wh1ch opt1m1zat1on shouid be carr1ed out over al-
t1me per1od,'rather than at a particular 1nstant #The method can

also be 1nvest1gated from the po1nt of view of system p]ann1ng and
expanswon More work ' a1so need to be done on the fixed pena]ty .
factéf approach to establish avfirm guide]ine-for’the-choice of'the

\‘ » .
proper value.
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Appendjx A.
i G1ven here are the e]ements of the d1fferent matr1ces arld

vectors 1nvo]ved in thc so]ut1on method presented -in. Chapter I1I.

A, 1 The Jacob1an Matrix

[

Load f]ow equations at a load node are given by:

. . o -
. N T
Tp]_(g,y =V] %fz] VJY cos( 5 gsj_-e].j) *Ci=o (A1)
q; (Usx) = V. 8.-6..) +D. = (A
N = 1J 1 V Y s1n(di éj eij) *D;=o0 (A.2)

The e]ements of the Jacob1an are the der1vat1ves of these

”-quant1t1es with respect to the dependen var1ab]es X Se]f
Ca ‘
.der1vat1ves are given by:

api % _ )
= = V. V.Y S-'in((S -5.-6 . :
% Ty _ J i &
- .
= b, - V¥ v sin(o,.) TR
1 il i
f ‘ap{?ﬁ“ .
v = 2V Y. cos(0,;) + §=]VJYﬂ cos (8- \eJ)
4 ) J?é] .

= - ¢ /v ¥ v ¥ij cos(oy;) B - (A4)
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© sStmilarly o - ’ : L
8q1- A Zﬁ ' .
o 3T T 'C'i - V,' Y"i‘]' C:OS(E)i_i ) (AS)
P | R oot
99, o B oo
§V;'= - Di/vi - Viyii sind.; _ o (Ae)
Mutua deriVatfves are- given by:
’ . ' .‘\ —
oP; - o | | - |
5 S Viijij51n<dii6j—eij); | R (A.7)
Bpi : . S < SR
9
- o BN |
ggg-F Vs V Y, cos(d 6j-8 J) N : ' .'_CAtg)
 , | ‘_ﬁ'Ih equations (A.3) - (A. 10) i and j stan for load busses.
A2 The Cos t* FUnct1on and its der1vat1/e B v
__"_f“_“"—“‘—“‘"“*__—‘__“—*___—'——’—"_~_-_“~ .
N Pt is assumed that the cost. funct1on is a 'quadratic:
funct1on in’ generated real powers as follows:
- f=la *+b. P we p 2 - (A.11)
: - Togs i 9 o ) | .
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(A.15)
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~where i is for a generator bus, a;» b and c; are constants, and
v Pg., fhe real powerlgeherated at bus i, is. given by:
i B » -
N Q;ii - . - |
- R 5. - - 6..) ¥ C. JA2)
Pgi §:} v, VJ Y]J.p?s(61 ; 6?3) C; (A.12)
-1A 2.1 E]ements of the der]vat1ve vector %;
5f LT (h 4 ooe b . <o -
.555(— % (bi + Zcingﬁ) V1VJY1J 51?(3i'§j eii) ” (A.13)
. - B e
of _ ; o oL _
- an‘— % (bi + 2C1P91) ViYﬁ Jcos(§f 5j eﬁ ) (A.14)
. . - i@ ) ::’ ’
- whengfj is for a load bus . ”1ﬁ
< a,f_' N o
A 2. 2 E]ements of the vector SU
| C P :
Bf z ( C o k] . \
— = b, + 2¢c.P )
S 18T 9y '
> 7
: L .'_an _ o
. . oo - Y . ,C" P ) . » *(A.]G)
¢ aVk 0 T gyt aVk ) B ) !
) . . - el
. _ @ . L
] /“,. l_‘ . . N » . . . o ' e .
A.2.3 Second order partial derivatives of the c&&} ‘ function
2 z 2c ani )2 . T (bt +‘é¢rp ‘) v‘v Y cos(  5,46, )
v §6k2 i ;, adk._ S A L ‘T k 1k ] k Tk
- ifk
;(bk+2§kﬁgk){Pé Ck Vk Ykk Fosekk]. (A.17%

v
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S 12 ¢

|

Y [(

+ (b, + 2¢,P: )

+ VY

+;<bw-

k kz[ (b

k‘,v[(

2c2 P

+ 2CkPg

b + 2¢c, P-

k' g

k) cos(ékjsl-,ek

Y cosls; = 6y - )1

sin(y-8y < 05)

- Dk)/vk.f kakk ;jnekkj ;(

L

)

-8

K k) cos(6k -.62 _3?k¢2 :

+ 2¢ P ) Singék"‘dz"_ﬁkz)ﬂ'
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[ag/ou] provided-that subscript j is for a ‘generator node rather than.

~a load node. % - B - B
P - g : ' - SR
A.4 The Hessian Matrix, o S ‘ e [

- i ’ . B o N ,v’u‘;\ {;/’/‘ /

o - ] 5
-relations (2.19) with respect to the control variables. _Bed?i

p
A
Lo
7y .
S |
.

" The elements of the HéSsian.matrTxJare thevderivatiﬁgﬁ\gf. s
g in

L) l . . V.‘.' . oL L s

. 125
'an
f(b24+ ZCQng) §1h(62 - 6y - ezk)J ] ﬂA;22)
In Equations (A.15) FO(A.ZZ), k and 5 are for.generator7
| busses, and the derivatives of generated powers P; ; with respect to
. _ . o ;
generator variaoles 6i’ Vi’ dj and Vj’ are given by:
aP : v A
i ) 2 v o S o :
Ty '— [Qgi Di + Vi- Yii s1neii] | (A.23) 3
an.‘ . , S , v .
;! B » - . _-.,“,;‘; . 4 .
) ‘SV:_' = (Pgi - ci)/vi + VifYﬁi.coseii o . (A.24)
P o , L _
95 ‘ : c . ‘ T
sy ViYiteg sin(emsymeyy) | (A.25)
3P -
95 . S ,
v - V1Y].j cos(éi - aj Y ) (A.26)
J \
A.3 The, Matrix [3g/ou] .
Equations (A.7) - ﬂA.]O) give the‘elements of the matrix ;gﬁ



mind equation (A.7) —'(A.10)‘and the provision of section A.3, L‘j}

these e]ements reduce to:

o, _2 ‘
. 29 ], o f -
‘ 20 = ) VoY, [a o cos(6, -6, -6 )
\\ | ,35k2 asyz_ : j Yok TPy 3ok K
+‘.n - 3 - - . ' ' : ’ ‘ ’ :
J qu s1n(6J \Gk ?jk)] | (A.27)
’ : b= fl2~ | _ | (A.28) -
gvks avk . : : :
2 2
. 3 L _ 3°f ) ‘
. = Vo Y., [r, sin(6, - & - 6. )
/ N a5kv_k 3 gk TPy J k ik
- A R ‘ o A
9 cosley - & - g | - A .29)
2 - 2 . . ° .. ) ".
3 L 3 fL : - -
- T S (AL30)
36,36, 36,08 ‘ A AR
. oo p o dffr . BT
IR 3, oV ' : '
2% 1 - _ 22f 7 T .;‘(A 32)
avkayz 3V, v, . | _ L

. where, in (K.27)

generator busses.

-

- (A.32), j is for a load bus, and k and 2 afe for -

5
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A.5 Derivatives of the Penalty Function

'The penaity function (2;33) can be written, in mo%e detail,

as: v
w=lr he? e Tv n Pepr ol (A.33)
i Pi Py j 9 ko koK o

where 1 and j stand for generator nodes, k is for” a load node, and

r, r_ ,and r are penalty faétors. Agalp, on]y Vio]ated functional

P> 'q v
/"’\ - . .‘ .
constraints, given by inequalities (2.27) - (2.32),_w111 appear in

C(A3). o /

- ' . oW ~i*<‘j'~
A.5.1 The Vector o : i
) LW 2V‘[ Y+r h_ V.Y sin(a.—di—e ) - :
35, kb4 F T Mo Yy Yk %G
L i L ‘ » v 4
- 2 + rq_ hq. Vj_ijCOS(§j"6k'%k_)] o , | (A.34).
SN J o J : : :
pd
- oW ‘ ‘ o
"EV;: = 2[ Z,i . hp_ v Y“<C05(51f§k‘9 iQ:
: o i Fi- v v 1
+ A . . . .y s - —.'.b \;;
¥ £ hq_ VJ Gk s1n(5J 8y %k )'_
o3 . :
B o (A3E)

T

' »The-pOsjtjve'sign is used if violated constraint is a lower inéqua]ity;-
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éhgjiﬁhe negative sign if. it is an upbér inequa]_ity. h
A , - ﬂ . s ! . )
o A.S.Z Th= Vect)or- ou 2. o
C Coebwx) -
- W . i . :
. o gem e Ter o 1T .
T 5 pihpi 2 6, ‘ ;
4 - | .
; 9 Qy(usx) ' L
+)+r h - — ] , L . (A.36) .
j qj qj 36, ' v R
9 P (u,x)
oW : L=
v S2[ Yy —
avz o 'piﬂh% va VQ ’
'f | 7 Q;(usx) S
+ ) = h ] p “(A.37) .
- ‘azw“‘
A.5.3 The Matrix ‘ ' '
’ - ou” L
2w ' > P ) 8 0yt
: 7= ALy (g (Y
¢ 28, i i St R R A

N VUYL coels iy
1 rpi'hpi .vivgym .co's(csi 162. eu )‘

o
O~
1+

-] g hy ViVeY siﬁ(aj—6£~ejz)



e prye (Tt g Sy
PO D i 9 L
+ ergh lYgl oS0, * qughqz( Y2251nezg)]
RN o Tl iy,
2 e i i 2 o L
aQ; (u,x) 30, (u,x) -
‘== ==
+) q (=5 oV
j 4 L 2

'+f§ * rpihp1YiYizf§1n(51‘62'612)
1 .

- +r h V.Y osyé.—d —e; ‘
Z rqj a9 5p008(8578,-05,)

", ——fo——-+_VQYQg S]neiz)]

v R - V.Y, coss )]
P P

S99 e

(A40)

-
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2 " op (u,x)* 3P, {u,x)
9w 20 Tr =L =
36 96 Tpyt T es, 35 .

“f &y -h
Lm Qm P, P,

I+
-
=

cos(s -6 )}
Py P m z mz

-4

+ ngmyzm{ h -sin(ix-sm—e

qz 9%

0 )]

q~-s#n(6m—6
m m

I+ -

h
"q

Cos(dzf§m'ﬁzm

't q, q£ s1n(62-6m—82m)

+
—=<
-
+
=~
=

1+

)

Oym)

!

m

&=

m

cos(s_~-
m‘Pm. o

-e

8
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| "(A.4J)

Zhemz)}

'rq hq s1n(6m-62 mz)}]

(A.42).



25 m P 1 m
ST 803(1,5) de(g,X_)
. 96 oV
J qJ L 'm
.
a + VY (~(xr_"h_ sin(s§ -6 -6, ))xr_ h_sin(s
2 m Py Py v RMoam Py Pr m ,
- 51~§m£)1 FVY, rqthgcps(ég—ﬁm—ezm) .
- Ki 5 h cps(ém-62~em£))}]- - o _ (A.43)‘

M I

l‘?l

In (A.36),-AKA.43),‘Q and m are for generator .busses, and

the sign convention is as given in conjunction with equations (A.34)

and (A.35). The derivatives

m angd - are given by

equations (A.23) - (A.26) and thé;fé]]owing equafjons, kespectiveiy.

3Q; (u>x) 5 | |
=P -C, = V.m Y., cose.. (A.44)
363' gj J o) JJ :
80; (U,x) quv'DJ s ]
Y = - V.Y j Sjnejj (A.45)
J J _
aQJﬁ (u,x) [ o : o
] .
20, (u,x) e ; -
=y sin(s;-6;-65) - (A7)

o i : Jn 31‘ .
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APPENDIX B
DESCRIPTION OF TEST SYSTEMS

Given below are the 1ineldﬁegram5»and the bus ddmittance
matrices, in polar form, of the systems usedlin this thesis. Also
_given are thein fgdding conditions. In ca]cu]at1ng the bus adm1ttance
.matr1ces, off-nominal- transformer tap ratios, and statlc capac1tors
have been taken into account Regulated busses (genérator and voltage‘
' contro]]ed busses) in each system are indicated in the so]ut1ons given

in Chapters 3 and 4 ' - _— n

B.1 The 5-Bus Test System

Table B.1-

DIAGONAL AND NON~ZERO UPPER DIAGONAL
ELEMENTS OF THE BUS ADMITTANCE MATRIX .

BUS TO'' BUS MAGNITUDE = ANGLE
_ . o

1 - 1 8.8930 ~75.96
1 - 3 . 2.4254 10604
1 - 4 1.6169 . 104.04

1 - 5 4.8507 104.04

2 = 2 9.7014. -75.96

2 - 3 4.8507 104.04

2 - 5 4.8507 . 104.04

3 - 3 9.7014 -75.96

3 - 5 2.4254 1ou.04
45w wos23 - -75.95 0 1

5 - 5 9.7014 . -75.96



 Table B.?2

~ SYSTEN LOADS
(IN P.U. ON A 100 HVA BASE)

“rt

BUS REAL = REACTIVE - BUS REAL  REACTIVE
1 0.0 0.0 ’ 4 0.1400 0.100
2 0.0 0.0 N5 0.600 0.200
3 0.600 0.300 . . -

-
A ,
;
; ‘\\/\- v - "
. ) i 3
©- g A |
, N —
~a Do S
;l- B ' / . » noT ‘
L] . <~ ' . . | ) .
3 » —@
5 //¢ 2 2

. Figure B.1 Line Diagram of the 5-bus Test System °

~
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B.2 The IEEE 14-Bus Test System -

.2 i e e

{© syncHrRONOUS caPaCiTORS
(© GENERATORS

(a) BUS-CODE DiaGRAM™ -~ S
(b) 3-WINDING IRANSFORMER EQUIVALENT

Figure B2 Line Diagram of the TEEE 14- Bus Test
' Syétem ’ e | ' o -

31. - | -
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Table B.3 DIAGONAL AND NON-ZERO UPPER DIAGONAL

ELEMENTS OF THE BUS ADMITTANCE MATRIX -
BUOS TO BUS fMAGNITUDE - ANGLE
- 1 20.3590 ~72.79
- 2 16.0609 108. 14
1 -7 4.3575 103.62
2 - 2 31.7328 . -72.54
2 - 49147 103.35
2 - 6 5.3865 - 108.24
2 - 7 5. 4654 . - 108.13
3 - 3. 18.5471 ©-69.22
3 - 7 4.2574 . 90.00
3 - 1 4.5369 © 115:53
3 - 12 3.5235 - 115.56
3 - 13 6.8445 116,92
4 -y 10.2959 -72.35 9
- 6 5.4440 111.60 , ,
5. - 5 5.6770 ~90.00
5 - 78 5.6770 © . 90.00
6 - 6 40.0400 -74.78
6 - 7 122.6370° Y 107.59
6 - 8 4.8895 90.00
6 - 9 1.8555 90.00 -
7 -7 736.7934 -74.93.
8 - 8 19.5490 -90.00
8 - 9 ©9.0901 T 90.00
9 - 9 24,6742 - -77.53
9 - 10 11.0755 110.63
9 - 14 ©3.3871 - 115018
10 - 10 15.8602 ©-68.62
10 - 11 4.7879 113.13
DU & B B ©9.3227 . -65.70
12 - 12 6.7515 -53.51
12 - 13 . 3.3566 . 137.86
13 - 3 12,6122 1 -57.78

13- - 14 205791 o 116.16

.- e o 5.9260 . -gu.3g . -



i fab]e B.4

136

SYSTEM LOADS
(IN P.U. ON A 100 UVA BASE)

BUS " REAL REACTIVE BUS REAL REACTIVE
1 0.0 0.0 8 0.0 0.0
2 0.217 0.127 .9 0.295 0.166
3 0.112 0.075 - .10 0.090 0.058
4 - 0.942 0.190 11 0.035 0.018.
5 0.0 0.0 12 ’ 0.061 ©0.016
6 0.478 -0.040 13- 0.135 0.058:
7 0.076 - 0.016 1L 0.149 0.050

B.3 The 'IEEE 30-Bus Test System

HANCOCK

30 29
LOVERDALE

. ROANO{KE :
‘ 12 - 10 .
L o
— N é : '
- (b)

C 4
121

nol

— HANCOCK 052

132k ROANOKE.

- 6 REUSENS

o . " BLAINEF |
-CLAYTOR - . 7

FIELDALE &

Z I
.SYNCHRONOUS CAPACITORS
@GENERATORS '

(0) BUS -CODE DIAGRAM
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Table B.5 DIAGONAL AND NON-ZERO UPPER DIAGONAL
. ELENENTS OF THE BUS ADMITTANCE MATRIX

e

BUS TO. BUS BAGNITUDE  pngLg
1 - 1 21.6832 -72.64 -
1 - 2 16.4959 108.46
o1 =3 "5.2456 1103.72
2 - 2 32.1629 - =72.35
2 - 4 5.4701 ©108.17
2 - 5 4.9058 103. 39
B 5.3872 108.24
3 - w3 '30.1196 -71.74
3 - Ty 269172 109.20
4 - g 57.8571 -73.62
4 - 6 . 23.2146 - q06.04
4 - 12 T4l7913 ©.90.00
5. - 5 12.8584 - - 71,45 - 7
5 - 7 8.0136 111.63
6 - 6 85.7893 - _74.90
6 - 7 11.5959 108.04 .
6 - 8 22.8934 105.95
6 - 9 4.9158 | 30.00
6 - .10 1.8561 . 90.00
6 - 28 16.0673 105,76
7 - 7 19.5826 -70.48
8 - g 27.6317 =73.75 -
8. - 28 47649 -, 107. 64
9 - 9. 18.7063 1 =90.00
9 - 10 . 9.0909 90.00.
9. - 11 4.8077 ©  90.00
BRI T R 43.8522 ©-73.37
10 - 7 11.0498 110.98
10 - 9 5.7010 100.73 " :
W0 - 21 12.1080 114.92.
10 -7 22 . 6:0020 © 115.87
"mo- 1 - 4.8077 ~90.00
12 - 12 25.2930 . _qy.qy
12 - 13- 7.1429 - 90.00 -

120 - 1y ©3.5215 . 115.¢9



12
12

13

14.

14

15
15
15

;16
16

17

18

18

19
19

20

21
21

22

22 .

23
23
24
24
25
25
25
© 28
.
27

27
27

28
- 29
29
30

1

15

16

14

15

15 -
18

23

16
17

17

18

- 19

19
20

- 20

21
22

22
24

23
24

24

25"
. 25
- 26
- 27

- 26

27
28
29

30
28
29

30 °

AN

6.8380
§.54149

7.1&29c

6.7501
3.3573

. 18.5514 7,

- 4.1103,
4.4366

9.3230

4.7799

15,8273 °

11.0480
6.9378. .

20.0911

13.1533

17:7225

!
N

u

9.0592

S 2.1282
C1.4652

50.1333

38.0275

48.7020
4.7002

7.7639 ¢

3.3274
10,6132
26361

2,868 .
4.2047 x

23.4033 ..

4.0780, .
1.9498

3.4151

116092

115,44

-90.00

-53.47 -
137.90

- =59.69,

116.09
116.34

-65.71

113.419

_€8.35

-63.77

"116.32

-63.52

116.57

-67.59

L -64.13

116.18

-63.23

122.72

-63.78

116.05

-59.97

119.890

-60.25

"123&80
T 1vT.64

-56.20

'-68.89

90.00

. 117.89 .
117.98 ...

-75.63 "

o -62.11

117.89

62,07

&

138 -



BUS

a o et
MEWN=O

WONOUN S WN =

REAL

~ 0.0

0.217
0.024

0.076

0.942

0.0 .
. 0.228
0.300

Table B.6 SYSTEM LOAD
(IN P.U. ON A 100 MYA BASE)
- ;,-. : .

R
1s

‘REACTIVE -~ = W BUS
0.0 16
0.127 - - 17
0.012 18
0.016-- ’ 19
0.190° _ 20
_ 0.0 , 21
0.109 , 22
0.300 - : 23
0.0 24
. 0.020 - .25
« 0.0 ' 26
0.075 s 27
0.0 - . « 28
-0.016 Co .29

0.025: _ ‘ 30

REAL

0.035.

0.090
0.032
0.095
0.022
0.175
0.0

0.032
0.087
0.0

- 0.035

0.0

‘0.0

0.024

0.106

139

REACTIVE

0.018
0.058
'0.009
0.034

* 0.007
0.112
0. _
0.0%4
0.067
0.0
0.023
0.0

R O_O .
- 0.009 -
©0.019
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B.4 The IEEE 57-Bus Test System - ' 7
©
~
.5 C
- B
, ©
6
©

PR
%
a

TAZEWELL TRANSFORMERS

CLINCH 8 ’ " SALTVILLE
RIVER © . o
BUS-CODE DIAGRAM =
3 SYNCHRONOUS - CAPACITORS
() GENERATORS ‘
‘, l ’ * . H . Lo ’ ) Rl

*

Figure‘ .4 Line Diagram of the IEEE 57-Bus' Test System . ?



?

»

Table P.7 DIAGONAL AND NONZZERO UPPER DIAGONAL

Tk

BUS TO BUS
1 - 1
1 - 2
1 - 15.
1 - 16
1 - 17
2 - 2
2 - _3
3 - .3
3 =y
3 - 15
4 - 4
4 - 5 -
4o - 6
'.4 . - 11 8
5 - 5
5 - 6
6 - 6
6 - 7
6" - 8
7 - 7
7 _ v 8
7 - 29
8 - 8
8 - 9
9 - - 9
9 - 10 .
9 4 11
gy'ér 12
9. - 13
9. =55
0= 12
10 = o571
R U E U
- 13
11 - wr

ELENENTV./QT THE. BUS ADMITTANCE MATRIX

Y

1

4,235
20. 9425,
 14.1128

3.
P
,

MAGNITUDE

58.6091
34,2416
10.7847

4.7406

9.06423

45,2330

11.1022 -

55,1821
26.1264.
18.0438

434997

6.8470
6.4884

35.6110
9.6207"

1 5.6725

MR
39.7051
13,7847

©15.9587

38.8298

19.4321

/
54.9045

. 5.81T1

11.2819.
0 3.3109

6.0548

8.8285

29.5889"
- 7.7397

15.1021

32.6394

13.0682
21,3980

1

W

ANGLE

Pl

=75.41

106.51

101.07

102.43
102.43

~72.76
109.32
~72.50
107.01
107.00

~73.46

115.34
106.20

.90.00

—64.71

115.23

-72.40

101.09
101.09

. -83.50 .
101,05 -
90.00

-78.91.

101.09

78.71

402,40
T106.92
1102.39
106.93
. 90.00

-84.36
102.38

90.00

-77.45
106.94

90.00 -
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1

12

12
12
12
13
13

13
13

14

1
14

15
15

16

17

18

18

19

19

20
20

21

21

22

22

22
23
23

24

S 24

24

25

25

26

26

27
27

43
12
13

1€
4

L)

49

14

15
b6

15
45

17

18

19

19

20

20

21

21
22

22

23

38 .

23
24

24
25

", 26

25

- 30

26

27

27
28

16

6.8225

4l 8U6S5 -

16.u827

12..0093

5.4541
74,8435
22.0u444

10..9928

’s.8u98

55.7529

-17.4488
15.1172

67.3035
10.0491

16.71270

14.4592°

5.0774

N 102111

1.9301

3.0896

1.2344 .

8.2605
7.2346

90.7722

55.1276
28.4108

58.4016

'3.2775

23.9058

1.6590
20.2700

"5,5183.
4.1159

23.9778
3.2015
t

12.0991

8.7976

90.00

-75.82
107.06

102.48

102.51

-74.44

106.92

107.20

9C.00

-77.97.: -
107.36,
. 9G.00

-76.42

90.00
-77.50
~77.51
-82.35
- 123.94
- -56.57
123011
-70.05
90.00 .

~62.20
122.17

-57.00

. 123.08
123.06

-56.93

122.96

. -85.72
©90.00
90.00

-$5.52

123.76

Z85.70

123.01

- =57.04
122.94

i

a2



28 7

28

29 ¢

29

30

30

- 31
31

32 .
32

32

33~

34

.35

35

36

36
36

37
37

37

- 38
‘38

38

.38 -

39

39
40

4o

41

L 41
41 -
41

42
42

43

44
4y

28

29

29
52

30

31

"32

32

“33

34

33
34
35

. 35
36

36
37

37

38

39

38

gy

48

49’
39
. 57

40
56

41

42

43

56

42

56-
43

4y

31,

40

22.6693
13.8769

31.9137

4.2348

5.7983

-1.6824

2.7820

1.0996

20.5936
18.7890
1.0762

18.7890

11.6005
10.6673

25.1781
14,5360

53.9334 .

21.4149
18.0434
(&}

51.9909 -

8.3279

22.3182

:39.3558

15.3259

17.4165
4.7376

1 22.9718

“0.7531

1 18.8166
0.8735

7.1108
2.4489
2.4272
1.2833

4.8708
2.4220°

8.9631

22.5176
L 1.1945.

-55.52
125.45

-70.53

127.64

-56.39
123.26

- ~56.49

123.88

-45.143

137.44

90.00

-42.56

-59.33
123.69

-53.43

~128.69

Z53.41

128.39
122.77

-55.14
122.83
122. 24

-9.23
116.29

122.92

123.01

90.00

-58.73

90.00

-72.38

120.46
90.00
135.21

-59.28
$120.98

=90.00

-63.58

116.68
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46
46

47
47

51

52

52

53 -

53

54
54

55

56
56

57

45

46

u7

47

,ug

48

19

49’

50

58
51

51

52

53

53

54

54

55

55

' 56
57 .

57

16.3460.

27.1691
13.9306

47.1941.

33.823b

57.6922™

6.5099

22.4121
6.6227

10.4685
3.8459,

17.4199

12.2698
8.0350

11.3353
3.3503
6.8567
3.5071

11.2876

7.5760
3.1964
2

3.8318

~78..60

-80.54
108.69

-=57.61
127.99

"éﬁ;54.11
w M22.88

-64.56

[

122.04

-57.90
122.21

-83.24

. =52.29
127.75

-51.69
128.99
S |

. —-51.82
©127.40

-79.12

-58.71

123.79

-62.36
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BUS

;system are given here.

WO O~V E W =

Table B.8 SYSTE&

(IN P.U. ON A
REAL REACTIVE
0.550 0.170
0.030 0.880 "
0.410 - 0.210
0.0 0.0
0.130 0.040
0.750 0.020 -
0.0 0.0
. 1.500 0.220
1.210 0.260
0.050 0.020
0.0 0.0°
3,770 0.240
0.180 0.023
0.105 1 0.053
0.220 - 0.050
0.430 0.030
0.420 0.080
0.272 0.098"
0.033 0.006
0.023 0.010
0.0 - 0.0
0.0 0.0
0.063 - 0.021
0.0 0.0
0.063 0.032
0.0 0.0
0.093 0.005 -
- 0.046" 0.023"
0.1° 0.0

B |
QO
N
[e))

N

B.5 The IEEE 118- Bus Test System

LOADS
100 MVA BASE)

. BUS REAL REACTIVE
30 0.036 . -+=0.0%8
3 0.088 " . 0.029
o 32 0.016 0.008
33 0.038 0.019
| 34 0.0 “0.0
35 0.060 0.030
36 0.0 - 0.0
37 0.0 0.0
38 0.140 0.070%
39 0.0 0.0
40 0.0 0.0
_ 41 0.063 +0.030
\ 42 0.071 0.044
\ 43 0.020 - 0.010
b ae 02120 0.018
” 45 0.0 - 0.0
1 ue 0.0 0.0
I | 0.297 . © 0.116
I 48 0.0 .. 0.0
49 0.180 '0.085
50 0.210 0.105
51 . 0.180 0.053
52 0.049 0.022
53 0.200 . ~ 0.100
. 54 0.041 0.014
55 0.068 0.034
56 0.076 0.022
57 - 0.067

0.020

A Tine d1agram of the TEEE 1 8- Bus test system can be

found e]sewhere[36]

o

Only the bus adm#ﬁtance matrix and 1oads of the



Table B.9 DIAGONAL AND NON-ZERO .U

o ELEMENTS
BUS .TO BUS
T -9
1 & - 2
1 - 3
2 - 2
2 - 12
3 - 3
3 - 5
3 - 12 -
4o - ;;V/-
4 -
4 - 9
. > - 5
5 - 6
5 - '8
5 - 11
6 - 6
6 - 7
7 - 7.
T - 12
8 - 8
8 - | g9
8 -~ .30

11

12

13

12

14

1

16
17

13

15

MAGNITUDE

32.1255
9.5791
22.5637

25.0932
15.5338

37.5250"

9..0370
5.9823

136.2323

PER DIAGONAL

122.3723

- 13.9073

200.5713
18.08u46

© 38.0235

14.0534

- 65.0224

46.9474

75.4417

28.5098 .

1 90.1423

32.6824

19.7691

62. 4470

- 30.9567

30.3437

89.8400
48.8204
13.0871

130.8460
13.5324

- 11.6208

6.9534

16.9624

3.9143

OF THE BUS ADMITTANCE MATRIX

.. ANGLE

~73.08

106.87
106. 92

-=73.10

- 106.89

-74.12
102.58
106. 83

~77.17
102. 44
106.90

-79.59
102.43

90,00

106.58

-77.56

102. 44

-76.88
104.23

-87.27

84.57

© 94,89

-85.33 .

94.58
-85.33
-73.15"
106.89
106.93

=74.11

106.91 -
104.26

103,22

~=713.03
- 106.93

net”



14
14

15
15
15
15

16
16

17
17
17
17
17

18
18

19
19
19

20
20

21
21
22
22
2%
23

23
23

24
24
24

25
25

25 "

26

- 26

27
27
27
27

t

, 14
15

15

17 .

19

33.

16
17

17
18
30
31

113.

18
19

19
20

34

20
21

21

22

22

23

24
25

32

24
70

72

25
26
27

26
. 30

27

32
115

23

28

18.4046
L 4.9050

62.5971

21.9058
2452796
 7.6879,

N
“16.9719

5.3840

109.3548

19.2395.

26.8471
6.1226

31.7923

38:9453

19.4177
56.1379

8.3554
3.8731

19.8444

11.5741 .

21.5695

-~ 10.0780

" 16.1949
6.1487

46.2112

19.6007
12.2689

- 8.3627

.26.8117

23585

4.9509 .

44.1378
27.2588

6.0215

3%.4939

11.5780

43.1403
11.4137
- 12.6748
13.1764

~75. 7§
104, 158

~F7.75

-73.04
106.97

-73.07
106.81
106 44
104899

- )

103.69 ¢

90.00
106.87 .
106.87

-76.37
103.57
-74.94
102.15

106.93°

-77.82
102.16

~77.83"

102.16

-=77.82

102. 14

-76.17
105.34

B}
5

101.03 -

105. 37

C=T74.97

103.95

1 103.98

- =85.45

90.00 -
101.04 .

-88.45
95.31

-76.36

'102.61
106.87
102.48

147




28
28

29
29

30
30

31

31

32
32
32

33
33

34

34 -

34
34

35
35
35

36 -

37
37
37
37

38
‘38

39
39

40
40

4o

41
41

42
42

43
43

44

- 29
- 31

- 30

o 38

- 31
- 32

- 113
- 114
o

- 34
- 36
- 37
- 43

- 35 -
- 36
- 37

- 37
- . 38

= 39
- 40

- 38

- 65

- 39

- w0

- 40
-~

- u2

- 41

- 42

- 4.2

- 49

- 43

- 4y

2154744
1082846

38.9724
28.7213

76.7746
18.4505

41,5239,

9.7173

51.2850
4.7145

©15.9563

16,4143

- 6.7595

147.5528
35.4863
102. 6445

5.7770

115.3949
95.7573

19.6453
131.1152
169.7107

28.5205

9.0290
5.6130

4
58.2636
10.0999

24,8224

15.81374

46.6152
20.0197

5.2293

27.0851

7.0877

- 18.2287

. 6.0456

9.6825

3.9554

14.5890

-76.67

104,11

-72.97
108.07

~86.76
94.91

-72.35
106.83

S =74.72

106.85

102.44°

- =73.30

106.29

-74.09
108.00
105.23
103.80

=77.60

102. 39

102.48
-76.%0

-77.20

50.00

106.85
109. 4y

-87.5¢4
95.22

-73.09
106.92

~-72.78

106.87
106.87

-73.11
106.89

~74.46
102.48

-76.08

103.92

=75.92

‘ N

48



4y

45

45
45

46
46

46

47
47
47

48

48

49

49
49

49
49 -

49

50

50

51
51
51

52

53

53

54

54

5r

55
55
55

. 5¢
5.

56

75

(O]]
(o)

45

45
46
49

46 |
'y,

o L/‘ 8

47
49

69

.48

49
» 50
51
54
66

69

50.

57

59
52

58

52

53

‘53
54

54
55
<&

49

10. 7709

22.7256

7.0733 .
5.0460

19.5091
7.5436
5.0422

26.2325
15.3014
3.4443

23.5344
18.6642

" 94,9713
. 12.5314
6.8792

6.6461
21.3570
12.9530

19.5424
7.0355

36.0317
1 16.0757
13.1082

21.9691
5.9368

0 13.9130
8.0127

133.1372
13.7567 -
100.6233

~4.2598

. 81.2115

63.0160

4.5261

30.7772

9.7553
9.7553
7.7510

16.7637

22.8436

e

103.96

~-73.80
106. 44

110.19
Y frs

Y
-73.04
106.66
107.64

-73.08
106.99
106.90

G .
-70.74

109.52

-73.50

- 109.55

109.53
105.39
101.08
106.97

-70.45
109.48

-70.67
109.05
109.53

1] :

~72.32

103.91

~77.06

102.17

~-74.58

- 103. 44
- 106.06

102.37

-73.14
107.91
102,39

-72.87

109.55
109.55

- 108. 39

-70.45

~70,45

®

149



.\‘

65
65
65

66

66

67

. 68

68
68

© 69
“ %o
69

69

70
70.
70

~a0

71

71

71
72

73

68

6
65

65

66
68
66
67

67

68
69

81
116

69
70
75°
77

55.1035

6.7374
© 6.5128
26.9862

96.8088
72.6971
S 17.4117

141.9151
25.9792

37.8817

56,1611

4.4790
8.3465

L T77.7528

49.8161

120.8597
32.9820

135.1451,
28.9059"

62.2688

62.0991
' 9.6207

17.9390

- 387.6479
28.9059

49.3202

246.0481

57,4749

~7.6631
7.7793

. 9.4678

51.2183
. 27.33%9

.- 7.2336
<7864

& 54,3154

5.3925
21.6363

10.2982 .

"21.6305

0

—~82.54
102.33
102.33
'90.00 -

~78.61
101.06
102,37

-81.53
102. 36
.90.00.

-77.61
102.47
102.44

-86.85
' 94.92
-86.59
95,09
-86.10

90.00

94.93

-83.39
102. 44

-77.54

-85.53
. 790.00
94,95
94,80

©-81.15 .
"103.29
¥308. 36
%07.01

=75.31
103.95

106.86 . %

106.88"

L =T77.30

103.92
. 100.80

-75.99

 -79.20

e,



74
T4

75

75
73

76
- 76 .

76

77

77

77
77

78
78

79

79

80
80
80
© 80
80
80

81

82
82

83

. 83.

83

84

-84
"85
85
85

85 N
86

86

87 :

.-88

74
75

75
77
118

76
77

118

77
78
80
82

78

79

79
80

81
96

97
98

99

81

82

83
96

83
84
85

84
85

a5

86

- 89

87

.&jﬁ]

88

89

88 .

30.6702"

23.5725

62.7207
4.7907
19.9052

24.0u476

6.4718

17.6000

137.4072
77.1752
"28.6161
11.0674

117.0878

39.9945

' 53.6552
13.8681
98.3485

28,9059
-5.3923

10.5069

9.0423

427371+
79.7612 .
:%ufgé%ﬂ"

26.0939.
18-0638..7

39.2249
. 6.8470
6.4884

12,5331

S 47774
’ %{7553_

13,7847 .

-73.07

106.85

~72.96
106.73

106.78

-73.23
106.70
106.78

-72.66

106.87
-108.14
109.26

. =74.58
102.61 o

=77.37

- 102.49

-79.49

90..00

101,07

101.09
102.43
102.44
-86.94

~72.46

106.99
167.00

1

i”W,;7ﬁ,52

115.34

106.20

-64.71

' 115{2313

7105.88
97287?m

-77.16

97.76

 —82,203

-78. 92

101.05

»;]S]ﬁuv




104

89 -
89 -
89 -
90 -
90 -
‘9'1. -
91 -
92 -
92 -
92 -
9 -
92 -
93 -
93 -
;fﬁq_ -
94 -
. QL4 -
94 -
95 -
96 " -
96 -
97 . -
98 -
.98 -
.99 -~
99 -

© 1000 -
100 * -
100 -
100 -
100 -
101 -
01 -
102 -
103 <
103 -
103 -
103 - =

89

‘90
.92
90

91

91

92

92
93
94
100

102

93 v
94

94

95 .

96

- 100

‘95
- 96

96
97-

97

98-
100

99
100

100 ..

101
103

104
106 °

101
102

192

103

104
105

110

104

)

- 59.7732

14.8820

25.5646

26.2326

11;4&51'

18.9405
7.5212

71.0080

11,2819

6. 0548
3.3109
17.4731

24..3307
13.0682

68.5692

22,0844
10.9928
- 16.4826

: . 39.4805

/',

RN

363712

17.4488

11.0895

<62;8181‘

21.5722

14.4592

5.4541
16,7127
12.0093
71.9737 .

7.7397
18.2202.

4.7864
4.2220

16.4300
8.7207

26.1703

35.4084 .

6.0565

5.8452 .

5.3920

R

*

'~78.15
10411

101,78

“ -74.63

106.9p_f‘

.=73.07

106.92 .

e =76.21

106.92
106.93
£ 102.39

102. 41

-73.05
°  106. 94

- ~72.98
. 106.92
107. 20

107.06 -

~-72.88

"107.36 -

=74 60

10,1.06

D
[ -78.91

-=77.51

102.51

-77.50-
102.48

-75.18
102.38
~106.95
102.47

104.80

-77.59
02.39
1 0

—77.0 59

-73.62 °
106.39°
108.22 |

102.16

-75.27

o~

152



L Vi s,

113 &

114 -/'

114
115 z

116 L_

117 /f

'1‘18 -

105

105 °

106
107
109

106
107

107

108
109

109
110

110

111
112

111

112

25.5852

67.4139

17.7106 -

5.2u488

13.3354 -

27.1197
5.2488

10-3946

45. 9447

32.6218

44,9372

12.3285

u4.8242

12.7162.
14,5777

12.7066

14.5481

© 36.4783

109.8323

93.8853

107.0508
245. 9664

6.9360

37.4930

o

104,73

-73.78
104. 36
106.15

1 110.37

~75.19-

106.15
~73.68

-69.87
110.03

-69.96
110.04

~71.58
106.25
111.10

-73.74

' -68.85

-73.12

-77.53
102. 47

—77.53,
—85:20

f76.7“<

C273.22
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Tab]ug B.10 SYSTEM LOADS
(IN P.U. ON A 100 MVA BASE) .
BUS REAL REACTIVE - ’ - BUS ‘ REAL - REACTIVE
- ' S £
1 0.510 0.270 o 60 04780 - 0.030
2 0.200 0.090 L 6T 0.0 .0
3 0-390 0.100 62 0.770 0.14.0
4 0.390 - 0.120 63 0.0 0.0
5 0.0 . 0.0 g6 64 0.0 0.0
6 0.520 0.220 -~ 65 0.0 . 0.0 -
7 0.190 0.020 66" 0.390 0.180"
8 0.280 0.0 - 67 0.280 0.070
9 0.0 0.0 o 68 - 0.0 0.0"
10 - 0.0 0.0 R 69 0 0.0
11 0.700 -0.230 - 70 ‘§/65260 : 0.200
120 0,470 0.100 : 71 70.0 0.0 -
T3%  0.340 0.160 S 72 0.120 0.0
14 0.140. - 0.010 o - 713 0.060 0.0
15 - 0.900 0.3Q0 74 0.680 ., 0.270
16 0.250 - 0.100 5 75 . 0.u470 0.110
17 - 0.110 Q.030 _ ‘ 76 0.680 =~ 0.360
18 0.600 0.3u0 ~ 77 0.610 - 0.280. 7
19 0.450 0.250 S 78 .0.710 0.260
20 0.180 0.030 : 79 0.390 0.320 -
21 0.140 0.080 : : 80 . 1.300 0.260°
22 0.100 1 0.050 ' g1~ 0.0 0.0
23 0.070 ~,07b3o SR 82 . 0.540 F.270
26 0.130 ., - 0J0 - - 83 0.200 > 0.100..
25 0.0 ,o/o SAE 84  0.110 ° 0.070
26 0.0 0.0 o - .85 S 0.240 0.150
227 - 0.710 0.130 - : 86 0.210 . 0.100
28 0.170 - g.070 87 . -0.040 . 0.0
29 0.240 ). 040 : 88, . J.u80 0.100
30 0.0 - O , 289,77 0.0 0.0
31 7 0.360 0.270 - = ' 90 . 7 .1.630 - 0.u420
32 0.590 . -0.230 . oo 9% 000100 0 4 0.0
033 . 0.230 © 10.0990 . 92 " 0.850  0:100
34 0.590 0.260 93 0.120 .,  0.070
'35 0.330 -0.090 - . - 94 0.300 ©  0.160"
36 0.310 C0.170 .- 95 . 0.420 " 0.310]
37 . 0.0 0.0 : 96 Q.380 ~ 0.150
38 0.0 . 0.0 R 97 . 0.150 0.090
3. © © 0.270 0,110 , 98 .. - 0.340 0.080
4o 0.660 ©0.230 | 99 0.420 - 0.0
41 : 0.370 - 0.71@0 - - - 100 0.370 - - 0.180
42 - 0.960 ©0.230 - o 0% . 70.220 . 0.150
43 0.180 0.070, 2 102 0 0.050° . -0..030
uy ©0.160 0.080" o 103 ¢ - 0.230 0.160 -
45 - 0.530 2 0.220 © 104 0.380 - 0.250

46 . . 0.090 0.100 - - 2105 . 0.310 - 0.260



47"
48
49 .’
‘ «g5b”
‘- .:..“51 o
.52
~ 53 .
“ 54
"~ 55

56
57

58"
59

0.340

0.200
0.870

704170
©.0.170

0.180

0.230

0.650
0.630

"0.840

0.120
0.120
2.770

0.0
0.110 .
0.300°
0.040

0..08

0.658

0. 110

0.320

0.220

0.180

0.030
0.030

1.130




