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Abstract

Wireless channel utilization prediction is useful in a number of applications, such as

the recently proposed modalities of LTE networks allowing them to use unlicensed

bands (LTE-U), otherwise used by Wi-Fi devices. Wireless utilization, as we are

also able to also confirm, exhibits non-stationary behavior. The presented research

provides an overall prediction strategy that can be implemented at the network edge.

While the legacy view of ”busy” hours vs. ”non-busy” hours is still relevant, we ap-

proach the modeling with a finer definition for this busy/non-busy distinction. We

split the utilization time series into intervals, each of them approximated as a sta-

tionary process modeled as a Markov chain. Each of those micro-models captures the

short-term behavior and is characterized by its steady state distribution. The steady

state distributions are used to define similarity among intervals in terms of their

short-term behavior, i.e., the micro-models become a ”library” of prior behaviors.

We use a shallow neural network that combines features that express the similarity

to a set of prior intervals, together with features arising from the time series using an

auto-regressive model following the Box-Jenkins method, alongside features captur-

ing straightforward step-to-step (lag one) transitions. The shallow network allow us

to interpret the relative importance of the various features. It allows us to glean from

the weights assigned why naive models (predicting next what has just been observed)
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are quite potent, and especially, and unsurprisingly, for non-busy hours. Moreover,

we evaluate our prediction setup over ”coarsened” utilization ranges since, for most

applications, the granularity of prediction need not be fine as long as it describes dis-

tinct utilization regimes (e.g., ”idle”, ”lightly loaded”, ”moderately loaded”, ”heavily

loaded”, ”(almost) saturated”). The evaluation is carried out by predicting the uti-

lization of Wi-Fi channels. Specifically for Wi-Fi channels, the architecture of our

prediction platform exploits the utilization self-reporting performed by Access Points

in Beacon frames. An extensive data collection experiment was designed and carried

out, forming the real world data over which our prediction scheme is evaluated.
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An ice becomes water in the course of time

The water that has become a pearl,

will never again become water!

– Rumi.
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Chapter 1

Introduction

We consider the problem of predicting the short-term utilization of a wireless channel

based on measurements collected over the recent past, where the past spans enough

days to allow seasonality patterns and trends to emerge. Predicting the short-term

utilization can be beneficial to a variety of applications such as Long Term Evolution

(LTE) operation in unlicensed bands (LTE-U), whereby an LTE-U small cell is also

observing the utilization of the unlicensed channels, such as those of IEEE 802.11

Wi-Fi and uses the predictions to offload some part of its traffic, over the unlicensed

band channels. The other prototypical application is a spontaneous peer-to-peer

Wi-Fi (e.g. AdHoc mode) communication for, e.g. file transfers, using the same

channels as those of co-exisiting managed (Access Points with clients) networks. A

third application is the operation of Wi-Fi sensor nodes that are permanently placed

but have limited energy resources. Minimizing they need to be ON (reducing their

duty cycle) to perform a data transfer can be informed by predicting if the future

utilization of the channel is favorable. The more congested the medium, the longer

their ON time – the more energy-expensive the attempt to transmit at that point

in time. Conceivably, by predicting the short-term utilization of the network, a

sensor can attempt to transfer data if it finds the network less congested, and it

can postpone the transmission otherwise. These examples serve as motivation, but
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they are broadly applicable in cases where utilization needs to be determined for

reasons of resource allocation over the near to medium term, spanning numerous

wireless co-existence scenarios [25]. Additionally, prediction of utilization is useful

when transceivers need to select the “best” channel (ostensibly the least utilized)

from a set of options, but the particulars of channel selection are outside the scope

of this work.

In this work we explore how to predict utilization of the next time-step, shown

as û(t + 1), based on collected utilization data by processing u(t), the utilization

measurements at time t. We define the error of prediction as error = |û(t + 1) −

u(t + 1)|, which we wish to keep it small. Ideally, the error is 0 and û(t + (1 ×

σ)) = u(t + (1 × σ)). However, in most cases the error is not zero and gets either

a negative value or a positive one – the sign matters. We use the prediction to

decide how much of the capacity we can use, then, behave greedily to use up the

remaining capacity, we are overutilizing the available capacity (when the error < 0)

and underutilizing (when the error > 0). To this end, an asymmetric cost function

to potentially quantify differently the over- vs. under-estimation of the utilization is

also incorporated in our work.

We will subsequently adopt an abstract view of the applications. Assume that a

node turns on and can only perform a single measurement, i.e., receive the utilization

of a nearby AP (possibly, the AP to which it intends to transact with), informing it

of u(t). Then, based on this measurement it has to predict the utilization for the next

time-step, û(t+1). We address the question of what is a good predictor for the u(t+1)

without requiring any modifications to current protocol standards. Also, given some

anecdotal evidence (that are confirmed later in this study) that a näıve predictor

works very well in many cases, we touch the issue of how to construct an easily

explainable predictor that outperforms the näıve one. Here the näıve predictor is

simply defined as one that, having measured the u(t) (for the most recent “timeslot”),
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predicts that the û(t+1) (for the next timeslot) will remain the same, i.e. û(t+1) =

u(t).

A possible implementation of our proposal assumes that a device (possibly an

Access Point (AP) or an edge device) is able to continuously monitor the utiliza-

tion of the channels and, employing low computational resource-demand prediction

algorithms, inform interested parties of future utilization estimates.

Most traffic traces of wireless traffic exhibit familiar patterns such as the one in

Figure 1.1. Visually one can identify “clusters” of values (circled areas) of similar

utilization values as well as peaks and valleys characterizing particular times of the

day. It is not at all certain that the process being observed is stationary (rather, it

almost certainly is not) but we will assume that (a) the prediction process can be

made aware of the time/day/etc., and could in principle switch from one model to

another based on that, and (b) over a short interval (which we will denote by τ) the

utilization can be approximated well by a stationary process, which we narrow it to

be a Markovian process.

The collected data in our study comes from the APs’ measured utilization values

carried in AP Beacon frames. The demand for higher efficiency forced Institute of

Electrical and Electronics Engineers Standards (IEEE Std) community to encode

more information regarding the environment in frames generated by nodes/wireless

stations (STAs). The purpose of this extra information is to provide more informa-

tion, such as busy airtime and supported protocols, to nodes. In this work, we exploit

the information broadcasted from APs about busy airtime (amount of channel busy

time per second). STAs can then use busy airtime in order to make decisions about

either sending out some data or postponing it to prevent congestion and/or packet

loss. To this end, the IEEE standard introduced the QoS Basic Service Set (QBSS)

Load Element as part of the 802.11e amendment in 2012 [17]. This information el-

ement is advertised in every management packet, e.g. Beacon and Probe Response
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frame, of an AP that supports Wi-Fi Multimedia (WMM) [17]. Virtually all APs in

use today (2020) support the 802.11e extensions and they are responsible to sense

the channel and broadcast the amount of busy airtime at each second. Utilization

is included in one component of the Load Element, called Channel Utilization (CU),

a field of 8 bits, whose values range from 0 to 255 linearly mapping to the range

from 0% to 100% and express the utilization of the wireless medium, u, seen by the

AP (including the traffic with its own clients) as assessed by the carrier sense mech-

anism. The carrier sense mechanism includes also the Network Allocation Vector

(NAV) “virtual” carrier sensing. It also incorporates the load seen by the AP caused

by IEEE 802.11 transmissions of other transmitters on the same channel that are

not associated with the specific AP. Non-802.11 transmissions are also, indirectly,

accounted for, as long as their signal strength is sufficient that the physical carrier-

sensing of the AP assesses the medium as being busy.

Let u(t, c, l) be the utilization of channel c at time t at location l. At a specific

location, we can receive utilization values from different APs, that can be shown

as u(t, cAP 1), u(t, cAP 2), ... , u(t, cAP N). As the co-located APs operating on a

channel report approximately the same CU value for that channel, an observer at a

fixed location can focus on the AP with the strongest received AP beacons signal as

it is reporting the utilization as seen at a location very close to the observer. For

the sake of this thesis, we also restrict channels to receive beacons from the non-

overlapping Wi-Fi channels indicated as c1, c6, c11 in the 2.4GHz for respectively

channels 1, 6, and 11. For a specific channel at a location we can further simplify

the notation and write it down as u(t) where t is time as a discrete positive value.

For predicting the utilization values of the next ith interval with interval length of

σ, we denote u(t + (i × σ)) as the measured utilization value, and û(t + (i × σ)) as

the predicted one. Our main goal is to predict û(t+ (1×σ)) based on collecting and

processing the u(t) measurements announced in Beacons.
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Our methodology consists of training a shallow Neural Network (NN) by several

alternative inputs, and producing a class membership output where the class corre-

sponds to a range of, consecutive, utilization values, thus making the prediction less

granular, but tunable to adapt to application needs. The incremental way of build-

ing the training data for NN allows us to capture the intuitively simple, and often

effective, näıve predictor, and then to demonstrate its refinement by bringing in the

non-stationary adjustment and a (unique to our work to the best of our knowledge)

distance metric relative to previous short-term dynamics. By gleaning into the NN

weights, we can unearth the relative importance of the various features fed to the

NN.

In this work, no modification of the protocol stack is performed that would render

the approach incompatible with IEEE 802.11. For predictors, even the most complex

deep-learning ones, it is difficult to predict û(t+1) with a reasonable accuracy, in steps

of 100
256

%. Hence, the objective is to start from a 256 step representation, and reduce it

into a smaller one which we will subsequently use in the prediction process. This task

of ”coarsening” can be performed by state lumping as we will elaborate in Chapter

5. The act of lumping states, creates “cliques” of states that, seen collectively as

a ”meta-state”, can result in the process remaining in the meta-state for prolonged

periods of time. Our lumped states represents a range of utilization values. The

lumped state will make näıve predictors work very well (the process is predicted to

remain in the same state at the next step). With lumping, we may construct more

than one lumped state (in the evaluation we limit the lumped states to, at most,

seven), and hence a rich set of lumped states, each representing a different utilization

range, are produced, while “transient” states also emerge linking those cliques.

The CU time-series shown in Figure 1.1 suggests fluctuations are, mostly, hap-

pening between groups of utilization values. A feature of the current study is that

we analyze a real data set collected over several months in an academic campus en-
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vironment. One of our contributions is that we describe the short-term dynamics

using first-order Markov chains. Specifically, we captured around 120 days worth of

data of Wi-Fi AP Beacon transmissions from a plethora of APs in a campus building

at the University of Alberta. The majority of APs in the environment are centrally

managed to provide ubiquitous Wi-Fi service. Each AP transmits approximately 10

Beacons per second. All of the observed APs support WMM and QBSS; so, they re-

port the CU values at each beacon. To capture the beacons, we use Wi-Fi ”sniffers”

at various locations so they can capture the reported CU values from different APs.

Our approach is based on broadcasted, unencrypted frames, and does not involve

any information relating the data to specific individuals/users.

Figure 1.1: Example channel utilization time series (as CU values).

To summarize, the contributions if this thesis are as follow:
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a) we conduct an extensive data collection task to acquire a data set which is quite

unique using a channel utilization data collection methodology which is, to the best

of our knowledge, new and original,

b) we introduce a metric which allows us to both express the stochastic behaviour

of time-series over short time intervals and compare the behaviour across different

intervals,

c) we propose models, key among them being one of an artificial neural network,

that combines features related to the short-term and longer-term behavior of the

utilization,

d) we evaluate the performance of various prediction alternatives and discuss their

tradeoffs, noting that a näıve predictor can still be quite powerful but the synthesis

of additional features provides a notable improvement,

e) we consider asymmetric misprediction costs to capture situations where the inten-

tion is to use the remainder (non-utilized) part of the channel, and where congestion

is more costly than under-utilization, and, finally,

f) throughout the thesis we try to address the potential complexity of the predic-

tion mechanisms, by making the predictions less granular yet still useful in network

operations by using state lumping techniques to group utilization levels together in

coarser units.

After a presentation of related work in Chapter 2, we introduce in Chapter 3 a

method to compare the short-term dynamics of intervals across the utilization time

series. This method, along with more features are reviewed in Chapter 4 as they

form the basis for training our models. Chapter 5 introduces the state lumping and

subsequent “summarization” of utilization values into utilization ranges, as well as

the asymmetric loss function we propose to fit the needs of systems where predic-

tion is used to decide how much of the system capacity to utilize without causing

congestion. Chapter 6 is a collection of performance results, and it starts with a de-
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scription of the data collection experiment, followed by comparisons between näıve

and more elaborate models, using the weights of a shallow neural network to interpret

the impact of the various features on the prediction. Chapter 7 provides concluding

remarks and future work.
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Chapter 2

Related Work and Background

In this chapter, we, first, provide some background information on wireless network-

ing. Then we introduce different methodologies for anticipatory networking methods.

These are methods used in networking for performing prediction in various contexts

and have been recently [8] surveyed in their various forms and applications. Finally,

to investigate the cost of misprediction in networking field, we go through different

cost functions exploited in this area of research. This thesis relies on a synthesis

of knowledge from various areas of research. We present the key related work that

influenced this synthesis on various technical facets.

2.1 Background on Wireless Networking

Typical APs deployed in urban settings are permanently located at fixed locations.

As such, they experience the ebb and flow of fluctuating wireless medium use across

various time scales. The particular patterns of the wireless medium use are related to

the type of use, e.g., residential vs. commercial setting etc. We specifically consider

an educational institution environment, in which the peak traffic is expected during

business hours, and the off-peak hours are typically late night to early morning hours.

The traffic patterns also change during weekends and holidays. We look at the specific
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case of a campus environment, with a plethora of deployed APs providing generic

Internet access services within in a single building. Without harming generality we

consider the working week traffic, with weekends/holidays being extensions to the

presented models.

The QBSS Load Element

As mentioned in the introduction, the QoS Basic Service Set (QBSS) Load Element

was introduced as part of the 802.11e standard amendment in 2012 [17]. This infor-

mation element is advertised in every Beacon and every Probe Response frame of an

AP that supports Wi-Fi Multimedia (WMM) [18]. The QBSS Load element infor-

mation format depicted in the standard is shown in Figure 2.1. The Station Count

field shown in the figure, is interpreted as an unsigned integer that indicates the to-

tal number of STAs currently associated with this BSS. The other component of the

Load Element is an 8 bits channel utilization (CU) field ranges from 0 to 255. Here,

Channel Busy Time is the number of microseconds during which the carrier sense

mechanism has indicated a channel busy, and dot11 CU Beacon Intervals represents

the number of consecutive beacon intervals during which the channel busy time is

measured (default value: 100ms) [17]. The percentage utilization of the wireless

medium reported by the APs is represented as an 8-bit integer, as follows:

((
Channel Busy T ime

dot11 CU Beacon Intervals× dot11 Beacon Period× 1024
)× 255)

Figure 2.1: QBSS Load Element (duplicated from [17]).
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Channel switching is not considered in the current study. This decision is moti-

vated in part by the anticipation that many applications will be unable to perform

channel switching, e.g., if they try to minimize energy use, or come pre-configured

to use a specific channel because a specific AP is serving them on that channel.

Channel selection makes sense for the case where APs can be controlled, and then

schemes such as DCA [9] and similar works, e.g., [2], apply. We assume we have

no form of control over the APs’ operating channels. A per-channel application of

what we propose here is possible but channel switching admits a wider set of options,

given that one can attempt to minimize the number of tests before picking the right

channel – something outside the scope of the current work.

2.2 Prediction Methodologies

Due to the prevalence of Wi-Fi communication in buildings, researchers made some

efforts to bring users and APs-based observation into practical use. Furthermore,

most of the techniques proposed in one wireless networking problem may be reusable

in others as they share common properties both in data transmission and architec-

ture. Consequently, reviewing available techniques in all areas of wireless networking

can be fruitful.

Occupancy detection [27]–[29] methods based on Wi-Fi traffic is a well researched

area. As an example, Balaji et al. [4] takes advantage of the authentication, autho-

rization, and accounting logs of the APs in buildings to detect the occupancy but

is not concerned about channel utilization statistics. We also assume that access to

such logs, or any kind of user traffic-recording on the side of the APs, is not possible,

or restricted for privacy reasons. To this end, using the information in management

packets which APs broadcast, e.g. Beacons as we do, involves no identifying infor-

mation of client devices. Moreover, in most environments, it is common for only a

subset of APs to be centrally managed (if at all). The chances of the channel being
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utilized due to client devices associated with APs that are outside ones’ control is

generally high.

Efforts have been made to use Wi-Fi management packets (e.g. Probe packets)

for prediction. Wei Wang, et al. [27] used a Markov based Feedback Recurrent

Neural Network (F-RNN) to predict the occupancy of a building. They include the

Markov model because of the stochastic and chronologically interdependent features

of Wi-Fi data packets they had to deal with. The work bears some resemblance to our

work due to the Markovian facet; however, they are not concerned about time-series

prediction and, more importantly, in addition to collecting identifying information

of the client devices (MAC addresses), they include ad-hoc pre-processing steps to

filter certain MAC addresses. Among other things, it is implied that part of this pre-

processing is needed to distinguish e.g., two (or more) MAC addresses belonging to

the same occupant to avoid counting them as two (or more) occupants, hence adding

a-priori manually-introduced constraints. Moreover, the term F-RNN suggests to the

reader relevance to the family of Recurrent Neural Networks (RNNs), but in reality

it is a very limited form of recurrence considered, via a feedback mechanism, that

lacks several of the structural elements of RNNs, e.g., no “forget” gates are used,

etc.

Closer to the Cognitive Radio (CR) literature, we find [31], trying to predict

whether the channel is idle or busy, and hence not attempt a finer-grain view of

the channel utilization as we do. Nevertheless, they adopt a non-stationary Hid-

den Markov Chain to deal with the perceived non-stationarity of the channel but,

crucially, the validation presented in [31] is only using simulations of primary user

following exponential busy and idle distributions. Another work that proposed a

Markov model to fit real measurements, [14], used real-time measurements made in

the 928-948 MHz pager band, but does not indicate steps taken to deal with non-

stationarity (the period of observations is unclear as well) and, similarly to [31],
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the objective is the busy/idle distinction of the primary user. In addition, Xing

et. al [30], point out to the importance of prediction in CR to tackle with under

utilized spectrum. Our proposed model and loss function, covers both under- and

over-utilization of the channel.

As mentioned earlier, armed with the observations made regarding Markovian

models, we follow an explicit Markov chain construction whose state transition prob-

abilities are time-dependent (Section 5.1). Contrary to busy/idle indicators, we are

concerned with the prediction of the degree of utilization. As we describe in the

following sections, the prediction is somewhat simplified by a coarse representation

of the utilization into a small set of utilization ranges.

Temporal correlation among the time-series data plays the key role in many of the

prediction methodologies suggested. As an example, many of the network planning

and controlling models involve traffic loads within a day or week. Two of the most

widely used time-series models depend on linear dynamics of the system are (I)

Auto-Regressive and Moving Average (ARMA) [16] and (II) Kalman filters.

The ARMA model is a generalization and mixture of two simple Auto-Regressive

(AR) and Moving Average (MA) models. The model is reffered to as ARMA(p,q)

model where p is the order of the AR part and q is the order of the MA part.

The use of p are q is shown in Equation 2.1 where Zt is the process of the white

noise errors, and {Φi}pi=1 and {Θj}qj=1 are the parameters. For p = 0 the equation

simplifies to a MA model and for q = 0 it is a AR model. The expression 2.2 uses

the lag operator of LiXt := Xt−i. Unlike ARMA which is applicable to stationary

time-series, the Auto-Regressive Integrated Moving Average (ARIMA) is suited for

non-stationary time-series. In ARIMA, shown as ARIMA(p,q,d), other than q and

p, a new term d, known as degree of differencing, is introduced for differentiations

of the time-series for converting a non-stationary of series into the stationary one.

In [22], a low-order ARIMA model, ARIMA(0-3, 0-1, 0-2), was explored alongside a
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wavelet multi-resolution analysis in a methodology of spotting the time of upgrading

an IP backbone network based on time-series data. In other works in anticipatory

networking, for reducing the handoff latency in a large scale wireless network handoffs

were predicted by using an exponential weighted moving average which is the same as

an ARIMA model with no AR term, p [26]. Also, for detecting and tracking mobile

nodes, an AR model to predict signal-to-noise ratio (SNR) values was proposed [19].

Xt = Zt +

p∑
i=1

ΦiXt−i +

q∑
j=1

ΘjZt−j (2.1)

Φ(L)Xt = Θ(L)Zt (2.2)

Kalman filters are mainly adopted to model the linear dependence of the system

states and are widely applied in time-series analysis for dynamics of linear systems

when there is an uncertainty in variance of the historical data. For a multivari-

ate time-series {xt ∈ Rn : t ∈ τ}, Kalman filter estimates state xt, as shown in

Equation 2.3, where At is the state transition, Bt relates the control input ut to

the state xt, and the random variable wt is a multivariate normal noise process [8].

In [32], Kalman filters were used to predict velocity and selective forwarding when

broadcasting information to individual vehicles beyond the transmission range based

on inter-vehicle communication systems under the objective that the forwarding be

as fast as possible. Work in mobility prediction [33] employed a Kalman filter for

real-time tracking of the location and dynamic motion of a mobile station.

xt = Atxt−1 +Btut + wt, t = 0, 1, ..., (2.3)

As opposed to ARIMA and Kalman filter approach, our effort is to include some

useful features to our model which force the model to become as flexible as possible

from dependence on specific lags, and able to handle non-stationarity. We used the
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basic ideas of linear predictors such as ARIMA as features in our non-linear model,

and enriched them with more.

2.3 Clustering and Lumping

In this thesis, we use concepts of clustering and lumping. Abstractly, they bear

similarities, but we distinguish them because of the two different types of uses they

find in our work. Clustering is used as a means to group together periods of time

over which the behavior of the utilization process is similar. Lumping is used as a

means to reduce the number of distinct utilization values, by transforming them into

ranges of utilization. Hence, the clustering is with respect to the temporal behavior

of the utilization time series. The lumping is with respect to the values in this the

series.

For predictors, even the most complex deep-learning ones, it is challenging to

predict û(t + 1) with a reasonable accuracy, in steps of 100
256

%. Hence, the objective

is to start from a 256 step representation, and reduce it into a smaller one which

we will subsequently use for predicting the next state. This task of coarsening can

be done by state lumping [7] as we will elaborate in Chapter 5. Our lumped states

represent ranges of utilization values. The act of lumping states, creates “cliques” of

states that, seen collectively as a meta-state, can result in the process remaining in

the meta-state for prolonged periods of time.

On the other hand, for clustering, we consider the steady-state distribution of

the utilization process, assuming it can be approximated as a first-order Markov

process. Each time interval (whose duration is discussed later) is seen as a separate

Markov process. Similarity of the stochastic behavior of those intervals is captured

as similarity of their steady-state vectors. Based on this similarity, clusters can be

formed using the K-means [21] algorithm. K-means is one of the most commonly

used techniques available in anticipatory networking. This unsupervised clustering
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technique splits a dataset into K groups, each with a centroid. The choice of centroids

is optimized by minimizing the intra-cluster sum of squares. To put it differently,

a datapoint belongs to a cluster if its Euclidean distance to the reference cluster

is less than that to the others. It is common to have different clustering results

when starting from different initial data points. In [23], K-means was used to build

a data-driven model for predicting and avoiding packet delivery failures. Froehlich

and Krumm, [13], exploited K-means to find similarities involved in vehicular paths

trip history for an end-to-end routing prediction of GPS based vehicles.

The purpose of clustering (a-la K-means) in our work is to extend the, simplistic,

distinction of the traffic in “idle” and “busy” hours, to a wider swath of behaviors as

that is what, naturally, transpires during a working day. In this sense K is meant to

be larger than 2, but not necessarily a large number. In essence the clusters capture

traffic utilization behaviors “between” idle- and busy-hour extremes.

2.4 Cost Functions

In [9], Cisco proposed a dynamic channel assignment (DCA) algorithm by defining a

cost metric for each channel and they update it once every second. If the cost metric

(CM) of the new channel is higher than the predefined threshold, the AP will stay on

that channel; otherwise, it continues searching for other channels in the same manner.

The CM needs a predefined threshold which is a hard-coded value. This threshold

value cannot be expected to be the same for different environments. Defining a

correct and accurate threshold is one of the challenges that we indirectly try to solve

by proposing the lumping method which best fits the data. Moreover, the CM is a

value which comprises interference, noise, and load of the channel. In other words,

CM is a weighted Signal to Noise Interference Ratio (SNIR). Our proposed method

is based upon the CU values which is the end product of all of the aforementioned

factors, such as interference and noise. Hence, our lumping method is able to find
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appropriate ranges of utilization specific to the given environment/setup. Moreover,

depending on the application, some restrictions can be applied on our proposed model

to best fit the deployment environment.

Different definitions of rewards and penalties in wireless networks have been ex-

ploited. One way for predicting or taking an action with respect to a reward/penalty

function is to define all effective variables in the problem and, usually, develop an

optimization problem or/and a loss function out of it.

For example, Jiayu et. al designed a model of a system [15] to selectively trans-

mit data streams by taking advantage of data streams information such as their

importance level, transmission delay constraints, power function, and data sizes. For

the power function, they calculated the power consumption for different receivers

with different transmission rates. In their system, they assume a given number of

data stream tasks, each for a destination with a prior known size. The transmitters

are assumed to support different known transmission rates. The unknown reward

for each task is a function of the variables capturing the data size and transmis-

sion rate. Consequently, they formulated the problem as an optimization problem

where the goal is to maximize the reward. To put it differently, the optimization

problem attempts to maximize the volume of data transmitted. They show this to

be an NP-hard problem. To this end, they have developed a dynamic programming

algorithm for the optimal solution in pseudopolynomial time. Their idea of incorpo-

rating optimization for the defined reward function provides them with an optimal

or near-optimal solution for this problem. Their algorithm of the pseudopolynomial

time complexity is unsuitable for real-time scenarios or for devices with low computa-

tional power, such as APs. More importantly, this reward function is effective when

all the environmental and data variables are known. In this thesis, our knowledge

about the environment is assumed incomplete, e.g. we do not know anything about

the data service types of each data stream or whether they are periodic, or if they
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have dependencies among them.

Reward functions appear in Reinforcement Learning (RL). RL algorithms use

Agents for interacting with an environment. The goal of the RL algorithms is to

make correct decisions toward the optimal or semi-optimal path to maximize the

reward. Due to having a partial view of our environment and its stochastic changes,

learning environment through exploration is not possible for RL Agents. However,

the reward function can play the role of the cost function we seek. Some efforts have

been made to incorporate RL into wireless networks. Nasim et al. [3] tried to address

TCP fairness by using RL techniques to achieve fair resource allocation for nodes of a

wireless mesh network. Their state is a tuple combining fairness and aggressiveness.

It is impossible to increase one of them without affecting the other one. The idea of

having two contrary concepts as ”fairness” and ”aggressiveness” at each state and

defining a reward function that takes both into the account is similar to our problem.

Similarly, in our problem, ”missed chance“ for maximizing the channel utilization is

in contrast to sending too much data, causing ”congestion”. However, in contrast to

[3], for our setting, existence of one of them (e.g., congestion) leads to absence of the

other (underutilization).

Moreover, in our problem, creating congestion is highly unfavorable compared to

missing opportunities to fully utilize the channel. As a result, an asymmetric function

needs to be defined. Additionally, so far agents in RL have been incorporated in

problem formulations that learn the environment only within a simulation which

is not applicable in many settings with many unknown external variables involved.

Our problem is also not easily replicatable within simulation as there exist a number

of unknown features, such as interference, number of users, etc. all of which are in

continuous flux.
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Chapter 3

A Model for Short-Term Dynamics

The problem at hand is time-series forecasting, also known as sequential prediction.

For this problem, a learning algorithm seeks patterns or trends within the historical

data. Any repetitive increase or decrease, due to existing features of the environment

or system, is a trend. A trend does not have to be linear. Sometimes, as in our

problem, the trend is affected by seasonal patterns. Seasonality influences data

differently and may solely depend on time of the day, day of the week, and month

of the year, etc. As many factors influence the produced data, its fluctuations may

not follow a fixed frequency. It is customary in forecasting to paradoxically refer to

”cyclic” pattern, when there is no fixed frequency involved in the time-series. While,

if data follows an unchanging frequency with respect to regular time intervals (e.g.

day), then it is a seasonal pattern. Our very first effort is to identify and reduce

seasonality. We focus on daily seasonality for the rest of this work.

In this chapter, we first, introduce types of time-dependent intensity in wireless

networking, namely busy and idle (non-busy) hours. The particular channel uti-

lization trace from a Wi-Fi channel at one particular location corresponds to the

dynamics of the wireless users present at the particular location. We emphasize that

one can employ a näıve predictor, i.e., one that measures the recent utilization and

uses it as the prediction for the next short-term interval, which often works quite
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well in reality. This is not surprising given the catatonic state of utilization during

time intervals (e.g. hours) without lots of user activity, what is termed idle or non-

busy hours. As an example, consider Figure 3.1a which concatenates the utilization

values of the channel in the 12-12:30 AM period across 90 days (where 12-12:30 AM

is typically an idle hour). Their strong similarity across days is typical. On the

other hand, a distinguishing feature of busy hour traffic is the increase in the chan-

nel utilization values as multitude number of users operate on the wireless channels.

In busy hours the traffic seems bursty due to the inherent best-effort behavior of

higher layer protocols which are typically used (e.g. UDP) and the sum total of user

demand for traffic. Consequently, the range of channel utilization fluctuations in the

busy hours is wider than during idle hours. Figure 3.1b concatenates the utilization

values over 90 days for the 3-3:30 PM interval, capturing a typical busy hour be-

haviour. A busy ”hour” is a concept that does not correspond always to a 60-minute

duration. Rather the term ”hour” is used generically for any particular interval of

appreciable duration that users and engineers would find the behaviour of a channel

(or any resource that matters) punctuated by a particular high-use pattern. While

the similarity across 90 days is evident, there are also gradual shifts in the utilization

patterns, making the separation between busy and idle hours less crisp. To put it

differently, idle and busy hours follow various distributions which we will attempt to

track in our models. The subtle shift and change in utilization patterns causes the

distributions of the aforementioned traffic variations to get mixed, complicating the

process of recognizing some particular patterns. We, will subsequently, investigate

a metric allowing us to (a) express the stochastic behavior of the time series over

short time intervals, and (b) to allow the comparison of the behavior across different

intervals.
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(a) Concatenated idle hour (12am-12:30am)
utilization.

(b) Concatenated busy hour (3pm-3:30pm)
utilization.

Figure 3.1: Concatenated time series of, respectively, typical idle and busy hour
utilization on channel 1 over 90 days.

3.1 Interval Comparison Metric

In this work, we split time in τ minutes long intervals, and the dynamics of utilization

of a channel over each, separate, τ interval is modeled by a Markov Chain. We

use the notation P
(i)
τ to indicate the transition matrix for the i–th τ minute long

interval. For example if τ = 30 then, within a single day, i ranges from 0 to 47,

starting from 12:00 AM. The P
(i)
τ matrices are constructed as first-order Markov

approximations from the observed utilization transitions. The self-transitions in P
(i)
τ

correspond to behavior that allows näıve predictors to be successful, i.e., the näıve

predictor success is captured by the dominance (if the case) of the diagonal elements.

Corresponding to each P
(i)
τ is a steady-state distribution π

(i)
τ . In order to compare

the transition matrices of τ minutes intervals, we translate transition matrices, P
(i)
τ ,

to their corresponding steady-state vector, π
(i)
τ . The steady-state vector captures the

probability to find the system in a particular state over the long run. Similarities

among the steady-state vectors of each interval can be seen as similarity among

the corresponding transition matrices. Having the steady-state vectors out of the
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transition matrices for each τ minutes interval, we seek a distance metric for the

stochastic behaviour between any two intervals. The dot product of π
(i)
τ vectors

acts as a distance metric of the stochastic behavior between any two intervals (see

Figure 3.2 and 3.3). Among many methods available and tested to measure similarity

between two non-zero vectors, we decided to use the dot product. The intuition

behind this choice is that we are more interested in overall state-wise difference of

two vectors instead of measuring their overall distance. To put it differently, while

dot product of the vectors calculates the coincide area under the curve of them,

methods like cosine and Euclidean distance measures, respectively, the cosine of

the angle between two vectors and straight line distance between them. We tested

different distance methods such as cosine, Hamming, and Euclidean, we found the

dot product of two vectors as an adequate similarity measurement method for our

purpose. Figure 3.2 shows coincide of two similar vectors, both from idle-hours, with

similarity of 99%. On the other hand, Figure 3.3 shows coincide of two dissimilar

vectors, one from busy-hours and the other from idle-hours, with similarity of 53%,

i.e. essentially dissimilar.

Table 3.4 shows the dot product of π
(0)
5 , an idle-hour steady-state, with the rest

of steady-state vectors for τ = 5 minutes, over the entire day. As can be seen in this

table, as time goes from idle hours to busy, the inner product of the vectors decreases.

The results show how this metric can be helpful in identifying the relation of various

times of the day, via the dot product of the corresponding τ minute interval steady

state.

3.2 Seasonality Reduction

The notion of busy and idle hours is different during the weekends and holidays from

the weekdays. In this work, we focus on building a model for predicting channel uti-

lization values over weekdays as we expect they contain complex patterns. Without

22



(a) π05 12am-12:05am over 90 days. (b) π15 12:05am-12:10am over 90 days.

(c) Dot product of π05 (green) and π15 (blue) – red indicates area of co-incidence.

Figure 3.2: Dot product of π
(0)
5 with a similar (similarity 99%) steady state vector,

π
(1)
5 .
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(a) π05 12am-12:05am over 90 days. (b) π05 12pm-12:05pm over 90 days.

(c) Dot product of π05 (green) and π1445 (blue) – red indicates area of co-incidence.

Figure 3.3: Dot product of π
(0)
5 with a dissimilar (similarity 53%) steady state vector,

π
(150)
5 .
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00''-05'' 05''-10'' 10''-15'' 15''-20'' 20''-25'' 25''-30'' 30''-35'' 35''-40'' 40''-45'' 45''-50'' 50''-55'' 55''-00''

0' 1.0 0.9949 0.9944 0.9938 0.993 0.9904 0.9915 0.993 0.9926 0.9899 0.9859 0.9924

1' 0.9901 0.9846 0.992 0.9828 0.9869 0.9911 0.9932 0.9866 0.9899 0.9881 0.9864 0.9918

2' 0.9966 0.9938 0.9918 0.9898 0.9906 0.9901 0.9874 0.9882 0.9907 0.9936 0.9887 0.9892

3' 0.9886 0.9737 0.9929 0.9904 0.9917 0.9891 0.9912 0.9923 0.9915 0.9887 0.9907 0.9915

4' 0.9887 0.9926 0.9932 0.9941 0.994 0.9887 0.9896 0.995 0.994 0.9898 0.9902 0.9887

5' 0.9887 0.9856 0.9836 0.9884 0.9929 0.9868 0.9882 0.9852 0.9827 0.9861 0.9861 0.9878

6' 0.987 0.9846 0.9851 0.9829 0.9752 0.9777 0.9821 0.9798 0.9743 0.9719 0.9688 0.9778

7' 0.9653 0.9702 0.9683 0.9601 0.9409 0.9281 0.9272 0.9061 0.8915 0.8559 0.8322 0.8588

8' 0.8632 0.8572 0.8789 0.8549 0.8469 0.8334 0.8465 0.8458 0.8068 0.8057 0.7788 0.7834

9' 0.8236 0.8313 0.8038 0.8051 0.7879 0.8223 0.7986 0.8009 0.7691 0.7715 0.7645 0.7386

10' 0.7348 0.7469 0.7088 0.7228 0.7137 0.6993 0.6883 0.6603 0.6488 0.6427 0.6296 0.6488

11' 0.6171 0.6032 0.6068 0.6306 0.587 0.5968 0.5932 0.5994 0.5931 0.5482 0.5467 0.559

12' 0.5397 0.5364 0.5725 0.597 0.623 0.6036 0.6063 0.6076 0.6383 0.6364 0.5823 0.6115

13' 0.5998 0.6262 0.614 0.6141 0.6008 0.6097 0.5944 0.6305 0.5957 0.6077 0.6277 0.5989

14' 0.6271 0.6571 0.6777 0.6915 0.6576 0.6841 0.6865 0.6654 0.6927 0.703 0.6929 0.7123

15' 0.7106 0.6871 0.6966 0.7194 0.7259 0.7293 0.729 0.7064 0.7374 0.7172 0.7445 0.733

16' 0.7273 0.7613 0.7487 0.7665 0.764 0.7719 0.8145 0.805 0.7874 0.8364 0.8303 0.8183

17' 0.7924 0.8106 0.8371 0.8508 0.8707 0.8645 0.8728 0.8877 0.8645 0.859 0.8715 0.8701

18' 0.8705 0.8921 0.8988 0.9145 0.9187 0.918 0.9229 0.9019 0.9058 0.9169 0.905 0.9198

19' 0.9063 0.8999 0.9274 0.93 0.9182 0.9233 0.9257 0.9221 0.9348 0.9393 0.9505 0.9521

20' 0.9451 0.9391 0.9591 0.9611 0.9654 0.9538 0.9624 0.96 0.9677 0.9434 0.9555 0.9673

21' 0.9659 0.9746 0.9764 0.9701 0.9726 0.9825 0.9806 0.9842 0.9836 0.9819 0.9839 0.9759

22' 0.984 0.9883 0.9826 0.9821 0.9838 0.9858 0.9873 0.9803 0.9877 0.9808 0.9838 0.9825

23' 0.9829 0.9907 0.99 0.9883 0.9893 0.9852 0.9892 0.9916 0.9927 0.9853 0.9904 0.9917

Minutes Of An Hour
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Figure 3.4: Dot product of π
(0)
5 and π

(i)
5 using data collected over 90 days. Each time

interval to which an i corresponds is shown as hour of the day (row) and five-minute
interval within the hour (column).

hurting the generality of our result to weekends and holidays, all the remaining work

focus on daily traffic patterns on workdays.

3.3 Condensing the Intraday Seasonality

Let us split the time into τ -minutes intervals. Finding an accurate value for τ in order

to separate the seasonality variations within a day is a key ingredient of this work.

Choosing a fixed and small value of τ simplifies the problem. To put it differently,
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we can use a small τ to be representative of each particular type of day across days

without effects of seasonality. We can then build models separately for τ minutes

interval of the day. The intuition behind dismantling the time into intervals is to

remove some significant seasonality impact coming from changes in number of user

which plays a role in utilization fluctuations throughout a day. The task of choosing

τ values is a trade-off between fidelity of the patterns spotted over time and having

sufficient samples/ measured data to compute the π. In other words, by increasing

τ , existing patterns in idle and busy hours might get mixed in the same interval.

However, the longer the chosen τ is, the more observed data we have to build an

accurate model around it.

As we do not want to lose any pattern within a day (especially within busy hours),

smaller τ would be more helpful. But, it leads to a sparser transition matrix due

to having few samples (possibly even no samples for some of the 256 states) which

is unfavorable. Note that when determining the transition probabilities of P
(i)
τ , we

use the transitions only for the CU values we have collected in the corresponding τ

minutes interval.

Now, the question is that having no knowledge about the environment the data

is coming from, how can we choose a value for τ which aids us the most to reduce

the seasonality within a day? We will explore it later by experiments with τ values

less than an hour (τ = 60-minutes) which do not affect the overall accuracy by

much. However, to answer the raised question, in the next subsection we propose a

procedure to evaluate the goodness of a τ value by using the metric, dot product of

steady-state of intervals, introduced earlier in this chapter.

3.3.1 τ Evaluation Benchmark

One approach to distinguish the traffic variations from each other would be to choose

flexible values for τ , meaning different τ values for each part of the day. This approach
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is based on the premise that idle hours are similar to each other, and separately sim-

ilar to each other are the busy hours. Using the dot product as similarity metric, we

can attempt to generate “merged intervals” (MIs). MIs, are similar intervals, that,

at least in principle, can appear at completely different times of the day. Pragmat-

ically, we expect that similar intervals appear at the same periods of the day, e.g.,

when traffic is picking up in the beginning of working hours and when it is dying

out at the end of working hours. We will use the MIs to create a benchmark across

all collected data. The intuition behind this assumption is that the MI approach is

aware of the whole collected data and the metric helps us to distinguish intervals

based on their similarity across the whole data set without regard from when in the

time series they may have appeared.

In this process, we first, choose a small value for τ , then, produce the transition

matrix P
(i)
τ for each interval in the whole dataset. As an example, for τ = 5 minutes,

we get
60minutes−in−an−hour×24hours−in−a−day

5value−of−τ
= 288 intervals within a day, starting from

12:00 AM. Taking the first one, we will approximate the dynamics by a first order

Markov chain where the transition matrix of time interval 12:00 A.M. to 12:05 A.M.,

shown as P0
5. We will merge this interval with one whose steady-state vectors is

the most similar. In this approach we are not bounded to merge only neighbouring

intervals. We choose τ as small as 5 minutes in that it is small enough to not loose

any pattern within a day and also we have enough samples to create dense transition

matrices over all days of collected data.

Let us denote α as the dot product of two steady-state vectors, belonging to two

different intervals. α is a value between 0 and 1; the higher it is, the more similar

two steady-state vectors are. The process we use to derive a small set of clusters

proceeds in a greedy fashion, “merging” the intervals that are the most similar to each

other. This merging operation involves the summing (with suitable normalization)

of the transition matrices of the corresponding intervals. Thus the intervals in the
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same cluster now have a, single, combined transition matrix, and therefore a single

steady-state vector. Correspondingly, the α dot product is naturally extended from

being between intervals, to being between two clusters, or between a cluster and

an interval. The process of merging clusters proceeds in a greedy fashion as long

as there are pairs of clusters whose dot product is less than a given α∗ or if there

are more than a certain maximum, CLUSTER MAX, number of clusters. In our

experiments α∗ = 0.98 and CLUSTER MAX=10. Nevertheless, it was observed

that the CLUSTER MAX constraint, which would allow for cases with α > 0.98 to

be merged to reduce the number of clusters, had no impact.

The algorithm adopts the same idea of K-means [21], with a difference in the

assigning a predefined threshold value instead of choosing a specific number of clus-

ters, K. In our cases K is a desired maximum number of clusters, if the threshold

is too tight to allow for merging to happen. Similar to the K-means, no technique is

available to cluster the intervals in a more optimal way, neither recursive approach

nor dynamic programming [24]. Moreover, same as K-means, changing the sequence

of clustering points in space (steady-state vectors in our case) could end up with

different results.
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Chapter 4

Feature Engineering

In the previous chapter, we discussed types of time-dependent behavior in wireless

channel utilization and we tried to reduce their seasonal effect on time-series by

dismantling time into intervals. We further introduced inner product of steady-state

vectors as a metric allowing us to (a) express the stochastic behavior of the time-

series over short time intervals, and (b) to allow the comparison of the behavior

across different intervals.

In this chapter, we investigate other features of our time-series to enhance the

forecasting capability of a predictor. Our goal is to provide important features to the

learning algorithm in order to increase its accuracy in predicting channel utilization.

Our main focus in this chapter is on finding features which help the learning algorithm

better capture the dynamics of the utilization time series data.

4.1 Simple Prediction Methods as Benchmarks

The incremental way of building the training data for a predictor, such as a Neural

Network, allows us to capture the intuitively simple, and often effective, näıve pre-

dictor. But the näıve predictor will be one of the mechanisms selected as feature;

allowing us to see when it is relevant and when not. We first need to understand
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the behaviour of a very simple predictor. Sometimes these predictors, as simple they

are, are good forecasting methods; however, in many cases, they solely serve as a

benchmark as they are incapable of spotting complex features of time-series, that

can be often non-linear. Consequently, in this work, we compare our proposed mod-

els with these simple ones to ensure that our method outperforms all the simpler

alternatives. These simple methods also reveal the basic features of time-series im-

portant in prediction. By spotting these basic features, we later can incrementally

add features to make a powerful and more complicated, predictor. First, we review

some of the standard, well-known, forecasting methods [1].

Averaging Method

This method predicts h future values by the average (mean) of the n previous data.

An alternative is running average which involves all the previous historical data in

the prediction of the next unseen data. As previous, we denote historical data for

time T as yT−n, ..., yT and the prediction of the next h time as ŷT+h; so for the average

method we have:

ŷT+h = (yT−n + yT−(n−1) + ...+ yT )/T (4.1)

Näıve Method

The naive method forecasts all the h future values as the value of the last observation.

So for this method we have:

ŷT+h = yT (4.2)

Näıve - Drift Method

A näıve - drift method is a variation of the näıve method that allows the forecasts to

fluctuate over time. The amount of change over time (drift) is set to be the average
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change seen in the data.

ŷT+h = yT +
h

T − 1

T∑
t=T−(n−1)

(yt − yt−1) = yT + h(
yT − yT−n
T − 1

) (4.3)

As we will discuss later, information from the näıve method aids a non-linear

predictor to increase its accuracy. To this end, for the rest of the work, we use the

näıve method as a testing benchmark against our model. Moreover, as it is one of the

simplest prediction methods, we incrementally add other features described in this

section, on top of the näıve method. We denote U as the previous class of utilization

value from 0 to 255.

4.2 Auto-Regressive Models

In the general case, we deal with two variations of forecasting: using only the pre-

vious values of the time-series for predicting future values which is called univariate

time series forecasting, and using predictors other than the series (a.k.a. exogenous

variables) for prediction which is called multi variate time series forecasting. Auto-

Regressive (AR) models, is a forecasting algorithm solely using the information from

the previous historical time-series data for predicting the future values.

The AR model [16] attempts to find patterns in a stationary time-series data

by taking advantage of auto regression in order to involve its lags as features. A

stationary time-series is the one whose properties do not depend upon the time

period over which the series is observed. Consequently, time-series with trends, or

seasonality are not stationary; however, cyclic behaviour in time-series data with no

trend or seasonality is still stationary.

The technique in AR for translating a non-stationary time-series into a stationary

one is to, first, take the logarithm of observations to stabilise the variance and,

second, compute the differences between two consecutive observations at a certain
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lag value, L, (a.k.a. differencing) to stabilise the mean of the time-series. The

technique of differencing the logarithm (DL) values of observations at time t, is

DL = log(CUt) − log(CUt−L). The end result of applying DL on a time-series is

a stationary time-series, shown as Σ. We use the notation of ΣL for a stationary

time-series with lag L. Within Σ, all the trends and seasonality involved in the

original time-series will be diminished or eliminated. It is possible more than one

differencing would be needed to convert a non-stationary time-series into a stationary

one. The auto-correlation function (ACF) of a stationary time-series reaches to zero

fairly quickly while the ACF of a non-stationary time-series decreases slowly. This

is used as the criterion to decide if further differencing is necessary.

In AR models, finding Σ is not the end of the story. AR uses an auto-regression

to create a linear combination of predictors at different lags. Later enhancements of

AR model, as discussed in Chapter 2, like ARIMA (abbreviation of “Auto-Regressive

Integrated Moving Average”) use the same idea, restricted to the relations between

output value and previous values at specific lags. The stronger the correlation be-

tween the output value and a specific lagged value, the more weight the AR model

assigns to that. If all lag values show low or no correlation with the output, then

the AR model is not appropriate for predicting a time-series problem. Non-linear

predictors can take advantage of the existing correlation between the output value

and previously observed values in Σ. We endeavour for the model to capture the cor-

relation between observed ΣL values by incorporating them as features to the model.

In the AR model, the lag value, L, was assumed as 1 since the goal was to predict ex-

actly the next step. For several-step ahead prediction, the lag matches the number of

steps. The question at this point is how many steps from the historical data we need

to incorporate in our model. The very näıve answer would be the more information

we provide to the learning algorithm, the better it can do the prediction. However,

this answer is not quite informative as each lagged term has a coefficient/weight.
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Hence adding more lags may cause the coefficient of the most recent lags or most

important ones to diminish. On the other, going farther back in time provides the

model with more information. In time series analysis, the Box–Jenkins method [6],

applies ARMA or ARIMA models to find the best fit of a time-series model to past

values of it. This method [6] aids us in determining the number of lags, β, going

back in time that we need to retain.

In our problem, we are dealing with more than one trend and seasonality. The

known ones, as mentioned before, are busy and idle hours. We tried to eliminate this

seasonality by slicing the time of a day into τ minutes intervals. However, it is not

enough to diminish all sources of seasonality and trends involved in the final channel

utilization value. Some of the trends and seasonality in our data that we are aware

of their existence are influenced by factors such as the number of users utilizing an

access point (AP), interference created by other APs on the one we investigate, and

so on. To decide on the non-stationarity of the time series, we observed its ACF. In

examples, within a random day of the collected data, we take one interval from idle

hours and one from busy hours to show the impact of seasonality and trend within

data. Assuming L = 1, Figure 4.1 and 4.2 show the data and its ACF within a day,

from 12:00-5:30 AM (as idle hour) and 12:00-5:30 PM (as busy hour) respectively.

As can be seen in figure 4.2, within busy hours the ACF slowly converges to 0 after

more than 1000 lags. However, for the idle hours (figure 4.2), its ACF converges to 0

fairly quickly, after some lags. It shows that, within idle hours, we do not have much

seasonality or trend in our time-series. On the other hand, as for the busy-hours, we

need to decrease the effect of seasonality and/or trend, so that the learning algorithm

can better identify the pattern within data with no seasonality and trend involved.

We apply the standard DL technique on the time-series. The DL of the same

busy and idle hours intervals are shown in Figures 4.3 and 4.4. As for the busy hours,

this technique reduced/eliminated the effect of seasonality and/or trend; so that, the
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(a) CU 12pm-5:30pm (busy hours) of a ran-
domly chosen day.

(b) Relation of y(t) and y(t+ 1) for the data
in (a).

(c) ACF for the data in (a) for all lags. (d) First 30 lags of ACF for the data in (a).

Figure 4.1: Example auto-correlation of CU values during a busy hours interval
(12pm-5:30pm) of a randomly chosen day.

resulting values shown in Figure 4.3 are essentially stationary as the ACF suggests.

It has no effect on the idle hours as it was stationary in the first place.

Box–Jenkins provides us with number of lags (e.g. determined to be β =47 for

τ =30 minutes) we need to retrieve from the ΣL. At time t, by providing all values

from Σt
L to Σt−β

L as features to the learning algorithm, we hope it can unearth existing

pattern in utilization fluctuations within time-series with less or without seasonality

and trends involved. We will call these values the stationary values and use them as

features, with the understanding that unless we perform multi-step prediction, they
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(a) CU 12am-5:30am (idle hours) of a ran-
domly chosen day.

(b) Relation of y(t) and y(t+ 1) for the data
in (a).

(c) ACF for the data in (a) for all lags. (d) First 30 lags of ACF for the data in (a).

Figure 4.2: Example auto-correlation of CU values during an idle hours interval
(12am-5:30am) of a randomly chosen day.

boil down to just one value, the one at lag one.

4.3 Short-Term Dynamics Distance

In the previous chapter, we investigated the metric of dot product of two steady-state

vectors for capturing intervals to each other. Experiments revealed that encoding

the exact time offset within intervals (i.e. exact time within the current τ minute

interval) does not help the learning algorithm in forecasting. However, the separation
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(a) DL of CU 12pm-5:30pm (busy hours) of
a randomly chosen day.

(b) Relation of y(t) and y(t+ 1) for the data
in (a).

(c) ACF for the data in (a) for all lags. (d) First 30 lags of ACF for the data in (a).

Figure 4.3: Example auto-correlation of DL of CU values during a busy hours interval
(12pm-5:30pm) of a randomly chosen day.

of busy and idle hours gives the model a rough idea of which part of a day the

observed data is from, without giving the exact time of the day. The pertinence

of the dot product as a feature can be seen by the example in Figure 4.5 in which

the first twelve 5 minute intervals of the day (from midnight to 1 AM – presumably

an idle hour) are compared, via the dot product, across the entire day’s 5 minute

intervals (τ = 5). Notice that particular periods of time (distance metric in the 0.7

to 0.9 range) suggests that there are periods where neither the idle nor the busy hour

behavior prevails, i.e., they correspond to intervals with a mix of behaviors. Similar
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(a) DL of CU 12am-5:30am (idle hours) of a
randomly chosen day.

(b) Relation of y(t) and y(t+ 1) for the data
in (a).

(c) ACF for the data in (a) for all lags. (d) First 30 lags of ACF for the data in (a).

Figure 4.4: Example auto-correlation of DL of CU values during an idle hours interval
(12am-5:30am) of a randomly chosen day.

plots can be created if one selects an interval from the busy hour to compare against.

We will subsequently use the dot product metric of the most recent interval steady

state approximation against each of a library of steady-state approximations from

collected data, each for a specific τ minutes interval within a 24 hour period. The

point being that an observer can create such collections over the entire period that it

is observing the utilization of the channel. As we later find out, the distance metric to

other prior intervals is in itself an implicit indicator of time, as it results in expressing

the influences of other intervals on the current interval. Additionally, it turns out
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that the steady state of a “typical” day, meant as a representative collection of the

dynamics of the same time period across all observed days, is sufficiently powerful

to express the relation of the current interval to other intervals.
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Figure 4.5: Dot product of P
(j)
5 with P

(i)
5 within a day (j = 0, ..., 11 with one line for

each j and i = 0, ..., 287).

In addition, Figure 4.6 shows how dot product of P
(0)
5 and P

(i)
5 changes within

an hour. Fluctuations individually are not following an overall observable pattern

within an hour; however, within a day, their correlation decrease as they are further

apart in time.

The idea is to inform the learning algorithm about the time of a day indirectly by

changes in dot products of intervals. We expect the learning algorithm understand

the patterns within intervals and estimate the time of the day of each observation

within data. So, the idea is to incorporate the dot product of previously observed τ

minutes steady-state vectors with the day library ones as features into the learning

algorithm. We use the notation ∆i for showing the timing features where i = 0, ..., j

and j is the number of intervals existing in day library. By doing so, we expect the

data better capture the time of the day and use it in prediction.
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Figure 4.6: Dot product of P
(j)
5 with P

(i)
5 within an hour (j = 0, ..., 11 with one line

for each j and i = 0, ..., 287).

4.4 Selected Features

In this chapter we went through the features important for the learning algorithm to

better learn patterns within environment and data. Towards this end we considered:

39



• transforming non-stationary data into stationary, and,

• separating, for the sake of seasonality, idle from busy hours.

The features we will subsequently use in the learning algorithm are:

• the value of observed channel utilization in the stationary time-series, shown as

Σt
L where L and t refer to lag value and number of lags we retrieve respectively,

• the dot product metric against the previous interval and against a library of a

day’s worth of intervals, shown as ∆, and, finally,

• the previously seen channel utilization, U , understood so far to be the cur-

rent level of utilization, but, as shown in the next chapter, made into coarser

utilization ranges.
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Chapter 5

State Lumping and the
Cost of Misprediction

In previous chapters, we, first, investigated a metric allowing us to group time in-

tervals with similar stochastic behavior and/or to compare the behavior of the time

serious between intervals. We also reduced the seasonality and trends within the

time-series by splitting a day into τ minutes interval. Finally, we identified features

by which our model can better adopt to the environment and to perform forecasting.

Our measurements collect fine-grained values of CU, between 0 and 255. For most

applications, an accuracy of 100/255th of a percentage is unnecessary. We adopt a

summarized version of the transition matrices P
(i)
τ , reducing them from 256 × 256

to a smaller size (typically from 5 × 5 to 7 × 7) by lumping together ranges of

utilization values. The decision to lump the matrices is also helpful in one more way:

a limitation of short τ intervals is that it is unlikely that all 256 utilization values are

observed during any particular interval, let alone enough pairs of successive values

to help build a sufficiently rich transition matrix for a first-order Markov model of

each τ interval.

Consequently, in this chapter we first, introduce a method of state grouping,

namely ”state lumping”. Then, we address the problem of misprediction cost within
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Figure 5.1: An example of state space reduction of the transition matrix leading to
a 3×3 lumped matrix. For visual clarity, self-loops and arrows are not shown. State
numbers/ranges refer to the corresponding CU values represented by a state.

the established lumped states.

5.1 Simplifying P
(i)
τ and Lumpability

Consider time progresses in time steps of length σ, then the evolution of the channel

utilization of an AP on a specific channel from time t to t+ σ will be approximated

by a first-order Markov chain. We can trivially produce estimates for the transition

probabilities of the transition matrix, P
(i)
τ , by counting the corresponding transi-

tions between successive CU values from the collected data, and normalizing them

accordingly. Technically, P
(i)
τ is a 256 × 256 matrix, but we will take several steps

to simplify it further as described in the next subsections. Our objective is to start

from a 256×256 matrix, for each τ minute interval, and reduce the model to a small

(no more than 7× 7) matrix which we will subsequently use for predicting the next

state.

5.1.1 Lumpability

State lumping of a Markov chain reduces a large state space into a smaller one [7].

A new, produced, Markov chain has states that result from combining states of the

original chain together in one state. The new chain has approximately the same

behaviour as the original one but in a coarser level of detail.
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A discrete time Markov chain is lumpable with respect to a given state space

partition S =
⋃
i Si with Si

⋂
Sj = ∅ ∀i 6= j if its transition probability matrix P

(i)
τ

satisfies the lumpability condition:

∀Si, Sj ⊂ S ∀s ∈ Si :
∑
s ′∈Sj

ps,s ′ = ki,j ∀i, j, (5.1)

where ps,s ′ is the one-step transition probability from state s to state s ′, and ki,j

is a constant depending only on i and j. The ki,j are the elements of the lumped

matrix, K. That is, a Markov chain is lumpable if the transition probability from

each state in a given partition to another partition is the same. The probability

of transitioning from a given state to a partition is equivalent to the sum of the

transition probabilities from the given state to each state in the partition. In the

lumping process, the transition probability from each state of a partition to another

partition must be the same. Moreover, for each state, the probability of a transition

to a partition is the sum of transition probabilities from the state to each state in

that partition.

Figure 5.2 clarifies a 2 × 2 brute-force lumping procedure. At the very top of

the figure, the original transition matrix is shown. We need to find all possible

permutations of the original matrix states, four such permutations are shown in the

figure. Then for each of the permuted ones, we take different partitions to find the one

which satisfies the lumpability condition. The final lumped matrix has the partitions

of S = {1, 3}
⋃
{2, 4} (S1 = {1, 3}, S2 = {2, 4}) with k1,1 = 0.6, k1,2 = 0.4, k2,1 = 0.7,

and k2,2 = 0.3. It is worth to highlight that the lumping procedure shown in the

figure suggests a brute-force approach, which means many of the generated groups

are calculated more than once. Hence, it is not an optimized algorithm and it is

depicted this way just for the sake of clarifying the notion of lumping. As it is shown

in the figure, only one of the partitions satisfies the lumping conditions. However, in

many real cases none of the produced partitions will meet this condition.

43



            
            
            
          

            
            
            
          

`

            
            
            
          

            
            
            
          

            
            
            
          

            
          
            
            

          
            
            
            

            
            
            
          

            
            
            
          

            
            
            
          

      
      

      
      

      
    

Figure 5.2: An example of lumping.

5.1.2 Quasi-Lumpability

Markov chains are seldom lumpable, in that we cannot generally satisfy the equals

relation in Equation 5.1 regardless of how we group the state space. In those cases,

we adopt the relaxed definition known as quasi-lumpability [10]. Intuitively, quasi-

lumpability allows for the sum of rows of the resulting lumped matrices to not sum

up to 1. Formally, a Markov chain is ε quasi-lumpable with respect to a given state

space partition S =
⋃
i Si with Si

⋂
Sj = ∅ ∀i 6= j if its transition probability matrix

P can be written as P = P− + Pε, where the elements of P− are lower or equal to
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the corresponding elements of P and satisfies the lumpability condition:

∀Si, Sj ⊂ S ∀s ∈ Si :
∑
s ′∈Sj

p−s,s ′ = ki,j ∀i 6= j (5.2)

where now, p−s,s ′ is the one-step transition probability from state s to state s ′ in the

matrix P− and no element in Pε is greater than ε. A more helpful formulation is

to permute the rows and columns of the transition matrix to bring it in the form

P = diag(P1,1,P2,2, ...,PN,N) + E where E is an “error” matrix, and the Pi,i repre-

sent sub-matrices that correspond to the i–th lumped state (for N lumps) – hence

the derived K matrix would be of N × N . The closeness of the matrix approxima-

tion, or technically degree of coupling is judged by the norm ‖E‖∞. The process of

determining the right permutation does not take away from the complexity of the

problem, but as we see next, practical considerations make this a tractable exercise

for our purposes.

Figure 5.3 clarifies a 2 × 2 quasi-lumping procedure. At the very top of the

figure, transition matrix P is the original matrix we try to lump. Here, we assume

the state space partition of S = {1, 2, 3}
⋃
{4, 5, 6} (S1 = {1, 2, 3}, S2 = {4, 5, 6})

is given. The state space of this partitioning with ε = 0.01 satisfies the quasi-

lumpability condition in Equation 5.2, and several pairs of (P−, P ε) can be found

that satisfy it. However, the constant value k may not be the same. For this example,

k1,1 = 0.58, k1,2 = 0.41, k2,1 = 0.67, and k2,2 = 0.32.

Technical Considerations

The permutations implied by the Pi,i-based formulation of lumping allow for lumping

together any collection of states. This is meaningless in our setting since via lumping

we are trying to produce ranges of utilization values we can collectively consider as

a single state. To this end, we add the constraint of lumping solely the neighbor-

ing states together. Additionally, we do not need to consider all possible lumping
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Figure 5.3: An example of quasi-lumping.

possibilities. Namely, we set the maximum number of lumped states to be equal to

seven. Across all the combinations tested, we pick the one which minimizes ‖E‖∞.

Clearly, it is up to the available computational resources to search for larger lumped

models, but as the results illustrate, a seven state maximum lumped representation

produced extremely good results.

A practical consideration is that not all of the 256 CU values are observed

throughout the data, and in particular if we construct the matrices as suggested for

each τ minutes interval, no observations for transitions to/from a significant fraction

of those 256 states may be found. The number of non-observed states decreases as τ

increases. As a consequence, for creating an irreducible transition matrix, the num-

ber of states in the matrix is reduced by removing the states that are not reached

(zero in both rows and columns). It is the reduced matrix that is subsequently
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lumped. Thus a final stage is to adjust the lumped matrix to include states that

were not present in the collected data. Our strategy is to lump states not visited to

their closest meta-states. By doing so, the number of lumped states is retained.

For example, if we never visited states 10 and 11 in our dataset, and the lumped

states just before and just after the particular states are (7, 8, 9) – to the ”left” –

and (12, 13) – to the ”right”, the final lumping incorporates 10 into the range to the

left and 11 into the range to the right. Extremes are merged to their next adjacent

range. So, for example, if we never visited states 200-255 and the adjacent range

lumped together ends with state 199, we merge 200-255 to the lump which includes

199.

In addition, in our setting not only the dimensions of the lumped matrix is impor-

tant, but the range of utilizations coverage of each lumped state. Consequently, we

have some technical constraints for the utilization ranges/classes to not be narrower

than a certain percentage or larger than another percentage. As an example, a meta-

state in the lumped matrix can be the result of lumping the first 200 neighbouring

states of the original matrix with 256 states. As each state in our original matrix has

100/255 ≈ 0.4% of the network utilization, 200 states covers up to 80% of it. In many

cases like in the idle-hours, the CU barely reaches a value higher than 100 (≈ 40%

of utilization). So, without any constraints, the first class generated from our model

is too broad that includes the whole channel utilization values within idle hours by

providing us with no information regarding the status of the network. Hence, there

is a need for constraints on the range of utilization of each meta-state. The choice of

utilization ranges can be tailored to the application needs. We use the notation Cu

and Cl for constraints to express how many adjacent states can be lumped at-most

and at-least, respectively, in each range.

Moreover, it is the case that the more states present in the original matrix, the

more lumped matrices with the same degree of coupling, ‖E‖∞, could be produced.
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Consequently, for breaking the tie, we define another metric to decrease the number

of candidate lumped matrices. While for a matrix with n states, the error term is

‖E‖∞ (or more simply max{E1, E2, ..., En}), our tie breaker term is (E1+E2+...En).

That is, among the best lumped matrices which have the minimum value of ‖E‖∞, we

choose the one with least summed error throughout the whole matrix. The intuition

behind using this term is to find the lumped matrices with the lowest error across all

rows produced in the lumping process. For example, a lumped matrix with the lowest

‖E‖∞ = α may have errors in many rows equal to α; while, another lumped matrix

may have only a row equal to α and with no error in rest of the rows. Although by

definition both of these matrices have the same degree of coupling, the latter one is

preferred.

We resorted in a recursive implementation that searches over all possible combi-

nations of lumped states, checked against satisfying constraints for each meta-state

in terms of channel utilization, number of produced lumped states, and lumping

neighbouring states, as well as keeping track of quasi-lumping alternatives. This

is in contrast to exact lumpability for which there exist highly efficient algorithms,

such as the O(m log(n)) algorithm using a splay tree [11], where m are the number of

transitions and n is the number of states. Future work could include a more efficient

form for implementing the lumping, albeit it is only a means to an end as far as the

current thesis is concerned, and no further attention was paid to it.

5.2 The Cost of Misprediction

Misprediction of utilization can, depending on application, result on two different

forms of “costs”, (I) opportunities missed to utilize the available unutilized capac-

ity, and, (II) congestion caused by attempting to utilize more than the available

unutilized capacity. One can argue that (II) is more “costly” than (I), as it could

impact existing users/uses of the channel. To this end, we introduce asymmetric
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costs to our problem. The goal is to predict the correct class (as per the quasi-

lumping explained) of utilization while minimizing the costs of misprediction. To

model the cost, although mixture of different well-known function, like Gaussian,

are applicable, we take an inherently asymmetric function, namely a Rayleigh func-

tion. The choice of asymmetric function for modeling the difference between the

cost of dismissing opportunities and creating congestion is application dependent

and it has no influence on the method we are proposing. The cost value from the

Rayleigh function comes from mapping the correct class of utilization to the value

0 on the function and corresponding wrong classes map to lateral parts. If the cor-

responding utilization range causes congestion, it maps on the side of the function

with the higher slope and if it causes channel under-utilization, it maps on the side

with lower slope. In both scenarios, the worst case of incorrect class of utilization,

meaning the difference of highest utilization percentage of the correct class with the

lowest utilization percentage of the incorrect class for the over-utilizing case and vice-

versa for the under-utilized case, map on the function. Figure 5.4 shows an example

where utilization are grouped in for 6 ranges with utilization values of [0% - 24.313%],

[24.313% - 46.274%], [46.274% - 58.039%], [58.039% - 77.254%], [77.254% - 89.019%],

and [89.019% - 100%] coming from lumping of one of the busy hour interval with

τ = 30 minutes, Cl = 10%, and Cu = 25%. Assuming the utilization value falls into

the third class, predicting the fourth, fifth, or sixth class of utilization causes the

channel to remain under-utilized. On the other hand, predicting the first or second

class of utilization leads to an over-utilized channel. As it is shown in the figure,

the penalties defined for classes lead to over-utilization is way harsher than the ones

for classes lead to under-utilization. Our aim is to reduce the cost of misprediction

without hurting the accuracy of the model.
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[46.3% - 58%]
Difference = 0%X

[58% - 77.2%]
Difference = 30.9%

[77.25% - 89%]
Difference = 42.7%

[89% - 100%]
Difference = 53.7%

0.142

0.089
0.052

[24.3% - 46.3%]
Difference = 33.7%

[0% - 24.3%]
Difference = 58%

Figure 5.4: An example of class mapping on Rayleigh function, y = 0.0 when the right
utilization range is predicted assuming the right one is in the range of [46.3%−58%].

Custom Loss Function Method

Our approach for reducing the cost of misprediction is to define an appropriate

cost function for the learning algorithm we will use. In this work, we use cost

function and loss function interchangeably. We are essentially dealing with a multi-

class classification in which learning algorithms calculate probabilities of incidence

for each class. For calculating the probabilities, the function predominantly used

in learning algorithms is the softmax function whose input is a vector consisting of

real numbers and normalizes it into a probability distribution. Then, the class with

highest probability of incidence will be predicted as the next class of utilization. So
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that if a learning algorithm with softmax function chooses a class, it has the highest

probability of happening from the model perspective. As an example, giving an

input vector consisting of 4 classes with values of [c1 = 2, c2 = 4, c3 = 6, c4 = 4], the

Softmax function converts it to a probability vector of [c1 = 12.5%, c2 = 25%, c3 =

37.5%, c4 = 25%], so that the model will choose class 3 with the highest probability

of incidence. In practice, the best choice of a loss function for a multi-class problem

is cross-entropy with values coming from the softmax function. The goal of cross-

entropy is to modify the probabilities coming from the softmax activation function

by changing the weights of the learner. For the cross-entropy loss function with

hypothetical occurrences probabilities of {y1, y2, ...,n} for n classes each of which is

observed {k1, k2, ..., kn} times in training set, the likelihood of occurrence would be:

P [data|model] := y1
k1y2

k2 ...yn
kn (5.3)

By taking the logarithm of the likelihood and normalizing it, we express cross-

entropy:

− 1

N
logP [data|model] = − 1

N

∑
i

ki log yi = −
∑
i

yi
′ log yi (5.4)

The cross-entropy is a convex function; so, it guaranties existence of a global mini-

mum. The hypothetical occurrence probabilities of [y1, y2, ..., yn], shown as vector Y ,

are coming from the softmax activation function; hence, changing them has no im-

pact on the convexity of the cross-entropy. The learning algorithms learn the model

based upon the occurrences probabilities. As a consequence, giving higher weights

to incident’s probability of classes with lower penalty values has no impact on the

correct prediction accuracy of the learning algorithm. However, in cases of uncer-

tainty, the model is inclined to the classes with less probability of higher punishment.

The lower the values coming from the Rayleigh function, the more favorable it is for

us; so by taking the complement of results from multiplication of penalty vector and
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the vector of incident’s probability, and normalizing it accordingly, we get higher

values for the classes with lower penalty values. Assuming [P1, P2, ..., Pn], shown as

vector P , as the penalty vector. By multiplying the penalty vector and the vector of

incident’s probability of classes and normalizing them, we get .

P × Y = [P1 × y1, P2 × y2, ..., Pn × yn] (5.5)

Assuming yl = yk, for 1 ≤ k, l ≤ n, and Pl ≤ Pk, PYl and PYk would be

(Pl × yl) ≤ (Pk × yk). Even after normalizing the PY , the ratio of Pk over Pl stays

the same. Consequently, in the case of uncertainty, this model propels us to choose

the class with less value of punishment.
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Chapter 6

Experimental Evaluation

In previous chapters, we, first, investigated a metric allowing us to (a) express the

stochastic behavior of the time series over short time intervals, and (b) to allow the

comparison of the behavior across different intervals. Then, we reduced the seasonal-

ity and trends within the time-series by splitting a day into τ minutes interval. Later,

we identified features by which our model can better adopt to the environment and

to perform forecasting. Finally, we found out the prediction with an accuracy of

100/255th of a percentage is an overkill for most of applications; so, we adopted a

Channel Utilization (CU) grouping technique, namely lumpability, to address it.

In this chapter the goal is to examine the experiment setup, environment, and

limitations. Then, we define the architecture, best designed for our prediction task.

Finally, we go through experiments and its results.

6.1 Data Acquisition and Experiment Setup

We collected Wi-Fi AP Beacon transmissions from a plethora of APs in a campus

building at the University of Alberta and a residential environment. The major-

ity of APs are centrally managed to provide ubiquitous Wi-Fi service. Each AP

transmits approximately 10 beacons per second. All of the observed APs support

53



WMM and QBSS; hence, they report the channel utilization values at each beacon.

For capturing the channel utilization values, a low cost means is to deploy WiFi

frame sniffers at various locations so they can capture reported channel utilization

values of the APs in the environment, recording the CU they report in their Beacon

frames. This, passive, form of data collection is also consistent with the basic tenet

of any good observation methodology, i.e., not disturbing the traffic transmitted on

the wireless medium. The strategy is also meaningful because various APs operate

within a building, and, in particular in residential environments, they are not under

the control of a single entity/operator. Occasionally, APs may change their channels

to better meet the needs of the occupants; hence, we may lose CU values of a specific

channel, if no AP in range of our sniffer are operating on that channel. This is a

limitation of the data collection strategy we employed, but it was not a limitation

in the particular environment where we performed the data collection. That is, APs

operated almost continuously on the same channel. In the occasional switchover of

an AP to another channel, there were other nearby APs operating in the original

channel to allow us to have uninterrupted observations of that channel’s utilization.

AP channel switchovers were rare.

The capture of the Beacon frames was performed using inexpensive Wi-Fi sniffers

on the 2.4 and 5 GHz bands. However, in the campus environment, the 5 GHz

channels are barely utilized as users are distributed among the 23 available non-

overlapped channels over this band. Consequently, we solely focus on 2.4 GHz band

which are highly utilized at busy hour. As we are armed with limited number of

sniffers, sniffers perform channel switching on three non-overlapping channels (1, 6,

and 11) to capture beacon frames of each one. Channel switching was taking place

every 2 seconds; so that we have σ = 6 seconds. To this end, we have CU values of 2

seconds for every 6 second intervals. In order to have uniform CU values over time,

we decided to use the maximum CU values reported in the two seconds of 6 seconds
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observation intervals.

The setup managed (accounting for settling times once switching channel) to

capture at least 10 beacons per AP over a six second period, regardless of channel.

The loss of some beacons (for approximately four of every six seconds) was examined

and found to have no significant impact. Specifically, to reduce the impact of missing

beacon CU measurements, we decided to use the maximum CU reported in the two

seconds of observation interval and use it as the maximum CU over the six second

interval, as it was found close to the maximum had we continuously listened to the

same channel. Finally, the sniffers were connected to the wired infrastructure and

streamed the data collected to a cloud-based back-end, which we used to represent

our edge computing platform.

We used OpenWRT operating systems (OS) [12] on our sniffers. This Linux-based

OS gives us the capability of programming the router. Instead of trying to create a

single, static firmware, OpenWRT provides a fully writable filesystem with package

management. We programmed the sniffer to perform channel switching in monitor

mode. The router switches the channel once every 2 seconds, sniffs solely the Beacon

packets, and sends the traces to a cloud-based back-end for further processing and

analysis.

In this work, we analysed data from each AP independently. The referenced AP

might change the channel based upon the controller’s order. As utilization of each

channel at a specific time is different and follows different trends and seasonality, we

present runs solely on data gathered from one channel of the referenced AP; channel

number 1.

6.2 τ and Feature Engineering

We recap that the goal is to split the time into τ -minute time-intervals in order to

diminish the traffic seasonality within a day that depends on factors such as the
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number of the users, their usage patterns, etc. A large τ is problematic as it would

allow the mixing of busy and idle hour behavior. A small τ is problematic because of

the relative paucity of data (samples), let alone restrictive for interesting dynamics

to develop. For this reason, we will look into τ intervals between 5 and 60 minutes

during typical busy and idle hours periods of the day.

For each interval (representing the same time of the day across all days), a learn-

ing algorithm can be run. During the data collection process, a library of τ units

long interval steady state vectors is created based on prior measurements. For the

purposes of this study, we used the first 30 days as a dataset to derive the library of

steady state distributions for each τ -minute interval for a prototypical day.

Näıve Predictor

This predictor returns prediction the same class (meta-state) as the class of the pre-

viously measured CU. The classes are as defined by the lumped model corresponding

to the particular τ minute interval. Although this predictor is simple, it exhibits good

performance. Our goal is to build a predictor, not much more complicated than the

näıve one. To this end, we use as input the last observed class of utilization, encoded

in one-hot encoding.

Neural Network Model

A model exclusively used here is a standard Neural Network with softmax activation

function [5], where the generated probability value is converted to a class prediction.

The classes used are the same derived by the lumped Markov chain for each corre-

sponding τ minute period. Because of the τ minute intervals used in the definitions

of utilization classes, the derivation of the lumped matrices is already “aware” of the

temporal aspect of the process. We therefore endow the training data for the Neural

Network depicted on Figure 6.1 with the described features. As the provided figure
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and equations below show, the input features are the previous stationary values (by

extracting previous values of stationary time-series), short-term dynamics distance,

and one-hot encoded of the previous CU class. Within the equations below, the

“stationary” and “other” features are shown by “st” and “other” as subscript in

parentheses, and the layer number is provided as subscript in braces. In all exper-

iments, the stationary features fed into the NN is the previous stationary values of

CU unless otherwise is stated (for example, for τ = 30 minutes these are 48 values

for a day).

X =

[
x(st)

X(other)

]
, X(other) =

[
X(time)

X(CU class)

]
(6.1)

h(st) = (X(st))T .W (st)<1> + b(st)<1> (6.2)

h(other) = (X(other))T .W (other)<1> + b(other)<1> (6.3)

h1 =

[
h(st)

h(other)

]
(6.4)

h2 = hT1 .W
<2> + b<2> (6.5)

Ŷ = σ(hT2 .W
<3> + b<3>) (6.6)

6.2.1 Results

Our data set contains 130 days worth of data. For the sake of simplicity, and without

hurting the generality and applicability of the presented techniques, we narrow our

attention to 98 working days (32 days were weekends and holidays). We do the train-

ing on 80% of data each time, and testing it on 20% of data. For Neural Network,
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Figure 6.1: The neural network architecture used.

we run the model for 2000 epochs and we also use early stopping technique. We take

advantage of ADAM (ADAptive Moment) optimizer [20] in our model with initial

step size of 0.001. For updating network weights iteratively based on the training

data, this optimization algorithm is being used instead of classical stochastic gradi-

ent descent (SGD). This algorithm is taking advantage of benefits coming from two
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other extensions of SGD descent, namely AdaGrad (abbreviation of Adaptive Gra-

dient Algorithm) and RMSProp (abbreviation of Root Mean Square Propagation).

The former adapts the learning rate to the parameters performing smaller updates

for parameters associated with frequently occurring features and larger updates for

parameters associated with infrequent features, making it suitable for learning sparse

data patterns. In addition, the latter maintains per-parameter learning rates that are

adapted based on the average of recent magnitudes of the gradients for the weight,

making it suitable for online and non-stationary problems. Both of these algorithms

use the basic idea of Momentum algorithm which tries to solve the SGD problem

that highly oscillates across the slopes of the areas where surface curves are more

steeply in one dimension than the others, like local optima. Momentum algorithm

helps accelerate SGD in the relevant direction and dampens its oscillations. We used

β1 and β2 hyper-parameters of ADAM algorithm, the exponential decay rate for

the first and second moment estimates, to be the default values used in [20], 0.9

and 0.999 respectively. The decision of using the default values is made as changing

these values only alter the pace of optimizer in falling into global minimum. Different

values were tested and they had no impact in the final result of the prediction. To

this end, we stick with the default values stated in paper. Moreover, an epsilon used

in this algorithm for preventing division by zero while updating the weights, has the

value of 10−8.

Global Lumping

First, we establish a comparison baseline by assuming that the process is stationary

and hence, a single transition matrix (and corresponding lumped matrix) can describe

the entire process, i.e. without considering τ minutes intervals separately. By this

assumption, we can assess effect of dismantling time into τ minutes intervals as it

removes some trends and seasonality within data. By lumping the single transition

59



Figure 6.2: Accuracy for näıve predictor, under global lumping (red) vs. separate
(blue), for each τ = 30 minute interval, lumping.

matrix of the training data with lumping constraint of Cl = 10% and Cu = 25%,

we end up with a six-states lumped matrix corresponding to the following intervals

of CU values (and utilization figures in parentheses): [0-62] (0-24.313%), [62-100]

(24.313-39.215%), [100- 133] (39.215-52.156%), [133-186] (52.156-73.33%), [186-220]

(73.33-86.274%), and [220-255] (86.274-100%); and producing an quasi-lumping error

of E∞ = 0.557617 and summed error of 34.0684 throughout the lumping. Table 6.1a

shows the accuracy, precision, recall, and f1-score results of this experiment for each

30 minutes within a day for the näıve predictor. Results prove a high accuracy for

the idle hour intervals and as we move to busy hours, the accuracy is reduced.

To conclude that separating into independent time-intervals affects the prediction,

we use lumping on each separate interval in subsequent steps. We set the number

of lumped states to 6, and τ to 30 minutes. The results of the experiment using

näıve predictor are shown in Table 6.1b. Again accuracy decreases when looking at

the busy hours. However, we observe enhancement in prediction accuracy when τ
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(a) Accuracy using one, global, lumping. (b) Accuracy for separate, every τ , lumping.

Table 6.1: Accuracy for näıve predictor, under global lumping vs. separate, for each
τ = 30 minute interval, lumping.
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minute intervals are separated which encourages us to continue further with separate

τ minutes intervals for the remainder of this study. Figure 6.2 provides a pictorial

view of the accuracy columns in Table 6.6.

Features Analysis

In this experiment, we first compare our feature engineered NN with näıve predictor

to assess the capabilities of our model for τ = 30 minutes. Then, we investigate

the importance of our features within the model. The classes from the lumping

method have the constraints of Cl = 10% and Cu = 25%. For lumping states with

aforementioned constraints and 6 classes we show in Table 6.2 the boundaries (as

utilization percentages) between the classes. Notice that each class does not span

one-sixth of of the utilization range and that, suggesting that the lumping responds

to the different traffic mix behavior at different times of the day.

Tables 6.3b and 6.3a show the results of experiments for the näıve predictor

against our feature engineered NN. As it is shown in these tables, the feature engi-

neered NN greatly outperforms the näıve predictor across all intervals. The compar-

ison of the resulting accuracy is depicted also in Figure 6.3.

The process of evaluating accuracy assumes that we are operating in real-time

and we can only know the past behavior of the time series. As such, we are unaware

of the current τ interval’s steady-state distribution because it is still progressing, and

we can only evaluate it post-factor. We can quantify the loss in prediction accuracy

assuming we had access to an oracle for the current steady state or for the upcoming

stationary features (stationary values of upcoming CU). Figure 6.2.1 demonstrates

this gap. Compared to Figure 6.3, the the results in Figure 6.2.1 suggests that what

would impact more the performance of the predictor is knowledge of the current

steady state, but the more interesting observation is in seeing that, even if we had

a-priori access to the steady state distribution, our prediction would not have been
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Table 6.2: Boundaries from lumping into 6 classes (lumped states) with τ = 30
minutes, Cl = 10%, and Cu = 25%.

exact.

The weights in layer 2 of our NN (W<2>) NN, provide us with hints of the

importance of each one of the features. We investigate importance of features for

two cases, one during a busy hour (Table 6.4) and one during an idle hour (Table 6.5).

Having 6 classes and τ = 30 minutes, the features would be: one-hot encoded value
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(a) Accuracy for NN predictor. (b) Accuracy for näıve predictor.

Table 6.3: Accuracy for feature-engineered NN (red) vs. näıve (blue) predictor (6
classes, τ = 30 minutes, Cl = 10%, Cu = 25%).
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Figure 6.3: Accuracy for feature-engineered NN (red) vs. näıve (blue) predictor (6
classes, τ = 30 minutes, Cl = 10%, Cu = 25%).

of previous CU class (XCUclass), 48 timing features (X time), and 1 stationary value

(hst) which is the outcome of a NN with no hidden units (or Logistic Regression)

with 48 stationary values as input (Xst).

From Tables 6.4 and 6.5 we can analyze the importance of features for each class

of utilization. Among the 6 one-hot encoded features of previously seen utilization

class, each class not only gives high priority to the one feature related to that class,

but also the neighbouring classes. For example, as for busy-hours, class 1 gives the

highest weight to its class feature, W
(CUclass)<2>
1,1 , and then a relatively high weight

to class 2, W
(CUclass)<2>
1,2 . Class 2 also gives the approximately same weights to class

2, W
(CUclass)<2>
2,2 , and classes 1 W

(CUclass)<2>
2,1 . It also gives a high weight to class 3,

W
(CUclass)<2>
2,3 . The same behaviour can be seen for the rest of classes and for the

idle hours as well. However, by contrast the idle hours is less probable to have high

CU values; the classes related to high utilization values have less feature importance,

and generally the model predicts a behavior ”stuck” at class 1 (the lowest utilization
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Figure 6.4: Accuracy for feature-engineered NN assuming access to the current in-
terval’s steady state (red), or, the upcoming stationary features (blue)

are accessible to the predictor (6 classes, τ = 30 minutes, Cl = 10%, Cu = 25%).

range).

The importance of each of the library of 48 steady state intervals, W (timing)<2>, is

different for each class and as their influence is spread across all classes, their weights

are smaller. The strongest influence feature is the stationary one. As less knowledge

is available for the predictor to learn from the previous features, hst becomes more

helpful. Consequently, the learning algorithm uses this feature as an extra knowledge

to learn about the less observed classes. One example is for the case of W
(st)<2>
1 in

which its weight pushes the predictor toward choosing other classes.

As in the tables 6.4 and 6.5 we can analyze importance of features for each class

of utilization. Among the 6 one-hot encoded features of previously seen class of

utilization, each class not only gives high priority to the one feature related to that
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W12
(timing)<2>

W13
(timing)<2>

W14
(timing)<2>

W15
(timing)<2>

W16
(timing)<2>

W17
(timing)<2>

W18
(timing)<2>

W19
(timing)<2>

W20
(timing)<2>

W21
(timing)<2>

W22
(timing)<2>

W23
(timing)<2>

W24
(timing)<2>

W25
(timing)<2>

W26
(timing)<2>

W27
(timing)<2>

W28
(timing)<2>

W29
(timing)<2>

W30
(timing)<2>

W31
(timing)<2>

W32
(timing)<2>

W33
(timing)<2>

W34
(timing)<2>

W35
(timing)<2>

W36
(timing)<2>

W37
(timing)<2>

W38
(timing)<2>

W39
(timing)<2>

W40
(timing)<2>

W41
(timing)<2>

W42
(timing)<2>

W43
(timing)<2>

W44
(timing)<2>

W45
(timing)<2>

W46
(timing)<2>

W47
(timing)<2>

W48
(timing)<2>

W1
(st)<2>

Wi,c
(CU_class)<2>

Stationary Value Wi,c
(st)<2>

weight
W1

(CU_class)<2>

W2
(CU_class)<2>

W3
(CU_class)<2>

W4
(CU_class)<2>

W5
(CU_class)<2>

W6
(CU_class)<2>

W1
(timing)<2>

W2
(timing)<2>

W3
(timing)<2>

W4
(timing)<2>

W5
(timing)<2>

W6
(timing)<2>

W7
(timing)<2>

W8
(timing)<2>

W9
(timing)<2>

W10
(timing)<2>

W11
(timing)<2>

W12
(timing)<2>

W13
(timing)<2>

W14
(timing)<2>

W15
(timing)<2>

W16
(timing)<2>

W17
(timing)<2>

W18
(timing)<2>

W19
(timing)<2>

W20
(timing)<2>

W21
(timing)<2>

W22
(timing)<2>

W23
(timing)<2>

W24
(timing)<2>

W25
(timing)<2>

W26
(timing)<2>

W27
(timing)<2>

W28
(timing)<2>

W29
(timing)<2>

W30
(timing)<2>

W31
(timing)<2>

W32
(timing)<2>

W33
(timing)<2>

W34
(timing)<2>

W35
(timing)<2>

W36
(timing)<2>

W37
(timing)<2>

W38
(timing)<2>

W39
(timing)<2>

W40
(timing)<2>

W41
(timing)<2>

W42
(timing)<2>

W43
(timing)<2>

W44
(timing)<2>

W45
(timing)<2>

W46
(timing)<2>

W47
(timing)<2>

W48
(timing)<2>

W1
(st)<2>

Wi,c
(CU_class)<2>

Table 6.4: The weights of layer 2 in the NN for a typical busy interval (10am-10:30am)
capturing relative importance of the features.

class, but also the neighbouring classes. For example, as for busy-hours, class 1

gives the highest priority to the weight of feature for that class, W
(CUclass)<2>
1,1 , and

then a relatively high priority to W
(CUclass)<2>
1,2 which is for class 2. Class 2 also

gives the highest priority to W
(CUclass)<2>
2,2 and then W

(CUclass)<2>
2,1 and W

(CUclass)<2>
2,3 .

Similar behaviour can be seen for the idle-hours. However, as for the idle-hours is

less probable to have high CU values, the classes related to high utilization values
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Stationary Value Wi,c
(st)<2>

weight
W1

(CU_class)<2>

W2
(CU_class)<2>

W3
(CU_class)<2>

W4
(CU_class)<2>

W5
(CU_class)<2>

W6
(CU_class)<2>

W1
(timing)<2>

W2
(timing)<2>

W3
(timing)<2>

W4
(timing)<2>

W5
(timing)<2>

W6
(timing)<2>

W7
(timing)<2>

W8
(timing)<2>

W9
(timing)<2>

W10
(timing)<2>

W11
(timing)<2>

W12
(timing)<2>

W13
(timing)<2>

W14
(timing)<2>

W15
(timing)<2>

W16
(timing)<2>

W17
(timing)<2>

W18
(timing)<2>

W19
(timing)<2>

W20
(timing)<2>

W21
(timing)<2>

W22
(timing)<2>

W23
(timing)<2>

W24
(timing)<2>

W25
(timing)<2>

W26
(timing)<2>

W27
(timing)<2>

W28
(timing)<2>

W29
(timing)<2>

W30
(timing)<2>

W31
(timing)<2>

W32
(timing)<2>

W33
(timing)<2>

W34
(timing)<2>

W35
(timing)<2>

W36
(timing)<2>

W37
(timing)<2>

W38
(timing)<2>

W39
(timing)<2>

W40
(timing)<2>

W41
(timing)<2>

W42
(timing)<2>

W43
(timing)<2>

W44
(timing)<2>

W45
(timing)<2>

W46
(timing)<2>

W47
(timing)<2>

W48
(timing)<2>

W1
(st)<2>

Wi,c
(CU_class)<2>

Stationary Value Wi,c
(st)<2>

weight
W1

(CU_class)<2>

W2
(CU_class)<2>

W3
(CU_class)<2>

W4
(CU_class)<2>

W5
(CU_class)<2>

W6
(CU_class)<2>

W1
(timing)<2>

W2
(timing)<2>

W3
(timing)<2>

W4
(timing)<2>

W5
(timing)<2>

W6
(timing)<2>

W7
(timing)<2>

W8
(timing)<2>

W9
(timing)<2>

W10
(timing)<2>

W11
(timing)<2>

W12
(timing)<2>

W13
(timing)<2>

W14
(timing)<2>

W15
(timing)<2>

W16
(timing)<2>

W17
(timing)<2>

W18
(timing)<2>

W19
(timing)<2>

W20
(timing)<2>

W21
(timing)<2>

W22
(timing)<2>

W23
(timing)<2>

W24
(timing)<2>

W25
(timing)<2>

W26
(timing)<2>

W27
(timing)<2>

W28
(timing)<2>

W29
(timing)<2>

W30
(timing)<2>

W31
(timing)<2>

W32
(timing)<2>

W33
(timing)<2>

W34
(timing)<2>

W35
(timing)<2>

W36
(timing)<2>

W37
(timing)<2>

W38
(timing)<2>

W39
(timing)<2>

W40
(timing)<2>

W41
(timing)<2>

W42
(timing)<2>

W43
(timing)<2>

W44
(timing)<2>

W45
(timing)<2>

W46
(timing)<2>

W47
(timing)<2>

W48
(timing)<2>

W1
(st)<2>

Wi,c
(CU_class)<2>

Stationary Value Wi,c
(st)<2>

weight
W1

(CU_class)<2>

W2
(CU_class)<2>

W3
(CU_class)<2>

W4
(CU_class)<2>

W5
(CU_class)<2>

W6
(CU_class)<2>

W1
(timing)<2>

W2
(timing)<2>

W3
(timing)<2>

W4
(timing)<2>

W5
(timing)<2>

W6
(timing)<2>

W7
(timing)<2>

W8
(timing)<2>

W9
(timing)<2>

W10
(timing)<2>

W11
(timing)<2>

W12
(timing)<2>

W13
(timing)<2>

W14
(timing)<2>

W15
(timing)<2>

W16
(timing)<2>

W17
(timing)<2>

W18
(timing)<2>

W19
(timing)<2>

W20
(timing)<2>

W21
(timing)<2>

W22
(timing)<2>

W23
(timing)<2>

W24
(timing)<2>

W25
(timing)<2>

W26
(timing)<2>

W27
(timing)<2>

W28
(timing)<2>

W29
(timing)<2>

W30
(timing)<2>

W31
(timing)<2>

W32
(timing)<2>

W33
(timing)<2>

W34
(timing)<2>

W35
(timing)<2>

W36
(timing)<2>

W37
(timing)<2>

W38
(timing)<2>

W39
(timing)<2>

W40
(timing)<2>

W41
(timing)<2>

W42
(timing)<2>

W43
(timing)<2>

W44
(timing)<2>

W45
(timing)<2>

W46
(timing)<2>

W47
(timing)<2>

W48
(timing)<2>

W1
(st)<2>

Wi,c
(CU_class)<2>

Table 6.5: The weights of layer 2 in the NN for a typical idle interval (12:30am-
1:00am) capturing relative importance of the features.

has less feature importance. For example, for the idle-hours, class 1 has relative

importance value of 6.2 from the W
(CUclass)<2>
2,1 and class 5 has it as 0.85 from the

W
(CUclass)<2>
5,5 . However, for the busy-hours, class 1 has relative importance value of

5.6 from the W
(CUclass)<2>
1,1 and class 5 has it as 4.1 from the W

(CUclass)<2>
5,5 .

We conclude this part by presenting in Figure 6.5 the way the components of

the NN build up a gradually a model that surpasses the näıve one. The first step to
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Figure 6.5: Building up the NN’s accuracy vs. a näıve predictor baseline.

gain an advantage over näıve prediction is to encode the previous class and stationary

value (c.f. Previous Class and Stationary Value in Tables 6.4 and 6.5), hence bridging

the prediction to the recent past dynamics. This refinement is shown by the green

line in Figure 6.5. Yet the impact is relatively minor on accuracy compared to what

happens when we add as feature the dot product (c.f. Dot Product in Tables 6.4 and

6.5) to the intra-day τ interval steady states (of which there are 48 in the current

example since τ = 30 minutes). Furthermore, it is the case that the comparison to

the other intra-day steady states is an indirect way to encode the time of the day. If

we were to, instead, replace the intra-day with the dot product against the intra-week

library of steady states, the improvement would be only marginally better (yellow

line in Figure 6.5).
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Selection of τ

We previously claimed that by splitting time into τ minutes intervals we can remove

some seasonality from the data, which leads to better performance of the learning

algorithm. In this experiment, we use τ = 60, 30, 20, and 10 minutes; and we

establish a baseline with τ = 5 which is the smallest realistic interval due to our

experimental setup. Our baseline is to use the MI algorithm described in section 3.3.1

for merging intervals having similarity (dot product) higher than 0.98% or having

at least 10 merged intervals. We run the MI algorithm on the whole data set. The

fruit of merging τ = 5 minutes intervals is 10 classes mixing similarly behaving τ = 5

minutes intervals. To test the effect of removing seasonality by merging intervals,

we lump states within each of the 10 clusters with the constraint of Cl = 10% and

Cu = 25%. The MI provides us with close to the best overall prediction accuracy.

To this end, we compare the MI method against τ = 30 minutes intervals, chosen

in an ad-hoc manner, as well as with the global lumping case. For this experiment

we use feature engineered NN prediction results for 6 lumped states (utilization

ranges). Tables 6.6a, 6.3a, and 6.6b show, respectively, the results for the case of

global lumping with overall prediction accuracy of 85.92%, τ = 30 minutes interval

and overall prediction accuracy of 91.16%, and MI with τ = 5-minutes and overall

prediction accuracy of 91.46%. While the difference with respect to global lumping

is significant, the difference in accuracy of the model for when τ = 30 minutes and

MI τ = 5 minute intervals is around 0.3% which is negligible. Thus τ = 30 minutes

has similar effect on reducing seasonality as MI with τ = 5 minutes. One possible

reason for the increased accuracy is that number of samples within data seen by

the MI method is higher than the one with τ = 30 minutes; so that the learning

algorithm might do a better job in determining patterns. More importantly, the MI

method is omniscient, i.e. it is base on knowledge of the entire data set, but the

rest of the techniques only know their training data. For the sake of completeness,
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we also considered the case of lumping into 5 states (utilization ranges). Then the

difference becomes even less. The feature engineered NN for MI with τ = 5-minutes

gives overall accuracy of 91.96%; and the generic τ = 60-minutes has the accuracy of

89.81%, τ = 30-minutes has an accuracy of 91.06%, τ = 20-minutes has 91.94%, and

τ = 10-minutes has 91.81%. As the values suggest, the difference in overall accuracy

is small for τ ≤ 30 minutes. The results are shown in Figure 6.6. Not that in Figure

6.6, we represent the 144 intervals for τ = 10 across a 24 hour day; we repeated each

accuracy value in the plot for τ = 20 2 times, for τ = 30 3 times, and for τ = 60

6 times. The results suggest that the choice of τ has not much impact in overall

performance of the model as far as it is small enough (30 minutes or less) to remove

the intra-day seasonality.

Figure 6.6: Accuracy for τ = 60, τ = 30, τ = 20, and τ = 10 minutes.
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(a) Global lumping

(b) Merged Intervals (MI)

(c) Lumping separate τ = 30 minute intervals

Table 6.6: Accuracy for feature engineered NN for global vs. MI (with τ = 5 minutes)
vs. separate τ = 30-minute interval lumping using 6 lumpted states (utilization
ranges) in all cases.
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The impact of Loss Function

We run experiments for 5 and 6 lumped states with τ = 60 minutes to compare the

impact of a cross-entropy and the Rayleigh-based cost function. The Figure 6.7 com-

pares the two penalty values for all intervals with 5 and 6 states. The accuracy results

of the proposed loss function shows a very slight decrease at some of the intervals for

the asymmetric penaly but this comes at a huge reduction in penalty values in almost

all intervals. The increase is caused by the impact of penalizing under-estimation of

the utilization when it is likely to be high (during busy hours), which could cause

congestion if the intention is to use all, but no more than, the unutilized capacity.

More importantly, looking at the peak penalty differences between the cross-entropy

and the asymmetric cost function, they appear to be frequently at busy times of the

day, or when the dynamics change as people leave the workplace. The asymmetric

cost function avoids the “costly” underpreductions of utilization that could cause

congestion when a significant number of users are stil present – and could have been

impact by adverse effects of congestion.

A closer inspection of what is the wrong predictions of the asymmetric cost func-

tion can be seen in Figure 6.10 where, e.g., between 3pm and 4pm, it mispredicts

utilization range 1 (the lowest) more often than the entropy-based cost function.

This means that the state is 1 but the asymmetric cost function considers it to be

higher, hence is cautious of utilizing the leftover capacity. At higher utilizations, the

two methods have less distinct behavior.

Constraints on Lumping Utilization Range

So far, in all of the experiments, meta-states produced from lumping states have

constraints of Cl = 10% and Cu = 25%. However, constraints need to adapt to the

needs of the application. Previously, we claimed that given constraints on utilization

range, the clustering coming from lumping, best fits data. In this subsection, we run
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(a) Prediction accuracy

(b) Normalized penalty (highest = 1.0)

Figure 6.7: Cross-entropy vs. asymmetric (Rayleigh-based) loss function perfor-
mance for 6 lumped states (utilization ranges).
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(a) Prediction accuracy

(b) Normalized penalty (highest = 1.0)

Figure 6.8: Cross-entropy vs. asymmetric (Rayleigh-based) loss function perfor-
mance for 5 lumped states (utilization ranges).
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three experiments, one with Cu = 35%, one with Cu = 25%, and the last one with

Cl = 10% and Cu = 25%. Figure 6.10 shows the cumulative accuracy results over

time-intervals with the aforementioned constraints. We used cumulative accuracy

(summing up accuracy over time) since the changes on some of the intervals were

not detectable by eye. But the cumulative accuracy shows the overall accuracy

increases. It shows, as expected, as we loosen the constraints, we observe a boost

in overall accuracy. To this end, the red line with Cu = 35% outperforms the rest.

Also, the blue with Cu = 25% in overall performs better than the green line with

Cl = 10% and Cu = 25% as the constraints are looser for the latter.

Multi-Step Ahead Prediction

So far, we investigated the capabilities of our model and extracted features in pre-

dicting 1-step ahead class of utilization. In these set of experiments, we aim to pursue

the capabilities of our model in predicting several steps ahead. For the purposes of

these experiments, we use the same set of features and the same Neural Network

architecture shown in Figure 6.1. In contrast to other experiments that we incorpo-

rated 48 previously seen stationary values as feature, in this experiment we only use

24 of them. The reason behind this decision is that for our dataset, a larger number

of lags spanning a larger stride simply do not exist which would lead to fewer data for

training and testing. To this end, changing 48 features to 24 causes less information

from past to be incorporated in prediction of the future values; hence, increasing

number of training and testing samples from our dataset. In a larger dataset, there

is no reason to prohibit us from using 48 features. In this experiment, we predict

the class of utilization for 1, 2, 4, and 8 steps ahead for τ = 60-minutes. We also use

the default constraints of Cl = 10% and Cu = 25%. The Figures 6.11a and 6.11b

show the changes in prediction accuracy of multi steps-ahead for respectively 5 and

6 lumped states (utilization ranges). As the results suggest, the accuracy for multi-
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step ahead prediction does not differ significantly as the number of steps increase

but it does deteriorate as we predict for more steps into the future.

Deep Sequence Modeling Architectures

Finally, evaluating our Neural Network model with deep networks can aid us to

determine how good our proposed network is. However, we are facing the issue of

having not enough data for data hungry deep networks. With the amount of data

collected over the past few months, the deep networks appears to overfit. Among

possible deep networks we could use, sequence modeling networks such as Long

Short Term Memory (LSTM), would be beneficial for time-series predictions. It

is worth to mention that, as we discussed before, in some steps of our work (such

as lumping), we converted an unsupervised time-series problem into a supervised

clustering problem in which the goal is to predict the right class of utilization given

some non time dependent features, extracted from time-series. Although we changed

the objective function of the prediction, the goal stays the same, predicting utilization

of the channel over time. To this end, comparing our model with a deep sequence

modeling architecture makes sense. Two of the drawbacks of the deep networks,

other than their data hunger, are their inability to provide us information regarding

the importance and relevance of features extracted; and high computational cost in

performing prediction. To this end, we used LSTM only for the sake of evaluating

our model and provided features we used in our original proposed network. Using

different machine learning and deep learning techniques, such drop out and adding

regularizer, aided us to overcome overfitting; however, due to insufficient data, we

cannot claim that the deep model is performing its best in predicting the utilization

of the channel for a certain time step ahead. With these caveats, we implemented

an LSTM with 2 hidden layers, for τ = 20 minutes and with constraint of Cl = 10%

and Cu = 25%. For this setup, LSTM gave us the overall accuracy around 92.3%.
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Our NN model with the same constraints and τ value had an accuracy of 91.94%.

It suggests the task of prediction having the features provided, does not need a very

deep network. Providing more data would most likely increase the accuracy of LSTM

to a more meaningful difference against our NN, but by how much is a just a matter

of speculation at this point.
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00:00 – 01:00 01:00 – 02:00 02:00 – 03:00 03:00 – 04:00

04:00 – 05:00 05:00 – 06:00 06:00 – 07:00 07:00 – 08:00

08:00 – 09:00 09:00 – 10:00 10:00 – 11:00 11:00 – 12:00

12:00 – 13:00 13:00 – 14:00 14:00 – 15:00 15:00 – 16:00

16:00 – 17:00 17:00 – 18:00 18:00 – 19:00 19:00 – 20:00

20:00 – 21:00 21:00 – 22:00 22:00 – 23:00 23:00 – 24:00

Figure 6.9: Comparison of wrongly predicted classes, at various times of the day,
for normal cross-entropy and proposed asymmetric loss function for 5 lumped states
(utilization ranges) and τ = 60 minutes.
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Figure 6.10: The impact on (cumulative) accuracy of different utilization range con-
straints imposed during lumping.
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(a) 5 lumped states (utilization ranges)

(b) 6 lumped states (utilization ranges)

Figure 6.11: Multi-step prediction accuracy (τ = 60 minutes).
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Chapter 7

Conclusions and Future Work

In this thesis we focused on techniques for predicting utilization of a wireless channel.

The framework assumed is one where there exist ways to collect utilization observa-

tions, the measurements are stored and models are generated based on them, and

finally the models are used to form on-demand predictions. Practicality concerns,

both for the development of this thesis, as well as for a potential deployment, suggest

that the data collection and model production should probably take place near the

“edge” of the network, i.e., as a form of edge computing. After all, we expect that a

model fit for a particular location is not necessarily good for another location. Future

work should explore whether this assertion is true or if models developed in one lo-

cation are suitable at other locations. We should add that the environment in which

the data collection was performed, is covered by a centrally managed controller for

most WiFi APs (although several user-owned APs also exist, but do not account for

a lot of traffic). Data collection in a residential environment is expected to behave

differently, both in terms of differences are different times of the day, and due to the

lack of coordination of how channels are (re)used across space.

A significant amount of time was spent in developing the data collection infras-

tructure. It involved the deployment of various sniffers and their observations were

sent to a backbone computing infrastructure. The data collected have only been
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partially studied in this thesis. More data, for the “popular” channels (1, 6, and 11)

as well as for different locations are still waiting analysis. To this end, future work

should look into the correlations of the utilization across channels; eventually leading

to a corresponding study of channel switching strategies.

Our modelling efforts started with splitting the utilization time-series into in-

tervals, each one of them approximated as a stationary process modeled as Markov

chain in order to capture its short-term behavior. We successfully demonstrated in

this thesis that the similarity between the short-term behavior of each interval and

a ”library” of prior behaviors benefit the model. So much so that this similarity is

a means to capture the time of the day (since when we explicitly added the time of

the day, it did not improve the prediction). Additionally, we exploited the lagged

correlation to incorporate, what we called the stationary component, after seasonal-

ity was eliminated from the time series. We demonstrated that these features helped

the learning algorithm to better capture the dynamics of the environment.

Given that very few applications have the finesse to decide on actions for mi-

nuscule differences in predicted utilization, we resorted to a means of ”coarsening”

utilization ranges by applying lumping technique to the state transition matrices of

the first-order Markovian models of each time interval. The experiments suggest

feeding the features into a shallow Neural Network (NN) empowers it to predict uti-

lization ranges with an overall promising accuracy, even if called to perform multiple

step prediction. Looking at the weights of the trained network, it is evident that the

class previously observed has a strong influence on the next prediction, indirectly val-

idating why näıve predictors can work very well in a number of cases. Nevertheless,

the additional features build up an advantage over näıve.

Even though we attempted to remain application-agnostic, we tried to capture a

plausible concern for certain applications, namely the concern that it is “better” to

underutilize the channel rather than create congestion (and impacting other traffic
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flows as well) if we overutilize it. For this goal, we demonstrated the beneficial

impact of an asymmetric cost function following a Rayleigh function, and comparing

it against a classic application of cross-entropy. Whle it is possible that the approach

requires fine tuning, it was evident that for the same overall accuracy, the asymmetric

function was avoiding to call the channel underutilized and therefore would help an

application avoiding overutilizing it.

We did not concern ourselves with the architecture of a future system that pro-

vides wireless utilization prediction services. To be useful it should be able to adopt

in real time, using powerfull processing close to the observations. Therefore, future

work could be an online updating of this model. One example update is that of

making the lumping into ranges of utilization more flexible. Lumping assumes noise

is involved in the Markov chain transitions as derived by the observations, so that

reducing the state space is not possible without introducing error. At the same time,

lumping is computationally expensive; hence, updating it without starting the cal-

culation from scratch could be challenging. Future work is needed to find the best

online algorithms to revise the lumping algorithms.

Another future work would be finding correlations among Access Points’ (AP)

signals. Part of our main focus in this project was to find features which enhance the

ability of the learner to predict the utilization of the channel. One of the features

that we never discussed due to the scope of the project was the correlations among

same channels of different APs. We observed in some of our experiments that there

are some correlations among utilization of the same channels of APs. The reason

behind this is the fact that the traffic from a user connected to an AP, using a specific

channel, keeps the channel busy and it sensed as such by other APs (unrelated to

the user) which operate nearby on the same channel – a straightforward consequence

of wireless being a shared medium. Therefore, the utilization of the channel of all

APs covering the same area bears strong correlations because of the number of users
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“seen” as keeping the medium active overlaps among APs. We see this as a source

for two potential directions. One is to develop a model to predict which channel to

switch to at a given location – i.e., add the location as one of the dimensions of the

model. This will be in contrast to previous channel-switching work where location

was not taking part in the model. Equally, the correlations across AP utilization

could be used as the basis for developing models that can inform us if two APs are

near or far from each other. In an institutional deployment as the one where the

data collection happened, the AP locations are known. The same cannot be said

about residential environments though where the AP deployment is arbitrary.

Finally, the work in this thesis is solely focused on the assumption that a device

taking advantage of various prediction techniques is interested to utilize the channel

as much as possible. What if multiple devices predict the same and decide to do so

at the same time, leading to congestion? There are many ways to prevent this from

happening by having a controller (possibly co-located with APs – announcing its

predictions with possible extensions to the Beacon payload) performing the predic-

tions and apportioning (explicitly or implicitly) the predicted available capacity to

the various devices. Load and call admission concerns have made it into the 802.11

standard as various amendments but we think the real value is if this is done in a co-

ordinated way across APs that do not necessarily have a common network manager,

i.e., in a decentralized way. It might even be possible to announce the model param-

eterizations the APs have used to form the predictions as well as the predictions on

the number of client devices which could attempt access to the channel in the next

step. For an analysis of this kind of an approach, data would need to be collected

that do not just preserve the utilization measurements, but also identify the individ-

ual devices present in the vicinity. Given the expanding use of MAC randomization,

this could be a challenging task.
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