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Abstract

Reinforcement learning (RL) offers agents a framework for learning to perform

hard-to-engineer behaviors that other machine learning (ML) approaches can-

not due to the complex nature of these problems [1]. However, it is impractical

to learn a complex task from scratch due to reasons such as the huge sample

complexity of RL algorithms, experience feasibility in dangerous setups, or

the need for long periods of training in order for the algorithms to converge

[1]. The agent’s training can further be hindered by the great difficulty of the

target task, poor state representation, or sparse reward signals [1].

Transfer learning is the area of research concerned with the class of methods

that seek to speed up the training of RL agents by transferring the knowledge

that the agent has gained through one or more source task Markov decision

processes (MDP) to the target task [2], [3]. Transfer learning can eliminate

the need for training from scratch every time the environment changes slightly

and help the agent to make use of its past experiences in similar domains [4].

However, transfer learning may inadvertently hurt the target performance,

a phenomenon known as negative transfer [5]. Therefore, having a metric to

approximately measure the similarity between the source task and the goal task

can help us to pick our source task more wisely and perform better on the goal

task. The transfer learning literature includes different metrics to measure

the level of similarity between MDPs [2], [6], [7]; among them are distance

metrics based on the averaged difference between the corresponding state-

action transition distributions of the two tasks [6], or based on graph-similarity
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between the graphs representing the transition and the reward functions of the

source task and the target task [7] [8].

In this work, we look into three similarity metrics and their ability to

estimate the similarity between two MDPs. All three metrics are based on

the distance of state-action spaces between two MDPs. The first two metrics

are based on the transitions spaces, but they focus on the action space and

the state space separately. The third metric focuses on the difference between

the immediate reward values of the state-action pairs in the source and target

tasks. After pre-training on source tasks and then performing transfer learning,

we look into the predictive capacities of each metric of the agent’s performance

on the goal task in two OpenAI gym domains: Hopper and Pendulum. The

thesis is organized in a matter to first to present the needed background about

the used algorithms and environments, then after explaining the process for

calculating each metric, present the result of the experiments and analyze

them. In the last part of the thesis, we pose questions as guidelines for future

works in order to find the reason for the observed results.
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Chapter 1

Introduction

In this chapter, first we state a short background and the motivation behind

this work. After that, we mention some of the related works and how our

work builds up on them and completes them. In Section 1.3, we explain the

research questions that this thesis is trying to address. Finally, we explain the

layout of the thesis.

1.1 Motivation

Each reinforcement learning (RL) task can be interpreted as a sequence of

decisions that an agent should make, and it is further encoded using Markov

decision processes (MDPs) [3]. These sequences of decisions represent the way

that the agent will behave in each state and are formally called the learned

policy [9]. The agent receives a reward after making decisions, and when the

agent learns a policy that will maximize a long-term expected return for an

MDP, we consider that MDP solved [3]. Even though RL is able to address

problems that normal machine learning algorithms cannot, the curse of dimen-

sionality (high number of possible states) when facing continuous state spaces

of real-world tasks can result in a slow convergence rate or poor performance

in RL agents [10]. One possible approach to tackle this problem is to use

transfer learning.

The core idea of transfer learning (TL) is that experience gained in learning

to perform one task can help improve learning performance in a related but

different task [2]. Sometimes training the agent on the final task is time-
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consuming or infeasible, dangerous, or expensive. In these situations, we would

like to eliminate or limit the needed training on the goal task (MDP∗). In

addition to making this goal possible, TL algorithms can also remove the

need for training the agent again after every slight change in the goal task

[4]. The reasons for using TL algorithms are not limited to these cases. In

other cases, the goal of transfer learning might be introducing the agent to

variable experiences to improve its overall performance in the goal task [11].

Transfer learning algorithms can be categorized based on many factors. One

approach for classifying the TL algorithms is to focus on the type of transferred

knowledge [2]. The transferred knowledge can be low-level information (like

the action-value function) or high-level information (such as rules regarding

how a particular domain functions) [2]. The initialization of an agent in the

target task is directly possible with low-level knowledge. In contrast, higher-

level knowledge, such as partial policies, is not usually used as a full policy

in the target task, but rather as a starting point or a guideline for the agent

during its training time [2].

Before performing transfer learning, it is important to determine the simi-

larities and differences between the source task and the goal task. For instance,

pre-training an agent in a source task with the goal of falling down might not

be helpful for a goal task of jumping. The source task and the goal task can be

different in various aspects. For example, they might differ in their transition

functions, state spaces, or reward functions [12]. An example of two environ-

ments with different transition functions can be jumping up in environments

with different gravity values. In this case, since the physical rules of the en-

vironments are different, the agent will end up in different states even when

starting in the same states and taking the same actions.

Transfer learning can improve the agent’s performance on the goal task

by different degrees. The degree of performance improvement in MDP∗ varies

depending on the similarity between the source task and the goal task. The

more similar the source and the goal task, the higher the transfer success

would be [2]. But how exactly can we measure the similarity between tasks?

Similarity metrics, or their complementary metrics, distance metrics can help
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us address this problem by approximating the similarity between a source

task and a goal task. The two main categories of distance metrics are 1)

model-based and 2) performance-based [13]. Performance-based metrics, as

it can be guessed from their name, compare the performance of the agent in

the source and goal tasks. Model-based metrics compute the level of similarity

between the source task and the goal task by measuring the similarity between

their respective MDP models (e.g., states, actions, transitions, and rewards

dynamics) [13]. Defining good distance metrics enables robust transfer and

can also be used to generate new source tasks or change the existing source

task’s parameters to make it more similar to the goal task [14].

In short, distance metrics are useful measures both for transferring from

source tasks to target tasks and generating or changing the source tasks to

increase the reuse gain.

1.2 Existing Techniques and Drawbacks

Researchers have developed several techniques for providing a measure of dis-

tance between tasks [7], [15], [16]. As mentioned in the previous section,

distance metrics can be divided into two categories: 1) Model-based and 2)

Performance-based [13].

In performance-based distance metrics, agent performance can be defined

as (i) the policies that an agent learns while performing these tasks or (ii) the

benefit that an agent gains by reusing the knowledge gained from a source

task in a target task [13]. Among performance-based similarity metrics, Mah-

mud et al. [15] proposes a similarity metric based on the reuse gain an agent

gets by reusing the knowledge from that source task in the target task. Un-

fortunately, in most cases, we cannot calculate the reuse gain until after the

transfer has taken place. Model-based approaches do not require training or

transferring to the goal task in order to offer us a measure of similarity. For

instance, Kuhlmann et al. [7] assumes knowledge of the full model of the

MDP to construct a graph and look for the most similar source task by look-

ing for isomorphic rule graphs. Even though this similarity metric can be
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calculated without any training on MDP∗, full knowledge of the MDP model

is not always available. Ammar et al. [17] does not assume knowledge of the

environment and measures the similarity metric merely by comparison of the

agent’s interactions with the environment in the source task and the target

task. The comparison of the experience tuples is performed by using restricted

Boltzmann machines (RBMs). The downside of this approach is that it is com-

putationally expensive since it requires training a generative model, and it is

also dependent on exploration [18].

Another group of metrics are based on the distance between transition

spaces [6], [16], [19]. For instance, Taylor et al. [19] introduces a distance

metric as the Euclidean distance between state-action pairs in the source and

target tasks. Carroll et al. [16] introduces another distance metric by focusing

on the mean squared error between the immediate reward values of the state-

action pairs in the source and target tasks. Even though similarity metrics

have been introduced based on the Euclidean distance of rewards and the

Euclidean distance of actions, no similarity metric has been introduced based

on the Euclidean distance of the next states (s′).

1.3 Contributions

The preceding motivation underlies the work in this thesis. Our contributions

are summarized as follows:

1. We propose a new distance metric, called the next state distance (ds).

The distance is defined as the Euclidean distance between the next states

(s′) for corresponding state-action pairs in the source task and the tar-

get task. This distance metric is model-based and does not require any

training on the goal task. The concept of this distance is easy to compre-

hend, and no model training or complex function definitions is needed

to calculate this distance metric. Additionally, to compute this metric,

no knowledge of the environment is necessary.

2. A statistical analysis of the correlation between the next state distance
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and three transfer evaluation measures mentioned below. In order to

evaluate the ability of our metric in measuring the similarity between

two tasks, first we look at the Pearson correlation between this metric

and each transfer evaluation metric and then the cost of picking the best

MDP (for that evaluation measure) based on this metric.

(a) Jumpstart (initial performance boost on the goal task).

(b) Asymptotic performance (final performance on the goal task).

(c) Time to threshold (agent’s needed learning time to reach a pre-

defined performance level).

3. We compare the next state distance with two other distance metrics

that are also calculated based on the Euclidean distance between the

transition spaces of the agent in the source and target tasks to answer

the following questions: Which distance metric should we use if

(a) we care about the initial performance of the agent in the goal task

and we are allowed to train on the goal task

(b) we care about the initial performance of the agent in the goal task

and we are not allowed to train on the goal task

(c) we care about the agent’s final performance in the goal task and we

are allowed to train on the goal task

(d) we care about the agent’s final performance in the goal task and we

are not allowed to train on the goal task

(e) we care about the agent’s speed of learning in the goal task and we

are allowed to train on the goal task
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(f) we care about the agent’s speed of learning in the goal task and we

are not allowed to train on the goal task

1.4 Thesis Structure

This thesis consists of 5 main chapters. After Chapter 1, the introduction, in

Chapter 2, we provide the reader with the necessary information about the

background and related work for understanding this thesis. We explain the

layout of our experiments and the process of calculating the distance metrics

under investigation in Chapter 3. Afterward, Chapter 4 first explains our ex-

perimental setup and the two OpenAI gym domains in which our experiments

were carried out. Then in the second part of this chapter, we mention the eval-

uation measures that we have used to analyze the results of our experiments.

In the last section of Chapter 4, we present the results of our experiments for

comparing the predictive abilities of three distance metrics and their analysis.

Finally, in Chapter 5, we conclude our thesis with an overview of our proposed

distance metric’s performance compared to two other distance metrics.
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Chapter 2

Background and Related Work

In this section, we provide the reader with the necessary information for un-

derstanding this thesis.

2.1 Reinforcement Learning

A reinforcement learning (RL) task can best be described as a sequential

decision-making setup that consists of an agent interacting with an environ-

ment by taking actions and receiving rewards and observations in return. In

contrast to a supervised learning setting that deals with a set of labeled ex-

amples, the RL agent is not provided with any labels: it has to accomplish

the goal in an uncertain and possibly complex environment by trying different

actions and learning which action gives rise to the maximum reward. The

sequential interactions of the agent with the environment can be formulated

as a Markov decision process (MDP) [20]. At each time step t, the agent

causes the environment to transition according to the transition probabilities

T (s, a, s′) = Pr(s′ | s, a) from state s ∈ S to a new state s′ ∈ S by taking an

action a ∈ A. For this transition, the agent receives a reward according to the

reward function R(s, a), determining the reward for taking action a in state

s. Furthermore, it is possible to encourage the agent to prioritize immediate

reward over latent reward by discounting rewards more and more as they hap-

pen further and further in the future by using the discount factor, γ. Such an

MDP is described by the tuple ⟨S,A, T, γ, R⟩.

The mapping that helps the agent to decide what action to take at each
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state is called a policy, and the agent learns it through trial and error. A policy

can be deterministic or stochastic. A deterministic policy π is a mapping from

states to actions, π : S → A, that is, for each state, s, π(s) returns an action,

a = π(s) with probability of 1, i.e., π(s) = 1. Another function on states and

actions is the state-action value function Qπ(s, a). Qπ(s, a) is defined as the

expected sum of discounted rewards (using the discount factor γ) the agent

will receive if it takes action a in state s and follows the policy π from that

point on and it is formulated based on equation (2.1):

Qπ(s, a) = E[
∞∑
k=0

γkR(st+k, at+k) | st = s, at = a, π]. (2.1)

The action value function for any given policy π satisfies the Bellman equa-

tion:

Qπ(s, a) = R(s, a) + γEs′,a′ [Q
π(s′, a′)],

where s′ is the state at the next time step and a′ is the action the agent takes

on the next time step. The goal of agent is to maximizes the expected sum

of discounted rewards by finding the optimal policy denoted by π∗. Given the

optimal value function Q∗(s, a), the agent can retrieve the optimal policy π∗

by acting greedily with respect to the optimal value function:

π∗(s) = argmax
a∈A

Q∗(s, a),

where Q∗(s, a) is defined as:

Q∗(s, a) = max
π∈Π

Qπ(s, a)

and Π is the set of all possible policies.

The Bellman equation for the optimal policy π∗ is called the Bellman op-

timality equation:

Q∗(s, a) = R(s, a) + γEs′,a′ [Q
∗(s′, a′)].

Value-based RL algorithms try to learn the optimal value function Q∗ it-

eratively, versus policy gradient algorithms try to learn the optimal policy π∗
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directly. Actor-Critic methods are a combination of policy learning and value

learning, i.e., the agents learns two models: the value function model and the

policy model. The policy function plays the role of the actor: it picks what

moves to play. The value function is the critic: it tracks whether the agent is

ahead or behind in the course of the game. That feedback guides the training

process.

When learning iteratively, it is crucial for a good policy to explore and

discover new states and actions along with exploiting the knowledge it has

already gained.

2.2 Twin Delayed Deep Deterministic Policy

Gradients (TD3)

Policy gradient methods reformulate maximizing the expected return as min-

imization of a loss function L(θ) where θ encapsulates the agent parameters.

Deep Deterministic Policy Gradient (DDPG) [21] is a policy gradient method

often used in domains with continuous and high dimensional actions spaces.

DDPG is widely-used and occasionally it can achieve great performance, but

may require significant hyperparameter tuning. One problem with DDPG

is the well-known overestimation problem as the result of the Q-function dra-

matically overestimating Q-values until eventually causing the policy to break.

Fujimoto et al. [22] extended DDPG to Twin Delayed DDPG (TD3) in order

to alleviate this problem using tricks such as learning two Q-functions and

updating the policy less frequently.

TD3 was shown to significantly improve upon DDPG [23]. It is an algo-

rithm for model-free deep reinforcement learning in continuous action spaces

that is off-policy. The behavioral policy of TD3 is its target policy in addition

to some added noise actions at training time, typically uncorrelated mean-zero

Gaussian noise. The reason behind exploring off-policy in TD3 is its deter-

ministic nature which can give rise to the agent not trying enough variety of

actions.

TD3 uses an actor-critic architecture [3] that includes an actor with a
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deterministic policy: π : S → A, and two critics with distinct action-value

function approximations: Q : S × A → Ri. Each critic acts independently

in approximating the actor’s action-value function Qπ. Neural networks are

used as the representation of the actor and θπ, θQa , and θQb encapsulate the

parameters of the NNs.

2.3 Transfer Learning

Reinforcement learning offers to robotics agents a framework for learning to

perform hard-to-engineer behaviors that other ML approaches cannot due to

the complex nature of this domain [1]. Inspired by how humans learn through

trial-and-error processes, RL algorithms acquire their knowledge based on the

rewards that agents obtain when they act in certain manners given different

experiences [3]. This requires a large number of episodes, which introduces

limitations regarding time, variability in experience, and experience feasibility

in some dangerous environments [1]. The agent’s training can further be hin-

dered by the high difficulty of the target task, poor state representation, or

sparse reward signals [1]. Transfer learning is the area of research concerned

with the class of methods that seek to speed up the training of RL agents

by transferring the knowledge that the agent has gained through one or more

source task MDPs to the target task [2], [3]. Transfer learning can eliminate

the need for training with every slight change in the environment and help the

agent to make use of its past experiences in similar domains [4].

Transfer learning is the problem of how to obtain, represent and, ultimately,

use the previous knowledge of an agent [24]. Transfer learning algorithms can

be categorized based on the the difference between the source task(s) and the

target task. Source tasks can be different from the target task in state spaces,

action spaces ,start states, goal states, transition probabilities and the reward

functions [12]. Another way to categorize TL algorithms is based on the type of

information that is being transferred. For instance, we can choose to transfer

a set of expert experiences, or the policy π learned in the source task. It is not

always easy to pick the best transfer learning algorithm. Choosing the transfer
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learning algorithm depends on how much and how the source and target tasks

are related [2]. After choosing the TL algorithm and performing the transfer,

we need metrics to measure the benefits of transfer. These metrics are usually:

Jumpstart, asymptotic performance, total reward, transfer Ratio, and time to

threshold [2].

1. Jumpstart: the initial performance boost of an agent in a target task as

as result of transfer learning .

2. Asymptotic Performance: agent’s final performance in the target task

(reward).

3. Total Reward: agent’s total reward can be increased as a result of using

transfer compared to learning from scratch and without transfer.

4. Transfer Ratio: The ratio of the total reward of an agent with and

without transfer learning.

5. Time to Threshold: the agent’s needed learning time in order to achieve

a pre-specified performance level can be decreased by knowledge transfer.

In this work we use jumpstart, asymptotic performance and time to thresh-

old as our evaluation metrics. They are explained in more details in Section

4.2.1.

When presented with multiple source tasks, it is a common approach to

choose the most “similar” task for transferring from hoping that it will result in

the most positive transfer. Therefore, the ability to correctly assess the degree

of similarity between the sources and target tasks is important. Different

similarity metrics have been introduced in attempt to measuring how related

two tasks are. They are briefly described in the next section.

2.4 Similarity and Distance Metrics

Similarity metrics, or their complementary distance functions, provide a mea-

sure of distance between tasks. There are various similarity metrics that use
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different techniques and algorithms to measure that distance and the choice

of a metric depends on the nature of tasks. The distance metric can be used

to measure the distance between the source tasks and the target task in trans-

fer learning and ultimately, singling out the source task that has the smallest

distance from the target task as the best task (most similar) for transfer [13].

Assuming we have two tasks,Mi = ⟨Si, Ai, Ti, Ri⟩ andMj =< Sj, Aj, Tj, Rj >,

that can share the state space, the action space, or the transition and reward

dynamics, then the distance between Mi and Mj is defined as:

d(Mi,Mj) = [0,∞) (2.2)

and the smaller the distance d(Mi,Mj), the greater the positive transfer from

Mi to Mj is.

If we have a goal MDP named Mj, and two source MDPS, Mi and Mk, we

expect d to have the following properties:

1. If d(Mi,Mj) < d(Mk,Mj), transferring to Mj from Mi will produce the

greatest positive transfer than transferring from Mk,

2. d(Mi,Mj) should be computable before or during the transfer

Distance metrics can be divided into two main categories: 1) model-based

and 2) performance-based.

Performance-based metrics compare the performance of the agent in the

source task and the target task. Agent’s performance may be defined as (i)

the policies learned by the agents in these tasks, or (ii) the reuse gain an agent

gets by reusing the knowledge from a source task in a target task. In case (i),

the similarity metrics measure the similarity between the behavioral policies

learned in the source task and the target task. The similarity between two

policies can be calculated based on their policy values, such as their action-

value functions Qπ [16], or their policy approximation parameters such as

their parameter vector θ that approximates the action-value function Qπ [25].

Although distance metrics based on reuse gain offer a measure of similarity

between two tasks, reuse gain can only be calculated after transfer learning
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has been done. When our goal is to choose a task to transfer from, producing

a measure of similarity after learning is too late to be useful [16]. Even though

distance metrics based on policy similarity offer a measure of similarity before

transfer learning is done, they require full or partial training on the target

task. This can be a disadvantage when training on target tasks that are time-

consuming or infeasible.

Model-based metrics do not require training on the goal task. In model-

based metrics, the degree of similarity between a source task and a target

task is measured by using their respective MDP models (e.g., states, actions,

transitions, and rewards dynamics). There are different model-based metrics

depending on which components of the MDPs are considered. Some works

construct graphs representing the transition and the reward functions of both

the source and target tasks and try to find the most similar source task by

looking for isomorphic rule graphs [7]. This approach assumes that the full

model of the MDP is given in order to build the rule graph. In contrast, one

approach calculates the distance metric merely by comparison of the experi-

ence gathered by interacting with the environment in the source task and the

target task. This distance metric is small if the generated experience tuples

in the source and target task are similar, and the comparison of the tuples is

performed by using restricted Boltzmann machines (RBMs) [17]. The prob-

lem with this approach is that it is computationally expensive since it requires

training a generative model, and it is also dependent on exploration [18].

In this work, we focus on metrics that do not require any domain knowledge

and are calculated simply as the Euclidean distance between actions, rewards,

or states. All three metrics are computed based on the experience that the

agent gathers by interacting with the environment, and they do not require

having any knowledge of the model of the MDPs:

• Action distance (da): is a performance-based metric, and it is defined as

the Euclidean distance between the corresponding state-action pairs in

the source and target task [19].

• Reward distance (dr): the third metric is a model-based distance metric,
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and it is defined as the mean squared error between the immediate reward

values of the state-action pairs in the source and target tasks [16].

Which distance metric is the best? Answering this question depends on the

factors such as the type of tasks and the transfer techniques that the agent uses

[16]. This doesn’t mean that task distance metrics are not useful but rather

that when we talk about the ”best” distance metric, we must pay attention

to the task, the transfer technique, and the type of reuse gain in the goal task

that we are interested in (jumpstart, asymptotic performance, etc.).
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Chapter 3

Our Approach

Previous works have shown that there is often a correlation between the sim-

ilarity of the previous tasks of the agent and the goal task and the efficacy of

transfer learning [17]. In this work, we propose three novel similarity metrics

and analyze whether there is a correlation between transfer learning effect and

similarity based on these metrics.

3.1 Overview

Training RL agents from scratch is not always possible, easy, or time-efficient.

One solution to this problem is to use transfer learning to remove or reduce

the required training on the goal MDP by first pre-training the agent on other

simulated environments and transferring the learned knowledge to the main

task. However, selecting among the simulated MDPs can be challenging. As

a possible solution, this work proposes three similarity metrics to measure

the similarity between the goal MDP setting and the other simulation MDP

settings. The goal is to see whether there was a correlation between transfer

learning effect and similarity.

3.2 Action Distance (da)

This distance can be thought of as the similarity of trained policies on two

different MDPs. Action distance measures the distance between actions that

two policies, Πx, Πy, trained on two distinct MDPs, MDPx, MDPy, take given
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the same state. For measuring this similarity metric for each MDP:

1. Train an agent on MDPx and save the policy Πx.

2. Repeat 15 times with 15 different environment seeds.

3. Train an agent on MDPy and save the policy Πy and the transitions

T (sy, ay, s
′
y, ry) for the last 100 timesteps.

4. Repeat 15 times with 15 different environment seeds.

5. Load Πx on the saved states, sy, and save the actions that Πx chooses,

ax.

6. For each of the 15 runs, calculate the average Euclidean distance between

ay and ax for 100 timesteps. Actions are 3-dimensional vectors, but the

range is the same for each dimension of the action vector; therefore, no

normalization is needed.

In order to be able to analyze the observations isolated from the effect of

training time, we perform steps 1 to 6 in three different stages: after training

on MDPx and MDPy for 1 hour, 2 hours, and 3 hours.

3.3 Next State Distance (ds)

is a model-based metric that calculates the Euclidean distance between the

agent’s immediate state for state-action pairs in the source and the target

tasks. This metric is a simple version of Bisimulation metrics. Bisimulation

metrics compute the distance between two states by comparing their transition

and reward dynamics. In other words, in order for two states to be bisimilar,

all of the transitions of one state must be matched by the transitions of the

other state, and the results should also be similar. Bisimulation is a very

strong notion because even a slight change can cause two states to not be

bisimilar anymore[26]. In this work, we calculate our second distance metric,

ds, based on the immediate state after a single transition from each state. If

policy Πx in MDPx on state s1 takes action a1 and ends up in s′x, and policy
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Πy in MDPy on state s1 takes action a1 and ends up in s′y, how different s′x

and s′y are. For measuring this similarity metric for each MDP:

1. Train an agent on MDPx and save the policy Πx.

2. Repeat 15 times with 15 different environment seeds.

3. In MDPy, interact with the environment for 100 timesteps and save and

the transitions T (sy, ay, s
′
y, ry).

4. Repeat 15 times with 15 different environment seeds.

5. in MDPx, load Πx on the saved states, sy, and take the actions ay

consecutively, saving the transitions T (sy, ay, s
′
x, rx).

6. States are 11 dimensional, and the range of each dimension varies. In

order to get more unified results, apply normalization to scale the range

of each dimension to [0, 1]. For each of the 15 runs, calculate the average

Euclidean distance between sy and sx for 100 timesteps.

In order to be able to analyze the observations isolated from the effect of

training time, we perform steps 1 to 6 in three different stages: after training

on MDPx for 1 hour, 2 hours, and 3 hours.

3.4 Reward Distance (dr)

If policy Πx in MDPx on state s1 takes action a1 and ends up in s′x and

gets reward rx, and policy Πy in MDPy on state s1 takes action a1 and ends

up in s′y and gets reward ry, this similarity metrics measures the difference

between rx and ry. Reward distance measures the difference between rewards

when two agents start from the same state and take the same action. This

similarity metric is another way to look into the difference between the physical

characteristics of environments. For instance, in Hopper, the reward value

depends on how far the Hopper jumps in each timestep. Since the starting

state and the action are the same, reward distance depends on the next state

17



that the agent ends up in. However, this metric also depends on the equation

of the reward function. For measuring this distance metric:

1. Train an agent on MDPx and save the policy Πx.

2. Repeat 15 times with 15 different environment seeds.

3. In MDPy, interact with the environment for 100 timesteps and save and

the transitions T (sy, ay, s
′
y, ry).

4. Repeat 15 times with 15 different environment seeds.

5. in MDPx, load Πx on the saved states, sy, and take the actions ay

consecutively, saving the transitions T (sy, ay, s
′
x, rx).

6. Rewards are one-dimensional scalar numbers, and no normalization is

needed. For each of the 15 runs, calculate the average Euclidean distance

between ry and rx for 100 timesteps.

In order to be able to analyze the observations isolated from the effect of

training time, we do steps 1 to 6 in three different stages: after training on

MDPx for 1 hour, 2 hours, and 3 hours.

18



Chapter 4

Experiments and Results

In this chapter we first explain the settings of our experiments, then we men-

tion the evaluation measures that we use for evaluating the transfer perfor-

mance and out distance metrics. In the last part we present the results of our

experiments.

4.1 Experimental Setup

To test the efficacy of our similarity metrics we perform our experiments in

two domains: Hopper and Pendulum. These environments and our experiment

settings are explained in this section.

4.1.1 Hopper

For this task, the states are represented by 11 dimensional vectors including

parameters such as: positions (in terms of radiant or meters), and sin and

Figure 4.1: OpenAI Hopper Environment
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Table 4.1: Environment Configuration in the Hopper Task

Leg Size \Gravity 2.45 4.9 9.8 19.6

0.01 MDP1 MDP5 MDP9 MDP13
0.03 MDP2 MDP6 MDP10 MDP14
0.06 MDP3 MDP7 MDP11 MDP15
0.12 MDP4 MDP8 MDP12 MDP16

cos functions of joint angles. The action space corresponds to a 3-dimensional

space where each action is a continuous value that is bounded in the range

[−1, 1]. The action values correspond to torques of the thigh joint, the leg

joint and the foot joint.

The goal in this environment is to make the hopper move forward, there-

fore the agent reward function includes: 1) being alive bonus (b), a positive

contribution for the forward velocity (calculated by taking the derivative of

the movement at each step), 3) a negative contribution of the Euclidean norm

among the action control space. This reward (r) is computed as:

r =

{
vx − 0.0001||a||+ b otherwise

−1 failures
(4.1)

where a represents the actions calculated by the neural networks, and vx is

the forward velocity. Failure happens when at least one of the failure conditions

occur. These conditions are:

Ztorso < 0.7

|θ| < 0.2
(4.2)

where θ is the forward pitch of the body and Ztorso is the height of the torso.

The episode ends upon failure.

The Hopper itself and the environment have some characteristics that can

be changed. For instance, gravity, friction, leg length, and leg size. We created

16 different environments by changing two of these variables: gravity and leg

size. The values of gravity and leg size for each MDP are mentioned in Table

4.1.
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Figure 4.2: OpenAI Pendulum Environment

Table 4.2: Environment Configuration in the Pendulum Task

Mass \Gravity 2.5 5 10 20

0.1 MDP1 MDP5 MDP9 MDP13
0.3 MDP2 MDP6 MDP10 MDP14
0.4 MDP3 MDP7 MDP11 MDP15
0.8 MDP4 MDP8 MDP12 MDP16

4.1.2 Pendulum

The purpose of this task is to maintain upward facing equilibrium over the

vertical axis of the pendulum by applying torque to its central actuator. In

other words, the goal is to remain at zero angle (vertical), with the least pos-

sible effort. For this task, the states are represented by 3 dimensional vectors

including: cosine and sine of the angle and the derivative of the angle. The ac-

tion space is 1-dimensional vector bounded in the range [−2, 2] corresponding

the torque applied to the joint. The reward function is:

−(θ2 + 0.1 ∗ θdt2 + 0.001 ∗ action2)

θ is normalized between −π and π. Therefore, the lowest reward is −(π2 +

0.1 ∗ 82 + 0.001 ∗ 22) = −16.2736044, and the highest cost is 0.

The Pendulum itself and the environment have some characteristics that

we can change. We created 16 different environments by changing two of these

variables: gravity and mass. The values of gravity and mass for each MDP

are mentioned in Table 4.2.
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4.2 Evaluation Measures

While there are many metrics proposed in the literature, we focus on three

metrics to measure the benefits of transfer learning, namely jumpstart, asymp-

totic performance, and time to threshold. They are sufficient to describe the

entire training timeline of the methods experimented in this work. The third

metric charges the agent for the time spent learning the source task and the

first two consider initial and final performance.

4.2.1 Transfer Learning Evaluation Measures

Jumpstart

The initial performance of an agent in a target task may be improved by

transfer from a source task. The first transfer measure involves taking into

account an agent’s performance at the beginning of a target task to evaluate

how much increase in initial performance is achieved relative to an initial

random policy. However, such a metric does not capture how the learner

behaves during the target task and focuses on performance before the learning

begins.

In this work, we calculate the jumpstart by averaging over the first 100

episodes and deducting the value of the first 100 episodes when running a

policy without any pre-training.

Asymptotic Performance

Asymptotic performance, the second metric, compares the final performances

(reward) of learners in the target task with and without transfer. However,

it may take too long for a learner to converge or there may be difficulties in

determining when the learner has actually converged (particularly in tasks with

infinite state spaces). Additionally, different learning algorithms can reach the

same asymptotic performance but differ in number of samples required to reach

it. Therefore we also require time to threshold metric that evaluates training

behaviour.
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In this work, asymptotic performance is measured by averaging reward

over the last 100 episodes.

Time to Threshold

The final metric, time to threshold, is the learning time needed by the agent

to achieve a pre-specified performance level which requires specifying a (po-

tentially arbitrary) performance requirement. Some have suggested how to

choose these thresholds [12], but it is clear that the relative benefits of trans-

fer learning methods will vary depending on the exact threshold chosen, which

will depend on the domain and learning-method.

In this work we calculate the time to threshold by calculating the number

of timesteps needed to reach the average reward of 2500 for Hopper and −500

for Pendulum and staying at that value for 10,000 timesteps. We then scale

the values of needed timesteps by dividing them by 5000.

4.2.2 Distance Metrics Evaluation Measures

When we make a decision to do transfer learning, often times we have several

source tasks available for pre-training and we must select one or a few among

them. This work introduces three distance metrics for helping with this selec-

tion. However, when we calculate the value of distance metrics for each source

task, we face another question: which metric should we use to pick the source

tasks? In other words, we have distance metrics to help us compare MDPs,

but we still need a measure to compare the distance metrics since it is not not

immediately obvious which distance metric is better to use. In this work two

different approaches have been used for distance metrics comparison which are

mentioned in this section.

Cost of picking the best MDP

A perfect distance metric would be able to sort all source tasks from the best

to the worst regarding their transfer learning potential, guaranteeing that the

best MDP for pre-training always has the smallest distance value. However,

given the complexity of RL tasks, such distance metric has not been discovered
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yet. However, often it is a realistic expectation from a distance metric to help

us pick the best MDP with a bigger probability than random choice. For

instance, if we have 20 source tasks, the probability of choosing the best MDP

randomly is 5%. If the best MDP is in the top five MDPs based on a given

distance metric, the probability of picking the best MDP with the help of

that distance metric increases to 20%, meaning using this metric is better

than random selection. This approach can also be used for comparison among

distance metrics: the higher the probability of picking the best MDP based

on a metric, the better the metric is. In this work, we present the results

for this approach not as the probability of picking the best MDP, but as the

lowest number of top MDPs that we have to pick the best MDP among them.

The correlation between the cost of picking the best MDP and the predictive

ability of an MDP are reversed, meaning the cost of picking the best MDP

based on a very good distance metric is small and ideally close to 1.

1. Cost of picking the best MDP in each trial: the first row is the average

cost of picking the best MDP in each trial. All of the experiments in

this thesis are repeated 15 times to make sure that the results are not

arbitrary. When trying to figure out which MDP to pre-train on to get

the highest jumpstart (or asymptotic performance), in each trial, the

order of MDPs based on the distance metric and the best MDP might

vary. For example, in trial 1, our maximum jumpstart might be achieved

when transferring from MDP11, which has the third-smallest value for

action distance; in trial 2, transferring from MDP10 with the second

smallest value of action distance might result in the biggest jumpstart

boost. We define the cost of picking the best MDP in these trials 3 and

2 consecutively. By averaging these numbers over 15 trials, we can reach

an approximate estimate of the predictive value of a distance metric.

2. Cost of picking the best overall MDP: when averaging over all the 15

trials, one of the source tasks will prove the most beneficial. Even though

this source task might not be the best in every trial, on average, it results

in better transfer learning than others. Additionally, we can average the
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distance metrics of source tasks over 15 runs to achieve a more robust

estimation of the distance of MDPs to MDP∗. The second row is the

cost of picking the best MDP over 15 runs. Although this number might

represent a better estimate of the quality of a distance metric, we usually

do not want to repeat the experiments several times to find the best

MDP. Therefore both cost of picking the best MDP in each trial, and

the cost of picking the best overall MDP matter to us.

Pearson correlation coefficient

Developed by Karl Pearson, the Pearson correlation coefficient or the Pearson

product-moment correlation coefficient, measures linear correlation between

two sets of data. This ratio is the product of the covariances of two variables

to the product of their standard deviations, making it essentially a normalised

measurement of covariance, such that it always has a value between −1 and

1.

Given two random variables, Pearson’s correlation coefficient formula, com-

monly represented by the Greek letter ρ, is:

ρX,Y =
cov(X, Y )

σXσY

(4.3)

where σX and σY are standard deviations for X and Y , respectively, and cov

is the covariance.

4.3 Overall Results

In this section we present the results of our experiments. We first evaluate

the predictive ability of all three distance metrics in predicting jumpstart and

then we do the same for asymptotic performance and time to threshold.

Throughout this section, when we mention that the best MDP is in the

top n MDPs, where n ∈ [1, 16], we mean there are n− 1 source tasks that: 1)

they have smaller distance metric values than the best MDP, 2) pre-training

on them results in less performance improvement compared to pre-training on

the best MDP. Therefore, picking these MDPs is the cost we have to pay in
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order to pick the best MDP (the MDP that pre-training on it will result in the

most performance improvement). This number is represented in the figures as

the number of dots in the green shaded area. These dots are MDPs who have

smaller distance metric values, but transferring from them is not as beneficial

as transferring from the best MDP.

4.3.1 Jumpstart correlation with Distance Metrics

Jumpstart, defined in Section 4.2.1, is the difference between the initial per-

formance of an agent in MDP∗ with and without pre-training. In this section,

we evaluate the ability of each distance metric in predicting the jumpstart in

MDP∗ resulting from pre-training on each MDP. To evaluate the predictive

ability of each distance metric, we calculate the Pearson correlation between

that distance metric and jumpstart, and also the cost of picking the best MDP

(the MDP that pre-training on it would result in the highest jumpstart) based

on that metric. We use the expression of “moderate correlation” for coeffi-

cient values between 0.5 to 0.7 or −0.7 to −0.5, And the expression of “strong

correlation” for coefficients with bigger absolute values than 0.7 [27]. Distance

metrics are complementary to similarity metrics, therefore in an effective dis-

tance metric, the smaller the distance metric, the higher the jumpstart should

be.

The experiments are performed in the Hopper domain after one, two, and

three hours of training. Our algorithm takes 3 hours to fully converge, which

in the Hopper task at code level it equals 900000 timesteps. As a result, we

divided the training time into three equal parts, each lasting for one hour,

or 300000 timesteps. In order to gain more confidence in the observations,

the experiments are repeated in the Pendulum domain. However, due to the

simpler nature of the Pendulum task, training for more than one hour does

not affect the experiments’ results, and therefore they are only included for

the one-hour case. In the following sections, we evaluate the predictive ability

of action distance, next state distance, and reward distance consecutively.
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Action Distance

As explained in Section 3.2, action distance is a performance-based metric

defined as the distance of actions for corresponding states in two MDPs. In

this section, we aim to evaluate the ability of this metric in predicting the

resulting jumpstart from pre-training on each of MDP1...16. To accomplish

this goal, we look into the Pearson correlation between action distance and

the cost of picking the best MDP when using this metric.

1) The cost of picking the best MDP in each trial: the cost of picking the

best MDP in each trial that has been explained in Section 4.2.2 is mentioned in

the first and the third rows of Table 4.3 for Hopper and Pendulum. In the best

case, action distance can place the best MDP among the top two MDPs. In

the worst case, we need to pick the top five MDPs based on action distance to

include the MDP that would result in the biggest jumpstart. The probability

of choosing the best MDP among five MDPs is one in five or 20%. If we were

to pick a random MDP among our 16 MDPs, the chances of the MDP that

we have picked being the best MDP would be one in 16 or 6.25%. This can

be interpreted as saying that using action distance is more than three times

better than random selection among source tasks. In the Pendulum domain,

this cost is 3.6, meaning we need to pick the top four MDPs to include the

best MDP (regarding jumpstart).

2) The cost of picking the best MDP over 15 trials: The cost of picking the

best MDP that has been explained in Section 4.2.2 is mentioned in the second

and the fourth rows of Table 4.3. This value can be interpreted as the number

of MDPs in the green shaded area, including the MDPs on the green border

in Figure 4.4 and subfigures of Figure 4.3. In the best case, action distance

can single out the best MDP in both Hopper and Pendulum domains. In the

worst case, we need to pick the top five MDPs based on action distance to

include the MDP that would result in the biggest jumpstart. The probability

of choosing the best MDP among five picked MDPs is one in five or 20%. If

we were to pick a random MDP among our 16 MDPs, the chances of the MDP

that we have picked being the best MDP would be one in 16 or 6.25%. This
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can be interpreted as saying that using action distance is more than three

times better than random selection among source tasks.

3) The Pearson correlation between jumpstart and action distance: The

blue line in Figure 4.4 and the sub-figures of Figure 4.3 represents the Pearson

correlation between action distance and jumpstart. Additionally, the fifth

row in Table 4.3, shows the value of the Pearson correlation coefficient in the

Hopper domain after one, two, and three hours of training time. This value

ranges between −0.7 to −0.76, which indicates a strong negative correlation

between the value of action distance and the jumpstart on MDP∗ [27]. This

negative correlation exists more strongly in the Pendulum domain, with the

correlation coefficient of −0.92, shown in the last row of Table 4.3.

Takeaway : Action distance has a strong negative correlation with jump-

start. Additionally, the cost of picking the best MDP based on this metric is

low. Therefore, this metric can be helpful when choosing among source tasks.

However, this metric is performance-based, and it requires training on the goal

task, which might not be desirable or possible. Deciding to use this metric

depends on the nature of the goal task along with other factors. The results

for this metric will be compared to the results of the other two distance metrics

at the end of Section 4.3.1 to find the best distance metric for predicting the

jumpstart on MDP∗.

Next State Distance

As explained in Section 3.3, the Next state distance (ds) is a model-based

metric. This metric is the Euclidean distance between the agent’s next state

for corresponding state-action pairs in the source and the target tasks. In this

section, we aim to evaluate the ability of this metric in predicting the resulting

jumpstart from pre-training on each of MDP1...16. To accomplish this goal,

we look into the Pearson correlation between the next state distance and the

cost of picking the best MDP when using this metric.

1) The cost of picking the best MDP in each trial: the cost of picking the

best MDP in each trial that has been explained in Section 4.2.2 is mentioned in

the first and the third rows of Table 4.4 for Hopper and Pendulum. In the worst

28



Figure 4.3: Hopper: Jumpstart on MDP∗ versus action distance

The green dot: the MDP resulting in the biggest jumpstart. The dots in the
shaded area: the MDPs with smaller action distances than the best MDP.
Based on the strong negative correlation (blue line) between action distance
and jumpstart, this metric can be helpful in choosing among source tasks.
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Table 4.3: Jumpstart Correlation with Action Distance

Metric Environment Training Time(Hours)
1 h 2 h 3 h

Hopper in each trial 3.2 1.9 4.8
over 15 trials 1 1 5

Cost of picking the best MDP↓

Pendulum in each trial 3.6 - -
over 15 trials 1 - -

Hopper over 15 trials -0.76 -0.70 - 0.72
Pearson Correlation Coefficient↓

Pendulum over 15 trials -0.92 - -

First four rows: Cost of picking the best MDP in each trial and over 15
trials. last two rows: the Pearson correlation between action distance and the
jumpstart on MDP∗. The strong negative correlation and the low costs of
picking the best MDP suggest that this metric can be helpful when choosing
among source tasks. ↑/↓ means the higher/lower, the better.

Figure 4.4: Pendulum: Jumpstart on MDP∗ versus action distance

The green dot: the MDP resulting in the biggest jumpstart. The dots in the
shaded area: the MDPs with smaller action distances than the best MDP.
Based on the strong negative correlation (blue line) between action distance
and jumpstart, this metric can be helpful in choosing among source tasks.
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case, the cost of picking the best MDP in each trial is 6.3, so we need to pick

the top seven MDPs based on the next state distance in order to include the

MDP that would result in the biggest jumpstart. The probability of choosing

the best MDP among seven picked MDPs is one in seven or 14.28%. If we

were to pick a random MDP among our 16 MDPs, the chances of the MDP

that we have picked being the best MDP would be one in 16 or 6.25%. This

can be interpreted as saying that using action distance is more than two times

better than random selection among source tasks. In the Pendulum domain,

this cost is 3.6, meaning we need to pick the top four MDPs to include the

best MDP (regarding jumpstart).

2) The cost of picking the best MDP over 15 trials: The cost of picking

the best MDP that has been explained in Section 4.2.2 is mentioned in the

second and the fourth rows of Table 4.4. This value can be interpreted as

the number of MDPs in the green shaded area, including the MDPs on the

green border in Figure 4.6 and subfigures of Figure 4.5. In the best case, the

next state distance is able to place the best MDP among the top four MDPS.

In the worst case, we need to pick the top seven MDPs based on the next

state distance in order to include the MDP that would result in the biggest

jumpstart. The probability of choosing the best MDP among seven picked

MDPs is one in seven or 14.28%. If we were to pick a random MDP among

our 16 MDPs, the chances of the MDP that we have picked being the best

MDP would be one in 16 or 6.25%. This can be interpreted as saying that

using action distance is more than two times better than random selection

among source tasks.

3) The Pearson correlation between jumpstart and next state distance: The

blue line in Figure 4.6 and the sub-figures of Figure 4.5 represents the Pearson

correlation between next state distance and jumpstart. Additionally, the fifth

row in Table 4.4 shows the value of the Pearson correlation coefficient in the

Hopper domain after one, two, and three hours of training time. This value

ranges between −0.7 to −0.46, which indicates a moderate to strong negative

correlation between the value of next state distance and the jumpstart on

MDP∗ [27]. This negative correlation exists more strongly in the Pendulum
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Table 4.4: Jumpstart Correlation with Next State Distance

Metric Environment Training Time(Hours)
1 h 2 h 3h

Hopper in each trial 4.6 4.6 6.3
over 15 trials 5 7 4

Cost of picking the best MDP ↓

Pendulum in each trial 3.6 -
over 15 trials 2 - -

Hopper over 15 trials -0.65 -0.78 -0.85
Pearson Correlation Coefficient ↓

Pendulum over 15 trials -0.79 - -

First four rows: Cost of picking the best MDP in each trial and over 15
trials. last two rows: the Pearson correlation between next state distance and
the jumpstart on MDP∗. The negative correlation between this metric and
the jumpstart suggests that this metric can be helpful when choosing among
source tasks. ↑/↓ means the higher/lower, the better.

domain, with the correlation coefficient of −0.79, shown in the last row of

Table 4.4.

Takeaway : Next state distance has a moderate to strong negative correla-

tion with jumpstart. Additionally, the cost of picking the best MDP based on

this metric ranges between two to 6.3. Therefore, this metric can be helpful

when choosing among source tasks. Additionally, Next state distance has an

advantage over action distance: since it is a model-based metric, it does not

require any training on the goal task. The results for this metric will be com-

pared to the results of the other two distance metrics at the end of Section

4.3.1 to find the best distance metric for predicting the jumpstart on MDP∗.

Reward Distance

As explained in Section 3.4, reward distance is defined as the mean squared

error between the immediate reward values of the state-action pairs in the

source and target tasks. This metric has an advantage over action distance:

it is a model-based metric, and therefore, it does not require any training on

the goal task. In this section, we aim to evaluate the ability of this metric

in predicting the resulting jumpstart from pre-training on each of MDP1...16.

To accomplish this goal, we look into the Pearson correlation between reward

distance and jumpstart and the cost of picking the best MDP when using this
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Figure 4.5: Hopper: Jumpstart on MDP∗ versus next state distance

The green dot: the MDP resulting in the biggest jumpstart. The dots in
the shaded area: the MDPs with smaller action distances than the best MDP.
Based on the moderate to strong negative correlation (blue line) between next
state distance and jumpstart, this metric can be helpful in choosing among
source tasks.
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Figure 4.6: Pendulum: Jumpstart on MDP∗ versus next state distance

The green dot: the MDP resulting in the biggest jumpstart. The dots in
the shaded area: the MDPs with smaller action distances than the best MDP.
Based on the moderate to strong negative correlation (blue line) between next
state distance and jumpstart, this metric can be helpful in choosing among
source tasks.

metric.

1) The cost of picking the best MDP in each trial: the cost of picking the

best MDP in each trial that has been explained in Section 4.2.2 is mentioned

in the first and the third rows of Table 4.5 for Hopper and Pendulum. In the

worst case, the cost of picking the best MDP in each trial is 6.3, so we need

to pick the top seven MDPs based on reward distance in order to include the

MDP that would result in the biggest jumpstart. The probability of choosing

the best MDP among seven picked MDPs is one in seven or 14.28%. If we

were to pick a random MDP among our 16 MDPs, the chances of the MDP

that we have picked being the best MDP would be 1 in 16 or 6.25%. This can

be interpreted as saying that using reward distance is more than two times

better than random selection among source tasks. In the Pendulum domain,

this cost is 3.8, meaning we need to pick the top four MDPs to include the

best MDP (regarding jumpstart).

2) The cost of picking the best MDP over 15 trials: The cost of picking

the best MDP that has been explained in Section 4.2.2 is mentioned in the
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second and the fourth rows of Table 4.5. This value can be interpreted as the

number of MDPs in the green shaded area, including the MDPs on the green

border in Figure 4.8 and subfigures of Figure 4.7. In the best case, the next

state distance is able to place the best MDP among the top two MDPs. In the

worst case, we need to pick the top six MDPs based on the next state distance

in order to include the MDP that would result in the biggest jumpstart. The

probability of choosing the best MDP among six picked MDPs is one in six or

16.6%. If we were to pick a random MDP among our 16 MDPs, the chances

of the MDP that we have picked being the best MDP would be one in 16 or

6.25%. This can be interpreted as saying that using action distance is more

than two times better than random selection among source tasks.

3) The Pearson correlation between jumpstart and reward distance: The

blue line in Figure 4.8 and the sub-figures of Figure 4.7 represents the Pearson

correlation between reward distance and jumpstart. Additionally, the fifth

row in Table 4.5, shows the value of the Pearson correlation coefficient in

the Hopper domain after one, two, and three hours of training time. This

value ranges between −0.88 to −0.62, which indicates a moderate to strong

negative correlation between the value of reward distance and the jumpstart

on MDP∗[27]. This negative correlation exists in the Pendulum domain too,

with the correlation coefficient of −0.85, shown in the last row of Table 4.5.

The results for this metric will be compared to the results of the other two

distance metrics at the end of Section 4.3.1 to find the best distance metric

for predicting the jumpstart on MDP∗.

Takeaway : Reward distance has a strong negative correlation with jump-

start. Additionally, the cost of picking the best MDP based on this metric

ranges between two to 6.3. Therefore, this metric can be helpful when choos-

ing among source tasks. Additionally, reward distance has an advantage over

action distance: since it is a model-based metric, it does not require any train-

ing on the goal task. The results for this metric will be compared to the results

of the other two distance metrics at the end of Section 4.3.1 to find the best

distance metric for predicting the jumpstart on MDP∗.
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Figure 4.7: Hopper: Jumpstart on MDP∗ versus reward distance

The green dot: the MDP resulting in the biggest jumpstart. The dots in the
shaded area: the MDPs with smaller reward distances than the best MDP.
Based on the moderate to strong negative correlation (blue line) between
reward distance and jumpstart, this metric can be helpful in choosing among
source tasks.
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Table 4.5: Jumpstart Correlation with Reward Distance

Metric Environment Training Time(Hours)
1 h 2 h 3h

Hopper in each trial 4.6 4.6 6.3
over 15 runs 5 2 6

Cost of picking the best MDP ↓

Pendulum in each trial 3.8 - -
over 15 runs 3 - -

Hopper over 15 runs -0.62 -0.82 -0.88
Pearson Correlation Coefficient ↓

Pendulum over 15 runs -0.85 - -

First four rows: Cost of picking the best MDP in each trial and over 15
trials. last two rows: the Pearson correlation between reward distance and
the jumpstart on MDP∗. The negative correlation between this metric and
the jumpstart suggest that this metric can be helpful when choosing among
source tasks. ↑/↓ means the higher/lower, the better.

Figure 4.8: Pendulum: Jumpstart on MDP∗ versus reward distance

The green dot: the MDP resulting in the biggest jumpstart. The dots in the
shaded area: the MDPs with smaller reward distances than the best MDP.
Based on the moderate to strong negative correlation (blue line) between
action distance and jumpstart, this metric can be helpful in choosing among
source tasks.
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Table 4.6: Jumpstart Correlation with Distance Metrics

Metric Action Distance Next State Distance Reward Distance

Hopper
Cost of picking the best MDP in each trial 3.2 4.6 4.6

over 15 run 1 5 5
Pearson Correlation over 15 run -0.76 -0.65 -0.62

Pendulum
Cost of picking the best MDP in each trial 3.6 3.6 3.8

over 15 run 1 2 3
Pearson Correlation over 15 run -0.92 -0.79 -0.85

The action distance has a lower cost of picking the best MDP and a bigger
absolute value for the Pearson correlation coefficient (indicating a stronger
negative correlation) compared to the other two metrics. Action distance is
the best metric for picking a source task if our goal is to get a high jumpstart
on the goal task.

Comparison of the three distance metrics for prediction jumpstart

As it can be seen in Table 4.6, action distance has the strongest correlation

with jumpstart and the lowest cost of picking the best MDP in all cases. As a

result, we conclude that action distance has the strongest ability in predicting

the jumpstart on MDP∗. However, action distance is performance-based and

requires training on the goal task. It is not always possible or preferable

to train on MDP∗. Therefore, when choosing a distance metric for selecting

among the source tasks, the cost of calculating the metric should be considered

along with the metric’s performance.

4.3.2 Asymptotic Performance correlation with Distance
Metrics

Asymptotic performance, defined in Section 4.2.1, compares the final perfor-

mances of learners in MDP∗ with and without transfer. In this section, we

evaluate the ability of each distance metric in predicting the asymptotic per-

formance in MDP∗ resulting from pre-training on each MDP. To evaluate the

predictive ability of each distance metric, we calculate the Pearson correlation

between that distance metric and asymptotic performance, and also the cost

of picking the best MDP (the MDP that pre-training on it would result in the
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highest asymptotic performance) based on that metric. We use the expression

of “moderate correlation” for coefficient values between 0.5 to 0.7 or −0.7 to

−0.5, And the expression of “strong correlation” for coefficients with bigger

absolute values than 0.7 [27]. Distance metrics are complementary to similar-

ity metrics, therefore in an effective distance metric, the smaller the distance

metric, the higher the asymptotic performance should be.

The experiments are performed in the Hopper domain after one, two, and

three hours of training. Our algorithm takes 3 hours to fully converge, which

in the Hopper task at code level it equals 900000 timesteps. As a result, we

divided the training time into three equal parts, each lasting for one hour,

or 300000 timesteps. In order to gain more confidence in the observations,

the experiments are repeated in the Pendulum domain. However, due to the

simpler nature of the Pendulum task, training for more than one hour does

not affect the experiments’ results, and therefore they are only included for

the one-hour case. In the following sections, we evaluate the predictive ability

of action distance, next state distance, and reward distance consecutively.

Action Distance

As explained in Section 3.2, action distance is a performance-based metric

defined as the distance of actions for corresponding states in two MDPs. In

this section we aim to evaluate the ability of this metric in predicting the

resulting asymptotic performance from pre-training on each of MDP1...16. To

accomplish this goal, we look into the Pearson correlation between action

distance and the cost of picking the best MDP when using this metric.

1) The cost of picking the best MDP in each trial: the cost of picking the

best MDP in each trial that has been explained in Section 4.2.2 is mentioned

in the first and the third rows of Table 4.7 for Hopper and Pendulum. In the

best case, action distance can place the best MDP among the top three MDPs.

In the Pendulum domain, this cost is 1.4, meaning we need to pick the top

two MDPs to include the best MDP (regarding asymptotic performance).

2) The cost of picking the best MDP over 15 trials: The cost of picking the

best MDP that has been explained in Section 4.2.2 is mentioned in the second
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and the fourth rows of Table 4.7. This value can be interpreted as the number

of MDPs in the green shaded area, including the MDPs on the green border

in Figure 4.10 and subfigures of Figure 4.9. In the best case, action distance

can single out the best MDP in both Hopper and Pendulum domains. In the

worst case, we need to pick the top seven MDPs based on action distance to

include the MDP that would result in the biggest asymptotic performance.

The probability of choosing the best MDP among seven picked MDPs is one

in seven or 14.28%. If we were to pick a random MDP among our 16 MDPs,

the chances of the MDP that we have picked being the best MDP would be one

in 16 or 6.25%. This can be interpreted as saying that using action distance

is more than two times better than random selection among source tasks.

3) The Pearson correlation between asymptotic performance and action dis-

tance: The blue line in Figure 4.10 and the sub-figures of Figure 4.9 represents

the Pearson correlation between action distance and asymptotic performance.

Additionally, the fifth row in Table 4.7 shows the value of the Pearson cor-

relation coefficient in the Hopper domain after one, two, and three hours of

training time. This value indicates a negative correlation between the value

of action distance and the asymptotic performance on MDP∗. This negative

correlation exists in the Pendulum domain too, with the correlation coefficient

of −0.86, shown in the last row of Table 4.7.

Takeaway : Action distance has a negative correlation with asymptotic per-

formance. Therefore, this metric can be helpful when choosing among source

tasks. However, this metric is performance-based, and it requires training on

the goal task, which might not be desirable or possible. Deciding to use this

metric depends on the nature of the goal task along with other factors. The

results for this metric will be compared to the results of the other two dis-

tance metrics at the end of Section 4.3.2 to find the best distance metric for

predicting the asymptotic performance on MDP∗.

Next state Distance

As explained in Section 3.3, next state distance is a model-based metric de-

fined as the distance of next states for corresponding states in two MDPs. In
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Figure 4.9: Hopper: Asymptotic performance on MDP∗ versus action distance

The green dot: the MDP resulting in the biggest asymptotic performance.
The dots in the shaded area: the MDPs with smaller action distances than
the best MDP. Based on the negative correlation (blue line) between action
distance and asymptotic performance, this metric can be helpful in picking
source tasks.
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Table 4.7: Asymptotic Performance Correlation with Action Distance

Metric Environment Training Time(Hours)
1 h 2 h 3 h

Hopper in each trial 3.2 5.9 8.5
over 15 runs 1 1 7

Cost of picking the best MDP ↓

Pendulum in each trial 1.4 - -
over 15 runs 1 - -

Hopper over 15 runs -0.9 -0.64 -0.31
Pearson Correlation Coefficient ↓

Pendulum over 15 runs -0.86 - -

First four rows: Cost of picking the best MDP in each trial and over 15
trials. last two rows: the Pearson correlation between action distance and
the asymptotic performance on MDP∗. The negative correlation and the low
costs of picking the best MDP suggest that this metric can be helpful when
choosing among source tasks. ↑/↓ means the higher/lower, the better.

Figure 4.10: Pendulum: Asymptotic performance on MDP∗ vs. action distance

The green dot: the MDP resulting in the biggest asymptotic performance.
The dots in the shaded area: the MDPs with smaller action distances than
the best MDP. Based on the strong negative correlation (blue line) between
action distance and asymptotic performance, this metric can be helpful in
picking source tasks.
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this section, we aim to evaluate the ability of this metric in predicting the

resulting asymptotic performance from pre-training on each of MDP1...16. To

accomplish this goal, we look into the Pearson correlation between the next

state distance and the cost of picking the best MDP when using this metric.

1) The cost of picking the best MDP in each trial: the cost of picking the

best MDP in each trial that has been explained in Section 4.2.2 is mentioned

in the first and the third rows of Table 4.8 for Hopper and Pendulum. In the

best case, the next state distance can place the best MDP among the top five

MDPs. In the Pendulum domain, this cost is 2.3, meaning we need to pick the

top three MDPs to include the best MDP (regarding asymptotic performance).

2) The cost of picking the best MDP over 15 trials: The cost of picking the

best MDP that has been explained in Section 4.2.2 is mentioned in the second

and the fourth rows of Table 4.8. This value can be interpreted as the number

of MDPs in the green shaded area, including the MDPs on the green border

in Figure 4.12 and subfigures of Figure 4.11. In the best case, the next state

distance can place the best MDP in the five top MDPs in Hopper and in the

top two MDPs in the Pendulum. The probability of choosing the best MDP

among five picked MDPs is one in five or 20%. If we were to pick a random

MDP among our 16 MDPs, the chances of the MDP that we have picked being

the best MDP would be one in 16 or 6.25%. This can be interpreted as saying

that using the next state distance is more than three times better than random

selection among source tasks.

3) The Pearson correlation between asymptotic performance and the next

state distance: The blue line in Figure 4.12 and the sub-figures of Figure 4.11

represents the Pearson correlation between the next state distance and asymp-

totic performance. Additionally, the fifth row in Table 4.8 shows the value of

the Pearson correlation coefficient in the Hopper domain after one, two, and

three hours of training time. This value indicates a moderate negative correla-

tion between value of the next state distance and the asymptotic performance

on MDP∗. This negative correlation exists in the Pendulum domain too, with

the correlation coefficient of −0.7, shown in the last row of Table 4.8.

Takeaway : Next state distance has a negative correlation with asymptotic
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Table 4.8: Asymptotic Performance Correlation with Next State Distance

Metric Environment Training Time(Hours)
1 h 2 h 3 h

Hopper in each trial 5 6.4 8.6
over 15 runs 5 7 10

Cost of picking the best MDP ↓

Pendulum in each trial 2.3 - -
over 15 runs 2 - -

Hopper over 15 runs -0.67 -0.51 -0.42
Pearson Correlation Coefficient ↓

Pendulum over 15 runs -0.7 - -

First four rows: Cost of picking the best MDP in each trial and over 15 trials.
last two rows: the Pearson correlation between next state distance and the
asymptotic performance on MDP∗. The moderate negative correlation and
the low costs of picking the best MDP suggest that this metric can be helpful
when choosing among source tasks. ↑/↓ means the higher/lower, the better.

performance. Therefore, this metric can be helpful when choosing among

source tasks. Additionally, Next state distance has an advantage over action

distance: since it is a model-based metric, it does not require any training on

the goal task. Deciding to use this metric depends on the nature of the goal

task along with other factors. The results for this metric will be compared to

the results of the other two distance metrics at the end of Section 4.3.2 to find

the best distance metric for predicting the asymptotic performance on MDP∗.

Reward distance

As explained in Section 3.4, reward distance is defined as the mean squared

error between the immediate reward values of the state-action pairs in the

source and target tasks. This metric has an advantage over action distance:

it is a model-based metric, and therefore, it does not require any training on

the goal task. In this section, we aim to evaluate the ability of this metric

in predicting the resulting asymptotic performance from pre-training on each

of MDP1...16. To accomplish this goal, we look into the Pearson correlation

between reward distance and asymptotic performance and the cost of picking

the best MDP when using this metric.

1) The cost of picking the best MDP in each trial: the cost of picking the

best MDP in each trial that has been explained in Section 4.2.2 is mentioned
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Figure 4.11: Hopper: Asymptotic performance vs. next state distance

The green dot: the MDP resulting in the biggest asymptotic performance.
The dots in the shaded area: the MDPs with smaller next state distances
than the best MDP. Based on the negative correlation (blue line) between
next state distance and asymptotic performance, this metric can be helpful in
picking source tasks.
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Figure 4.12: Pendulum: Asymptotic performance on MDP∗ vs. next state
distance

The green dot: the MDP resulting in the biggest asymptotic performance.
The dots in the shaded area: the MDPs with smaller next state distances than
the best MDP. Based on the strong negative correlation (blue line) between
next state distance and asymptotic performance, this metric can be helpful in
picking source tasks.

in the first and the third rows of Table 4.9 for Hopper and Pendulum. In

the Pendulum domain, this cost is 4.1, meaning we need to pick the top four

MDPs to include the best MDP (regarding asymptotic performance).

2) The cost of picking the best MDP over 15 trials: The cost of picking the

best MDP that has been explained in Section 4.2.2 is mentioned in the second

and the fourth rows of Table 4.9. This value can be interpreted as the number

of MDPs in the green shaded area, including the MDPs on the green border

in Figure 4.14 and subfigures of Figure 4.13. In the best case, the next state

distance can place the best MDP among the top two MDPs. The probability

of choosing the best MDP among two picked MDPs is one in two or 50%. If

we were to pick a random MDP among our 16 MDPs, the chances of the MDP

that we have picked being the best MDP would be one in 16 or 6.25%.

3) The Pearson correlation between asymptotic performance and reward

distance: The blue line in Figure 4.14 and the sub-figures of Figure 4.13 repre-

sents the Pearson correlation between reward distance and asymptotic perfor-
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Table 4.9: Asymptotic Performance Correlation with Reward Distance

Metric Environment Training Time(Hours)
1 h 2 h 3 h

Hopper in each trial 6 6.4 9.8
over 15 runs 6 2 9

Cost of picking the best MDP ↓

Pendulum in each trial 4.1 - -
over 15 runs 3 - -

Hopper over 15 runs -0.44 -0.41 -0.39
Pearson Correlation Coefficient ↓

Pendulum over 15 runs -0.7 - -

First four rows: Cost of picking the best MDP in each trial and over 15
trials. last two rows: the Pearson correlation between reward distance and
the asymptotic performance on MDP∗. The moderate to strong negative
correlation and the low costs of picking the best MDP suggest that this metric
can be helpful when choosing among source tasks. ↑/↓ means the higher/lower,
the better.

mance. Additionally, the fifth row in Table 4.9, shows the value of the Pearson

correlation coefficient in the Hopper domain after one, two, and three hours

of training time. This value indicates a negative correlation between the value

of reward distance and the asymptotic performance on MDP∗. This negative

correlation exists in the Pendulum domain too, with the correlation coefficient

of −0.7, shown in the last row of Table 4.9.

The results for this metric will be compared to the results of the other two

distance metrics at the end of Section 4.3.2 to find the best distance metric

for predicting the asymptotic performance on MDP∗.

Takeaway : Reward distance has a negative correlation with asymptotic

performance. Additionally, reward distance has an advantage over action dis-

tance: since it is a model-based metric, it does not require any training on the

goal task. Therefore, this metric can be helpful when choosing among source

tasks. The results for this metric will be compared to the results of the other

two distance metrics at the end of Section 4.3.2 to find the best distance metric

for predicting the asymptotic performane on MDP∗.
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Figure 4.13: Hopper: Asymptotic performance on MDP∗ vs. reward distance

The green dot: the MDP resulting in the biggest asymptotic performance.
The dots in the shaded area: the MDPs with smaller reward distances than
the best MDP. Based on the negative correlation (blue line) between reward
distance and asymptotic performance, this metric can be helpful in picking
source tasks.
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Figure 4.14: Pendulum: Asymptotic performance on MDP∗ vs. reward distance

The green dot: the MDP resulting in the biggest asymptotic performance.
The dots in the shaded area: the MDPs with smaller reward distances than
the best MDP. Based on the negative correlation (blue line) between next
reward and asymptotic performance, this metric can be helpful in picking
source tasks.

Comparison of the three distance metrics for prediction asymptotic
performance

As it can be seen in Table 4.10, action distance has the strongest correlation

with asymptotic performance and the lowest cost of picking the best MDP

in all cases. As a result, we conclude that action distance has the strongest

ability in predicting the asymptotic performance on MDP∗. However, action

distance is performance-based and requires training on the goal task. It is

not always possible or preferable to train on MDP∗. Among the two model-

based metrics, our metric , next state distance, has a lower cost of picking the

best MDP and a stronger Pearson correlation with asymptotic performance.

Therefore, we conclude that the next state distance has a better predictive

ability for asymptotic performance.
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Table 4.10: Asymptotic performance Correlation with Distance Metrics

Metric Action Distance Next State Distance Reward Distance

Hopper
Cost of picking the best MDP in each trial 3.2 5 6

over 15 run 1 5 6
Pearson Correlation over 15 run -0.9 -0.67 -0.44

Pendulum
Cost of picking the best MDP in each trial 1.4 2.3 4.1

over 15 run 1 2 3
Pearson Correlation over 15 run -0.86 -0.7 -0.7

The action distance has a lower cost of picking the best MDP and a bigger
absolute value for the Pearson correlation coefficient (indicating a stronger
negative correlation) compared to the other two metrics. Action distance is
the best metric for picking a source task if our goal is to get a high asymptotic
performance on the goal task.

4.3.3 Time to threshold correlation with Distance Met-
rics

Time to threshold, defined in Section 4.2.1, measures the time that it takes to

reach and stay in a certain performance threshold with and without transfer.

In this section, we evaluate the ability of each distance metric in predicting

the time to threshold in MDP∗ resulting from pre-training on each MDP. To

evaluate the predictive ability of each distance metric, we calculate the Pearson

correlation between that distance metric and time to threshold, and the cost

of picking the best MDP (the MDP that pre-training on it would result in

the lowest time to threshold) based on that metric. We use the expression of

“moderate correlation” for coefficient values between 0.5 to 0.7 or−0.7 to−0.5,

And the expression of “strong correlation” for coefficients with bigger absolute

values than 0.7 [27]. Distance metrics are complementary to similarity metrics,

therefore in an effective distance metric, the smaller the distance metric, the

lower the time to threshold should be.

The experiments are performed in the Hopper domain after one, two, and

three hours of training. Our algorithm takes 3 hours to fully converge, which

in the Hopper task at code level it equals 900000 timesteps. As a result, we

divided the training time into three equal parts, each lasting for one hour,

or 300000 timesteps. In order to gain more confidence in the observations,
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the experiments are repeated in the Pendulum domain. However, due to the

simpler nature of the Pendulum task, training for more than one hour does

not affect the experiments’ results, and therefore they are only included for

the one-hour case. In the following sections, we evaluate the predictive ability

of action distance, next state distance, and reward distance consecutively.

Action distance

As explained in Section 3.2, action distance is a performance-based metric

defined as the distance of actions for corresponding states in two MDPs. In this

section, we aim to evaluate the ability of this metric in predicting the resulting

time to threshold from pre-training on each of MDP1...16. To accomplish this

goal, we look into the Pearson correlation between action distance and time

to threshold, and the cost of picking the best MDP when using this metric.

1) The cost of picking the best MDP in each trial: the cost of picking the

best MDP in each trial that has been explained in Section 4.2.2 is mentioned

in the first and the third rows of Table 4.11 for Hopper and Pendulum. In the

best case, action distance can place the best MDP among the top five MDPs.

In the Pendulum domain, this cost is 2.2, meaning we need to pick the top

two MDPs to include the best MDP (regarding time to threshold).

2) The cost of picking the best MDP over 15 trials: The cost of picking

the best MDP that has been explained in Section 4.2.2 is mentioned in the

second and the fourth rows of Table 4.11. This value can be interpreted as the

number of MDPs in the green shaded area, including the MDPs on the green

border in Figure 4.16 and subfigures of Figure 4.15. In the best case, action

distance can single out the best MDP in Hopper.

3) The Pearson correlation between time to threshold and action distance:

The blue line in Figure 4.16 and the sub-figures of Figure 4.15 represents the

Pearson correlation between action distance and time to threshold. Addition-

ally, the fifth row in Table 4.11 shows the value of the Pearson correlation

coefficient in the Hopper domain after one, two, and three hours of training

time. This value indicates a positive correlation between the value of action

distance and the time to threshold on MDP∗. This positive correlation exists
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Table 4.11: Time to threshold Correlation with Action Distance

Metric Environment Training Time(Hours)
1 h 2 h 3 h

Hopper in each trial 5.3 5.3 9.5
over 15 runs 1 1 5

Cost of picking the best MDP ↓

Pendulum in each trial 2.2 - -
over 15 runs 2 - -

Hopper over 15 runs 0.73 0.35 0.54
Pearson Correlation Coefficient ↑

Pendulum over 15 runs - - 0.78

• First four rows: Cost of picking the best MDP in each trial and over 15 trials.
last two rows: the Pearson correlation between action distance and the time
to threshold on MDP∗. The positive correlation and the low costs of picking
the best MDP suggest that this metric can be helpful when choosing among
source tasks. ↑/↓ means the higher/lower, the better.

in the Pendulum domain too, with the correlation coefficient of −0.78, shown

in the last row of Table 4.11.

Takeaway : Action distance has a positive correlation with time to thresh-

old. Therefore, this metric can be helpful when choosing among source tasks.

However, this metric is performance-based, and it requires training on the goal

task, which might not be desirable or possible. Deciding to use this metric

depends on the nature of the goal task along with other factors. The results

for this metric will be compared to the results of the other two distance metrics

at the end of Section 4.3.3 to find the best distance metric for predicting the

time to threshold on MDP∗.

Next state distance

As explained in Section 3.3, next state distance is a model-based metric defined

as the distance of next states for corresponding state-action pairs in two MDPs.

In this section, we aim to evaluate the ability of this metric in predicting

the resulting time to threshold from pre-training on each of MDP1...16. To

accomplish this goal, we look into the Pearson correlation between next state

distance and time to threshold, and the cost of picking the best MDP when

using this metric.

1) The cost of picking the best MDP in each trial: the cost of picking the
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Figure 4.15: Hopper: Time to threshold on MDP∗ versus action distance

The green dot: the MDP resulting in the lowest time to threshold. The dots
in the shaded area: the MDPs with smaller action distances than the best
MDP. Based on the positive correlation (blue line) between action distance
and time to threshold, this metric can be helpful in picking source tasks.
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Figure 4.16: Pendulum: Time to threshold on MDP∗ vs. action distance

The green dot: the MDP resulting in the lowest time to threshold. The dots in
the shaded area: the MDPs with smaller action distances than the best MDP.
Based on the strong positive correlation (blue line) between action distance
and time to threshold, this metric can be helpful in picking source tasks.

best MDP in each trial that has been explained in Section 4.2.2 is mentioned

in the first and the third rows of Table 4.12 for Hopper and Pendulum. In

the best case, next state distance can place the best MDP among the top five

MDPs.

2) The cost of picking the best MDP over 15 trials: The cost of picking

the best MDP that has been explained in Section 4.2.2 is mentioned in the

second and the fourth rows of Table 4.12. This value can be interpreted as the

number of MDPs in the green shaded area, including the MDPs on the green

border in Figure 4.18 and subfigures of Figure 4.17.

3) The Pearson correlation between time to threshold and action distance:

The blue line in Figure 4.18 and the sub-figures of Figure 4.17 represents the

Pearson correlation between action distance and time to threshold. Addition-

ally, the fifth row in Table 4.12 shows the value of the Pearson correlation

coefficient in the Hopper domain after one, two, and three hours of training

time. This value indicates a positive correlation between the value of action

distance and the time to threshold on MDP∗. This positive correlation exists

in the Pendulum domain too, with the correlation coefficient of −0.6, shown
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Table 4.12: Time to threshold Correlation with Next State Distance

Metric Environment Training Time(Hours)
1 h 2 h 3 h

Hopper in each trial 6.6 4.6 9.5
over 15 runs 5 7 4

Cost of picking the best MDP ↓

Pendulum in each trial 4.8 - -
over 15 runs 5 - -

Hopper over 15 runs 0.62 0.53 0.51
Pearson Correlation Coefficient ↑

Pendulum over 15 runs 0.6 - -

First four rows: Cost of picking the best MDP in each trial and over 15 trials.
last two rows: the Pearson correlation between next state distance and the
time to threshold on MDP∗. The positive correlation and the low costs of
picking the best MDP suggest that this metric can be helpful when choosing
among source tasks. ↑/↓ means the higher/lower, the better.

in the last row of Table 4.12.

Takeaway : Next state distance has a positive correlation with time to

threshold. Therefore, this metric can be helpful when choosing among source

tasks. Deciding to use this metric depends on the nature of the goal task along

with other factors. The results for this metric will be compared to the results

of the other two distance metrics at the end of Section 4.3.3 to find the best

distance metric for predicting the time to threshold on MDP∗.

Reward distance

As explained in Section 3.4, reward distance is a model-based metric defined

as the distance of rewards for corresponding state-action pairs in two MDPs.

In this section, we aim to evaluate the ability of this metric in predicting

the resulting time to threshold from pre-training on each of MDP1...16. To

accomplish this goal, we look into the Pearson correlation between reward

distance and time to threshold, and the cost of picking the best MDP when

using this metric.

1) The cost of picking the best MDP in each trial: the cost of picking the

best MDP in each trial that has been explained in Section 4.2.2 is mentioned

in the first and the third rows of Table 4.13 for Hopper and Pendulum. In

the best case, next state distance can place the best MDP among the top five
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Figure 4.17: Hopper: Time to threshold on MDP∗ versus next state distance

The green dot: the MDP resulting in the lowest time to threshold. The dots
in the shaded area: the MDPs with smaller next state distances than the
best MDP. Based on the positive correlation (blue line) between next state
distance and time to threshold, this metric can be helpful in picking source
tasks.
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Figure 4.18: Pendulum: Time to threshold on MDP∗ vs. next state distance

The green dot: the MDP resulting in the lowest time to threshold. The dots
in the shaded area: the MDPs with smaller next state distances than the
best MDP. Based on the positive correlation (blue line) between next state
distance and time to threshold, this metric can be helpful in picking source
tasks.

MDPs.

2) The cost of picking the best MDP over 15 trials: The cost of picking

the best MDP that has been explained in Section 4.2.2 is mentioned in the

second and the fourth rows of Table 4.13. This value can be interpreted as the

number of MDPs in the green shaded area, including the MDPs on the green

border in Figure 4.20 and subfigures of Figure 4.19.

3) The Pearson correlation between time to threshold and next state dis-

tance: The blue line in Figure 4.20 and the sub-figures of Figure 4.19 represents

the Pearson correlation between action distance and time to threshold. Addi-

tionally, the fifth row in Table 4.13 shows the value of the Pearson correlation

coefficient in the Hopper domain after one, two, and three hours of training

time. This value indicates a positive correlation between the value of action

distance and the time to threshold on MDP∗. This positive correlation exists

in the Pendulum domain too, with the correlation coefficient of 0.6, shown in

the last row of Table 4.13.

Takeaway : Reward distance has a positive correlation with time to thresh-
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Table 4.13: Time to threshold Correlation with Reward Distance

Metric Environment Training Time(Hours)
1 h 2 h 3 h

Hopper in each trial 6.6 4.6 6.3
over 15 runs 6 2 6

Cost of picking the best MDP ↓

Pendulum in each trial 5.4 - -
over 15 runs 5 - -

Hopper over 15 runs 0.4 0.44 0.5
Pearson Correlation Coefficient ↑

Pendulum over 15 runs 0.56 - -

First four rows: Cost of picking the best MDP in each trial and over 15 trials.
Last two rows: the Pearson correlation between reward distance and the time
to threshold on MDP∗. The positive correlation and the low costs of picking
the best MDP suggest that this metric can be helpful when choosing among
source tasks. ↑/↓ means the higher/lower, the better.

old. Therefore, this metric can be helpful when choosing among source tasks.

Deciding to use this metric depends on the nature of the goal task along with

other factors. The results for this metric will be compared to the results of the

other two distance metrics at the end of Section 4.3.3 to find the best distance

metric for predicting the time to threshold on MDP∗.

Comparison of the three distance metrics for prediction time to
threshold

As it can be seen in Table 4.14, action distance has the strongest correlation

with time to threshold and the lowest cost of picking the best MDP in all

cases. As a result, we conclude that action distance has the strongest ability

in predicting the time to threshold on MDP∗. However, action distance is

performance-based and requires training on the goal task. It is not always

possible or preferable to train on MDP∗. Among the two model-based metrics,

our metric , next state distance, has a lower cost of picking the best MDP and

a stronger Pearson correlation with time to threshold. Therefore, we conclude

that the next state distance has a better predictive ability for time to threshold.
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Figure 4.19: Hopper: Time to threshold on MDP∗ versus reward distance

The green dot: the MDP resulting in the lowest time to threshold. The dots
in the shaded area: the MDPs with smaller reward distances than the best
MDP. Based on the positive correlation (blue line) between reward distance
and time to threshold, this metric can be helpful in picking source tasks.
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Figure 4.20: Pendulum: Time to threshold on MDP∗ vs. reward distance

Table 4.14: Time to threshold Correlation with Distance Metrics

Metric Action Distance Next State Distance Reward Distance

Hopper
Cost of picking the best MDP in each trial 5.3 6.6 6.6

over 15 run 1 5 6
Pearson Correlation over 15 run 0.73 0.62 0.4

Pendulum
Cost of picking the best MDP in each trial 2.2 4.8 5.4

over 15 run 2 5 5
Pearson Correlation over 15 run 0.78 0.6 0.56

The action distance has a lower cost of picking the best MDP and a bigger
Pearson correlation coefficient value (indicating a stronger positive correla-
tion) compared to the other two metrics. Action distance is the best metric
for picking a source task if our goal is to get a low time to threshold on the
goal task. Next state distance is better than reward distance for the same
reasons.
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Chapter 5

Conclusion and Future Work

In this last chapter, first, we summarize the results of our experiments, and

then we pose several research questions that can act as guidelines for future

work.

5.1 Conclusion

In this work, we looked into three similarity metrics and their predictive abil-

ity for finding the best MDP for transfer learning. Action distance was a

performance-based distance metric. Although it proved to be the most predic-

tive metric for jumpstart, final performance, and time to threshold, it has a

big disadvantage because it requires training on the goal MDP. This require-

ment can defy the sole purpose of transfer learning which is no training or

limited training on MDP ∗. However, action distance still can prove beneficial

since by training for only a short period of time on MDP ∗, for example, 1

hour, it can single out the best MDP for transfer learning. The next state

distance was based on the similarity of the next states when taking the same

action on the same states. For calculating this metric, since the agent does

not have to choose an action, having a policy is not a requirement; therefore,

no training on MDP ∗ is needed, which is a huge advantage in cases when we

do not want to train on the goal MDP. Even though the next state distance

cannot single out the best MDP, in all the cases of this work, it has proven

effective to eliminate the worst MDPs and place the best MDP in the top 5

or 6 MDPs. Therefore when choosing an MDP for transfer learning based on
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this metric, the chance of selecting the best MDP among 16 MDPs is around

16%, which is more than twice the chance of choosing that MDP randomly.

Reward distance was based on how the similarity of immediate rewards for

corresponding state-action pairs. For calculating this metric also no training

on MDP ∗ is needed, which is a huge advantage in cases when we do not want

to train on the goal MDP.

5.2 Future Work

In this work, the number of source tasks was limited to 16. Testing on more

MDP settings can result in a higher level of confidence in the results and

probabilities presented in this work. Furthermore, all 16 different MDP set-

tings were simulation environments. Transfer learning is commonly used for

training an agent in simulation for performing a task in the real world. Given

the unlimited complications of real-world tasks and the possibly huge simi-

larity gap between the source tasks and the target tasks in those cases, these

metrics might not prove effective. Additionally, even when transferring be-

tween simulation tasks, the similarity gap might be huge, or the task might

be too complicated. Therefore more experiments in other domains and with

more source tasks is needed to confirm the results of this work. Another pos-

sible approach to expand on this work is to try to understand the reasons

behind these observations more deeply. In order to find more effective simi-

larity metrics or make sure that certain similarity metrics can be helpful in

unprecedented domains, having a deep understanding of these metrics and the

results they show is essential.
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