
Computer Science is no more about computers than astronomy is about telescopes

– E. W. Dijkstra.

University of Alberta

Improved approximation algorithms for Min-Max Tree Cover,
Bounded Tree Cover, Shallow-Light and Buy-at-Bulk

k-Steiner Tree, and (k, 2)-Subgraph

by

Mohammad Reza Khani

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Mohammad Reza Khani
Fall 2011

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of
this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

Where the thesis is converted to, or otherwise made available in digital form, the University of
Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the
thesis, and except as herein before provided, neither the thesis nor any substantial portion thereof
may be printed or otherwise reproduced in any material form whatever without the author’s prior

written permission.

To my mother
Whom my calmness coming from

Abstract

In this thesis we provide improved approximation algorithms for the Min-Max k-Tree Cover,

Bounded Tree Cover and Shallow-Light k-Steiner Tree, (k, 2)-subgraph problems.

In Chapter 2 we consider the Min-Max k-Tree Cover (MMkTC). Given a graph G =

(V,E) with weights w : E → Z+, a set T1, T2, . . . , Tk of subtrees of G is called a tree cover of

G if V =
⋃k
i=1 V (Ti). In the MMkTC problem we are given graph G and a positive integer

k and the goal is to find a tree cover with k trees, such that the weight of the largest tree

in the cover is minimized. We present a 3-approximation algorithm for MMkTC improving

the two different approximation algorithms presented in [7, 46] with ratios 4 and (4 + ε).

The problem is known to have an APX-hardness lower bound of 3
2 [125].

In Chapter 3 we consider the Bounded Tree Cover (BTC) problem. In the BTC problem

we are given a graph G and a bound λ and the goal is to find a tree cover with minimum

number of trees such that each tree has weight at most λ. We present a 2.5-approximation

algorithm for BTC, improving the 3-approximation bound in [7].

In Chapter 4 we consider the Shallow-Light k-Steiner Tree (SLkST) problem. In the

bounded-diameter or shallow-light k-Steiner tree problem , we are given a graph G = (V,E)

with terminals T ⊆ V containing a root r ∈ T , a cost function c : E → Q+, a length

function ` : E → Q+, a bound L > 0 and an integer k ≥ 1. The goal is to find a

minimum c-cost r-rooted Steiner tree containing at least k terminals whose diameter under

` metric is at most L. The input to the Buy-at-Bulk k-Steiner tree problem (BBkST)

is similar: graph G = (V,E), terminals T ⊆ V , cost and length functions c, ` : E →

Q+, and an integer k ≥ 1. The goal is to find a minimum total cost r-rooted Steiner

tree H containing at least k terminals, where the cost of each edge e is c(e) + `(e) · f(e)

where f(e) denotes the number of terminals whose path to root in H contains edge e.

We present a bicriteria (O(log2 n), O(log n))-approximation for SLkST: the algorithm finds

a k-Steiner tree of diameter at most O(L · log n) whose cost is at most O(log2 n · opt∗)

where opt∗ is the cost of an LP relaxation of the problem. This improves on the algorithm

of [66] (APPROX’06/Algorithmica’09) which had ratio (O(log4 n), O(log2 n)). Using this,

we obtain an O(log3 n)-approximation for BBkST, which improves upon the O(log4 n)-

approximation of [66]. Finally, we show our approximation algorithm for BBkST implies

approximation factors for some other network design problems.

In Chapter 5 we consider the problem of finding a minimum cost 2-edge-connected sub-

graph with at least k vertices, which is introduced as the (k, 2)-subgraph problem in [94]

(STOC’07/SICOMP09). This generalizes some well-studied classical problems such as the

k-MST and the minimum cost 2-edge-connected subgraph problems. We give an O(log n)-

approximation algorithm for this problem which improves upon the O(log2 n)-approximation

of [94].

Acknowledgements

I would like to thank my supervisor Mohammad R. Salavatipour, who is the other author

for all the results in this thesis. I am also grateful to him for his through review of the text,

and suggestions regarding to the presentation of this work.

Table of Contents

1 Introduction 1
1.1 Problems considered and motivations . 1
1.2 Background . 3

1.2.1 Graph theory . 4
1.2.2 Approximation algorithms . 5
1.2.3 Linear Programming . 7
1.2.4 The set cover problem . 9

1.3 Outline of thesis . 10

2 Minimizing maximum k-tree cover 12
2.1 Problem Formulation . 12
2.2 Related Works . 13
2.3 Preliminaries . 14
2.4 A 3-approximation algorithm for MMkTC . 16
2.5 Future Works . 22

3 Bounded tree cover 23
3.1 Problem Formulation . 23
3.2 Related Works . 24
3.3 A 2.5-approximation algorithm for BTC . 25
3.4 Proof of Lemma 8 . 27
3.5 Future Works . 33

4 Buy-at-bulk and shallow-Light k-Steiner Tree 34
4.1 Problem formulations . 35
4.2 Related works . 36
4.3 Reduction from Buy-at-Bulk Steiner tree to shallow-light Steiner tree 38
4.4 (O(log2 n), O(log n))-approximation algorithm for shallow-light Steiner Tree . 40
4.5 Relation to other network design problems . 46

4.5.1 Multicast tree design . 47
4.5.2 Extended single-sink buy-at-bulk . 47
4.5.3 Priority Steiner tree . 48

4.6 Future works . 49

5 The (k, 2)-subgraph 50
5.1 Problem Formulation . 50
5.2 Related works . 51
5.3 An O(log n)-approximation algorithm for (k, 2)-subgraph problem 52
5.4 Future works . 57

Bibliography 58

List of Figures

1.1 Greedy algorithm for the set cover problem 10

2.1 MMkTC Algorithm . 19
2.2 Clarification figure for MMkTC algorithm . 20

3.1 BTC Algorithm . 26
3.2 Clarification figure for BTC algorithm . 28

4.1 Bicriteria approximation algorithms for Steiner trees with different criteria . . 36

5.1 (k, 2)-Subgraph Algorithm (k2EC) . 54

Chapter 1

Introduction

1.1 Problems considered and motivations

In several real world applications we are facing optimization problems in which we have to

optimize (e.g. minimize) the cost of doing a task. In this thesis we study four different

optimization problems motivated by their corresponding real world applications. We model

each problem by a combinatorial optimization problem on a weighted graph. All of our

combinatorial optimization problems are known to be NP -hard. Thus, instead of trying

to find the optimum solution we seek for a solution that can be computed efficiently (i.e.

polynomial time) while its cost is also guaranteed to be within a certain multiplicative factor

of the optimum solution. More precisely, we try to find an α-approximation algorithm for

our problems which gives a solution in a time polynomially bounded by the size of input

whose cost is not worse than α times the optimum solution. Clearly, the closer α is to 1

the better the algorithm is. In this thesis, we improve the approximation ratios for four

different problems.

Min-Max k-Tree Cover (MMkTC): Consider the problem of “Nurse station loca-

tion” [46] in which a hospital wants to assign all its patients to a set of k nurses. Each

nurse has to visit all her assigned patients every morning and return back to her station.

Moreover, all the patients should be within a reasonable distance from their assigned nurse’s

station. The task is to find k locations for the nurses and distribute all the patients among

them such that the distance travelled every morning by the nurse who travels the most is

minimized.

We model the hospital as an undirected weighted graph G = (V,E) in which each room

in the hospital corresponds a node in the graph. Two nodes u and v are connected via an

edge e with cost c(e) if the corresponding rooms for u and v are close to each other in the

hospital and the average travel time between them is c(e). The coverage area for each nurse

is modeled as a subtree in G covering all the nodes whose corresponding rooms have her

patients. The optimization task is to find a set of k-subtrees that together cover all the nodes

1

of G such that the cost of the most expensive one is minimized. The modeled combinatorial

optimization problem is called Min-Max k-Tree Cover (MMkTC) and is proved to be NP -

hard.

The previously known best approximation ratio for MMkTC was a 4-approximation

algorithm due to Ravi et al. [46] and Arkin et al. [7]. In this thesis we provide a 3-

approximation algorithm for MMkTC in Chapter 2. This result is published in [76].

Bounded Tree Cover (BTC): Consider the following scenario for the nurse station

location problem introduced for MMkTC. The hospital wants to have a maximum bound λ

on the coverage area of each nurse, i.e. the cost of each subtree has to be upper bounded

by λ. The task is to find the minimum number of nurses required, such that the cost of the

subtrees assigned to them do not exceed λ and together, they cover all the nodes.

In the Bounded Tree Cover (BTC) problem we are given an undirected weighted graph

G = (V,E) along with a bound λ, the task is to find the minimum number of subtrees in

G such that the union of their nodes is V and the cost of none of them exceeds λ. This

problem also has other applications in vehicle routing problems. For example, suppose graph

G represents a map of locations in which each node is a customer needing a special service.

We have vehicles of bounded fuel tank which can travel at most λ kilometers. The task is

to find the minimum number of vehicles and assign the customers to them such that each

vehicle can travel to all of its assigned customers and return back to its initial position. As

finding tours for the vehicles is hard we usually estimate them with trees.

The best approximation algorithm for BTC before this work was due to Arkin et al. [7]

with approximation ratio of 3. We give a 2.5-approximation algorithm for this problem in

Chapter 3, which is published [76].

Shallow Light k-Steiner Tree (SLkST) and Buy-at-Bulk k-Steiner Tree (

BBkST): Imagine a broadcast station (server) has to broadcast multimedia data to at

least k of its customers. We refer to server, customers, and other intermediate transmitters

as nodes in the network. Communication connections which have a communication delay

can be established between each pair of nodes in the network with a cost of establishment.

The task is to create a minimum cost network, containing the server and at least k customers

such that the total delay seen by any customer is at most a given bound.

The corresponding graph theory problem is known as Shallow Light k-Steiner Tree

(SLkST). In SLkST we are given the network as an undirected graph G = (V,E) which

has a cost c(e) and a delay l(e) on each edge e, a delay bound L, and integer k, a subset

T ⊆ V of terminals (customers), and a server r ∈ T . The objective is to find a subtree

containing r and at least k terminals of T (at least k − 1 terminals other than r) such that

its cost regarding to the c metric is minimized and each terminal is not farther than L from

r with respect to the l metric in the subtree.

2

The best previous result on SLkST was an (O(log4 n), O(log2 n))-bicriteria approxima-

tion algorithm [66]. The algorithm gives a tree in which each terminal is at most O(log2 n)·L

away from the root and whose cost is at most O(log4 n) times the optimum solution with

bound L. In Chapter 4 we improve this result by presenting an (O(log2 n), O(log n))-

bicriteria approximation algorithm.

In Chapter 4 we also show how our result for SLkST can improve the approximation

factor for the Buy-at-Bulk k-Steiner Tree (BBkST) problem. In BBkST we are given an

undirected graph G = (V,E) with a monotone nondecreasing cost function fe for each e ∈ E,

a set of terminals T ⊆ V with demand δi for each vi ∈ T , a root r ∈ T , and a positive integer

k. The objective is to find a subtree H that contains r and at least k−1 other terminals from

T and route all their demands from r such that
∑
e∈H f(δe) is minimized where δe is the

total demand routed over edge e. The best previous approximation factor for BBkST was

an O(log3 n ·D)-approximation in [66] which we improve to an O(log2 n ·D)-approximation

algorithm where D is the total demand.

Note that we consider the most general form of cost scheme over the edges. This scheme

can represent several realizations in the real world, i.e. cases where the cost for establishing

and maintaining the cables between two nodes differ from one place to another, or the cost of

cables capable of routing more loads are greater than the smaller cables (see e.g. Chapter 4).

These results appear in [77].

(k, 2)-subgraph: Designing a reliable communication network which can continue to

route the demands even if some of its connection edges are broken is an important problem

in the network design. Reliable networks are also important for transshipment of crucial

supplies. We model the network with a graph G, in which the transmitters are represented

as nodes in G and cost of establishing a connection between each pair of transmitters are

represented as the cost of its corresponding edge in G. We say a network is reliable if after

deleting any edge it remains connected, i.e. G is 2-edge-connected.

We consider a problem called, (k, 2)-subgraph, in which for a given weighted graph G,

and a positive integer k, we have to find a minimum cost subgraph which is 2-edge-connected

and has at least k nodes of G. The best previous result was an O(log2 n)-approximation

[94], which we improve to O(log n)-approximation in Chapter 5.

1.2 Background

This section is mainly designated to introduce some notations used throughout the thesis.

We start with defining a few graph theoretical concepts, then the formal definitions related

to the approximation algorithm is given. After that we give an elementary introduction

to linear programming, and finally we finish the section by giving the best approximation

factor for the set cover problem which we use later in Chapter 5.

3

1.2.1 Graph theory

In this thesis we represent a graph G as an ordered pair (V (G), E(G)) in which V (G) is

the set of nodes and E(G) is the set of edges. We simply show V (G) as V and E(G) as

E when G is clear from the context. We show each edge e ∈ E as (u, v) to specify that u

and v are the end-points of e. We consider only undirected graphs in this thesis. Thus, as

G is undirected the existence of (u, v) implies the existence of (v, u) and vice versa. If G

is a weighted graph then each edge e = (u, v) has a cost shown as c(e) or c(u, v). If G is

unweighted we assume c(e) = 1, ∀e ∈ E. In the following we explain some graph theory

concepts used in this thesis:

• Walk: A walk in a graph G is a sequence of nodes v1, v2, . . . , vk such that for each

1 ≤ i ≤ k − 1, edge (vi, vi+1) exists in G. The cost of the walk is
∑k−1
i=1 c(vi, vi+1).

• Tour: A tour (v1, v2, . . . , vk) in G is a closed walk, in which v1 = vk.

• Path: Path is a walk (v1, v2, . . . , vk), in which each vi is distinct. The shortest path

between u and v is a path in which the first node is u and the last node is v with the

minimum cost.

• Cycle: Cycle is a tour with distinct nodes except v1 = vk.

• Diameter: Diameter of a weighted graph G = (V,E) is maxu,v∈V d(u, v) where d(u, v)

denotes the cost of the shortest path between u and v.

• Tree: Tree is a connected acyclic graph. It is easy to check that a tree T has exactly

|V (T)| − 1 edges and there is a unique path connecting each pair of nodes in T .

• Metric graph: We call a complete graph G metric if the cost of edges satisfy the

triangle inequality. More precisely, for any triple u, v, w ∈ V , c(u, v)+c(v, w) ≥ c(u,w).

Usually graphs that model real world applications are metric. This comes from the

fact that to go from a node u to another node v, one can take a shortest path between

them. This model of distance measure is referred to as the shortest path metric

completion of a graph. Graph Ĝ is called the shortest path metric completion of G if

it has the same set of nodes as G and there is an edge between û, v̂ ∈ V (Ĝ) with cost

ĉ(û, v̂) = d(u, v) if u and v are connected in G with a shortest path with cost d(u, v).

It is easy to check that a shortest path metric completion of any graph is a metric and

looking for the shortest tour covering all the nodes in G is equivalent to searching for

the shortest cycle in Ĝ covering all the nodes.

• Tree Cover: A set T1, T2, . . . , Tk of subtrees of G is called a tree cover of G if every

vertex of V appears in at least one Ti (1 ≤ i ≤ k), i.e. V =
⋃k
i=1 V (Ti). Note that the

trees in a tree-cover are not necessarily edge-disjoint (thus may share vertices too).

4

• Matching: A matching is a subset of edges M ⊆ E such that no two edges in M

share an endpoint. The cost of a matching M is
∑
e∈M c(e). A maximum matching in

G is a matching with maximum number of edges. A perfect matching is a matching

with exactly |V |2 edges. A min-cost maximum matching is a maximum matching with

minimum cost and a min-cost perfect matching is a perfect matching with minimum

cost.

• λ-edge-connected graph: A λ-edge-connected graph is a connected graph in which

deleting any λ− 1 edges does not make it disconnected. It is easy to check that in a

λ-edge-connected graph there are at least λ edge-disjoint paths between any pair of

nodes.

1.2.2 Approximation algorithms

A decision problem Π is a problem whose answer is either “yes” or “no”. Note that the

description of the problem can suitably be presented as a string in the binary alphabet

Σ = {0, 1}; so that each decision problem Π can be viewed as a language LΠ which consists

of all the strings representing “yes” instances of Π. We say that algorithm alg can decide

LΠ (or solve the problem Π) if for any x ∈ Σ∗ it can decide whether x ∈ LΠ or x 6∈ LΠ. We

refer to the number of bits in the string x as the input size which is denoted by |x|.

Suppose DTIME(t) denotes class of problems that can be solved in deterministic time

O(t). Similarly ZPTIME(t) denotes class of problems that can be solved using a randomized

algorithm whose expected running time is O(t). In randomized algorithms we assume that

they have access to a source of random bits.

Let poly(n) = ∪k≥0n
k. The class of polynomial time solvable problems (or polynomial

time decidable languages) P is defined as P = ∪p∈poly(n)DTIME(p) where n is the size of

input. A pseudo-polynomial time algorithm is an algorithm that runs in time polynomial

in the numeric value of the input. A quasi-polynomial time algorithm is an algorithm that

solves the problem in DTIME(npoly(logn)). From now on, we refer to an algorithm as a

polynomial algorithm if it runs in a time polynomial in the size of input.

A language (or problem) L is in NP if there exists a polynomial time algorithm M called

verifier such that [122]:

• if x ∈ L then there is a certificate (or solution) y ∈ Σ∗ with |y| ∈ poly(|x|) such that

M(x, y) accepts x.

• if x 6∈ L then for any y ∈ Σ∗ which |y| ∈ poly(|x|), M(x, y) rejects x.

An instance I of an NP -optimization problem consists of: (1) A set of feasible solutions

S(I), (2) a polynomial time computable function Obj that for a given s ∈ S(I) assigns

5

it a non-negative rational number. The objective is specified as either maximization or

minimization which is finding a solution s ∈ S(I) with minimum or maximum Obj(s).

We focus on minimization problems in this thesis. We refer to an optimal solution (OPT)

as a feasible solution with minimum value (opt). For each NP -optimization problem we

can define the corresponding decision problem by giving a bound B on its optimal value, as

a result the decision problem will be a pair (I,B) and it is a “yes” instance if the optimal

value is less than or equal to B and “no” otherwise. We can extend the NP -hard problems

to the optimization problems if their corresponding decision problems are NP -hard.

Let δ : Z+ → Q+ be a function with δ ≥ 1 which maps the input size for an NP -

optimization problem to a rational number. We say that algorithm A is a δ-approximation

algorithm for the NP -optimization problem Π if for each instance I of Π, A produces a

feasible solution s ∈ S(I) such that Obj(s) ≤ δ(|I|).opt(I). Note that in general the

approximation factor can be dependant on the input size. As an example, a poly-logarithmic-

approximation algorithm is an approximation algorithm with δ ∈ O(poly(log n)) where n is

the size of input. By an γ-hardness factor based on a certain complexity assumption (such as

P 6= NP) for an NP -optimization problem we mean that we cannot find an approximation

algorithm with ratio better than γ unless that assumption is false.

For some algorithms, δ can be independent of the input size which means the approx-

imation ratio will not grow for bigger problem instances. Clearly, the closer δ is to 1, the

better approximation algorithm we have. Note that for NP -hard optimization problems

we cannot achieve 1-approximation algorithms unless P = NP . Instead we try to find a

(1+ ε)-approximation algorithm for a small positive ε. Interestingly enough, some NP -hard

optimization problems admit (1 + ε)-approximation algorithm for an arbitrarily small but

fixed ε > 0. An algorithm A for an NP -optimization problem Π is called a polynomial time

approximation scheme (PTAS) if for any given instance I and a fixed constant ε as input,

A outputs a solution s such that Obj(s) ≤ (1 + ε).opt and A runs in poly(|I|). Note that in

a PTAS the runtime should only be polynomial in the size of input. If we require A to be

polynomial in the size of I and 1
ε then A is said to be a fully polynomial time approximation

scheme (FPTAS) which is a remarkable approximation algorithm.

In this thesis we say a problem is APX-hard [10] to imply that there is no PTAS for it

unless P = NP , in other words there is a c-hardness factor for it for a fixed constant c > 1.

Let Π1 and Π2 be twoNP -optimization problems. By an approximation factor preserving

reduction from Π1 to Π2, we loosely mean that if there is an α-approximation algorithm for

Π2 there is also an α-approximation algorithm for Π1. More formally [122], this reduction

consists of two polynomial time computable functions f : Σ∗ → Σ∗ and g : Σ∗ → Σ∗ such

that:

• for any instance I1 of Π1 , I2 = f(I1) is an instance of Π2 such that OPTΠ2(I2) ≤

6

OPTΠ1(I1).

• for any solution t of I2, s = g(I1, t) is a solution to I1 such that ObjΠ1(I1, s) ≤

ObjΠ2
(I2, t).

It is easy to see that an α-approximation algorithm for Π2 along with this reduction result

in an α-approximation algorithm for Π1.

We can generalize the single criterion optimization problems to bicriteria optimization

problems. An (A, B, S)-bicriteria optimization problem has two minimization objective

A and B, and a feasible solutions set S. The problem specifies a budget L on the second

objective and seeks to minimize the first objective. In other words, it seeks for a feasible

solution s ∈ S in which the cost of s under the second criterion (say ObjB(s)) is not greater

than L such that cost of s under the first criterion (say ObjA(s)) is minimized.

An (α, β)-Bicriteria approximation algorithm for (A, B, S) is an algorithm which finds

a feasible solution s in which ObjB(s) is at most β ·L and whose cost is at most α times an

optimum solution OPT where ObjA(OPT) is minimized and ObjB(OPT) is bounded L.

As an example, suppose we are given an undirected graph G = (V,E), with two cost

functions c and ` on each edge, a bound L, and a set of terminals T ⊆ V . An (α, β)-bicriteria

approximation algorithm for (total cost, diameter, Steiner tree) is an algorithm which finds

a Steiner tree H over the terminals T whose diameter (under ` metric) is at most β ·L and

whose cost is at most α times the value of an optimum solution under the function c with

diameter bound L. In Chapter 4 we study this problem under the name of shallow light

Steiner tree.

1.2.3 Linear Programming

Integer Programming (IP) is one of the famous NP -hard optimization problems that can

model several other problems. A general form of an IP is as follows.

min cTx
subject to

Ax ≥ b
x ∈ {0, 1},

where c is a vector with size n (cT is its transpose) which we call the objective function or

vector, A is an m× n constraints matrix and x is an integer vector with n variables for the

optimization. Clearly we cannot solve IPs generally unless P = NP .

A common strategy to find a good approximation ratio for several problems is to find a

suitable IP for the problem and relax it to a Linear Programming (LP) problem as shown

below.
min cTx
subject to

Ax ≥ b
x ≥ 0

7

A feasible solution to an LP is any real vector x satisfying Ax ≥ b. An LP is called feasible

if it has at least one feasible solution. Since every feasible solution for an IP is a feasible

solution to the corresponding LP, it is easy to see that the optimal value of the LP is a lower

bound for its corresponding IP.

Assume Π is an NP -optimization problem. For each instance I ∈ Π let optIP (I) be

the optimum value for the corresponding IP of I and optLP (I) be the optimum value of

the LP relaxation. We call supI
optIP (I)
optLP (I) the integrality gap of the LP formulation of Π.

As a result, the optimal value of the LP is a good estimation of the optimal value of I if

the integrality gap is small. Finding a lower bound, an upper bound, or the exact value of

integrality gap of an LP relaxation of an NP -optimization problem is usually an interesting

question.

As an example, we can take an optimal solution to the LP and round its variables to

some suitable integers such that the rounded values are feasible in the corresponding IP and

the objective value for the integer variables is T . Assume T ≤ δ · optL, since optL ≤ optI

we have T ≤ δ · optI which is a δ-approximation for the IP problem. This technique is

referred to as LP rounding.

A Basic Feasible Solution (BFS) is a feasible solution that cannot be written as a con-

vex combination of two other feasible solutions. Another characterization of BFSs is that

columns Ai in which xi 6= 0 are linearly independent. BFSs are important for us as they

sometimes can be rounded to an integer solution without losing too much in the objective

value. Moreover, if an LP is feasible then for each objective vector c in which the optimal

value of LP is bounded, there is at least one BFS that optimizes the LP.

The previous form for an LP is called primal form, there is a dual formulation for each

primal LP defined as follow:
max bT y
subject to

AT y ≤ c
y ≥ 0

The following theorem is a useful fact about the feasible solutions of primal and dual

forms.

Theorem 1 (Weak duality theorem [122]) If x = (x1, . . . , xn) and y = (y1, . . . , ym) are

feasible solutions for the primal and dual program, respectively, then:

n∑
j=1

cjxj ≥
m∑
i=1

biyi

Note that from the weak duality theorem, we can conclude that every feasible solution

to the dual-LP is a lower bound for the primal-LP. This theorem holds tightly when both

dual and primal formulations have a finite optimum value which is more precisely stated in

Theorem 2.

8

Theorem 2 (LP-duality theorem [122]) The primal program has finite optimum iff its dual

has finite optimum. Moreover if x∗ = (x∗1, . . . , x
∗
n) and y∗ = (y∗1 , . . . , y

∗
n) are optimal solu-

tions for the primal and dual programs respectively then:

n∑
j=1

cjx
∗
j =

m∑
i=1

biy
∗
i

LPs can be solved in polynomial time. One way of doing this is to use ellipsoid algorithm

[59]. It can be shown that if there is a polynomial time algorithm that checks whether a given

candidate solution is feasible and if not finds a violated constraint, then one can optimize

the LP using the ellipsoid algorithm. Such an algorithm that finds a violated constraint (if

there is any) is called a separation oracle. As a result, any LP that has a separation oracle

can be solved in polynomial time. This fact is specially useful when there are exponentially

many constraints but there is a polynomial time separation oracle. We use this fact in

Chapter 4.

1.2.4 The set cover problem

We briefly explain the best approximation algorithm for the set-cover problem as an example

in the field of approximation algorithms. Set-cover is one of the central problems in the field

and its technique is usually used in the covering problems (we also use the set cover analysis

in Chapter 4). The formal definition of the set cover problem is as follow.

Definition 1 set cover [122]: Given a universal set U of n elements, a collection of

subsets of U , S = {S1, . . . , Sk}, and a cost function c : S → Q+, find a minimum cost

sub-collection of S that covers all the elements of U .

It is easy to see that the definition of set cover problem is general and contains as a

special case several other problems such as vertex cover, edge cover, tree cover, etc. In

the following we present a simple greedy algorithm and prove its approximation ratio to be

Hn = 1
n + 1

n−1 + . . . + 1 ≈ lnn [74, 96, 42]. Interestingly enough, it is essentially the best

ratio one can hope for. More formally, if there is a ((1− ε) · lnn)-approximation algorithm

for the set cover problem for any constant ε > 0 then NP ⊆ DTIME(nO(log logn)) [48].

Let opt be the total cost of an optimal solution OPT to the problem. The idea behind

the algorithm is simple: at each step i select the subset with the best density (defined below)

and continue doing this until all the elements are covered (see i.e. Figure 1.1 [122]). Let Ci

be the set of covered elements before step i. Then the density of each subset Sj is
c(Sj)
|Sj−Ci| .

Because at each step i, OPT covers all the elements in U − Ci there is a set with density

at most opt
|U−Ci| (fact 1).

The following theorem is the key theorem in the set cover analysis and is a basis for

analysis of several other covering problems, we also use this theorem later in Chapter 5.

9

Inputs U , S
Output: A sub-collection T covering all elements of U .

1. C1 ← ∅, T ← ∅.

2. While C 6= U do

3. i← 1

(a) i← i+ 1

(b) Find the set S with the minimum density

(c) Let the density be α = c(S)
|S−C|

(d) T ← T + S

(e) for each e ∈ S − C set price(e) = α.

(f) Ci+1 ← Ci ∪ S

4. Output T

Figure 1.1: Greedy algorithm for the set cover problem

Note that from the fact 1, we know that f(n) in Theorem 3 for our algorithm is 1 which

results the Hn-approximation for the set cover problem.

Theorem 3 If an algorithm alg for the set cover problem at each step i adds a set with

density at most f(n) · opt
|U−Ci| where f(n) : Z+ → Q+ is a function, then alg is a (f(n) ·Hn)-

approximation algorithm for the set cover problem.

Proof. Let the price of an element to be the average cost in the subset covering it for the

first time, conversely, we assume that when we pick a set, its cost is distributed among the

newly covered elements. Number the elements of U according to the step they enter into the

cover, break ties arbitrarily. Let the numbering be e1, . . . , en. Consider the step i where ek

enters Ci+1. By definition of density and price we know that price(ek) = f(n)· opt
|U−Ci| . Since

at least all the n− k + 1 elements after ek are not in Ci, price(ek) is at most f(n) · opt
n−k+1 .

As we distribute the cost of each set in the T between all of its uncovered elements the

total cost of T is at most price(e1) + . . .+ price(en) = f(n) · (optn + opt
n−1 + . . .+ opt

1) =

f(n) · opt ·Hn.

1.3 Outline of thesis

In Chapter 2 we study the MMkTC problem. In that chapter (Section 2.3) we prove some

lemmas which we use in the rest of the chapter and in Chapter 3. We give a 3-approximation

algorithm for the MMkTC problem. In Chapter 3, we obtain a 2.5-approximation algorithm

for the BTC problem. In Chapter 4, we study the SLkST problem and the BBkST problem.

We give an (O(log2 n), O(log n))-bicriteria approximation factor for the SLkST problem

10

(Section 4.4). In Section 4.3, we prove that our result for the SLkST problem implies an

O(log3 n)-approximation ratio for the BBkST problem. We also show our results improve

the approximation ratios for some related problems (Section 4.5). Chapter 5 is the last

chapter of the thesis in which we give an O(log n)-approximation algorithm for the (k, 2)-

subgraph problem. In each chapter we review the previous works and possible future lines

of research related to the problem(s) of the chapter in separate sections.

11

Chapter 2

Minimizing maximum k-tree
cover

The study of problems in which the vertices of a given graph are needed to be covered

with special subgraphs, such as trees, paths, or cycles, with a bound on the number of

subgraphs used or their weights has attracted a lot of attention in Operations Research and

Computer Science community. Such problems arise naturally in many applications such as

vehicle routing and network design problems. As an example, in a vehicle routing problem

with min-max objective, we are given a weighted graph G = (V,E) in which each node

represents a client. The goal is to dispatch a number of service vehicles to service the clients

and the goal is to minimize the largest client waiting time, which is equivalent to minimizing

the total distance traveled by the vehicle which has traveled the most. Observe that the

subgraph traveled by each vehicle is a walk that can be approximated with a tree.

Min-max routing problems are part of an active body of research in the literature and

have several applications (see e.g.[27, 46, 7, 105, 125] and the references there).

2.1 Problem Formulation

In this chapter we consider the Min-Max k-Tree Cover Problem (MMkTC). A problem

named “Nurse station location”, was the main motivation in [46] to study MMkTC. In the

nurse station location problem, a hospital wants to assign all its patients to k nurses. Each

nurse visits all its assigned patients every morning. The problem is to find a station for each

nurse and assign all the patients to them such that the last completion time is minimized.

More formally, suppose we are given an undirected graph G = (V,E) and a weight

function w : E → Z+.

Definition 2 In the Min-Max k-tree Cover problem (MMkTC) we are given the weighted

graph G and a positive integer k and the goal is to find a tree cover with k trees, which we

call a k-tree cover, such that the weight of the largest tree in the cover is minimized where

12

the weight of a tree Ti is W (Ti) =
∑
e∈Ti

w(e).

The main result of this chapter is the following theorem.

Theorem 4 There is a polynomial time 3-approximation algorithm for the MMkTC prob-

lem, for any arbitrary small ε > 0.

This improves upon the 4-approximation algorithms of [7, 46]

2.2 Related Works

Even et al. [46] and Arkin et al. [7] give two different 4-approximation algorithms for

MMkTC. [46] also gives a 4-approximation algorithm for the rooted version of MMkTC in

which k nodes are given in the input and each tree in a k-tree cover has to be rooted at one

of them. It is shown that MMkTC is APX-hard in [125], specifically a hardness factor of 3
2

is provided.

Nagamochi and Okada [103] give a (3− 2
k+1)-approximation algorithm for MMkTC when

all the trees have to be rooted at a given vertex r. They also give a (2− 2
k+1)-approximation

algorithm for MMkTC when the underlying metric is a tree and a (2 + ε)-approximation

algorithm for MMkTC when the underlying metric is a tree and each tree has to be rooted

at a certain vertex r.

Andersson et al. [2] consider the problem of “balanced partition of minimum spanning

tree” in which for a given set of n points in the plane, the objective is to partition them into

k sets such that the largest minimum spanning tree for each set is minimized. They give a

(2 + ε)-approximation algorithm for this problem when k ≥ 3 and a (4
3 + ε)-approximation

ratio when k = 2.

In addition to trees, covering graphs with other objects, such as tours, paths, and stars

are studied in the literature. Frederickson et al. [52] studied three Min-Max objective (the

objective is to minimize the maximum tour) problems: the k-Traveling Salesman problem

(k-TSP), the k-Stacker Crane problem (k-SCP), and the k-Chinese Postman Problem (k-

CPP). In k-TSP the objective is to cover all the nodes with k tours, in k-CPP the objective

is to cover all the edges with k tours, and in k-SCP the objective is to cover some specified

directed edges with k tours. They give a (α + 1 − 1
k)-approximation algorithm for each of

these problems where α is the best approximation ratio for the corresponding single person

problem. They do this by finding a best achievable solution for one person instance and

splitting it into k balanced tours. They also give a 9
5 -approximation algorithm for the single

SCP. Note that 1-CPP is polynomially solvable although its k-person version is NP-complete

[52, 115], and the best current approximation factor for TSP is 3
2 [40] (in the unweighted

case there is a 1.461-approximation algorithm due to [101]).

13

Averbakh et al. [11] consider the k-TSP problem with min-max objective where the

underlying metric is a tree, they give an k+1
k−1 -approximation algorithm for this problem.

Arkin et al. [7] give a 3-approximation algorithm for the min-max path cover problem.

Xu et al. [126] consider a similar problem with extra service cost at each node. They

consider three variation of this problem: (i) all the paths have to start from a root, (ii) all

the paths have to start from any of a given subset of nodes, and (iii) all the paths can start

from any node. They give approximation factors of 3, (4 + ε), and (5 + ε) and hardness

factors of 4
3 , 3

2 , and 3
2 for these variations, respectively.

Another problem related to k-TSP is called k-Traveling Repairman Problem (KTR) in

which instead of minimizing the total lengths of the tour the objective function is to minimize

the total latency of the nodes where the latency of each node is the distance travelled (time

elapsed) before visiting that node for the first time. The case of k = 1 is known as the

minimum latency problem. The best known approximation algorithm for k = 1 is 3.59

due to [31] and the best known approximation for KTR is 2(2 + α) [38] where α is the best

approximation ratio for the problem of finding minimum tree spanning k nodes a.k.a k-MST

(see also [75] and the references there).

Online vehicle routing problems are also considered in the literature, for a survey see [71].

Other different variations of min-max objective vehicle routing problems are also studied in

the literature (see e.g. [7, 104, 105, 95, 65]).

2.3 Preliminaries

For a connected subgraph H ⊆ G by tree weight of H we mean the weight of a minimum

spanning tree (MST) of H and denote this value by WT (H). Note that this is different from

the weight of H, i.e. W (H) which is the sum of weights of all the edges of H.

In every solution to either the MMkTC or BTC (to be seen in Chapter 3) problem, we

can replace every edge (u, v) of a tree in the cover with the shortest path between u, v in

the graph without increasing the cost of the tree and the solution still remains feasible.

Therefore, without loss of generality, if the input graph is G and G̃ is the shortest-path

metric completion of G, we can assume that we are working with the complete graph G̃.

Any solution to G̃ can be transformed into a feasible solution of G (for MMkTC or BTC)

without increasing the cost (we can replace back the paths in G representing the edges in

G̃).

The following lemma will be useful in our algorithms for both the MMkTC and BTC

problems.

Lemma 1 Suppose G = (V,E) is a graph which has a k-tree cover T = {T1, . . . , Tk}, with

maximum tree weight of λ and let λ′ ≤ λ be a given parameter. Assume we delete all the

14

edges e with w(e) > λ′ (call them heavy edges) and let the resulting connected components

be C1, . . . , Cp. Then Σpi=1WT (Ci) ≤ kλ+ (k − p)λ′.

Proof. Let G′ =
⋃p
i=1 Ci be the graph after deleting the heavy edges. Each tree in T might

be broken into a number of subtrees (or parts) after deleting heavy edges; let T ′ denote the

set of these broken subtrees, |T ′| = k′, and ni be the number of trees of T ′ in component Ci.

The total weight of the subtrees in T ′ is at most kλ−(k′−k)λ′, since the weight of each tree

in T is at most λ and we have deleted at least k′ − k edges from the trees in T each having

weight at least λ′. In each component Ci we use the cheapest ni − 1 edges that connect all

the trees of T ′ in Ci into one spanning tree of Ci. The weight of each of these added edges is

no more than λ′ and we have to add a total of k′−p such edges (over all the components) in

order to obtain a spanning tree for each component Ci. Thus, the total weight of spanning

trees of the components Ci’s is at most kλ− (k′ − k)λ′ + (k′ − p)λ′ = kλ+ (k − p)λ′.

Through our algorithms we may need to break a large tree into smaller trees that cover

(the vertices of) the original tree, are edge-disjoint, and such that the weight of each of

the smaller trees is bounded by a given parameter. We use the following lemma which is

implicitly proved in [46] (in a slightly weaker form) in the analysis of their algorithm.

Lemma 2 Given a tree T with weight W (T) and a parameter β > 0 such that all the

edges of T have weight at most β, we can edge-decompose T into trees T1, . . . , Tk with

k ≤ max(bW (T)
β c, 1) such that W (Ti) ≤ 2β for each 1 ≤ i ≤ k.

Proof. The idea is to “split away” (defined below) trees of weight in interval [β, 2β) until we

are left with a tree of size smaller than 2β. This process of “splitting away” is explained in

[46]. We bring it here for the sake of completeness. Consider T being rooted at an arbitrary

node r ∈ T . For every vertex v ∈ T we use Tv to denote the subtree of T rooted at v;

for every edge e = (u, v) we use Te to denote the subtree rooted at u which consists of Tv

plus the edge e. Subtrees are called light, medium, or heavy depending on whether their

weight is smaller than β, in the range [β, 2β), or ≥ 2β, respectively. For a vertex v whose

children are connected to it using edges e1, e2, . . . , el splitting away subtree T ′ =
⋃b
i=a Tei

means removing all the edges of T ′ and vertices of T ′ (except v) from T and putting T ′

in our decomposition. Note that we can always split away a medium tree and put it in

our decomposition and all the trees we place in our decomposition are edge-disjoint. So

assume that all the subtrees of T are either heavy or light. Suppose Tv is a heavy subtree

whose children are connected to v by edges e1, e2, . . . such that all subtrees Te1 , Te2 , . . . are

light (if any of them is heavy we take that subtree). Let i be the smallest index such that

T ′ =
⋃i
a=1 Tea has weight at least β. Note that T ′ will be medium as all Tej ’s are light. We

split away T ′ from T and repeat the process until there is no heavy subtree of T (so at the

end the left-over T is either medium or light).

15

If W (T) ≤ 2β then we do not split away any tree (since the entire tree T is medium)

and the theorem holds trivially. Suppose the split trees are T1, T2, . . . , Td with d ≥ 2 with

W (Ti) ∈ [β, 2β) for 1 ≤ i < d. The only tree that may have weight less than β is Td. Note

that in the step when we split away Td−1 the total weight of the remaining tree was at least

2β, therefore we can assume that the average weight of Td−1 and Td is not less than β.

Thus, the average weight of all Ti’s is not less than β which proves that d cannot be greater

than bW (T)
β c.

2.4 A 3-approximation algorithm for MMkTC

In this section we prove Theorem 4. Before describing our algorithm we briefly explain the

(4 + ε)-approximation algorithm of [46]. Suppose that the value of the optimum solution

to the given instance of MMkTC is opt and let λ ≥ opt be a value that we have guessed

as an upper bound for opt. The algorithm of [46] will either produce a k-tree cover whose

largest tree has weight at most 4λ or will declare that opt must be larger than λ, in which

case we adjust our guess λ. So assume we have guessed a value λ such that λ ≥ opt.

For simplicity, let us assume that G is connected and does not have any edge e with

w(e) > λ as these clearly cannot be part of any optimum k-tree cover. Let T be a MST of G

and T = {T1, . . . , Tk} be an optimum k-tree cover of G. We can obtain a spanning tree of G

from T by adding at most k− 1 edges between the trees of T . This adds a total of at most

(k − 1)λ since each edge has weight at most λ. Thus, W (T) ≤
∑k
i=1W (Ti) + (k − 1)λ ≤

(2k − 1)λ. Therefore, by Lemma 2 if we start from a MST of G, say T , and we split away

trees of size in [2λ, 4λ) then we obtain a total of at most (2k − 1)λ/2λ ≤ k trees each of

which has weight at most 4λ. In reality the input graph might have edges of weight larger

than λ. First, we delete all such edges (called heavy edges) as clearly these edges cannot be

part of an optimum solution. This might make the graph disconnected. Let {Gi}i be the

connected components of the graph after deleting these heavy edges and let Ti be a MST

of Gi. For each component Gi the algorithm of [46] splits away trees of weight in [2λ, 4λ).

Using Lemma 2 one can obtain a ki-tree cover of each Gi with ki ≤ max(WT (Gi)/2λ, 1) with

each tree having weight at most 4λ. A similar argument to the one above shows (Lemma 3

in [46]) that
∑
i(ki + 1) ≤ k. One can do a binary search for the smallest value of λ with

λ ≥ opt which yields a polynomial 4-approximation.

Now we describe our algorithm. As said earlier, we work with the metric graph G̃. We

use OPT to denote an optimal solution and opt to denote the weight of the largest tree in

OPT. Similar to [46] we assume we have a guessed value λ for opt and present an algorithm

which finds a k-tree cover with maximum tree weight at most 3λ if λ ≥ opt. Moreover, if

the algorithms fails to produce a solution with the objective value 3λ then λ < opt. Having

this algorithm we can do binary search for λ to find the optimum value (opt) for λ which

16

results a 3-approximation algorithm, that runs in time polynomial in input size.

First, we delete all the edges e with w(e) > λ/2 to obtain graph G′. Let C1, . . . , C` be

the components of G′ whose tree weight (i.e. the weight of a MST of that component) is at

most λ (we refer to them as light components), and let C`+1, . . . , C`+h be the components

of G′ with tree weight greater than λ (which we refer to as heavy components). The general

idea of the algorithm is as follows: For every light component we do one of the following

three: find a MST of it as one tree in our tree cover, or we decide to connect it to another

light component with an edge of weight at most λ in which case we find a component with

MST weight at most 3λ and put that MST as a tree in our solution, or we decide to connect

a light component to a heavy component. For heavy components (to which some light

components might have been attached) we split away trees with weight in [3
2λ, 3λ). We can

show that if this is done carefully, the number of trees is not too big. We explain the details

below.

For every light component Ci let wmin(Ci) be the minimum edge weight (in graph G̃)

between Ci and a heavy component if such an edge exists with weight at most λ, otherwise

set wmin(Ci) to be infinity. We might decide to combine Ci with a heavy component (one

to which Ci has an edge of weight wmin(Ci)). In that case the tree weight of that heavy

component will be increased by A(Ci) = WT (Ci) + wmin(Ci). The following lemma shows

how we can cover the set of heavy components and some subset of light components with a

small number of trees whose weight is not greater than 3λ.

Lemma 3 Let Ls = {Cl1 , . . . , Cls} be a set of s light-components with bounded A(Ci) values.

If
∑

1≤i≤sA(Cli) +
∑
`+1≤i≤`+hWT (Ci) ≤ x − hλ2 , then we can cover all the nodes in the

heavy-components and in components of Ls with at most b 2x
3λc trees with maximum tree

weight no more than 3λ.

Proof. First we find a MST in each heavy component and in each component of Ls, then

we attach the MST of each Cli to the nearest spanning tree found for heavy components.

As we have h heavy components, we get a total of h trees, call them T1, . . . , Th. From the

definition of A(Clj), the total weight of the constructed trees will be:

h∑
i=1

W (Ti) =
∑

1≤j≤s

A(Clj) +
∑

`+1≤i≤`+h

WT (Ci) ≤ x− h
λ

2
, (2.1)

where the last inequality is by the assumption of lemma. Now to each of the h constructed

trees we will apply the procedure of Lemma 2 with β = 3
2λ to obtain trees of weight at most

3λ. This gives at most
∑

1≤i≤h max(b 2W (Ti)
3λ c, 1) trees. To complete the proof of lemma it

is sufficient to prove the following:∑
1≤i≤h

max(b2W (Ti)

3λ
c, 1) ≤ b2x

3λ
c. (2.2)

17

Consider Ti for an arbitrary value of i. If Ti has been split into more than one tree,

by Lemma 2 we know that the amortized weight of the split trees is not less than 3
2λ. If

Ti is not split, as Ti contains a spanning tree over a heavy component, W (Ti) ≥ λ. Thus

every split tree has weight at least 3
2λ except possibly h trees which have weight at least

λ. Therefore, if the total number of split trees is r, they have a total weight of at least

r 3
2λ− h

λ
2 . Using Equation (2.1), it follows that r cannot be more than b 2x

3λc.

Before presenting the algorithm we define a graph H formed according to the light

components.

Definition 3 For two given parameters a, b, graph H has `+a+ b nodes: ` (regular) nodes

v1, . . . , v`, where each vi corresponds to a light component Ci, a dummy nodes called null

nodes, and b dummy nodes called heavy nodes. We add an edge with weight zero between

two regular nodes vi and vj in H if and only if i 6= j and there is an edge in G̃ with length

no more than λ connecting a vertex of Ci to a vertex of Cj. Every null node is adjacent

to each regular node vi (1 ≤ i ≤ `) with weight zero. Every regular node vi ∈ H whose

corresponding light component Ci has finite value of A(Ci) is connected to every heavy node

in H with an edge of weight A(Ci). There are no other edges in H.

In the following we show that algorithm MMkTC (Figure 2.1) finds a k-tree cover with

maximum tree weight at most 3λ, if λ ≥ opt. Before showing this, let see how this fact

implies Theorem 4. If λ ≥ opt, Algorithm 2.1 will find a k-tree cover with maximum tree

weight at most 3λ. If λ < opt the algorithm may fail or may provide a k-tree cover with

maximum weight at most 3λ which is also a true 3-approximation. As opt can be at most∑
e∈E w(e), by a binary search in the interval [0,

∑
e∈E w(e)], we can find a λ for which our

algorithm will give a k-tree cover with bound 3λ and for λ− 1 the algorithm will fail. Thus,

for this value of λ, we get a 3-approximation factor. This completes the proof of Theorem

4.

As a result throughout the whole proof we assume λ ≥ opt. In order to bound the

maximum weight of the cover with 3λ we need to use the optimal k-tree cover. Consider an

optimal k-tree cover OPT; so each T ∈ OPT has weight at most λ. First note that every

tree T ∈ OPT can have at most one edge of value larger than λ/2; therefore each T ∈ OPT

is either completely in one component Ci or has vertices in at most two components, in

which case we say it is broken. If T is broken it consists of two subtrees that are in two

components (we refer to the subtrees as broken subtree or part of T) plus an edge of weight

> λ/2 connecting them; we call that edge the bridge edge of T . We characterize the optimal

trees in the following way: a tree T ∈ OPT is called light (heavy) if the entire tree or

its broken subtrees (if it is broken) are in light (heavy) components only, otherwise if it is

broken and has one part in a light component and one part in a heavy component then we

18

Inputs: G(V,E), k, λ
Output: A set S which is a k-tree cover with maximum tree size 3λ.

1. Build G̃ which is the shortest-path metric completion of G and then delete
all edges with weight more than λ

2 ; let C1, . . . , C`+h be the set of ` light
and h heavy components created.

2. For a : 0→ `

(a) For b : 0→ `

i. S ← ∅
ii. Construct H (as described in Definition 3) with a null nodes and b

heavy nodes.

iii. Find a perfect matching with the minimum cost in H; if there is
no such perfect matching continue from Step 2a ,

iv. Attach each light-component Ci to its nearest heavy component
(using the cheapest edge in G̃ between the two) if vi is matched to
a heavy node in the matching

v. Decompose all the heavy components and the attached light com-
ponents using Lemma 3 and add the trees obtained to S

vi. If a vertex vi is matched to a null node, add a MST of Ci to S.

vii. For every matching edge between two regular nodes vi and vj join
a MST of Ci and a MST of Cj using the cheapest edge among them
(in G) and add it to S.

viii. If |S| ≤ k then return S.

3. return failure

Figure 2.1: MMkTC Algorithm

call it a bad tree. We denote the number of light trees, heavy trees, and bad trees of OPT

by k`, kh, and kb; therefore k` + kh + kb = k. We say that a tree T ∈ OPT is incident to a

component if the component contains at least one vertex of T (see Figure 2.2).

We define multi-graph H ′ = (V ′, E′) similar to how we defined H except that edges of

H ′ are defined based on the trees in OPT. V ′ consists of ` vertices, one vertex v′i for each

light component Ci. For each light tree T ∈ OPT, if T is entirely in one component Ci we

add a loop to v′i and if T is broken and is incident to two light components Ci and Cj then

we add an edge between v′i and v′j . So the total number of edges (including loops) is k`.

There may be some isolated nodes (nodes without any edges) in H ′, these are nodes whose

corresponding light components are incident to only bad trees. Suppose M is a maximum

matching in H ′ and let U be the set of vertices of H ′ that are not isolated and are not

saturated by M . Because M is maximal, every edge in E′ \M is either a loop or is an edge

between a vertex in U and one saturated vertex. Therefore:

|M |+ |U | ≤ k`. (2.3)

Note that for every node v′i (corresponding to a light component Ci) which is incident to

19

Heavy Components

Light Components

Bad Trees

Heavy Trees

Light Trees

Connection Edges

Figure 2.2: Structure of G after deleting edges with length greater than λ
2 . Each thin circle

corresponds to a component and each solid circle corresponds to an optimum tree or a
broken subtree (part) of an optimum tree.

a bad tree, that bad tree has a bridge edge (of weight at most λ) between its broken subtree

in the light component (i.e. Ci) and its broken subtree in a heavy component. Therefore:

Lemma 4 For every light component Ci which is incident to a bad tree, and in particular

if v′i is isolated, A(Ci) is finite.

We define the excess weight of each bad tree as the weight of its broken subtree in the

light component plus the bridge edge. Let Wexcess be the total excess weights of all bad

trees of OPT. Note that Wexcess contains
∑
vi is isolated

A(Ci), but it also contains the

excess weight of some bad trees that are incident to a light component Ci for which vi is

not isolated. Thus:

Wexcess ≥
∑

vi is isolated

A(Ci). (2.4)

Only at Steps 2(a)v, 2(a)vi, and 2(a)vii the algorithm adds trees to S. First we will show

that each tree added to S has weight at most 3λ. At step 2(a)v, according to Lemma 3, all

the trees will have weight at most 3λ. At Step 2(a)vi, as Ci is a light component its MST

will have weight at most λ. At Step 2(a)vii, the MST of Ci and Cj are both at most λ, and

as vi and vj are connected in H there is an edge with length no more than λ connecting

Ci and Cj ; thus the total weight of the tree obtained is at most 3λ. Hence, every tree in

S has weight no more than 3λ. The only thing remain is to show that the algorithm will

eventually finds a set S that has no more than k trees. We show that in the iteration at

which a = |U | and b is equal to the number of isolated nodes in H ′: |S| ≤ k.

20

Lemma 5 The cost of the minimum perfect matching computed in step 2(a)iii is no more

than Wexcess.

Proof. Consider the iteration at which a = |U | and b is the number of isolated nodes in H ′.

In this case, we can find a perfect matching in the following way: for every vertex v′i ∈ U ,

vi ∈ H can be matched to a null node in H, for every isolated node v′i ∈ H ′, vi ∈ H can be

matched to a heavy node in H (note that A(Ci) is finite by Lemma 4), for all other vertices

v′i ∈ H ′, v′i is saturated by M , so the corresponding vi ∈ H can be matched according to

the matching M . Note that the cost of this matching is
∑
vi is isolated

A(Ci) which is no

more than Wexcess by Equation (2.3). Since we find a minimum perfect matching in step

(2(a)iii).

Note that the number of trees added to S at step (2(a)vii) is |M | and the number of

trees added at step (2(a)vi) is |U |. Thus the total number of trees added to S at these two

steps is at most |M | + |U | ≤ k` by Equation (2.3). The weight of the minimum perfect

matching found in (2(a)iii) represents the total weight we add to the heavy components in

step (2(a)iv). By Lemma 5, we know that the added weight is at most Wexcess. In Lemma 6

we bound the total weight of heavy components and the added extra weight of matching by

(kh + kt) ∗ 3
2λ− h

λ
2 . Using Lemma 3 we know that we can cover them by at most kh + kb

trees. Thus the total number of trees added to S is at most k` + kh + kb = k.

The following lemma will bound the weight of the heavy components and Wexcess.

Lemma 6
∑
`+1≤i≤`+hWT (Ci) +Wexcess ≤ (kh + kb) ∗ 3

2λ− h
λ
2 , if λ ≥ opt.

Proof. Again, we assume that λ ≥ opt. We show a possible way to form a spanning tree

for each heavy component plus the light components attached to it. Then we bound the

total weight of these spanning trees.

We can make a spanning tree over a heavy component Ci by connecting all the trees

and broken subtrees of the optimum solution that are in that component by adding edges of

weight at most λ/2 between them since each edge in Ci has weight at most λ/2 (see Figure

2.2). Therefore, the tree weight of a heavy component can be bounded by the weight of

optimal trees or broken subtrees inside it plus some edges to connect them. Suppose p trees

of the heavy trees are broken and q of them are completely inside a heavy component; note

that p + q = kh. The rest of broken subtrees in heavy components are from bad trees. So

overall we have 2p + q + kb trees or broken subtrees in all the heavy components. Each of

the q heavy trees that are not broken contribute at most qλ to the left hand side. Those p

heavy trees that are broken contribute at most pλ/2 to the left hand side since each of them

has an edge of weight more than λ/2 that is deleted and is between heavy components. By

definition of Wexcess, we can assume the contribution of all bad trees to the left hand side

is at most kbλ. Thus, the total weight of edges e such that e belongs to an optimal tree and

21

also belongs to a heavy component or is part of Wexcess (i.e. the broken part of a bad tree

plus its bridge edge) is at most (p+ q + kb)λ− pλ2 .

Overall we have 2p + q + kb trees or broken subtrees in all the heavy components. In

order to form a spanning tree in each heavy component we need at most 2p+q+kb−h edges

connecting the optimal trees and broken subtrees in the heavy components, since we have h

heavy components. Since each edge in a component has weight at most λ
2 , the total weight

of these edges will be at most (2p+q+kb−h)λ2 . Therefore, the total weight of spanning trees

over all heavy components plus Wexcess will be at most (p+q+kb)λ−pλ2 +(2p+q+kb−h)λ2 =

(kh + kb) ∗ 3
2λ− h

λ
2 .

We end this section by analyzing the running time of our algorithm. As we discussed

earlier, the binary search for finding λ ≥ opt is done in the interval [0,
∑
e∈E w(e)], so

the binary search takes at most O(log(
∑
e∈E w(e))). At each step of the binary search

we call the algorithm shown in Figure 2.1. In Step 1 of the algorithm, we can build the

metric completion of the graph in O(|V |3) operations using all pairs shortest path algorithm

of Floyds-Warshall. Step 2(a)iii is the most time consuming step in Loop 2 in which we

find a perfect matching on a graph with at most 3` nodes. The perfect matching can be

found using the algorithm of [102] in O(`2.376). As a result, Loop 2 takes at most O(`4.376)

operations. By noting that ` can be at most |V | the total run time of our algorithm is

O(log(
∑
e∈E w(e))|V |4.376) which is polynomial in the size of the inputs.

2.5 Future Works

Finding an approximation algorithm and a hardness of approximation with the same ratio

for a problem is the ultimate goal in study of approximation algorithms. However, often this

is too optimistic and one hopes to close the gap between the upper bound (approximation

ratio) and the lower bound (hardness factor) as much as possible. As discussed in Section 2.2

the best hardness factor for MMKTC is 3
2 [125] which still has a large gap from its best

current approximation factor 3.

The algorithm for min-max path cover [7] also uses a similar scheme: (1) deleting edges

with weight greater than λ, (2) finding a tree in each induced component, (3) doubling the

edges of each tree, (4) making a TSP tour for each tree with double edges, and (5) splitting

the TSP tours into k paths. We believe similar technique of deleting edges with weight

greater than λ/2 and using an appropriate matching may lead to a better approximation

factor for this problem.

Algorithms for covering graphs with tours, trees, paths, etc. with min-max objective

use the simple technique of spliting the solution of single person instance into k balanced

subgraphs. It is an interesting open question if there is a better applicable techinque such

as LP-based algorithms for these types of problems.

22

Chapter 3

Bounded tree cover

In the previous chapter we looked at the problem of covering the vertices of a graph with

a given class of graphs (namely trees) while minimizing the maximum weight of them. The

motivation for these types of problems is coming from the fact that one can model a group

of customers needing special service as nodes in the graph and the subgraphs represent

servicing agent. Suppose a company does not want to have a customer serviced later than a

target deadline. A related problem is Bounded Tree Cover in which we are given an upper

bound on the size of each tree and our goal is to minimize number of trees in the cover.

As an example, in a bounded vehicle routing problem, we are given a weighted graph

G = (V,E) in which each node represents a client. The goal is to dispatch a number of

service vehicles to service the clients such that each client has to be served before a specified

time bound λ. The goal is to minimize the total number of required vehicles. Observe that

the subgraph travelled by each vehicle is a walk that can be approximated with a tree. Such

problems arise naturally in many applications such as vehicle routing and network design

problems.

3.1 Problem Formulation

In this section we study the problem of Bounded Tree Cover (BTC). More formally, suppose

we are given an undirected graph G = (V,E) and a weight function w : E → Z+.

Definition 4 In the BTC problem, we are given the weighted graph G and a parameter λ

and the goal is to find a tree cover with minimum number of trees such that the weight of

every tree in the cover is at most λ, where the weight of a tree Ti is W (Ti) =
∑
e∈Ti

w(e).

In this chapter we improve the approximation ratio for BTC. Specifically, we prove the

following theorem in Section 3.4

Theorem 5 There is a polynomial time 2.5-approximation algorithm for the BTC problem.

This improves upon the 3-approximation algorithm of [7].

23

3.2 Related Works

In the bin packing problem we are given a set of items {i1, . . . , in} each of which has a

weight w(ij), the objective is to pack all the items into bins with size B such that the

number of bins used is minimized and the total weight of items in each bin does not exceed

B. The bin packing problem is APX-hard and has a hardness of 3
2 − ε for any ε > 0 [122].

BTC is APX-hard even in the case when G is a weighted tree with height one by an easy

reduction from the bin packing problem. The reduction is as follows. For a given instance

of bin packing problem with item set {i1, . . . , in} and bound B, build the corresponding

BTC instance consisting of a weighted graph with node set V = {r}∪{v1, . . . , vn} such that

every node vj is connected to r by an edge of weight w(ij) and λ = B. It is easy to see

that an α-approximation algorithm for the BTC instance gives a corresponding solution for

the bin packing instance with similar approximation ratio and vice-versa. Thus, the BTC

problem is at least as hard as the bin packing problem.

Nagarajan et al. [105] consider distance constrained vehicle routing problem in which

the objective is to cover an undirected graph with the minimum number of tours with

bounded lengths. They give an O(log n)-approximation for the general metric graphs and

a 2-approximation for tree metrics.

Another closely related problem is the orienteering problem. In the orienteering problem

we are given a weighted graph G and a bound B, the objective is to find a walk that visits

(or services) as many nodes as possible within the time bound B. The approximation ratio

for this problem on undirected graphs has been improved from 4 [23] to 3 [15] and finally to

(2+ ε) [35]. For the directed case, the best approximation ratio is O(log2 n) due to [35, 104],

the best previously known approximation ratio is a quasi-polynomial time (see Section 1.2)

algorithm with approximation guarantee of log n [36].

In another setting, there might be a deadline D(v) on each node v meaning that the

client should be served by that time. This problem is known as deadline-TSP. Deadline-TSP

can be generalized to the case when each client has to be served between the time interval

[R(v), D(v)]. This problem is known as vehicle routing with time windows. Bansal et al. [15]

give an O(log n)-approximation for the deadline-TSP and extend it to the time window with

an O(log2 n)-approximation guarantee. Chekuri and Pal [36] give an O(log n) approximation

for the time window but their algorithm runs in quasi-polynomial time. Frederickson et al.

[51] consider the special case when the time windows are unit length and give a constant

factor approximation for it and they also consider some other special variations.

In addition to trees there are some other variations of bounded graph covering studied

in the literature [7, 127].

24

3.3 A 2.5-approximation algorithm for BTC

Given an instance of BTC consisting of a graph G and a bound λ on the tree sizes we

use OPT to denote an optimum solution and k = opt denote the number of trees in

OPT. As before, we can assume we are working with the shortest-path metric completion

graph G̃ = (V,E). Our algorithm for this problem is similar to the algorithm for MMkTC,

although the analysis is different (we use the preliminaries introduced in Section 2.3 in this

chapter) . The overall structure of the algorithm is as follows. We delete all the edges with

weight greater than λ/4 in G̃ to obtain graph G′. Let C1, . . . , C` be the components of G′

whose weight is at most λ/4, called light components, and C`+1, . . . , C`+h be the components

with weight greater than λ/4 which we refer to as heavy components. We define A(Ci), the

tree of a light component Ci plus the weight of attaching it to a heavy component as in

Section 2: it is the weight of minimum spanning tree of Ci, denoted by WT (Ci), plus the

minimum edge weight that connects a node of Ci to a node in a heavy component if such

an edge e exists (in G̃) such that WT (Ci) +w(e) ≤ λ; otherwise A(Ci) is set to infinity. The

proof of the following lemma is identical to that of Lemma 3 with 3
2λ replaced with 1

2λ.

Lemma 7 Let Ls = {Cl1 , . . . , Cls} be a set of s light-components with bounded A(Ci) values.

If
∑

1≤i≤sA(Cli) +
∑
`+1≤i≤`+hWT (Ci) ≤ x − hλ4 , then we can cover all the nodes in the

heavy components and in components of Ls with at most b 2x
λ c trees with maximum tree

weight no more than λ.

Before presenting the algorithm we define a graph H = (L,F) formed according to the

light components similar to the way we defined it in the MMkTC problem.

Definition 5 For two given parameters a, b, graph H has `+a+ b nodes: ` (regular) nodes

v1, . . . , v`, where each vi corresponds to a light component Ci, a dummy nodes called null

nodes, and b dummy nodes called heavy nodes. We add an edge with weight zero between

two regular vi and vj in H if and only if i 6= j and there is an edge e between Ci and Cj

in G̃ such that WT (Ci) + WT (Cj) + w(e) ≤ λ. Every null node is adjacent to each regular

node vi (1 ≤ i ≤ `) with weight zero. Every regular node vi ∈ H whose corresponding light

component Ci has finite value of A(Ci) is connected to every heavy node in H with an edge

of weight A(Ci). There are no other edges in H.

Theorem 5 follows from the following theorem.

Theorem 6 Algorithm BTC (Figure 3.1) finds a k′-tree cover with maximum tree cost

bounded by λ, such that k′ ≤ 2.5opt and runs in time O(|V |4.376).

Proof. It is easy to check that in all three steps 2(a)v, 2(a)vi, and 2(a)vii the trees found

have weight at most λ: since each is either found using Lemma 7 (Step 2(a)v), or is a MST

25

Input: G(V,E), λ
Output: A set S containing k′-tree cover with maximum tree cost λ in which k′ ≤ 2.5opt.

1. Take G̃ to be the metric completion of G and delete edges with length more than λ
4

to form graph G′ with components C1, . . . , C`+h

2. For a : 0→ `

(a) For b : 0→ `

i. Sa,b ← ∅
ii. Build graph H according to Definition 5 with a null nodes and b heavy nodes.

iii. Find a perfect matching with the minimum cost in H, if there is no such
perfect matching continue from Step 2a

iv. Attach each light component Ci to its nearest heavy component if vi is
matched to a heavy node

v. Decompose all the heavy components and the attached light components as
explained in Lemma 7 and add the trees obtained to Sa,b

vi. If a node vi is matched to a null node, add MST of Ci to Sa,b.

vii. For every matching edge between vi and vj consider the cheapest edge e

between Ci and Cj (in G̃) and add a minimum spanning trees of Ci∪Cj∪{e}
to Sa,b.

3. return set Sa,b with the minimum number of trees.

Figure 3.1: BTC Algorithm

of a light component (Step 2(a)vi), or is the MST of two light components whose total

weight plus the shortest edge connecting them is at most λ (Step 2(a)vii). So it remains to

show that for some values of a, b, the total number of trees found is at most 2.5opt.

First note that if matching M found in Step 2(a)iii assigns nodes vl1 , . . . , vlb to heavy

nodes and has weight WM then
∑

1≤i≤bA(Cli) = WM . Let Wh denote the total tree

weight of heavy components, i.e. Wh =
∑
`+1≤i≤`+hWT (Ci). Then the number of trees

generated using Lemma 7 in Step 2(a)v is at most b 2(WM+Wh+hλ/4)
λ c, and the number of

trees generated in Steps 2(a)vi and 2(a)iii is exactly (`− b+ a)/2; so we obtain a total of at

most b 2(WM+Wh+hλ/4)
λ c+ (`− b+ a)/2 trees.

Lemma 8 There exist 0 ≤ a′ ≤ n and 0 ≤ b′ ≤ n such that if H is built with a′ null nodes

and b′ heavy nodes then H has a matching M ′ such that if Algorithm BTC uses M ′ then

each tree generated has weight at most λ and the total number of trees generated will be at

most 2.5opt.

For now assume Lemma 8 is correct (the proof is presented at Section 3.4) This lemma

is sufficient to complete the proof for correctness of the algorithm as follows. Consider an

iteration of the algorithm in which a = a′ and b = b′. Suppose that the minimum perfect

matching that the algorithm finds in this iteration is M with weight WM . Since WM ≤

26

WM ′ , the total number of trees generated in Step 2(a)v is at most b 2(WM+Wh+hλ/4)
λ c ≤

b 2(WM′+Wh+hλ/4)
λ c. Furthermore, the number of trees generated in Steps 2(a)vi and 2(a)vii

is exactly (`− b′ + a′)/2, so we obtain a total of at most b 2(WM+Wh+hλ/4)
λ c+ (`− b+ a)/2

trees. This together with the fact that WM ≤ WM ′ and Lemma 8 shows that we get at

most 2.5opt trees using M .

Now, we prove that the running time of our algorithm is in O(|V |4.376). In Step 1 of the

algorithm, we can build the metric completion of the graph in O(|V |3) operations using all

pairs shortest path algorithm of Floyds-Warshall. Step 2(a)iii is the most time consuming

step in the Loop 2 in which we find a perfect matching on a graph with at most 3` nodes.

The perfect matching can be found using the algorithm of [102] in O(`2.376). As a result,

Loop 2 takes at most O(`4.376) operations. By noting that ` can be at most |V | the total

run time of our algorithm is O(|V |4.376).

3.4 Proof of Lemma 8

In this section we prove Lemma 8. We use the structure of OPT in order to determine a′, b′

as well as the matching M ′. We do not give an explicit value for a′, b′, instead we start

with a′ = b′ = 0 and we define the edges we add to M ′ instead. For every two nodes of H

that we pair (i.e. every edge we place in M ′) if that edge involves a null node (or a heavy

node) we increase a′ (or b′) accordingly. In other words, we add a new null node (or heavy

node) to H whenever we need to use a new copy of a null node (or heavy node). At the

end, a′ will be the total number of null nodes we used in our matching M ′ and b′ will be

the number of heavy nodes we used.

We call every tree in OPT an optimum tree. We say an optimum tree T is incident to

a component Ci if Ci contains at least one node of T . Note that each optimum tree can be

incident to at most 4 components as each edge deleted had weight more than λ/4. Let F

be the set of light components which are incident to only one optimum tree. So each such

component contains only one tree or broken subtree of a tree. We add matching edges to M ′

in 5 steps (described below) and also characterize the optimum trees into types. Initially

M ′ = ∅, and we start with the optimum trees of first type and match some pairs of nodes

in H based on the definition of Type 1 and add them to M ′; then in Step 2 we define

optimum trees of Type 2 and add all the matching edges that they define into M ′, and so

on. Whenever we need to match a node vi to a node vj where vj is already matched to

another node in M ′ (in one of the previous steps) we use a new null node and match vi to

the null node (instead of vj).

Step 1: Type 1 trees

An optimum tree is Type 1 if it is incident to only light components, say Cx1 , . . . , Cxp (with

27

Heavy Components

Light Components

F

Type 1

Type 2

Type 3 Type 4

Figure 3.2: Each thin circle shows a component and each solid circle shows a broken subtree
of an optimum tree; the solid lines show bridge edges that are deleted and were connecting
broken subtrees of optimum trees

p ≤ 4) which satisfy at least one of the following: i) p ≤ 2, in which case we match each of

vx1
and vx2

(if it is not already matched) to a new null node and add these (at most) two

edges to M ′, or ii)p = 3 and at least two of vx1 , vx2 , vx3 are adjacent in H, say vx1 , vx2 , then

we add the edge vx1
vx2

to M ′ and match vx3
with a null node, or iii) p = 4 and there are two

independent edges among these four nodes in H, say vx1
, vx2

are adjacent and vx3
, vx4

are

adjacent, then we add these two edges to M ′. So, for each Type 1 optimum tree, we generate

at most a total of two trees in Steps 2(a)vi and 2(a)vii (each corresponding to a matching

edge described above) that together cover all the nodes of the components Cx1
, . . . , Cxp

.

Note that each of the trees generated this way has weight at most λ by definition of edges of

H. In Step 1 we add all possible matching edges to M ′ by considering all Type 1 optimum

trees before going to the next step.

Step 2: Type 2 trees

Every optimum tree T that is not Type 1 and is incident to an even number (specifically 2

or 4) of the light components in F is Type 2. We claim that the nodes of H corresponding

to these light components are all adjacent (with edges of weight zero). So we can match

them arbitrarily with at most two edges, we add these (at most) two edges to M ′. The

reason is each of these components contains only the nodes of T (because they are in F , so

cannot be incident with any other optimum tree). Therefore all these components belong

to the same optimum tree T ; so for any two such components, say Ci and Cj , there is a

path P connecting two nodes of them in T such that WT (Ci) +WT (Cj) +W (P) ≤ λ. Since

28

we are working with the complete graph G̃, there is an edge e ∈ G̃ between Ci and Cj

with WT (Ci) +WT (Cj) + w(e) ≤ λ, so vi, vj are adjacent in H. In Step 2 we place all the

matching edges generated by Type 2 trees into M ′ before going to the next step.

Step 3: Type 3 trees

Every optimum tree T that is not Type 1 or 2 and has following properties is Type 3: T is

incident to an odd number of light components Cx1
, . . . , Cxp

(p is specifically 1 or 3) in F

and at least one light component Cy not in F such that the broken subtree of T in Cy is

connected to the broken subtree of one of Cxi
’s, say Cx1

, with an edge eT of T (which is

now deleted).

Suppose that T is Type 3, and p = 3 (the case that T is incident with only one light

component in F is easier and is dealt with below). First note that since each of Cx1
, Cx2

, Cx3

belongs to the same optimum tree (namely T), similar arguments as in case of Type 2, show

that nodes vx1
, vx2

, vx3
are all adjacent in H. Without loss of generality assume eT connects

the broken subtree of T in Cy to the one in Cx1
. We claim in that vx1

vy is an edge in H as

well. More specifically WT (Cx1) +WT (Cy) + w(eT) ≤ λ. The following claim implies this:

Claim 1 WT (Cx1
) +WT (Cy) + w(eT) ≤ λ.

Proof. Since T is not Type 1, Cx1
and Cy cannot be the only components to which T

is incident (otherwise, each of Cx1
and Cy would be matched to null nodes as in Type

1). Therefore, there is at least one other component that has a broken subtree of T , and

there is at least one other edge of T , call e′, (which is deleted now) connecting that broken

subtree to Cx1
or to Cy in G̃. Note that w(e′) > λ/4 and WT (Cy) ≤ λ/4. Therefore,

WT (Cx1) +WT (Cy) +w(eT) ≤WT (Cx1) +w(e′) +w(eT) ≤ λ since all these are parts of T .

Hence we can pair vx1 with vy and pair vx2 with vx3 and add these two edges to M ′.

Note that again the tree generated by each of these pairs has weight at most λ. If T is Type

3 and is incident to only one light component in F , say Cx1
then we pair vx1

with vy as

above and add only one edge to M ′. We consider all Type 3 optimum trees and add the

corresponding matching edges to M ′ before going to consider the next step..

Step 4: Type 4 trees

Every optimum tree T that is not Type 1, 2, or 3 and has following properties is Type 4: T

is incident to an odd number of light components Cx1
, . . . , Cxp

(p is specifically 1 or 3) in F

and at least one heavy component Cy such that the broken subtree of T in Cy is connected

to the broken subtree in one of Cx1
, . . . , Cxp

with an edge eT of T (which is now deleted).

Suppose that optimum tree T is Type 4 and p = 3 (again the case that T is incident with

only one light component in F is easier). Arguments similar to the case of Type 3 show that

nodes vx1
, vx2

, vx3
(corresponding to Cx1

, Cx2
, Cx3

) are all adjacent in H. Without loss of

29

generality let assume eT connects the broken subtree of T in Cy to the one in Cx1 . In this

case, the weight of the broken subtree of T in Cx1
, plus the weight of eT is no more than λ

(as they are all part of T); in particular WT (Cx1
) + w(eT) ≤ λ. This implies A(Cx1

) ≤ λ

and so vx1 is adjacent to heavy nodes in H. In this case we pair vx1 with a (not already

matched) heavy node in H and pair vx2
with vx3

and add these two edges to M ′. Note that

as argued before, the tree generated by the matching edge vx2
, vx3

has weight at most λ.

Also, since we use Lemma 7 for each heavy component together with the light components

attached to it, the weight of each tree generated from the heavy components (and their

assigned light components) is at most λ.

Step 5: The rest of light components

This step completes the description of M ′. Before starting this step, we explain why all

the nodes in H corresponding to components in F are saturated by M ′ before this step.

We show that if T has at least one broken subtree in a component in F then T is either

Type 1, 2, 3, or 4, therefore all the components in F containing a broken subtree of T are

matched in M ′. We consider the following three cases for T : (1) If T is incident at only

components in F then it is Type 1, (2) If T is incident at even number of components in

F then it is Type 2, (3) If T is incident at odd number of components in F then, as it is

not Type 1, T is incident at some other components not in F . As T is connected, there is

an edge eT which connects a broken subtree of T in a component in F to a broken subtree

of T to a component Cy not in F . If Cy is a light component then T is Type 3 and if Cy

is a heavy component then T is Type 4. So, all nodes corresponding to light components

in F are already matched. In Step 5, if there is any light component that is not matched

so far, each of them is incident with at least two optimum trees. In this step we match the

corresponding node (in H) of each of these light components to a null node and these edges

are added to M ′.

Now we prove that the total number of trees generated by matching M ′ is at most

2.5opt. Let N1 denote the number of matching edges added to M ′ in Step 1, Y denote

the number of matching edges added to M ′ in Steps 2 to 5 that does not involve a heavy

node, and N4 denote the number of trees generated by applying Lemma 7 to the matching

edges added to M ′ in Step 4 that involves a heavy node. Note that the total number of trees

generated in the final solution based on matching M ′ is N1 +Y +N4. We use opt1 to denote

the number of optimum trees of Type 1, and optrest = opt− opt1 to denote the number

of other optimum trees. Our goal is to show N1 + Y + N4 ≤ 2.5opt, more specifically we

show: N1 + Y + N4 ≤ 2opt1 + 2.5optrest. It is easy to see that for every optimum tree

of Type 1, we add at most 2 edges to M ′ in Step 1 (and therefore at most 2 trees in the

final solution). Therefore, N1 ≤ 2opt1. In the rest we show that Y +N4 ≤ 2.5optrest. We

prove the following claim.

30

Claim 2 Suppose we add Y edges to M ′ in Steps 2 to 5 that do not involve a heavy node

and have matched light components Cl1 , . . . , Cls to heavy nodes in Step 4. Then:

(i) The union of the Y trees that are generated in the final solution based on the matching

edges added to M ′ in Steps 2 to 5 that do not involve a heavy node contains at least

2Y broken subtrees of the optimum trees that are not Type 1.

(ii)
∑s
i=1A(Cli) +

∑
`+1≤i≤`+hWT (Ci) ≤ 5

4λ · optrest −
λ
2 · Y − h

λ
4 .

First, let us show how we can complete the proof of lemma using this claim. Using Lemma

7 and part (ii) of Claim 2, the total number of trees generated based on matching edges

added to M ′ at Step 4 that involves a heavy node is bounded by: N4 ≤ b2.5optrest − Y c.

Also, the total number of matching edges that do not involve a heavy node (and therefore

the corresponding number of trees in the final solution) generated at Steps 2 to 5 is Y . So

we get Y + N4 ≤ b2.5optrest − Y c + Y ≤ 2.5optrest, as wanted. Now it only remains to

prove Claim 2.

Proof of Claim 2:

Part (i): We show that for every tree generated in the final solution based on matching

edges added to M ′ in Steps 2 to 5 that do not involve a heavy node, there are two distinct

broken subtrees of the optimum trees. To show this, we assign two broken subtrees for every

such tree generated in the final solution such that each broken subtree is assigned to at most

one tree of final solution.

For every optimum tree T of Type 2, each edge e added to matching M ′ in Step 2

is between two components in F each of which contains exactly one broken subtree of T ;

therefore the corresponding tree in the final solution generated based on e contains the

broken parts of T in those two components of F . We assign those two broken subtrees to

the tree generated. Also, every light component that is considered in Step 5 is not in F , i.e.

it is incident with at least two optimum trees and so has at least two broken subtrees of two

different optimum trees (that are not Type 1). Therefore, the tree generated at the final

solution for each light component in Step 5 contains at least two broken subtrees of optimum

trees that are not Type 1, we assign those two broken subtrees to the tree generated. Now

we consider the matching edges added in Step 3 and 4 that do not involve a heavy node.

If the matching edge e ∈ M ′ corresponds to two components in F then similar to the case

of Step 2, the tree generated in the final solution based on e contains the broken subtrees

defined by the two components in F ; we assign those two parts to the tree generated based

on e. So the only remaining case is when we have a Type 3 tree T and it has a broken

subtree in a component in F , say Cx1 , and another broken subtree in a light component

not in F , say Cy (in Step 3). Note that Cx1
(since is in F) by definition has only one

broken subtree and that is of tree T . Also, Cy has at least one broken subtree of T even if

31

node vy ∈ H (corresponding to Cy) was matched to a different node (because Cy also had

a broken subtree for a different optimum tree T ′). So regardless of whether vx1
is matched

to vy or to a null node, we can assign the two broken subtrees of T (one in Cx1
and one in

Cy) to the tree generated based this matching edge in M ′.

part (ii): To prove this part, suppose T is a Type 4 optimum tree as in Step 4 which

has two broken subtrees, one subtree in the light component Cx1
∈ F , denote it by Tx1

(note

that there is no other subtree in Cx1), and one subtree in the heavy component Cy, denote

it by Ty, and there is an edge eT ∈ T that connects a node of Tx1
to a node of Ty. Recall

that eT was deleted as W (eT) > λ/4. For the purpose of analysis, we merge component Cx1

(which consists of the nodes of Tx1) with the heavy component Cy by adding the edge eT

back; this will merge the two broken subtrees Tx1
and Ty into one subtree. Also, by doing

this, the weight of a MST in the new heavy component increases by A(Cx1
) only. If there

are multiple optimum trees of Type 4 which have a broken subtree in Cy we merge them

all with Cy. More generally, we do this merge operation for all the light trees Cl1 , . . . , Cls

that are matched with heavy nodes in Step 4 and we let C ′`+1, . . . , C
′
`+h be the set of new

modified heavy components after these merge operations. Note that:

s∑
i=1

A(Cli) +
∑

`+1≤i≤`+h

WT (Ci) =
∑

`+1≤i≤`+h

WT (C ′i).

Now we prove that
∑
`+1≤i≤`+hWT (C ′i) ≤ 5

4λ · optrest −
λ
2 · Y − h

λ
4 . Let p denote the

number of (new) broken subtrees of the optrest optimum trees that are not Type 1; Using

part (i), at least 2Y of these parts are covered by (i.e. are contained in) the Y trees generated

using the matching edges of Steps 2 to 5 that do not involve a heavy node. Therefore, the

remaining at most p−2Y broken subtrees are in the modified heavy components. The total

weight of optimum trees that are not Type 1 is at most λ · optrest. Out of these trees at

least p − optrest edges are deleted even after merge operations that built modified heavy

components, since we have a total of p broken subtrees. Therefore, the total weight of these

p broken subtrees is at most λ · optrest − λ
4 · (p − optrest) and all of these are inside the

modified heavy components. By an argument similar to that of proof of Lemma 1, to make

a spanning tree in each modified heavy component, the total weight of edges that need to be

added between the broken subtrees inside the heavy components is at most (p− 2Y − h)λ4 .

Therefore, the total weight of (MST’s of) the modified heavy components is bounded by:

λ · optrest −
λ

4
· (p− optrest) + (p− 2Y − h)

λ

4
≤ 5

4
λ · optrest −

λ

2
· λ− h · λ

4
.

32

3.5 Future Works

The hardness factor explained in Section 3.2 is through an easy reduction to the case of

trees with height 1. It is quite possible to find a better hardness factor by exploiting the

fact that the graph can be a general graph.

The algorithm for bounded path cover [7] also uses a similar scheme: (1) deleting edges

with weight greater than λ, (2) finding a tree in each induced component, (3) doubling the

edges of each tree, (4) making a TSP tour for each tree with double edges, and (5) splitting

the TSP tours into paths that are not violating the bound. We believe similar technique of

deleting edges with weight greater than λ/2 and using an appropriate matching could lead

to a better approximation factor this problem.

33

Chapter 4

Buy-at-bulk and shallow-Light
k-Steiner Tree

In the Steiner tree problem we are given an undirected graph G = (V,E) with non-negative

edge costs in which the vertices are partitioned into two sets, terminals and Steiner nodes.

The goal is to find a tree with minimum cost containing all the terminal nodes. This prob-

lem is one of the classical and fundamental problems in Theoretical Computer Science and

Operations Research and studied intensively [122]. The problem has a wide range of appli-

cation such as: design of VLSI, optical and wireless communication systems, transportation,

and distribution networks [70]. Another importance of the Steiner tree problem is that it

appears as a subproblem or a special case of many other problems such as Steiner Forest

[57], Prize-Collecting Steiner tree [6], Virtual Private Network [44], Single-Sink Rent-or-Buy

[45, 62], Connected Facility Location [45, 121], and Single-Sink Buy-At-Bulk [58, 62] among

others.

The problem of designing a network capable of broadcasting multimedia (both video

and audio) data in a multicast (simultaneous transmission of data to multiple destinations)

environment is an important problem in the real world applications [97, 39, 50, 21, 87, 81]. A

communication network can be modeled by a graph in which transmitters are represented by

the vertices and the edges represent the connections between them. There are cost and delay

of connection assigned to each edge. The amount of buffer space or channel bandwidth used

is typically refered to as construction cost and combination of the propagation, transmission,

and queuing delays is the delay cost. Constructing a tree with two optimization criteria is

a common task in the design of a network in such a multicast environment [87]. The first

criteria is the longest waiting time for the receivers which can be modeled by the diameter

of the tree or the longest distance to the root. The second criteria is to minimize the total

cost of constructing the tree. Thus, we can model the problem as Shallow-Light Steiner Tree

(SLST) or Bounded Diameter Steiner Tree(BDST), in which we want to cover the terminal

nodes with a minimum cost tree whose diameter is not greater than a given bound. Such

34

multi-criteria network design problems have also applications in information retrieval [26]

and VLSI designs (see [128, 97] and the references).

Network optimization problems with multiple cost functions, such as buy-at-bulk net-

work design problems, have been studied extensively because of their applications. These

problems can model, among others, situations where every edge e (link) can be either pur-

chased at a fixed price c(e) or rented at a price r(e) per amount of flow (or load). The

selected edges are required to provide certain bandwidth to satisfy certain demands be-

tween nodes of the graph. So if an edge is rented and there is a flow of f(e) on that edge

the cost for that edge will be r(e) · f(e) whereas if the edge is purchased, the cost will be

c(e) regardless of the flow. It can be shown that this problem and some other variations

can be modeled using buy-at-bulk network design.

4.1 Problem formulations

In this chapter we study a general problem called Shallow-Light k-Steiner Tree (SLkST) in

which instead of covering all the terminal nodes covering only k nodes is sufficient. This

problem is defined formally below:

Definition 6 In the SLkST problem we are given an undirected graph G = (V,E), a cost

function c : E → Q+, a length function ` : E → Q+, a subset T ⊆ V called terminals

which includes a root node r, and a positive bound L. The goal is to find a Steiner tree over

terminals T and rooted at r containing at least k − 1 other terminals such that the cost of

the tree (under c metric) is minimized while the diameter of the tree (under ` metric) is at

most L.

The main result of this chapter is the following theorem [77]:

Theorem 7 There is a polynomial time (O(log2 n), O(log n))-approximation for SLkST.

More specifically, the algorithm finds a k-Steiner tree of diameter at most O(L · log n) whose

cost is at most O(opt∗ · log2 n) where opt∗ is the cost of an LP relaxation of the problem.

Another closely related class of network design problems are Buy-at-Bulk network design

problems. In this chapter we are specifically interested at Buy-at-Bulk k Steiner Tree

(BBkST) defined below:

Definition 7 Suppose we are given an undirected graph G = (V,E), a set of terminals

T ⊆ V including root r, a sub-additive monotone non-decreasing cost function fe : Q+ → Q+

for each edge e, and positive demand values {δi}i, one for each ti ∈ T . In the BBST problem

the goal is to find an Steiner tree rooted at r to route the demands from terminals to the

root which minimizes the sum of costs of the edges, where the cost of each edge e is fe(δ(e))

where δ(e) is the total demand routed over edge e. This is also refered to as single-sink

35

buy-at-bulk problem. Similar to SLkST, one can generalize the BBST problem by having

an extra parameter k ≥ 1 in the input and a feasible solution is an r-rooted Steiner tree

which contains at least k terminals (instead of all of the terminals). This way, we obtain

the Buy-at-Bulk k-Steiner Tree (BBkST) problem.

In this chapter we obtain the following result for BBkST:

Theorem 8 There is an O(log2 n · logD)-approximation for BBkST, where D is the sum

of demands.

4.2 Related works

Multi-Objective Shortest Path (MOSP) problem is among the first two cost functions

problems studied in the literature. In MOSP problem we are given an undirected graph

G = (V,E), two specified nodes s, t ∈ V , and two cost functions c and l over the edges

and the goal is to find the shortest path between s and t with respect to c such that their

distance with regard to l is not more than a given upper bound L. There is a FPTAS for

this problem [67, 123]. Similar to MOSP, the constrained minimum spanning tree problem

is defined over a graph with two cost functions c and l. The objective is to find a spanning

tree in which total cost with respect to c is minimized and its total length with respect to l

is not more than a given bound L. Ravi et al. [109] give a FPTAS for this problem.

Marathe et al. [97] develop a framework for two criteria approximation algorithms (Sec-

tion 1.2). They studied different bi-criteria network design problems. The objective is to

find a Steiner tree to minimize one criteria subject to a constraint on the second criteria.

The criteria they considered are (i) total cost of the Steiner tree, (ii) diameter of the graph,

or (iii) the maximum degree of the graph. They provide the following table in which rows

indicate the first criteria and columns indicate the second one (some results are from other

works). Each cell represents the best approximation factor for the problem of finding a

Steiner tree to minimize the first criteria (mentioned in the row) subject ot a given bound

on the second criteria (mentioned in the column).

Cost Measures (i) Degree (ii) Diameter (iii) Total Cost

(i) Degree (O(log n), O(log n))
(O(log2 n), O(log n))
[108]

(O(log n), O(log n))
[110]

(ii) Diameter
(O(log2 n), O(log n))
[108]

(1 + γ, 1 + 1
γ) (O(log n), O(log n))

(iii) Total Cost
(O(log n), O(log n))
[110]

(O(log n), O(log n)) (1 + γ, 1 + 1
γ)

Figure 4.1: Bicriteria approximation algorithms for Steiner trees with different criteria. n
is the number of nodes in the graph and γ is a sufficiently small real value

36

Koneman et al. [83] consider the problem of degree-bounded minimum diameter span-

ning tree in which the goal is to find a spanning tree with minimum diameter subject to

a bound B on the maximum degree of all the nodes in graph. They give an O(
√

logB n)-

approximation algorithm for this problem with no violation on the degree bound.

Problem of minimum-cost low-degree spanning tree and its variations are studied exten-

sively in the literature [53, 84, 85, 82, 30, 112, 56, 120]. Koneman [82] gives a spanning tree

whose maximum degree is in O(B + log(n)) with the cost of at most a constant larger than

the optimum degree-B-bounded spanning tree. This result is later improved by Goemans

[56], his algorithm gives a spanning tree that violates the degree bounds by only 2 units

and cost of at most the optimum solution. Finally, Singh et al. [120] give an algorithm

which violates the bound by only 1 unit and cost of at most the optimum solution. Their

algorithm is esentially the best one can hope for, moreover, it works for the general case

when every vertex has an upper bound and lower bound on its degree.

Meyerson [98] studies the online version of shallow-light Steiner tree in which the Steiner

nodes may change during the time, and the algorithm may add edges to the tree accordingly,

but the diameter of the tree should always be bounded by the given constant B and the

cost is to be minimized. He gives an online algorithm for maintaining a tree whose diameter

is kept in O(B log n) and its cost is at most O(log2 n · C∗) where C∗ is the cost of optimal

off line solution.

Kortsarz and Peleg [88] consider the problem of shallow-light Steiner tree for the case

when there is no second cost function and the diameter of the graph is simply the number

of edges between the two farthest apart pair. They give an O(log n)-approximation (the

diameter bound will not be violated) for the case when the diameter bound is a constant

integer. This special problem is proved to be (lnn)-hard even for the case when the diameter

bound is 4 [17]. A similar question is studied in [1] in which the cost function is metric and

they give an O(log n) approximation for the general diameter bound.

Basov and Vainshtein [19] consider graphs with k ≥ 2 different nonnegative costs associ-

ated with each edge e and a cost function c : Rk → R+, trying to find a minimum-cost edge

subset with a certain property such as paths, spanning trees, cuts, joins, etc. They proved

these problems are weakly NP-hard and give simple approximation algorithms for them. For

other results related to SLST and bicriteria network design problems see [79, 111, 91, 92].

In the multi-commodity buy-at-bulk problem we are given p source-sink pairs of terminals

{si, ti}pi=1 each with a demand δi. A subset of edges E′ is feasible if for every 1 ≤ i ≤ p there

is a si, ti-path in G′ = (V,E′). The goal is to minimize
∑
e∈E′ c(e)+

∑
i δi·distG′(si, ti) where

the distance is with respect to length function `. This model is referred to as cost-distance.

Later in Section 4.3 we show that with a small constant factor loss in the approximation

factor any approximation algorithm for this model can be extended to the general case where

37

every edge has a function fe.

In the uniform version of buy-at-bulk all the values along the edges are the same, i.e.

c(e) = c(e′) and `(e) = `(e′), for all e, e′ ∈ E (we refer to the version we defined as

non-uniform). The uniform multi-commodity buy-at-bulk has an O(log n)-approximation

[14, 18, 47]. There are constant-factor approximations for the single-sink uniform case and

some other special cases [60, 63, 64, 93]. Meyerson et al. . [99] give a randomized O(log n)-

approximation for the (non-uniform) BBST and this was derandomized in [34] using an

LP formulation. For the (non-uniform) multi-commodity version Chekuri et al. [32] give

the first polylogarithmic approximation with ratio O(log4 n). In [86] this is improved to

O(log3 n) if all the demands are polynomial in n. Some generalizations of these problems

to higher connectivity are considered in [5, 61].

For hardness of approximation, Andrews [3] shows that unless NP ⊆ ZPTIME (npolylogn)

the buy-at-bulk multicommodity problem has no O(log1/2−ε n)-approximation algorithm for

any ε > 0. For the BBST Chuzhoy et al. [41] show that the problem cannot be approximated

better than Ω(log log n) unless NP ⊆ DTIME(nlog log logn).

The BBkST and SLkST problems generalize some classic problems such as Steiner tree

and k-MST. In the k-MST problem we are given an undirected graph G and the objective

is to find a minimum cost tree that covers at least k nodes of G. The k-MST problem

[13, 24, 55] is the special case of SLkST when L = ∞ and also the bounded diameter

spanning tree problem, studied in [68], is the special case when costs are zero. Also, the

SLST problem studied in [97] is a special case of SLkST with k = |T |. Even the k = |T |

special case is NP-hard and also NP-hard to approximate within a factor better than c log n

for some universal constant c [16].

Buy-at-bulk problems and their special cases have been studied through a long line of

papers in the Operation Research and Computer Science communities after the problem

was introduced by Salman et al. [116] (see e.g. [4, 5, 14, 28, 33, 60, 63, 64, 66, 86, 93, 99]).

4.3 Reduction from Buy-at-Bulk Steiner tree to shallow-
light Steiner tree

In this section we show how to prove Theorem 8 from Theorem 7. First we show that the

general definition of buy-at-bulk Steiner tree problem given in Section 4.1, with a function fe

for each edge e, is equivalent (with a small constant factor loss in the approximation) to the

cost-distance formulation: The input is the same except that instead of function fe for every

edge e, we have two metric functions on the edges: c : E → Q+ is called cost and ` : E → Q+

is called length. The cost of a feasible solution H is defined as:
∑
e∈H c(e) +

∑
i δi · L(ti),

where L(ti) is the length (w.r.t `) of the r, ti-path in H.

38

It is easy to see that this formulation is a special case of buy-at-bulk since a linear

function (defined based on c and `) is also a sub-additive, non-decreasing and monotone

function.

It turns out that an α-approximation for the cost-distance version implies a (2α + 2ε)-

approximation algorithm for the buy-at-bulk version too for a fixed integer ε (see [4, 33, 99]).

We bring its proof from [33] for the sake of completeness. We approximate the function fe

for each e by a collection of simple piece-wise linear functions of the form a + b · x. We

replace the edge e by a group of parallel edges with a linear cost functions. More precisely,

given a function f : Q+ → Q+ , and a fixed ε ≥ 0, for integer i ≥ 0 let gi : Q+ → Q+ be a

linear function defined as gi(x) = f(ai) + f(ai)/ai · x where a = (1 + ε). It can be verified

that if f is monotone, nondecreasing and sub-additive then for all x ≥ 1, a
2+εminigi(x) ≤

f(x) ≤ minigi(x).

As a result, an O(log2 n · logD)-approximation for cost-distance formulation of BBkST

is also an O(log2 n · logD)-approximation for BBkST . For simplicity, we focus on the two

cost function (cost-distance) formulation of buy-at-bulk from now on.

In general there are other models for the cost function in buy-at-bulk problems defined

in [66]:

Model A. The unique cost model: In this model every edge e has either a buy cost

b(e) or a rent cost r(e). For buy edges we have to pay b(e) and for rent edges we have to

pay r(e) · f(e).

Model B. The rent or buy model: In this model every edge e has both buy cost

and rent cost and we can decide whether to buy this edge at cost b(e) or to rent it at cost

r(e) · f(e).

Model C. The rent and buy or cost-distance model: In this model every edge has

both buy cost and rent cost and we have to pay b(e) + c(e) · r(e) for every edge that is going

to be used.

Hajiaghayi et al. [66] show that all the above three models are in fact equivalent, i.e. a

graph with a cost model from one of the above models can be transformed to another model

with a polynomial time algorithm. Moreover this transformation is approximation factor

preserving (see Section 1.2).

The only previous result for SLkST was [66] which had ratio (O(log4 n), O(log2 n)). This

was obtained by applying the following theorem iteratively:

Theorem 9 [66] There is a polynomial time algorithm that given an instance of the SLkST

problem with diameter bound L returns a k
8 -Steiner tree with diameter at most O(log n · L)

and cost at most O(log3 n·opt), where opt is the cost of an optimum shallow-light k-Steiner

tree with diameter bound L.

39

Then a set-cover type analysis (see Section 1.2) yields an (O(log4 n), O(log2 n))-approximation

for SLkST. We should point out that this theorem was the main ingredient in a greedy type

O(log4 n)-approximation for multi-commodity buy-at-bulk in [32, 33] as well. In [66], the

following lemma was also proved:

Lemma 9 [66] Suppose we are given an approximation algorithm for the SLkST problem

which returns a solution with at least k
8 terminals and has diameter at most α · L and cost

at most β · opt. Then we can obtain an approximation algorithm for the BBkST problem

such that given an instance of BBkST in which all demands δi = 1 and a given parameter

M ≥ opt (where opt is the optimum cost of the BBkST instance) returns a solution of

cost at most O((α+ β) log k ·M).

The corollary of this lemma, Theorem 9, and a binary search to find a close enough value

for M was an O(log4 n)-approximation for the BBkST for unit demand instances; this can

also be extended to an O(log3 n·logD)-approximation for general demands where D =
∑
t δt

in [66]. Using Theorem 7 and Lemma 9 we can obtain Theorem 8 which improves the result

of [66] for BBkST by a log n factor.

4.4 (O(log2 n), O(log n))-approximation algorithm for shallow-
light Steiner Tree

In this section we prove Theorem 7. To prove this theorem we combine ideas from all of

[20, 33, 34, 86]. We first show that the algorithm of Marathe et al. [97] for SLST actually

finds a solution with diameter at most O(L · log |T |) whose cost is at most O(opt∗ · log |T |),

where opt∗ is the cost of a natural LP-relaxation, so we give a stronger bound (based on

an LP relaxation) for the cost of their algorithm. This is based on ideas of [34] which gives

a deterministic version of algorithm of [99] for BBST. Then we use an idea in [86] to write

an LP for SLkST and use a trick in [20] for rounding this LP.

First we show that the algorithm of [97] in fact bounds the integrality gap of a natural

LP relaxation for the SLST problem too. Recall that the instance of SLST consists of a

graph G = (V,E) with costs c(e), lengths `(e), terminal set T ⊆ V including a node r. The

goal is to find a Steiner tree H over T with minimum
∑
e∈H c(e) such that the diameter

w.r.t. ` function is at most L. First, let us briefly explain the algorithm of [97] for SLST.

Denote the given instance of SLST by I and define graph F over terminals and the root

as below. For every pair of terminals u, v ∈ T , let b(u, v) be the (approximate) lowest c-

cost path between them whose length (under `) is no more than L (there is an FPTAS for

computing the value of b(u, v) [67]); let the cost of the edge between (u, v) in F be cost of

b(u, v). Lemma 10 is a known fact about the optimum solution I.

40

Lemma 10 [80] In the optimum solution I, there is a pairing of the terminals (except

possibly one if the number of them is odd) such that the unique paths connecting the pairs

in the optimum are all edge-disjoint

Proof. Consider a pairing which minimizes the number of overlapping edges of the connect-

ing paths. We claim that in this pairing the connecting paths are edge-disjoint. Suppose for

contradiction two connecting paths for the pairs (u, u′) and (v, v′) overlap over an edge xy.

Without loss of generality suppose the connecting path for (u, u′) consists of Pux,xy, and

Pyu′ where Pab represents the path connecting a to b. Similarly assume the connecting path

for (v, v′) consists of Pvx, xy, and Pyv′ . Now, we pair (u, v) with a path selected from the

edges in Pux and Pvx (note that both Pux and Pvx can share some edges), and pair (u′, v′)

with a path selected from the edges of Pu′y and Pv′y. It is easy to check that the number

of overlapping edges drops by at least one, which is a contradiction.

It follows from this lemma that, the total cost of these connecting paths is at most the

value of optimum solution, denoted by opt, and the length of each of them is at most L.

We consider a minimum cost maximum matching in F whose cost is at most (1+ε)opt. We

find a minimum cost maximum matching in F and let us say terminals {ui, vi}i are paired.

We pick one of the two (arbitrarily), say ui and remove vi from the terminal set; let this

new instance be I ′. Clearly the cost of optimum solution on I ′, denoted by opt′, is at most

opt (as the original solution is still feasible for the new instance I ′). Also, for any solution

of I ′, we can add the paths defined by b(ui, vi) to connect vi to ui. This gives a solution to

instance I of cost at most opt′ + (1 + ε)opt and the diameter increases by at most L. We

can do this repeatedly for O(log |T |) iterations until |T | = 1, since each time the number of

terminals drops by a constant factor.

Remark: A similar algorithm was designed in [99] to obtain an O(log n)-approximation

for BBST problem. Then an LP-based algorithm was presented by Chekuri et al. [34] to

derandomize the algorithm of [99] for BBST.

We use the same approach as in [34] to bound the integrality gap of SLST. This LP

relaxation is a flow-based LP (like those used in [33, 34]). We use an idea of [86] which only

considers bounded lengths flow paths. For each terminal t ∈ T let Pt be the set of all paths

of length at most L from t to r in G. We assume that the terminals are at distinct nodes

(we can enforce this by attaching some dummy nodes with edge cost and length equal to

zero to the original nodes). Therefore, Pt and Pt′ are disjoint. For every edge e we have an

indicator variable xe which indicates whether edge e belongs to the tree H or not. For each

path p ∈
⋃
t Pt, f(p) indicates whether path p is used to connect a terminal to the root.

It is easy to check that the answer to following integer program is actually an optimum

solution to the SLST:

We can relax the integer constraints (3) in order to make it an LP as follows:

41

IP-SLST min
∑
e c(e) · xe

s.t.
∑
p∈Pt|e∈p f(p) ≤ xe ∀e ∈ E, t ∈ T (1)∑

p∈Pt
f(p) ≥ 1 t ∈ T (2)

xe, f(p) ∈ {0, 1} ∀e ∈ E, p ∈ ∪tPt (3)

LP-SLST min
∑
e c(e) · xe

s.t.
∑
p∈Pt|e∈p f(p) ≤ xe ∀e ∈ E, t ∈ T (4)∑

p∈Pt
f(p) ≥ 1 t ∈ T (5)

xe, f(p) ≥ 0 ∀e ∈ E, p ∈ ∪tPt (6)

Let (x∗, f∗) be an optimal solution to LP-SLST with cost opt∗. Note that this LP has

exponentially many variables, however we do not need to solve this LP; instead we only

show the algorithm of [97] finds a solution whose cost is bounded by O(log |T |) factor of

opt∗. Define graph F = (V (F), E(F)) over terminals T and r as above, i.e. the cost of

edge e = (u, v) ∈ E(F) for two terminals u, v ∈ V (F) will be the cost of (1+ ε)-approximate

minimum c-cost u, v-path of length at most L computed using algorithm of [67].

We show that the cost of algorithm of [97] is at most O(opt∗ · log |T |) while the diameter

is at most O(L · log |T |). The proof of following lemma is analogous of Lemma 2.1 in [34].

Lemma 11 Graph F contains a matching M of size at least |T |/3 whose cost is at most

(1 + ε)opt∗.

Proof. The structure of the proof is as follow. We show that the optimal value of the dual

form of LP-SLST in G is not less than the optimal value of a dual LP for min-cost perfect

matching defined in graph F . Therefore, by LP duality theorem, the value of LP-SLST

(opt∗) is equal to the value of its dual and is greater than the value of min-cost perfect

matching LP. Then we argue that from a basic feasible solution of the matching LP we can

make a integral matching whose cost is not greater than the min-cost perfect matching LP’s

value and has at least |T |/3 edges. Taking into consideration that graph F is built with

edges that are (1 + ε) approximation of the actual values, we conclude that M costs at most

(1 + ε)opt∗.

Consider the following LP for the min-cost perfect matching (MMP) in graph F , along

with its dual (MMD) in which b∗(u, v) represents the optimal minimum c-cost (u, v)-path

of length at most L found by [67]’s algorithm.

MMP MMD
min

∑
(u,v)∈E(F) b

∗(u, v)x(u, v) max
∑
u∈V (F) y(u)∑

v∈V (F) x(u, v) = 1 ∀u ∈ V (F) y(u) + y(v) ≤ b∗(u, v) ∀u, v ∈ E(F)

x(u, v) ≥ 0 ∀(u, v) ∈ E(F) y(u) ≥ 0 ∀u ∈ V (F)

We show that the optimal solution of dual LP for SLST (D-SLST) has value at least as

42

big as the optimal value of MMD which implies the optimal value of MMP is not greater

than opt∗ using LP duality [118].

The LP D-SLST is the following:

D-SLST:
max

∑
t∈T αt∑

t∈T β
t
e ≤ c(e) e ∈ E (7)

αt −
∑
e∈p β

t
e ≤ 0 t ∈ T, p ∈ Pt (8)

αt, β
t
e ≥ 0 e ∈ E, t ∈ T (9)

Let y∗t be an optimal solution for MMD and d(u, v) be the shortest path between u and

v with regard to cost function c in G. We make a ball Bt of radius y∗t around each t ∈ T in

G. More formally, let Bt be a set containing all the nodes v with d(v, t) ≤ y∗t and the edges

e = (u, v) which at least one of d(u, t) < y∗t or d(v, t) < y∗t is true. Let gt(e) be the fraction

of edge e = (u, v) contained in ball Bt, in other words gt(e) = min{y
∗
t−min{d(u,t),d(v,t)}

c(e) , 1} .

Define β̂te = gt(e) · c(e) and α̂t = y∗t . In the following we prove that β̂ and α̂ is a feasible

solution to D-SLST. It is clear that β̂ and α̂ do not violate constraints (9). The main

observation here is that balls {Bt}t∈T are disjoint as we have y(u)+y(v) ≤ b∗(u, v), ∀(u, v) ∈

E(F) in MMD. This observation directly shows that constraints (7) are not violated. Note

that r is also in V (F) so the ball Br is also disjoint from the other balls. As a result, each

path p ∈ Pt consists of at least one part in Bt and one part in Br, therefore p is longer than

the radius of Bt which makes constraints (8) be tight. Thus, α̂ and β̂ are feasible solution

to D-SLST with value at least
∑
u∈V (F) y

∗
u and hence D-SLST is at least as big as MMD.

Now we show how to find an integral matching containing at least |T |/3 nodes. Notice

that there is no odd-set constraints in MMP which makes it integral (the integral LP with

odd set constraints is known as Edmond’s matching polytope). It is well known that in a

basic feasible solution to MMP all x(u, v) are in the set {0, 1
2 , 1} and the edges with value

1
2 make odd cycles [118]. This can be proved from the fact that any basic feasible solution

cannot be written as convex combination of two other feasible solutions.

Let x∗ be a basic feasible solution to MMP. We add all the edges e with x∗(e) = 1 to

M . Moreover, from each odd cycle O, it is easy to see that we can add at least |O|3 of its

edges to M such that the total cost of added edges is less than
∑
e∈O x

∗(e) · c(e) taking into

account that x∗(e) = 1
2 for all e ∈ O. Therefore, M has at least V (F)

3 edges whose cost is

not more than the MMP’s value. As we showed that the value of MMP is not greater than

opt∗ and as we are able to find b∗(u, v) for each edge of F with accuracy 1 + ε, the proof

of lemma follows.

Suppose we have a matching M as above with cost CM . For every pair of terminals ui, vi

matched by M pick one of the two as the hub for connecting both of them to r and remove

the other one from T . Let opt′ be the LP cost of the new instance. Note that the terminals

43

for the new instance are a subset of the terminals in the original one, therefore the current

solution (x∗, f∗) is still feasible for the LP defined for the terminals in the new instance;

therefore opt′ ≤ opt∗. Also, the cost of routing all the terminals that were deleted to their

hubs is at most CM ≤ (1+ε)opt∗. Notice that the number of terminals (|Ti+1|) for the new

instance is at most d 2
3Tie of the previous instance (if there are only two terminals or one

terminal we can just connect them to r using algorithm of [67]). Doing this iteratively, at

each iteration we drop the number of terminals by a factor of at least 2
3 , so overall we repeat

this process for O(log |T |) times. As the cost increases by opt∗ and diameter increases by

L at each iteration, we obtain a solution whose cost is at most O(opt∗ · log |T |) and the

diameter of the solution is at most O(L · log |T |).

Now we prove Theorem 7. Our algorithm is based on rounding a natural LP relaxation

of the problem. Before presenting the LP we explain how we preprocess the input. We first

guess a value opt′ such that opt ≤ opt′ ≤ 2opt. We show that for a guessed value of

opt′ the solution returned by the algorithm satisfies the bounds (i.e. cost of the final tree is

O(opt′ · log |T |)) if opt′ ≥ opt. On the other hand if the algorithm fails then opt′ < opt.

Thus in order to find opt′ we can do binary search between zero and the largest possible

value of opt (e.g.
∑
e∈E c(e)), and according to output of the algorithm we can adjust our

guess for opt′.

We define V ′ ⊆ V to be the set of vertices v such that v has a path p to r with c(p) ≤ opt′

and length at most L again using the algorithm of [67]. Clearly, every vertex of any optimum

solution must belong to V ′. We can safely delete all the vertices of V \ V ′; so let G be the

new graph after pre-processing. The following LP is similar to LP-SLST, except that we

have an indicator variable yt for every terminal.

LP-SLkST min
∑
e c(e) · xe

s.t.
∑
p∈Pt|e∈p f(p) ≤ xe ∀e ∈ E, t ∈ T (10)∑

p∈Pt
f(p) ≥ yt t ∈ T (11)∑

t∈T yt ≥ k (12)
yt ≤ 1 t ∈ T (13)

xe, f(p) ≥ 0 ∀e ∈ E, p ∈ ∪tPt (14)

If we replace yt in the constraints (11) with 1 and drop constraints (12) and (13) (and

remove yt variables) then we obtain the LP-SLST. Our rounding algorithm is similar to those

in [33, 20] for two completely different problems (density version of Buy-at-Bulk Steiner tree

in [33] and k-ATSP tour in [20]). In particular we use the approach of [20] to avoid losing an

extra O(log n) factor in the ratio by giving a direct algorithm for rounding the LP-SLkST

instead of reducing the problem to the density version.

Since we need to solve this LP let’s briefly say how we can do that although LP-SLkST

has an exponential number of variables. First we write its dual as follows (note that instead

of each constraint in primal we have a variable in the dual and instead of each variable in

44

the primal we have a constraint in the dual):

LPD-SLkST max kγ −
∑
t∈T λ

t

s.t.
∑
t∈T α

t(e) ≤ C(e) ∀e ∈ E
βt −

∑
e∈p α

t(e) ≤ 0 ∀t ∈ T, p ∈ Pt
−βt + γ ≤ λt t ∈ T

αt(e), βt, γ, λt ≥ 0 ∀e ∈ E, p ∈ ∪tPt

There are exponentially many constraints in the dual LP but one can obtain an optimum

feasible solution if one can give a separation oracle for it. It is easy to verify that a shortest-

path algorithm gives a separation oracle for the dual LP. Moreover, from the dual solution

we can obtain an optimal feasible solution for the primal form in which the number of

variables that are non-zero is polynomially bounded. For the detailed explanation of the

process see [59].

Suppose that (x∗, y∗, f∗) is an optimum feasible solution to LP-SLkST with value opt∗.

Our first step is to convert (x∗, y∗, f∗) to an approximate solution in which yt values are of

the form 2−i, 0 ≤ i ≤ d3 log ne. Lemmas 12 and 14 are analogous of Lemma 9 and Theorem

10 in [20].

Lemma 12 There is a feasible solution (x′, y′, f ′) to LP-SLkST of cost at most 4opt∗ such

that each y′t is equal to 2−i for some 0 ≤ i ≤ d3 log ne.

Proof. Let (x∗, y∗, f∗) be an optimal feasible solution to LP-SLkST. We set x′e = 4x∗e for

all e ∈ E and f ′(p) = min(4f∗(p), 1) for all t ∈ T and p ∈ Pt. For each t ∈ T and i such

that 1/2i ≤ y∗t < 1/2i−1, if i > d3 log(n)e set y′t = 0; otherwise, y′t = min(1, 1/2i−2). It is

easy to see that the cost of (x′, y′, f ′) is at most 4opt∗. Also, the first constraint is satisfied.

The second constraint is also satisfied since it is clearly satisfied if f ′(p) = 4f∗(p) for all

p ∈ Pt, and if this is not the case then at least one f ′(p) = 1 which is at least as big as y′t

since y′t ≤ 1. So it only remains is to show that the last constraint is satisfied.

Let Y0 be the set of terminals t for which y∗t > 0 but y′t = 0. These are the only terminals

whose y value has decreased. Note that for each t ∈ Y0: y∗t ≤ 1/n3; so
∑
t∈Y0

y∗t ≤ 1/n2.

Let Y1 be the set of terminals t with y′t = 1. If |Y1| ≥ k, then the last constraint clearly

holds. Otherwise, |Y1| ≤ k − 1 which implies that
∑
t 6∈Y1

y∗t ≥ 1 must be true; therefore∑
t 6∈Y1∪Y0

y∗t ≥ 1−1/n2 ≥ 1/n2 ≥
∑
t∈Y0

y∗t . Also, note that for each vertex t 6∈ Y0∪Y1: y′t ≥

2y∗t . Thus, the amount
∑
t∈Y0

y∗t that is decreased in y′ is compensated for by
∑
t6∈Y0∪Y1

y′t

therefore the last constraint holds too.

Let Ti be the set of terminals with y′t = 2−i and ki = |Ti|, for 0 ≤ i ≤ d3 log ne. Note

that
∑d3 logne
i=0 2−i · ki ≥ k. Consider the instance of SLST defined over Ti ∪ {r}. First

observe that we can obtain a feasible solution (x′′, f ′′) to LP-SLST over this instance of

SLST of cost at most 2i+2 · opt∗ in the following way: define x′′e = 2i · x′e for each edge

45

e ∈ E and f ′′(p) = 2i · f ′(p) for each t ∈ Ti and path p ∈ Pt. The cost of this solution is

O(2i+2 · opt∗) since x′′e = 2i+2 · x∗e. Now since we proved the integrality gap of LP-SLST is

O(log n), we obtain the following:

Lemma 13 For each Ti, we can find a Steiner tree over Ti ∪ {r}, rooted at r of total cost

O(2i+2 · opt∗ · log n) and diameter O(L · log n).

Next we prove the following lemma.

Lemma 14 For every 0 ≤ i ≤ d3 log ne and given a Steiner tree Hi over Ti with total

cost O(2i+2 · opt∗ · log n) and diameter O(L · log n) we can find a Steiner tree H ′i rooted at

some ri ∈ Ti containing at least dki/2ie terminals of Ti of cost at most O(opt∗ · log n) and

diameter at most O(L · log n).

For now, let us assume this lemma and see how to complete the proof of Theorem

7. Suppose that H ′i is the Steiner tree promised by Lemma 14 which contains dki/2ie

terminals of Ti and is rooted at a node r′i. Let pi be the minimum cost path from r′i to r

with length at most L (note that because of the pre-processing we did, such path pi exists).

Let H ′′i = H ′i∪pi and let H =
⋃
iH
′′
i . Observe that H contains at least

∑d3 logne
i=0 2−i ·ki ≥ k

terminals. Also, the total cost of H is at most
∑d3 logne
i=0 c(H ′′i) ≤ O(opt∗ · log2 n). Since the

diameter of each H ′′i is at most O(L · log n) (because diameter of H ′i is at most O(L · log n)

and we added a path pi of length at most L to H ′i) and since all of H ′′i ’s share the root r,

the diameter of H is at most O(L · log n) as well. This completes the proof of Theorem 7.

So it only remains to prove Lemma 14. If we are given Steiner tree Hi over Ti we use

the following lemma with β = dki/2ie to edge-decompose Hi into trees F1, . . . , Fd such that

the number of terminals of each Fi is in [β, 3β). It follows that d = Θ(2i) and so by an

averaging argument, at least one of Fi’s has cost O(opt∗ · log n). The proof of the following

lemma is essentially the same as Lemma 2 in Chapter 2.

Lemma 15 Given a rooted tree F containing a set of k terminals and given an integer

1 ≤ β ≤ k we can edge-decompose F into trees F1, . . . , Fd with the number of terminals of

each Fi in [β, 3β), 1 ≤ i ≤ d.

Proof. If k < 3β then F satisfies the statement of the theorem. The idea is to “split away”

(defined below) trees whose number of terminals is in interval [β, 2β) until we are left with

one tree whose number of terminals is in [β, 3β).

4.5 Relation to other network design problems

In this section we study how our result for BBkST can give better approximation factor for

some other network design problems. In order to do this we present an approximation factor

46

preserving reduction from them to the BBkST problem. The study of the reductions were

observed by [99] for the BBST problem. Recall that [99] gives an O(log n)-approximation

algorithm for BBST. In this section we generalize those reductions to the case in which

instead of covering all the terminals covering only k of them is sufficient.

4.5.1 Multicast tree design

In this problem we are given an undirected graph G = (V,E) with cost and delays on the

edges, a source node s ∈ V , and a subset of receivers R ⊆ V . The objective is to find a

tree which minimizes the sum of edges’ cost plus the sum of delay seen by every receiver.

It is easy to see that this problem is an easy case of BBST where delays are represented by

the length of the edges and all the demands are 1. This problem is studied in the network

community [21, 43, 69, 81, 90, 106, 124], and some heuristics are given. As a result of

this equivalence, [99] gives an O(log |R|) approximation for the general problem and our

algorithm gives an O(log3 n)-approximation factor for the k-multicast tree design in which

instead of covering R, covering at least k of them is sufficient.

4.5.2 Extended single-sink buy-at-bulk

In the Extended Single-Sink Buy-at-Bulk (ESSBB) problem [117], we are given an undirected

graph G = (V,E) in which every edge e has a length l(e), a subset of terminals T ⊆ V in

which each terminal ti has demand δi, a single-sink t, and a set of P pipes in which every pipe

i has a cost ci per unit of length and capacity ui. The demands should be routed to t along a

tree. The objective is to find a tree and buy pipes along its edges such that all the demands

can be routed using the pipes and minimize the total cost for buying pipes. Similarly, we can

generalize it to k-ESSBB problem if servicing k of the terminals is sufficient. It is assumed

that P is in O(poly(|V |)).

For a given instance I with an optimum solution TI with cost optI of ESSBB we make

a corresponding instance I ′ for BBST as follow. We replace each edge of the graph with

edges e1, . . . , eP in which edge ei has costs (l(e)ci, l(e)
ci
ui

). This will be an instance of cost-

distance BBST. We claim [14, 117, 99] that the cost of the optimum tree TI′ in I ′ is at most

2optI , and as the cost of every tree in I ′ is more than its cost in I every α-approximation

for I ′ is a 2α-approximation for I.

To prove the claim, suppose TI has d amount of flow on the edge ei, thus it pays

l(ei)cid dui
e in I and l(ei)ci(1 + d

ui
) on I ′. It is easy to see that the amount paid on I ′ is at

most twice of the one in I. Therefore, the optimum solution in I ′ has a cost at most twice

of optI .

The O(log n)-approximation algorithm of [99] implies an O(log n)-approximation for the

ESSBB problem and our algorithm for BBkST implies an O(log3 n)-approximation for the

47

k-single-sink buy-at-bulk problem. The best approximation factor for ESSBB problem has

been improved down to a constant factor in a series of papers [14, 60, 64]. We are not aware

of approximation algorithms for k-single-sink buy-at-bulk problem.

We can assume that instead of using a universal set of pipes for all the edges, a different

subset of pipes is available for each edge. It is clear that the reduction mentioned above

is still applicable for this instance, however all the previous results that did not use BBST

assume that all types of the pipes are available for all the edges. This generalization is

especially important in real world [99] when cost of buying, installing, and maintenance

may vary in different places.

4.5.3 Priority Steiner tree

Priority Steiner Tree (PST) [29] generalizes the Steiner tree problem. In this problem we

are given an undirected graph G = (V,E), a set of terminals T ⊆ V , and a root r ∈ V .

Each edge e has a priority p(e) and a cost c(e), and each terminal t has a priority p(t). The

goal is to connect every terminal t ∈ T to r with a path in which every edge has a priority

at most p(t). The objective is to minimize the total cost of the network.

It is shown that PST is a special case of BBST [41, 99] by giving a reduction from

it to the special instance of ESSBB introduced in Section 4.5.2 where each edge has its

own types of pipes. We give its outline here. For a given instance of PST (I), assume

C = maxec(e), minec(e) ≥ 1 by scaling, and there are q priority levels. For each node v

in I with priority level i we have a node in the corresponding instance of ESSBB (I ′) with

demand δ′v = (nC)5(q−i). We assume that for each edge e in I with priority level i, there

is only one type of pipes with capacity u′e = (nC)5(q−i)+2, cost c′(e) = c(e), and length

l′(e) = 1 for the corresponding edge in I ′.

For an optimal tree s to I we can make a tree s′ to I ′ by buying all the pipes correspond-

ing to the edges of s. We show that s′ is feasible to I ′. Suppose an edge e has priority level i,

note that sum of the demands for all the terminals in s′ whose corresponding terminals in s

have priorities greater than or equal to i is at most n
∑
j≥i(nC)5(q−j) ≥ (nC)5(q−i)+2 = u′e.

This shows that the pipe capacities in s′ are not violated, thus s′ is a feasible solution to

I ′ with the same cost. Conversely, for a given optimal tree s′ in I ′ we show that its cor-

responding tree s in I is feasible. The demand for a terminal with corresponding priority

i is routed over the edges with corresponding priority at most i; otherwise, at least (nC)3

pipes need to be purchased in s′ for the violated edge which costs (nC)3. However, we can

buy all the edges with cost n2C, therefore in the optimal solution in I ′ all the demands are

routed through the edges with the valid corresponding priority. Thus, an optimal solution

for ESSBB can be transformed to an optimal solution for PST.

Charikar et al. [29] present an O(log |T |)-approximation algorithm for PST. As a result

48

of the previous reduction, the algorithm of [99] implies a similar approximation guarantee

and our algorithm give an O(log3 n)-approximation for k-PST in which servicing only k

terminals is sufficient.

There are also approximation preserving reductions from facility location, but-at-bulk

facility location, and multilevel facility location to BBST, but they have constant approxi-

mation factors with other approaches [99].

4.6 Future works

One of the most important questions for SLST and SLkST problems is to answer whether

there exists a true approximation (i.e. not bicriteria) for these problems. Note that as

described in Section 4.2 there are O(log n)-approximation algorithms for unit costs and

metric `. The current approximation algorithms violate both the bound on L and the

optimality of the cost with respect to c for general ` and c. Another major question is to

find a bicriteria approximation with a constant ratio for one of the criteria.

The current approximation ratio for BBkST is achieved by using SLkST algorithm during

which we lose another O(log n) factor. It is an interesting question whether the current

O(log n)-approximation fator of [99, 34] for BBST can be used to get a better approximation

ratio for BBkST.

A hardness factor of Ω(lnn) is known for SLST in the special case of unit cost ` with

the bound of 4 [17]. An open question is whether there is a better hardness lower bound for

general ` or not. It would be interesting to know if it is possible to find an (O(log n), O(1))-

approximation, or it is hard to obtain an approximation better than Ω(log n) even if one is

allowed to violate the length constraints by a constant factor.

49

Chapter 5

The (k, 2)-subgraph

A major line of research in network design problems has focused on problems with con-

nectivity requirements. As an example, the famous minimum spanning tree problem is to

design a minimum cost network with connectivity requirement of 1 between all vertices.

This problem can be generalized to the edge-connectivity requirement of λ, which is moti-

vated from the real world applications where a certain level of reliability is required for the

network. In other words if a connection is lost between two nodes then the flow of data can

be maintained through other paths. A well-known problem in this class is the minimum

cost λ-edge-connected spanning subgraph problem in which the objective is to find a min-

imum cost subgraph which is λ-edge-connected and covers all the nodes. This problem is

further generalized to the generalized Steiner network design in which there is a different

connectivity requirement between each pair of nodes [122].

Another generalization for network design problems is to require covering at least k

nodes instead of covering all the nodes in the graph. The input for these problems has an

integer k, and the goal is to find a subgraph satisfying the connectivity requirements with a

lower bound k on the total number of vertices. The most well-studied problem in this class

is the minimum k-spanning tree problem, a.k.a. k-MST which is introduced in the previous

chapter. Recall that in this problem we are seeking a minimum cost tree spanning at least

k vertices.

5.1 Problem Formulation

A natural common generalization of both the k-MST problem and the minimum cost λ-

edge-connected spanning subgraph problem is the (k, λ)-subgraph problem introduced in

Lau et al. [94] which is defined formally below:

Definition 8 In the (k, λ)-subgraph problem, we are given a (multi-)graph G = (V,E) with

a cost function c : E → Q+, and a positive integer k. The goal is to find a minimum cost

λ-edge-connected subgraph containing at least k vertices.

50

We should point out that the cost function c is arbitrary (i.e. does not necessarily satisfy

the triangle inequality). Furthermore, we are not allowed to take more copies of an edge

than what is presented in the graph. In particular, if G is a simple graph the solution must

be simple too.

In this chapter we focus on the case of λ = 2, and prove the following theorem:

Theorem 10 There is an O(log n)-approximation algorithm for the (k, 2)-subgraph prob-

lem.

This improves the result of [94] for the (k, 2)-subgraph problem by an O(log n) factor.

5.2 Related works

The (k, λ)-subgraph problem contains some classical problems as special cases. For example,

the (k, 1)-subgraph problem is the k-MST problem and (|V |, λ)-subgraph is simply asking

for a minimum cost λ-edge-connected spanning subgraph.

The k-MST problem is well studied in the field of approximation algorithms. The first

approximation algorithm for this problem has a ratio of O(
√
k) [113] which is improved

to O(log2 k) in [12] and then to O(log k) in [107], and finally down to a constant in [25].

After a series of papers [25, 54, 9] improving the constant factor, Garg [55] achieves a 2-

approximation factor for k-MST which is the best ratio until now. For the special case when

nodes are in Euclidean plane a PTAS is known [8, 100].

Another closely related problem is k-TSP in which the objective is to find a walk in

the graph such that it covers at least k nodes and return back to the initial position. This

problem has its motivation from the vehicle routing problems where serving at least k clients

is sufficient [114, 23, 35]. Similar techniques as in k-MST work also for k-TSP. Currently

[55] is the best approximation algorithm for it with an approximation factor of 2. k-TSP

in directed graphs is referred to as k-Asymmetric TSP (k-ATSP). Bateni and Chuzhoy [20]

give an O(log2 n/ log log n)-approximation algorithm for the k-ATSP . They also give an

O(log2 n) for the k-stroll problem in which the start and end point of the walk are given in

the input.

The best approximation factor for minimum cost λ-edge-connected spanning subgraph is

2 due to the famous result of Jain [72]. He actually gave an algorithm with the same approx-

imation guarantee for a more general problem called generalized Steiner network problem.

In the generalized Steiner network problem instead of universal connectivity requirement λ,

there is a given connectivity requirement r(u, v) for each pair u and v of nodes. Moreover,

there is a bound on the number of copies we can select from each edge. Connectivity prob-

lems have many different variations and there are several approximation and hardness of

approximation results for them (for a survey on these results see [89]).

51

For the (k, 2)-subgraph problem, an O(log n · log k)-approximation is presented in [94].

For the more general problem of requiring the k-subgraph to be 2-node-connected an

O(log n · log k)-approximation is presented in [37]. These are the best known approximation

algorithms for the (k, 2)-subgraph problem. In [61] using a different approach an O(log3 n)-

approximation is given for the problem. For metric cost functions, Safari and Salavatipour

[114] present an O(1)-approximation for (k, λ)-subgraph (the constant is very large though).

In the densest k-subgraph problem we are given a graph G and the goal is to find a

subgraph with k vertices which has the maximum number of induced edges. It is proved in

[94] that the minimum densest k-subgraph problem has a poly-logarithmic reduction to the

(k, λ)-subgraph problem. More precisely the following theorem is proved:

Theorem 11 [94] An α-approximation algorithm for the (k, λ)-subgraph problem (even for

the unweighted case) for arbitrary λ implies an (α log2 k)-approximation algorithm for the

Densest k-Subgraph problem.

The densest k-subgraph problem is considered to be an extremely difficult problem (the

best approximation algorithm for it has ratio O(n
1
4 +ε) [22]). This along with Theorem 11

show that for general λ, (k, λ)-subgraph problem is a very hard problem too.

5.3 An O(log n)-approximation algorithm for (k, 2)-subgraph
problem

In this section we prove Theorem 10. This is based on rounding an LP relaxation of the

problem similar to the one presented in [94]. Again we use the trick of [20] to round this

LP and use the ideas of [94] to prune a partial solution.

In fact (similar to the algorithm in [94]) our algorithm works for a slightly more general

case in which along with the weighted graph G = (V,E) and integer k we are also given a

set of terminals T ⊆ V and the goal is to find a minimum cost 2-edge-connected subgraph

that contains at least k terminals. Since our algorithm is based on that of [94], let us briefly

explain how their algorithm works. The algorithm of [94] is for the rooted version of the

problem, in which we are given an extra parameter r ∈ V in the input and the solution

must contain root r. Since one can try every possible vertex as the root, we can reduce the

un-rooted version to the rooted version as well. A partial solution is a 2-edge-connected

subgraph containing the root and the density of a partial solution is the ratio of the total

cost of the edges over the number of terminals it contains.

The algorithm of [94] is based on adding a good density partial solution that covers

some new terminals iteratively until the number of terminals connected to r (covered) is at

least k. They presented an O(log n)-approximation for finding good density partial solutions

using an LP rounding procedure and we have to repeat the procedure until the number of

52

terminals covered is at least k. One has to be careful as in an iteration where we are looking

to cover k′ terminals (for some k′ ≤ k) it is possible to find a partial solution with much

larger than k′ terminals (and so the combined solution has much larger than k terminals).

In that case the algorithm has to be able to prune the partial solution to obtain a good

density solution with about k′ terminals. Lau et al. [94] present an algorithm for this

pruning step which we will use too. Lemma 3 shows the final approximation ratio for the

algorithm would be O(log n · log k).

Lemma 16 If at each iteration the algorithm of [94] (1) finds a 2-edge-connected subgraph

with density at most O(log n · opts) where opts is the best density among the densities of

all the subgraphs over the uncovered terminals, and (2) the number of covered terminals does

not exceed k, then the algorithm is an O(log n · log k)-approximation algorithm.

Proof. Since each partial solution contains r, the union of all the partial solutions are

2-edge-connected. A simple set-cover type analysis (i.e. applying the set cover algorithm

introduced in Theorem 3 with f(n) = log n) shows that the algorithm of [94] is an O(log n ·

log k)-approximation algorithm.

Our algorithm will directly round an LP relaxation, instead of iteratively finding good

density partial solutions. This is similar to the overall structure of the algorithm we pre-

sented for the SLkST. Note that, it is sufficient to find a solution in which every terminal

has two edge-disjoint paths to r since in every 2-edge-connected graph each terminal has

two edge-disjoint paths to the root r and every graph in which each terminal has two edge-

disjoint paths to the root r is 2-edge-connected. Similar to [94] first we preprocess the graph

by deleting the vertices that cannot be part of any optimum solution. Firstly, for every ver-

tex v we find two edge-disjoint paths between v and r of minimum total cost, let us denote

it by d2(v, r). For finding d2(v, r) we can look for a minimum cost flow with 2 units of flow

between v and r [118]. Suppose we have guessed a value opt′ such that opt ≤ opt′ ≤ 2opt,

where opt is the value of optimum solution (Finding opt′ is similar to the binary search

technique described in Chapter 4, see Figure 5.1 for more details). Clearly every vertex v

with d2(v, r) > opt′ cannot be part of any optimum solution and can be safely deleted. We

work with this pruned version of graph G. Our algorithm is guided by the solution of an LP

relaxation of the problem. Consider the following LP relaxation which is similar to what is

proposed by Lau et al.[94].

LP-k2EC min
∑
e c(e) · xe

s.t. x(δ(U)) ≥ 2yv U ⊆ V − {r}, v ∈ U (1)
x(δ(U))− xe′ ≥ yv U ⊆ V − {r}, v ∈ U, e′ ∈ δ(U) (2)∑

v∈T yv ≥ k (3)
yr = 1 (4)
yt ≤ 1 (5)

xe, yv ≥ 0 ∀e ∈ E, v ∈ T

53

There are two types of indicator variables, xe for each e ∈ E and yv for each v ∈ T ; for

every subset U ⊆ V , δ(U) is the set of edges across the cut (U, V −U). Constraints (1) and

(2) guarantee 2-edge-connectivity to the root. Our algorithm solves this LP and then uses

the solution to find an integral solution of cost at most O(log n) times the optimal value.

In order to do that we merge ideas from [20] and [94].

As argued in [94] this LP is a relaxation of the (k, 2)-subgraph problem and we can find

an optimum solution of this LP since there is a polynomial time separation oracle although

there are exponentially many constraints

We run the following algorithm whose detailed steps are explained below.

Input: Graph G = (V,E), terminal set T ⊆ V with root r, and integer k ≥ 1
Output: a 2-edge-connected subgraph containing at least k terminals including r

1. Guess a value of opt′ for optimum solution and run the following algorithm.
2. U ← r
3. Start from original graph G and remove all the vertices with d2(v, r) > opt′

4. Solve LP-K2EC and let its solution be (x∗, y∗)
5. Obtain (x′, y′) from (x∗, y∗) according to Lemma 17
6. Let Ti be the set of terminals v with y′v = 2−i plus the root, for 0 ≤ i ≤ d3 log(n)e
7. Find a 2-edge-connected subgraph Hi over Ti ∪ {r} with cost O(2i · opt∗)
8. From Hi, find a 2-edge-connected subgraph H ′i containing r and at least d|Ti|/2ie and

at most 2d|Ti|/2ie vertices of Ti of cost at most O(opt∗) and add it to U ;
if failed for any i then double the guess for opt′ and start from Step 2.

9. Return U .

Figure 5.1: (k, 2)-Subgraph Algorithm (k2EC)

In the rest of this section we show that Algorithm K2EC finds a 2-edge-connected sub-

graph of cost O(log(n) · opt) for the (k, 2)-subgraph problem. First we provide the details

of the steps of the algorithm. Assume we sort all the vertices v according to their d2(v, r)

value and let L be the kth smallest value. It is easy to see that L ≤ opt ≤ k.L. So we can

start with L as our guess for opt′; if the algorithm fails to return a feasible solution of cost

at most O(opt′ · log n) then we double our guess opt′ and run the algorithm again. Note

that in O(log k) many steps we will have a guessed value opt′ with opt ≤ opt′ ≤ 2opt

and therefore all the vertices that are deleted surely cannot be part of an optimum solution.

Let (x∗, y∗) be an optimum feasible solution to LP-k2EC with value opt∗. For Step 5 of

K2EC we round y values of the LP following the schema in [20].

Lemma 17 There is a feasible solution (x′, y′) to LP-K2EC of cost at most 4opt∗ such

that all non-zero entries of y′ belong to {2−i|0 ≤ i ≤ d3 log(n)e}.

Proof. The proof is very similar to that of Lemma 12. We set x′e = min(4x∗e, 1) for

all e ∈ E and for all v ∈ T , select i such that 2−i ≤ yv < 2−i+1, then if i > d3 log(n)e set

y′v = 0; otherwise, y′v = min(1, 2−i+2). It is easy to see that cost of (x′, y′) is at most 4opt∗;

54

what remains is to show that (x′, y′) is a feasible solution to LP-K2EC. It is easy to see that

Equations (8),(9),(11), and (12) are true for (x′, y′) as LHS is scaled at least as much as the

RHS. Equation (10) is the only one to verify. As in the proof of Lemma 12, let Y0 be the

set of vertices v such that y∗v > 0 but y′v = 0. Note that
∑
v∈Y0

y∗v ≤ 1/n2. These vertices

are the only ones whose y value has decreased. Let Y1 be the set of vertices v with y′v = 1.

If |Y1| ≥ k, then constraint (10) holds. Otherwise, |Y1| ≤ k− 1 which implies
∑
v 6∈Y1

y∗v ≥ 1,

and therefore
∑
v 6∈Y1∪Y0

y∗v ≥ 1 − 1/n2 ≥
∑
v∈Y0

y∗v . Note also for each vertex v 6∈ Y0 ∪ Y1,

we know that y′v ≥ 2y∗v . Thus, the amount
∑
v∈Y0

y∗v is compensated for with
∑
v 6∈Y0∪Y1

y′v;

therefore constraint (10) continues to hold.

Let Ti be the set of terminals with y′t = 2−i and ki = |Ti|, for 0 ≤ i ≤ d3 log ne. Note

that
∑d3 logne
i=0 2−i · ki ≥ k. Consider an instance of classical generalized Steiner network

problem over terminals in Ti ∪ {r} with connectivity requirement 2 from every node in Ti

to root. In the following lemma we show that we can compute a 2-edge-connected subgraph

Hi over Ti ∪ {r} of cost at most O(2i · opt∗). This describes how to perform Step 7. The

proof of this lemma is similar to Lemma 5.2 in [94].

Lemma 18 In Step 7, For each 0 ≤ i ≤ d3 log ne, we can find a 2-edge-connected subgraph

Hi of cost at most 2i+3 · opt∗ containing terminals Ti ∪ {r}.

Proof. In order to bound the cost of 2-edge-connected subgraph over Ti ∪ {r} we use the

following natural LP for the special case of the generalized Steiner network problem in which

all the connectivity requirements are 2:

LP-2EC min
∑
e c(e) · xe

s.t. x(δ(U)) ≥ 2 U ⊆ V − {r}, U ∩ Ti 6= ∅ (11)
1 ≥ xe ≥ 0 ∀e ∈ E

Jain [73] proved that the integrality gap of this LP is at most 2. Here, we show that

after scaling (x′, y′), we can find a feasible solution of LP-2EC over terminals Ti ∪ {r} of

value at most 2i+2 · opt∗. Using Jain’s algorithm, we can then obtain an integer solution,

i.e. a 2-edge-connected subgraph over Ti ∪ {r} of cost at most 2i+3 ·opt∗, which completes

the proof of lemma.

Consider (x′, y′) obtained by Lemma 17 and define x̂e = min(1, 2i · x′e). We will show

that x̂ is a feasible solution for LP-2EC, which clearly has cost at most 2i+2 · opt∗ since

2i · x′e = 2i+2 · x∗e, thus as the LP-2EC selects the minimum over all the feasible solution its

value is not greater than 2i+2 · opt∗.

To verify that x̂ is feasible for LP-2EC, take any set U ⊆ V − r with U ∩ Ti 6= ∅ and

the corresponding constraint (11) in LP-2EC: x(δ(U)) ≥ 2. This has the corresponding

constraint (8) in LP-k2EC x(δ(U)) ≥ 2yv for each v ∈ U − {r}. Suppose we define x̂e =

55

min{1, 2i · x′e} and ŷv = min{1, 2i · y′v}. Note that for each v ∈ Ti: ŷv = 1. If all the edges

e ∈ δ(U) have values x′e ≤ y′v then after scaling we will have x̂(δ(U)) ≥ 2 because the left

hand side of x(δ(U)) ≥ 2yv is grown at least as much as the RHS is scaled. If there is at

least one edge e′ ∈ δ(U) with x′e′ > y′v then because of constraints (9) in LP-k2EC and

since (x′, y′) is feasible, we have x′(δ(U)) − x′e′ ≥ y′v. Thus after the scaling we still have

x̂(δ(U))− x̂e′ ≥ 1 because again the LHS is grown at least as much as the RHS. Also x̂e′ = 1

because ŷv = 1 and x′e′ > y′v; so x̂(δ(U)) ≥ 2. This shows constraints (11) in LP-2EC are

satisfied and so there is a feasible solution to LP-2EC with terminal set Ti ∪ {r} with cost

at most 2iopt∗.

In the following we show how to find subgraph H ′i in Step 8, which is 2-edge-connected,

has root r, and has cost O(opt′), assuming that opt′ ≥ opt. Note that union of all Hi’s

(0 ≤ i ≤ d3 log ne) will be 2-edge-connected (since r is common in H ′i’s), has at least k

terminals, and has cost O(opt′ · log n). This will complete the proof of approximation ratio

of the algorithm.

To show how to find a subgraph H ′i we use the same trick as in Section 5.1 of [94] for

pruning a large good density solution to a smaller one. A nowhere-zero 6-flow in a directed

graph D = (V,A), is a function f : A → Z6 such that we have flow conservation at

every node (i.e. f(δin(v)) = f(δout(v))) and no edge gets f value of zero. If there is an

orientation of an undirected graph H in which a nowhere-zero 6-flow can be defined we say

H has a nowhere-zero 6-flow. Seymour [119] proved that every 2-edge-connected graph has

a nowhere-zero 6-flow which can also be found in polynomial time. We obtain a multigraph

D = (Hi, A) from Hi by placing f(e) copies of e with the direction defined by the flow.

From Lemma 18 and the fact that we have at most 6 copies of each edge, the cost of D can

be at most 6× 2i+3 · opt∗.

Note that D does not have directed cycle of length 2, therefore has an Eulerian walk.

Start from r and build an Eulerian walk and partition the walk into segments P1, P2, . . . , P`

each of which includes d|Ti|/2ie terminals of Hi except possibly P` which can have between

d|Ti|/2ie and 2d|Ti|/2ie terminals. Thus, ` ≥ max(1, 2i−1) and so there is an index 1 ≤ q ≤ `

such that the cost of path Pq is at most 6 × 2i+2 · opt∗/2i−1 = 48opt∗. Let u,w be the

endpoints of Pq and let Q1
u and Q2

u be the two edge-disjoint paths of d2(u, r) (in G) and

Q1
w and Q2

w be the two edge-disjoint paths of d2(w, r) (again in G) of minimum total cost.

Because of the preprocess step, the sum of costs ofQ1
u, Q2

u, Q1
w, andQ2

w is at most 2opt′. Let

Fq be the simple graph in G defined by the edges of Pq and let H ′i = Fq∪Q1
u∪Q2

u∪Q1
w∪Q2

w.

It follows that H ′i has cost at most 48opt∗+ 2opt′ ≤ 50opt′. It only remains to show that

H ′i is 2-edge-connected. By way of contradiction, suppose there is an edge e′ such that

H ′i− e′ has two components C1 and C2. Because of Q1
u, Q2

u, Q1
w, and Q2

w the two endpoints

u and w are in the same component let say C1. Since Pq is a directed walk from u to w and

56

there is no cycle of size 2, there must be another edge e′′ 6= e′ between C1 and C2 which

goes in opposite direction of e′, thus e′ is not a cut edge.

5.4 Future works

A good line of research is to extend the algorithm for the (k, 2)-subgraph to the higher

connectivitys. We are not aware of any attempt for approximating (k, λ)-subgraph for the

special cases of λ ≥ 3, the main difficulty in extending our algorithm to the (k, 3)-subgraph

problem is pruning step i.e. Step 8 of our algorithm may not be done for the 3-edge-

connected graphs efficiently. The constant factor for the metric case of (k, λ)-subgraph

problem is large [114], finding an approximation algorithm with a small constant factor

ratio is an interesting question.

There is a substantial gap between the best approximation factor for the densest k-

subgraph problem (O(n
1
4 +ε) in [22]) and its hardness (It does not admit PTAS under various

complexity theory assumptions [49, 78]). Improving either the approximation ratio or the

hardness of densest k-subgraph is a major progress. Although there is a poly-logarithmic

reduction to the densest k-subgraph problem for the (k, λ)-subgraph problem, theoretically

it does not prove any hardness ratio since there is no large hardness factor for the densest

k-subgraph. There are also no known hardness factor for the special cases of (k, λ)-subgraph

where the graph is metric or where λ = 2.

57

Bibliography

[1] E. Althaus, S. Funke, S. Har-Peled, J. Konemann, E.A. Ramos, and M. Skutella. Ap-
proximating k-hop minimum-spanning trees. Operations Research Letters, 33(2):115–
120, 2005.

[2] Mattias Andersson, Joachim Gudmundsson, Christos Levcopoulos, and Giri
Narasimhan. Balanced partition of minimum spanning trees. In Peter Sloot, Al-
fons Hoekstra, C. Tan, and Jack Dongarra, editors, Computational Science ICCS,
volume 2331 of Lecture Notes in Computer Science, pages 26–35. Springer Berlin /
Heidelberg, 2002.

[3] M. Andrews. Hardness of buy-at-bulk network design. Proc. of IEEE FOCS, pages
115–124, 2004.

[4] M. Andrews and L. Zhang. Approximation algorithms for access network design.
Algorithmica (Preliminary version in Proc. of IEEE FOCS 1998), 32(2):197–215, 2002.

[5] S. Antonakopoulos, C. Chekuri, B. Shepherd, and L. Zhang. Buy-at-bulk network
design with protection. Mathematics of Operations Research, 36(1):71–87, 2011.

[6] Aaron Archer, MohammadHossein Bateni, Mohammad Taghi Hajiaghayi, and
Howard J. Karloff. Improved approximation algorithms for prize-collecting steiner
tree and tsp. In IEEE Symposium on Foundations of Computer Science, pages 427–
436, 2009.

[7] Esther M. Arkin, Refael Hassin, and Asaf Levin. Approximations for minimum and
min-max vehicle routing problems. Journal of Algorithms, 59:1–18, 2006.

[8] S. Arora. Polynomial time approximation schemes for euclidean traveling salesman
and other geometric problems. Journal of the ACM (JACM), 45(5):753–782, 1998.

[9] S. Arora and G. Karakostas. A 2+ε; approximation algorithm for the k-MST problem.
In Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms,
pages 754–759. Society for Industrial and Applied Mathematics, 2000.

[10] G. Ausiello, P. Crescenzi, V. Kann, G. Gambosi, and A.M. Spaccamela. Complexity
and Approximation: Combinatorial Optimization Problems and Their Approximability
Properties. Springer Verlag, 1999.

[11] I. Averbakh and O. Berman. (p − 1)/(p + 1)-approximate algorithms for p-traveling
salesmen problems on a tree with minmax objective. Discrete Applied Mathematics,
75(3):201–216, 1997.

[12] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. Improved approximation guar-
antees for minimum-weight k-trees and prize-collecting salesmen. In Proceedings of
the twenty-seventh annual ACM symposium on Theory of computing, pages 277–283.
ACM, 1995.

[13] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. New approximation guarantees for
minimum-weight k-trees and prize-collecting salesmen. SIAM Journal on Computing,
28(1):254–262, 1999.

[14] Baruch Awerbuch and Yossi Azar. Buy-at-bulk network design. In IEEE Symposium
on Foundations of Computer Science, pages 542–547, 1997.

58

[15] N. Bansal, A. Blum, S. Chawla, and A. Meyerson. Approximation algorithms for
deadline-tsp and vehicle routing with time-windows. In Proceedings of the thirty-sixth
annual ACM symposium on Theory of computing, pages 166–174. ACM, 2004.

[16] J. Bar-Ilan, G. Kortsarz, and D. Peleg. Generalized submodular cover problems and
applications. Theoretical Computer Science, 250:179–200, 2001.

[17] Judit Bar-Ilan, Guy Kortsarz, and David Peleg. Generalized submodular cover prob-
lems and applications. Theoretical Computer Science, 250(1-2):179 – 200, 2001.

[18] Y. Bartal. On approximating arbitrary metrics by tree metrics. Proc. of ACM STOC,
pages 161–168, 1997.

[19] Ivan Basov and Alek Vainshtein. Approximation algorithms for multi-parameter graph
optimization problems. Discrete Applied Mathematics, 119(1-2):129 – 138, 2002.

[20] M.H. Bateni and J. Chuzhoy. Approximation algorithms for the directed k-tour and
k-stroll problems. Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 25–38, 2010.

[21] K. Bharath-Kumar and J. Jaffe. Routing to multiple destinations in computer net-
works. Communications, IEEE Transactions on, 31(3):343–351, 1983.

[22] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan. Detecting
high log-densities: an o(n1/4)-approximation for densest k-subgraph. In Proceedings
of the 42nd ACM symposium on Theory of computing, pages 201–210. ACM, 2010.

[23] A. Blum, S. Chawla, D.R. Karger, T. Lane, A. Meyerson, and M. Minkoff. Approx-
imation algorithms for orienteering and discounted-reward tsp. SIAM Journal on
Computing, 37(2):653, 2008.

[24] Avrim Blum, R. Ravi, and Santosh Vempala. A constant-factor approximation algo-
rithm for the k-MST problem. Journal of Computer and System Sciences, 58:101–108,
1999.

[25] Avrim Blum, R. Ravi, and Santosh Vempala. A constant-factor approximation algo-
rithm for the k-MST problem. Journal of Computer and System Sciences, 58:101–108,
1999.

[26] A. Bookstein and S.T. Klein. Construction of optimal graphs for bit-vector com-
pression. In Proceedings of the 13th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 327–342. ACM, 1989.

[27] Ann Melissa Campbell, Dieter Vandenbussche, and William Hermann. Routing for
relief efforts. Transportation Science, 42:127–145, May 2008.

[28] M. Charikar and A. Karagiozova. On non-uniform multicommodity buy-at-bulk net-
work design. In Proceedings of the thirty-seventh annual ACM symposium on Theory
of computing, pages 176–182. ACM, 2005.

[29] M. Charikar, J. Naor, and B. Schieber. Resource optimization in qos multicast routing
of real-time multimedia. Networking, IEEE/ACM Transactions on, 12(2):340–348,
2004.

[30] K. Chaudhuri, S. Rao, S. Riesenfeld, and K. Talwar. What would Edmonds do?
augmenting paths and witnesses for degree-bounded MSTs. Approximation, Random-
ization and Combinatorial Optimization, pages 26–39, 2005.

[31] Kamalika Chaudhuri, Brighten Godfrey, Satish Rao, and Kunal Talwar. Paths, trees,
and minimum latency tours. In IEEE Symposium on Foundations of Computer Sci-
ence, pages 36–45, 2003.

[32] C. Chekuri, M. Hajiaghayi, G. Kortsarz, and M. Salavatipour. Approximation algo-
rithms for non-uniform buy-at-bulk network design problems. Proc. of IEEE FOCS,
pages 677–686, 2006.

[33] C. Chekuri, M. Hajiaghayi, G. Kortsarz, and M. Salavatipour. Approximation al-
gorithms for non-uniform buy-at-bulk network design. SIAM J. on Computing,
39(5):1772–1798, 2009.

59

[34] C. Chekuri, S. Khanna, and J. Naor. A deterministic approximation algorithm for the
cost-distance problem. Short paper in Proc. of ACM-SIAM SODA., pages 232–233,
2001.

[35] C. Chekuri, N. Korula, and M. Pál. Improved algorithms for orienteering and related
problems. In Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 661–670. Society for Industrial and Applied Mathematics, 2008.

[36] C. Chekuri and M. Pal. A recursive greedy algorithm for walks in directed graphs. In
Foundations of Computer Science, 2005. FOCS 2005. 46th Annual IEEE Symposium
on, pages 245–253. IEEE, 2005.

[37] Chandra Chekuri and Nitish Korula. Pruning 2-connected graphs. In Foundations of
Software Technology and Theoretical Computer Science, pages 119–130, 2008.

[38] Chandra Chekuri and Amit Kumar. Maximum coverage problem with group budget
constraints and applications. In Approximation Algorithms for Combinatorial Opti-
mization, pages 72–83, 2004.

[39] C.H. Chow. On multicast path finding algorithms. In Proceedings. Tenth Annual Joint
Conference of the IEEE Computer and Communications Societies. Networking in the
90s., IEEE INFOCOM’91., pages 1274–1283. IEEE, 1991.

[40] N. Christofides. Worst case analysis of a new heuristic for the Traveling Salesman
Problem. report 388, graduate school of industrial administration, 1976.

[41] J. Chuzhoy, A. Gupta, J.S. Naor, and A. Sinha. On the approximability of some net-
work design problems. In Proceedings of the sixteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 943–951. Society for Industrial and Applied Mathemat-
ics, 2005.

[42] V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics of operations
research, pages 233–235, 1979.

[43] M. Doar and I. Leslie. How bad is naive multicast routing? In INFOCOM’93. Proceed-
ings. Twelfth Annual Joint Conference of the IEEE Computer and Communications
Societies. Net working: Foundation for the Future. IEEE, pages 82–89. IEEE, 1993.

[44] Friedrich Eisenbrand and Fabrizio Grandoni. An improved approximation algorithm
for virtual private network design. In Symposium on Discrete Algorithms, pages 928–
932, 2005.

[45] Friedrich Eisenbrand, Fabrizio Grandoni, Thomas Rothvo, and Guido Schfer. Con-
nected facility location via random facility sampling and core detouring. Journal of
Computer and System Sciences, 76:709–726, 2010.

[46] G. Even, N. Garg, J. Konemann, R. Ravi, and A. Sinha. Covering graphs using trees
and stars. Operations Research Letters (Earlier version in Proceedings of APPROX
2003), 32(4):309–315, 2004.

[47] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary
metrics by tree metrics. Journal of Computer and System Sciences, 69(3):485–497,
2004.

[48] U. Feige. A threshold of lnn for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998.

[49] U. Feige. Relations between average case complexity and approximation complexity.
In Proceedings of the thiry-fourth annual ACM symposium on Theory of computing,
pages 534–543. ACM, 2002.

[50] A.J. Frank, L.D. Wittie, and A.J. Bernstein. Multicast communication on network
computers. IEEE software, pages 49–61, 1985.

[51] Greg Frederickson and Barry Wittman. Approximation algorithms for the Travel-
ing Repairman and Speeding Deliveryman Problems with Unit-Time Windows. In
Moses Charikar, Klaus Jansen, Omer Reingold, and Jos Rolim, editors, Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
volume 4627 of Lecture Notes in Computer Science, pages 119–133. Springer Berlin /
Heidelberg, 2007.

60

[52] Greg N. Frederickson, Matthew S. Hecht, and Chul E. Kim. Approximation algorithms
for some routing problems. Siam Journal on Computing, 7:178–193, 1978.

[53] M. Fürer and B. Raghavachari. Approximating the minimum degree spanning tree to
within one from the optimal degree. In Proceedings of the third annual ACM-SIAM
symposium on Discrete algorithms, pages 317–324. Society for Industrial and Applied
Mathematics, 1992.

[54] N. Garg. A 3-approximation for the minimum tree spanning k vertices. In Foundations
of Computer Science, 1996. Proceedings., 37th Annual Symposium on, pages 302–309.
IEEE, 1996.

[55] N. Garg. Saving an epsilon: a 2-approximation for the k-MST problem in graphs.
In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing
(STOC), pages 396–402, 2005.

[56] Michel X. Goemans. Minimum bounded degree spanning trees. In Foundations of
Computer Science, 2006. FOCS ’06. 47th Annual IEEE Symposium on, pages 273
–282, oct. 2006.

[57] Michel X. Goemans and David P. Williamson. A general approximation technique for
constrained forest problems. In Symposium on Discrete Algorithms, pages 307–316,
1995.

[58] F. Grandoni and G. Italiano. Improved approximation for single-sink buy-at-bulk.
Algorithms and Computation, pages 111–120, 2006.

[59] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

[60] S. Guha, A. Meyerson, and K. Munagala. A constant factor approximation for the
single sink edge installation problems. In Proceedings of the thirty-third annual ACM
symposium on Theory of computing, pages 383–388. ACM, 2001.

[61] A. Gupta, R. Krishnaswamy, and R. Ravi. Tree embeddings for two-edge-connected
network design. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1521–1538. Society for Industrial and Applied Mathe-
matics, 2010.

[62] A. Gupta, A. Kumar, et al. Approximation via cost sharing: Simpler and better
approximation algorithms for network design. Journal of the ACM (JACM), 54(3):11–
es, 2007.

[63] A. Gupta, A. Kumar, M. Pal, and T. Roughgarden. Approximation via cost-sharing:
a simple approximation algorithm for the multicommodity rent-or-buy problem. In
Proceedings of 44th Annual IEEE Symposium on Foundations of Computer Science,
pages 606–615. IEEE, 2003.

[64] A. Gupta, A. Kumar, and T. Roughgarden. Simpler and better approximation algo-
rithms for network design. In Proceedings of the thirty-fifth annual ACM symposium
on Theory of computing, pages 365–372. ACM, 2003.

[65] Nili Guttmann-Beck and Refael Hassin. Approximation algorithms for min-max tree
partition. J. Algorithms, 24:266–286, August 1997.

[66] M.T. Hajiaghayi, G. Kortsarz, and M.R. Salavatipour. Approximating buy-at-bulk
and shallow-light k-steiner tree. Algorithmica, 53(1):89–103, 2009.

[67] R. Hassin. Approximation schemes for the restricted shortest path problem. Mathe-
matics of Operations Research, 17(1):36–42, 1992.

[68] R. Hassin and A. Levin. Minimum restricted diameter spanning trees. Approximation
Algorithms for Combinatorial Optimization, pages 175–184, 2002.

[69] S.P. Hong, H. Lee, and B.H. Park. An efficient multicast routing algorithm for delay-
sensitive applications with dynamic membership. In INFOCOM’98. Seventeenth An-
nual Joint Conference of the IEEE Computer and Communications Societies. Pro-
ceedings. IEEE, volume 3, pages 1433–1440. IEEE, 1998.

61

[70] F.K. Hwang and D.S. Richards. Steiner tree problems. Networks, 22(1):55–89, 1992.

[71] P. Jaillet and M.R. Wagner. Online vehicle routing problems: A survey. The Vehicle
Routing Problem: Latest Advances and New Challenges, pages 221–237, 2008.

[72] K. Jain. A factor 2-approximation algorithm for the generalized steiner network prob-
lem. In Proceedings. 39th Annual Symposium on Foundations of Computer Science,
pages 448–457. IEEE, 1998.

[73] K. Jain. A factor 2-approximation algorithm for the generalized steiner network prob-
lem. Combinatorica, 21(1):39–60, 2001.

[74] D.S. Johnson. Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences, 9(3):256–278, 1974.

[75] Raja Jothi and Balaji Raghavachari. Approximating the k-traveling repairman prob-
lem with repairtimes. Journal of Discrete Algorithms, 5:293–303, 2007.

[76] M.R. Khani and M.R. Salavatipour. Approximation algorithms for min-max tree cover
and bounded tree cover problems. To appear in Approx 2011.

[77] M.R. Khani and M.R. Salavatipour. Improved approximations for buy-at-bulk and
shallow-light k-steiner trees and (k, 2)-subgraph, 2011. Manuscript.

[78] S. Khot. Ruling out ptas for graph min-bisection, densest subgraph and bipartite
clique. In Foundations of Computer Science, 2004. Proceedings. 45th Annual IEEE
Symposium on, pages 136–145. IEEE, 2004.

[79] S. Khuller, B. Raghavachari, and N. Young. Balancing minimum spanning trees and
shortest-path trees. Algorithmica, 14(4):305–321, 1995.

[80] P. Klein and R. Ravi. A nearly best-possible approximation algorithm for node-
weighted steiner trees. J. Algorithms, 19(1):104–115, 1995.

[81] V.P. Kompella, J.C. Pasquale, and G.C. Polyzos. Multicast routing for multimedia
communication. IEEE/ACM Transactions on Networking (TON), 1(3):286–292, 1993.

[82] J. Könemann. Approximation Algorithms for Minimum-Cost Low-Degree Subgraphs.
PhD thesis, Carnegie Mellon University, 2003.

[83] J. Könemann, A. Levin, and A. Sinha. Approximating the degree-bounded minimum
diameter spanning tree problem. Algorithmica, 41(2):117–129, 2005.

[84] J. Könemann and R. Ravi. A matter of degree: improved approximation algorithms for
degree-bounded minimum spanning trees. In Proceedings of the thirty-second annual
ACM symposium on Theory of computing, pages 537–546. ACM, 2000.

[85] J. Konemann and R. Ravi. Primal-dual meets local search: approximating MST’s with
nonuniform degree bounds. In Proceedings of the thirty-fifth annual ACM symposium
on Theory of computing, pages 389–395. ACM, 2003.

[86] G. Kortsarz and Z. Nutov. Approximating some network design problems with vertex
costs. Proc. APPROX-RANDOM, pages 231–243, 2009.

[87] G. Kortsarz and D. Peleg. Approximation algorithms for minimum time broadcast.
Theory of Computing and Systems, pages 67–78, 1992.

[88] G. Kortsarz and D. Peleg. Approximating the weight of shallow steiner trees. Discrete
Applied Mathematics, 93(2-3):265–285, 1999.

[89] Guy Kortsarz and Zeev Nutov. Approximating minimum cost connectivity problems.
In Erik D. Demaine, MohammadTaghi Hajiaghayi, and Dániel Marx, editors, Param-
eterized complexity and approximation algorithms, number 09511 in Dagstuhl Seminar
Proceedings, Dagstuhl, Germany, 2010. Schloss Dagstuhl - Leibniz-Zentrum fuer In-
formatik, Germany.

[90] L. Kou, G. Markowsky, and L. Berman. A fast algorithm for steiner trees. Acta
informatica, 15(2):141–145, 1981.

62

[91] P. Krysta and R. Solis-Oba. Approximation algorithms for bounded facility location
problems. Journal of combinatorial optimization, 5(2):233–247, 2001.

[92] Piotr Krysta. Bicriteria network design via iterative rounding. In Lusheng Wang,
editor, Computing and Combinatorics, volume 3595 of Lecture Notes in Computer
Science, pages 179–187. Springer Berlin / Heidelberg, 2005.

[93] A. Kumar, A. Gupta, and T. Roughgarden. A constant-factor approximation al-
gorithm for the multicommodity rent-or-buy problem. In Foundations of Computer
Science, 2002. Proceedings. The 43rd Annual IEEE Symposium on, pages 333–342.
IEEE, 2002.

[94] L. Lau, S. Naor, M.R. Salavatipour, and M. Singh. Survivable network design with
degree or order constraints. SIAM J. on Computing (Special issue for selected papers
of STOC 2007), 39(3):1062–1087, 2009.

[95] Chung-Lun Li, David Simchi-Levi, and Martin Desrochers. On the distance con-
strained vehicle routing problem. Oper. Res., 40:790–799, July 1992.

[96] L. Lovász. On the ratio of optimal integral and fractional covers. Discrete mathematics,
13(4):383–390, 1975.

[97] M.V. Marathe, R. Ravi, R. Sundaram, SS Ravi, D.J. Rosenkrantz, and H.B. Hunt III.
Bicriteria network design problems. Journal of Algorithms, 28(1):142–171, 1998.

[98] A. Meyerson. Online algorithms for network design. In Proceedings of the sixteenth
annual ACM symposium on Parallelism in algorithms and architectures, pages 275–
280. ACM, 2004.

[99] A. Meyerson, K. Munagala, and S. Plotkin. Cost-distance: Two metric network design.
SIAM J. on Computing (Preliminary version in Proc. of IEEE FOCS 2000), pages
2648–1659, 2008.

[100] J.S.B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric tsp, k-MST, and related prob-
lems. SIAM J. Comput., 28(4):1298–1309, 1999.

[101] T. Momke and O. Svensson. Approximationg graphic TSP by matchings. To appear
in FOCS 2011.

[102] Marcin Mucha and Piotr Sankowski. Maximum matchings via gaussian elimination.
In IEEE Symposium on Foundations of Computer Science, pages 248–255, 2004.

[103] Hiroshi Nagamochi. Approximating the minmax rooted-subtree cover problem. IEICE
Transactions on Fundamentals of Electronics, E88-A:1335–1338, 2005.

[104] V. Nagarajan and R. Ravi. Poly-logarithmic approximation algorithms for directed
vehicle routing problems. Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques, pages 257–270, 2007.

[105] V. Nagarajan and R. Ravi. Approximation algorithms for distance constrained vehicle
routing problems. Networks, 2008.

[106] M. Parsa, Q. Zhu, and JJ Garcia-Luna-Aceves. An iterative algorithm for delay-
constrained minimum-cost multicasting. IEEE/ACM Transactions on Networking
(TON), 6(4):461–474, 1998.

[107] S. Rajagopalan and V. V. Vazirani. Logarithmic approximation of minimum weight
k trees, 1995. Unpoblished manuscript.

[108] R. Ravi. Rapid rumor ramification: approximating the minimum broadcast time. In
Proceedings of 35th Annual Symposium on Foundations of Computer Science, pages
202–213. IEEE, 1994.

[109] R. Ravi and M. Goemans. The constrained minimum spanning tree problem. Algo-
rithm Theory (Preliminary version in Proc. of SWAT 1996), pages 66–75, 1996.

63

[110] R. Ravi, M.V. Marathe, SS Ravi, D.J. Rosenkrantz, and H.B. Hunt III. Many birds
with one stone: Multi-objective approximation algorithms. In Proceedings of the
twenty-fifth annual ACM symposium on Theory of computing, pages 438–447. ACM,
1993.

[111] R. Ravi, M.V. Marathe, SS Ravi, D.J. Rosenkrantz, and H.B. Hunt III. Approx-
imation algorithms for degree-constrained minimum-cost network-design problems.
Algorithmica, 31(1):58–78, 2001.

[112] R. Ravi and M. Singh. Delegate and conquer: An lp-based approximation algorithm
for minimum degree MSTs. Automata, Languages and Programming, pages 169–180,
2006.

[113] R. Ravi, R. Sundaram, M.V. Marathe, D.J. Rosenkrants, and S.S. Ravi. Spanning
trees short or small. SIAM Journal on Discrete Mathematics, 9(2):178–200, 1996.

[114] M.A. Safari and M. Salavatipour. A constant factor approximation for minimum λ-
edge-connected k-subgraph with metric costs. Approximation, Randomization and
Combinatorial Optimization. Algorithms and Techniques, pages 233–246, 2008.

[115] S. Sahni and T. Gonzalez. P-complete approximation problems. Journal of the ACM
(JACM), 23(3):555–565, 1976.

[116] F. S. Salman, J. Cheriyan, R. Ravi, and S. Subramanian. Approximating the single-
sink link-installation problem in network design. SIAM J. on Optimization (Prelimi-
nary version in Proc. of ACM-SIAM SODA’97), 11(3):595–610, 2000.

[117] F.S. Salman, J. Cheriyan, R. Ravi, and S. Subramanian. Buy-at-bulk network design:
Approximating the single-sink edge installation problem. In Proceedings of the eighth
annual ACM-SIAM symposium on Discrete algorithms, pages 619–628. Society for
Industrial and Applied Mathematics, 1997.

[118] A. Schrijver. Combinatorial optimization: Polyhedra and Efficiency. Springer-Verlag,
Berlin, 2003.

[119] P.D. Seymour. Graph theory and related topics. Graph Theory and Related Topics,
1979.

[120] Mohit Singh and Lap Chi Lau. Approximating minimum bounded degree spanning
trees to within one of optimal. In Proceedings of the thirty-ninth annual ACM sympo-
sium on Theory of computing, STOC ’07, pages 661–670, New York, NY, USA, 2007.
ACM.

[121] C. Swamy and A. Kumar. Primal-dual algorithms for connected facility location
problems. Approximation Algorithms for Combinatorial Optimization, pages 256–270,
2002.

[122] V.V. Vazirani. Approximation algorithms. Springer Verlag, 2001.

[123] A. Warburton. Approximation of Pareto optima in multiple-objective, shortest-path
problems. Operations Research, 35(1):70–79, 1987.

[124] L. Wei and D. Estrin. The trade-offs of multicast trees and algorithms. In Pro-
ceedings of the International Conference on Computer Communications and Networks
(ICCCN), 1994.

[125] Zhou Xu and Qi Wen. Approximation hardness of min-max tree covers. Operations
Research Letters, 38:169–173, 2010.

[126] Zhou Xu and Liang Xu. Approximation algorithms for min-max path cover problems
with service handling time. In Proceedings of the 20th International Symposium on
Algorithms and Computation, ISAAC ’09, pages 383–392, Berlin, Heidelberg, 2009.
Springer-Verlag.

[127] W. Zhao and P. Zhang. Approximation to the minimum rooted star cover problem.
Theory and Applications of Models of Computation, pages 670–679, 2007.

[128] Q. Zhu, M. Parsa, and W.W.M. Dai. An iterative approach for delay-bounded min-
imum Steiner tree construction. Computer Research Laboratory,[University of Cali-
fornia, Santa Cruz, 1994.

64

