
An Empirical Study of Random Sampling Methods for
Changing Discrete Distributions

by

Yunpeng Tang

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Yunpeng Tang, 2019

Abstract

In this thesis, we focus on finding efficient practical random sampling methods

for time-changing discrete distributions. We empirically study ten methods

including existing algorithms, and two new ones: three level search and the flat

method. We review the core ideas of existing methods including their runtime

complexity and correctness. We study how algorithms for static distribution

can be adopted to the dynamic case that we find in many scenarios. We also

implement all methods in a software package UpdateRandom. All methods

were tested in the test platform described in the thesis to make sure they

are able to generate random numbers properly according to the distribution

and their performance matches the analytical result. In order to measure

their performance in practice, we used a linear regression model to determine

the cost of reference implementations as a function of the number of random

samples, the number of weight updates, and the size of the weight array. With

the models and application example we provide, readers can easily find the

most efficient methods for any usage scenario.

ii

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Prof. Martin

Müller, who does not only give me valuable guidance and constructive advice,

but also detailed comments and feedback throughout the research and writing

of this thesis.

I would like to thank my family and friends. It is their great support that

helps me get through all these challenges and hard times.

iii

Table of Contents

1 Introduction 1
1.1 Sampling from a Time-Changing Discrete Distribution 1
1.2 Research Motivation and Problem Setting 1
1.3 Machine Dependency . 2
1.4 Contributions of this Thesis 3

2 Literature Review 5
2.1 Assumptions . 5
2.2 General Framework . 5

2.2.1 Utility Functions . 6
2.3 Method 1: Linear Search . 7
2.4 Method 2: Binary Search . 9
2.5 Method 3: The Alias Method 9

2.5.1 Correctness of the Alias Method 12
2.5.2 Implementation . 13
2.5.3 Using the Alias Method for a Time-changing Distribution 14

2.6 Method 4: C++11 discrete distribution 16
2.7 Method 5: Two Level Search 17

2.7.1 Determining the Partial Sum Group Size L 20
2.8 Method 6: Binary Tree Search 20
2.9 Method 7: Rejection Method 23
2.10 Method 8: The Log* Method 26
2.11 Summary . 34

3 New Sampling Methods for Time-Changing Discrete Distri-
butions 35
3.1 Multi-Level Search . 35

3.1.1 Adding More Levels 38
3.2 Flat Method . 38

4 Experiments 42
4.1 Test Environment . 42
4.2 Test Platform . 42

4.2.1 Unit Tests and Assertions 43
4.2.2 Statistical Tests . 43

4.3 Performance Measurement . 45
4.3.1 Factors Influencing the Performance of Random Sampling 45
4.3.2 Determining time(s, u) for fixed n 45
4.3.3 Determining time(s, u, n) 46
4.3.4 Experimental Results 48

iv

5 Analysis of Experimental Results 51
5.1 Applying time(s,u,n) Models 51
5.2 Summary of Performance for Leveling Methods 53
5.3 Summary of Performance for Rejection-Based Methods 55

6 Application: Fast Sampling for Monte Carlo Playouts in NoGo 58
6.1 The Game of NoGo . 58
6.2 Playouts in NoGo . 59
6.3 Implementation . 60
6.4 Optimization Result . 62

7 Conclusions and Future Work 64

Bibliography 65

A time(s,u) Models 67

B Model Fitting 79

v

List of Tables

2.1 The sample, update and construction runtime complexity for
the Boost C++ Library and the GNU Compiler Collection im-
plementations of the class std::discrete distribution in the C++11
Standard. 17

2.2 The table summarizes the time complexity for all the sampling
methods in this chapter. In the table, n is the size of weight
array W , S is the sum of all weights, B is the maximum weight
in W , and M represents the maximum possible weight. . . . 34

4.1 The χ2 values and the corresponding p-values in Pearson’s chi-
squared goodness of fit tests for all methods. 44

4.2 The terms f(n) and g(n) in time(s, u, n) for all methods. . . . 47
4.3 The time(s, u, n) = an + bs · f(n) + cu · g(n) models for all 10

sampling methods. For each method, we show the two mod-
els with weights wi drawn from the uniform distribution U(0,
104) and the exponential distribution (λ = 10−3) separately.
The time was measured in microseconds. All coefficients were
rounded to four decimal places. 49

5.1 The time(s, u, n) = an+ bs ·f(n)+ cu ·g(n) models for four and
five level search. For each method, we show the two models with
weights wi drawn from the uniform distribution U(0, 104) and
the exponential distribution (λ = 10−3) separately. The time
was measured in microseconds. All coefficients were rounded to
four decimal places. 54

6.1 The actual runtime and expected runtime with associated rank-
ings for all methods to construct, sample and update in 3000
playouts. Runtime is measured in microseconds and rounded to
four decimal places. The methods are sorted according to their
predicted runtime. 62

6.2 Sampling runtime and overall runtime for ordinary sampling
and two level search to run 3000 playouts on a 19 × 19 board.
Runtime is measured in microseconds and rounded to four dec-
imal places. 63

vi

List of Figures

2.1 In this example, W = [1, 2, 3, 4], and the dart lands in the part
corresponding to w2 = 3. The random sampling result is the
selected index 2. 7

2.2 Viewing wi as rectangles and splitting them into small pieces. 11
2.3 The rearrangement of the pieces and the corresponding tables. 11
2.4 The rearrangement of the pieces for the new weight array W ′ =

[2, 4, 1, 1] on the right compared with the old W = [6, 4, 1, 1] on
the left. 14

2.5 The alias and probability tables for the new weight array W =
[2, 4, 1, 1] on the right compared with the old ones on the left. 14

2.6 An example of generating random numbers according to weight
array W = [6, 4, 1, 1] using C++ libraries. 17

2.7 An example of two level search structure with n = 9 and L = 3. 18
2.8 Two level search for 19 × 19 Go with n = 361 and varying L.

The y-axis in the plot shows the average time spent to sample
105 times with one update after each sample, plotted against L
on the x-axis. The time spent for each L was averaged over 100
rounds. The minimum time spent is achieved with L chosen
around 19, which is the square root of 361. 20

2.9 The plot on the left shows the probability density function
p(x) = 1

1.2113
(0.3e−(x−0.3)2 + 0.7e−

10
3

(x−2)2) in the interval [−4, 6]
while the plot on the right shows how we draw samples accord-
ing to this function. The circles in the right plot are the samples
we draw, and those colored red are the ones we accept. 23

2.10 Drawing samples using the rejection method from the discrete
distribution W = [6, 4, 1, 1]. 25

2.11 Example of the forest built by the log* method. There are three
levels and four roots. The right side shows the level table and
the level sums. 27

3.1 In this example, W = [1, 2, 2, 1, 3, 2, 3, 4, 2, 1, 1] and L = 3. We
construct WD = [5, 6, 9, 2] and WD2 = [20, 2] according to W . 36

4.1 The plot shows time spent for linear search to generate 105 sam-
ples with 30 weight updates after each sample. We used both
models derived for the uniform distribution and the exponential
distribution. The time was measured in seconds. 50

5.1 The plot shows time spent for all methods to generate 105 sam-
ples without updating. The weights wi are drawn from the expo-
nential distributions with λ = 10−3 and the time were measured
in microseconds. 52

vii

5.2 The plot shows time spent for all methods to generate 105 sam-
ples with one weight update after each sample. 53

5.3 Time for two, three, four, and five level search, and binary tree
search to generate 105 samples with one weight update after
each sample. 55

5.4 Time for the rejection method, the flat method and the log*
method to generate 105 samples with one weight update after
each sample. The plot is generated using the models derived
for weights drawn from uniform distributions. 56

5.5 Time for the rejection method, the flat method and the log*
method to generate 105 samples with one weight update after
each sample. The plot is generated using the models derived
for weights drawn from exponential distributions. 57

5.6 Time spent to generate 105 samples with one update after each
sample. The plot is generated using the models derived for
weights drawn from exponential distributions. 57

6.1 An example of the end of a NoGo game 59
6.2 Boards before and after White makes a move on B9 61

viii

Chapter 1

Introduction

1.1 Sampling from a Time-Changing Discrete

Distribution

Given a discrete random variable X, the discrete distribution of X describes

the probability that X = i for each possible discrete value i. In this thesis, we

consider consecutive integer indices i ∈ [0, 1, ..., n− 1], and use a weight array

W containing n non-negative real-valued weights [w0, . . . , wn−1] to describe a

discrete distribution. During sampling, each index i should be selected with a

probability of pi = wi

S
, where S =

∑n−1
i=0 wi. We assume that S > 0 to make

the problem meaningful.

A time-changing discrete distribution allows modifying individual weights

wi, such that we can gradually change the weight array W over time. Once the

size n is specified, we cannot have more than n weights in W . However, some

(but not all) weights might be zero, which can be used to model a distribution

with fewer than n events.

1.2 Research Motivation and Problem Setting

In recent years, with the increasing usage of sampling techniques in computer

science, such as Monte Carlo methods and sampling in reinforcement learning,

the demand of efficient random sampling methods is growing rapidly. For the

simple case of random sampling from a fixed discrete distribution, the well

known Alias Method [18] is both optimal in theory and efficient in practice.

1

However, the situation is less clear when it comes to random sampling from

a time-changing discrete distribution where the weights in the distribution

can be updated between samples. There exist methods [6, 12] with runtime

complexity of O(1) for sampling, O(1) for updating and O(n) for constructing

the initial distribution. This is optimal in theory. However, the constant

factor overhead of these methods is prohibitively high, and they are not used

in practice.

While previous work such as [6] used only asymptotic complexity to mea-

sure algorithm performance, our goal in this thesis is to find methods that

are efficient in practice for both sampling and updating. In order to show the

performance trade-offs between different approaches in an informative way, we

use linear regression combined with runtime complexity analysis to build a

runtime model as time(s, u, n) = an+ bs · f(n) + cu · g(n) for each method. In

the expression, n is the number of elements in the discrete distribution, s is

the number of random samples, u is the number of weight updates, and a, b, c

are corresponding coefficients. The functions f(n) and g(n) are determined by

runtime complexity analysis. By comparing these models, a reader can easily

determine the most suitable methods for their application.

1.3 Machine Dependency

In this thesis, we measure the actual time cost of each method in different sce-

narios. We build models on the basis of the time we measure. The time cost

depends on the hardware and software we use, so the models we build are ma-

chine dependent. However, readers with other hardware and software can still

refer to our models and conclusions. Although the actual time cost depends

on the machine, the major factors that determine the relative strength of a

method in different scenarios are the same: the number of samples, the number

of updates and the number of elements in the weight array W . We compare

the methods based on these factors such that our models and conclusions can

be generalized to different machines.

2

1.4 Contributions of this Thesis

This thesis contains the following contributions:

• We review the following algorithms for time-changing discrete distribu-

tion: linear search, binary search, the Alias Method, two level search,

binary tree search, the rejection method, and the log* method.

• We review both the Boost implementation and the GNU Compiler imple-

mentation of the C++ discrete distribution random number generator.

• We introduce the core ideas of these methods, as well as analyze their

correctness and runtime complexity.

• We derive a practical Flat Method from Hagerup’s theoretical work [6].

• We propose three, four and five level search methods based on the exist-

ing two level search.

• We implement all methods based on a unified framework in a soft-

ware package UpdateRandom. The package is available on https:

//github.com/yunpeng5/UpdateRandom.

• We use statistical methods to check that all methods behave as expected.

• We use linear regression models to summarize the performance of each

method in the experiments, such that we can compare them in practice.

• We apply our models to compare the practical performance of all meth-

ods in two representative scenarios: sampling from a static discrete dis-

tribution and sampling from a time-changing discrete distribution where

we make one update after each sample.

• We demonstrate how we use the methods and our models to speedup the

sampling process in an application to the game of NoGo.

The thesis is organized as follows: In Chapter 2, we review sampling meth-

ods, with their core ideas, runtime complexity, proof of correctness and im-

plementation details. In Chapter 3, we introduce our two new methods. In

3

Chapter 4, we introduce our test platform and the time(s, u, n) models we

develop for each method. In Chapter 5, we apply our models to compare the

practical performance of all methods and make conclusions. In Chapter 6,

we introduce the game of NoGo and demonstrate how we use the sampling

methods together with our models to speedup the sampling process. Chapter

7 concludes our work and gives potential future work.

4

Chapter 2

Literature Review

In this chapter, we review existing random sampling methods that are either

commonly used or attractive in theory. We talk about the assumptions we

make in Section 2.1. Then we introduce the general framework we use in

Section 2.2, and review the methods in Sections 2.3 to 2.10.

2.1 Assumptions

All methods in the review satisfy our assumptions: they generate samples

according to a time-changing weight array W = [w0, . . . , wn−1] containing n

non-negative real-valued weights. While n is fixed such that we cannot have

more than n weights by dynamically extending W , we can still have fewer

than n weights by having wi = 0 for some i. When analyzing the runtime

complexity, we assume that all the following standard operations take constant

time: arithmetic, logarithms and generating a single random number (either

a real number or an integer) from a uniform distribution.

2.2 General Framework

To sample from a time-changing discrete distribution, each method needs at

least three functions: a construct function that builds the data structures for

the method from the given W , an update(index ,weight) function that updates

windex to a new weight and a sample() function that generates a sample. In

this chapter, we use a general framework to review each method:

5

1. We show the data structures that a method uses and its construction

procedure.

2. We show how a method generates samples from a discrete distribution.

3. We show how a method updates a weight in a discrete distribution.

2.2.1 Utility Functions

Several utility functions are widely used among different sampling methods.

We discuss these functions in this section, and we will refer to them in later

sections.

The most commonly used utility functions are uniform real(a, b) and

uniform int(a, b). We can use uniform real(a, b) to generate a random real

number d ∈ [a, b) and uniform int(a, b) to generate a random integer i ∈ [a, b].

These functions are usually specified by a programming language standard

such as [8] and provided by a standard library.

Given an array W = [w0, w1, ..., wn−1], when we try to find the smallest

i satisfying wstartIndex + wstartIndex+1 + ... + wi > d for a real number d ∈

[0,
∑n−1

i=startIndex wi) and an integer startIndex ∈ [0, n), we use the linear search

function linear search(W, d, startIndex) shown in Algorithm 1.

Algorithm 1: Linear Search

Input: Array W = [w0, w1, ..., wn−1], real number target d and the
startIndex we start searching from

Output: The smallest integer i satisfying wstartIndex + ...+ wi > d

1. i = startIndex

2. While d ≥ wi

(a) d = d− wi

(b) i = i+ 1

3. return i

When we try to remove an element from an array, directly erasing it

could be time consuming as we need to rearrange all elements after it. If

6

w0=1 w1=2 w2=3 w3=4

dart

Figure 2.1: In this example, W = [1, 2, 3, 4], and the dart lands in the part
corresponding to w2 = 3. The random sampling result is the selected index 2.

we do not care about the order of elements in the array, we can use function

swap and remove(W, index) shown in Algorithm 2 to remove it efficiently.

Algorithm 2: Element Removal from Array

Input: Array W = [w0, w1, ..., wn−1], and index of the element we want
to remove

1. windex, wn−1 = wn−1, windex

2. W.pop()

2.3 Method 1: Linear Search

To illustrate sampling from a discrete distribution according to a weight array

W, an intuitive way is to view W as a belt, on which each element i is expressed

by a piece with a length proportional to wi. We can then throw a dart at a

random location on the belt and see which part it lands in. The example in

Figure 2.1 illustrates this process.

To implement this idea, we need to store the weight array W and calculate

the sum of all weights S=
∑n−1

i=0 wi. We show the initialization of the data

structures in Algorithm 3.

To sample, we choose a real number d ∈ [0, S) uniformly at random. Then

we run a O(n) linear search from elements 0 to n − 1 to find the smallest i

satisfying w0 + w1 + ... + wi > d, and return this i as the sample. We show

the pseudo code in Algorithm 4.

To update a weight, we only need to update wi in W and S. We show the

pseudo code in Algorithm 5.

7

Algorithm 3: Linear Search Construction

Input: Weight array W = [w0, w1, ..., wn−1]
Output: Sum S =

∑n−1
i=0 wi

1. S = 0

2. For each integer i ∈ [0, n)

(a) S=S+wi

Algorithm 4: Linear Search Sampling

Input: Weight array W = [w0, w1, ..., wn−1] and sum S =
∑n−1

i=0 wi

Output: Sampling result i

1. d = uniform real(0, S)

2. i = linear search(W, d, 0)

3. return i

Algorithm 5: Linear Search Updating

Input: A new weight w′i

1. S = S − wi + w′i

2. wi = w′i

8

We refer to this method as the linear search method. The time complexity

of construction and sampling is O(n), but it only takes constant Θ(1) time to

update a weight.

2.4 Method 2: Binary Search

Besides linear search, we can also use binary search. Instead of W, we maintain

the cumulative weight array WS = [ws0, ...,wsn−1] with ws i =
∑i

j=0 wj for

0 ≤ i ≤ n− 1. We show the initialization of the data structures in Algorithm

6.

Algorithm 6: Binary Search Construction

Input: Weight array W = [w0, w1, ..., wn−1]
Output: Cumulative weight array WS = [ws0, ...,wsn−1]

1. ws0 = w0

2. For each integer i ∈ [1, n)

(a) ws i = ws i−1 + wi

To sample, we choose d ∈ [0,wsn−1) uniformly at random, and use binary

search to find the smallest i satisfying w0 + w1 + ...+ wi = ws i > d. We show

the pseudo code in Algorithm 7.

To update a weight wi, we need to update all wsj with j ≥ i. We show the

pseudo code in Algorithm 8.

By using binary search instead of linear search, we reduce the time com-

plexity of sampling to O(log(n)). However, it takes linear time instead of

constant time to update in the worst case.

2.5 Method 3: The Alias Method

Vose’s Alias method [18] is the state of art method for sampling from a static

discrete distribution. It is an implementation of the famous Alias method

algorithm [19]. It takes Θ(n) time to preprocess the weight array, but only

Θ(1) time to generate a sample.

9

Algorithm 7: Binary Search Sampling

Input: Cumulative weight array WS = [ws0, ...,wsn−1]
Output: Sampling result r

1. d = uniform real(0,wsn−1), l = 0, r = n− 1

2. While l < r

(a) m =
⌊
l+r
2

⌋
(b) If wsm ≤ d

(1). l = m+ 1

(c) Else

(1). r = m

3. return r

Algorithm 8: Binary Search Updating

Input: A new weight w′i

1. For each integer j ∈ [i, n)

(a) wsj = wsj − wi + w′i

2. wi = w′i

10

We use the following example from Keith Schwarz’s online publication [16]

to illustrate table construction and sampling processes. Consider a weight

array of size 4, such as W = [6, 4, 1, 1]. We first scale all weights wi to generate

a new weight array W ′ = [2, 4
3
, 1

3
, 1

3
], with sum S ′ =

∑
w′i = n, such that the

probability of choosing each index i remains the same. Intuitively, we can view

each weight wi as a rectangle with width 1 and height wi (shown in Figure 2.2

on the left). We split each rectangle into pieces of height at most 1 (shown in

Figure 2.2 on the right). Since the average weight w = 1, we can cut rectangles

1/3 1/3

2

4/3

1/3 1/3

2/3
1/3

2/3

2/3

1

Figure 2.2: Viewing wi as rectangles and splitting them into small pieces.

and rearrange the pieces such that each of the four columns has a height of

exactly 1(shown in Figure 2.3 left). Crucially, this rearrangement can be done

1/3

2/3
1

2/3 2/3

1/3 1/3

2/3 1 1/3 1/3

1 0 0N/A

U

K

Figure 2.3: The rearrangement of the pieces and the corresponding tables.

in a way such that:

• There are at most two pieces in each column.

• At least one piece of the ith rectangle is placed in the ith column.

We denote the process above as the Alias Method Rearrangement. To sample,

we first choose one of the four columns uniformly at random and then choose

one piece in the column according to their proportion. Since the ith column

contains at most one piece that is not from the ith rectangle, we use ki in the

alias table K to record the original column of that piece. ki = −1 if there is

only one piece in the ith column. ui in table U is the probability of choosing

11

i when column i is randomly selected, and ki is chosen with a probability of

1 − ui. In the example, the alias table K = [1,−1, 0, 0] and the probability

table U = [2
3
, 1, 1

3
, 1

3
], as shown in Figure 2.3 on the right. For example, if we

choose the 0th column by sampling, we will output 0 with probability u0 = 2
3

and 1 with probability 1− u0 = 1
3
.

2.5.1 Correctness of the Alias Method

To prove that the Alias Method is correct, the key point is to prove that it is

always possible to construct the alias and probability tables for an arbitrary

weight arrayW . There always exists a way to split and rearrange the rectangles

of weights such that the following conditions are met:

• There are at most two rectangles in each column.

• The height of each column is exactly 1.

• One piece of the ith rectangle is placed in the ith column.

We modify the proof procedure at [16] to formalize and prove the key point

above.

Lemma 1. For arbitrary weight array W = [w0, w1, ..., wn−1], we can scale the

weights to form a new array W ′ = [w′0, w
′
1, ..., w

′
n−1], such that S ′ =

∑n−1
i=0 w

′
i =

n and p′i =
w′i
S′

= pi = wi

S
for all 0 ≤ i < n.

Proof. Let w′i = n
S
wi for all 0 ≤ i < n, then S ′ =

∑n−1
i=0 w

′
i =

∑n−1
i=0

n
S
wi =

n
S

∑n−1
i=0 wi = n

S
S = n. We also have pi =

w′i
S′

=
n
S
wi

n
= wi

S
for all 0 ≤ i < n.

Lemma 2. Given n weights w0, w1, ..., wn−1 where n ≥ 1 such that
∑n−1

i=0 wi =

n, there must be at least one weight wl ≤ 1 and one weight wg ≥ 1.

Proof. By contradiction. Assume that there is no weight wl ≤ 1, which means

wi > 1 for all 0 ≤ i < n. Then
∑n−1

i=0 wi > n · 1 = n, which is a contradiction.

Similarly, if we assume that there is no weight wg ≥ 1, the sum of all weights

would be smaller than n, which is also a contradiction.

Remark: in the proof above, it is possible that l = g.

12

Theorem 1. Given an arbitrary weight array W = [w0, w1, ..., wn−1], it is

always possible to construct the alias and probability tables.

Proof. By Lemma 1, we can replace the weight array W withW ′ = [w′0, w
′
1, ..., w

′
n−1],

such that
∑n−1

i=0 w
′
i = n and the probability of choosing each index remains the

same. Then proving that the theorem holds is equal to proving that the Alias

Method Rearrangement is always doable.

We prove this by induction. In the base case n = 1, there is only one

rectangle of height w0 = 1. Each column has height 1, contains at most two

different rectangles, and the 0th column contains at least one piece of the 0th

rectangle.

For the induction step, assume that the theorem holds for n. For n +

1 width-one rectangles of heights w0, w1, ..., wn such that
∑n

i=0 wi = n + 1,

according to Lemma 2, there must be at least one rectangle with height wl ≤ 1

and one rectangle with height wg ≥ 1. We assume that the lth rectangle has a

height wl ≤ 1 and the gth rectangle has a height wg ≥ 1. Then there are two

possible cases.

Case 1: If wl = 1, we just keep this rectangle in the lth column without

splitting. This column satisfies all the conditions. The remaining n rectangles

have sum n+1−1 = n. By the induction hypothesis, we can assign them into

n columns while satisfying the conditions.

Case 2: If wl < 1, we can cut off a piece with height 1−wl from rectangle

g and move it to fill the lth column up to a height of 1. Then the lth column

satisfies all the conditions and there are n rectangles left with a sum of n +

1 − 1 = n. Again, by the induction hypothesis, we can assign them into n

columns while satisfying the conditions.

2.5.2 Implementation

We follow the pseudo code from [16] to implement Vose’s Alias Method. The

induction step in the proof of Theorem 1 gives the idea for building the prob-

ability and alias table. After scaling the weights
∑n−1

i=0 wi = n, in each round,

we select a combination of weights wl < 1 and wg ≥ 1 to determine the lth

13

column of the probability table Prob and alias table Alias. Note that any

wg ≥ 1 can fill the gap in the lth column for a small weight wl < 1. We use

two queues, Small to keep track of weights smaller than 1, and Large for the

weights greater than or equal to 1. In Algorithm 9 we show the construction

procedure. After step 5, at least one of the queues is empty. The remaining

weights should all be 1 in Large. Theoretically, there should not be wi < 1

in Small at this time point. But weights can be slightly larger or smaller due

to numerical error, so in practice we add steps 6 and 7 in Algorithm 9 to deal

with these weights.

To sample an element according to the weight array W , we choose an inte-

ger i ∈ [0, n) and a real number d ∈ [0, 1) uniformly at random. The algorithm

outputs i if d < Probi, and Alias i otherwise. We show the implementation of

sampling in Algorithm 10.

2.5.3 Using the Alias Method for a Time-changing Dis-
tribution

Unfortunately, as far as we know, there is no efficient way to update the weights

in K and U after a weight change. For example, if we update w0 from 6 to

2 for W = [6, 4, 1, 1], the new W ′ = [2, 4, 1, 1], Figures 2.4 and 2.5 show that

in the new tables, all entries except for the values in column 1 are different.

1/3

2/3
1

2/3 2/3

1/3 1/3

1/21/3

2/3
1

1/21/21/21/21/2
1

1/2

1/2

1/2

1/2

Figure 2.4: The rearrangement of the pieces for the new weight array W ′ =
[2, 4, 1, 1] on the right compared with the old W = [6, 4, 1, 1] on the left.

2/3 1 1/3 1/3

1 0 0N/A

U

K

1 1 1/2 1/2

N/A

U

K N/A 1 1

Figure 2.5: The alias and probability tables for the new weight array W =
[2, 4, 1, 1] on the right compared with the old ones on the left.

Updating a weight can have Ω(n) runtime complexity as we need to completely

rebuild the tables.

14

Algorithm 9: Alias Method Construction

Input: Weight array W = [w0, w1, ..., wn−1]
Output: Probability table Prob and alias table Alias

1. Small = Queue(), Large = Queue()

2. S =
∑n−1

i=0 wi

3. For each integer i ∈ [0, n)

(a) wi = wi·n
S

(b) If wi < 1

i. Small.put(i)

(c) Else

i. Large.put(i)

4. While not (Small.empty() and Large.empty())

(a) l = Small.get(), g = Large.get()

(b) Prob[l] = wl, Alias[l] = g

(c) wg = wl + wg − 1

(d) If wg < 1

i. Small.put(g)

(e) Else

i. Large.put(g)

5. While not Large.empty()

(a) g = Large.get()

(b) Prob[g] = 1

6. While not Small.empty()

(a) l = Small.get()

(b) Prob[l] = 1

15

Algorithm 10: Alias Method Sampling

Input: Probability table Prob and alias table Alias
Output: Sampling result i or Alias i

1. i = uniform int(0, n− 1), d = uniform real(0, 1)

2. If d < Probi

(a) return i

3. Else

(a) return Alias i

2.6 Method 4: C++11 discrete distribution

Starting from C++11 [8], the programming language C++ provides a random

number generator for discrete distributions. Using the std :: discrete distribution

template together with a random number engine such as the Mersenne Twister

random number engine provided by C++ libraries, one can generate random

numbers according to a given weight distribution. C++ standard requires a

combination of generator and distribution to produce random numbers: while

a generator produces a sequence of uniformly distributed random numbers, a

distribution object transforms the sequence into numbers following a specific

random variable distribution. Figure 2.6 shows an example of this process.

For time-changing discrete distributions, users must call the constructor

each time the distribution is updated, as no updating function is provided in

the class.

The C++11 standard does not specify the sampling runtime complexity, so

we checked two major open source implementations, the Boost C++ Library

[1] and the GNU Compiler Collection [15] (GCC), to determine their runtime

complexity. Interestingly, they used different algorithms. The Boost C++

Library used Vose’s Alias method [18], while GCC used binary search. The

asymptotic runtime complexity of both methods is different, as shown in Table

2.1.

16

Figure 2.6: An example of generating random numbers according to weight
array W = [6, 4, 1, 1] using C++ libraries.

Sample Update Construction
Boost C++ Library Θ(1) Θ(n) Θ(n)

GNU Compiler Collection Θ(log(n)) O(n) Θ(n)

Table 2.1: The sample, update and construction runtime complexity for the
Boost C++ Library and the GNU Compiler Collection implementations of the
class std::discrete distribution in the C++11 Standard.

2.7 Method 5: Two Level Search

Two level search is a simple but effective sampling method that is well known

in the Computer Go community. However, despite a thorough search, we could

not identify a formal reference. The idea is to build a two level structure to

achieve a better sampling runtime while keeping updating efficient. The first

level maintains the original weight array W , while the second level maintains a

partial sum array WD = [wd0, ...,wdd n
Le−1]. Each entry in WD maintains the

partial sum of a group of L < n weights wdi =
∑end(i)

j=start(i) wj, with start(i) =

L · i and end(i) = min(L · (i + 1) − 1, n − 1). Figure 2.7 illustrates W as a

two-dimensional grid on the left. The array WD on the right contains the sum

of each row. We also maintain the global sum S =
∑n−1

i=0 wi. We show the

initialization of the data structures in Algorithm 11. We set L = d
√
ne, and

will discuss this choice in Section 2.7.1.

17

w0 w1 w2

w3 w4 w5

w6 w7 w8

wd0=w0+w1+w2

wd1=w3+w4+w5

wd2=w6+w7+w8

Figure 2.7: An example of two level search structure with n = 9 and L = 3.

Algorithm 11: Two Level Search Construction

Input: Weight array W = [w0, w1, ..., wn−1]
Output: Array WD storing the partial sums and the overall sum S

1. S = 0, L = d
√
ne, WDn =

⌈
n
L

⌉
2. For each integer i ∈ [0,WDn)

(a) start(i) = L · i, end(i) = min(L · (i+ 1)− 1, n− 1)

(b) wd i =
∑end(i)

j=start(i) wj

(c) S = S + wd i

18

To sample from the distribution, we choose a real number d ∈ [0, S) uni-

formly at random. We use linear search in WD to find the corresponding

group, i.e., we find the smallest r satisfying wd0 + wd1 + ...+ wd r > d. Then

we run another linear search from start(r) to end(r) in W to find the smallest

index i satisfying w0 +w1 + ...+wi =
∑r−1

j=0 wd j +wstart(r) + ...+wi > d. Index

i is the sampling result. We show the pseudo code in Algorithm 12.

Algorithm 12: Two Level Search Sampling

Input: Weight array W = [w0, w1, ..., wn−1], partial sum array
WD = [wd0,wd1, ...,wdWDn−1] and sum S =

∑n−1
i=0 wi

Output: Sampling result i

1. d = uniform real(0, S)

2. i = linear search(WD , d, 0)

3. d = d−∑i−1
j=0 wdj

4. L = d
√
ne, i = i · L

5. i = linear search(W, d, i)

6. return i

To update a weight, we need to update three variables: wi in W , the

corresponding wdr with r =
⌊
i
L

⌋
in WD , and S. We show the pseudo code in

Algorithm 13.

Algorithm 13: Two Level Search Update

Input: Weight array W = [w0, w1, ..., wn−1], partial sum array
WD = [wd0,wd1, ...,wdWDn−1] , sum S =

∑n−1
i=0 wi and the new

weight w′i

1. L = d
√
ne, r =

⌊
i
L

⌋
2. wd r = wd r + w′i − wi,S = S + w′i − wi

3. wi = w′i

19

2 5810 18 26 34 42 50 66 74 82 90 98 10
6

11
4

12
2

13
0

13
8

14
6

15
4

16
2

17
0

17
8

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

L

tim
e

Figure 2.8: Two level search for 19× 19 Go with n = 361 and varying L. The
y-axis in the plot shows the average time spent to sample 105 times with one
update after each sample, plotted against L on the x-axis. The time spent for
each L was averaged over 100 rounds. The minimum time spent is achieved
with L chosen around 19, which is the square root of 361.

2.7.1 Determining the Partial Sum Group Size L

The partial sum group size L can be any number between 1 and n. Empirically,

L = d
√
ne leads to the best performance, as shown in Figure 2.8. This result

matches our theoretical analysis: For a two level search, the time complexity

of sampling is O(
⌈
n
L

⌉
+L) = O(n

L
+L). This expression achieves its minimum

n
L

+ L ≥ 2
√

n
L
∗ L = 2

√
n when n

L
= L, i.e., L =

√
n.

The time complexity of method construction is Θ(n) since we can calcu-

late WD and S in a single pass as in Algorithm 11. With L = d
√
ne, the

time complexity of sampling is O(
⌈

n

d√ne

⌉
+ d
√
ne) = O(

√
n). The updating

procedure shown in Algorithm 13 has a runtime complexity of Θ(1).

2.8 Method 6: Binary Tree Search

Instead of building only one extra level on top of the original weight array

W , we can build a binary tree to help searching. The leaves of the tree

are the weights wi in W . Each node in the tree stores the sum of weights

20

of its children. To optimize the space needed, we build the tree using a 1-

based compact array T = [t1, ..., t2n−1]. Each element tn+i stores the original

weight wi for 0 ≤ i < n, and each element ti stores the sum of its children

ti = t2i + t2i+1, for 1 ≤ i < n. The root t1 contains the sum of all weights∑n−1
i=0 wi. We show the implementation of the data structure initialization in

Algorithm 14.

Algorithm 14: Binary Tree Search Construction

Input: Weight array W = [w0, w1, ..., wn−1]
Output: Array T = [t1, ..., t2n−1] representing the binary tree

1. For each integer i ∈ [0, n)

(a) tn+i = wi

2. i = n− 1

3. While i ≥ 1

(a) ti = t2i + t2i+1

(b) i = i− 1

To sample from the distribution, we choose a real number d ∈ [0, t1) uni-

formly at random. Starting from the root t1, we search down the tree by

repeating the following process: for each node ti we are on, if d < t2i, we go

to the left child t2i, otherwise, we subtract t2i from d and go to the right child

t2i+1. We repeat the process until we reach a leaf ti with n ≤ i < 2n, and we

output i − n as the sampling result. We show the pseudo code in Algorithm

15.

To update a weight wi, we first update the value in the leaf, then iteratively

update the values of its ancestors. We show the pseudo code in Algorithm 16.

The time complexity of method construction is Θ(n) since it takes Θ(1)

time to fill each of the 2n − 1 elements in T . The time complexity of both

sampling and updating is Θ(log(n)): we need to visit each level in the tree.

There are blog(n)c+ 1 levels, and there is Θ(1) work on each level.

21

Algorithm 15: Binary Tree Search Sampling

Input: Array T = [t1, ..., t2n−1] representing the binary tree
Output: Sampling result i

1. d = uniform real(0, t1)

2. i = 1

3. While i < n

(a) If d < t2i

i. i = 2i

(b) Else

i. d = d− t2i
ii. i = 2i+ 1

4. return i− n

Algorithm 16: Binary Tree Search Update

Input: Array T = [t1, ..., t2n−1] representing the binary tree and the
new weight w′i

1. i = n+ i

2. ti = w′i

3. While i > 1

(a) leftChild = i, rightChild = i

(b) If i%2 == 0

i. rightChild = rightChild + 1

(c) Else

i. leftChild = leftChild − 1

(d) i =
⌊
i
2

⌋
(e) ti = tleftChild + trightChild

22

2.9 Method 7: Rejection Method

Rejection sampling is a Monte Carlo method which generates samples from

a probability distribution. We use an example to illustrate how it works.

Figure 2.9 shows a probability density function p(x) = 1
1.2113

(0.3e−(x−0.3)2 +

0.7e−
10
3

(x−2)2) on the left. It is not trivial to draw a sample according to this

Figure 2.9: The plot on the left shows the probability density function p(x) =
1

1.2113
(0.3e−(x−0.3)2 + 0.7e−

10
3

(x−2)2) in the interval [−4, 6] while the plot on the
right shows how we draw samples according to this function. The circles in
the right plot are the samples we draw, and those colored red are the ones we
accept.

probability density function directly. Instead, we can draw sample points (x, y)

in the rectangular area x ∈ [-4, 6) and y ∈ [0, 0.6) uniformly at random, and

only accept the points under the curve (shown in Figure 2.9 on the right). It is

obvious that the probability with which we accept a sample x is proportional

to p(x). Given that x and y are chosen uniformly at random, we are sampling

according to p(x) inside the rectangle. To draw one sample, we keep drawing

sample points (x, y) until y < p(x) occurs, and output x as the result.

It is not hard to apply rejection sampling to discrete distributions. To

construct the method, we need to store the weight array W and the maximum

weight B = max(wi). We show the initialization of the data structures in

Algorithm 17.

To sample from a weight array W, we repeat the following process until

a value is output: choose an integer i ∈ [0, n) and a real number d ∈ [0, 1)

uniformly at random, then output i if d < wi

B
. As shown in Figure 2.10, this

23

Algorithm 17: Rejection Method Construction

Input: Weight array W = [w0, w1, ..., wn−1]
Output: Bound B

1. B = 0

2. For each integer i ∈ [0, n)

(a) B = max(B,wi)

process is equivalent to drawing sample points uniformly from the rectangular

area x ∈ [-0.5, 3.5) and y ∈ [0, 6), and accepting those in the gray area. We

show the pseudo code in Algorithm 18.

Algorithm 18: Rejection Method Sampling

Input: Weight array W = [w0, w1, ..., wn−1] and bound B
Output: Sampling result i

1. While true

(a) i = uniform int(0, n), d = uniform real(0, 1)

(b) If d < wi

B

(1). return i

To update a weight, we need to modify W and update B. In our imple-

mentation, we update the bound B = max(wi) only when maxwi increases.

We show the pseudo code in Algorithm 19.

Algorithm 19: Rejection Method Update

Input: Weight array W = [w0, w1, ..., wn−1], bound B and new weight
w′i

1. B = max(B,w′i)

2. wi = w′i

The time complexity of construction is Θ(n). A single iteration leads to an

output with probability S
nB

, so the expected sampling time is Θ(nB
S

). Sampling

remains efficient as long as S is not much smaller than nB. An example of the

24

Figure 2.10: Drawing samples using the rejection method from the discrete
distribution W = [6, 4, 1, 1].

25

worst case is when we have W = [w0, 0, 0, ..., 0] with w0 6= 0: we can generate

a sampling result only if we select i = 0, and the expected sampling time

becomes Θ(nB
w0

). If B = w0, the expected sampling time is Θ(n). If B � w0,

the expected sampling time could be much worse. On the other hand, if we

have a weight array with equal weights, the expected sampling time becomes

Θ(nB
nB

) = Θ(1). The updating runtime complexity is Θ(1).

2.10 Method 8: The Log* Method

Yossi Matias, Jeffrey Scott Vitter, and Wen-Chun Ni built another sampling

method [12] based on the rejection method. Their method, referred to as the

log* method in this thesis, achieves O(log∗ n) sampling and O(2log∗ n) updating

time complexity. With log∗ n ≤ 5 and 2log∗ n ≤ 32 for n ≤ 265536, their method

works in constant time for practical purposes.

The core idea of this method is to partition the weights into [2j−1, 2j)

groups and then treat the sum of each group as a new weight. The group

weights form a new level, and groups containing two or more elements are

used to recursively build the next level. This recursion builds a forest of trees,

with the height of a tree being at most log∗ n+ 1. Deciding the starting level

and searching down from this level by applying the rejection method in each

level requires visiting at most O(log∗ n) levels, and using the rejection method

in each group has a expected runtime complexity of O(1). As a result, the time

complexity of sampling is O(log∗ n). The updating procedure is much more

sophisticated and has O(2log∗ n) time complexity. The authors also proved that

the construction time is O(n).

We use an example to illustrate the construction process of the log* method.

Consider a weight array W = [1
4
, 1

3
, 1

2
, 8, 15, 15, 16, 16, 268]. We can partition

the weights into five groups to form level 0 in the trees. We use Rj
i to denote

the group in level i containing weights belonging to [2j−1, 2j) and Sj
i to denote

the sum of weights in each group. At level 0, we have R−1
1 = {1

3
, 1

4
}, R0

1 = {1
2
},

R4
1 = {8, 15, 15}, R5

1 = {16, 16} and R9
1 = {268}, with sums S−1

1 = 7
12

, S0
1 = 1

2
,

S4
1 = 38, S5

1 = 32 and S9
1 = 268. We use a level table T to record the groups

26

1/4 1/3 1/2 8 15 15 16 16 268

R1
-1 R1

4R1
0 R1

9R1
5

7/12

R2
0

38

R2
6

1/2 32 268

7/12 70

R3
7

70

level 0

level 1

level 2

level 3

S=339+1/12

T1={R1
0,R1

9}

T2={R2
0}

T3={R3
7}

S1=268+1/2

S2=7/12

S3=70

Figure 2.11: Example of the forest built by the log* method. There are three
levels and four roots. The right side shows the level table and the level sums.

which contain only one weight (called roots), and treat the sum of groups

which contain two or more weights, S−1
1 , S4

1 and S5
1 , as new weights. We can

again partition the new weights { 7
12
, 38, 32} into two groups R0

2 = { 7
12
} and

R6
2 = {32, 38} with sums S0

2 = 7
12

and S6
2 = 70. By recursively partitioning,

we construct a forest of trees shown in Figure 2.11. There are three levels in

addition to the original weight level, and there are four roots, R0
1, R9

1, R0
2 and

R7
3. To store these roots in the level table T, such that Tl contains all the

roots in level l, we have T1 = {R0
1, R

9
1}, T2 = {R0

2}, T3 = {R7
3}. Besides the

level table, we also store the sums of weights in each level S1 = 2681
2
, S2 = 7

12
,

S3 = 70 as well as the overall sum S = 339 1
12

.

To implement this method, each group Rj
l needs to record its children in

an array. To enable efficient removal, it also needs to record and maintain

the array index of each child. In addition, we store the sum of weights of

its children in Rj
l .weight. Each Tl in the level table T is implemented as a

hashmap that maps j to Rj
l . We maintain an integer level rootl that keeps

track of all roots in level l. Its jth bit is set iff the root Rj
l exists. We show

the pseudo code in Algorithm 20. We use a helper function construct level

shown in Algorithm 21 to demonstrate the level by level construction process

recursively.

To sample from the discrete distribution, we need to determine the root to

start from. We choose a real number d ∈ [0, S) uniformly at random, and run

27

Algorithm 20: Log* Method Construction

Input: Weight array W = [w0, w1, ..., wn−1]
Output: Level table T , level sum level sum, root tacking table

level root and the overall sum S

1. Q = Queue(), S = set()

2. For each integer i ∈ [0, n)

(a) j = blog(wi)c+ 1

(b) Rj
1.children.append(i), Rj

1.weight = Rj
1.weight+ wi

(c) If Rj
1 not in S

i. S.add(Rj
1)

ii. Q.put(Rj
1)

(d) S = S + wi

3. construct level(1, Q)

a linear search to find the smallest i satisfying Slevel = S1 + S2 + ... + Si > d.

Then we use another linear search in level i to determine the root Rj
i we start

from. We start with the largest j in level i, and keep adding Sj
i to a temporary

sum TS, until Slevel + TS > d. The last Sj
i we added corresponds to the root

Rj
i we start from. Starting from root Rj

i , we trace down the tree to find the

index we want to output. For a group Rj
i we are on, we use rejection sampling

with bound B = 2j to choose one weight and go to the corresponding group.

We repeat this procedure until we reach level 0, where we output the index

chosen as the result. We show the pseudo code in Algorithm 22.

We need two helper functions to accomplish the update procedure:

1. A remove(Rj
i , item) function that removes item from group Rj

i . Based

on the level i, the item could be either a weight from W or a group Rj′

i−1.

We need to update the sum Sj
i , and we may need to change the parent

of Rj
i in the forest, which triggers recursive calls remove(Rj′

i+1, R
j
i) and

add(Rj′′

i+1, R
j
i).

2. An add(Rj
i , item) function that adds item to group Rj

i . Similar to

remove(Rj
i , item), the item could be a weight or a group. We also need

28

Algorithm 21: Log* Method construct level

Input: Level number l and queue of groups Q
Output: Level table T , level sum level sum and root tacking table

level root

1. more than one = false

2. Q′ = Queue()

3. While not Q.empty()

(a) Ri
l = Q.get()

(b) If len(Ri
l.children) == 1

i. level sum l = level sum l +Ri
l.weight

ii. level root l = level root l + 2i

iii. Tl[i] = Ri
l

(c) Else

i. j = blog(Ri
l.weight)c+ 1

ii. Rj
l+1.children.append(Ri

l)

iii. Rj
l+1.weight = Rj

l+1.weight+Ri
l.weight

iv. Q′.put(Rj
l+1)

v. more than one = true

4. If more than one

(a) construct level(l + 1, Q′)

29

Algorithm 22: Log* Method Sampling

Input: Level table T , level sum level sum, root tacking table
level root and the overall sum S

Output: Sampling result i

1. d = uniform real(0, S)

2. l = linear search(level sum, d, 1)

3. root = None

4. While root == None

(a) j = blog(level rootl)c+ 1, Rj
l = Tl[j]

(b) level rootl = level rootl − 2j

(c) If d < Rj
l .weight

i. root = Rj
l

(d) Else

i. d = d−Rj
l .weight

5. While true

(a) B = 2j, i = uniform int(0, len(root.children)− 1),
d = uniform real(0, 1)

(b) Rj
l = root

(c) If l == 1

i. If d < w[root.children[i]]
2j

A. return root.children[i]

(d) Else

i. If d < root.children[i].weight
2j

A. root = root.children[i]

30

to call remove(Rj′

i+1, R
j
i) and add(Rj′′

i+1, R
j
i) recursively if the parent of

Rj
i changes because of the update of Sj

i .

It is worth noting that, since we change the number of children Rj
i has in both

functions, we also need to consider the case where Rj
i switches between root,

non-root and non-valid. To update a weight wi to w′i, we just need to call

remove(Rj
i , wi) and add(Rj′

i , w
′
i), where Rj

i is the original group wi belongs

to, and Rj′

i is the new group w′i belongs to. We show the pseudo code for the

updating process, add weight and delete weight in Algorithms 23 - 25.

Algorithm 23: Log* Method Update

Input: Level table T , level sum level sum, root tracking table
level root, the overall sum S and the new weight w′i

1. j = blog(wi)c+ 1

2. S = S − wi

3. delete weight(Rj
1, wi)

4. S = S + w′i

5. j′ = blog(wi)c+ 1

6. add weight(Rj′

1 , w
′
i)

The authors [12] introduced a way to modify this method to achieve O(log*

n) updating time complexity. Inspired by T. Hagerup’s paper [6], they also

propose a way to make this method achieve O(1) time complexity for both

sampling and updating. However, these modifications involve time consuming

operations such as building a lookup table to handle all possible changes in the

future. Hence, the authors still recommend the basic log* method for general

use [12]. In our experiments, we found that the basic log* method already

has too much overhead in practice. Considering our goal of finding suitable

methods for general use, we chose not to introduce more overhead by building

even more complex methods.

31

Algorithm 24: Log* Method add weight

Input: Level table T , level sum level sum, root tracking table
level root, target group Ri

l,and the new child child

1. Ri
l.children.append(child)

2. Ri
l.weight = Ri

l.weight+ child.weight

3. If len(Ri
l.children) == 1

(a) level sum l = level sum l +Ri
l.weight

(b) level root l = level root l + 2i

(c) Tl[i] = Ri
l

4. Elif len(Ri
l.children) == 2

(a) level sum l = level sum l − (Ri
l.weight− child.weight)

(b) level root l = level root l − 2i

(c) j = blog(Ri
l.weight)c+ 1

(d) add weight(Rj
l+1, R

i
l)

5. Else

(a) j′ = blog(Ri
l.weight− child.weight)c+ 1

(b) delete weight(Rj′

l+1, R
i
l)

(c) j = blog(Ri
l.weight)c+ 1

(d) add weight(Rj
l+1, R

i
l)

32

Algorithm 25: Log* Method delete weight

Input: Level table T , level sum level sum, root tracking table
level root, group Ri

l, and the node to be removed child

1. Ri
l.weight = Ri

l.weight− child.weight

2. index=index of child in Ri
l.children

3. swap and remove(Ri
l.children, index)

4. If len(Ri
l.children) == 0

(a) level sum l = level sum l −Ri
l.weight

(b) level root l = level root l − 2i

(c) Tl.pop(i)

5. Elif len(Ri
l.children) == 1

(a) level sum l = level sum l +Ri
l.weight

(b) level root l = level root l + 2i

(c) Tl[i] = Ri
l

(d) j′ = blog(Ri
l.weight+ child.weight)c+ 1

(e) delete weight(Rj′

l+1, R
i
l)

6. Else

(a) j′ = blog(Ri
l.weight+ child.weight)c+ 1

(b) delete weight(Rj′

l+1, R
i
l)

(c) j = blog(Ri
l.weight)c+ 1

(d) add weight(Rj
l+1, R

i
l)

33

Sampling time Updating time Constructing time
Alias Method Θ(1) Θ(n) Θ(n)
C++ discrete unspecified1 unspecified1 Θ(n)
Linear search O(n) Θ(1) Θ(n)
Binary search O(log(n)) O(n) Θ(n)

Two level search O(
√
n) Θ(1) Θ(n)

Binary tree search Θ(log(n)) Θ(log(n)) Θ(n)
Rejection Method O(nB

S
) Θ(1) Θ(n)

Log* Method O(log∗ n) O(2log∗ n) Θ(n)

Table 2.2: The table summarizes the time complexity for all the sampling
methods in this chapter. In the table, n is the size of weight array W , S is
the sum of all weights, B is the maximum weight in W , and M represents the
maximum possible weight.

2.11 Summary

To sample from discrete distributions, the methods in the literature can be

partitioned into three groups, namely search-based methods, rejection-based

methods and the Alias Method. Search-based methods include linear search,

binary search, two level search, and binary tree search. They find the sample

by searching, and use simple data structures to optimize the search procedure.

Rejection-based methods include the rejection method and log* method. They

could be more complex but their runtime depends less on n. In order to com-

pare all methods, Table 2.2 shows all the known theoretical runtime complexity

results.

1The sampling and updating time complexity of C++ discrete depends on the imple-
mentations. Please refer to Section 2.6 for details.

34

Chapter 3

New Sampling Methods for
Time-Changing Discrete
Distributions

By expanding on ideas in existing methods and algorithms, and based on

practical considerations, we derive and propose two new methods: In Section

3.1, we give an introduction to multi-level search, with a focus on three level

search. In Section 3.2, we give an introduction to flat method.

3.1 Multi-Level Search

Expanding the idea of the two level search of Section 2.7, we build multi-

level structures, starting with three levels. The third level WD2 maintains

the partial sums of the second level WD . The data structures are identical

to the ones we introduced in Section 2.7, plus an additional array WD2 =

[wd2 0, ...,wd2 d n
L2 e−1]. Each entry in WD2 maintains the partial sum of a

group of L weights wd2i =
∑end2(i)

j=start(i) wdj, with start(i) = L · i and end2(i) =

min(L · (i + 1) − 1,
⌈
n
L

⌉
− 1). We can view this three-level structure as a

forest of trees, where each node is an element in W , WD or WD2 . The roots

are elements in WD2 . Figure 3.1 demonstrates this idea with an example.

We show the initialization of the data structures in Algorithm 26. We set

L = d 3
√
ne, and will discuss this choice at the end of this subsection.

To sample from a distribution, we choose a real number d ∈ [0, S) uniformly

at random. We run a linear search in WD2 to find the smallest r2 satisfying

35

w0=1 w2=2 w3=1w1=2 w4=3 w5=2 w6=3 w7=4 w8=2 w9=1 w10=1

wd0=5wd1=6 wd2=9 wd3=2

wd20=20 wd21=2

WD2

WD

W

Figure 3.1: In this example, W = [1, 2, 2, 1, 3, 2, 3, 4, 2, 1, 1] and L = 3. We
construct WD = [5, 6, 9, 2] and WD2 = [20, 2] according to W .

Algorithm 26: Three Level Search Construction

Input: Weight array W = [w0, w1, ..., wn−1]
Output: Array WD , WD2 storing the partial sums and the overall

sum S

1. S = 0, L = d 3
√
ne

2. For each integer i ∈ [0,
⌈
n
L

⌉
)

(a) start(i) = L · i, end(i) = min(L · (i+ 1)− 1, n− 1)

(b) wd i =
∑end(i)

j=start(i) wj

(c) S = S + wd i

3. For each integer i ∈ [0,
⌈

n
L2

⌉
)

(a) start(i) = L · i, end2(i) = min(L · (i+ 1)− 1,
⌈
n
L

⌉
− 1)

(b) wd2 i =
∑end2(i)

j=start(i) wd j

36

wd2 0 + wd2 1 + ... + wd2 r2 > d. Each tree with root being an element of

WD2 can then be viewed as a two level search problem. So we can subtract∑r2−1
j=0 wd2 j from d, and follow the sampling process we introduced in Section

2.7 to generate the result from the two-level subproblem. The only difference

is that when we run linear search in WD , we start from start(r2) instead of 0

as we have already subtracted some values from d. We show the pseudo code

in Algorithm 27.

Algorithm 27: Three Level Search Sampling

Input: Weight array W = [w0, w1, ..., wn−1], partial sum array
WD = [wd0,wd1, ...,wdWDn−1] and sum S =

∑n−1
i=0 wi

Output: Sampling result i

1. d = uniform real(0, S)

2. i = linear search(WD2 , d, 0)

3. d = d−∑i−1
j=0 wd2j

4. L = d 3
√
ne, i = i ∗ L

5. i′ = linear search(WD , d, i)

6. d = d−∑i′−1
j=i wdj

7. i′ = i′ ∗ L

8. i′ = linear search(W, d, i′)

9. return i′

The updating process is the same as the one we introduced in Section 2.7,

except that we also need to update wd2r2 with r2 =
⌊

i
L2

⌋
in WD2 . We show

the pseudo code in Algorithm 28.

The time complexity of construction remains Θ(n). The updating proce-

dure has a runtime complexity of Θ(1). The time complexity of sampling is

O(2L + n
L2). Let f(L) = 2L + n

L2 , where L > 0. The function f reaches its

minimum when its derivative f ′(L) = 2−2nL−3 = 0, i.e., L = 3
√
n. In practice

we set L = d 3
√
ne, and the time complexity of sampling is O(2 d 3

√
ne+ n

d 3√ne2)

= O(3
√
n).

37

Algorithm 28: Three Level Search Update

Input: Weight array W = [w0, w1, ..., wn−1], partial sum array
WD = [wd0,wd1, ...,wdWDn−1] , sum S =

∑n−1
i=0 wi and the new

weight w′i

1. L = d 3
√
ne, r =

⌊
i
L

⌋
, r2 =

⌊
i
L2

⌋
2. ∆ = w′i − wi

3. wd r = wd r + ∆, wd2r2 = wd2r2 + ∆, S = S + ∆

4. wi = w′i

3.1.1 Adding More Levels

Compared with the two level search, three level search decreases the sampling

time to O(3
√
n) while keeping updating time Θ(1). If we add more levels, the

sampling time decreases further to O(4
√
n), O(5

√
n), ... while the updating

time remains Θ(1). However, it is obvious that by adding levels, we need to

go through more levels in both sampling and updating, which involves more

operations. So the actual running time can increase. In order to make it fast

in practice, we need to consider the trade off between the search time in each

level and the number of levels, which becomes a practical problem. We will

discuss it further in Section 5.2.

Note that since L ≥ 2, if we keep adding levels, the method will eventually

become a binary tree search with both sampling time and the updating time

being O(log(n)). Please refer to Section 2.8 for a space optimized binary tree

search method.

3.2 Flat Method

On the base of the Rejection method, T. Hagerup, K. Mehlhorn and I. Munro

proposed a sampling method that achieves both O(1) sampling and O(1) up-

dating time complexity [6]. The method requires that the maximum weight is

bounded by a polynomial in n [12], which is a strong assumption. The authors

made the assumption because they need to “compress” the weight arrays to

38

certain sizes and use a finite set of integers to encode them. While we cannot

use this method as we do not make the same assumption, we use their building

blocks to compress W : we partition the weights into different groups such that

applying the rejection method in each group becomes efficient. But instead of

integer encodings and lookup tables, we use a linear search to select the proper

group in the sampling. We implemented this method denoted as flat method

and tested it in practice.

To compress W , we partition the weights wi into different groups, such that

group Gj only contains weights wi ∈ [2j−1, 2j). After setting a bound Bj = 2j

for group Gj, the expected sampling time for the rejection method within

each group becomes O(n∗2j
S

) = O(n∗2j
2j−1∗n) = O(1). In our implementation, we

put small weights with wi < 1 into a single group G0 with bound B=1. The

expected sampling time within G0 is O(n0

S0
), where n0 is the number of weights

and S0 is the sum of weights in G0. Considering the possibility of selecting G0

during sampling, the expected time becomes S0

S
∗ O(n0

S0
) = O(n0

S
) ≤ O(n

S
) =

O(1
w̄

), where S is the sum of all weights and w̄ is the average weight.

To construct the method, we need to manually set the maximum possible

weight M . We maintain a group table G to keep track of the weights par-

titioned into different groups. We have groups G0, G1, ..., Gblog(M)c+1, where

group Gj with j ≥ 1 contains all indices i with weights wi ∈ [2j−1, 2j). G0

contains all indices i with weights wi < 1. We use another table to record and

maintain the position of wi, including the group wi belongs to, and the index

of wi in the group. In addition, we use S to store the overall sum and GS j to

keep track of the sum of all weights in Gj. We show the initialization of the

data structures in Algorithm 29.

To sample from the distribution, we choose a real number d ∈ [0, S) uni-

formly at random. We use a linear search in GS to find the corresponding

group, i.e., the smallest j satisfying gs0 + gs1 + ...+ gsj > d. Then we run the

rejection method with bound Bj = 2j in group Gj to generate the result. We

show the pseudo code in Algorithm 30.

To update a weight wi to w′i, there are two possible cases:

39

Algorithm 29: Flat Method Construction

Input: Weight array W = [w0, w1, ..., wn−1]
Output: Group table G, group sum table GS and the overall sum S

1. For each integer i ∈ [0, n)

(a) j = blog(wi)c+ 1

(b) Gj.append(i)

(c) S = S + wi, GS j = GS j + wi

Algorithm 30: Flat Method Sampling

Input: Weight array W = [w0, w1, ..., wn−1], group table G, group sum
table GS and the overall sum S

Output: Sampling result i

1. d = uniform real(0, S)

2. j = linear search(GS , d, 0)

3. While true

(a) i = uniform int(0, len(Gj)− 1), d = uniform real(0, 1)

(b) If d < w[Gj [i]]

2j

i. return Gj[i]

40

1. If wi and w′i belong to the same group Gj, we only need to update W ,

GS j and S.

2. If wi belongs to Gj while w′i belongs to Gj′ , where j 6= j′, we need to

erase i from Gj and append it to the back of Gj′ . Then we update W ,

GS j, GS j′ and S accordingly.

We show the pseudo code in Algorithm 31.

Algorithm 31: Flat Method Update

Input: Weight array W = [w0, w1, ..., wn−1], group table G, group sum
table GS , the overall sum S and the new weight w′i

1. j′ = blog(w′i)c+ 1

2. j = blog(wi)c+ 1, index = index of wi in Gj

3. If j = j′

(a) S = S − wi + w′i, GS j = GS j − wi + w′i

4. Else

(a) S = S − wi, GS j = GS j − wi

(b) swap and remove(Gj, index)

(c) S = S + w′i, GS j′ = GS j′ + w′i

(d) GS j′ .append(i)

5. wi = w′i

The time complexity of construction is Θ(n) as we only need to loop

through all weights once. During sampling, it takes O(log(M)) time to run the

linear search in GS . The expected sampling time within each group is O(1),

except for group G0, where O(1
w̄

) sampling time is needed. As a result, the

overall expected sampling time is O(log(M) + 1
w̄

). If we assume that w̄ ≥ c

for constant c > 0, the expected sampling time becomes O(log(M)). The time

complexity of updating is Θ(1).

41

Chapter 4

Experiments

In this chapter, we describe our experiments. They are divided into two major

parts:

• We designed and built a test platform for all sampling methods to check

if our implementations work as expected.

• To compare the practical performance of all sampling methods, we col-

lected actual runtime data and built an empirical runtime model, using

linear regression to fit the model to the data.

We show our test environment in Section 4.1, introduce the test platform in

Section 4.2, and the empirical runtime model in Section 4.3.

4.1 Test Environment

Our test environment contains an 8 core processor Intel i7-6700HQ (2.60 GHz)

with 16 GB memory. Our program runs on Ubuntu 16.04 LTS and is compiled

with O2 optimization under gcc 5.4.0. All methods are implemented in C++11

[8].

4.2 Test Platform

The test platform contains three parts: unit test, assertion test and statistical

test. We used the factory method pattern [5] to create the objects for all meth-

ods. The C++ implementations of all classes share a base class baseDiscrete

42

with a constructor, a sampling function sample() and a updating function

update(index, weight). By using factory classes, we can build a unified test

procedure to test all methods without writing code for each case separately.

4.2.1 Unit Tests and Assertions

For each method, we define unit tests to check if the values in the data struc-

tures are consistent with our expectation. For methods with simple data

structures such as binary search and two level search, we directly check if

the values are correct after a series of calls to update(index, weight) and

sample(). For methods with complex data structures such as the log* method,

we check the internal consistency of the values in the data structures after each

update(index, weight) and each sample() call.

In addition to the unit tests, we developed simple assertion based tests to

check the basic correctness of all the methods: For each method, we construct

a random discrete distribution of size n ∈ [10, 30000]. Each weight wi ∈

[0, 10000) is chosen uniformly at random. We randomly select
⌊
n
2

⌋
indices i

and update the corresponding weights wi with new weights also chosen from

[0, 10000). Then we generate n samples and assert that no sampling results

are invalid, i.e., out of the range of [0, n). We repeat this test for 10 times for

each method.

4.2.2 Statistical Tests

The unit and unified tests only check the basic correctness of the methods.

Sampling methods also need to sample properly according to the specified un-

derlying distribution. For each method, we used Pearson’s chi-squared good-

ness of fit test [14] to establish whether the observed frequency distribution

of our sampling result differs significantly from the true distribution. In the

test, we build each method according to a weight array W with size n = 1000.

The chi-squared test requires that each index i should have at least 5 expected

counts in sampling reference, so we select weights wi ∈ [10, 2000] uniformly at

random. We construct a sampling method for these weights. During sampling,

we generate 107 samples, such that the least expected count for each index i is

43

χ2 P-value
Alias Method 959.1994 0.8126
C++ discrete 962.9184 0.7888
Linear search 991.1013 0.5644
Binary search 977.3959 0.6815

Two level search 1019.5578 0.3186
Three level search 1000.8893 0.4772
Binary tree search 951.8387 0.8548
Rejection Method 973.7842 0.7102

Flat Method 932.7314 0.9334
Log* Method 977.5903 0.6799

Table 4.1: The χ2 values and the corresponding p-values in Pearson’s chi-
squared goodness of fit tests for all methods.

107× 10
2000×1000

= 50 > 5. To make sure that the updating also works properly,

before we start sampling, we randomly select 500 indices i and update the

corresponding weights wi with new weights also chosen uniformly at random

from [10,2000].

For the chi-squared test, our null hypothesis is H0: The probability of

choosing an index i as the sampling result is equal to pi = wi

S
for 0 ≤ i < n,

where S =
∑n−1

i=0 wi. Our alternative hypothesis is Ha: At least one probability

is not equal to pi. In each test, the degree of freedom is n − 1 = 999. After

107 samples, the expected count for each index i is expectedi = 107 wi∑n−1

j=0
wj

.

While the observed count for each index i is observedi, we calculate χ2 =∑n−1
i=0

(observedi−expectedi)2
expectedi

. Referring to the χ2 table, we can get the P-value

representing the probability of observing a sample statistic as extreme as the

test statistic.

Table 4.1 shows our test results. As all the p-values are greater than 0.05,

we can conclude that, at the significance level of α = 0.05, there is not enough

evidence to reject H0, which is evidence that our methods generate samples

properly according to the distribution.

44

4.3 Performance Measurement

In this thesis, our goal is to find efficient sampling methods in practice. To

compare the practical performance of all methods in different scenarios, we

need to clarify the factors that influence the performance, such that we can

collect data points and build our model based on these factors. We introduce

these factors in Section 4.3.1. Then we show how we collect data points and

build the model in Sections 4.3.2 and 4.3.3. At last, we show the experimental

results in Section 4.3.4.

4.3.1 Factors Influencing the Performance of Random
Sampling

The practical performance of each method is affected by multiple factors. As

far as we understand, the major factors are the number of samples generated,

the number of updates, the size of the weight array, and the distribution from

which weights wi are drawn. Based on these factors, we are able to develop a

model time(s, u, n) to predict the runtime for each method. In time(s, u, n),

s is the number of random samples, u is the number of weight updates, n is

the size of weight array W .

4.3.2 Determining time(s, u) for fixed n

To determine what time(s, u, n) should look like, we first fix some values of

n and derive a linear model time(s, u) = a + bs + cu. In time(s, u), s is

the number of samples and u is the number of updates. b and c represent

the average runtime for one sample and one update respectively. a represents

the construction time. The correctness of time(s, u) is obvious: with larger

number of samples and updates, the actual runtime should increase linearly.

We need to choose the set of fixed n values N = [n0, n1, ...] carefully, such

that it will be helpful when we fit a time(s, u, n) model to a set of time(s, u)

models. Starting from n0 = 10, we set ni+1 = b1.1 · nic for 0 ≤ i < 84, with

the maximum n84 = 29991.

We collected data points for each fixed n and for each method. With

45

weights wi drawn from a uniform distribution U(0, 104) for 0 ≤ i < n, we

gathered data points (s, u, t), where t is the actual time spent in our experiment

for s samples and u updates. We recorded t for the following samples:

1. s = 0, 10000, 20000, ..., 106 and u = 0.

2. s = 0, 10000, 20000, ..., 106 and u = s, where we make one update right

before each sample.

In each data point t is averaged over three runs.

Given data points (s, u, t), we used an ordinary least squares (OLS) method

[4] to derive the coefficients in time(s, u). To estimate each coefficient more

accurately, we use the following steps to estimate them one by one:

1. Based on all data points (s, u, t) with s = 0, u = 0, we use OLS to

estimate coefficient a.

2. Based on estimated a and all data points (s, u, t) with s 6= 0, u = 0, we

use OLS to estimate coefficient b.

3. Based on estimated a, b and all data points (s, u, t) with s 6= 0, u 6= 0,

we use OLS to estimate coefficient c.

For 10 sampling methods and 85 values of n, we derived 10 × 85 = 850

time(s, u) models with different fixed n. We list all these models in Appendix

A.

4.3.3 Determining time(s, u, n)

In order to make the model useful in practice, we need to study its dependence

on n. For each method, we use one time(s, u, n) model to summarize all 85

time(s, u) models with different n. Theoretically, along with the increase of

n, the increase of actual construction, sampling and updating time should fit

the runtime complexity analysis. While the construction time of all methods

is linearly dependent on n, for different methods, the factor n has different

influences on sampling and updating time. Thus we can write time(s, u, n) =

an + bs · f(n) + cu · g(n), where s is the number of samples, u is the number

46

Method f(n) g(n)
Alias Method 1 n
C++ discrete log(n) n
Linear search n 1
Binary search log(n) n

Two level search
√
n 1

Three level search 3
√
n 1

Binary tree search log(n) log(n)
Rejection Method 1 1

Flat Method 1 1
Log* Method 1 1

Table 4.2: The terms f(n) and g(n) in time(s, u, n) for all methods.

of updates and n is the size of the weight array. Note that the meaning of a,

b and c is different from that in time(s, u) models.

To train the time(s, u, n) models using the data points (s, u, t) we gathered

in Section 4.3.2, we can fit the model to the data points directly and use

linear regression to minimize the sum of mean squared loss [10]. However, this

approach could lead to overfitting [11] that reduces the generalizability of our

models outside the original dataset: When we used this approach to derive

the model, some of the coefficients a, b or c in time(s, u, n) were determined

as negative numbers.

To avoid this issue, we used linear regression to fit an, b · f(n) and c · g(n)

in time(s, u, n) to all as, bs and cs in 85 time(s, u) models. Given n, we can

use the time(s, u, n) model to predict the a, b and c in the time(s, u) model

first, and then use time(s, u) model to predict the runtime. The terms f(n)

and g(n) for each method are shown in Table 4.2. Note that the sampling and

updating runtime complexity of the rejection method, flat method and log*

method is not Θ(1). But since n has very little influence on their runtime in

practice, we simply set f(n) = 1 and g(n) = 1 in their time(s, u, n) models.

While our time(s, u, n) models make sense according to theoretical runtime

complexity analysis, we use Appendix B to demonstrate the reasonability of

this approach in practice: for each method, we use three plots to show all as,

bs and cs with different n in 85 time(s, u) models as data points. Then we

47

draw the curves according to the theoretical runtime complexity to show how

well our models fit these data points.

In order to illustrate how the distribution from which weights wi are drawn

influences the practical performance, we repeated the whole experiment with

weights drawn from an exponential distribution with λ = 10−3. In order to

avoid potential numerical error, we still use 104 as the maximum weight.

4.3.4 Experimental Results

Our time(s, u, n) models for all 10 methods are shown in Table 4.3. Comparing

the two time(s, u, n) models for each method, the performance of most meth-

ods is not affected by the distribution from which weights wi are drawn. How-

ever, the distribution had a significant influence on the rejection method. This

result is consistent with the time complexity analysis: For the time complexity

of O(nB
S

), the performance will get worse if the sum of weights S decreases

while the bound B remains the same. We calculated the average nB
S

val-

ues for both models when we collected the data for n = 29991. When the

weights are drawn from the uniform distribution, the average nB
S

= 2.0007.

When the weights are drawn from the exponential distribution, the average

nB
S

= 10.0089.

For linear search, we also notice a big gap between coefficient cs in the two

models: with all other coefficients being similar, we got c = 0.0037 for weights

drawn from the uniform distribution, while we got c = 0.0007 for weights

drawn from the exponential distribution. However, the time spent by linear

search for time-changing discrete distributions is dominated by the time needed

to generate samples. The big gap between coefficient cs does not make a big

difference: Figure 4.1 compares the time spent for linear search to generate

samples for two distributions. Even with a large number of 30 updates after

each sample, the performance of linear search for both distributions is still

very close.

48

Method Distribution time(s, u, n)

Alias Method
Uniform 0.0246n+ 0.0400s+ 0.0225un

Exponential 0.0211n+ 0.0404s+ 0.0209un

C++ discrete
Uniform

0.0144n+ 0.0064s log(n)
+0.0057un

Exponential
0.0112n+ 0.0066s log(n)

+0.0057un

Linear search
Uniform 0.0014n+ 0.0006sn+ 0.0037u

Exponential 0.0013n+ 0.0006sn+ 0.0007u

Binary search
Uniform

0.0048n+ 0.0063s log(n)
+0.0026un

Exponential
0.0037n+ 0.0065s log(n)

+0.0026un

Two level search
Uniform 0.0029n+ 0.0012s

√
n+ 0.0050u

Exponential 0.0025n+ 0.0012s
√
n+ 0.0063u

Three level search
Uniform 0.0029n+ 0.0024s 3

√
n+ 0.0108u

Exponential 0.0025n+ 0.0025s 3
√
n+ 0.0122u

Binary tree search
Uniform

0.0012n+ 0.0065s log(n)
+0.0038u log(n)

Exponential
0.0009n+ 0.0068s log(n)

+0.0037u log(n)

Rejection Method
Uniform 0.0009n+ 0.0787s+ 0.0012u

Exponential 0.0008n+ 0.2192s+ 0.0977u

Flat Method
Uniform 0.0720n+ 0.0886s+ 0.0634u

Exponential 0.0660n+ 0.0871s+ 0.0637u

Log* Method
Uniform 0.0443n+ 0.2080s+ 0.4466u

Exponential 0.0430n+ 0.2165s+ 0.4989u

Table 4.3: The time(s, u, n) = an+bs·f(n)+cu·g(n) models for all 10 sampling
methods. For each method, we show the two models with weights wi drawn
from the uniform distribution U(0, 104) and the exponential distribution (λ =
10−3) separately. The time was measured in microseconds. All coefficients
were rounded to four decimal places.

49

0 5k 10k 15k 20k 25k 30k
0

0.5

1

1.5

2
Linear Search (Uniform)

Linear Search (Exponential)

Time spent for 100000 times sampling and 3000000 updating

n

tim
e

Figure 4.1: The plot shows time spent for linear search to generate 105 samples
with 30 weight updates after each sample. We used both models derived for the
uniform distribution and the exponential distribution. The time was measured
in seconds.

50

Chapter 5

Analysis of Experimental
Results

In this chapter, we analyze the time(s, u, n) models we derived in Chapter 4.

In Section 5.1, we give examples of how we apply the models in the scenarios

we designed to find suitable methods. In Section 5.2 and 5.3, we analyze and

summarize the models to make conclusions about their practical performance.

We focus on two groups of methods, namely leveling and rejection-based meth-

ods, and develop criteria to choose the best method for a given application.

5.1 Applying time(s,u,n) Models

Using the time(s, u, n) models, users are able to find the most suitable methods

for their application scenarios. In the following plots, we show two represen-

tative scenarios using time(s, u, n) models shown in Table 4.3 with weights

drawn from the exponential distribution: Figure 5.1 compares the time spent

for all methods to generate 105 samples without updating, while Figure 5.2

compares the time spent to generate 105 samples, with one update after each

sample.

In Figure 5.1, the best methods for different values of n are: two level

search for n ∈ [10, 82), three level search for n ∈ [82, 4488), and Alias method

for n ∈ [4488, 30000]. Looking back at the raw data we collected in Section

4.3.2, the best methods for different values of n are: two level search for most

n ∈ [10, 67), and Alias method for n ∈ [67, 29991]. The Alias Method is the

51

0 5k 10k 15k 20k 25k 30k
0

5k

10k

15k

20k

25k

30k
Linear Search

Log* Method

Rejection Method

Two Level

Flat Method

C++11

Binary Tree

Binary Search

Three Level

Alias Method

Time spent for 100000 times sampling

n

tim
e

Figure 5.1: The plot shows time spent for all methods to generate 105 samples
without updating. The weights wi are drawn from the exponential distribu-
tions with λ = 10−3 and the time were measured in microseconds.

best choice for most n both in the prediction of our model and in the raw

data. We can conclude that the traditional Alias Method is still the overall

best choice for sampling from a large static discrete distribution.

In Figure 5.2, with updates, the best methods for different values of n are:

linear search for n ∈ [10, 18), two level search for n ∈ [18, 423), and three

level search for n ∈ [423, 30000]. Looking back at the raw data we collected

in Section 4.3.2, the best methods for different values of n are: linear search

for n ∈ [10, 24), two level search for most n ∈ [24, 548), and three level search

for n ∈ [548, 29991]. The best methods in the raw data match our predictions

in general, which is strong evidence that our models are capable of describing

the data and making useful predictions.

For a changing distribution, all methods with O(n) sampling or updating

time, namely the Alias Method, std::discrete distribution provided by C++11,

binary search and linear search, perform poorly for large n. They are barely

visible on the left side of Figure 5.2 since their runtime is not competitive at

all. We can conclude that these methods are not suitable for sampling from a

52

0 5k 10k 15k 20k 25k 30k
0

20k

40k

60k

80k

100k
Alias Method

C++11

Binary Search

Linear Search

Log* Method

Rejection Method

Two Level

Flat Method

Binary Tree

Three Level

Time spent for 100000 times sampling and 100000 updating

n

tim
e

Figure 5.2: The plot shows time spent for all methods to generate 105 samples
with one weight update after each sample.

large time-changing discrete distribution.

5.2 Summary of Performance for Leveling Meth-

ods

We call two level search, three level search and the binary tree search the

leveling methods. These methods use simple level structures to keep both

sampling and updating efficient. In the scenario of Figure 5.2, these methods

have superior performance. Among leveling methods, two level search domi-

nates the others for n < 423. When n grows larger, three level search gradually

takes over and performs the best. Theoretically, binary tree search with its

O(log(n)) runtime complexity should eventually outperform all of the other

leveling methods with their polynomial runtime complexity, if n grows large

enough. However, our experiment shows that for n ≤ 30000, three level search

remains much faster.

A related question for the leveling methods is: as n grows, is it worthwhile

to continually add more levels to the search? To answer this question, we

53

Method Distribution time(s, u, n)

Four level search
Uniform 0.0033n+ 0.0049s 4

√
n+ 0.0143u

Exponential 0.0027n+ 0.0050s 4
√
n+ 0.0151u

Five level search
Uniform 0.0031n+ 0.0102s 5

√
n+ 0.0149u

Exponential 0.0027n+ 0.0111s 5
√
n+ 0.0161u

Table 5.1: The time(s, u, n) = an+bs ·f(n)+cu ·g(n) models for four and five
level search. For each method, we show the two models with weights wi drawn
from the uniform distribution U(0, 104) and the exponential distribution (λ =
10−3) separately. The time was measured in microseconds. All coefficients
were rounded to four decimal places.

implemented two additional methods and repeated the experiments in Section

4.3 to derive the time(s, u, n) models for them:

1. A four level search with O(4
√
n) sampling and O(1) updating runtime

complexity.

2. A five level search with O(5
√
n) sampling and O(1) updating runtime

complexity.

Table 5.1 shows the experimental results, and Figure 5.3 compares the per-

formance of all leveling methods using the models derived for exponential

distributions. The best methods for different values of n are: two level search

for n ∈ [10, 423), three level search for n ∈ [423, 8340), and four level search

for n ∈ [8340, 30000]. By adding an extra level, four level search is 10% faster

than three level search for n = 3× 104. For five level search, we calculated its

estimated time spent for n = 106 and compared it with other methods: While

it is still slower than four level search, it also becomes slower than binary tree

search. As a result, we may conclude that having five or more levels in search

is never the best for these scenarios.

For the case of multiple updates after each sample, search with more levels

needs more time to update the partial sum on each level. In practice, the

increased overhead from extra levels makes four level search a good compromise

for large n. For small n, two and three level search are good choices.

54

0 5k 10k 15k 20k 25k 30k
0

5k

10k

15k

20k

25k

30k
Two Level

Three Level

Four Level

Five Level

Binary Tree

Time spent for 100000 times sampling and 100000 updating

n

tim
e

Figure 5.3: Time for two, three, four, and five level search, and binary tree
search to generate 105 samples with one weight update after each sample.

5.3 Summary of Performance for Rejection-

Based Methods

The group of rejection-based methods contains the rejection method, the flat

method and the log* method. These methods are built based on rejection

sampling, and their performance is not or only slightly affected by n. Figure

5.4 and Figure 5.5 compares the performance of all rejection-based methods for

weights drawn from different distributions. The performance of the rejection

method was much worse when the weights were drawn from an exponential

distribution instead of a uniform distribution. If a discrete distribution has

few large weights and many small weights, we expect its performance to be

bad.

For the flat method, its performance is affected by the maximum possible

weight M . We adjusted the maximum possible weight M from 10000 to 100,

and repeated the experiments in Section 4.3 to derive a time(s, u, n) model

for the flat method. In the experiments, the weights wi are drawn from an

55

0 5k 10k 15k 20k 25k 30k
0

20k

40k

60k

80k

100k
Rejection Method

Flat Method

Log* Method

Time spent for 100000 times sampling and 100000 updating

n

tim
e

Figure 5.4: Time for the rejection method, the flat method and the log*
method to generate 105 samples with one weight update after each sample.
The plot is generated using the models derived for weights drawn from uni-
form distributions.

exponential distribution with λ = 10−3. Using this model, Figure 5.6 compares

the performance of all rejection-based methods again. Compared with Figure

5.5, the performance of the flat method is slightly better in this experiment:

for n = 3× 104, it’s 24% faster. This result indicates that the flat method can

be considered as suitable if the ratio of maximum weight to average weight is

small.

56

0 5k 10k 15k 20k 25k 30k
0

20k

40k

60k

80k

100k
Rejection Method

Flat Method

Log* Method

Time spent for 100000 times sampling and 100000 updating

n

tim
e

Figure 5.5: Time for the rejection method, the flat method and the log*
method to generate 105 samples with one weight update after each sample.
The plot is generated using the models derived for weights drawn from expo-
nential distributions.

0 5k 10k 15k 20k 25k 30k
0

20k

40k

60k

80k

100k
Rejection Method

Flat Method

Log* Method

Time spent for 100000 times sampling and 100000 updating

n

tim
e

Figure 5.6: Time spent to generate 105 samples with one update after each
sample. The plot is generated using the models derived for weights drawn
from exponential distributions.

57

Chapter 6

Application: Fast Sampling for
Monte Carlo Playouts in NoGo

In this chapter, we use the game of No Capture Go (NoGo) as our application

to demonstrate how we use our methods to optimize the sampling process.

We speed up the randomized playout process in a Monte Carlo Tree Search

algorithm [2] for playing NoGo. Faster playouts allow an engine to search more

states in the same time, making it stronger.

6.1 The Game of NoGo

NoGo is a variant of the famous ancient Asian game of Go. It is first mentioned

by John Moore in 2005 [13]. Similar to Go, the game is played by two players

Black and White on a square n×n grid, called the board. The intersections of

the grid are called points. In each game, the two players take turns to place a

single stone of their own color on an empty point until the end. The connected

components of stones of the same color are called blocks. The empty points

adjacent to a block are called its liberties. Each block must have at least

one liberty. Different from Go, both capture and suicide are illegal in NoGo.

Players are not allowed to pass, and a player whose turn it is loses the game

if there is no legal move. Figure 6.1 shows an example of the end of the game.

The game was played on the standard 9× 9 board. The last stone was played

by Black on H6. There is no legal move for White to play, since all moves on

empty points are either suicide or capture. For example, A2 is suicide since

58

Figure 6.1: An example of the end of a NoGo game

it is the last liberty of blocks A1 and A3 . F2 is illegal since it would capture

three black stones on E1 , F1 and G1 . White has no legal move and loses the

game.

6.2 Playouts in NoGo

Computer programs that play board games such as NoGo often use playouts to

evaluate board positions. In each playout, we play the game from a given board

position until the end, with moves of both players selected in a randomized

fashion. Playouts provide useful win/loss statistics, which are then used as a

59

heuristic to determine how likely one player is to win the game.

To improve the quality of these win/loss statistics, we need to generate high

quality moves instead of purely random moves in the playouts. A common way

is to use machine learning to imitate the moves played by human experts, as

was done in early versions of AlphaGo [17]. Since there are no human experts

playing NoGo, we used supervised learning to learn moves generated by the

strong program BobNoGo [7]. Each legal move is evaluated by a single 3 × 3

feature that records the color of the eight neighbors surrounding this move.

Each neighbor can be empty, an opponent’s stone, the player’s stone, or off

the board, so there are up to 48 = 65536 possible patterns. After we learn the

weight of each pattern, the whole board can be viewed as a weight array W

of size 9× 9 = 81, and we can sample a move with probability proportional to

W to decide the next move in a playout. After each move, only the weights of

that move and its up to 8 neighbors need to be updated, since only their 3× 3

features change.

We used Remi Coulom’s Minorization-Maximization supervised learning

technique [3] to learn the weights of all features. Coulom used a training set

containing 131939 moves for Go. To achieve a similar size of the training set,

we let BobNoGo play against itself for 2772 games, which generates 168600

moves. We extracted 140560 moves from 2310 games as the training set, and

28040 moves from the remaining 462 games as the test set. After learning, we

achieved an accuracy of 20.1% on the test set. Although it is less than Remi

Coulom’s accuracy of 34.9% in Go (with a larger Go-specific feature set), we

consider it as sufficient for improving our playouts’ quality.

6.3 Implementation

We simulate the playout process with the learned feature weights in NoGo.

In each playout, we maintain a set of legal moves and the weight array W of

size 81 for each player. At the beginning of each turn, we sample according

to the weight array to select the move. After each move, we go through the

legal moves for both players to see if they are still legal, and update the weight

60

array if their weights changed.

We use Figure 6.2 to demonstrate the sampling and updating process. On

Figure 6.2: Boards before and after White makes a move on B9 .

the board shown in Figure 6.2 on the left, it is White’s turn to make a move.

The legal moves for White are B9 ,A8 ,B3 ,G3 ,A2 ,F2 , and the correspond-

ing weights in the weight array W are wB9 = 1.541, wA8 = 0.797, wB3 =

0.4814, wG3 = 0.7574, wA2 = 1.541, wF2 = 1.6737. All other weights in W

are 0. Similarly, the non-zero weights w′i for Black are w′A8 = 0.9957, w′D8 =

0.3139, w′B3 = 0.5388, w′G3 = 0.4662, w′F2 = 0.4667. We sample according to W

to decide a move for White. The plot in Figure 6.2 on the right shows the board

after we choose B9 as the move. On this board, all non-zero weights for White

are wA8 = 1.6391, wB3 = 0.4814, wG3 = 0.7574, wA2 = 1.541, wF2 = 1.6737,

and all non-zero weights for Black are w′D8 = 0.3139, w′B3 = 0.5388, w′G3 =

0.4662, w′F2 = 0.4667. Only the weights of positions around B9 , namely

wB9 , wA8 and w′A8 , are changed.

To sample from the weight array, we compare two methods: the most ordi-

nary way is to use the C++ discrete distribution class. We need to construct

a discrete distribution object with the current weight array each time before

sampling. A more efficient way is to use our sampling methods. After con-

structing the data structures once at the beginning of the playout, we just

need to make updates before sampling.

Based on our experiments, each game has 72 moves on average, and each

61

Method Actual runtime Ranking Predicted runtime Ranking
Linear search 0.0871 1 0.0122 1

Two level search 0.1012 2 0.0152 2
Three level search 0.1185 3 0.0267 3
Binary tree search 0.1445 5 0.0551 4

Flat Method 0.2325 6 0.1587 5
Rejection Method 2.0951 9 0.2375 6

Binary search 0.1244 4 0.4192 7
Log* Method 1.1752 8 1.0271 8
Alias Method 0.4545 7 3.3049 9

Table 6.1: The actual runtime and expected runtime with associated rankings
for all methods to construct, sample and update in 3000 playouts. Runtime is
measured in microseconds and rounded to four decimal places. The methods
are sorted according to their predicted runtime.

move leads to 9 updates on average. As a result we have s = 72, u = 648 and

n = 81 in our time(s, u, n) models. For most turns, we expect there to be few

good moves, lots of bad moves and a large number of illegal moves with weights

equal to 0. So compared with weights drawn from a uniform distribution,

weights drawn from an exponential distribution can better describe the weight

array W we have. According to Table 4.3, we found that linear search is the

best method for our case.

To compare the sampling speed, we write two programs to simulate the

playouts in NoGo. One program uses the ordinary sampling while another

uses our linear search method. The two programs are exactly the same except

for the sampling and weight updates parts.

6.4 Optimization Result

We use “g++ -std=c++11 -O2” to compile both programs. The ordinary

sampling program spends 0.1462 seconds on sampling while the linear search

program spends only 0.0871 seconds. By using the linear search method in-

stead of ordinary sampling, we achieved 40% speedup in the sampling process.

We tested all our implemented sampling methods in this application for

9 × 9 board. Table 6.1 shows their actual runtime and expected runtime

calculated using our models from Table 4.3. Although the actual runtime

62

Sampling runtime Overall runtime
Ordinary sampling 0.6792 4.6740
Two level search 0.1431 3.8702

Table 6.2: Sampling runtime and overall runtime for ordinary sampling and
two level search to run 3000 playouts on a 19×19 board. Runtime is measured
in microseconds and rounded to four decimal places.

and the predicted runtime for all methods are different as our model cannot

perfectly describe the scenario, with Kendall rank correlation coefficient τ =

0.67 [9], we may conclude that the two rankings are similar. In addition, the

top 3 methods in both rankings are the same. This is strong evidence that our

models are useful for selecting the best sampling methods in practice.

To illustrate how optimization in sampling process can affect the overall

runtime, we also tested our sampling method against the ordinary way on a

19× 19 board. With n = 19× 19 = 361, we chose two level search as the best

method for this case according to Table 4.3. Table 6.2 shows the results. By

using the two level search method instead of ordinary sampling, we achieved

79% speedup in the sampling process, which leads to a 17% speedup in the

entire program.

63

Chapter 7

Conclusions and Future Work

In this thesis, we perform an empirical study of random sampling methods for

time-changing discrete distributions: We review eight sampling methods and

propose two new methods. We implemented all methods based on a unified

framework, designed experiments to evaluate them, checked their correctness,

and derived a series of models to evaluate their practical performance. We

applied these models in an application to the game of NoGo to speed up the

sampling process.

Future work includes:

1. Under the condition where multiple updates are required after each sam-

ple, study how batch update can be used to speedup the updating pro-

cess.

2. Study how parallel computing can be used to speedup the sampling and

updating processes. Measure and compare the practical performance of

sampling methods running in parallel.

3. Develop an automated tool that can monitor the sampling requirements

of an application and automate the process of selecting the best sampling

method.

64

Bibliography

[1] Boost. Boost C++ libraries version 1.68.0, 2018.

[2] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lu-
cas, Peter I Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez,
Spyridon Samothrakis, and Simon Colton. A survey of Monte Carlo tree
search methods. Computational Intelligence and AI in Games, IEEE
Transactions on, 4(1):1–43, 2012.

[3] Rémi Coulom. Computing Elo ratings of move patterns in the game of
Go. In Computer games workshop, 2007.

[4] Francis Galton. Regression towards mediocrity in hereditary stature.
The Journal of the Anthropological Institute of Great Britain and Ireland,
15:246–263, 1886.

[5] Erich Gamma. Design patterns: Elements of reusable object-oriented soft-
ware. Pearson Education India, 1995.

[6] Torben Hagerup, Kurt Mehlhorn, and James Ian Munro. Optimal al-
gorithms for generating discrete random variables with changing distri-
butions. In Proceedings, 20th International Colloquium on Automata,
Languages and Programming, Lecture Notes in Comput. Sci, volume 700,
pages 253–264, 1993.

[7] Bob Hearn and Martin Müller. The BobNoGo program.
https://webdocs.cs.ualberta.ca/~mmueller/nogo/BobNoGo.html/,
2011. [Online; posted 2011].

[8] ISO/IEC 14882:2011. International Standard Programming Language
C++, Third edition, 2011.

[9] Maurice G Kendall. A new measure of rank correlation. Biometrika,
30(1/2):81–93, 1938.

[10] Erich L Lehmann and George Casella. Theory of point estimation.
Springer Science & Business Media, 2006.

[11] David J Leinweber. Stupid data miner tricks: overfitting the s&p 500.
The Journal of Investing, 16(1):15–22, 2007.

[12] Yossi Matias, Jeffrey Scott Vitter, and Wen-Chun Ni. Dynamic generation
of discrete random variates. Theory of Computing Systems, 36(4):329–358,
2003.

65

[13] John Moore. Anti atari go (version 1), April 2005. [Online; posted April-
2005].

[14] Karl Pearson. On the criterion that a given system of deviations from
the probable in the case of a correlated system of variables is such that it
can be reasonably supposed to have arisen from random sampling. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 50(302):157–175, 1900.

[15] GNU Project. GCC 4.8.4. https://gcc.gnu.org/, December 2014.

[16] Keith Schwarz. Darts, dice, and coins: Sampling from a discrete distri-
bution, December 2011. [Online; posted December-2011].

[17] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of Go
with deep neural networks and tree search. nature, 529(7587):484, 2016.

[18] Michael D Vose. A linear algorithm for generating random numbers
with a given distribution. Software Engineering, IEEE Transactions on,
17(9):972–975, 1991.

[19] Alastair J Walker. An efficient method for generating discrete random
variables with general distributions. ACM Transactions on Mathematical
Software (TOMS), 3(3):253–256, 1977.

66

Appendix A

time(s,u) Models

time(s, u) = a+ bs+ cu models for all 10 methods with 85 different n. We use
a table to show all the coefficients in the models.

Alias Method
n a b c n a b c
10 5.6667 0.0386 0.4046 11 5.0 0.0398 0.4397
12 5.0 0.0394 0.474 13 4.3333 0.038 0.4905
15 10.3333 0.0383 0.4984 16 4.6667 0.0384 0.5119
18 4.3333 0.0388 0.5399 19 4.0 0.0405 0.5523
21 16.0 0.0384 0.5819 24 4.6667 0.04 0.6207
26 10.6667 0.04 0.6402 29 5.0 0.0376 0.6931
31 9.3333 0.0386 0.787 35 10.3333 0.0413 0.9611
38 11.0 0.045 0.8429 42 11.3333 0.0401 1.1198
46 5.0 0.0393 0.9375 51 11.0 0.0399 0.9527
56 5.3333 0.0385 1.2791 61 5.6667 0.0442 1.1288
67 12.0 0.0392 1.431 74 18.0 0.0391 1.252
81 5.3333 0.0397 1.5781 90 6.6667 0.0387 1.4492
98 6.3333 0.0393 1.5297 108 10.6667 0.0392 1.6557
119 20.3333 0.0395 2.1394 131 21.0 0.0395 2.0339
144 20.6667 0.0387 2.2328 159 20.6667 0.0401 2.4066
174 33.6667 0.0393 2.7645 192 22.6667 0.0394 2.9577
211 22.6667 0.0399 3.008 232 29.0 0.0397 3.5782
255 30.6667 0.0401 3.5893 281 24.0 0.0386 4.0541
309 35.0 0.0397 4.4534 340 31.3333 0.0394 4.6686
374 36.6667 0.0395 5.1573 411 42.6667 0.0402 5.6482
453 33.6667 0.0395 6.1465 498 34.6667 0.0404 6.7275
548 42.6667 0.0405 7.5715 602 44.0 0.0396 8.3159
663 39.6667 0.0412 9.1818 729 34.3333 0.0403 10.0214
802 62.3333 0.0399 11.2392 882 65.0 0.0402 12.4735
970 67.3333 0.0397 13.6083 1067 63.6667 0.0401 15.0695
1174 71.6667 0.0411 16.793 1291 64.6667 0.0397 18.6851

67

1420 86.0 0.0402 20.6082 1562 72.0 0.0399 23.4612
1719 104.0 0.0411 25.9226 1891 124.3333 0.0396 29.0787
2080 99.0 0.0401 32.2493 2288 113.3333 0.0406 36.1112
2516 97.0 0.0399 41.3022 2768 109.0 0.041 46.6288
3045 110.6667 0.0417 52.2981 3349 131.3333 0.0408 60.4006
3684 109.0 0.0404 68.7662 4053 150.6667 0.0406 78.7969
4458 158.0 0.0402 89.2243 4904 171.6667 0.0403 100.4285
5394 173.0 0.0404 113.382 5933 192.3333 0.0406 125.8351
6527 206.3333 0.0409 139.4262 7180 234.3333 0.0406 155.8754
7897 256.6667 0.0407 171.647 8687 248.3333 0.0409 190.3503
9556 283.0 0.0403 210.5244 10512 309.3333 0.0405 232.3548
11563 316.3333 0.0399 256.7557 12719 333.3333 0.0413 282.2922
13991 370.6667 0.0397 310.671 15390 417.0 0.0399 342.5056
16929 449.0 0.04 377.6489 18622 482.3333 0.0407 415.5129
20484 516.3333 0.0413 458.381 22532 544.6667 0.0408 503.3267
24786 625.6667 0.04 555.7166 27264 674.6667 0.0411 611.2315
29991 732.3333 0.0406 673.6673

C++ discrete
n a b c n a b c
10 10.6667 0.0306 0.0904 11 10.0 0.0319 0.0933
12 10.6667 0.032 0.1 13 4.0 0.0357 0.1059
15 3.6667 0.0346 0.1471 16 3.3333 0.0352 0.1557
18 3.3333 0.0358 0.1644 19 3.6667 0.0361 0.1706
21 3.3333 0.0366 0.1796 24 3.3333 0.0378 0.1942
26 3.3333 0.0391 0.2055 29 3.3333 0.039 0.2193
31 3.6667 0.0424 0.2418 35 9.0 0.0425 0.2559
38 3.6667 0.0432 0.276 42 7.6667 0.0437 0.2992
46 10.6667 0.0434 0.3099 51 3.3333 0.0441 0.3454
56 3.6667 0.0451 0.3691 61 8.6667 0.045 0.3942
67 9.3333 0.0456 0.4224 74 3.6667 0.0472 0.4525
81 4.0 0.0477 0.4888 90 3.3333 0.0483 0.5365
98 9.3333 0.0489 0.5772 108 4.3333 0.0499 0.6295
119 9.0 0.0512 0.688 131 11.3333 0.0516 0.7519
144 10.3333 0.0525 0.8214 159 11.0 0.0531 0.899
174 5.3333 0.0538 0.974 192 5.0 0.0556 1.0734
211 18.0 0.0568 1.1559 232 10.6667 0.0582 1.304
255 16.0 0.0617 1.421 281 11.3333 0.0618 1.6677
309 10.3333 0.0608 1.7598 340 5.3333 0.0614 1.8797
374 5.3333 0.0627 2.074 411 5.6667 0.0667 2.2317
453 18.3333 0.0665 2.4824 498 16.6667 0.0666 2.6876
548 23.3333 0.0679 2.9921 602 24.6667 0.0677 3.3105
663 20.0 0.0685 3.5344 729 24.6667 0.0696 3.9102

68

802 26.6667 0.0706 4.2571 882 32.3333 0.072 4.7628
970 22.6667 0.0729 5.2215 1067 26.6667 0.0737 5.8836
1174 29.6667 0.0743 6.3998 1291 22.0 0.0755 7.1025
1420 30.3333 0.0751 7.903 1562 24.3333 0.0765 8.6302
1719 26.3333 0.0775 9.4466 1891 22.3333 0.0778 10.401
2080 40.6667 0.0794 11.524 2288 41.0 0.0794 12.6318
2516 36.3333 0.0798 13.9665 2768 39.3333 0.08 15.2874
3045 59.0 0.0813 16.9871 3349 68.0 0.0822 18.6043
3684 69.0 0.0837 20.4679 4053 74.0 0.0845 22.5784
4458 71.6667 0.0856 24.5494 4904 92.6667 0.0862 27.3079
5394 89.6667 0.0877 29.7232 5933 105.0 0.0883 33.1412
6527 60.6667 0.0897 35.9021 7180 93.3333 0.0908 39.9829
7897 104.6667 0.091 44.1926 8687 151.6667 0.0921 48.5042
9556 275.3333 0.0924 54.3388 10512 171.0 0.0938 59.395
11563 174.0 0.095 65.1993 12719 138.0 0.0958 71.5595
13991 142.0 0.0959 79.299 15390 127.3333 0.0966 87.4697
16929 265.0 0.0981 96.861 18622 280.6667 0.0994 106.4459
20484 321.0 0.1016 118.334 22532 326.3333 0.1011 130.6239
24786 363.0 0.1043 141.9038 27264 419.3333 0.1033 157.4953
29991 467.0 0.1055 172.5918

Linear Search
n a b c n a b c
10 8.0 0.0311 0.0032 11 3.0 0.0321 0.005
12 2.0 0.0326 0.0027 13 2.3333 0.0322 0.0033
15 6.6667 0.0341 0.0027 16 2.0 0.0383 0.0028
18 7.6667 0.0403 0.0026 19 2.3333 0.0401 0.0033
21 7.3333 0.0412 0.0029 24 8.3333 0.0439 0.0014
26 2.0 0.0425 0.0021 29 2.3333 0.0423 0.0037
31 7.3333 0.0439 0.0037 35 2.3333 0.0486 0.002
38 2.0 0.0498 0.003 42 2.0 0.0527 0.0019
46 7.3333 0.0564 0.0011 51 2.6667 0.0596 0.0023
56 2.3333 0.0646 0.0017 61 2.0 0.0647 0.0013
67 7.3333 0.068 0.0018 74 2.3333 0.0736 0.0003
81 2.3333 0.0757 0.002 90 2.0 0.0817 0.0014
98 2.3333 0.0867 0.001 108 8.0 0.0928 0.001
119 2.3333 0.0979 0.0024 131 7.6667 0.1052 0.0022
144 2.3333 0.1141 0.0006 159 6.6667 0.1203 0.0031
174 2.3333 0.1294 0.0029 192 2.3333 0.1413 0.0015
211 2.3333 0.1528 0.0011 232 2.6667 0.1633 0.0029
255 2.3333 0.1781 0.0014 281 3.0 0.1942 0.0021
309 3.6667 0.2062 0.0042 340 3.3333 0.2259 0.0031
374 7.0 0.2504 -0.0014 411 8.0 0.2649 0.0053

69

453 3.6667 0.2912 0.0034 498 14.3333 0.3201 0.001
548 10.0 0.3488 0.0014 602 12.0 0.3791 0.0025
663 17.6667 0.4123 0.0046 729 16.6667 0.4502 0.0061
802 4.0 0.4938 0.0044 882 8.3333 0.5397 0.0053
970 10.3333 0.591 0.0065 1067 22.0 0.6497 0.0076
1174 17.6667 0.7115 0.0038 1291 17.6667 0.7814 0.0021
1420 17.6667 0.8577 0.0011 1562 17.6667 0.9345 0.0087
1719 7.0 1.0354 -0.0021 1891 6.0 1.1331 -0.001
2080 6.0 1.2474 -0.0044 2288 12.3333 1.3626 0.0028
2516 6.6667 1.4896 0.008 2768 9.0 1.6539 -0.0075
3045 7.6667 1.8142 -0.0106 3349 9.0 1.97 0.0128
3684 15.3333 2.1813 0.0014 4053 26.6667 2.3942 0.0235
4458 14.3333 2.6211 0.0099 4904 26.0 2.8865 0.0075
5394 16.0 3.181 0.0125 5933 12.6667 3.5069 -0.0131
6527 12.6667 3.8446 -0.0014 7180 14.0 4.2285 -0.0082
7897 20.3333 4.6382 -0.0034 8687 19.6667 5.1097 -0.0093
9556 31.3333 5.6511 -0.0291 10512 22.6667 6.18 -0.0165
11563 20.0 6.797 0.017 12719 21.0 7.4371 0.0096
13991 28.6667 8.1733 0.0167 15390 24.3333 9.0222 0.0098
16929 39.6667 9.8883 -0.0074 18622 45.3333 10.8748 0.0681
20484 30.6666 11.9862 -0.0039 22532 33.6666 13.2087 -0.0154
24786 39.3334 14.5315 0.0117 27264 40.3333 15.9592 0.0244
29991 44.6667 17.5518 0.0582

Binary Search
n a b c n a b c
10 3.0 0.0326 0.022 11 3.0 0.0342 0.0253
12 2.6667 0.0331 0.0301 13 2.6667 0.0354 0.0308
15 7.0 0.0378 0.0359 16 2.3333 0.0361 0.0408
18 2.6667 0.0368 0.0457 19 2.6667 0.0378 0.047
21 2.3333 0.0393 0.0514 24 7.6667 0.0398 0.0601
26 8.6667 0.0402 0.066 29 8.6667 0.0417 0.0737
31 3.0 0.0416 0.0802 35 6.6667 0.0428 0.0962
38 2.6667 0.0435 0.1004 42 2.3333 0.045 0.1099
46 2.3333 0.0448 0.1187 51 7.6667 0.0454 0.1306
56 2.6667 0.0463 0.143 61 3.0 0.0471 0.1621
67 2.6667 0.0467 0.1734 74 2.3333 0.0481 0.191
81 8.6667 0.049 0.2086 90 3.3333 0.0498 0.2318
98 3.0 0.0511 0.2541 108 3.0 0.0518 0.2796
119 4.0 0.0528 0.3073 131 4.0 0.0536 0.3371
144 4.0 0.0542 0.3715 159 4.0 0.0556 0.4102
174 4.0 0.0561 0.4484 192 3.6667 0.0574 0.4961
211 11.0 0.0589 0.5629 232 9.3333 0.0599 0.5987

70

255 9.3333 0.0615 0.6576 281 3.3333 0.0619 0.7262
309 3.3333 0.0619 0.7986 340 3.6667 0.063 0.8777
374 16.0 0.0647 1.0052 411 8.0 0.0692 1.0717
453 10.0 0.067 1.1683 498 10.3333 0.0685 1.2831
548 9.3333 0.0693 1.414 602 4.3333 0.07 1.556
663 10.6667 0.0704 1.7108 729 5.0 0.0713 1.8815
802 23.6667 0.072 2.0707 882 23.3333 0.073 2.3191
970 18.0 0.0745 2.5114 1067 16.3333 0.0751 2.7562
1174 10.6667 0.0745 3.0861 1291 14.0 0.0762 3.3641
1420 13.6667 0.0772 3.6799 1562 26.3333 0.0778 4.0358
1719 19.6667 0.0781 4.4469 1891 15.0 0.08 4.8934
2080 23.0 0.08 5.3911 2288 21.3333 0.0804 5.9817
2516 30.0 0.0809 6.5715 2768 22.0 0.0817 7.2669
3045 18.0 0.0834 7.9814 3349 26.3333 0.0846 8.7572
3684 27.6667 0.0852 9.6298 4053 33.0 0.0851 10.6159
4458 33.3333 0.0863 11.7553 4904 25.0 0.0869 12.8722
5394 37.3333 0.0877 14.1663 5933 37.0 0.0885 15.6213
6527 30.0 0.0897 17.112 7180 35.3333 0.0914 18.8577
7897 29.3333 0.0916 20.724 8687 47.0 0.0931 22.8142
9556 56.3333 0.0937 25.0116 10512 52.0 0.0944 27.561
11563 59.3333 0.0959 30.2711 12719 68.6667 0.0965 33.3798
13991 60.3333 0.0969 36.6973 15390 58.0 0.0981 40.3265
16929 119.3333 0.0991 44.4831 18622 89.6667 0.1002 48.9436
20484 102.0 0.1016 53.9344 22532 122.6667 0.1026 59.1902
24786 115.3333 0.1036 65.0318 27264 126.6667 0.1046 71.876
29991 168.6667 0.1066 78.7928

Two Level Search
n a b c n a b c
10 3.0 0.0317 0.0061 11 3.3333 0.0319 0.0078
12 2.3333 0.0335 0.0081 13 3.0 0.033 0.007
15 2.3333 0.034 0.0072 16 10.3333 0.0351 0.0067
18 2.6667 0.0359 0.0062 19 3.0 0.0362 0.0063
21 9.0 0.0365 0.0064 24 2.6667 0.0374 0.0066
26 2.3333 0.0384 0.0059 29 9.0 0.0391 0.0062
31 8.3333 0.039 0.0061 35 2.6667 0.0406 0.0068
38 2.6667 0.0417 0.006 42 2.3333 0.0414 0.0057
46 3.0 0.042 0.0055 51 8.6667 0.0419 0.0056
56 8.6667 0.0427 0.0056 61 3.0 0.0434 0.0055
67 7.0 0.0434 0.0064 74 7.3333 0.045 0.0053
81 9.3333 0.0459 0.0049 90 3.0 0.0461 0.0058
98 3.3333 0.0471 0.0057 108 14.6667 0.0479 0.0053
119 10.0 0.0482 0.0059 131 4.0 0.049 0.0049

71

144 10.0 0.0499 0.0054 159 10.0 0.0507 0.0051
174 4.0 0.0513 0.0058 192 4.0 0.0518 0.0058
211 4.0 0.0533 0.0052 232 9.6667 0.0547 0.0046
255 13.6667 0.0554 0.0048 281 10.0 0.0562 0.0047
309 3.3333 0.0575 0.0048 340 8.6667 0.0582 0.0053
374 3.6667 0.0609 0.0043 411 3.3333 0.0646 0.0079
453 4.0 0.0626 0.0047 498 4.0 0.0638 0.0048
548 16.6667 0.0656 0.0042 602 15.3333 0.0664 0.0055
663 4.3333 0.0679 0.0056 729 5.0 0.0701 0.0042
802 16.3333 0.0705 0.0058 882 17.3333 0.0728 0.0055
970 5.3333 0.0752 0.0043 1067 18.6667 0.077 0.0048
1174 12.6667 0.0793 0.0051 1291 24.0 0.081 0.0049
1420 24.6667 0.0825 0.0057 1562 23.6667 0.0852 0.0052
1719 18.3333 0.0877 0.0054 1891 14.3333 0.0901 0.0052
2080 20.0 0.0919 0.0051 2288 15.3333 0.0948 0.0054
2516 21.3333 0.0978 0.0041 2768 15.6667 0.1008 0.0045
3045 17.6667 0.1039 0.0042 3349 18.3333 0.1069 0.0048
3684 25.0 0.1092 0.006 4053 24.6667 0.1139 0.0052
4458 31.6667 0.1176 0.0047 4904 44.3333 0.1211 0.0046
5394 22.3333 0.1251 0.0051 5933 31.6667 0.1312 0.0037
6527 37.0 0.1343 0.0042 7180 38.6667 0.1389 0.0059
7897 35.6667 0.1431 0.0049 8687 33.0 0.1485 0.0045
9556 42.6667 0.1545 0.0042 10512 45.0 0.1602 0.0061
11563 43.0 0.1655 0.0048 12719 42.3333 0.1721 0.0034
13991 46.0 0.1785 0.0038 15390 56.0 0.1858 0.0032
16929 64.3333 0.1924 0.0032 18622 67.3333 0.203 0.0033
20484 60.3333 0.2159 -0.0038 22532 65.0 0.2207 -0.0004
24786 77.3333 0.2254 0.0029 27264 87.0 0.2336 0.0045
29991 95.6667 0.2449 0.0024

Three Level Search
n a b c n a b c
10 8.6667 0.0295 0.0097 11 3.6667 0.0313 0.0088
12 3.3333 0.0337 0.0083 13 3.3333 0.0326 0.0091
15 3.0 0.0342 0.0112 16 9.0 0.0359 0.0105
18 3.0 0.0371 0.0122 19 3.0 0.0361 0.0123
21 10.0 0.0372 0.0122 24 8.3333 0.0396 0.0111
26 8.3333 0.0393 0.0121 29 3.0 0.0402 0.0097
31 3.0 0.0404 0.0105 35 15.3333 0.0418 0.0106
38 3.0 0.0422 0.012 42 9.3333 0.0422 0.0117
46 11.0 0.043 0.0119 51 3.3333 0.0428 0.0116
56 3.0 0.0437 0.012 61 3.0 0.0446 0.0114
67 3.0 0.0448 0.0117 74 8.3333 0.0456 0.0122

72

81 8.3333 0.0461 0.0112 90 9.6667 0.0472 0.0115
98 10.6667 0.0475 0.0118 108 15.3333 0.0474 0.0122
119 4.0 0.0481 0.0121 131 10.3333 0.0483 0.0138
144 4.0 0.049 0.0122 159 4.6667 0.0502 0.0113
174 10.3333 0.0508 0.0112 192 4.3333 0.051 0.0118
211 4.3333 0.0518 0.0116 232 3.3333 0.0525 0.0116
255 9.3333 0.0533 0.0112 281 9.3333 0.0533 0.0118
309 3.6667 0.054 0.0116 340 3.6667 0.0546 0.0116
374 8.6667 0.056 0.0114 411 4.3333 0.0611 0.0129
453 4.3333 0.057 0.0109 498 4.3333 0.0586 0.0101
548 10.6667 0.0587 0.0114 602 4.3333 0.0594 0.011
663 17.0 0.0592 0.0113 729 5.0 0.0613 0.0095
802 16.6667 0.0612 0.0107 882 17.3333 0.0617 0.0121
970 17.6667 0.0626 0.0105 1067 18.0 0.0637 0.01
1174 18.3333 0.0645 0.0102 1291 24.0 0.0646 0.0107
1420 19.0 0.0653 0.0113 1562 25.0 0.0661 0.0099
1719 25.0 0.0658 0.0115 1891 26.3333 0.0684 0.01
2080 15.3333 0.0679 0.0106 2288 37.6667 0.0694 0.0106
2516 15.0 0.0702 0.0102 2768 16.6667 0.0715 0.0106
3045 16.0 0.0729 0.01 3349 35.6667 0.0744 0.0097
3684 29.3333 0.0746 0.0105 4053 30.0 0.0754 0.0103
4458 21.6667 0.0768 0.01 4904 29.0 0.0778 0.0095
5394 23.0 0.0781 0.0097 5933 35.3333 0.0804 0.0095
6527 33.3333 0.0802 0.0097 7180 23.6667 0.0823 0.01
7897 31.0 0.0822 0.0159 8687 41.3333 0.0838 0.0095
9556 38.6667 0.0862 0.0099 10512 46.3333 0.0879 0.0101
11563 45.6667 0.0883 0.0092 12719 38.3333 0.0901 0.0094
13991 47.6667 0.0905 0.0098 15390 46.0 0.092 0.0097
16929 49.0 0.0943 0.0094 18622 57.3333 0.0965 0.0088
20484 68.0 0.0979 0.0099 22532 81.0 0.1004 0.008
24786 82.0 0.1011 0.0101 27264 87.3333 0.1024 0.01
29991 95.6667 0.1049 0.01

Binary Tree Search
n a b c n a b c
10 3.0 0.0329 0.0167 11 3.0 0.0324 0.0185
12 2.6667 0.0348 0.019 13 9.3333 0.0356 0.0175
15 3.0 0.0367 0.0183 16 2.3333 0.037 0.0195
18 2.3333 0.0376 0.0197 19 2.3333 0.0385 0.0202
21 8.3333 0.039 0.0199 24 2.3333 0.0398 0.0205
26 2.6667 0.0414 0.02 29 2.3333 0.0413 0.0221
31 7.6667 0.0438 0.0244 35 2.6667 0.0453 0.0242
38 2.6667 0.0452 0.0252 42 2.3333 0.0447 0.023

73

46 8.3333 0.0451 0.0245 51 7.3333 0.0457 0.0255
56 2.3333 0.0472 0.0269 61 3.0 0.0494 0.0279
67 2.3333 0.0495 0.0282 74 2.3333 0.0503 0.0272
81 3.0 0.0529 0.0256 90 2.6667 0.0515 0.0294
98 3.0 0.0525 0.0296 108 3.0 0.0543 0.0301
119 4.0 0.0554 0.0306 131 9.3333 0.0561 0.0327
144 15.6667 0.0578 0.0298 159 9.6667 0.0588 0.0343
174 9.0 0.058 0.0329 192 3.6667 0.0588 0.034
211 3.3333 0.0601 0.0347 232 7.0 0.0616 0.0357
255 8.6667 0.0632 0.0365 281 15.0 0.0637 0.0354
309 2.3333 0.0637 0.0363 340 3.0 0.0643 0.0364
374 8.6667 0.0661 0.037 411 2.6667 0.0701 0.037
453 3.0 0.0682 0.0374 498 3.0 0.0693 0.0388
548 9.0 0.0711 0.039 602 2.6667 0.0716 0.0393
663 3.0 0.0713 0.0398 729 7.6667 0.0723 0.0405
802 3.0 0.0722 0.0419 882 21.0 0.0744 0.0425
970 9.3333 0.0751 0.0423 1067 21.3333 0.0757 0.043
1174 16.0 0.0765 0.043 1291 9.3333 0.0768 0.0443
1420 21.3333 0.0782 0.0443 1562 16.0 0.0786 0.051
1719 9.6667 0.0794 0.0452 1891 17.3333 0.0803 0.0472
2080 10.6667 0.082 0.0461 2288 5.0 0.0828 0.0469
2516 5.3333 0.0826 0.049 2768 10.0 0.0841 0.0474
3045 10.3333 0.0848 0.0484 3349 6.0 0.0859 0.0497
3684 17.0 0.0873 0.0492 4053 7.0 0.0881 0.05
4458 13.3333 0.0888 0.0501 4904 18.0 0.0892 0.0501
5394 13.3333 0.0901 0.0547 5933 9.6667 0.0911 0.0567
6527 10.0 0.0924 0.0517 7180 21.0 0.0925 0.053
7897 13.6667 0.0988 0.0499 8687 23.3333 0.0939 0.0547
9556 24.6667 0.0956 0.0548 10512 19.3333 0.0965 0.0546
11563 17.0 0.0965 0.0559 12719 17.3333 0.0983 0.0596
13991 18.6667 0.0988 0.0561 15390 26.0 0.1002 0.0577
16929 22.6667 0.1023 0.0574 18622 23.3333 0.1035 0.0584
20484 25.6667 0.1054 0.0594 22532 39.6667 0.1045 0.0587
24786 43.3333 0.1071 0.0586 27264 34.3333 0.1081 0.0594
29991 40.6667 0.1107 0.0593

Rejection Method
n a b c n a b c
10 3.3333 0.0661 0.0152 11 3.0 0.0821 -0.0009
12 2.3333 0.0795 0.0019 13 2.3333 0.0676 0.0137
15 2.3333 0.0749 0.0061 16 2.3333 0.077 0.0038
18 2.3333 0.0817 -0.0004 19 8.3333 0.0705 0.0102
21 3.0 0.0779 0.0021 24 8.3333 0.0813 -0.0012

74

26 2.6667 0.0757 0.0041 29 2.3333 0.0837 -0.0037
31 2.6667 0.0888 -0.0035 35 7.3333 0.0797 0.0018
38 2.3333 0.0746 0.0071 42 2.3333 0.0741 0.0054
46 2.6667 0.0776 0.002 51 9.0 0.0847 -0.0043
56 2.6667 0.0781 0.0007 61 2.3333 0.0755 0.0036
67 7.3333 0.0773 0.0021 74 8.0 0.0776 0.0022
81 2.3333 0.074 0.0053 90 2.6667 0.0734 0.0054
98 7.3333 0.0793 0.0001 108 2.6667 0.08 -0.0008
119 8.3333 0.0779 0.0011 131 3.6667 0.0752 0.0037
144 3.3333 0.0792 0.0003 159 9.6667 0.0764 0.0027
174 3.0 0.0806 -0.0016 192 3.3333 0.0798 -0.0011
211 3.6667 0.0779 0.001 232 9.0 0.0766 0.0023
255 9.0 0.0793 -0.0004 281 7.3333 0.0801 -0.0011
309 2.3333 0.0795 -0.0007 340 9.0 0.0808 -0.0017
374 3.0 0.0794 -0.0005 411 2.6667 0.0815 0.0006
453 3.0 0.0784 0.0005 498 9.3333 0.0777 0.0014
548 3.0 0.078 0.0014 602 9.0 0.0775 0.0014
663 9.0 0.0791 -0.0 729 3.0 0.0785 0.0003
802 10.3333 0.0805 -0.0012 882 3.3333 0.0798 0.0002
970 9.6667 0.0786 0.0004 1067 9.6667 0.0798 -0.0012
1174 10.0 0.08 -0.0002 1291 10.0 0.0784 0.0003
1420 11.0 0.079 0.0 1562 4.0 0.0812 -0.0022
1719 11.3333 0.0778 0.001 1891 12.3333 0.0801 -0.0003
2080 11.6667 0.0802 -0.0002 2288 16.6667 0.0794 -0.0007
2516 5.0 0.0789 0.0025 2768 5.3333 0.0791 0.001
3045 15.6667 0.0786 0.0002 3349 13.0 0.0799 -0.0001
3684 12.0 0.0795 0.0005 4053 16.6667 0.0786 0.0001
4458 13.0 0.0796 -0.0009 4904 13.3333 0.0792 0.0014
5394 12.0 0.0818 -0.0011 5933 8.0 0.0786 0.0001
6527 25.3333 0.0786 0.0003 7180 9.6667 0.0796 0.0007
7897 17.6667 0.0793 0.0007 8687 16.0 0.079 -0.0002
9556 11.6667 0.0794 0.0006 10512 12.6667 0.0787 0.0
11563 13.3333 0.0784 0.0008 12719 24.3333 0.0792 0.0001
13991 15.3333 0.0792 0.0001 15390 22.3333 0.0794 0.0002
16929 22.0 0.0802 0.0011 18622 23.6667 0.0795 0.001
20484 25.0 0.0801 0.0002 22532 23.0 0.0795 0.0008
24786 25.0 0.0798 0.0013 27264 32.0 0.0795 0.0012
29991 30.6667 0.0822 0.0026

Flat Method
n a b c n a b c
10 13.3333 0.0821 0.0728 11 20.3333 0.0869 0.0672
12 12.3333 0.0905 0.0639 13 19.3333 0.085 0.0694

75

15 7.6667 0.0882 0.0657 16 21.0 0.0855 0.0674
18 7.6667 0.0861 0.0671 19 22.0 0.0926 0.0607
21 22.3333 0.0821 0.0705 24 20.3333 0.0906 0.0617
26 8.6667 0.0814 0.07 29 21.0 0.0847 0.0668
31 22.3333 0.0961 0.0601 35 20.3333 0.0904 0.0671
38 29.3333 0.0917 0.0627 42 14.6667 0.0868 0.064
46 22.0 0.0889 0.0622 51 21.6667 0.0838 0.0684
56 31.3333 0.0813 0.0701 61 23.6667 0.0875 0.0829
67 35.3333 0.0839 0.0661 74 24.6667 0.0852 0.0641
81 31.6667 0.0869 0.0613 90 33.0 0.0861 0.0625
98 32.3333 0.088 0.0604 108 38.6667 0.087 0.0615
119 46.6667 0.0893 0.0594 131 49.6667 0.086 0.0626
144 48.6667 0.0884 0.0602 159 53.0 0.0864 0.0616
174 46.3333 0.0863 0.0619 192 57.0 0.0887 0.0601
211 47.6667 0.0874 0.0617 232 75.3333 0.0884 0.0623
255 36.0 0.0873 0.0624 281 62.6667 0.0881 0.0594
309 56.0 0.0871 0.0604 340 65.6667 0.0871 0.0613
374 61.3333 0.0866 0.0624 411 109.6667 0.092 0.0589
453 77.3333 0.0882 0.0608 498 92.0 0.0871 0.0623
548 102.6667 0.0896 0.0593 602 70.3333 0.0897 0.059
663 93.3333 0.088 0.0605 729 125.6667 0.0905 0.0624
802 112.0 0.0879 0.0605 882 100.3333 0.0891 0.0621
970 121.0 0.0884 0.0607 1067 146.0 0.0886 0.063
1174 146.6667 0.0884 0.0628 1291 159.3333 0.0892 0.0597
1420 172.6667 0.0886 0.0609 1562 155.6667 0.0901 0.0591
1719 205.0 0.0886 0.0604 1891 200.3333 0.0896 0.0596
2080 234.6667 0.0894 0.0601 2288 228.3333 0.0888 0.0604
2516 218.3333 0.0913 0.0587 2768 255.0 0.0894 0.06
3045 306.3333 0.0884 0.0598 3349 287.0 0.0886 0.0606
3684 306.0 0.089 0.0612 4053 349.6667 0.0893 0.0607
4458 393.3333 0.0881 0.0618 4904 394.6667 0.0887 0.0615
5394 463.6667 0.0894 0.0611 5933 471.0 0.0904 0.065
6527 497.3333 0.0895 0.0626 7180 605.6667 0.0896 0.0607
7897 585.0 0.0902 0.0637 8687 646.3333 0.0896 0.0629
9556 745.3333 0.0921 0.0672 10512 774.6667 0.0895 0.0655
11563 838.3333 0.0905 0.063 12719 964.3333 0.0897 0.0636
13991 963.3333 0.0896 0.0647 15390 1108.0 0.09 0.0645
16929 1280.6667 0.09 0.0656 18622 1279.6667 0.0906 0.066
20484 1543.0 0.0908 0.0654 22532 1574.3333 0.0908 0.0665
24786 2310.0 0.1071 0.0759 27264 1889.0 0.0919 0.0679
29991 2021.3333 0.0925 0.067

Log* Method

76

n a b c n a b c
10 21.3333 0.1951 0.4009 11 22.6667 0.1718 0.4296
12 22.6667 0.2071 0.3991 13 32.3333 0.2125 0.4004
15 28.0 0.2092 0.4186 16 27.6667 0.1924 0.4418
18 23.6667 0.1894 0.452 19 28.0 0.1973 0.4469
21 35.3333 0.2049 0.4418 24 18.6667 0.2017 0.4459
26 24.6667 0.2085 0.4382 29 34.3333 0.1948 0.4507
31 25.0 0.2093 0.4623 35 33.0 0.2264 0.5015
38 30.3333 0.1986 0.5771 42 31.0 0.2154 0.4431
46 39.0 0.1966 0.4635 51 40.3333 0.2006 0.456
56 40.0 0.2009 0.4858 61 35.3333 0.2492 0.434
67 40.0 0.2109 0.4343 74 40.0 0.2113 0.4412
81 34.3333 0.2024 0.4562 90 43.3333 0.1942 0.4709
98 44.3333 0.194 0.4701 108 42.6667 0.2025 0.45
119 44.3333 0.2191 0.4205 131 46.6667 0.2196 0.4194
144 53.6667 0.2094 0.436 159 50.6667 0.2054 0.4868
174 54.0 0.1931 0.4743 192 56.0 0.2063 0.4645
211 66.6667 0.2057 0.4532 232 56.3333 0.2104 0.4279
255 42.0 0.2035 0.4289 281 59.0 0.2097 0.4223
309 54.3333 0.2049 0.4448 340 75.0 0.2071 0.46
374 80.6667 0.193 0.481 411 83.3333 0.2153 0.4868
453 79.3333 0.1956 0.4446 498 88.6667 0.215 0.4091
548 99.3333 0.2134 0.4081 602 87.6667 0.208 0.4273
663 94.3333 0.2035 0.4746 729 94.0 0.1941 0.5137
802 115.3333 0.2024 0.4884 882 117.6667 0.221 0.4169
970 108.0 0.2202 0.4068 1067 130.3333 0.2162 0.4305
1174 148.3333 0.2081 0.4163 1291 145.6667 0.2052 0.4557
1420 139.6667 0.206 0.474 1562 140.0 0.1901 0.4833
1719 175.0 0.2277 0.4123 1891 166.0 0.2219 0.4078
2080 153.6667 0.2149 0.409 2288 194.3333 0.2092 0.4154
2516 195.0 0.2051 0.4391 2768 216.0 0.2019 0.4821
3045 212.0 0.1922 0.4849 3349 222.0 0.2133 0.438
3684 242.0 0.223 0.4128 4053 257.0 0.2191 0.4078
4458 282.3333 0.2111 0.409 4904 303.0 0.2048 0.4184
5394 308.0 0.206 0.4835 5933 342.6667 0.203 0.4777
6527 386.0 0.1905 0.4821 7180 378.0 0.2309 0.4182
7897 449.6667 0.2198 0.4121 8687 464.0 0.2127 0.4141
9556 484.3333 0.2064 0.416 10512 521.6667 0.2149 0.4752
11563 591.6667 0.2058 0.482 12719 684.6667 0.1862 0.4918
13991 646.6667 0.2301 0.4306 15390 728.3333 0.2234 0.4193
16929 774.3333 0.2169 0.4218 18622 887.3333 0.2131 0.4234
20484 930.0 0.2074 0.4653 22532 1021.3333 0.2084 0.492

77

24786 1130.6667 0.192 0.4958 27264 1243.3333 0.2333 0.4312
29991 1376.3333 0.2283 0.4258

78

Appendix B

Model Fitting

In each plot, we show 85 as, bs or cs in time(x, y) with a curve corresponding
to the theoretical runtime complexity.

79

0 5k 10k 15k 20k 25k 30k

0

100

200

300

400

500

600

700

800

Coefficient a in time(s,u) Models Derived for Alias Method

n

a

0 5k 10k 15k 20k 25k 30k

0.038

0.039

0.04

0.041

0.042

0.043

0.044

0.045

Coefficient b in time(s,u) Models Derived for Alias Method

n

b

80

0 5k 10k 15k 20k 25k 30k

0

100

200

300

400

500

600

700

Coefficient c in time(s,u) Models Derived for Alias Method

n

c

0 5k 10k 15k 20k 25k 30k

0

100

200

300

400

500

Coefficient a in time(s,u) Models Derived for C++ discrete

n

a

81

0 5k 10k 15k 20k 25k 30k

0.02

0.04

0.06

0.08

0.1

Coefficient b in time(s,u) Models Derived for C++ discrete

n

b

0 5k 10k 15k 20k 25k 30k

0

50

100

150

Coefficient c in time(s,u) Models Derived for C++ discrete

n

c

82

0 5k 10k 15k 20k 25k 30k

0

10

20

30

40

50

Coefficient a in time(s,u) Models Derived for Linear Search

n

a

0 5k 10k 15k 20k 25k 30k

0

5

10

15

Coefficient b in time(s,u) Models Derived for Linear Search

n

b

83

0 5k 10k 15k 20k 25k 30k

−0.02

0

0.02

0.04

0.06

Coefficient c in time(s,u) Models Derived for Linear Search

n

c

0 5k 10k 15k 20k 25k 30k

0

50

100

150

Coefficient a in time(s,u) Models Derived for Binary Search

n

a

84

0 5k 10k 15k 20k 25k 30k

0.02

0.04

0.06

0.08

0.1

Coefficient b in time(s,u) Models Derived for Binary Search

n

b

0 5k 10k 15k 20k 25k 30k

0

10

20

30

40

50

60

70

80

Coefficient c in time(s,u) Models Derived for Binary Search

n

c

85

0 5k 10k 15k 20k 25k 30k

0

20

40

60

80

100

Coefficient a in time(s,u) Models Derived for Two Level Search

n

a

0 5k 10k 15k 20k 25k 30k

0.05

0.1

0.15

0.2

0.25

Coefficient b in time(s,u) Models Derived for Two Level Search

n

b

86

0 5k 10k 15k 20k 25k 30k

−0.004

−0.002

0

0.002

0.004

0.006

0.008

Coefficient c in time(s,u) Models Derived for Two Level Search

n

c

0 5k 10k 15k 20k 25k 30k

0

20

40

60

80

100

Coefficient a in time(s,u) Models Derived for Three Level Search

n

a

87

0 5k 10k 15k 20k 25k 30k

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Coefficient b in time(s,u) Models Derived for Three Level Search

n

b

0 5k 10k 15k 20k 25k 30k

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

0.016

Coefficient c in time(s,u) Models Derived for Three Level Search

n

c

88

0 5k 10k 15k 20k 25k 30k
0

5

10

15

20

25

30

35

40

45

Coefficient a in time(s,u) Models Derived for Binary Tree Search

n

a

0 5k 10k 15k 20k 25k 30k

0.02

0.04

0.06

0.08

0.1

Coefficient b in time(s,u) Models Derived for Binary Tree Search

n

b

89

0 5k 10k 15k 20k 25k 30k

0.01

0.02

0.03

0.04

0.05

0.06

Coefficient c in time(s,u) Models Derived for Binary Tree Search

n

c

0 5k 10k 15k 20k 25k 30k
0

5

10

15

20

25

30

35

Coefficient a in time(s,u) Models Derived for Rejection Method

n

a

90

0 5k 10k 15k 20k 25k 30k

0.065

0.07

0.075

0.08

0.085

0.09

Coefficient b in time(s,u) Models Derived for Rejection Method

n

b

0 5k 10k 15k 20k 25k 30k

−0.005

0

0.005

0.01

0.015

Coefficient c in time(s,u) Models Derived for Rejection Method

n

c

91

0 5k 10k 15k 20k 25k 30k

0

500

1000

1500

2000

Coefficient a in time(s,u) Models Derived for Flat Method

n

a

0 5k 10k 15k 20k 25k 30k

0.08

0.085

0.09

0.095

0.1

0.105

Coefficient b in time(s,u) Models Derived for Flat Method

n

b

92

0 5k 10k 15k 20k 25k 30k

0.06

0.065

0.07

0.075

0.08

Coefficient c in time(s,u) Models Derived for Flat Method

n

c

0 5k 10k 15k 20k 25k 30k

0

200

400

600

800

1000

1200

1400

Coefficient a in time(s,u) Models Derived for Log* Method

n

a

93

0 5k 10k 15k 20k 25k 30k

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

Coefficient b in time(s,u) Models Derived for Log* Method

n

b

0 5k 10k 15k 20k 25k 30k

0.4

0.45

0.5

0.55

Coefficient c in time(s,u) Models Derived for Log* Method

n

c

94

