An Empirical Study of Random Sampling Methods for Changing Discrete Distributions

by
Yunpeng Tang
A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science
Department of Computing Science
University of Alberta

(c) Yunpeng Tang, 2019

Abstract

In this thesis, we focus on finding efficient practical random sampling methods for time-changing discrete distributions. We empirically study ten methods including existing algorithms, and two new ones: three level search and the flat method. We review the core ideas of existing methods including their runtime complexity and correctness. We study how algorithms for static distribution can be adopted to the dynamic case that we find in many scenarios. We also implement all methods in a software package UpdateRandom. All methods were tested in the test platform described in the thesis to make sure they are able to generate random numbers properly according to the distribution and their performance matches the analytical result. In order to measure their performance in practice, we used a linear regression model to determine the cost of reference implementations as a function of the number of random samples, the number of weight updates, and the size of the weight array. With the models and application example we provide, readers can easily find the most efficient methods for any usage scenario.

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Prof. Martin Müller, who does not only give me valuable guidance and constructive advice, but also detailed comments and feedback throughout the research and writing of this thesis.

I would like to thank my family and friends. It is their great support that helps me get through all these challenges and hard times.

Table of Contents

1 Introduction 1
1.1 Sampling from a Time-Changing Discrete Distribution 1
1.2 Research Motivation and Problem Setting 1
1.3 Machine Dependency 2
1.4 Contributions of this Thesis 3
2 Literature Review 5
2.1 Assumptions 5
2.2 General Framework 5
2.2.1 Utility Functions 6
2.3 Method 1: Linear Search 7
2.4 Method 2: Binary Search 9
2.5 Method 3: The Allias Method 9
2.5.1 Correctness of the Alias Method 12
2.5.2 Implementation 13
2.5.3 Using the Alias Method for a Time-changing Distribution 14
2.6 Method 4: C++11 discrete_distribution 16
2.7 Method 5: Two Level Search 17
2.7.1 Determining the Partial Sum Group Size L 20
2.8 Method 6: Binary Tree Search 20
2.9 Method 7: Rejection Method 23
2.10 Method 8: The Log* Method 26
2.11 Summary 34
3 New Sampling Methods for Time-Changing Discrete Distri- butions 35
3.1 Multi-Level Search 35
3.1.1 Adding More Levels 38
3.2 Flat Method 38
4 Experiments 42
4.1 Test Environment 42
4.2 Test Platform 42
4.2.1 Unit Tests and Assertions 43
4.2.2 Statistical Tests 43
4.3 Performance Measurement 45
4.3.1 Factors Influencing the Performance of Random Sampling 45
4.3.2 Determining time (s, u) for fixed n 45
4.3.3 Determining time ($\mathrm{s}, \mathrm{u}, \mathrm{n}$) 46
4.3.4 Experimental Results 48
5 Analysis of Experimental Results 51
5.1 Applying time(s,u,n) Models 51
5.2 Summary of Performance for Leveling Methods 53
5.3 Summary of Performance for Rejection-Based Methods 55
6 Application: Fast Sampling for Monte Carlo Playouts in NoGo 58
6.1 The Game of NoGo 58
6.2 Playouts in NoGo 59
6.3 Implementation 60
6.4 Optimization Result 62
7 Conclusions and Future Work 64
Bibliography 65
A time(s,u) Models 67
B Model Fitting 79

List of Tables

2.1 The sample, update and construction runtime complexity for the Boost C++ Library and the GNU Compiler Collection implementations of the class std::discrete_distribution in the $\mathrm{C}++11$ Standard.
2.2 The table summarizes the time complexity for all the sampling methods in this chapter. In the table, n is the size of weight array W, S is the sum of all weights, B is the maximum weight in W, and M represents the maximum possible weight.
4.1 The χ^{2} values and the corresponding p-values in Pearson's chisquared goodness of fit tests for all methods.
4.2 The terms $f(n)$ and $g(n)$ in time (s, u, n) for all methods.47
4.3 The time $(s, u, n)=a n+b s \cdot f(n)+c u \cdot g(n)$ models for all 10 sampling methods. For each method, we show the two models with weights w_{i} drawn from the uniform distribution $\mathrm{U}(0$, 10^{4}) and the exponential distribution $\left(\lambda=10^{-3}\right)$ separately. The time was measured in microseconds. All coefficients were rounded to four decimal places.
5.1 The time $(s, u, n)=a n+b s \cdot f(n)+c u \cdot g(n)$ models for four and five level search. For each method, we show the two models with weights w_{i} drawn from the uniform distribution $\mathrm{U}\left(0,10^{4}\right)$ and the exponential distribution $\left(\lambda=10^{-3}\right)$ separately. The time was measured in microseconds. All coefficients were rounded to four decimal places.
6.1 The actual runtime and expected runtime with associated rankings for all methods to construct, sample and update in 3000 playouts. Runtime is measured in microseconds and rounded to four decimal places. The methods are sorted according to their predicted runtime.
6.2 Sampling runtime and overall runtime for ordinary sampling and two level search to run 3000 playouts on a 19×19 board. Runtime is measured in microseconds and rounded to four decimal places.

List of Figures

2.1 In this example, $W=[1,2,3,4]$, and the dart lands in the part corresponding to $w_{2}=3$. The random sampling result is the selected index 2.

7
2.2 Viewing w_{i} as rectangles and splitting them into small pieces. 11
2.3 The rearrangement of the pieces and the corresponding tables. 11
2.4 The rearrangement of the pieces for the new weight array $W^{\prime}=$ $[2,4,1,1]$ on the right compared with the old $W=[6,4,1,1]$ on the left.
2.5 The alias and probability tables for the new weight array $W=$ $[2,4,1,1]$ on the right compared with the old ones on the left.14

2.6 An example of generating random numbers according to weight
array $W=[6,4,1,1]$ using $\mathrm{C}++$ libraries.
2.7 An example of two level search structure with $n=9$ and $L=3 . \quad 18$
2.8 Two level search for 19×19 Go with $n=361$ and varying L. The y-axis in the plot shows the average time spent to sample 10^{5} times with one update after each sample, plotted against L on the x-axis. The time spent for each L was averaged over 100 rounds. The minimum time spent is achieved with L chosen around 19 , which is the square root of 361 .
2.9 The plot on the left shows the probability density function $p(x)=\frac{1}{1.2113}\left(0.3 e^{-(x-0.3)^{2}}+0.7 e^{-\frac{10}{3}(x-2)^{2}}\right)$ in the interval $[-4,6]$ while the plot on the right shows how we draw samples according to this function. The circles in the right plot are the samples we draw, and those colored red are the ones we accept.
2.10 Drawing samples using the rejection method from the discrete distribution $W=[6,4,1,1]$.
2.11 Example of the forest built by the $\log ^{*}$ method. There are three levels and four roots. The right side shows the level table and the level sums.27
3.1 In this example, $W=[1,2,2,1,3,2,3,4,2,1,1]$ and $L=3$. We construct $W D=[5,6,9,2]$ and $W D 2=[20,2]$ according to W.
4.1 The plot shows time spent for linear search to generate 10^{5} samples with 30 weight updates after each sample. We used both models derived for the uniform distribution and the exponential distribution. The time was measured in seconds.
5.1 The plot shows time spent for all methods to generate 10^{5} samples without updating. The weights w_{i} are drawn from the exponential distributions with $\lambda=10^{-3}$ and the time were measured in microseconds.
5.2 The plot shows time spent for all methods to generate 10^{5} sam- ples with one weight update after each sample. 53
5.3 Time for two, three, four, and five level search, and binary tree search to generate 10^{5} samples with one weight update after each sample. 55
5.4 Time for the rejection method, the flat method and the $\log ^{*}$ method to generate 10^{5} samples with one weight update after each sample. The plot is generated using the models derived for weights drawn from uniform distributions. 56
5.5 Time for the rejection method, the flat method and the log* method to generate 10^{5} samples with one weight update after each sample. The plot is generated using the models derived for weights drawn from exponential distributions. 57
5.6 Time spent to generate 10^{5} samples with one update after each sample. The plot is generated using the models derived for weights drawn from exponential distributions. 57
6.1 An example of the end of a NoGo game 59
6.2 Boards before and after White makes a move on B9. 61

Chapter 1

Introduction

1.1 Sampling from a Time-Changing Discrete Distribution

Given a discrete random variable X, the discrete distribution of X describes the probability that $X=i$ for each possible discrete value i. In this thesis, we consider consecutive integer indices $i \in[0,1, \ldots, n-1]$, and use a weight array W containing n non-negative real-valued weights $\left[w_{0}, \ldots, w_{n-1}\right]$ to describe a discrete distribution. During sampling, each index i should be selected with a probability of $p_{i}=\frac{w_{i}}{S}$, where $S=\sum_{i=0}^{n-1} w_{i}$. We assume that $S>0$ to make the problem meaningful.

A time-changing discrete distribution allows modifying individual weights w_{i}, such that we can gradually change the weight array W over time. Once the size n is specified, we cannot have more than n weights in W. However, some (but not all) weights might be zero, which can be used to model a distribution with fewer than n events.

1.2 Research Motivation and Problem Setting

In recent years, with the increasing usage of sampling techniques in computer science, such as Monte Carlo methods and sampling in reinforcement learning, the demand of efficient random sampling methods is growing rapidly. For the simple case of random sampling from a fixed discrete distribution, the well known Alias Method [18] is both optimal in theory and efficient in practice.

However, the situation is less clear when it comes to random sampling from a time-changing discrete distribution where the weights in the distribution can be updated between samples. There exist methods [6, 12] with runtime complexity of $\mathrm{O}(1)$ for sampling, $\mathrm{O}(1)$ for updating and $\mathrm{O}(\mathrm{n})$ for constructing the initial distribution. This is optimal in theory. However, the constant factor overhead of these methods is prohibitively high, and they are not used in practice.

While previous work such as [6] used only asymptotic complexity to measure algorithm performance, our goal in this thesis is to find methods that are efficient in practice for both sampling and updating. In order to show the performance trade-offs between different approaches in an informative way, we use linear regression combined with runtime complexity analysis to build a runtime model as $\operatorname{time}(s, u, n)=a n+b s \cdot f(n)+c u \cdot g(n)$ for each method. In the expression, n is the number of elements in the discrete distribution, s is the number of random samples, u is the number of weight updates, and a, b, c are corresponding coefficients. The functions $f(n)$ and $g(n)$ are determined by runtime complexity analysis. By comparing these models, a reader can easily determine the most suitable methods for their application.

1.3 Machine Dependency

In this thesis, we measure the actual time cost of each method in different scenarios. We build models on the basis of the time we measure. The time cost depends on the hardware and software we use, so the models we build are machine dependent. However, readers with other hardware and software can still refer to our models and conclusions. Although the actual time cost depends on the machine, the major factors that determine the relative strength of a method in different scenarios are the same: the number of samples, the number of updates and the number of elements in the weight array W. We compare the methods based on these factors such that our models and conclusions can be generalized to different machines.

1.4 Contributions of this Thesis

This thesis contains the following contributions:

- We review the following algorithms for time-changing discrete distribution: linear search, binary search, the Alias Method, two level search, binary tree search, the rejection method, and the log* method.
- We review both the Boost implementation and the GNU Compiler implementation of the $\mathrm{C}++$ discrete_distribution random number generator.
- We introduce the core ideas of these methods, as well as analyze their correctness and runtime complexity.
- We derive a practical Flat Method from Hagerup's theoretical work [6].
- We propose three, four and five level search methods based on the existing two level search.
- We implement all methods based on a unified framework in a software package UpdateRandom. The package is available on https: //github.com/yunpeng5/UpdateRandom.
- We use statistical methods to check that all methods behave as expected.
- We use linear regression models to summarize the performance of each method in the experiments, such that we can compare them in practice.
- We apply our models to compare the practical performance of all methods in two representative scenarios: sampling from a static discrete distribution and sampling from a time-changing discrete distribution where we make one update after each sample.
- We demonstrate how we use the methods and our models to speedup the sampling process in an application to the game of NoGo.

The thesis is organized as follows: In Chapter 2, we review sampling methods, with their core ideas, runtime complexity, proof of correctness and implementation details. In Chapter 3, we introduce our two new methods. In

Chapter 4, we introduce our test platform and the time (s, u, n) models we develop for each method. In Chapter 5, we apply our models to compare the practical performance of all methods and make conclusions. In Chapter 6, we introduce the game of NoGo and demonstrate how we use the sampling methods together with our models to speedup the sampling process. Chapter 7 concludes our work and gives potential future work.

Chapter 2

Literature Review

In this chapter, we review existing random sampling methods that are either commonly used or attractive in theory. We talk about the assumptions we make in Section 2.1. Then we introduce the general framework we use in Section 2.2, and review the methods in Sections 2.3 to 2.10.

2.1 Assumptions

All methods in the review satisfy our assumptions: they generate samples according to a time-changing weight array $W=\left[w_{0}, \ldots, w_{n-1}\right]$ containing n non-negative real-valued weights. While n is fixed such that we cannot have more than n weights by dynamically extending W, we can still have fewer than n weights by having $w_{i}=0$ for some i. When analyzing the runtime complexity, we assume that all the following standard operations take constant time: arithmetic, logarithms and generating a single random number (either a real number or an integer) from a uniform distribution.

2.2 General Framework

To sample from a time-changing discrete distribution, each method needs at least three functions: a construct function that builds the data structures for the method from the given W, an update(index, weight) function that updates $w_{\text {index }}$ to a new weight and a sample() function that generates a sample. In this chapter, we use a general framework to review each method:

1. We show the data structures that a method uses and its construction procedure.
2. We show how a method generates samples from a discrete distribution.
3. We show how a method updates a weight in a discrete distribution.

2.2.1 Utility Functions

Several utility functions are widely used among different sampling methods. We discuss these functions in this section, and we will refer to them in later sections.

The most commonly used utility functions are uniform_real (a, b) and uniform_int (a, b). We can use uniform_real (a, b) to generate a random real number $d \in[a, b)$ and uniform_int (a, b) to generate a random integer $i \in[a, b]$. These functions are usually specified by a programming language standard such as [8] and provided by a standard library.

Given an array $W=\left[w_{0}, w_{1}, \ldots, w_{n-1}\right]$, when we try to find the smallest i satisfying $w_{\text {startIndex }}+w_{\text {startIndex }+1}+\ldots+w_{i}>d$ for a real number $d \in$ $\left[0, \sum_{i=s t a r t I n d e x}^{n-1} w_{i}\right)$ and an integer startIndex $\in[0, n)$, we use the linear search function linear_search $(W, d$, startIndex $)$ shown in Algorithm 1.

```
Algorithm 1: Linear Search
Input: Array \(W=\left[w_{0}, w_{1}, \ldots, w_{n-1}\right]\), real number target \(d\) and the startIndex we start searching from
Output: The smallest integer \(i\) satisfying \(w_{\text {startIndex }}+\ldots+w_{i}>d\)
```

1. $i=$ startIndex
2. While $d \geq w_{i}$
(a) $d=d-w_{i}$
(b) $i=i+1$
3. return i

When we try to remove an element from an array, directly erasing it could be time consuming as we need to rearrange all elements after it. If

Figure 2.1: In this example, $W=[1,2,3,4]$, and the dart lands in the part corresponding to $w_{2}=3$. The random sampling result is the selected index 2 .
we do not care about the order of elements in the array, we can use function swap_and_remove (W,index) shown in Algorithm 2 to remove it efficiently.

```
Algorithm 2: Element Removal from Array
    Input: Array \(W=\left[w_{0}, w_{1}, \ldots, w_{n-1}\right]\), and index of the element we want
        to remove
        1. \(w_{\text {index }}, w_{n-1}=w_{n-1}, w_{\text {index }}\)
        2. W.pop ()
```


2.3 Method 1: Linear Search

To illustrate sampling from a discrete distribution according to a weight array W , an intuitive way is to view W as a belt, on which each element i is expressed by a piece with a length proportional to w_{i}. We can then throw a dart at a random location on the belt and see which part it lands in. The example in Figure 2.1 illustrates this process.

To implement this idea, we need to store the weight array W and calculate the sum of all weights $\mathrm{S}=\sum_{i=0}^{n-1} w_{i}$. We show the initialization of the data structures in Algorithm 3.

To sample, we choose a real number $d \in[0, S)$ uniformly at random. Then we run a $O(n)$ linear search from elements 0 to $n-1$ to find the smallest i satisfying $w_{0}+w_{1}+\ldots+w_{i}>d$, and return this i as the sample. We show the pseudo code in Algorithm 4.

To update a weight, we only need to update w_{i} in W and S. We show the pseudo code in Algorithm 5.

```
Algorithm 3: Linear Search Construction
    Input: Weight array \(W=\left[w_{0}, w_{1}, \ldots, w_{n-1}\right]\)
    Output: Sum \(S=\sum_{i=0}^{n-1} w_{i}\)
```

 1. \(S=0\)
 2. For each integer \(i \in[0, n)\)
 (a) \(\mathrm{S}=\mathrm{S}+w_{i}\)
 Algorithm 4: Linear Search Sampling
Input: Weight array $W=\left[w_{0}, w_{1}, \ldots, w_{n-1}\right]$ and $\operatorname{sum} S=\sum_{i=0}^{n-1} w_{i}$
Output: Sampling result i
1. $d=$ uniform_real $(0, S)$
2. $i=$ linear_search $(W, d, 0)$
3. return i

```
Algorithm 5: Linear Search Updating
    Input: A new weight \(w_{i}^{\prime}\)
    1. \(S=S-w_{i}+w_{i}^{\prime}\)
    2. \(w_{i}=w_{i}^{\prime}\)
```

We refer to this method as the linear search method. The time complexity of construction and sampling is $\mathrm{O}(\mathrm{n})$, but it only takes constant $\Theta(1)$ time to update a weight.

2.4 Method 2: Binary Search

Besides linear search, we can also use binary search. Instead of W, we maintain the cumulative weight array $W S=\left[w s_{0}, \ldots, w s_{n-1}\right]$ with $w s_{i}=\sum_{j=0}^{i} w_{j}$ for $0 \leq i \leq n-1$. We show the initialization of the data structures in Algorithm 6.

```
Algorithm 6: Binary Search Construction
    Input: Weight array \(W=\left[w_{0}, w_{1}, \ldots, w_{n-1}\right]\)
    Output: Cumulative weight array \(W S=\left[w s_{0}, \ldots, w s_{n-1}\right]\)
        1. \(w s_{0}=w_{0}\)
        2. For each integer \(i \in[1, n)\)
            (a) \(w s_{i}=w s_{i-1}+w_{i}\)
```

To sample, we choose $d \in\left[0, w s_{n-1}\right)$ uniformly at random, and use binary search to find the smallest i satisfying $w_{0}+w_{1}+\ldots+w_{i}=w s_{i}>d$. We show the pseudo code in Algorithm 7.

To update a weight w_{i}, we need to update all $w s_{j}$ with $j \geq i$. We show the pseudo code in Algorithm 8.

By using binary search instead of linear search, we reduce the time complexity of sampling to $\mathrm{O}(\log (\mathrm{n}))$. However, it takes linear time instead of constant time to update in the worst case.

2.5 Method 3: The Alias Method

Vose's Alias method [18] is the state of art method for sampling from a static discrete distribution. It is an implementation of the famous Alias method algorithm [19]. It takes $\Theta(n)$ time to preprocess the weight array, but only $\Theta(1)$ time to generate a sample.

```
Algorithm 7: Binary Search Sampling
    Input: Cumulative weight array \(W S=\left[w s_{0}, \ldots, w s_{n-1}\right]\)
    Output: Sampling result \(r\)
    1. \(d=\) uniform_real \(\left(0, w s_{n-1}\right), l=0, r=n-1\)
    2. While \(l<r\)
        (a) \(m=\left\lfloor\frac{l+r}{2}\right\rfloor\)
        (b) If \(w s_{m} \leq d\)
        (1). \(l=m+1\)
        (c) Else
        (1). \(r=m\)
        3. return \(r\)
```

Algorithm 8: Binary Search Updating
Input: A new weight w_{i}^{\prime}
1. For each integer $j \in[i, n)$
\quad (a) $w s_{j}=w s_{j}-w_{i}+w_{i}^{\prime}$
2. $w_{i}=w_{i}^{\prime}$

We use the following example from Keith Schwarz's online publication [16] to illustrate table construction and sampling processes. Consider a weight array of size 4 , such as $W=[6,4,1,1]$. We first scale all weights w_{i} to generate a new weight array $W^{\prime}=\left[2, \frac{4}{3}, \frac{1}{3}, \frac{1}{3}\right]$, with sum $S^{\prime}=\sum w_{i}^{\prime}=n$, such that the probability of choosing each index i remains the same. Intuitively, we can view each weight w_{i} as a rectangle with width 1 and height w_{i} (shown in Figure 2.2 on the left). We split each rectangle into pieces of height at most 1 (shown in Figure 2.2 on the right). Since the average weight $\bar{w}=1$, we can cut rectangles

Figure 2.2: Viewing w_{i} as rectangles and splitting them into small pieces.
and rearrange the pieces such that each of the four columns has a height of exactly 1(shown in Figure 2.3 left). Crucially, this rearrangement can be done

1/3	1	2/3	2/3	UK	2/3	1	1/3	1/3
2/3		1/3	1/3		1	N/A	0	0

Figure 2.3: The rearrangement of the pieces and the corresponding tables.
in a way such that:

- There are at most two pieces in each column.
- At least one piece of the $i^{\text {th }}$ rectangle is placed in the $i^{t h}$ column.

We denote the process above as the Alias Method Rearrangement. To sample, we first choose one of the four columns uniformly at random and then choose one piece in the column according to their proportion. Since the $i^{t h}$ column contains at most one piece that is not from the $i^{\text {th }}$ rectangle, we use k_{i} in the alias table K to record the original column of that piece. $k_{i}=-1$ if there is only one piece in the $i^{\text {th }}$ column. u_{i} in table U is the probability of choosing
i when column i is randomly selected, and k_{i} is chosen with a probability of $1-u_{i}$. In the example, the alias table $K=[1,-1,0,0]$ and the probability table $U=\left[\frac{2}{3}, 1, \frac{1}{3}, \frac{1}{3}\right]$, as shown in Figure 2.3 on the right. For example, if we choose the $0^{\text {th }}$ column by sampling, we will output 0 with probability $u_{0}=\frac{2}{3}$ and 1 with probability $1-u_{0}=\frac{1}{3}$.

2.5.1 Correctness of the Alias Method

To prove that the Alias Method is correct, the key point is to prove that it is always possible to construct the alias and probability tables for an arbitrary weight array W. There always exists a way to split and rearrange the rectangles of weights such that the following conditions are met:

- There are at most two rectangles in each column.
- The height of each column is exactly 1 .
- One piece of the $i^{t h}$ rectangle is placed in the $i^{t h}$ column.

We modify the proof procedure at [16] to formalize and prove the key point above.

Lemma 1. For arbitrary weight array $W=\left[w_{0}, w_{1}, \ldots, w_{n-1}\right]$, we can scale the weights to form a new array $W^{\prime}=\left[w_{0}^{\prime}, w_{1}^{\prime}, \ldots, w_{n-1}^{\prime}\right]$, such that $S^{\prime}=\sum_{i=0}^{n-1} w_{i}^{\prime}=$ n and $p_{i}^{\prime}=\frac{w_{i}^{\prime}}{S^{\prime}}=p_{i}=\frac{w_{i}}{S}$ for all $0 \leq i<n$.

Proof. Let $w_{i}^{\prime}=\frac{n}{S} w_{i}$ for all $0 \leq i<n$, then $S^{\prime}=\sum_{i=0}^{n-1} w_{i}^{\prime}=\sum_{i=0}^{n-1} \frac{n}{S} w_{i}=$ $\frac{n}{S} \sum_{i=0}^{n-1} w_{i}=\frac{n}{S} S=n$. We also have $p_{i}=\frac{w_{i}^{\prime}}{S^{\prime}}=\frac{\frac{n}{S} w_{i}}{n}=\frac{w_{i}}{S}$ for all $0 \leq i<n$.

Lemma 2. Given n weights $w_{0}, w_{1}, \ldots, w_{n-1}$ where $n \geq 1$ such that $\sum_{i=0}^{n-1} w_{i}=$ n, there must be at least one weight $w_{l} \leq 1$ and one weight $w_{g} \geq 1$.

Proof. By contradiction. Assume that there is no weight $w_{l} \leq 1$, which means $w_{i}>1$ for all $0 \leq i<n$. Then $\sum_{i=0}^{n-1} w_{i}>n \cdot 1=n$, which is a contradiction. Similarly, if we assume that there is no weight $w_{g} \geq 1$, the sum of all weights would be smaller than n, which is also a contradiction.

Remark: in the proof above, it is possible that $l=g$.

Theorem 1. Given an arbitrary weight array $W=\left[w_{0}, w_{1}, \ldots, w_{n-1}\right]$, it is always possible to construct the alias and probability tables.

Proof. By Lemma 1, we can replace the weight array W with $W^{\prime}=\left[w_{0}^{\prime}, w_{1}^{\prime}, \ldots, w_{n-1}^{\prime}\right]$, such that $\sum_{i=0}^{n-1} w_{i}^{\prime}=n$ and the probability of choosing each index remains the same. Then proving that the theorem holds is equal to proving that the Alias Method Rearrangement is always doable.

We prove this by induction. In the base case $n=1$, there is only one rectangle of height $w_{0}=1$. Each column has height 1 , contains at most two different rectangles, and the $0^{t h}$ column contains at least one piece of the $0^{t h}$ rectangle.

For the induction step, assume that the theorem holds for n. For $n+$ 1 width-one rectangles of heights $w_{0}, w_{1}, \ldots, w_{n}$ such that $\sum_{i=0}^{n} w_{i}=n+1$, according to Lemma 2, there must be at least one rectangle with height $w_{l} \leq 1$ and one rectangle with height $w_{g} \geq 1$. We assume that the $l^{t h}$ rectangle has a height $w_{l} \leq 1$ and the $g^{t h}$ rectangle has a height $w_{g} \geq 1$. Then there are two possible cases.

Case 1: If $w_{l}=1$, we just keep this rectangle in the $l^{\text {th }}$ column without splitting. This column satisfies all the conditions. The remaining n rectangles have sum $n+1-1=n$. By the induction hypothesis, we can assign them into n columns while satisfying the conditions.

Case 2: If $w_{l}<1$, we can cut off a piece with height $1-w_{l}$ from rectangle g and move it to fill the $l^{\text {th }}$ column up to a height of 1 . Then the $l^{\text {th }}$ column satisfies all the conditions and there are n rectangles left with a sum of $n+$ $1-1=n$. Again, by the induction hypothesis, we can assign them into n columns while satisfying the conditions.

2.5.2 Implementation

We follow the pseudo code from [16] to implement Vose's Alias Method. The induction step in the proof of Theorem 1 gives the idea for building the probability and alias table. After scaling the weights $\sum_{i=0}^{n-1} w_{i}=n$, in each round, we select a combination of weights $w_{l}<1$ and $w_{g} \geq 1$ to determine the $l^{\text {th }}$
column of the probability table Prob and alias table Alias. Note that any $w_{g} \geq 1$ can fill the gap in the $l^{t h}$ column for a small weight $w_{l}<1$. We use two queues, Small to keep track of weights smaller than 1, and Large for the weights greater than or equal to 1 . In Algorithm 9 we show the construction procedure. After step 5, at least one of the queues is empty. The remaining weights should all be 1 in Large. Theoretically, there should not be $w_{i}<1$ in Small at this time point. But weights can be slightly larger or smaller due to numerical error, so in practice we add steps 6 and 7 in Algorithm 9 to deal with these weights.

To sample an element according to the weight array W, we choose an integer $i \in[0, n)$ and a real number $d \in[0,1)$ uniformly at random. The algorithm outputs i if $d<\operatorname{Prob}_{i}$, and Alias $_{i}$ otherwise. We show the implementation of sampling in Algorithm 10.

2.5.3 Using the Alias Method for a Time-changing Distribution

Unfortunately, as far as we know, there is no efficient way to update the weights in K and U after a weight change. For example, if we update w_{0} from 6 to 2 for $W=[6,4,1,1]$, the new $W^{\prime}=[2,4,1,1]$, Figures 2.4 and 2.5 show that in the new tables, all entries except for the values in column 1 are different.

| $1 / 3$ | | $2 / 3$ | $2 / 3$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2 / 3$ | 1 | $1 / 3$ | $1 / 3$ | | |
| | | 1 | 1 | $1 / 2$ | $1 / 2$ |

Figure 2.4: The rearrangement of the pieces for the new weight array $W^{\prime}=$ $[2,4,1,1]$ on the right compared with the old $W=[6,4,1,1]$ on the left.

| U | $2 / 3$ | 1 | $1 / 3$ | $1 / 3$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | U | | | | | | | |
| K | 1 | $\mathrm{~N} / \mathrm{A}$ | 0 | 0 | 1 | 1 | $1 / 2$ | $1 / 2$ |
| | K | N/A | N/A | 1 | 1 | | | |

Figure 2.5: The alias and probability tables for the new weight array $W=$ $[2,4,1,1]$ on the right compared with the old ones on the left.

Updating a weight can have $\Omega(n)$ runtime complexity as we need to completely rebuild the tables.

```
Algorithm 9: Alias Method Construction
    Input: Weight array \(W=\left[w_{0}, w_{1}, \ldots, w_{n-1}\right]\)
    Output: Probability table Prob and alias table Alias
```

1. Small $=$ Queue () , Large $=$ Queue ()
2. $S=\sum_{i=0}^{n-1} w_{i}$
3. For each integer $i \in[0, n)$
(a) $w_{i}=\frac{w_{i} \cdot n}{S}$
(b) If $w_{i}<1$
i. Small.put (i)
(c) Else
i. Large.put(i)
4. While not (Small.empty() and Large.empty())
(a) $l=$ Small.get ()$, g=$ Large.get ()
(b) $\operatorname{Prob}[l]=w_{l}, \operatorname{Alias}[l]=g$
(c) $w_{g}=w_{l}+w_{g}-1$
(d) If $w_{g}<1$
i. Small.put (g)
(e) Else
i. Large.put(g)
5. While not Large.empty()
(a) $g=$ Large.get ()
(b) $\operatorname{Prob}[g]=1$
6. While not Small.empty ()
(a) $l=$ Small.get ()
(b) $\operatorname{Prob}[l]=1$
```
Algorithm 10: Alias Method Sampling
    Input: Probability table Prob and alias table Alias
    Output: Sampling result \(i\) or Alias \(_{i}\)
```

 1. \(i=\) uniform_int \((0, n-1), d=\) uniform_real \((0,1)\)
 2. If \(d<\operatorname{Prob}_{i}\)
 (a) return \(i\)
 3. Else
 (a) return Alias \(_{i}\)

2.6 Method 4: C++11 discrete_distribution

Starting from $\mathrm{C}++11[8]$, the programming language $\mathrm{C}++$ provides a random number generator for discrete distributions. Using the std :: discrete_distribution template together with a random number engine such as the Mersenne Twister random number engine provided by $\mathrm{C}++$ libraries, one can generate random numbers according to a given weight distribution. $\mathrm{C}++$ standard requires a combination of generator and distribution to produce random numbers: while a generator produces a sequence of uniformly distributed random numbers, a distribution object transforms the sequence into numbers following a specific random variable distribution. Figure 2.6 shows an example of this process.

For time-changing discrete distributions, users must call the constructor each time the distribution is updated, as no updating function is provided in the class.

The $\mathrm{C}++11$ standard does not specify the sampling runtime complexity, so we checked two major open source implementations, the Boost C++ Library [1] and the GNU Compiler Collection [15] (GCC), to determine their runtime complexity. Interestingly, they used different algorithms. The Boost C++ Library used Vose's Alias method [18], while GCC used binary search. The asymptotic runtime complexity of both methods is different, as shown in Table 2.1.

```
#include <iostream>
#include <random>
int main()
{
    //create the random number engine and use random_device to seed it
    std::random_device rd;
    std::mt19937 generator(rd());
    //create the distribution object according to the weight array W={6,4,1,1}
    std::discrete_distribution<> distribution({6,4,1,1});
    //generate a random number according to the weight array
    std::cout<<distribution(generator)<<std::endl;
    return 0;
}
```

Figure 2.6: An example of generating random numbers according to weight array $W=[6,4,1,1]$ using $\mathrm{C}++$ libraries.

	Sample	Update	Construction
Boost C++ Library	$\Theta(1)$	$\Theta(n)$	$\Theta(n)$
GNU Compiler Collection	$\Theta(\log (n))$	$O(n)$	$\Theta(n)$

Table 2.1: The sample, update and construction runtime complexity for the Boost C++ Library and the GNU Compiler Collection implementations of the class std::discrete_distribution in the C++11 Standard.

2.7 Method 5: Two Level Search

Two level search is a simple but effective sampling method that is well known in the Computer Go community. However, despite a thorough search, we could not identify a formal reference. The idea is to build a two level structure to achieve a better sampling runtime while keeping updating efficient. The first level maintains the original weight array W, while the second level maintains a partial sum array $W D=\left[w d_{0}, \ldots, w d_{\left\lceil\frac{n}{L}\right\rceil-1}\right]$. Each entry in $W D$ maintains the partial sum of a group of $L<n$ weights $w d_{i}=\sum_{j=\operatorname{start}(i)}^{e n d(i)} w_{j}$, with $\operatorname{start}(i)=$ $L \cdot i$ and $\operatorname{end}(i)=\min (L \cdot(i+1)-1, n-1)$. Figure 2.7 illustrates W as a two-dimensional grid on the left. The array $W D$ on the right contains the sum of each row. We also maintain the global sum $S=\sum_{i=0}^{n-1} w_{i}$. We show the initialization of the data structures in Algorithm 11. We set $L=\lceil\sqrt{n}\rceil$, and will discuss this choice in Section 2.7.1.

W_{0}	$\mathrm{~W}_{1}$	$\mathrm{~W}_{2}$
$\mathrm{~W}_{3}$	$\mathrm{~W}_{4}$	$\mathrm{~W}_{5}$
$\mathrm{~W}_{6}$	$\mathrm{~W}_{7}$	$\mathrm{~W}_{8}$

$$
\begin{aligned}
& \mathrm{Wd}_{0}=\mathrm{W}_{0}+\mathrm{w}_{1}+\mathrm{w}_{2} \\
& \mathrm{Wd}_{1}=\mathrm{W}_{3}+\mathrm{w}_{4}+\mathrm{w}_{5} \\
& \mathrm{wd}_{2}=\mathrm{W}_{6}+\mathrm{w}_{7}+\mathrm{w}_{8}
\end{aligned}
$$

Figure 2.7: An example of two level search structure with $n=9$ and $L=3$.

```
Algorithm 11: Two Level Search Construction
    Input: Weight array \(W=\left[w_{0}, w_{1}, \ldots, w_{n-1}\right]\)
    Output: Array \(W D\) storing the partial sums and the overall sum \(S\)
1. \(S=0, L=\lceil\sqrt{n}\rceil\), WDn \(=\left\lceil\frac{n}{L}\right\rceil\)
2. For each integer \(i \in[0, W D n)\)
(a) \(\operatorname{start}(i)=L \cdot i, \operatorname{end}(i)=\min (L \cdot(i+1)-1, n-1)\)
(b) \(w d_{i}=\sum_{j=s t a r t(i)}^{e n d(i)} w_{j}\)
(c) \(S=S+w d_{i}\)
```

To sample from the distribution, we choose a real number $d \in[0, S)$ uniformly at random. We use linear search in $W D$ to find the corresponding group, i.e., we find the smallest r satisfying $w d_{0}+w d_{1}+\ldots+w d_{r}>d$. Then we run another linear search from $\operatorname{start}(r)$ to $\operatorname{end}(r)$ in W to find the smallest index i satisfying $w_{0}+w_{1}+\ldots+w_{i}=\sum_{j=0}^{r-1} w d_{j}+w_{\text {start }(r)}+\ldots+w_{i}>d$. Index i is the sampling result. We show the pseudo code in Algorithm 12.

Algorithm 12: Two Level Search Sampling

Input: Weight array $W=\left[w_{0}, w_{1}, \ldots, w_{n-1}\right]$, partial sum array
$W D=\left[w d_{0}, w d_{1}, \ldots, w d_{W D n-1}\right]$ and $\operatorname{sum} S=\sum_{i=0}^{n-1} w_{i}$
Output: Sampling result i

1. $d=$ uniform_real $(0, S)$
2. $i=$ linear_search $(W D, d, 0)$
3. $d=d-\sum_{j=0}^{i-1} w d_{j}$
4. $L=\lceil\sqrt{n}\rceil, i=i \cdot L$
5. $i=$ linear_search (W, d, i)
6. return i

To update a weight, we need to update three variables: w_{i} in W, the corresponding $w d_{r}$ with $r=\left\lfloor\frac{i}{L}\right\rfloor$ in $W D$, and S. We show the pseudo code in Algorithm 13.

```
Algorithm 13: Two Level Search Update
    Input: Weight array \(W=\left[w_{0}, w_{1}, \ldots, w_{n-1}\right]\), partial sum array
            \(W D=\left[w d_{0}, w d_{1}, \ldots, w d_{W D n-1}\right], \operatorname{sum} S=\sum_{i=0}^{n-1} w_{i}\) and the new
            weight \(w_{i}^{\prime}\)
        1. \(L=\lceil\sqrt{n}\rceil, r=\left\lfloor\frac{i}{L}\right\rfloor\)
        2. \(w d_{r}=w d_{r}+w_{i}^{\prime}-w_{i}, S=S+w_{i}^{\prime}-w_{i}\)
        3. \(w_{i}=w_{i}^{\prime}\)
```


L

Figure 2.8: Two level search for 19×19 Go with $n=361$ and varying L. The y-axis in the plot shows the average time spent to sample 10^{5} times with one update after each sample, plotted against L on the x-axis. The time spent for each L was averaged over 100 rounds. The minimum time spent is achieved with L chosen around 19, which is the square root of 361 .

2.7.1 Determining the Partial Sum Group Size L

The partial sum group size L can be any number between 1 and n. Empirically, $L=\lceil\sqrt{n}\rceil$ leads to the best performance, as shown in Figure 2.8. This result matches our theoretical analysis: For a two level search, the time complexity of sampling is $\mathrm{O}\left(\left\lceil\frac{n}{L}\right\rceil+L\right)=\mathrm{O}\left(\frac{n}{L}+L\right)$. This expression achieves its minimum $\frac{n}{L}+L \geq 2 \sqrt{\frac{n}{L} * L}=2 \sqrt{n}$ when $\frac{n}{L}=L$, i.e., $L=\sqrt{n}$.

The time complexity of method construction is $\Theta(n)$ since we can calculate $W D$ and S in a single pass as in Algorithm 11. With $L=\lceil\sqrt{n}\rceil$, the time complexity of sampling is $\mathrm{O}\left(\left\lceil\frac{n}{\lceil\sqrt{n}\rceil}\right\rceil+\lceil\sqrt{n}\rceil\right)=\mathrm{O}(\sqrt{n})$. The updating procedure shown in Algorithm 13 has a runtime complexity of $\Theta(1)$.

2.8 Method 6: Binary Tree Search

Instead of building only one extra level on top of the original weight array W, we can build a binary tree to help searching. The leaves of the tree are the weights w_{i} in W. Each node in the tree stores the sum of weights
of its children. To optimize the space needed, we build the tree using a 1based compact array $T=\left[t_{1}, \ldots, t_{2 n-1}\right]$. Each element t_{n+i} stores the original weight w_{i} for $0 \leq i<n$, and each element t_{i} stores the sum of its children $t_{i}=t_{2 i}+t_{2 i+1}$, for $1 \leq i<n$. The root t_{1} contains the sum of all weights $\sum_{i=0}^{n-1} w_{i}$. We show the implementation of the data structure initialization in Algorithm 14.

```
Algorithm 14: Binary Tree Search Construction
    Input: Weight array \(W=\left[w_{0}, w_{1}, \ldots, w_{n-1}\right]\)
    Output: Array \(T=\left[t_{1}, \ldots, t_{2 n-1}\right]\) representing the binary tree
```

1. For each integer $i \in[0, n)$
(a) $t_{n+i}=w_{i}$
2. $i=n-1$
3. While $i \geq 1$
(a) $t_{i}=t_{2 i}+t_{2 i+1}$
(b) $i=i-1$

To sample from the distribution, we choose a real number $d \in\left[0, t_{1}\right)$ uniformly at random. Starting from the root t_{1}, we search down the tree by repeating the following process: for each node t_{i} we are on, if $d<t_{2 i}$, we go to the left child $t_{2 i}$, otherwise, we subtract $t_{2 i}$ from d and go to the right child $t_{2 i+1}$. We repeat the process until we reach a leaf t_{i} with $n \leq i<2 n$, and we output $i-n$ as the sampling result. We show the pseudo code in Algorithm 15.

To update a weight w_{i}, we first update the value in the leaf, then iteratively update the values of its ancestors. We show the pseudo code in Algorithm 16.

The time complexity of method construction is $\Theta(n)$ since it takes $\Theta(1)$ time to fill each of the $2 n-1$ elements in T. The time complexity of both sampling and updating is $\Theta(\log (\mathrm{n}))$: we need to visit each level in the tree. There are $\lfloor\log (n)\rfloor+1$ levels, and there is $\Theta(1)$ work on each level.

Algorithm 15: Binary Tree Search Sampling
Input: Array $T=\left[t_{1}, \ldots, t_{2 n-1}\right]$ representing the binary tree
Output: Sampling result i

1. $d=$ uniform_real $\left(0, t_{1}\right)$
2. $i=1$
3. While $i<n$
(a) If $d<t_{2 i}$
i. $i=2 i$
(b) Else
i. $d=d-t_{2 i}$
ii. $i=2 i+1$
4. return $i-n$
```
Algorithm 16: Binary Tree Search Update
    Input: Array \(T=\left[t_{1}, \ldots, t_{2 n-1}\right]\) representing the binary tree and the
        new weight \(w_{i}^{\prime}\)
1. \(i=n+i\)
2. \(t_{i}=w_{i}^{\prime}\)
3. While \(i>1\)
(a) leftChild \(=i\), rightChild \(=i\)
(b) If \(i \% 2==0\)
i. rightChild \(=\) rightChild +1
(c) Else
i. leftChild \(=\) leftChild -1
(d) \(i=\left\lfloor\frac{i}{2}\right\rfloor\)
(e) \(t_{i}=t_{\text {leftChild }}+t_{\text {rightChild }}\)
```


2.9 Method 7: Rejection Method

Rejection sampling is a Monte Carlo method which generates samples from a probability distribution. We use an example to illustrate how it works. Figure 2.9 shows a probability density function $p(x)=\frac{1}{1.2113}\left(0.3 e^{-(x-0.3)^{2}}+\right.$ $\left.0.7 e^{-\frac{10}{3}(x-2)^{2}}\right)$ on the left. It is not trivial to draw a sample according to this

Figure 2.9: The plot on the left shows the probability density function $p(x)=$ $\frac{1}{1.2113}\left(0.3 e^{-(x-0.3)^{2}}+0.7 e^{-\frac{10}{3}(x-2)^{2}}\right)$ in the interval $[-4,6]$ while the plot on the right shows how we draw samples according to this function. The circles in the right plot are the samples we draw, and those colored red are the ones we accept.
probability density function directly. Instead, we can draw sample points (x, y) in the rectangular area $x \in[-4,6)$ and $y \in[0,0.6)$ uniformly at random, and only accept the points under the curve (shown in Figure 2.9 on the right). It is obvious that the probability with which we accept a sample x is proportional to $p(x)$. Given that x and y are chosen uniformly at random, we are sampling according to $p(x)$ inside the rectangle. To draw one sample, we keep drawing sample points (x, y) until $y<p(x)$ occurs, and output x as the result.

It is not hard to apply rejection sampling to discrete distributions. To construct the method, we need to store the weight array W and the maximum weight $B=\max \left(w_{i}\right)$. We show the initialization of the data structures in Algorithm 17.

To sample from a weight array W, we repeat the following process until a value is output: choose an integer $\mathrm{i} \in[0, \mathrm{n})$ and a real number $\mathrm{d} \in[0,1)$ uniformly at random, then output i if $d<\frac{w_{i}}{B}$. As shown in Figure 2.10, this

```
Algorithm 17: Rejection Method Construction
    Input: Weight array \(W=\left[w_{0}, w_{1}, \ldots, w_{n-1}\right]\)
    Output: Bound \(B\)
```

 1. \(B=0\)
 2. For each integer \(i \in[0, n)\)
 (a) \(B=\max \left(B, w_{i}\right)\)
 process is equivalent to drawing sample points uniformly from the rectangular area $x \in[-0.5,3.5)$ and $y \in[0,6)$, and accepting those in the gray area. We show the pseudo code in Algorithm 18.

```
Algorithm 18: Rejection Method Sampling
    Input: Weight array \(W=\left[w_{0}, w_{1}, \ldots, w_{n-1}\right]\) and bound \(B\)
    Output: Sampling result \(i\)
```

1. While true
(a) $i=$ uniform_int $(0, n), d=$ uniform_real $(0,1)$
(b) If $d<\frac{w_{i}}{B}$

$$
\text { (1). return } i
$$

To update a weight, we need to modify W and update B. In our implementation, we update the bound $B=\max \left(w_{i}\right)$ only when $\max w_{i}$ increases. We show the pseudo code in Algorithm 19.

```
Algorithm 19: Rejection Method Update
    Input: Weight array \(W=\left[w_{0}, w_{1}, \ldots, w_{n-1}\right]\), bound \(B\) and new weight
            \(w_{i}^{\prime}\)
        1. \(B=\max \left(B, w_{i}^{\prime}\right)\)
        2. \(w_{i}=w_{i}^{\prime}\)
```

The time complexity of construction is $\Theta(n)$. A single iteration leads to an output with probability $\frac{S}{n B}$, so the expected sampling time is $\Theta\left(\frac{n B}{S}\right)$. Sampling remains efficient as long as S is not much smaller than $n B$. An example of the

Figure 2.10: Drawing samples using the rejection method from the discrete distribution $W=[6,4,1,1]$.
worst case is when we have $W=\left[w_{0}, 0,0, \ldots, 0\right]$ with $w_{0} \neq 0$: we can generate a sampling result only if we select $i=0$, and the expected sampling time becomes $\Theta\left(\frac{n B}{w_{0}}\right)$. If $B=w_{0}$, the expected sampling time is $\Theta(n)$. If $B \gg w_{0}$, the expected sampling time could be much worse. On the other hand, if we have a weight array with equal weights, the expected sampling time becomes $\Theta\left(\frac{n B}{n B}\right)=\Theta(1)$. The updating runtime complexity is $\Theta(1)$.

2.10 Method 8: The Log* Method

Yossi Matias, Jeffrey Scott Vitter, and Wen-Chun Ni built another sampling method [12] based on the rejection method. Their method, referred to as the $\log ^{*}$ method in this thesis, achieves $\mathrm{O}\left(\log ^{*} n\right)$ sampling and $\mathrm{O}\left(2^{\log ^{*} n}\right)$ updating time complexity. With $\log ^{*} n \leq 5$ and $2^{\log ^{*} n} \leq 32$ for $n \leq 2^{65536}$, their method works in constant time for practical purposes.

The core idea of this method is to partition the weights into $\left[2^{j-1}, 2^{j}\right)$ groups and then treat the sum of each group as a new weight. The group weights form a new level, and groups containing two or more elements are used to recursively build the next level. This recursion builds a forest of trees, with the height of a tree being at most $\log ^{*} n+1$. Deciding the starting level and searching down from this level by applying the rejection method in each level requires visiting at most $\mathrm{O}\left(\log ^{*} n\right)$ levels, and using the rejection method in each group has a expected runtime complexity of $\mathrm{O}(1)$. As a result, the time complexity of sampling is $\mathrm{O}\left(\log ^{*} n\right)$. The updating procedure is much more sophisticated and has $\mathrm{O}\left(2^{\log ^{*} n}\right)$ time complexity. The authors also proved that the construction time is $O(n)$.

We use an example to illustrate the construction process of the log* method. Consider a weight array $W=\left[\frac{1}{4}, \frac{1}{3}, \frac{1}{2}, 8,15,15,16,16,268\right]$. We can partition the weights into five groups to form level 0 in the trees. We use R_{i}^{j} to denote the group in level i containing weights belonging to $\left[2^{j-1}, 2^{j}\right)$ and S_{i}^{j} to denote the sum of weights in each group. At level 0 , we have $R_{1}^{-1}=\left\{\frac{1}{3}, \frac{1}{4}\right\}, R_{1}^{0}=\left\{\frac{1}{2}\right\}$, $R_{1}^{4}=\{8,15,15\}, R_{1}^{5}=\{16,16\}$ and $R_{1}^{9}=\{268\}$, with sums $S_{1}^{-1}=\frac{7}{12}, S_{1}^{0}=\frac{1}{2}$, $S_{1}^{4}=38, S_{1}^{5}=32$ and $S_{1}^{9}=268$. We use a level table T to record the groups

Figure 2.11: Example of the forest built by the log* method. There are three levels and four roots. The right side shows the level table and the level sums.
which contain only one weight (called roots), and treat the sum of groups which contain two or more weights, S_{1}^{-1}, S_{1}^{4} and S_{1}^{5}, as new weights. We can again partition the new weights $\left\{\frac{7}{12}, 38,32\right\}$ into two groups $R_{2}^{0}=\left\{\frac{7}{12}\right\}$ and $R_{2}^{6}=\{32,38\}$ with sums $S_{2}^{0}=\frac{7}{12}$ and $S_{2}^{6}=70$. By recursively partitioning, we construct a forest of trees shown in Figure 2.11. There are three levels in addition to the original weight level, and there are four roots, $R_{1}^{0}, R_{1}^{9}, R_{2}^{0}$ and R_{3}^{7}. To store these roots in the level table T , such that T_{l} contains all the roots in level l, we have $T_{1}=\left\{R_{1}^{0}, R_{1}^{9}\right\}, T_{2}=\left\{R_{2}^{0}\right\}, T_{3}=\left\{R_{3}^{7}\right\}$. Besides the level table, we also store the sums of weights in each level $S_{1}=268 \frac{1}{2}, S_{2}=\frac{7}{12}$, $S_{3}=70$ as well as the overall sum $S=339 \frac{1}{12}$.

To implement this method, each group R_{l}^{j} needs to record its children in an array. To enable efficient removal, it also needs to record and maintain the array index of each child. In addition, we store the sum of weights of its children in R_{l}^{j}.weight. Each T_{l} in the level table T is implemented as a hashmap that maps j to R_{l}^{j}. We maintain an integer level_root ${ }_{l}$ that keeps track of all roots in level l. Its $j^{t h}$ bit is set iff the root R_{l}^{j} exists. We show the pseudo code in Algorithm 20. We use a helper function construct_level shown in Algorithm 21 to demonstrate the level by level construction process recursively.

To sample from the discrete distribution, we need to determine the root to start from. We choose a real number $\mathrm{d} \in[0, \mathrm{~S})$ uniformly at random, and run

```
Algorithm 20: Log* Method Construction
    Input: Weight array \(W=\left[w_{0}, w_{1}, \ldots, w_{n-1}\right]\)
    Output: Level table \(T\), level sum level_sum, root tacking table
                level_root and the overall sum S
            1. \(Q=\) Queue ()\(, S=\operatorname{set}()\)
2. For each integer \(i \in[0, n)\)
(a) \(j=\left\lfloor\log \left(w_{i}\right)\right\rfloor+1\)
(b) \(R_{1}^{j} \cdot\) children.append \((i), R_{1}^{j} \cdot\) weight \(=R_{1}^{j} \cdot\) weight \(+w_{i}\)
(c) If \(R_{1}^{j}\) not in \(S\)
i. \(\operatorname{S.add}\left(R_{1}^{j}\right)\)
ii. \(Q . p u t\left(R_{1}^{j}\right)\)
(d) \(S=S+w_{i}\)
```

3. construct_level $(1, Q)$
a linear search to find the smallest i satisfying $S_{\text {level }}=S_{1}+S_{2}+\ldots+S_{i}>d$. Then we use another linear search in level i to determine the root R_{i}^{j} we start from. We start with the largest j in level i, and keep adding S_{i}^{j} to a temporary sum $T S$, until $S_{\text {level }}+T S>d$. The last S_{i}^{j} we added corresponds to the root R_{i}^{j} we start from. Starting from root R_{i}^{j}, we trace down the tree to find the index we want to output. For a group R_{i}^{j} we are on, we use rejection sampling with bound $B=2^{j}$ to choose one weight and go to the corresponding group. We repeat this procedure until we reach level 0 , where we output the index chosen as the result. We show the pseudo code in Algorithm 22.

We need two helper functions to accomplish the update procedure:

1. A remove $\left(R_{i}^{j}, i t e m\right)$ function that removes item from group R_{i}^{j}. Based on the level i, the item could be either a weight from W or a group $R_{i-1}^{j^{\prime}}$. We need to update the sum S_{i}^{j}, and we may need to change the parent of R_{i}^{j} in the forest, which triggers recursive calls $\operatorname{remove}\left(R_{i+1}^{j^{\prime}}, R_{i}^{j}\right)$ and $\operatorname{add}\left(R_{i+1}^{j^{\prime \prime}}, R_{i}^{j}\right)$.
2. An $\operatorname{add}\left(R_{i}^{j}\right.$, item $)$ function that adds item to group R_{i}^{j}. Similar to $\operatorname{remove}\left(R_{i}^{j}\right.$, item $)$, the item could be a weight or a group. We also need
```
Algorithm 21: Log* Method construct_level
    Input: Level number \(l\) and queue of groups \(Q\)
    Output: Level table \(T\), level sum level_sum and root tacking table
        level_root
        1. more_than_one \(=\) false
        2. \(Q^{\prime}=\) Queue ()
        3. While not Q.empty()
            (a) \(R_{l}^{i}=Q \cdot \operatorname{get}()\)
            (b) If \(\operatorname{len}\left(R_{l}^{i}\right.\).children \()==1\)
            i. level_sum \({ }_{l}=\) level_sum \({ }_{l}+R_{l}^{i} \cdot\) weight
            ii. level_root \({ }_{l}=\) level_root \(_{l}+2^{i}\)
            iii. \(T_{l}[i]=R_{l}^{i}\)
            (c) Else
            i. \(j=\left\lfloor\log \left(R_{l}^{i}\right.\right.\).weight \(\left.)\right\rfloor+1\)
            ii. \(R_{l+1}^{j}\).children.append \(\left(R_{l}^{i}\right)\)
            iii. \(R_{l+1}^{j}\).weight \(=R_{l+1}^{j} \cdot\) weight \(+R_{l}^{i} \cdot\) weight
            iv. \(Q^{\prime} \cdot p u t\left(R_{l+1}^{j}\right)\)
            v. more_than_one \(=\) true
```

4. If more_than_one
(a) construct_level $\left(l+1, Q^{\prime}\right)$
```
Algorithm 22: Log* Method Sampling
    Input: Level table \(T\), level sum level_sum, root tacking table
        level_root and the overall sum S
    Output: Sampling result \(i\)
1. \(d=\) uniform_real \((0, S)\)
2. \(l=\) linear_search(level_sum, \(d, 1\) )
3. root \(=\) None
4. While root \(==\) None
(a) \(j=\left\lfloor\log \left(\right.\right.\) level_root \(\left.\left._{l}\right)\right\rfloor+1, R_{l}^{j}=T_{l}[j]\)
(b) level_root \({ }_{l}=\) level_root \(_{l}-2^{j}\)
(c) If \(d<R_{l}^{j}\).weight
i. root \(=R_{l}^{j}\)
(d) Else
i. \(d=d-R_{l}^{j}\).weight
```

5. While true
(a) $B=2^{j}, i=$ uniform_int $(0$, len(root.children) -1$)$, $d=$ uniform_real $(0,1)$
(b) $R_{l}^{j}=$ root
(c) If $l==1$
i. If $d<\frac{w[\text { root.children[i]] }}{2^{j}}$
A. return root.children $[i]$
(d) Else
i. If $d<\frac{\text { root.children }[i] \text {.weight }}{2^{j}}$ A. root $=$ root.children $[i]$
to call $\operatorname{remove}\left(R_{i+1}^{j^{\prime}}, R_{i}^{j}\right)$ and $\operatorname{add}\left(R_{i+1}^{j^{\prime \prime}}, R_{i}^{j}\right)$ recursively if the parent of R_{i}^{j} changes because of the update of S_{i}^{j}.

It is worth noting that, since we change the number of children R_{i}^{j} has in both functions, we also need to consider the case where R_{i}^{j} switches between root, non-root and non-valid. To update a weight w_{i} to w_{i}^{\prime}, we just need to call $\operatorname{remove}\left(R_{i}^{j}, w_{i}\right)$ and $\operatorname{add}\left(R_{i}^{j^{\prime}}, w_{i}^{\prime}\right)$, where R_{i}^{j} is the original group w_{i} belongs to, and $R_{i}^{j^{\prime}}$ is the new group w_{i}^{\prime} belongs to. We show the pseudo code for the updating process, add_weight and delete_weight in Algorithms 23-25.

```
Algorithm 23: Log* Method Update
    Input: Level table \(T\), level sum level_sum, root tracking table
            level_root, the overall sum S and the new weight \(w_{i}^{\prime}\)
        1. \(j=\left\lfloor\log \left(w_{i}\right)\right\rfloor+1\)
        2. \(S=S-w_{i}\)
        3. delete_weight \(\left(R_{1}^{j}, w_{i}\right)\)
        4. \(S=S+w_{i}^{\prime}\)
        5. \(j^{\prime}=\left\lfloor\log \left(w_{i}\right)\right\rfloor+1\)
        6. add_weight \(\left(R_{1}^{j^{\prime}}, w_{i}^{\prime}\right)\)
```

The authors [12] introduced a way to modify this method to achieve $\mathrm{O}\left(\log ^{*}\right.$ n) updating time complexity. Inspired by T. Hagerup's paper [6], they also propose a way to make this method achieve $\mathrm{O}(1)$ time complexity for both sampling and updating. However, these modifications involve time consuming operations such as building a lookup table to handle all possible changes in the future. Hence, the authors still recommend the basic $\log ^{*}$ method for general use [12]. In our experiments, we found that the basic log* method already has too much overhead in practice. Considering our goal of finding suitable methods for general use, we chose not to introduce more overhead by building even more complex methods.

```
Algorithm 24: Log* Method add_weight
    Input: Level table \(T\), level sum level_sum, root tracking table
        level_root, target group \(R_{l}^{i}\), and the new child child
    1. \(R_{l}^{i}\).children.append(child)
    2. \(R_{l}^{i} \cdot\) weight \(=R_{l}^{i}\).weight + child.weight
    3. If \(\operatorname{len}\left(R_{l}^{i}\right.\). children \()==1\)
(a) level_sum \(l_{l}=\) level_sum \({ }_{l}+R_{l}^{i} \cdot w e i g h t\)
(b) level_root \({ }_{l}=\) level_root \(_{l}+2^{i}\)
(c) \(T_{l}[i]=R_{l}^{i}\)
4. Elif \(\operatorname{len}\left(R_{l}^{i}\right.\). children \()==2\)
(a) level_sum \(l_{l}=\) level_sum \(-\left(R_{l}^{i}\right.\). weight - child.weight \()\)
(b) level_root \({ }_{l}=\) level_root \(_{l}-2^{i}\)
(c) \(j=\left\lfloor\log \left(R_{l}^{i}\right.\right.\).weight \(\left.)\right\rfloor+1\)
(d) add_weight \(\left(R_{l+1}^{j}, R_{l}^{i}\right)\)
```

5. Else
(a) $j^{\prime}=\left\lfloor\log \left(R_{l}^{i}\right.\right.$.weight - child.weight $\left.)\right\rfloor+1$
(b) delete_weight $\left(R_{l+1}^{j^{\prime}}, R_{l}^{i}\right)$
(c) $j=\left\lfloor\log \left(R_{l}^{i}\right.\right.$.weight $\left.)\right\rfloor+1$
(d) add_weight $\left(R_{l+1}^{j}, R_{l}^{i}\right)$
```
Algorithm 25: Log* Method delete_weight
    Input: Level table \(T\), level sum level_sum, root tracking table
        level_root, group \(R_{l}^{i}\), and the node to be removed child
    1. \(R_{l}^{i}\).weight \(=R_{l}^{i}\).weight - child.weight
    2. index \(=\) index of child in \(R_{l}^{i}\).children
    3. swap_and_remove( \(R_{l}^{i}\).children,index)
    4. If len \(\left(R_{l}^{i}\right.\). children \()==0\)
(a) level_sum \({ }_{l}=\) level_sum \(l_{l}-R_{l}^{i}\).weight
(b) level_root \({ }_{l}=\) level_root \(_{l}-2^{i}\)
(c) \(T_{l} \cdot \operatorname{pop}(i)\)
5. Elif \(\operatorname{len}\left(R_{l}^{i}\right.\). children \()==1\)
(a) level_sum \({ }_{l}=\) level_sum \({ }_{l}+R_{l}^{i}\).weight
(b) level_root \({ }_{l}=\) level_root \(_{l}+2^{i}\)
(c) \(T_{l}[i]=R_{l}^{i}\)
(d) \(j^{\prime}=\left\lfloor\log \left(R_{l}^{i}\right.\right.\).weight + child.weight \(\left.)\right\rfloor+1\)
(e) delete_weight \(\left(R_{l+1}^{j^{\prime}}, R_{l}^{i}\right)\)
```

6. Else
(a) $j^{\prime}=\left\lfloor\log \left(R_{l}^{i}\right.\right.$.weight + child.weight $\left.)\right\rfloor+1$
(b) delete_weight $\left(R_{l+1}^{j^{\prime}}, R_{l}^{i}\right)$
(c) $j=\left\lfloor\log \left(R_{l}^{i}\right.\right.$.weight $\left.)\right\rfloor+1$
(d) add_weight $\left(R_{l+1}^{j}, R_{l}^{i}\right)$

	Sampling time	Updating time	Constructing time
Alias Method	$\Theta(1)$	$\Theta(\mathrm{n})$	$\Theta(\mathrm{n})$
$\mathrm{C}++$ discrete	unspecified 1	unspecified 1	$\Theta(\mathrm{n})$
Linear search	$\mathrm{O}(\mathrm{n})$	$\Theta(1)$	$\Theta(\mathrm{n})$
Binary search	$\mathrm{O}(\log (\mathrm{n}))$	$\mathrm{O}(\mathrm{n})$	$\Theta(\mathrm{n})$
Two level search	$\mathrm{O}(\sqrt{n})$	$\Theta(1)$	$\Theta(\mathrm{n})$
Binary tree search	$\Theta(\log (\mathrm{n}))$	$\Theta(\log (\mathrm{n}))$	$\Theta(\mathrm{n})$
Rejection Method	$\mathrm{O}\left(\frac{n B}{S}\right)$	$\Theta(1)$	$\Theta(\mathrm{n})$
Log* Method $^{\mathrm{O}\left(\log ^{*} n\right)}$	$\mathrm{O}\left(2^{\log ^{*} n}\right)$	$\Theta(\mathrm{n})$	

Table 2.2: The table summarizes the time complexity for all the sampling methods in this chapter. In the table, n is the size of weight array W, S is the sum of all weights, B is the maximum weight in W, and M represents the maximum possible weight.

2.11 Summary

To sample from discrete distributions, the methods in the literature can be partitioned into three groups, namely search-based methods, rejection-based methods and the Alias Method. Search-based methods include linear search, binary search, two level search, and binary tree search. They find the sample by searching, and use simple data structures to optimize the search procedure. Rejection-based methods include the rejection method and log* method. They could be more complex but their runtime depends less on n. In order to compare all methods, Table 2.2 shows all the known theoretical runtime complexity results.

[^0]
Chapter 3

New Sampling Methods for Time-Changing Discrete Distributions

By expanding on ideas in existing methods and algorithms, and based on practical considerations, we derive and propose two new methods: In Section 3.1, we give an introduction to multi-level search, with a focus on three level search. In Section 3.2, we give an introduction to flat method.

3.1 Multi-Level Search

Expanding the idea of the two level search of Section 2.7, we build multilevel structures, starting with three levels. The third level WD2 maintains the partial sums of the second level $W D$. The data structures are identical to the ones we introduced in Section 2.7, plus an additional array WD2 = $\left[w d 2_{0}, \ldots, w d 2^{\left\lceil\frac{n}{L^{2}}\right\rceil-1}\right]$. Each entry in WD2 maintains the partial sum of a group of L weights $w d 2_{i}=\sum_{j=s t a r t(i)}^{e n d 2(i)} w d_{j}$, with $\operatorname{start}(i)=L \cdot i$ and $\operatorname{end2}(i)=$ $\min \left(L \cdot(i+1)-1,\left\lceil\frac{n}{L}\right\rceil-1\right)$. We can view this three-level structure as a forest of trees, where each node is an element in W, WD or WD2. The roots are elements in WD2. Figure 3.1 demonstrates this idea with an example. We show the initialization of the data structures in Algorithm 26. We set $L=\lceil\sqrt[3]{n}\rceil$, and will discuss this choice at the end of this subsection.

To sample from a distribution, we choose a real number $d \in[0, S)$ uniformly at random. We run a linear search in WD2 to find the smallest $r 2$ satisfying

Figure 3.1: In this example, $W=[1,2,2,1,3,2,3,4,2,1,1]$ and $L=3$. We construct $W D=[5,6,9,2]$ and $W D 2=[20,2]$ according to W.

Algorithm 26: Three Level Search Construction

Input: Weight array $W=\left[w_{0}, w_{1}, \ldots, w_{n-1}\right]$
Output: Array WD, WD2 storing the partial sums and the overall sum S

1. $S=0, L=\lceil\sqrt[3]{n}\rceil$
2. For each integer $i \in\left[0,\left\lceil\frac{n}{L}\right\rceil\right)$
(a) $\operatorname{start}(i)=L \cdot i, \operatorname{end}(i)=\min (L \cdot(i+1)-1, n-1)$
(b) $w d_{i}=\sum_{j=s t a r t(i)}^{e n d(i)} w_{j}$
(c) $S=S+w d_{i}$
3. For each integer $i \in\left[0,\left\lceil\frac{n}{L^{2}}\right\rceil\right)$
(a) $\operatorname{start}(i)=L \cdot i, \operatorname{end} 2(i)=\min \left(L \cdot(i+1)-1,\left\lceil\frac{n}{L}\right\rceil-1\right)$
(b) $w d 2_{i}=\sum_{j=\operatorname{start}(i)}^{e n d 2(i)} w d_{j}$
$w d 2_{0}+w d 2_{1}+\ldots+w d 2_{r 2}>d$. Each tree with root being an element of WD2 can then be viewed as a two level search problem. So we can subtract $\sum_{j=0}^{r 2-1} w d 2_{j}$ from d, and follow the sampling process we introduced in Section 2.7 to generate the result from the two-level subproblem. The only difference is that when we run linear search in $W D$, we start from $\operatorname{start}(r 2)$ instead of 0 as we have already subtracted some values from d. We show the pseudo code in Algorithm 27.
```
Algorithm 27: Three Level Search Sampling
    Output: Sampling result \(i\)
        1. \(d=\) uniform_real \((0, S)\)
        2. \(i=\) linear_search \((W D 2, d, 0)\)
        3. \(d=d-\sum_{j=0}^{i-1} w d 2_{j}\)
        4. \(L=\lceil\sqrt[3]{n}\rceil, i=i * L\)
        5. \(i^{\prime}=\) linear_search \((W D, d, i)\)
        6. \(d=d-\sum_{j=i}^{i^{\prime}-1} w d_{j}\)
        7. \(i^{\prime}=i^{\prime} * L\)
        8. \(i^{\prime}=\) linear_search \(\left(W, d, i^{\prime}\right)\)
        9. return \(i^{\prime}\)
```

 Input: Weight array \(W=\left[w_{0}, w_{1}, \ldots, w_{n-1}\right]\), partial sum array
 \(W D=\left[w d_{0}, w d_{1}, \ldots, w d_{W D n-1}\right]\) and \(\operatorname{sum} S=\sum_{i=0}^{n-1} w_{i}\)
 The updating process is the same as the one we introduced in Section 2.7, except that we also need to update $w d 2_{r 2}$ with $r 2=\left\lfloor\frac{i}{L^{2}}\right\rfloor$ in $W D 2$. We show the pseudo code in Algorithm 28.

The time complexity of construction remains $\Theta(n)$. The updating procedure has a runtime complexity of $\Theta(1)$. The time complexity of sampling is $\mathrm{O}\left(2 L+\frac{n}{L^{2}}\right)$. Let $f(L)=2 L+\frac{n}{L^{2}}$, where $L>0$. The function f reaches its minimum when its derivative $f^{\prime}(L)=2-2 n L^{-3}=0$, i.e., $L=\sqrt[3]{n}$. In practice we set $L=\lceil\sqrt[3]{n}\rceil$, and the time complexity of sampling is $\mathrm{O}\left(2\lceil\sqrt[3]{n}\rceil+\frac{n}{\lceil\sqrt[3]{n}\rceil^{2}}\right)$ $=\mathrm{O}(\sqrt[3]{n})$.

```
Algorithm 28: Three Level Search Update
    Input: Weight array \(W=\left[w_{0}, w_{1}, \ldots, w_{n-1}\right]\), partial sum array
            \(W D=\left[w d_{0}, w d_{1}, \ldots, w d_{W D n-1}\right], \operatorname{sum} S=\sum_{i=0}^{n-1} w_{i}\) and the new
            weight \(w_{i}^{\prime}\)
        1. \(L=\lceil\sqrt[3]{n}\rceil, r=\left\lfloor\frac{i}{L}\right\rfloor, r 2=\left\lfloor\frac{i}{L^{2}}\right\rfloor\)
        2. \(\Delta=w_{i}^{\prime}-w_{i}\)
        3. \(w d_{r}=w d_{r}+\Delta, w d 2_{r 2}=w d 2_{r 2}+\Delta, S=S+\Delta\)
        4. \(w_{i}=w_{i}^{\prime}\)
```


3.1.1 Adding More Levels

Compared with the two level search, three level search decreases the sampling time to $\mathrm{O}(\sqrt[3]{n})$ while keeping updating time $\Theta(1)$. If we add more levels, the sampling time decreases further to $\mathrm{O}(\sqrt[4]{n}), \mathrm{O}(\sqrt[5]{n}), \ldots$ while the updating time remains $\Theta(1)$. However, it is obvious that by adding levels, we need to go through more levels in both sampling and updating, which involves more operations. So the actual running time can increase. In order to make it fast in practice, we need to consider the trade off between the search time in each level and the number of levels, which becomes a practical problem. We will discuss it further in Section 5.2.

Note that since $L \geq 2$, if we keep adding levels, the method will eventually become a binary tree search with both sampling time and the updating time being $\mathrm{O}(\log (n))$. Please refer to Section 2.8 for a space optimized binary tree search method.

3.2 Flat Method

On the base of the Rejection method, T. Hagerup, K. Mehlhorn and I. Munro proposed a sampling method that achieves both $O(1)$ sampling and $O(1)$ updating time complexity [6]. The method requires that the maximum weight is bounded by a polynomial in n [12], which is a strong assumption. The authors made the assumption because they need to "compress" the weight arrays to
certain sizes and use a finite set of integers to encode them. While we cannot use this method as we do not make the same assumption, we use their building blocks to compress W : we partition the weights into different groups such that applying the rejection method in each group becomes efficient. But instead of integer encodings and lookup tables, we use a linear search to select the proper group in the sampling. We implemented this method denoted as flat method and tested it in practice.

To compress W, we partition the weights w_{i} into different groups, such that group G_{j} only contains weights $w_{i} \in\left[2^{j-1}, 2^{j}\right)$. After setting a bound $B_{j}=2^{j}$ for group G_{j}, the expected sampling time for the rejection method within each group becomes $\mathrm{O}\left(\frac{n * 2^{j}}{S}\right)=\mathrm{O}\left(\frac{n * 2^{j}}{2^{j-1} * n}\right)=\mathrm{O}(1)$. In our implementation, we put small weights with $w_{i}<1$ into a single group G_{0} with bound $\mathrm{B}=1$. The expected sampling time within G_{0} is $\mathrm{O}\left(\frac{n_{0}}{S_{0}}\right)$, where n_{0} is the number of weights and S_{0} is the sum of weights in G_{0}. Considering the possibility of selecting G_{0} during sampling, the expected time becomes $\frac{S_{0}}{S} * O\left(\frac{n_{0}}{S_{0}}\right)=O\left(\frac{n_{0}}{S}\right) \leq O\left(\frac{n}{S}\right)=$ $O\left(\frac{1}{\bar{w}}\right)$, where S is the sum of all weights and \bar{w} is the average weight.

To construct the method, we need to manually set the maximum possible weight M. We maintain a group table G to keep track of the weights partitioned into different groups. We have groups $G_{0}, G_{1}, \ldots, G_{\lfloor\log (M)\rfloor+1}$, where group G_{j} with $j \geq 1$ contains all indices i with weights $w_{i} \in\left[2^{j-1}, 2^{j}\right) . G_{0}$ contains all indices i with weights $w_{i}<1$. We use another table to record and maintain the position of w_{i}, including the group w_{i} belongs to, and the index of w_{i} in the group. In addition, we use S to store the overall sum and $G S_{j}$ to keep track of the sum of all weights in G_{j}. We show the initialization of the data structures in Algorithm 29.

To sample from the distribution, we choose a real number $d \in[0, S)$ uniformly at random. We use a linear search in $G S$ to find the corresponding group, i.e., the smallest j satisfying $g s_{0}+g s_{1}+\ldots+g s_{j}>d$. Then we run the rejection method with bound $B_{j}=2^{j}$ in group G_{j} to generate the result. We show the pseudo code in Algorithm 30.

To update a weight w_{i} to w_{i}^{\prime}, there are two possible cases:

```
Algorithm 29: Flat Method Construction
```

 Input: Weight array \(W=\left[w_{0}, w_{1}, \ldots, w_{n-1}\right]\)
 Output: Group table \(G\), group sum table \(G S\) and the overall sum \(S\)
 1. For each integer \(i \in[0, n)\)
 (a) $j=\left\lfloor\log \left(w_{i}\right)\right\rfloor+1$
(b) $G_{j} \cdot \operatorname{append}(i)$
(c) $S=S+w_{i}, G S_{j}=G S_{j}+w_{i}$

```
Algorithm 30: Flat Method Sampling
    Input: Weight array \(W=\left[w_{0}, w_{1}, \ldots, w_{n-1}\right]\), group table \(G\), group sum
        table \(G S\) and the overall sum \(S\)
    Output: Sampling result \(i\)
```

1. $d=$ uniform_real $(0, S)$
2. $j=$ linear_search $(G S, d, 0)$
3. While true
(a) $i=$ uniform_int $\left(0, l e n\left(G_{j}\right)-1\right), d=$ uniform_real $(0,1)$
(b) If $d<\frac{w\left[G_{j}[i]\right]}{2^{j}}$
i. return $G_{j}[i]$
4. If w_{i} and w_{i}^{\prime} belong to the same group G_{j}, we only need to update W, $G S_{j}$ and S.
5. If w_{i} belongs to G_{j} while w_{i}^{\prime} belongs to $G_{j^{\prime}}$, where $j \neq j^{\prime}$, we need to erase i from G_{j} and append it to the back of $G_{j^{\prime}}$. Then we update W, $G S_{j}, G S_{j^{\prime}}$ and S accordingly.

We show the pseudo code in Algorithm 31.

```
Algorithm 31: Flat Method Update
    Input: Weight array \(W=\left[w_{0}, w_{1}, \ldots, w_{n-1}\right]\), group table \(G\), group sum
            table \(G S\), the overall sum \(S\) and the new weight \(w_{i}^{\prime}\)
        1. \(j^{\prime}=\left\lfloor\log \left(w_{i}^{\prime}\right)\right\rfloor+1\)
        2. \(j=\left\lfloor\log \left(w_{i}\right)\right\rfloor+1\), index \(=\operatorname{index}\) of \(w_{i}\) in \(G_{j}\)
        3. If \(j=j^{\prime}\)
```

 (a) \(S=S-w_{i}+w_{i}^{\prime}, G S_{j}=G S_{j}-w_{i}+w_{i}^{\prime}\)
 4. Else
 (a) $S=S-w_{i}, G S_{j}=G S_{j}-w_{i}$
(b) swap_and_remove $\left(G_{j}\right.$, index $)$
(c) $S=S+w_{i}^{\prime}, G S_{j^{\prime}}=G S_{j^{\prime}}+w_{i}^{\prime}$
(d) $G S_{j^{\prime}} \cdot \operatorname{append}(i)$
5. $w_{i}=w_{i}^{\prime}$

The time complexity of construction is $\Theta(n)$ as we only need to loop through all weights once. During sampling, it takes $\mathrm{O}(\log (M))$ time to run the linear search in $G S$. The expected sampling time within each group is $\mathrm{O}(1)$, except for group G_{0}, where $\mathrm{O}\left(\frac{1}{\bar{w}}\right)$ sampling time is needed. As a result, the overall expected sampling time is $\mathrm{O}\left(\log (M)+\frac{1}{\bar{w}}\right)$. If we assume that $\bar{w} \geq c$ for constant $c>0$, the expected sampling time becomes $\mathrm{O}(\log (M))$. The time complexity of updating is $\Theta(1)$.

Chapter 4

Experiments

In this chapter, we describe our experiments. They are divided into two major parts:

- We designed and built a test platform for all sampling methods to check if our implementations work as expected.
- To compare the practical performance of all sampling methods, we collected actual runtime data and built an empirical runtime model, using linear regression to fit the model to the data.

We show our test environment in Section 4.1, introduce the test platform in Section 4.2, and the empirical runtime model in Section 4.3.

4.1 Test Environment

Our test environment contains an 8 core processor Intel i7-6700HQ (2.60 GHz) with 16 GB memory. Our program runs on Ubuntu 16.04 LTS and is compiled with O 2 optimization under gcc 5.4.0. All methods are implemented in $\mathrm{C}++11$ [8].

4.2 Test Platform

The test platform contains three parts: unit test, assertion test and statistical test. We used the factory method pattern [5] to create the objects for all methods. The C++ implementations of all classes share a base class baseDiscrete
with a constructor, a sampling function sample () and a updating function update (index, weight). By using factory classes, we can build a unified test procedure to test all methods without writing code for each case separately.

4.2.1 Unit Tests and Assertions

For each method, we define unit tests to check if the values in the data structures are consistent with our expectation. For methods with simple data structures such as binary search and two level search, we directly check if the values are correct after a series of calls to update(index, weight) and sample(). For methods with complex data structures such as the $\log ^{*}$ method, we check the internal consistency of the values in the data structures after each update(index, weight) and each sample() call.

In addition to the unit tests, we developed simple assertion based tests to check the basic correctness of all the methods: For each method, we construct a random discrete distribution of size $n \in[10,30000]$. Each weight $w_{i} \in$ $[0,10000)$ is chosen uniformly at random. We randomly select $\left\lfloor\frac{n}{2}\right\rfloor$ indices i and update the corresponding weights w_{i} with new weights also chosen from $[0,10000)$. Then we generate n samples and assert that no sampling results are invalid, i.e., out of the range of $[0, n)$. We repeat this test for 10 times for each method.

4.2.2 Statistical Tests

The unit and unified tests only check the basic correctness of the methods. Sampling methods also need to sample properly according to the specified underlying distribution. For each method, we used Pearson's chi-squared goodness of fit test [14] to establish whether the observed frequency distribution of our sampling result differs significantly from the true distribution. In the test, we build each method according to a weight array W with size $n=1000$. The chi-squared test requires that each index i should have at least 5 expected counts in sampling reference, so we select weights $w_{i} \in[10,2000]$ uniformly at random. We construct a sampling method for these weights. During sampling, we generate 10^{7} samples, such that the least expected count for each index i is

	χ^{2}	P -value
Alias Method	959.1994	0.8126
C++ discrete	962.9184	0.7888
Linear search	991.1013	0.5644
Binary search	977.3959	0.6815
Two level search	1019.5578	0.3186
Three level search	1000.8893	0.4772
Binary tree search	951.8387	0.8548
Rejection Method	973.7842	0.7102
Flat Method	932.7314	0.9334
Log* Method	977.5903	0.6799

Table 4.1: The χ^{2} values and the corresponding p-values in Pearson's chisquared goodness of fit tests for all methods.
$10^{7} \times \frac{10}{2000 \times 1000}=50>5$. To make sure that the updating also works properly, before we start sampling, we randomly select 500 indices i and update the corresponding weights w_{i} with new weights also chosen uniformly at random from [10,2000].

For the chi-squared test, our null hypothesis is H_{0} : The probability of choosing an index i as the sampling result is equal to $p_{i}=\frac{w_{i}}{S}$ for $0 \leq i<n$, where $S=\sum_{i=0}^{n-1} w_{i}$. Our alternative hypothesis is H_{a} : At least one probability is not equal to p_{i}. In each test, the degree of freedom is $n-1=999$. After 10^{7} samples, the expected count for each index i is expected $_{i}=10^{7} \frac{w_{i}}{\sum_{j=0}^{n-1} w_{j}}$. While the observed count for each index i is observed $_{i}$, we calculate $\chi^{2}=$ $\sum_{i=0}^{n-1} \frac{\left(\text { observed }_{i}-\text { expected }_{i}\right)^{2}}{\text { expected }_{i}}$. Referring to the χ^{2} table, we can get the P-value representing the probability of observing a sample statistic as extreme as the test statistic.

Table 4.1 shows our test results. As all the p-values are greater than 0.05 , we can conclude that, at the significance level of $\alpha=0.05$, there is not enough evidence to reject H_{0}, which is evidence that our methods generate samples properly according to the distribution.

4.3 Performance Measurement

In this thesis, our goal is to find efficient sampling methods in practice. To compare the practical performance of all methods in different scenarios, we need to clarify the factors that influence the performance, such that we can collect data points and build our model based on these factors. We introduce these factors in Section 4.3.1. Then we show how we collect data points and build the model in Sections 4.3.2 and 4.3.3. At last, we show the experimental results in Section 4.3.4.

4.3.1 Factors Influencing the Performance of Random Sampling

The practical performance of each method is affected by multiple factors. As far as we understand, the major factors are the number of samples generated, the number of updates, the size of the weight array, and the distribution from which weights w_{i} are drawn. Based on these factors, we are able to develop a model $\operatorname{time}(s, u, n)$ to predict the runtime for each method. In $\operatorname{time}(s, u, n)$, s is the number of random samples, u is the number of weight updates, n is the size of weight array W.

4.3.2 Determining time (s, u) for fixed n

To determine what time (s, u, n) should look like, we first fix some values of n and derive a linear model $\operatorname{time}(s, u)=a+b s+c u$. In $\operatorname{time}(s, u), s$ is the number of samples and u is the number of updates. b and c represent the average runtime for one sample and one update respectively. a represents the construction time. The correctness of $\operatorname{time}(s, u)$ is obvious: with larger number of samples and updates, the actual runtime should increase linearly.

We need to choose the set of fixed n values $N=\left[n_{0}, n_{1}, \ldots\right]$ carefully, such that it will be helpful when we fit a $\operatorname{time}(s, u, n)$ model to a set of $\operatorname{time}(s, u)$ models. Starting from $n_{0}=10$, we set $n_{i+1}=\left\lfloor 1.1 \cdot n_{i}\right\rfloor$ for $0 \leq i<84$, with the maximum $n_{84}=29991$.

We collected data points for each fixed n and for each method. With
weights w_{i} drawn from a uniform distribution $\mathrm{U}\left(0,10^{4}\right)$ for $0 \leq i<n$, we gathered data points (s, u, t), where t is the actual time spent in our experiment for s samples and u updates. We recorded t for the following samples:

1. $s=0,10000,20000, \ldots, 10^{6}$ and $u=0$.
2. $s=0,10000,20000, \ldots, 10^{6}$ and $u=s$, where we make one update right before each sample.

In each data point t is averaged over three runs.
Given data points (s, u, t), we used an ordinary least squares (OLS) method [4] to derive the coefficients in $\operatorname{time}(s, u)$. To estimate each coefficient more accurately, we use the following steps to estimate them one by one:

1. Based on all data points (s, u, t) with $s=0, u=0$, we use OLS to estimate coefficient a.
2. Based on estimated a and all data points (s, u, t) with $s \neq 0, u=0$, we use OLS to estimate coefficient b.
3. Based on estimated a, b and all data points (s, u, t) with $s \neq 0, u \neq 0$, we use OLS to estimate coefficient c.

For 10 sampling methods and 85 values of n, we derived $10 \times 85=850$ time (s, u) models with different fixed n. We list all these models in Appendix A.

4.3.3 Determining time($s, u, n)$

In order to make the model useful in practice, we need to study its dependence on n. For each method, we use one $\operatorname{time}(s, u, n)$ model to summarize all 85 time (s, u) models with different n. Theoretically, along with the increase of n, the increase of actual construction, sampling and updating time should fit the runtime complexity analysis. While the construction time of all methods is linearly dependent on n, for different methods, the factor n has different influences on sampling and updating time. Thus we can write $\operatorname{time}(s, u, n)=$ $a n+b s \cdot f(n)+c u \cdot g(n)$, where s is the number of samples, u is the number

Method	$\mathrm{f}(\mathrm{n})$	$\mathrm{g}(\mathrm{n})$
Alias Method	1	n
C++ discrete	$\log (n)$	n
Linear search	n	1
Binary search	$\log (n)$	n
Two level search	\sqrt{n}	1
Three level search	$\sqrt[3]{n}$	1
Binary tree search	$\log (n)$	$\log (n)$
Rejection Method	1	1
Flat Method	1	1
Log* Method	1	1

Table 4.2: The terms $f(n)$ and $g(n)$ in $\operatorname{time}(s, u, n)$ for all methods.
of updates and n is the size of the weight array. Note that the meaning of a, b and c is different from that in $\operatorname{time}(s, u)$ models.

To train the time (s, u, n) models using the data points (s, u, t) we gathered in Section 4.3.2, we can fit the model to the data points directly and use linear regression to minimize the sum of mean squared loss [10]. However, this approach could lead to overfitting [11] that reduces the generalizability of our models outside the original dataset: When we used this approach to derive the model, some of the coefficients a, b or c in $\operatorname{time}(s, u, n)$ were determined as negative numbers.

To avoid this issue, we used linear regression to fit $a n, b \cdot f(n)$ and $c \cdot g(n)$ in $\operatorname{time}(s, u, n)$ to all $a \mathrm{~s}, b \mathrm{~s}$ and cs in $85 \operatorname{time}(s, u)$ models. Given n, we can use the $\operatorname{time}(s, u, n)$ model to predict the a, b and c in the $\operatorname{time}(s, u)$ model first, and then use time (s, u) model to predict the runtime. The terms $f(n)$ and $g(n)$ for each method are shown in Table 4.2. Note that the sampling and updating runtime complexity of the rejection method, flat method and $\log ^{*}$ method is not $\Theta(1)$. But since n has very little influence on their runtime in practice, we simply set $f(n)=1$ and $g(n)=1$ in their $\operatorname{time}(s, u, n)$ models.

While our $\operatorname{time}(s, u, n)$ models make sense according to theoretical runtime complexity analysis, we use Appendix B to demonstrate the reasonability of this approach in practice: for each method, we use three plots to show all as, $b \mathrm{~s}$ and $c \mathrm{~s}$ with different n in $85 \operatorname{time}(s, u)$ models as data points. Then we
draw the curves according to the theoretical runtime complexity to show how well our models fit these data points.

In order to illustrate how the distribution from which weights w_{i} are drawn influences the practical performance, we repeated the whole experiment with weights drawn from an exponential distribution with $\lambda=10^{-3}$. In order to avoid potential numerical error, we still use 10^{4} as the maximum weight.

4.3.4 Experimental Results

Our time (s, u, n) models for all 10 methods are shown in Table 4.3. Comparing the two $\operatorname{time}(s, u, n)$ models for each method, the performance of most methods is not affected by the distribution from which weights w_{i} are drawn. However, the distribution had a significant influence on the rejection method. This result is consistent with the time complexity analysis: For the time complexity of $\mathrm{O}\left(\frac{n B}{S}\right)$, the performance will get worse if the sum of weights S decreases while the bound B remains the same. We calculated the average $\frac{n B}{S}$ values for both models when we collected the data for $n=29991$. When the weights are drawn from the uniform distribution, the average $\frac{n B}{S}=2.0007$. When the weights are drawn from the exponential distribution, the average $\frac{n B}{S}=10.0089$.

For linear search, we also notice a big gap between coefficient $c \mathrm{~s}$ in the two models: with all other coefficients being similar, we got $c=0.0037$ for weights drawn from the uniform distribution, while we got $c=0.0007$ for weights drawn from the exponential distribution. However, the time spent by linear search for time-changing discrete distributions is dominated by the time needed to generate samples. The big gap between coefficient cs does not make a big difference: Figure 4.1 compares the time spent for linear search to generate samples for two distributions. Even with a large number of 30 updates after each sample, the performance of linear search for both distributions is still very close.

Method	Distribution	time (s, u, n)
Alias Method	Uniform	$0.0246 n+0.0400 s+0.0225 u n$
	Exponential	$0.0211 n+0.0404 s+0.0209 u n$
$\mathrm{C}++$ discrete	Uniform	$\begin{gathered} 0.0144 n+0.0064 s \log (n) \\ +0.0057 u n \end{gathered}$
	Exponential	$\begin{gathered} 0.0112 n+0.0066 s \log (n) \\ +0.0057 u n \end{gathered}$
Linear search	Uniform	$0.0014 n+0.0006 s n+0.0037 u$
	Exponential	$0.0013 n+0.0006 s n+0.0007 u$
Binary search	Uniform	$\begin{gathered} 0.0048 n+0.0063 s \log (n) \\ +0.0026 u n \end{gathered}$
	Exponential	$\begin{gathered} 0.0037 n+0.0065 s \log (n) \\ +0.0026 u n \end{gathered}$
Two level search	Uniform	$0.0029 n+0.0012 s \sqrt{n}+0.0050 u$
	Exponential	$0.0025 n+0.0012 s \sqrt{n}+0.0063 u$
Three level search	Uniform	$0.0029 n+0.0024 s \sqrt[3]{n}+0.0108 u$
	Exponential	$0.0025 n+0.0025 s \sqrt[3]{n}+0.0122 u$
Binary tree search	Uniform	$\begin{gathered} 0.0012 n+0.0065 s \log (n) \\ +0.0038 u \log (n) \\ \hline \end{gathered}$
	Exponential	$\begin{gathered} 0.0009 n+0.0068 s \log (n) \\ +0.0037 u \log (n) \\ \hline \end{gathered}$
Rejection Method	Uniform	$0.0009 n+0.0787 s+0.0012 u$
	Exponential	$0.0008 n+0.2192 s+0.0977 u$
Flat Method	Uniform	$0.0720 n+0.0886 s+0.0634 u$
	Exponential	$0.0660 n+0.0871 s+0.0637 u$
Log* Method	Uniform	$0.0443 n+0.2080 s+0.4466 u$
	Exponential	$0.0430 n+0.2165 s+0.4989 u$

Table 4.3: The $\operatorname{time}(s, u, n)=a n+b s \cdot f(n)+c u \cdot g(n)$ models for all 10 sampling methods. For each method, we show the two models with weights w_{i} drawn from the uniform distribution $\mathrm{U}\left(0,10^{4}\right)$ and the exponential distribution $(\lambda=$ 10^{-3}) separately. The time was measured in microseconds. All coefficients were rounded to four decimal places.

Figure 4.1: The plot shows time spent for linear search to generate 10^{5} samples with 30 weight updates after each sample. We used both models derived for the uniform distribution and the exponential distribution. The time was measured in seconds.

Chapter 5

Analysis of Experimental Results

In this chapter, we analyze the $\operatorname{time}(s, u, n)$ models we derived in Chapter 4. In Section 5.1, we give examples of how we apply the models in the scenarios we designed to find suitable methods. In Section 5.2 and 5.3, we analyze and summarize the models to make conclusions about their practical performance. We focus on two groups of methods, namely leveling and rejection-based methods, and develop criteria to choose the best method for a given application.

5.1 Applying time(s,u,n) Models

Using the $\operatorname{time}(s, u, n)$ models, users are able to find the most suitable methods for their application scenarios. In the following plots, we show two representative scenarios using $\operatorname{time}(s, u, n)$ models shown in Table 4.3 with weights drawn from the exponential distribution: Figure 5.1 compares the time spent for all methods to generate 10^{5} samples without updating, while Figure 5.2 compares the time spent to generate 10^{5} samples, with one update after each sample.

In Figure 5.1, the best methods for different values of n are: two level search for $n \in[10,82)$, three level search for $n \in[82,4488)$, and Alias method for $n \in[4488,30000]$. Looking back at the raw data we collected in Section 4.3.2, the best methods for different values of n are: two level search for most $n \in[10,67)$, and Alias method for $n \in[67,29991]$. The Alias Method is the

Time spent for 100000 times sampling

Figure 5.1: The plot shows time spent for all methods to generate 10^{5} samples without updating. The weights w_{i} are drawn from the exponential distributions with $\lambda=10^{-3}$ and the time were measured in microseconds.
best choice for most n both in the prediction of our model and in the raw data. We can conclude that the traditional Alias Method is still the overall best choice for sampling from a large static discrete distribution.

In Figure 5.2, with updates, the best methods for different values of n are: linear search for $n \in[10,18)$, two level search for $n \in[18,423)$, and three level search for $n \in[423,30000]$. Looking back at the raw data we collected in Section 4.3.2, the best methods for different values of n are: linear search for $n \in[10,24)$, two level search for most $n \in[24,548)$, and three level search for $n \in[548,29991]$. The best methods in the raw data match our predictions in general, which is strong evidence that our models are capable of describing the data and making useful predictions.

For a changing distribution, all methods with $\mathrm{O}(\mathrm{n})$ sampling or updating time, namely the Alias Method, std::discrete_distribution provided by C++11, binary search and linear search, perform poorly for large n. They are barely visible on the left side of Figure 5.2 since their runtime is not competitive at all. We can conclude that these methods are not suitable for sampling from a

Time spent for 100000 times sampling and 100000 updating

Figure 5.2: The plot shows time spent for all methods to generate 10^{5} samples with one weight update after each sample.
large time-changing discrete distribution.

5.2 Summary of Performance for Leveling Methods

We call two level search, three level search and the binary tree search the leveling methods. These methods use simple level structures to keep both sampling and updating efficient. In the scenario of Figure 5.2, these methods have superior performance. Among leveling methods, two level search dominates the others for $n<423$. When n grows larger, three level search gradually takes over and performs the best. Theoretically, binary tree search with its $\mathrm{O}(\log (\mathrm{n}))$ runtime complexity should eventually outperform all of the other leveling methods with their polynomial runtime complexity, if n grows large enough. However, our experiment shows that for $n \leq 30000$, three level search remains much faster.

A related question for the leveling methods is: as n grows, is it worthwhile to continually add more levels to the search? To answer this question, we

Method	Distribution	$\operatorname{time}(s, u, n)$
Four level search	Uniform	$0.0033 n+0.0049 s \sqrt[4]{n}+0.0143 u$
	Exponential	$0.0027 n+0.0050 s \sqrt[4]{n}+0.0151 u$
Five level search	Uniform	$0.0031 n+0.0102 s \sqrt[5]{n}+0.0149 u$
	Exponential	$0.0027 n+0.0111 s \sqrt[5]{n}+0.0161 u$

Table 5.1: The $\operatorname{time}(s, u, n)=a n+b s \cdot f(n)+c u \cdot g(n)$ models for four and five level search. For each method, we show the two models with weights w_{i} drawn from the uniform distribution $\mathrm{U}\left(0,10^{4}\right)$ and the exponential distribution $(\lambda=$ 10^{-3}) separately. The time was measured in microseconds. All coefficients were rounded to four decimal places.
implemented two additional methods and repeated the experiments in Section 4.3 to derive the time (s, u, n) models for them:

1. A four level search with $\mathrm{O}(\sqrt[4]{n})$ sampling and $\mathrm{O}(1)$ updating runtime complexity.
2. A five level search with $O(\sqrt[5]{n})$ sampling and $O(1)$ updating runtime complexity.

Table 5.1 shows the experimental results, and Figure 5.3 compares the performance of all leveling methods using the models derived for exponential distributions. The best methods for different values of n are: two level search for $n \in[10,423)$, three level search for $n \in[423,8340)$, and four level search for $n \in[8340,30000]$. By adding an extra level, four level search is 10% faster than three level search for $n=3 \times 10^{4}$. For five level search, we calculated its estimated time spent for $n=10^{6}$ and compared it with other methods: While it is still slower than four level search, it also becomes slower than binary tree search. As a result, we may conclude that having five or more levels in search is never the best for these scenarios.

For the case of multiple updates after each sample, search with more levels needs more time to update the partial sum on each level. In practice, the increased overhead from extra levels makes four level search a good compromise for large n. For small n, two and three level search are good choices.

Figure 5.3: Time for two, three, four, and five level search, and binary tree search to generate 10^{5} samples with one weight update after each sample.

5.3 Summary of Performance for RejectionBased Methods

The group of rejection-based methods contains the rejection method, the flat method and the log* method. These methods are built based on rejection sampling, and their performance is not or only slightly affected by n. Figure 5.4 and Figure 5.5 compares the performance of all rejection-based methods for weights drawn from different distributions. The performance of the rejection method was much worse when the weights were drawn from an exponential distribution instead of a uniform distribution. If a discrete distribution has few large weights and many small weights, we expect its performance to be bad.

For the flat method, its performance is affected by the maximum possible weight M. We adjusted the maximum possible weight M from 10000 to 100, and repeated the experiments in Section 4.3 to derive a $\operatorname{time}(s, u, n)$ model for the flat method. In the experiments, the weights w_{i} are drawn from an

Figure 5.4: Time for the rejection method, the flat method and the $\log ^{*}$ method to generate 10^{5} samples with one weight update after each sample. The plot is generated using the models derived for weights drawn from uniform distributions.
exponential distribution with $\lambda=10^{-3}$. Using this model, Figure 5.6 compares the performance of all rejection-based methods again. Compared with Figure 5.5 , the performance of the flat method is slightly better in this experiment: for $n=3 \times 10^{4}$, it's 24% faster. This result indicates that the flat method can be considered as suitable if the ratio of maximum weight to average weight is small.

Figure 5.5: Time for the rejection method, the flat method and the $\log ^{*}$ method to generate 10^{5} samples with one weight update after each sample. The plot is generated using the models derived for weights drawn from exponential distributions.

Time spent for 100000 times sampling and 100000 updating

Figure 5.6: Time spent to generate 10^{5} samples with one update after each sample. The plot is generated using the models derived for weights drawn from exponential distributions.

Chapter 6

Application: Fast Sampling for Monte Carlo Playouts in NoGo

In this chapter, we use the game of No Capture Go (NoGo) as our application to demonstrate how we use our methods to optimize the sampling process. We speed up the randomized playout process in a Monte Carlo Tree Search algorithm [2] for playing NoGo. Faster playouts allow an engine to search more states in the same time, making it stronger.

6.1 The Game of NoGo

NoGo is a variant of the famous ancient Asian game of Go. It is first mentioned by John Moore in 2005 [13]. Similar to Go, the game is played by two players Black and White on a square $n \times n$ grid, called the board. The intersections of the grid are called points. In each game, the two players take turns to place a single stone of their own color on an empty point until the end. The connected components of stones of the same color are called blocks. The empty points adjacent to a block are called its liberties. Each block must have at least one liberty. Different from Go, both capture and suicide are illegal in NoGo. Players are not allowed to pass, and a player whose turn it is loses the game if there is no legal move. Figure 6.1 shows an example of the end of the game. The game was played on the standard 9×9 board. The last stone was played by Black on H6. There is no legal move for White to play, since all moves on empty points are either suicide or capture. For example, A2 is suicide since

Figure 6.1: An example of the end of a NoGo game
it is the last liberty of blocks $A 1$ and $A 3$. F2 is illegal since it would capture three black stones on E1, F1 and G1. White has no legal move and loses the game.

6.2 Playouts in NoGo

Computer programs that play board games such as NoGo often use playouts to evaluate board positions. In each playout, we play the game from a given board position until the end, with moves of both players selected in a randomized fashion. Playouts provide useful win/loss statistics, which are then used as a
heuristic to determine how likely one player is to win the game.
To improve the quality of these win/loss statistics, we need to generate high quality moves instead of purely random moves in the playouts. A common way is to use machine learning to imitate the moves played by human experts, as was done in early versions of AlphaGo [17]. Since there are no human experts playing NoGo, we used supervised learning to learn moves generated by the strong program BobNoGo [7]. Each legal move is evaluated by a single 3×3 feature that records the color of the eight neighbors surrounding this move. Each neighbor can be empty, an opponent's stone, the player's stone, or off the board, so there are up to $4^{8}=65536$ possible patterns. After we learn the weight of each pattern, the whole board can be viewed as a weight array W of size $9 \times 9=81$, and we can sample a move with probability proportional to W to decide the next move in a playout. After each move, only the weights of that move and its up to 8 neighbors need to be updated, since only their 3×3 features change.

We used Remi Coulom's Minorization-Maximization supervised learning technique [3] to learn the weights of all features. Coulom used a training set containing 131939 moves for Go. To achieve a similar size of the training set, we let BobNoGo play against itself for 2772 games, which generates 168600 moves. We extracted 140560 moves from 2310 games as the training set, and 28040 moves from the remaining 462 games as the test set. After learning, we achieved an accuracy of 20.1% on the test set. Although it is less than Remi Coulom's accuracy of 34.9% in Go (with a larger Go-specific feature set), we consider it as sufficient for improving our playouts' quality.

6.3 Implementation

We simulate the playout process with the learned feature weights in NoGo. In each playout, we maintain a set of legal moves and the weight array W of size 81 for each player. At the beginning of each turn, we sample according to the weight array to select the move. After each move, we go through the legal moves for both players to see if they are still legal, and update the weight
array if their weights changed.
We use Figure 6.2 to demonstrate the sampling and updating process. On

Figure 6.2: Boards before and after White makes a move on B9.
the board shown in Figure 6.2 on the left, it is White's turn to make a move. The legal moves for White are B9, A8, B3, G3, A2, F2, and the corresponding weights in the weight array W are $w_{B 9}=1.541, w_{A 8}=0.797, w_{B 3}=$ $0.4814, w_{G 3}=0.7574, w_{A 2}=1.541, w_{F 2}=1.6737$. All other weights in W are 0. Similarly, the non-zero weights w_{i}^{\prime} for Black are $w_{A 8}^{\prime}=0.9957, w_{D 8}^{\prime}=$ $0.3139, w_{B 3}^{\prime}=0.5388, w_{G 3}^{\prime}=0.4662, w_{F 2}^{\prime}=0.4667$. We sample according to W to decide a move for White. The plot in Figure 6.2 on the right shows the board after we choose $B 9$ as the move. On this board, all non-zero weights for White are $w_{A 8}=1.6391, w_{B 3}=0.4814, w_{G 3}=0.7574, w_{A 2}=1.541, w_{F 2}=1.6737$, and all non-zero weights for Black are $w_{D 8}^{\prime}=0.3139, w_{B 3}^{\prime}=0.5388, w_{G 3}^{\prime}=$ $0.4662, w_{F 2}^{\prime}=0.4667$. Only the weights of positions around $B 9$, namely $w_{B 9}, w_{A 8}$ and $w_{A 8}^{\prime}$, are changed.

To sample from the weight array, we compare two methods: the most ordinary way is to use the $\mathrm{C}++$ discrete_distribution class. We need to construct a discrete_distribution object with the current weight array each time before sampling. A more efficient way is to use our sampling methods. After constructing the data structures once at the beginning of the playout, we just need to make updates before sampling.

Based on our experiments, each game has 72 moves on average, and each

Method	Actual runtime	Ranking	Predicted runtime	Ranking
Linear search	0.0871	$\mathbf{1}$	0.0122	$\mathbf{1}$
Two level search	0.1012	$\mathbf{2}$	0.0152	$\mathbf{2}$
Three level search	0.1185	$\mathbf{3}$	0.0267	$\mathbf{3}$
Binary tree search	0.1445	5	0.0551	4
Flat Method	0.2325	6	0.1587	5
Rejection Method	2.0951	9	0.2375	6
Binary search	0.1244	4	0.4192	7
Log* Method	1.1752	8	1.0271	8
Alias Method	0.4545	7	3.3049	9

Table 6.1: The actual runtime and expected runtime with associated rankings for all methods to construct, sample and update in 3000 playouts. Runtime is measured in microseconds and rounded to four decimal places. The methods are sorted according to their predicted runtime.
move leads to 9 updates on average. As a result we have $s=72, u=648$ and $n=81$ in our $\operatorname{time}(s, u, n)$ models. For most turns, we expect there to be few good moves, lots of bad moves and a large number of illegal moves with weights equal to 0 . So compared with weights drawn from a uniform distribution, weights drawn from an exponential distribution can better describe the weight array W we have. According to Table 4.3, we found that linear search is the best method for our case.

To compare the sampling speed, we write two programs to simulate the playouts in NoGo. One program uses the ordinary sampling while another uses our linear search method. The two programs are exactly the same except for the sampling and weight updates parts.

6.4 Optimization Result

We use "g $++-s t d=c++11-\mathrm{O} 2$ " to compile both programs. The ordinary sampling program spends 0.1462 seconds on sampling while the linear search program spends only 0.0871 seconds. By using the linear search method instead of ordinary sampling, we achieved 40% speedup in the sampling process.

We tested all our implemented sampling methods in this application for 9×9 board. Table 6.1 shows their actual runtime and expected runtime calculated using our models from Table 4.3. Although the actual runtime

	Sampling runtime	Overall runtime
Ordinary sampling	0.6792	4.6740
Two level search	0.1431	3.8702

Table 6.2: Sampling runtime and overall runtime for ordinary sampling and two level search to run 3000 playouts on a 19×19 board. Runtime is measured in microseconds and rounded to four decimal places.
and the predicted runtime for all methods are different as our model cannot perfectly describe the scenario, with Kendall rank correlation coefficient $\tau=$ 0.67 [9], we may conclude that the two rankings are similar. In addition, the top 3 methods in both rankings are the same. This is strong evidence that our models are useful for selecting the best sampling methods in practice.

To illustrate how optimization in sampling process can affect the overall runtime, we also tested our sampling method against the ordinary way on a 19×19 board. With $n=19 \times 19=361$, we chose two level search as the best method for this case according to Table 4.3. Table 6.2 shows the results. By using the two level search method instead of ordinary sampling, we achieved 79% speedup in the sampling process, which leads to a 17% speedup in the entire program.

Chapter 7

Conclusions and Future Work

In this thesis, we perform an empirical study of random sampling methods for time-changing discrete distributions: We review eight sampling methods and propose two new methods. We implemented all methods based on a unified framework, designed experiments to evaluate them, checked their correctness, and derived a series of models to evaluate their practical performance. We applied these models in an application to the game of NoGo to speed up the sampling process.

Future work includes:

1. Under the condition where multiple updates are required after each sample, study how batch update can be used to speedup the updating process.
2. Study how parallel computing can be used to speedup the sampling and updating processes. Measure and compare the practical performance of sampling methods running in parallel.
3. Develop an automated tool that can monitor the sampling requirements of an application and automate the process of selecting the best sampling method.

Bibliography

[1] Boost. Boost C++ libraries version 1.68.0, 2018.
[2] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey of Monte Carlo tree search methods. Computational Intelligence and AI in Games, IEEE Transactions on, 4(1):1-43, 2012.
[3] Rémi Coulom. Computing Elo ratings of move patterns in the game of Go. In Computer games workshop, 2007.
[4] Francis Galton. Regression towards mediocrity in hereditary stature. The Journal of the Anthropological Institute of Great Britain and Ireland, 15:246-263, 1886.
[5] Erich Gamma. Design patterns: Elements of reusable object-oriented software. Pearson Education India, 1995.
[6] Torben Hagerup, Kurt Mehlhorn, and James Ian Munro. Optimal algorithms for generating discrete random variables with changing distributions. In Proceedings, 20th International Colloquium on Automata, Languages and Programming, Lecture Notes in Comput. Sci, volume 700, pages 253-264, 1993.
[7] Bob Hearn and Martin Müller. The BobNoGo program. https://webdocs.cs.ualberta.ca/~mmueller/nogo/BobNoGo.html/, 2011. [Online; posted 2011].
[8] ISO/IEC 14882:2011. International Standard Programming Language $C++$, Third edition, 2011.
[9] Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81-93, 1938.
[10] Erich L Lehmann and George Casella. Theory of point estimation. Springer Science \& Business Media, 2006.
[11] David J Leinweber. Stupid data miner tricks: overfitting the s\&p 500. The Journal of Investing, 16(1):15-22, 2007.
[12] Yossi Matias, Jeffrey Scott Vitter, and Wen-Chun Ni. Dynamic generation of discrete random variates. Theory of Computing Systems, 36(4):329-358, 2003.
[13] John Moore. Anti atari go (version 1), April 2005. [Online; posted April2005].
[14] Karl Pearson. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 50(302):157-175, 1900.
[15] GNU Project. GCC 4.8.4. https://gcc.gnu.org/, December 2014.
[16] Keith Schwarz. Darts, dice, and coins: Sampling from a discrete distribution, December 2011. [Online; posted December-2011].
[17] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of Go with deep neural networks and tree search. nature, 529(7587):484, 2016.
[18] Michael D Vose. A linear algorithm for generating random numbers with a given distribution. Software Engineering, IEEE Transactions on, 17(9):972-975, 1991.
[19] Alastair J Walker. An efficient method for generating discrete random variables with general distributions. ACM Transactions on Mathematical Software (TOMS), 3(3):253-256, 1977.

Appendix A

time(s,u) Models

$\operatorname{time}(s, u)=a+b s+c u$ models for all 10 methods with 85 different n. We use a table to show all the coefficients in the models.

Alias Method							
n	a	b	c	n	a	b	c
10	5.6667	0.0386	0.4046	11	5.0	0.0398	0.4397
12	5.0	0.0394	0.474	13	4.3333	0.038	0.4905
15	10.3333	0.0383	0.4984	16	4.6667	0.0384	0.5119
18	4.3333	0.0388	0.5399	19	4.0	0.0405	0.5523
21	16.0	0.0384	0.5819	24	4.6667	0.04	0.6207
26	10.6667	0.04	0.6402	29	5.0	0.0376	0.6931
31	9.3333	0.0386	0.787	35	10.3333	0.0413	0.9611
38	11.0	0.045	0.8429	42	11.3333	0.0401	1.1198
46	5.0	0.0393	0.9375	51	11.0	0.0399	0.9527
56	5.3333	0.0385	1.2791	61	5.6667	0.0442	1.1288
67	12.0	0.0392	1.431	74	18.0	0.0391	1.252
81	5.3333	0.0397	1.5781	90	6.6667	0.0387	1.4492
98	6.3333	0.0393	1.5297	108	10.6667	0.0392	1.6557
119	20.3333	0.0395	2.1394	131	21.0	0.0395	2.0339
144	20.6667	0.0387	2.2328	159	20.6667	0.0401	2.4066
174	33.6667	0.0393	2.7645	192	22.6667	0.0394	2.9577
211	22.6667	0.0399	3.008	232	29.0	0.0397	3.5782
255	30.6667	0.0401	3.5893	281	24.0	0.0386	4.0541
309	35.0	0.0397	4.4534	340	31.3333	0.0394	4.6686
374	36.6667	0.0395	5.1573	411	42.6667	0.0402	5.6482
453	33.6667	0.0395	6.1465	498	34.6667	0.0404	6.7275
548	42.6667	0.0405	7.5715	602	44.0	0.0396	8.3159
663	39.6667	0.0412	9.1818	729	34.3333	0.0403	10.0214
802	62.3333	0.0399	11.2392	882	65.0	0.0402	12.4735
970	67.3333	0.0397	13.6083	1067	63.6667	0.0401	15.0695
1174	71.6667	0.0411	16.793	1291	64.6667	0.0397	18.6851

1420	86.0	0.0402	20.6082	1562	72.0	0.0399	23.4612
1719	104.0	0.0411	25.9226	1891	124.3333	0.0396	29.0787
2080	99.0	0.0401	32.2493	2288	113.3333	0.0406	36.1112
2516	97.0	0.0399	41.3022	2768	109.0	0.041	46.6288
3045	110.6667	0.0417	52.2981	3349	131.3333	0.0408	60.4006
3684	109.0	0.0404	68.7662	4053	150.6667	0.0406	78.7969
4458	158.0	0.0402	89.2243	4904	171.6667	0.0403	100.4285
5394	173.0	0.0404	113.382	5933	192.3333	0.0406	125.8351
6527	206.3333	0.0409	139.4262	7180	234.3333	0.0406	155.8754
7897	256.6667	0.0407	171.647	8687	248.3333	0.0409	190.3503
9556	283.0	0.0403	210.5244	10512	309.3333	0.0405	232.3548
11563	316.3333	0.0399	256.7557	12719	333.3333	0.0413	282.2922
13991	370.6667	0.0397	310.671	15390	417.0	0.0399	342.5056
16929	449.0	0.04	377.6489	18622	482.3333	0.0407	415.5129
20484	516.3333	0.0413	458.381	22532	544.6667	0.0408	503.3267
24786	625.6667	0.04	555.7166	27264	674.6667	0.0411	611.2315
29991	732.3333	0.0406	673.6673				
C++ discrete							
n	a	b	c	n	a	b	c
10	10.6667	0.0306	0.0904	11	10.0	0.0319	0.0933
12	10.6667	0.032	0.1	13	4.0	0.0357	0.1059
15	3.6667	0.0346	0.1471	16	3.3333	0.0352	0.1557
18	3.3333	0.0358	0.1644	19	3.6667	0.0361	0.1706
21	3.3333	0.0366	0.1796	24	3.3333	0.0378	0.1942
26	3.3333	0.0391	0.2055	29	3.3333	0.039	0.2193
31	3.6667	0.0424	0.2418	35	9.0	0.0425	0.2559
38	3.6667	0.0432	0.276	42	7.6667	0.0437	0.2992
46	10.6667	0.0434	0.3099	51	3.3333	0.0441	0.3454
56	3.6667	0.0451	0.3691	61	8.6667	0.045	0.3942
67	9.3333	0.0456	0.4224	74	3.6667	0.0472	0.4525
81	4.0	0.0477	0.4888	90	3.3333	0.0483	0.5365
98	9.3333	0.0489	0.5772	108	4.3333	0.0499	0.6295
119	9.0	0.0512	0.688	131	11.3333	0.0516	0.7519
144	10.3333	0.0525	0.8214	159	11.0	0.0531	0.899
174	5.3333	0.0538	0.974	192	5.0	0.0556	1.0734
211	18.0	0.0568	1.1559	232	10.6667	0.0582	1.304
255	16.0	0.0617	1.421	281	11.3333	0.0618	1.6677
309	10.3333	0.0608	1.7598	340	5.3333	0.0614	1.8797
374	5.3333	0.0627	2.074	411	5.6667	0.0667	2.2317
453	18.3333	0.0665	2.4824	498	16.6667	0.0666	2.6876
548	23.3333	0.0679	2.9921	602	24.6667	0.0677	3.3105
663	20.0	0.0685	3.5344	729	24.6667	0.0696	3.9102

802	26.6667	0.0706	4.2571	882	32.3333	0.072	4.7628
970	22.6667	0.0729	5.2215	1067	26.6667	0.0737	5.8836
1174	29.6667	0.0743	6.3998	1291	22.0	0.0755	7.1025
1420	30.3333	0.0751	7.903	1562	24.3333	0.0765	8.6302
1719	26.3333	0.0775	9.4466	1891	22.3333	0.0778	10.401
2080	40.6667	0.0794	11.524	2288	41.0	0.0794	12.6318
2516	36.3333	0.0798	13.9665	2768	39.3333	0.08	15.2874
3045	59.0	0.0813	16.9871	3349	68.0	0.0822	18.6043
3684	69.0	0.0837	20.4679	4053	74.0	0.0845	22.5784
4458	71.6667	0.0856	24.5494	4904	92.6667	0.0862	27.3079
5394	89.6667	0.0877	29.7232	5933	105.0	0.0883	33.1412
6527	60.6667	0.0897	35.9021	7180	93.3333	0.0908	39.9829
7897	104.6667	0.091	44.1926	8687	151.6667	0.0921	48.5042
9556	275.3333	0.0924	54.3388	10512	171.0	0.0938	59.395
11563	174.0	0.095	65.1993	12719	138.0	0.0958	71.5595
13991	142.0	0.0959	79.299	15390	127.3333	0.0966	87.4697
16929	265.0	0.0981	96.861	18622	280.6667	0.0994	106.4459
20484	321.0	0.1016	118.334	22532	326.3333	0.1011	130.6239
24786	363.0	0.1043	141.9038	27264	419.3333	0.1033	157.4953
29991	467.0	0.1055	172.5918				
Linear Search							
n	a	b	c	n	a	b	c
10	8.0	0.0311	0.0032	11	3.0	0.0321	0.005
12	2.0	0.0326	0.0027	13	2.3333	0.0322	0.0033
15	6.6667	0.0341	0.0027	16	2.0	0.0383	0.0028
18	7.6667	0.0403	0.0026	19	2.3333	0.0401	0.0033
21	7.3333	0.0412	0.0029	24	8.3333	0.0439	0.0014
26	2.0	0.0425	0.0021	29	2.3333	0.0423	0.0037
31	7.3333	0.0439	0.0037	35	2.3333	0.0486	0.002
38	2.0	0.0498	0.003	42	2.0	0.0527	0.0019
46	7.3333	0.0564	0.0011	51	2.6667	0.0596	0.0023
56	2.3333	0.0646	0.0017	61	2.0	0.0647	0.0013
67	7.3333	0.068	0.0018	74	2.3333	0.0736	0.0003
81	2.3333	0.0757	0.002	90	2.0	0.0817	0.0014
98	2.3333	0.0867	0.001	108	8.0	0.0928	0.001
119	2.3333	0.0979	0.0024	131	7.6667	0.1052	0.0022
144	2.3333	0.1141	0.0006	159	6.6667	0.1203	0.0031
174	2.3333	0.1294	0.0029	192	2.3333	0.1413	0.0015
211	2.3333	0.1528	0.0011	232	2.6667	0.1633	0.0029
255	2.3333	0.1781	0.0014	281	3.0	0.1942	0.0021
309	3.6667	0.2062	0.0042	340	3.3333	0.2259	0.0031
374	7.0	0.2504	-0.0014	411	8.0	0.2649	0.0053

453	3.6667	0.2912	0.0034	498	14.3333	0.3201	0.001
548	10.0	0.3488	0.0014	602	12.0	0.3791	0.0025
663	17.6667	0.4123	0.0046	729	16.6667	0.4502	0.0061
802	4.0	0.4938	0.0044	882	8.3333	0.5397	0.0053
970	10.3333	0.591	0.0065	1067	22.0	0.6497	0.0076
1174	17.6667	0.7115	0.0038	1291	17.6667	0.7814	0.0021
1420	17.6667	0.8577	0.0011	1562	17.6667	0.9345	0.0087
1719	7.0	1.0354	-0.0021	1891	6.0	1.1331	-0.001
2080	6.0	1.2474	-0.0044	2288	12.3333	1.3626	0.0028
2516	6.6667	1.4896	0.008	2768	9.0	1.6539	-0.0075
3045	7.6667	1.8142	-0.0106	3349	9.0	1.97	0.0128
3684	15.3333	2.1813	0.0014	4053	26.6667	2.3942	0.0235
4458	14.3333	2.6211	0.0099	4904	26.0	2.8865	0.0075
5394	16.0	3.181	0.0125	5933	12.6667	3.5069	-0.0131
6527	12.6667	3.8446	-0.0014	7180	14.0	4.2285	-0.0082
7897	20.3333	4.6382	-0.0034	8687	19.6667	5.1097	-0.0093
9556	31.3333	5.6511	-0.0291	10512	22.6667	6.18	-0.0165
11563	20.0	6.797	0.017	12719	21.0	7.4371	0.0096
13991	28.6667	8.1733	0.0167	15390	24.3333	9.0222	0.0098
16929	39.6667	9.8883	-0.0074	18622	45.3333	10.8748	0.0681
20484	30.6666	11.9862	-0.0039	22532	33.6666	13.2087	-0.0154
24786	39.3334	14.5315	0.0117	27264	40.3333	15.9592	0.0244
29991	44.6667	17.5518	0.0582				
Binary Search							
n	a	b	c	n	a	b	c
10	3.0	0.0326	0.022	11	3.0	0.0342	0.0253
12	2.6667	0.0331	0.0301	13	2.6667	0.0354	0.0308
15	7.0	0.0378	0.0359	16	2.3333	0.0361	0.0408
18	2.6667	0.0368	0.0457	19	2.6667	0.0378	0.047
21	2.3333	0.0393	0.0514	24	7.6667	0.0398	0.0601
26	8.6667	0.0402	0.066	29	8.6667	0.0417	0.0737
31	3.0	0.0416	0.0802	35	6.6667	0.0428	0.0962
38	2.6667	0.0435	0.1004	42	2.3333	0.045	0.1099
46	2.3333	0.0448	0.1187	51	7.6667	0.0454	0.1306
56	2.6667	0.0463	0.143	61	3.0	0.0471	0.1621
67	2.6667	0.0467	0.1734	74	2.3333	0.0481	0.191
81	8.6667	0.049	0.2086	90	3.3333	0.0498	0.2318
98	3.0	0.0511	0.2541	108	3.0	0.0518	0.2796
119	4.0	0.0528	0.3073	131	4.0	0.0536	0.3371
144	4.0	0.0542	0.3715	159	4.0	0.0556	0.4102
174	4.0	0.0561	0.4484	192	3.6667	0.0574	0.4961
211	11.0	0.0589	0.5629	232	9.3333	0.0599	0.5987

255	9.3333	0.0615	0.6576	281	3.3333	0.0619	0.7262
309	3.3333	0.0619	0.7986	340	3.6667	0.063	0.8777
374	16.0	0.0647	1.0052	411	8.0	0.0692	1.0717
453	10.0	0.067	1.1683	498	10.3333	0.0685	1.2831
548	9.3333	0.0693	1.414	602	4.3333	0.07	1.556
663	10.6667	0.0704	1.7108	729	5.0	0.0713	1.8815
802	23.6667	0.072	2.0707	882	23.3333	0.073	2.3191
970	18.0	0.0745	2.5114	1067	16.3333	0.0751	2.7562
1174	10.6667	0.0745	3.0861	1291	14.0	0.0762	3.3641
1420	13.6667	0.0772	3.6799	1562	26.3333	0.0778	4.0358
1719	19.6667	0.0781	4.4469	1891	15.0	0.08	4.8934
2080	23.0	0.08	5.3911	2288	21.3333	0.0804	5.9817
2516	30.0	0.0809	6.5715	2768	22.0	0.0817	7.2669
3045	18.0	0.0834	7.9814	3349	26.3333	0.0846	8.7572
3684	27.6667	0.0852	9.6298	4053	33.0	0.0851	10.6159
4458	33.3333	0.0863	11.7553	4904	25.0	0.0869	12.8722
5394	37.3333	0.0877	14.1663	5933	37.0	0.0885	15.6213
6527	30.0	0.0897	17.112	7180	35.3333	0.0914	18.8577
7897	29.3333	0.0916	20.724	8687	47.0	0.0931	22.8142
9556	56.3333	0.0937	25.0116	10512	52.0	0.0944	27.561
11563	59.3333	0.0959	30.2711	12719	68.6667	0.0965	33.3798
13991	60.3333	0.0969	36.6973	15390	58.0	0.0981	40.3265
16929	119.3333	0.0991	44.4831	18622	89.6667	0.1002	48.9436
20484	102.0	0.1016	53.9344	22532	122.6667	0.1026	59.1902
24786	115.3333	0.1036	65.0318	27264	126.6667	0.1046	71.876
29991	168.6667	0.1066	78.7928				
Two Level Search							
n	a	b	c	n	a	b	c
10	3.0	0.0317	0.0061	11	3.3333	0.0319	0.0078
12	2.3333	0.0335	0.0081	13	3.0	0.033	0.007
15	2.3333	0.034	0.0072	16	10.3333	0.0351	0.0067
18	2.6667	0.0359	0.0062	19	3.0	0.0362	0.0063
21	9.0	0.0365	0.0064	24	2.6667	0.0374	0.0066
26	2.3333	0.0384	0.0059	29	9.0	0.0391	0.0062
31	8.3333	0.039	0.0061	35	2.6667	0.0406	0.0068
38	2.6667	0.0417	0.006	42	2.3333	0.0414	0.0057
46	3.0	0.042	0.0055	51	8.6667	0.0419	0.0056
56	8.6667	0.0427	0.0056	61	3.0	0.0434	0.0055
67	7.0	0.0434	0.0064	74	7.3333	0.045	0.0053
81	9.3333	0.0459	0.0049	90	3.0	0.0461	0.0058
98	3.3333	0.0471	0.0057	108	14.6667	0.0479	0.0053
119	10.0	0.0482	0.0059	131	4.0	0.049	0.0049

144	10.0	0.0499	0.0054	159	10.0	0.0507	0.0051
174	4.0	0.0513	0.0058	192	4.0	0.0518	0.0058
211	4.0	0.0533	0.0052	232	9.6667	0.0547	0.0046
255	13.6667	0.0554	0.0048	281	10.0	0.0562	0.0047
309	3.3333	0.0575	0.0048	340	8.6667	0.0582	0.0053
374	3.6667	0.0609	0.0043	411	3.3333	0.0646	0.0079
453	4.0	0.0626	0.0047	498	4.0	0.0638	0.0048
548	16.6667	0.0656	0.0042	602	15.3333	0.0664	0.0055
663	4.3333	0.0679	0.0056	729	5.0	0.0701	0.0042
802	16.3333	0.0705	0.0058	882	17.3333	0.0728	0.0055
970	5.3333	0.0752	0.0043	1067	18.6667	0.077	0.0048
1174	12.6667	0.0793	0.0051	1291	24.0	0.081	0.0049
1420	24.6667	0.0825	0.0057	1562	23.6667	0.0852	0.0052
1719	18.3333	0.0877	0.0054	1891	14.3333	0.0901	0.0052
2080	20.0	0.0919	0.0051	2288	15.3333	0.0948	0.0054
2516	21.3333	0.0978	0.0041	2768	15.6667	0.1008	0.0045
3045	17.6667	0.1039	0.0042	3349	18.3333	0.1069	0.0048
3684	25.0	0.1092	0.006	4053	24.6667	0.1139	0.0052
4458	31.6667	0.1176	0.0047	4904	44.3333	0.1211	0.0046
5394	22.3333	0.1251	0.0051	5933	31.6667	0.1312	0.0037
6527	37.0	0.1343	0.0042	7180	38.6667	0.1389	0.0059
7897	35.6667	0.1431	0.0049	8687	33.0	0.1485	0.0045
9556	42.6667	0.1545	0.0042	10512	45.0	0.1602	0.0061
11563	43.0	0.1655	0.0048	12719	42.3333	0.1721	0.0034
13991	46.0	0.1785	0.0038	15390	56.0	0.1858	0.0032
16929	64.3333	0.1924	0.0032	18622	67.3333	0.203	0.0033
20484	60.3333	0.2159	-0.0038	22532	65.0	0.2207	-0.0004
24786	77.3333	0.2254	0.0029	27264	87.0	0.2336	0.0045
29991	95.6667	0.2449	0.0024				
Three Level Search							
n	a	b	c	n	a	b	c
10	8.6667	0.0295	0.0097	11	3.6667	0.0313	0.0088
12	3.3333	0.0337	0.0083	13	3.3333	0.0326	0.0091
15	3.0	0.0342	0.0112	16	9.0	0.0359	0.0105
18	3.0	0.0371	0.0122	19	3.0	0.0361	0.0123
21	10.0	0.0372	0.0122	24	8.3333	0.0396	0.0111
26	8.3333	0.0393	0.0121	29	3.0	0.0402	0.0097
31	3.0	0.0404	0.0105	35	15.3333	0.0418	0.0106
38	3.0	0.0422	0.012	42	9.3333	0.0422	0.0117
46	11.0	0.043	0.0119	51	3.3333	0.0428	0.0116
56	3.0	0.0437	0.012	61	3.0	0.0446	0.0114
67	3.0	0.0448	0.0117	74	8.3333	0.0456	0.0122

81	8.3333	0.0461	0.0112	90	9.6667	0.0472	0.0115
98	10.6667	0.0475	0.0118	108	15.3333	0.0474	0.0122
119	4.0	0.0481	0.0121	131	10.3333	0.0483	0.0138
144	4.0	0.049	0.0122	159	4.6667	0.0502	0.0113
174	10.3333	0.0508	0.0112	192	4.3333	0.051	0.0118
211	4.3333	0.0518	0.0116	232	3.3333	0.0525	0.0116
255	9.3333	0.0533	0.0112	281	9.3333	0.0533	0.0118
309	3.6667	0.054	0.0116	340	3.6667	0.0546	0.0116
374	8.6667	0.056	0.0114	411	4.3333	0.0611	0.0129
453	4.3333	0.057	0.0109	498	4.3333	0.0586	0.0101
548	10.6667	0.0587	0.0114	602	4.3333	0.0594	0.011
663	17.0	0.0592	0.0113	729	5.0	0.0613	0.0095
802	16.6667	0.0612	0.0107	882	17.3333	0.0617	0.0121
970	17.6667	0.0626	0.0105	1067	18.0	0.0637	0.01
1174	18.3333	0.0645	0.0102	1291	24.0	0.0646	0.0107
1420	19.0	0.0653	0.0113	1562	25.0	0.0661	0.0099
1719	25.0	0.0658	0.0115	1891	26.3333	0.0684	0.01
2080	15.3333	0.0679	0.0106	2288	37.6667	0.0694	0.0106
2516	15.0	0.0702	0.0102	2768	16.6667	0.0715	0.0106
3045	16.0	0.0729	0.01	3349	35.6667	0.0744	0.0097
3684	29.3333	0.0746	0.0105	4053	30.0	0.0754	0.0103
4458	21.6667	0.0768	0.01	4904	29.0	0.0778	0.0095
5394	23.0	0.0781	0.0097	5933	35.3333	0.0804	0.0095
6527	33.3333	0.0802	0.0097	7180	23.6667	0.0823	0.01
7897	31.0	0.0822	0.0159	8687	41.3333	0.0838	0.0095
9556	38.6667	0.0862	0.0099	10512	46.3333	0.0879	0.0101
11563	45.6667	0.0883	0.0092	12719	38.3333	0.0901	0.0094
13991	47.6667	0.0905	0.0098	15390	46.0	0.092	0.0097
16929	49.0	0.0943	0.0094	18622	57.3333	0.0965	0.0088
20484	68.0	0.0979	0.0099	22532	81.0	0.1004	0.008
24786	82.0	0.1011	0.0101	27264	87.3333	0.1024	0.01
29991	95.6667	0.1049	0.01				
			$B i n a r y$	Tree	Search		
n	a	b	c	n	a	b	c
10	3.0	0.0329	0.0167	11	3.0	0.0324	0.0185
12	2.6667	0.0348	0.019	13	9.3333	0.0356	0.0175
15	3.0	0.0367	0.0183	16	2.3333	0.037	0.0195
18	2.3333	0.0376	0.0197	19	2.3333	0.0385	0.0202
21	8.3333	0.039	0.0199	24	2.3333	0.0398	0.0205
26	2.6667	0.0414	0.02	29	2.3333	0.0413	0.0221
31	7.6667	0.0438	0.0244	35	2.6667	0.0453	0.0242
38	2.6667	0.0452	0.0252	42	2.3333	0.0447	0.023

46	8.3333	0.0451	0.0245	51	7.3333	0.0457	0.0255
56	2.3333	0.0472	0.0269	61	3.0	0.0494	0.0279
67	2.3333	0.0495	0.0282	74	2.3333	0.0503	0.0272
81	3.0	0.0529	0.0256	90	2.6667	0.0515	0.0294
98	3.0	0.0525	0.0296	108	3.0	0.0543	0.0301
119	4.0	0.0554	0.0306	131	9.3333	0.0561	0.0327
144	15.6667	0.0578	0.0298	159	9.6667	0.0588	0.0343
174	9.0	0.058	0.0329	192	3.6667	0.0588	0.034
211	3.3333	0.0601	0.0347	232	7.0	0.0616	0.0357
255	8.6667	0.0632	0.0365	281	15.0	0.0637	0.0354
309	2.3333	0.0637	0.0363	340	3.0	0.0643	0.0364
374	8.6667	0.0661	0.037	411	2.6667	0.0701	0.037
453	3.0	0.0682	0.0374	498	3.0	0.0693	0.0388
548	9.0	0.0711	0.039	602	2.6667	0.0716	0.0393
663	3.0	0.0713	0.0398	729	7.6667	0.0723	0.0405
802	3.0	0.0722	0.0419	882	21.0	0.0744	0.0425
970	9.3333	0.0751	0.0423	1067	21.3333	0.0757	0.043
1174	16.0	0.0765	0.043	1291	9.3333	0.0768	0.0443
1420	21.3333	0.0782	0.0443	1562	16.0	0.0786	0.051
1719	9.6667	0.0794	0.0452	1891	17.3333	0.0803	0.0472
2080	10.6667	0.082	0.0461	2288	5.0	0.0828	0.0469
2516	5.3333	0.0826	0.049	2768	10.0	0.0841	0.0474
3045	10.3333	0.0848	0.0484	3349	6.0	0.0859	0.0497
3684	17.0	0.0873	0.0492	4053	7.0	0.0881	0.05
4458	13.3333	0.0888	0.0501	4904	18.0	0.0892	0.0501
5394	13.3333	0.0901	0.0547	5933	9.6667	0.0911	0.0567
6527	10.0	0.0924	0.0517	7180	21.0	0.0925	0.053
7897	13.6667	0.0988	0.0499	8687	23.3333	0.0939	0.0547
9556	24.6667	0.0956	0.0548	10512	19.3333	0.0965	0.0546
11563	17.0	0.0965	0.0559	12719	17.3333	0.0983	0.0596
13991	18.6667	0.0988	0.0561	15390	26.0	0.1002	0.0577
16929	22.6667	0.1023	0.0574	18622	23.3333	0.1035	0.0584
20484	25.6667	0.1054	0.0594	22532	39.6667	0.1045	0.0587
24786	43.3333	0.1071	0.0586	27264	34.3333	0.1081	0.0594
29991	40.6667	0.1107	0.0593				
			Rejection	Method			
n	a	b	c	n	a	b	c
10	3.3333	0.0661	0.0152	11	3.0	0.0821	-0.0009
12	2.3333	0.0795	0.0019	13	2.3333	0.0676	0.0137
15	2.3333	0.0749	0.0061	16	2.3333	0.077	0.0038
18	2.3333	0.0817	-0.0004	19	8.3333	0.0705	0.0102
21	3.0	0.0779	0.0021	24	8.3333	0.0813	-0.0012
10							

26	2.6667	0.0757	0.0041	29	2.3333	0.0837	-0.0037
31	2.6667	0.0888	-0.0035	35	7.3333	0.0797	0.0018
38	2.3333	0.0746	0.0071	42	2.3333	0.0741	0.0054
46	2.6667	0.0776	0.002	51	9.0	0.0847	-0.0043
56	2.6667	0.0781	0.0007	61	2.3333	0.0755	0.0036
67	7.3333	0.0773	0.0021	74	8.0	0.0776	0.0022
81	2.3333	0.074	0.0053	90	2.6667	0.0734	0.0054
98	7.3333	0.0793	0.0001	108	2.6667	0.08	-0.0008
119	8.3333	0.0779	0.0011	131	3.6667	0.0752	0.0037
144	3.3333	0.0792	0.0003	159	9.6667	0.0764	0.0027
174	3.0	0.0806	-0.0016	192	3.3333	0.0798	-0.0011
211	3.6667	0.0779	0.001	232	9.0	0.0766	0.0023
255	9.0	0.0793	-0.0004	281	7.3333	0.0801	-0.0011
309	2.3333	0.0795	-0.0007	340	9.0	0.0808	-0.0017
374	3.0	0.0794	-0.0005	411	2.6667	0.0815	0.0006
453	3.0	0.0784	0.0005	498	9.3333	0.0777	0.0014
548	3.0	0.078	0.0014	602	9.0	0.0775	0.0014
663	9.0	0.0791	-0.0	729	3.0	0.0785	0.0003
802	10.3333	0.0805	-0.0012	882	3.3333	0.0798	0.0002
970	9.6667	0.0786	0.0004	1067	9.6667	0.0798	-0.0012
1174	10.0	0.08	-0.0002	1291	10.0	0.0784	0.0003
1420	11.0	0.079	0.0	1562	4.0	0.0812	-0.0022
1719	11.3333	0.0778	0.001	1891	12.3333	0.0801	-0.0003
2080	11.6667	0.0802	-0.0002	2288	16.6667	0.0794	-0.0007
2516	5.0	0.0789	0.0025	2768	5.3333	0.0791	0.001
3045	15.6667	0.0786	0.0002	3349	13.0	0.0799	-0.0001
3684	12.0	0.0795	0.0005	4053	16.6667	0.0786	0.0001
4458	13.0	0.0796	-0.0009	4904	13.3333	0.0792	0.0014
5394	12.0	0.0818	-0.0011	5933	8.0	0.0786	0.0001
6527	25.3333	0.0786	0.0003	7180	9.6667	0.0796	0.0007
7897	17.6667	0.0793	0.0007	8687	16.0	0.079	-0.0002
9556	11.6667	0.0794	0.0006	10512	12.6667	0.0787	0.0
11563	13.3333	0.0784	0.0008	12719	24.3333	0.0792	0.0001
13991	15.3333	0.0792	0.0001	15390	22.3333	0.0794	0.0002
16929	22.0	0.0802	0.0011	18622	23.6667	0.0795	0.001
20484	25.0	0.0801	0.0002	22532	23.0	0.0795	0.0008
24786	25.0	0.0798	0.0013	27264	32.0	0.0795	0.0012
29991	30.6667	0.0822	0.0026				
Flat Method							
n	a	b	c	n	a	b	c
10	13.3333	0.0821	0.0728	11	20.3333	0.0869	0.0672
12	12.3333	0.0905	0.0639	13	19.3333	0.085	0.0694

15	7.6667	0.0882	0.0657	16	21.0	0.0855	0.0674
18	7.6667	0.0861	0.0671	19	22.0	0.0926	0.0607
21	22.3333	0.0821	0.0705	24	20.3333	0.0906	0.0617
26	8.6667	0.0814	0.07	29	21.0	0.0847	0.0668
31	22.3333	0.0961	0.0601	35	20.3333	0.0904	0.0671
38	29.3333	0.0917	0.0627	42	14.6667	0.0868	0.064
46	22.0	0.0889	0.0622	51	21.6667	0.0838	0.0684
56	31.3333	0.0813	0.0701	61	23.6667	0.0875	0.0829
67	35.3333	0.0839	0.0661	74	24.6667	0.0852	0.0641
81	31.6667	0.0869	0.0613	90	33.0	0.0861	0.0625
98	32.3333	0.088	0.0604	108	38.6667	0.087	0.0615
119	46.6667	0.0893	0.0594	131	49.6667	0.086	0.0626
144	48.6667	0.0884	0.0602	159	53.0	0.0864	0.0616
174	46.3333	0.0863	0.0619	192	57.0	0.0887	0.0601
211	47.6667	0.0874	0.0617	232	75.3333	0.0884	0.0623
255	36.0	0.0873	0.0624	281	62.6667	0.0881	0.0594
309	56.0	0.0871	0.0604	340	65.6667	0.0871	0.0613
374	61.3333	0.0866	0.0624	411	109.6667	0.092	0.0589
453	77.3333	0.0882	0.0608	498	92.0	0.0871	0.0623
548	102.6667	0.0896	0.0593	602	70.3333	0.0897	0.059
663	93.3333	0.088	0.0605	729	125.6667	0.0905	0.0624
802	112.0	0.0879	0.0605	882	100.3333	0.0891	0.0621
970	121.0	0.0884	0.0607	1067	146.0	0.0886	0.063
1174	146.6667	0.0884	0.0628	1291	159.3333	0.0892	0.0597
1420	172.6667	0.0886	0.0609	1562	155.6667	0.0901	0.0591
1719	205.0	0.0886	0.0604	1891	200.3333	0.0896	0.0596
2080	234.6667	0.0894	0.0601	2288	228.3333	0.0888	0.0604
2516	218.3333	0.0913	0.0587	2768	255.0	0.0894	0.06
3045	306.3333	0.0884	0.0598	3349	287.0	0.0886	0.0606
3684	306.0	0.089	0.0612	4053	349.6667	0.0893	0.0607
4458	393.3333	0.0881	0.0618	4904	394.6667	0.0887	0.0615
5394	463.6667	0.0894	0.0611	5933	471.0	0.0904	0.065
6527	497.3333	0.0895	0.0626	7180	605.6667	0.0896	0.0607
7897	585.0	0.0902	0.0637	8687	646.3333	0.0896	0.0629
9556	745.3333	0.0921	0.0672	10512	774.6667	0.0895	0.0655
11563	838.3333	0.0905	0.063	12719	964.3333	0.0897	0.0636
13991	963.3333	0.0896	0.0647	15390	1108.0	0.09	0.0645
16929	1280.6667	0.09	0.0656	18622	1279.6667	0.0906	0.066
20484	1543.0	0.0908	0.0654	22532	1574.3333	0.0908	0.0665
24786	2310.0	0.1071	0.0759	27264	1889.0	0.0919	0.0679
29991	2021.3333	0.0925	0.067				
			Log*	Method			

n	a	b	c	n	a	b	c
10	21.3333	0.1951	0.4009	11	22.6667	0.1718	0.4296
12	22.6667	0.2071	0.3991	13	32.3333	0.2125	0.4004
15	28.0	0.2092	0.4186	16	27.6667	0.1924	0.4418
18	23.6667	0.1894	0.452	19	28.0	0.1973	0.4469
21	35.3333	0.2049	0.4418	24	18.6667	0.2017	0.4459
26	24.6667	0.2085	0.4382	29	34.3333	0.1948	0.4507
31	25.0	0.2093	0.4623	35	33.0	0.2264	0.5015
38	30.3333	0.1986	0.5771	42	31.0	0.2154	0.4431
46	39.0	0.1966	0.4635	51	40.3333	0.2006	0.456
56	40.0	0.2009	0.4858	61	35.3333	0.2492	0.434
67	40.0	0.2109	0.4343	74	40.0	0.2113	0.4412
81	34.3333	0.2024	0.4562	90	43.3333	0.1942	0.4709
98	44.3333	0.194	0.4701	108	42.6667	0.2025	0.45
119	44.3333	0.2191	0.4205	131	46.6667	0.2196	0.4194
144	53.6667	0.2094	0.436	159	50.6667	0.2054	0.4868
174	54.0	0.1931	0.4743	192	56.0	0.2063	0.4645
211	66.6667	0.2057	0.4532	232	56.3333	0.2104	0.4279
255	42.0	0.2035	0.4289	281	59.0	0.2097	0.4223
309	54.3333	0.2049	0.4448	340	75.0	0.2071	0.46
374	80.6667	0.193	0.481	411	83.3333	0.2153	0.4868
453	79.3333	0.1956	0.4446	498	88.6667	0.215	0.4091
548	99.3333	0.2134	0.4081	602	87.6667	0.208	0.4273
663	94.3333	0.2035	0.4746	729	94.0	0.1941	0.5137
802	115.3333	0.2024	0.4884	882	117.6667	0.221	0.4169
970	108.0	0.2202	0.4068	1067	130.3333	0.2162	0.4305
1174	148.3333	0.2081	0.4163	1291	145.6667	0.2052	0.4557
1420	139.6667	0.206	0.474	1562	140.0	0.1901	0.4833
1719	175.0	0.2277	0.4123	1891	166.0	0.2219	0.4078
2080	153.6667	0.2149	0.409	2288	194.3333	0.2092	0.4154
2516	195.0	0.2051	0.4391	2768	216.0	0.2019	0.4821
3045	212.0	0.1922	0.4849	3349	222.0	0.2133	0.438
3684	242.0	0.223	0.4128	4053	257.0	0.2191	0.4078
4458	282.3333	0.2111	0.409	4904	303.0	0.2048	0.4184
5394	308.0	0.206	0.4835	5933	342.6667	0.203	0.4777
6527	386.0	0.1905	0.4821	7180	378.0	0.2309	0.4182
7897	449.6667	0.2198	0.4121	8687	464.0	0.2127	0.4141
9556	484.3333	0.2064	0.416	10512	521.6667	0.2149	0.4752
11563	591.6667	0.2058	0.482	12719	684.6667	0.1862	0.4918
13991	646.6667	0.2301	0.4306	15390	728.3333	0.2234	0.4193
16929	774.3333	0.2169	0.4218	18622	887.3333	0.2131	0.4234
20484	930.0	0.2074	0.4653	22532	1021.3333	0.2084	0.492
10							

24786	1130.6667	0.192	0.4958	27264	1243.3333	0.2333	0.4312
29991	1376.3333	0.2283	0.4258				

Appendix B

Model Fitting

In each plot, we show $85 a \mathrm{~s}, b \mathrm{~s}$ or $c \mathrm{~s}$ in $\operatorname{time}(x, y)$ with a curve corresponding to the theoretical runtime complexity.

Coefficient a in time(s,u) Models Derived for Linear Search

Coefficient c in time(s,u) Models Derived for Linear Search

Coefficient a in time(s,u) Models Derived for Binary Search

Coefficient c in time($\mathrm{s}, \mathrm{u})$ Models Derived for Binary Search

Coefficient a in time(s,u) Models Derived for Two Level Search

Coefficient b in time(s,u) Models Derived for Two Level Search

Coefficient b in time(s,u) Models Derived for Three Level Search

Coefficient c in time(s,u) Models Derived for Three Level Search

Coefficient a in time(s,u) Models Derived for Binary Tree Search

Coefficient b in time(s,u) Models Derived for Binary Tree Search

Coefficient c in time(s,u) Models Derived for Binary Tree Search

Coefficient a in time(s,u) Models Derived for Rejection Method

Coefficient cin time(s,u) Models Derived for Rejection Method

[^0]: ${ }^{1}$ The sampling and updating time complexity of $\mathrm{C}++$ discrete depends on the implementations. Please refer to Section 2.6 for details.

