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ABSTRACT

A hybrid weighted/interacting particle filter, the selectively resampling particle (SERP) filter, is used to detect
and track an unknown number of independent targets on a one-dimensional “racetrack” domain. The targets
evolve in a nonlinear manner. The observations model a sensor positioned above the racetrack. The observation
data takes the form of a discretized image of the racetrack, in which each discrete segment has a value depending
both upon the presence or absence of targets in the corresponding portion of the domain, and upon lognormal
noise. The SERP filter provides a conditional distribution approximated by particle simulations. After each
observation is processed, the SERP filter selectively resamples its particles in a pairwise fashion, based on their
relative likelihood. We consider a reinforcement learning approach to control this resampling. We compare
two different ways of applying the filter to the problem: the signal measure approach and the model selection
approach. We present quantitative results of the ability of the filter to detect and track the targets, for each of
the techniques. Comparisons are made between the signal measure and model selection approaches, and between
the dynamic and static resampling control techniques.
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1. INTRODUCTION

Filtering theory is an active research field with a wide range of applications, including target detection and
tracking, asset pricing and portfolio allocation, signal processing, pollution tracking, and search and rescue.
Filtering theory allows one to find a probabilistic distribution of the past, present, and future state of a signal
based on observations that may be partial, corrupted and/or noisy.

For some simple applications there exist optimal analytic solutions; however, most real-world applications
involve nonlinear signals for which optimal solutions cannot readily be computed. For problems such as these,
approximate solutions, such as particle filters, are used. Particle filters use Monte Carlo simulations to approxi-
mate the true filtering equation. The estimate of particle filters approaches the optimal filter as the number of
particles used approaches infinity.

In this paper we consider a multiple target problem that we refer to as the racecar problem. It involves
detecting and tracking an unknown number of independent targets. There are various ways of applying a
particle filter to a multi-target problem. We explore two techniques: the signal measure approach, which is the
canonical choice, and the model selection approach. We also consider the use of an artificial neural network to
improve the performance of our particle filter.

This paper is organized as follows: Section 2 describes the filtering methods we use. In Section 3, the problem
is presented as a signal and observation model. Section 4 describes the application of our filtering techniques to
the problem and provides simulation data that compares the filtering performance in terms of error measures
and computation time. Lastly, in Section 5, conclusions are presented.
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2. FILTERING METHODS
2.1. Background

The goal of our filtering methods is to determine the conditional distribution

P(th S A|Y1,...,Yk) (1)

of Xy, , which is the signal state at time ¢, based on the back-observations, Y7, ...,Y}, where Y; is the observation
data from time step i. In our case, X is a multi-target signal. There are many ways to use a particle filter to find
this conditional distribution. Herein, two methods are considered. The signal measure approach uses a counting
measure on the number of targets in the domain. The model selection approach runs a separate instance of the
filter for each possible number of targets and uses Bayesian model selection to weight and prune which models
are considered.

2.2. SERP Filter

The SERP filter is a hybrid weighted /interacting particle filter, first discussed in Ballantyne et al,* then known
as the weighted interacting or hybrid particle filter. The filter’s applicability to performing arts and to search
and rescue was demonstrated in Bauer et al,° and in Ballantyne et al.

During the resampling step, the filter uses a parameter, p, to control how much resampling is performed.
This is the parameter that we attempt to optimize in section 2.5.

2.3. Signal measure approach

For the signal measure approach, the signal, X, is considered a counting measure of the number of targets, M X,
in the domain,

MX
X=) 6xs (2)
j=1

where ¢ is the Dirac delta measure.

To implement this approach with the SERP filter, each particle is initialized with a number of targets sampled
from the initial signal distribution. Each of the targets belonging to each particle is evolved independently. The
particle distribution then covers the entire distribution of the signal, including each possible number of targets.

This technique reduces the problem to a single-target problem with an expanded state space, and allows
normal particle filter algorithms to be applied.

2.4. Model selection approach

To use the SERP filter for model selection, an instance of the filter is created for each possible number of targets.
Typically, each filter is normalized to produce a proper probability measure of the signal state:

N

P(X,eA) =)

Wi .

¢ X lxiea
N i

o1 2im Wi

(3)

where N is the number of particles, W} is the weight of particle i and X} is the state of particle i.

The denominator in Equation (3) can be considered a total weight of the unnormalized filter. This total
weight can be used to calculate a Bayes’ factor comparing the likelyhood of two models. The Bayes factor
comparing filter 7 to filter j can be calculated as:

N ik
o Zk:l th
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where V[/'ti”C is the weight of particle k of filter i.

In actual implementation, instead of using the Bayes factor directly, the total weight of each filter is calculated
along with a total weight for all active filters. A probability measure on the filters is then defined as:

P(model i is correct) = mv;/i , (5)
ttl

where W; is the total weight of filter i and Wy is the total weight of all models.

When the probability for a model falls below a certain threshold, it is deactivated, and its particles are assigned
to the remaining models in proportion relative to their current weights. This last step keeps the computational
time fairly constant.

This implementation is functionally equivalent to the Bayes factor method.

2.5. Rho Optimization

As described in section 2.2, the SERP filter makes use of a parameter p to control the amount of resampling
performed. The optimal value for this parameter varies depending on the current state of the filter. For example,
when the filter is first initialized, it needs to explore the signal space, and thus little resampling is appropriate;
however, when the signal state has been localized, large amounts of resampling should be used to refine the
estimate and ensure that the target is not lost.

Given this situation, we wish to determine a function that maps filter state to optimal p value.

2.5.1. State variables

The state of the filter at time step ¢, is denoted by a set of 4 state variables S;, = {S%kﬂ ceey sfk} which attempt
to capture information about the state of the particle system at time ¢;. The first is an overall variance of the
particle system, denoted var. Second, we use the variance of the filter distribution for the number of targets
present, denoted vart. Third, we use the change in the median weight of the filter between the last two iteration,
denoted dmedian, and lastly we use the N-effective value, as discussed in Liu and Chen,® denoted Nog and
defined as:

Neff = 2 (6)

Mz
E

1
s
g

where W7 is the weight of particle i.

State variables are sampled in discrete intervals. These sample intervals are geometric for each state variable,
except for dmedian, which uses arithmetic intervals.

2.5.2. Rho

We define a discretization of p;, by p:, € {p@k 10 <i < Q}, where @ is the number of discrete values that p;,
can take. These values are chosen geometrically.

2.5.3. Policies and optimal policies

A policy 7 is a function that maps states Sy, to actions pg, . The simplest policy is 75(S,) = 0, where g is a
constant value. At a given time tj, the filter is in state S;,. A policy = is used to determine which p;, to use as
the resampling parameter. Using p;, = 7(Sy,) for resampling, a filter cycle (resample, evolve, and reweight) is
applied, leaving the filter in some new state Sy, ,. We define the cost function for an action as:

Clpu.) = e(Fuupy ), (7)
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where Fy, ., is the conditional distribution of the filter at time ¢4, and e(Fy, ) is the mean-squared error (MSE)
of the expected value. Other measures of cost such as computation time could also be incorporated.

The optimal greedy policy for time ¢y, is:

mg = argmin C(w (S, )) VSi,. (8)

This policy will minimize the cost for the current iteration, but may put the filter in a state so that future
iterations will perform poorly. To find a true optimal value, one would have to consider a time-horizon cost;
however, in this paper, we consider only the greedy policy.

2.5.4. Methodology

In order to find the optimal policy, we first populate a data table that records the average cost of choosing each
p value in each state. We do this by simulation, running the filter on synthetic data. We then choose the lowest
cost p value for each state as our partial policy. This partial policy will be incomplete and noisy due to some
states being encountered few or no times during the data collection. To complete the policy, we use this partial
policy to train a neural network.

2.5.5. Data collection

For the data collection stage, we run the filter for a series of data collection epochs. Each epoch consists of some
fixed number of filter iterations. For each epoch, a new signal is generated and the filter is reset. Each iteration,
the filter state is recorded and a p value is chosen. After the iteration completes, the cost is calculated and stored
in the table, indexed by the state experienced and the p used.

Once the data collection is completed, the lowest cost p value is extracted for each state.

2.5.6. Neural network
The extracted data is then used to train a neural network as described in Mitchell.”

The neural network used is a fully-connected, feed-forward, back-propagation network with one hidden layer.
There is one input unit per state variable, which is four in our case. There are eight hidden units and a single
output unit. The activation function is the hyperbolic tangent. The output is unthresholded. This type of setup
is capable of approximating, to an arbitrary accuracy, any continuous, bounded function.

The state values and p values are all normalized before being used to train the neural network. The mean
and standard deviation of the training data are stored, allowing the system to properly normalize the input and
denormalize the output during actual use.

3. PROBLEM DESCRIPTION

Our problem is to detect the number of targets existing within our domain and track their state based on
back-observations. The targets all evolve independently and according to the same model.

The problem is referred to as the racecar problem. It is based on an earlier model described in Yewchuk et
al.l
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3.1. Signal Model

The signal consists of M targets,

X, ={X}, X2,..., XM}, (9)

where M is uniformly distributed between 0 and 3. Each target consists of two state variables,

Xi = {v;.0;}. (10)

Here, 6 exits on a manifold,

0! € [0,2n), (11)

and will wrap around its domain from 0 to 27 and vice versa. The variable v is a velocity which takes values

’UZ € {_Sa S}7 (12>
where S is a constant speed.

The variable 6 has a uniform initial distribution and evolves according to the explicit solution

¢
0 = P(/vids + oW}, (13)
0

where W} is a standard Brownian motion, independent of the Brownian motions for other targets, o4 is a
constant, and P is a periodic function used to keep the target within the domain, defined by:

x
P(z) =z -2 |- |. 14
(r) =2 =2 |- (14
The velocity v has a uniform initial distribution and switches between its two possible values as a Poisson
process:
vi = S(2(N(t)mody) — 1), (15)

where N(t) is the number of events that have occurred at time t in a Poisson process with a constant rate, .

3.2. Observation Model

The observations are discrete time and take the form of a one-dimensional raster with n pixels:

Y, = {Y2, V.. ) (16)

Each pixel takes a value depending on the presence or absence of targets in the corresponding segment of the
domain.

Vi = (I x 13j02keci) + (o x 1v,-0{k¢ci))Likv (17)

o2
where Lj is a lognormal random variable with expectation e#™ 2" and standard deviation /e2/+73(e% — 1),
where p and o, are constants and represent the mean and standard deviation of the underlying normal distri-
bution. I; and Iy are constants, and C; is the subset of the domain covered by observation component i and is
defined as:

n n
where n is the number of pixels in the observation raster.
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4. SIMULATIONS
4.1. Rho Optimization

The p optimization system requires extensive computing time to converge to a good approximation of the optimal
policy. Due to limited hardware available, the p optimization system was only trained for 3000 epochs of 30
iterations each. This was probably not sufficient training to get a precise approximation of the optimal policy,
but we believe it still produces a policy that demonstrates the major features of the optimal policy.

4.1.1. Optimal rho values

In order to produce the graphs of the optimal p values, the values are averaged over the other state elements.
For example, the var graph values are averaged over all possible Ny, var;, and dmedian values.

Figures 1 and 2 show the Optimal p values versus var value. There are two separate figures because different
variance measures were used for the model selection filter and the signal measure filter. Figure 3 shows the
optimal p values versus Ng value. Figure 4 shows the optimal p values versus var® value. Figure 5 shows the
optimal p values versus dmedian value.

Unsurprisingly, for the signal measure filter, higher var values result in higher p values. The high var value
indicates that the filter does not have a good lock on the target and thus excessive resampling must be avoided.
For the model selection filter, however, the var graph is quite different. We have not been able to explain this
behaviour. It is possible it is due to poor training, or perhaps a software problem.

For the Nog graph (Figure 3), it is likely that the minima in the graph are values that are experienced when
the filter has stabilized its weights after locking onto the target. From these minima, the optimal p values increase
more quickly as Ng increases than as it decreases. It is likely that smaller Ng are sometimes encountered by
the filter when it has an especially stable lock.

The vart graph (Figure 4) is also unsurprising. As with var, higher values indicate higher uncertainty of the
signal state. In this case the model selection filter also performs as expected, unlike the var graphs.

The dmedian graph (Figure 5) is difficult to analyze. The central peak suggest that perhaps when the
particles are in diverse states, the total weight tends to decrease at a fairly constant rate, but then when a lock
is achieved, the dmedian varies more widely.

4.2. Method Comparisons

Each of our filtering methods was simulated in software using synthetic data. We use the computation time and
an error measure, described below, to compare the filters.

4.2.1. Error measurement

Normally, the error of a particle filter approximation would be measured in terms of mean squared error (MSE)
defined as:

> XL EX] Y.L Y (19)

r=1

MSE(t,) =

Tmax

where X7, Y, are the signal path and observations from run number r, ryax is the total number of simulation
runs, and d is some distance function defined on the signal domain. However, in the case of multiple targets in
which each particle X7 is a counting measure rather than a single point, and in which a distance between two
counting measures or the mean of a set of counting measures which may contain differing number of points has
no usual definition, no standard MSE calculation is possible and a different value for filter error must be defined.

NN
Therefore, we define Ttk({ng} , X1, ), the error of the filter measure with respect to signal truth, to be
j=1

N

Y Wi ;
T, ({ X7, }j=1 X,,) = z_; md(th,th), (20)
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1 MX 1 MY
where for X = 37 ijl dx; and Y = w7 ijl Oyi,

IninaEperm{l,...,MY} \/Z;w:)l( (H(Xj,ya(j)))2 + (MY — MX) D2 MX < MY

minaeperm{l’“.’MX} \/ij:j (H(XU(])’Y]))Q —|— (MX —_ MY) l)2 MX > MY .

d(X,Y) = (21)

Here I1(X71,Y72) is the distance between the locations of the targets X7' and Y72, and D is the diagonal length
of the target domain with respect to this distance function II.

In the case of the model selection filter we define an aggregate error measure over each of the component
filters,

M .
w) ;
Xy, :Z%T%(th X, (22)
0 i=1 Zj’:o wy *

where Ft]k is the filter for the j-target case, M is the maximum possible number of targets, and W,f is the total
weight of filter j.

()

4.3. Simulation Results

Four different filters were each simulated 200 times. Each simulation consisted of 200 runs of 60 observations
with 0.5 seconds of simulation time between each observation. Each run, a number of targets for the signal was
chosen uniformly between 0 and 3, according to the signal distribution. Each of the filtering techniques, signal
measure and model selection, were run using both static and dynamic p selection. For each run, the computation
time and error value for each iteration were measured. The values for each simulation were averaged over the
runs. Figure 6 shows the error values and Figure 7 shows the computation times. The parameters used for the
simulations are listed in Appendix A.

Figure 6 shows that the model selection filter with dynamic p had the lowest error, followed by model selection
with static p, followed by the signal measure approach with dynamic p, followed by signal measure with static p.
It may seem surprising that the error does not tend to decrease with time; however, the problem is high-observable
which tends to result in almost immediate acquisition by the filter.

Figure 7 shows that the model selection filter is much faster than the signal measure. This is a result of the
implementation, not the algorithm. If the filters were compared with equally optimized implementations, they
should take approximately the same amount of computation time.

5. CONCLUSIONS

The results presented in section 4.2 allow us to make two important conclusions. First, unsurprisingly, the p
optimization improves filter performance consistently. This demonstrates that the p graphs presented here, while
they may not be completely optimal, are certainly better than using a static value.

More importantly, the results show that the model selection approach outperforms the signal measure ap-
proach. This is especially important because, previously, the signal measure approach has been the canonical
choice for problems of this sort.

The flatness of the error (with respect to iteration) also reveals an important truth about high-observable
problems like this one: the filter tends to have approximately the same error at the beginning of the simulation
as at any other point. This suggests that it is not taking advantage of previous observations as well as it should.
It is likely that this is because the particle weighting values can be so extreme in this sort of problem, that
previous weights sometimes bear little importance in the filter calculations. It is likely that performance could
be improved by considering this characteristic.

The computation time results provide little useful information except to show that the optimal p calculations
slow the filter by a small but noticeable amount. This is due to the use of the neural net to store the optimal
values. The values could be put into a lookup table, drastically reducing this overhead.
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APPENDIX A. SIMULATION PARAMETERS

The first value listed for each parameter is the value used for the model selection filter, the second is the value
used for the signal measure filter. If there is only one value, it was used for both filters.

A.1. Signal Parameters

The target speed, S = 0.2
The rate of turning for the target, A = 0.0005
The amplitude of the target diffusion, o, = 0.09

A.2. Observation Parameters

The number of pixel cells, n = 256

The mean of the normal base of the noise, © = 8.3

The standard deviation of the normal base of the noise, o, = 1.2
The indicator for the presence of a target, I; = 10000

The indicator for the absence of a target, Iy = 2

A.3. Filter Parameters

The number of particles, N = 500000
The static p used = 13000, 16000

A.4. Rho Optimization Parameters

Maximum var = 4, 10el8
Minimum var = 0.0001, 1e-66
Number of var discrete values = 10

Maximum Neff = 0.000002
Minimum Ngg = 0.00000000001
Number of Ng discrete values = 10

Maximum var; = 1000000000
Minimum wvar; = 1le-67

Number of var; discrete values = 10
Maximum dmedian value = 15000

Minimum dmedian value = -20000
Number of dmedian discrete values = 10

Maximum p value = 40000
Minimum p value = 5000
Number of p discrete values = 10

Data collection epochs = 3000
Tterations per epoch = 30

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support and sponsorship of Lockheed Martin MS2 Tactical Systems and
the Natural Science and Engineering Research Council (NSERC) through the Prediction in Interacting Systems
(PINTS) centre of the Mathematics of Information Technology and Complex Systems (MITACS) network of
centres of excellence.

300 Proc. of SPIE Vol. 5426

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/13/2013 Terms of Use: http://spiedl.or g/terms



REFERENCES

1. K. Yewchuk, C. Ketelson, A. Limon, Y. Mileyko, J. Hoffman, and M. Kouritzin. “Tracking and Identifying
of Multiple Targets”. PIMS graduate student industrial program workshop reports.

2. Y Zeng, and M. Kouritzin. “Bayesian Model Selection via Filtering for a Class of Micro-movement Models
of Asset Price”.

3. R. Kass and A. Raftery. “Bayes factors and model uncertainty”. Journal of the American Statistical Associ-
ation 90, 773-795. 1995.

4. D. Ballantyne, S. Kim, and M. Kouritzin, “A weighted interacting particle-based nonlinear filter”, in Signal
Processing, Sensor Fusion, and Target Recognition XI, ed. I. Kadar. Proceedings of SPIE 4729, 236-247.
2002.

5. W. Bauer, S. Kim, and M. Kouritzin, “Continuous and discrete space filters for predictions in accoustic
positioning”, in Proceedings of SPIE - image reconstruction from incomplete data IT 4792, 193-206. 2002.

6. D.J. Ballantyne, J. Hailes, M.A. Kouritzin, H. Long, and J. Wiersma, “A hybrid weighted interacting particle
filter for multi-target tracking”, in Signal Processing, Sensor Fusion, and Target Recognition XII, 2003
Proceedings of SPIE 5096, 244-255.

7. T. Mitchell, “Machine Learning”, McGraw Hill: Boston, Massachusetts, 1997.

8. J. S. Liu and R. Chen, “Sequential Monte Carlo methods for dynamical systems”, J. Amer. Statist. Assoc.,
vol. 93, pp. 1032-1044, 1998.

Optimal Rho Values vs. Variance

45000

40000 2

35000 /[/
30000

/ —s—signal measure

15000 //
10000

5000

¥
g
—

B
8

Optimal Rho Integer

1.00E-66 215E-57 464E-48 1.00E38 215E-29 4.64E20 1.00E-10 0215443 4.64E+08 1.00E+18
Varlance

Figure 1. The optimal p values according to the neural network versus the variance value for the signal measure approach.

Optimal Rho Values vs. Variance

7800

7600
7400 .—.ﬁ.\-\
. = P

jor
g 3

—&—model selection

Optimal Rho Integ

/
\/

1.00E66 215E-57 4.64E-48 1.00E38 215E-20 4.64E-20 100E-10 0.215443 4.64E+08 1.00E+18
Variance

Figure 2. The optimal p values according to the neural network versus the variance value for the model selection approach.

Proc. of SPIE Vol. 5426 301

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/13/2013 Terms of Use: http://spiedl.or g/terms



‘Optimal Rho Values vs. Neff

16000

14000

12000

10000

8000

—s—model selection

Optimal Rho Integer

2
8

4000

2000

100E-11 388E-11 151E-10 585E-10 227E-08 881E-09 342E-08 133E-07 515E-07 200E-08
Neff

Figure 3. The optimal p values according to the neural network versus the Nog value for both the signal measure and

model selection approaches.
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Figure 4. The optimal p values according to the neural network versus the number of targets’ variance value for both
the signal measure and model selection approaches.
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Figure 5. The optimal p values according to the neural network versus the dmedian value for both the signal measure
and model selection approaches.
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Figure 6. The filter error for each iteration. The error bars indicate a 95% confidence interval for the value.
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Figure 7. The computation time for each iteration. The error bars indicating a 95% confidence interval are too small to
see.
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