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ABSTRACT

In this work, the continuous model is used to study the mechanical behaviours of
networks. In the cases of plane reference configurations, the deformations of
networks under prescribed displacements, static loads and punching loads are
studied. The effects of elasticity, elastic-plasticity, and visco-elastic-plasticity are
described by the mechanical sublayer model. For the low velocity punching case, a
simple way to approximate the process is put forward. Explicit Lagrangian Finite
Difference Methods, which are in conservative form, are used in the plane
reference configuration cases. These methods are further used in the cases of the
circular cylinder reference configuration. Dynamic Relaxation Methods are used to
solved the non-linear algebraic equations, which are obtained after space domain
discretization. Some interesting numerical examples are provided. Also some

experiences of choosing fictitious density and fictitious mass are presented.
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Chapter 1. Background

The term “network” denotes a system of flexible fibers directed along two
or more one-parameter families of lines on a surface. The networks usually
have regular patterns repeating themselves symmetrically. These patterns are
required partly by practical manufacturing processes, partly by aesthetic con-
siderations and partly by the need to stiffen the assembly and strengthen it to
withstand loads.

The networks are kinds of membrane structures which are often called sus-
pension or pneumatic structures. Membrane structures have long been used.
as is shown in their employment for nomads’ tents, military camps, sails, fil-
ters, etc.. In modern civil engineering they are used for spanning large spaces,
such as sports facilities and exhibition pavilions. Their clear advantages are
their light weight, applicability to form a variety of shapes and sizes. and suit-
ability for prefabrication. We also find membrane structures in the biomedical
field. Researchers have studied the problems of human fetal membranes, the
balloon pumps as heart-assist devices, the strength of red-cell membranes. the
mechanical behaviour of alveolar cells in the lung, etc.. '

There are two parallel methods in the study of networks. One is the discrete
method, which treats fibers as a disconnected assembly and studies the details
of each single fiber, as in the work of Hearle [1969,1980]. The discrete method
is mostly used in fabric engineering, which designs and produces textiles, and
is somtimes used in the analysis of cable-nets. More information about the
discrete method can be found in Hearle [1969, 1980]. The other method is the
continuous one, which regards fibers as continuously distributed and forming
a continuous surface. Thus, the use of continuous theory is practical.

There are two distinct approaches in the study of membrane structures.
One approach treats the membrane as a specific case of a shell of zero thickness
by suppressing the bending moments and transverse shears. It is then called
a shell membrane. Another approach regards networks or membranes as two-
-dimensional deformable sheets, which are plane or curved, and incapable of

carrying any stress couples or transverse shears. These sheets can sustain only



a tangential resultant force and are usually called “ideal” or “pure” membranes.

Ideal membranes are different from shell membranes in several respects. 1.
Ideal membranes cannot sustain compressive stresses, whereas shell membranes
can carry compressive stresses until buckling takes place; 2. large inexten-
sional deformations can be sustained in an ideal membrane, but not in a shell
membrane, etc.. It is difficult to say which one is more exact, as no references
are available to compare the two models.

The main characteristic of membrane structures is the large deformation,
l.e. geometrical nonlinearities sometimes accompanied by material nonlinear-
ities. To capture the geometric nonlinearity for shell membranes. we seek help
from Von Karman’s large deflection flat plate equations or Berger’s equations
for the large deflection of a thin elastic isotropic plate of uniform thickness
by making the bending stiffness zero as in the work of Jones [1974]. A well-
known nonlinear membrane theory was developed by Féppl [1907]. Results
were obtained by Paul [1977] using this theory. The theory results from the
Von Karman'’s nonlinear plate theory. According to this theory, linear stress
strain relations are assumed, and tangential displacements are assumed to be
small compared with the normal displacement (i.e. small strains) in addition
to the usual thin shell approximations. Later, Berger [1955] introduced the
assumption that the first invariant of the strain tensor is constant in order
to get solutions for some specific cases. But it is still difficult to obtain an-
alytical solutions for many cases. With the advent of high speed computers,
the Finite Element Method(FEM) was found to be an appropriate tool for
design analyses of membrane structures. Nonlinear analysis programs, first
devised to find the shapes of shells, were adapted to treat both shape finding
and load analysis of membrane structures. Several finite element solutions for
the deformation analysis of elastic membranes were presented by Oden [1972].
Han and Olson [1987] also provided a finite element solution for wind loaded
pneumatic membrane structures. Numerous studies of shell membranes have
been published. Only a simple outline has been given above.

The first ideal membrane model, also known as the Tchebychev net, was
suggested by Tchebychev [1878]. It was used to study cloth which deformed
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mainly as a result of changes in the angle between the threads of the warp
and woof. The additional deformation due to fiber stretching is ordinarily
negligible in comparison to the finite distortion that can be produced with-
out stretching. This model treats fibers as being inextensible and distributed
continuously. Rivlin [1955] used the same continuum model in studying the
problem of plain strain and got a general solution. Adkins [1956a,1956b] gener-
alized this theory. Genensky and Rivlin [1959] extended this model to elastic
networks of infinitesimal plane strain. Green and Shi [1990] considered the
effects of elasticity in the context of a general theory for plane deformations.
Steigmann and Pipkin [1991] developed this theory further and extended it to
account for arbitrary deformations of curved surfaces. From the latter theory.
Steigmann [1992] developed a linear theory for small displacements super-
posed on finite deformations of elastic networks. The above studies of pure
membranes are all analytical. Many problems, however, cannot be solved in
this way. Based on Steigmann’s work [1992], Meiping [1993] did modal analy-
sis of a prestressed hyperbolic paraboloid network. Haseganu and Steigmann
[1994] were the first to introduce the conserved form of finite difference and
DR into the numerical study of pure membranes, a method which proved to
be easy and effective. Haseganu and Steigmann [1996] also studied the finitely
deformed elastic networks using the same method.

The same numerical method as developed by Haseganu and Steigmann
[1994] is used in this work to study the plastic case, the low speed punching
case, the concentrated load case, and the circular cylinder reference configura-

tion case.



Chapter 2. Numerical Methods
2.1 Explicit Lagrangian Finite Difference Methods

The equilibrium equations of networks are nonlinear for large deformations.
These equations do not usually have any analytical solutions and therefore
must be solved by numerical methods. The Finite Element Method(FEM) is
widely used because of its advantages: 1. it is easy to discretize the domain
with different types of elements or a combination of several types of elements
to fit the shape of the arbitrary domain; 2. it is easy to adjust the element type
to meet different load cases: 3. many popular commercial FE codes, such as
ANSYS and SAP, have the function of analysing membrane structures. They
all are based on shell membrane theory and thus have restrictions when used
for the deformation of the membranes.

Another popular numerical method is the Finite Difference Method(FDM).
which directly replaces the original differential equations with finite difference
forms and which is easy to carry out. Few cases can be found regarding
its applications in calculating membrane structures. General finite difference
grids are rectangular in order to express derivatives at a point with adjacent
grid points. So if the domain is not a regular shape, generation of the mesh
grids becomes very difficult. But the Explicit Lagrangian Finite Difference
Methods [Herrmann and Bertholf 1983] are of conservative form, combining
the advantages of FEM and FDM. The basic idea is to use Green’s theorem to
express the derivatives at the center of the cell with the grid points. The cell
does not need to be rectangular; it can even be triangular or polygonal. Fig.1
shows a grid cell.
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Fig.1 A grid cell for integral

The coordinates of points 1, 2, 3. and 4 are ( z1.y1). (22, 42), (z3.y3),
(z4,ya) respectively. The values of function ¢ at points with these coordinates
are @1, @2, 93, @4 respectively. Then

ff d:cdy = § ody
= él;éz (y2 —w1) + &;ﬁl(ys - ¥2)
+§és+fn4!( )+ §61+¢4 (y )

= 3{(y2 — v4)(61 — 83) — (y1 = y3) (b2 — 04)].

/ / (52)dedy = 4(—)

; where A is the area of the grid cell. Using Green’s theorem., we can express
A as

By average principle,

A = [dzdy
= 3 fzdy — ydz (2.2)
= 3l(¥2 = ya) (21 — 73) — (1 — ya) (22 — 24)],
so that 9 | |
320 = 5712 — ¥4 (61 — 63) — (11 — 4s) (B2 — &4)]. (2.3)



Similarly, we have

(gij)o = él_A[(éz — ¢a)(z1 — 23) = (S — Ba)(z2 — z4)]. (2.4)

A different method of deduction and more details can be found in Herrmann
and Bertholf [1983].

2.2 Dynamic Relaxation Method

With the help of the finite difference schemes above, the nonlinear differen-
tial equilibrium equations can be changed into a set of simultaneous algebraic
nonlinear equations such as

F(x) = 0. (2.5)

In the finite element method, the Newton Raphson method is often used to
solve the set of nonlinear algebraic equations. It is very tedious to calculate the
Jacobi matrix, which is called the “tangential stiffness matrix” in structural
mechanics. It also requires a lot of computer memory to store the matrix.
Dynamic Relaxation (DR) can overcome these shortcomings. The basic idea
behind DR is to add inertia and friction terms to the static equation to get a
dynamic equation. The solution of the static equation is the steady solution
of the dynamic equation. So F(x) = 0 becomes

M + Cx + F(x) = 0, (2.6)

where M is a diagonal mass matrix, C = ¢M, where ¢ is a constant friction
coefficient. The superimposed dot indicates the derivative of x with respect to
time t. The expressions of the central difference for a time step h and at nth

time increment are:

. 1, “n
x" = 3(xn--t-O.S +xn 0‘5)’ (2.7)

5-(71 = h-l()'(n+0.5 _ )'cn-O.S)’ (28)



)'(n —_ h—-l(xn+0.5 - xn-O.S). (?.9)

Substitution into the dynamic equations above yields the fully explicit al-

gorithm
. 2—ch. _ 2h _ .
05 _ e n-05 _ 7T chM 1R(x"). (2.10)
X" = x4 hx" 05, (2.11)

The mass M and friction coefficient ¢ need not be the true ones for static
problems. By trial and error, we can obtain the appropriate M and ¢ to make
the iteration converge more quickly. More details can be found in Underwood
[1983].

We now discuss how to eliminate the pseudo plastic accumulation in the DR
method. When the network is only within the elastic range. the loading and
unloading paths of the fibers are the same. The stress strain(s-s) relationship
is a single value function, so that the transient solution of DR always decays to
the right static solution. Furthermore, it is independent of the loading order
and initial velocities. But when the network is beyond the elastic range, i.e.,
in the plastic range, then the loading and unloading paths are not the same,
and the stress and strain(s-s) function becomes multi valued. In the decay
process of a transient solution of DR to a static solution, artificial plastic
accumulation will occur, and thus DR will give an incorrect static result. In
the early stages of DR applications, the constitutive equations are linear elastic.
Rushton and Hook [1974] were probably the first to use DR in geometrically
nonlinear problems with simultaneous nonlinear stress-strain relationships. In
their work, the total deformation formulae are used, with the s-s law given as
o = Be" and simple loading is assumed. The problems can then be treated
as nonlinear elastic ones. DR schemes are similar to those of geometrically
nonlinear and physically linear problems. The problem of combining geometric
nonlinearity and elasto-plastic material properties with complex loading was
first analysed with DR by Harding etal. [1977]. Later many works on this
topic were published. Basically, there are two ways to implement DR:

-~



(a) Total Deformation Method
(b) Incremental Method

The total deformation method is easy to implement but has two apparent
shortcomings: (1) it is incapable of taking proper account of any local elastic
unloading in the plastic range; (2) even if monotonic proportional static load-
ing is applied, the final settled state determined by DR may differ from the
true state. The second limitation is caused by the false plastic accumulation
of DR, but can be corrected by treating the elasto-plastic s-s relationship as a
nonlinear elastic s-s law, i.e., loading and unloading are in the same path. But
the first shortcoming is a fatal one. It cannot be avoided for complex loading
cases.

The incremental method can overcome the shortcomings of the total de-
formation method, so it is a popular method for tracing the whole loading
process. Generally there are two ways to implement (b):

1. all governing equations are in incremental forms [Harding and Hobbs
1977; Lim and Turvey 1984]; and

2. constitutive equations are in incremental forms, equilibrium equations
are in total displacement forms, and the strain increments are expressed by
the displacements before the load step and the displacements after the load
step (Frieze, etal. 1978; key, etal. 1981; Cardis and Frieze 1988].

In our case, the incremental equilibrium equations of networks are too
complicated to be carried out numerically, so we used the second method.
In seeking the equilibrium position, the function of DR is the same as New-
ton-Raphson method. During iteration of the nth load step, the tangential
stiffness at the start of this load step remains constant, until the velocities
are smaller than the tolerance. If the material is linear elastic, then each load
step, the converged point obtained by using DR once is on the right path. If
the material is in the plastic range, the point will deviate from the true path.
The tangential stiffness at the converged point has to be updated and DR is
used again to approach the right position within the same load level until the
the change of displacements is within the tolerance. This is called “double
loops”™ in each load level [Bushell 1977]. Many papers on DR do not mention



this “double loops” method, and use only a single loop, so they are only linear
approximations. After DR converges, we calculate the new displacents, strains
and stresses. In most work, the DR method has been applied with the one
step method, i.e., assuming the strain increment perpendicular to the vielding
surface for each load step. Only Key. et al. [1981] introduced the sub-incre-
ment concept from Bushell [1977] for higher accuracy requirements. This is a
significant development: firstly, constitutive evaluation is disassociated from
the load incrementation and related equilibrium iteration procedure; secondly,
the strain increment is subdivided into sub-increments, each sub-increment is
perpendicular to the yielding surface, so that the path of total strain incre-
ment need not be a straight line segment. One important point that should be
kept in mind when the incremental method is used is that we need to be clear
about which point is loading and which one is unloading in the plastic range.
In the plastic range, the different modulus is used in constitutive equations for
loading and unloading paths, and the vielding stresses need to be updated for

the unloading points.
Adaptation in this work

For our case, though the problems are 3-D, the constitutive equation of
each fiber is 1-D, and we do not need to assemble a stiffness matrix for DR, so
we associate the constitutive equation with the DR in each load step. Loading
and unloading are judged with reference to the state at the end of the last
load step. The loading path follows the real stress-strain curve. while unload-
ing path follows the elastic straight line. When DR converges, we get the
new stresses, strains and displacements at the same time, making this method
efficient. We also implemented the method which disassociates the constitu-
tive equation from the DR iteration, but doing so takes longer. If the fibers
are elastic perfectly plastic materials and we fix one end of the networks and
stretch uniformly at the other end so that the fibers are in the plastic range.
then we find that the method does not give a uniform strain field. If we always
use the elastic modulus at each load step, though it takes four times longer, a

uniform strain field is obtained. It may be said that a uniform plastic strain



field is not practical. But here the intention is to display the special numerical
phenomena. The reference configuration is a plane unit square network of two
families of fibers; one family is paralell to the x-axis, and the other is paralell
to the y-axis. Sides AB and CD are fixed, while sides DA and BC are free.
Side AB moves out a distance. Fig.2b shows the shape realised by the first
method using the tangential modulus; Fig.2c shows the shape realised by the

second method using the elastic modulus.

C B
Fig.2a Refrence Configuration

D A

C B
Fig.2b

D A

C B
Fig.2c
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2.3 Mechanical Sublayer Model

There are several ways to describe the stress-strain relationship in numeri-
cal calculations, but the mechanical sublayer model is more convenient. It can
easily include the plastic and visco-elastic-plastic effects. In this work only
a one-dimensional constitutive equation is used, so we give only a simple ex-
planation of the sublayer model in one-dimension. More information about
the 3-D sublayer model can be found in Gupta, et al. [1980].

In the mechanical sublayer model, the uniaxial tension test stress-strain
curve of the material is first approximated by n +1 piece-wise-linear segments
which are defined at coordinates ( o, €t), k = 1,2,---,n. Then the material
is envisioned as consisting, at any point in the material, of n equally-strained
“sublayers” of elastic perfectly plastic material, with each sublayer having the
same elastic modulus E, but a different yield stress. For the kth sublayer, the
vield stress oyx = E¢x, k = 1,2,---.n. The stress value oj of the kth sublayer
can be defined uniquely by the strain history and the value of strain and the
strain rate present at that point. The stress, o, at that point corresponding

to strain € may be expressed as

o= Z ckoi(€). (2.12)
k=1
where ci, the weighting factor for each sublayer, is given by
Er — Expy
== 7 2.13
Ck o (2.13)
where
El = E,
Ek — Jl‘: — a.lt-l .
€k — €k—1
k =233="'en’
Enpi =0

For example, when n=3, Fig.3a shows the three perfectly plastic sublayers at
different yielding points and Fig.3b shows the s-s curve modeled by the three
sublayers.

11
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Fig.3a s-s curves of sublayers

o

1 I 1 €

€1 €2 €3

Fig.3b s-s curve modeled by 3 sublayers

From a computational point of view, the mechanical sublayer model is
convenient for problems with general loading paths such as loading, unloading,
reloading, and cyclic loading. It follows the kinematic hardening rule, so it can
express the Baushinger effect. It can also easily accommodate the strain rate
effect. Fig.4b illustrates the one-dimensional s-s curves of strain rate depen-
dence. For the kth sublayer, it is elastic perfectly plastic, and its yield point
changes with the strain rate ¢, according to

€ L
0y = a1+ =), (2.14)

Each sublayer has the same constants D and p, which are obtained experi-
mentally. For simplicity, we set D = p = 1, and two strain rates, rl, r2, and
0 <rl <r2, as shown in Fig.4a and Fig.4b.

12



E=r2
e=rl

0g L e=0
€

Fig.4a strain rate dependent s-s curves of kth layer

a
eE=r2
e=rl
e=10
09 L
€

Fig.4b strain rate dependent s-s curve modeled by 3 sublayers

This sublayer model is included in the computing code.

13



Chapter 3. Equations for Arbitrary Networks

Before we discuss the networks of plane reference configuration and circular
cylinder reference configration, it is necessary to state the equations for arbi-
trary networks, from which the equations for any specific case can be deduced.
Details can be found in Steigmann and Pipkin [1991].

Gauss coordinates 6%(a = 1,2) on the membrane surface are used. Given
a material point p with coordinates §° from its reference position x(6,6%) to
the place r(d'.6?), the natural basis a, is defined by

a, =r,. (3.1)

which spans the tangent plane of the deformed surface at p. Commas are used

to denote partial derivatives with respect to 8. Then

dr = a,df° (3.2)
and
|dr|? = anpdf°do®, (3.3)
where
Gapg = a¢ ' ag, (34)

is the metric tensor, and a = det(a,5). When a > 0, the reciprocal metric

components a°? are uniquely defined by the relation

@y = 43, (3.5)
where dF is the Kronecker delta. The reciprocal basis a® is given by

a® = q*fay. (3.6)
The normal unit n(8',6%) on the deformed surface is given by

1
n= aec’ﬁaa X ag, (37)

L _L . .
where €ap = a2€q,€*® =a77e%%, and €*? = e, is the unit alternator.

14



Corresponding results for the reference surface are

Ao=X..  Aus=AJAg
A = det(Aqg), A AL ';—' Jg, (3.8)
A, = AaﬁAg, Haog = AZe,p, '

pef = A~1e®, 1 sN = A, x Ag,
We regard the network as a 2-D elastic continuum with a strain energy W.
g g

measured per unit area of reference surface. The deformation gradient, F. is
defined by

dr = Fdx, (3.9)
and

F=a,gA%

a, = FA,.
The Piola stress T is defined by

(3.10)

T=T"QA.; T =(0W/dri, )e;. (3.11)

We assume that W is frame-indifferent. i.e. W(F) = W(QF) for all proper
orthogonal Q. It follows that W(F)=w(C), where

C=FTF = q,5A° @ A?

(3.12)
is the Cauchy-Green strain. If w is symmetrized in the aos, we find
T® = Jo%ag. (3.13)
where
J = (a/A)? (3.14)
is the areal stretch, and
0%? = 2J70w/Ba.s (3.15)
are the contravariant components of the Cauchy stress

o =0%a, @ag. (3.16)

Suppose the domain S has piecewise smooth boundaries, and the network is

subjected to loads derivable from a potential PT|r], then we define a potential
energy Efr] of the deformation by

Elr] = / [5 W (F)AY2d8'd6? — PT[r].

15

(3.17)



The equilibrium equations for the networks are the Euler-Lagrange equations
associated with the functional E. For the problem of pressure load and con-
centrated load, these are

A"I(AYT®),a + pJn + PS§(8',6%) = 0, (3.18)

where p is the pressure value, P is the concentrated load at point (6*,6%),
and T is the Piola stress. Suppose the network is composed of two families
of fibers,and each point at the reference surface has unit vectors L and M
tangential to the fibres. At the corresponding point at the deformed surface, 1
and m are unit tangents to the fibres. They are related by

M=FL,  um=FM, (3.19)

where

A=[FL|. u=|FM]| (3.20)

are the fiber stretches. From the representations
| =[°a,, m = m°a,. (3.21)

we find
Al = L2, um® = M°, (3.22)

We postulate that the force carried by the fiber of one family is independent
of the stretch of the fiber in the other family. Then the strain energy of an
elastic net can be expressed in the form

W = F(X) + G(u), (3.23)
where
A =L-CL=auL°L°, u*=M-CM = a,sMM". (3.24)
The stress is obtained from equations (3.15), (3.23) and (3.24):

Jof = AL F(A) L LP + ptg(p) Mo MP, (3.25)
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where
fQA) = F'(A),g9(u) = G'(p) (3.26)

are fiber stresses. We assume that f(\) and g(u) are continuous. From (3.13),
(3.21) and (3.22), we get

T = f(A)IL® + g(u)mALe. (3.27)
Then the Piola stress is
T=fA&L+g(u)maeM. (3.28)

If the network is composed of more than two families of fibers, for example
N, they are arranged along L', L2, ..., L" respectively. After deformation,
the directions of fibers are changed to I', 12, --. , I¥ correspondlingly. The
fiber stresses are f1(A'), f2(A?), -+, FY(AY), and A!, A2, --- . AV are fiber
stretches. Similarly, we can get a Piola stress expression for N families of fiber

networks,

T=fONQL + PP QL +-- + AN g LY, (3.29)

17



Chapter 4. Plane Reference Configuration

The flat reference configurations are bounded in a region Q with a piecewise
smooth boundary 9. The position of a point in 0 with coordinates (z;, ;)
is given by x = z,e,, a = 1.2, and is displaced to the point r(x) = r;(x)e;,
where ¢ = 1,2, 3. Using Cartesian coordinates, and simplifying the results of
the last chapter, we obtain A| =x, =€), Ay = X,=€), Asg = dag. A = 1.

Therefore the equilibrium equations are

divT(x) + pJn(x) + Pd(zo1, 2,2) =0, (4.1)

where

Jn =Ml x m. (4.2)

To prove this, suppose the angle between I, m is v. With A = L3L +
M ® M, we have

F=FA=FLgL+FMaM. (4.3)
Then
F=AMgL+umgM, (4.4)
the strain is
C=NLRL+*M@M+ \ucosy(LEM+MgL), (4.5)
and the metric is
Gag = N LoLg + M, Mg + Apcosy(Lo Mg + M, Lg). (4.6)

Therefore a = det(aap) = Np?sin®y, J = (a/A)Y*=Ausiny, and n=l x m/sin~.
Hence Jn=MAul x m.

The Piola stress in component form is the following:
Tia = f(N)iLa + g(p)miM,, (4.7)
F, ], m in component form are
Fio =1i0 (4.8)
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li=A"'FioLa: m; = pu~ Fi M, (4.9)

It is similar for cases with more than two families of fibers. Before dis-

cretizing, the equilibrium equations can be rewritten in DR form as:
p(X)E(x, 1) + cp(x)E(x. t) — divT(x,t) — pJn(x,t) — Pd(z,1, z02) = 0. (4.10)

In order to nondimensionalize the DR equations, let po,ag and Eg be rep-
resentative density, length, and Young’s Modulus respectively. so that

X = ggX. r = agfF. E = EyE. p = pop.
71{0 = EOT_iov p= ano-lﬁ7 c= ” f}gaﬁ

Pi(z1.202) = Eoag'Pd(2o1,202), T = aof,

2

p=di_, &F = /887
r= dt—aodtz- t -— EO t.

X, T, E, 5. 1.2, 5, P§(o1.2,2) are dimensionless variables. Note that the
dimensions of E are (force)(length)~ and the dimensions of ¢ are (time)=!.
Substituting these into the DR equations, and performing simple algebraic
operations, we get dimensionless DR equations which have the same form as
the dimensional ones. For convenience, from now on, we delete the bars over
the dimensionless variables.

We first discretize the partial differential DR equations in space domain and
then change them into ordinary differential equations. As shown in F ig.5, each
mesh node is labelled by a pair of integer superscripts (i,7), the summation
convention is not used for superscripts in this chapter and Chapter 4. The
quadrilateral regions formed by the four nearest neighbours of each of the
nodes are called zones and are indicated by closed arrows. Points on the
arrow sides of such a quadrilateral are labelled by half-integer indices, and
they are called zone-centred points. The stress, deformation gradient, and
mass density are associated with the zone-centred points; the displacement,
velocity, acceleration and the divergence of the stress are associated with the

nodes. To approximate the divergence of the Piola stress at node (i.7) and
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time step n, we use the conservative finite difference formulae in chapter two,

with ¢=T;,(x,t,) within the arrow contour. Thus
2A4M (Tigoa )" = €ap

[T}TIIQ-J’H/Zn(ng'H _ xf3+l'j)

12 =1/2m) im oy
+T£'a [2-1/ "(x:@" 1_2:21:)

_ﬁjl/?.]’-l/ﬁ.n(zgj—l _ zgi—l,j)]’

where A" is the half area of enclosed arrow quadrilateral,

A =t e -
S )
Similarly, the deformation gradient Fi'/*/*4/2 within the mesh cell quadri-
g {1
lateral, in which the zone-centred point (i +1/2,; + 1/2) is at the center, is
approximated by

i+1/2,j+1/2,n ; ; -
Fi / / = (2ATH/2541/2) leag

iyj'*'l _— {'f'l-j l:+10j+1.n — ‘:sjvn s
[(% Ig )(r; ri?™) (4.13)
_(ng-l,f-f-l _ xgj)(r:}j-i-l,n _ r:}l’j’")],

where,

APURIRZ = L(phi+L _ piLd ) (gLt _ i)

(4.14)
fj+1 i+1,7\ o i+15+1
~(z* =2 (2 — ).
By integrating over a zone with node (i,7), we have
mi,ji;i,j.n + cmi,ji.{,j,n = pf.j,n’ (4.15)

Where (p{!jrn){ — e{,p‘-ijn _— ‘4'{'.]—(1}0.&){,]."‘ +pJn::'j + Px_{'j’ and m{vj — p{yinvj
is the nodal mass.



We can now use the DR iterative formulae in Chapter Two. In the follow-

ing, we conclude the computing steps:

1. Initializing conditions and boundary conditions;
2. approximating deformation gradient at zone-centred points;
3. calculating A, u,1, m, n;
4. calculating fiber stresses f()), g(r) with sublayer model;
5. calculating p;;
6. using DR iterative formulae.
1j+1 i+l i1+l
-1/2§+1 iTNG j+1/2
i1 iJ i1
L/23 i+ g4 /2
141 -1 11

Fig.5 Finite difference mesh

For non-linear algebraic equations, we cannot give analytical proof of the

DR stability, so before we use this scheme for computation, we do a numerical

test of the stability of DR. If we choose a friction factor ¢ = 0, then the system

is conservative, so that the total mechanical energy (the sum of the potential

energy and dynamic energy) should be constant. We tried it for a mesh size

of 15 x 15, and mesh size of 21 x 21, with a time interval of 0 to 10°, we found

that the total energies for the two mesh cases were constant and almost equal.

Hence

the stability of this numerical method is partly guaranteed.

The following are some numerical examples. The convergence condition of
DR iteration is 0.1e-5.

A.

(a)

Static Case

Linear Elastic Cases



Example 1

Specifications: (1) unit square domain, two family fibres, along x, y axis
respectively; (2) fixed boundary, concentrated load P=(0,0,0.2) at center point.

The shape is shown in Fig.6. Fig.7 shows the shape with a pressure of 0.4
and P=(0.0,-0.2).

Example 2

Specifications: (1) unit circle domain; (2) pressure upd=0.4, concentrated
load P=(0,0,-0.2) at center point, fixed boundary.

When two familiy fibres are along x and y axes respectively. the shape is
shown in Fig.8; when the fibres are in radial and circular directions the shape

is shown in Fig.9. We can find that Fig.8 is not axisymmetric. but Fig.9 is.

Example 3

Specifications: (1) triangle domain. two family fibres, along x. y axis re-
spectively; (2) fixed boundary, pressure upd=0.4, P=(0.0.-0.2) at point (0,0).

The mesh is shown in Fig.10. The deformed shape is shown in Fig.11.

Example 4

Specifications: (1) ellipse domain, the long axis is 1.4. the short axis is 0.6:
(2) fixed boundary, uniform pressure upd=0.4.

The mesh is shown in Fig.12. Fig.13 shows the deformed shape for the case
in which the fibres are in x and y axial directions respectively; Fig.14 is for the

case in which the fibres are in radial and circular directions respectively.

Example 5

Specifications: (1) L-domain, two family fibres are along x, v axis respec-
tively; (2) fixed boundary, uniform pressure upd=0.4.

Fig.15 shows three different meshes. Fig.16 shows the deformed shapes
corresponding to meshes in Fig.15.

Example 6

Specifications: (1) unit square domain, four family fibres in 0°, 45°, 90°,
135° directions respectively; (2) y=-0.5 and y=0.5 free, x=-0.5 and x=0.5 are
fixed; (3) x=0.5 moves to 1.0; (4) uniform mesh21x21.
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If the fibres can sustain the compressive stress, the deformed shape is shown
in Fig.17. When we compute this case, if we set all node mass as equal, say
m = 1.1, the results are very poor; if we reduce the node masses at free
boundaries by half, m = 1.1/2, the results are good. When uniform stretching
force sforce = 1.0 is applied at x=0.5, mesh21x21, the shape is shown in
Fig.17a. When we suppose that the fibres can sustain only tensile stresses, the
shape with wrinkles is shown in Fig.18. The wrinkled zones are marked by
)

Example 7

Specifications: (1) the same as (1) in Example 6; (2) only four corners are
fixed; (3) the 4 corners stretch out a distance of 0.2y/2.

A quater of the deformed shape is shown in Fig.19. When it is subjected to
uniform pressure upd=0.1, the shape is shown in Fig.20. The wrinkled zones
are marked by ‘4’

(b)  Elastic Plastic Cases

With the two sublayer model, the stress-strain relationship is composed of
three straight line segments. The first segment is from (0.0) to (0.15,0.15), the
second one is from (0.15,0.15) to (7,18), and the third one is from (7.18) to
(7.infinity).

The wrinkled zones are marked by ‘4.

Example 1

Specifications: unit squre domain, two family fibres along x and y axes
respectively.

When uniform pressure increases from 0 to 0.8, the shape is shown in
Fig.21; when the pressure decreases to 0, the shape is shown in Fig.22. The
relationship between the mid point displacement and the uniform pressure is
shown in Fig.23.

Example 2
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Specifications: unit circle domain, two family fibres are in radial and cir-
cular directions.

When uniform pressure increases from 0 to 0.3, the shape is shown in
Fig.24; when it decreases from 0.3 to 0, the shape is shown in Fig.25. The
relationship between the mid point displacement and the uniform pressure is
shown in Fig.26.

Example 3

Specifications: (1) unit square domain, three family fibres at 0°, 45°, 135°%;
(2) x=-0.5 is fixed, y=0.5 and y=-0.5 and freedoms of x direction at x=0.5 are
free.

When the stretching force in x-direction at x=0.5 increases from 0 to 0.4,
the shape is shown in Fig.27; when the stretching force decreases from 0.4 to
0.05, the shape is shown in Fig.28.

Discussion

In the calculating process, some experience with choosing fictitious density
or mass is gained. Usually. for block iteration, the fictitious mass matrix is
supposed to be constructed in order to get the best convergent speed as in
Philip [1983]. For point iteration, we do not need to construct matrices, so
the fictitious densities are supposed to be determined as in Cassel [1970]. As
point iteration is used, for simplicity, we choose uniform and isotropic fictitious
density, for uniform mesh. This works well. But for non-uniform mesh, the
convergence is slow. In this case, we found that if we set all node masses
m = 1.1, regardless of their corresponding mesh areas( it is as with a non-
uniform fictitous density. ), the convergent speed is 3 to 5 times faster.

From the above examples, it is clear that the Expilcit Lagrangian Finite
Difference is good at adapting to the different domains. The sublayer model is
convenient when considering the elasicity and plasticity in the same formulae.
For more than one concentrated load case, difficulty arises concerning how to
generate the mesh.

B. Simulation of Punching



(a) Sudden Application of Force

Example 1

Specifications: (1) unit circle domain, two family fibres in radial and circu-
lar directions; (2) P = (0,0,0.2), the same el-pl sublayer model as the above;
(3) €=0.17, density=2000.0; (4) at the position when velocity is zero,

F'ig.29 shows the shape that is independent of strain rate; Fig.30 shows the
shape that is dependent on strain rate by o, = go(1 + 5¢). The strain rate

effect is obvious.

(b) Punching Head With Speed hv(t)

Example 1

Specifications: (1) unit circle domain, two family fibres in radial and circu-
lar directions; (2) elastic case, pre-tension pt=0.4; (3) ¢=0.17. density=2000.0;
(4) hv is the velocity of the punching head; (5) The radius of the punching
head rh=0.1667.

Here we prove numerically that the static case is the limit of the infinitely
slow loading case. When the head moves to 0.1, shapes at different velocities
are shown. When hv=0.1 the shape is shown in Fig.31. When hv=0.01 the
shape is shown in Fig.32. When hv=0.001 the shape is shown in F ig.33. The
trend approaching the static state is obvious. We can also notice that with
an increase in pre-tension of fibers, the speed of disturbance transportation is

also increased.

Example 2

Specifications: (1) unit circle domain, two family fibres in radial and cir-
cular directions; (2) elastic case, rh=0.1667; (3) ¢=0.17, density=2000.0; (4)
hv=0.02, where hv is the velocity of the punching head, and there is no pre-
tension.

To simulate the penetration, we set that when the stretch is 2.0, the fibre
cannot sustain the stress. Fig.34 shows the shape when the head moves to
0.06; Fig.35 shows the shape when head moves to 0.4.
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(c)  Approximation Of Low Speed Punching With Static Stiffness.

Example 1

Specifications: (1) unit circle domain, two family fibres in radial and circu-
lar directions; (2) elastic case; (3) ¢=0.17, density=2000.0; (4) hv=0.02, where
hv is the velocity of the punching head, and pre-tension pt=0.2: (5) a plane
circular object with mass um=3.0, radius rh=0.1, velocity when touching the
net, ud1=0.2, time step h==0.01.

Approximation Procedures

Step one : We simplify the net as a spring, in order to get the stiffness k. We
use the static method to get a series of mid point forces and mid point displa-
cents (P, ;). Then use least-square recession to get the approximation func-
tion P = a;r+ar’+asr®+a,r?. Then we can get k = aj+2asr+3azri+4a,r.

¢ = a, is the linear case.

Step two : With ICs r =0, 7 = udl, t = 0, we can get a numerical solution
of um? + ¢f — kr = 0.

Step three : The numerical solution of the spring mass system is the motion
of the punching object after contact. So we can get the motion state of the
net.

Fig.36 shows the static mid point force-displacement relationship.

Fig.37 shows the motion of the mass.

Fig.38 shows the shape when the imacting object reaches the maximum
displacement position.

Discussion

When the s-s relation is strain rate dependent, it can influence the shape
after the punching. It is important to consider the plasicity in impact problems,
for the design of impact proof structures is based on the plasticity of the
material to absorb the energy. Impact and penetration are very complicated
phenomena; the examples here are simple and primary.
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Chapter 5. Circular Cylinder Reference
Configuration

The circular cylinder reference configuration has a height 1 and a radius
R =1/2r. The position of a point on the surface with cylindrical coordinates
(0.2) is given by x = Re.(0) + zk, and is displaced to the point r(x) =
(R+A)er(0)+Rdbeq(6)+(z + dz)k. Simplifying the results in Chapter 3 with
zy =0, and 2, =z, we can get A; = x,; = Reg, A =x,=k, A = R?. The

equilibrium equations are

divT(x) + pJn(x) + Pd(z,1, 202) = 0. (5.1)

where
Jn = lul x m, (5.2)
T=fOI2L+g(p)meM, (5.3)

or in component form,
Tia = f(MliLa + g(u)miM,. (5.4)

It is similar to the plane reference configuration case. The main difference
is that here we use the Navier-Stokes’ theorem instead of Green's theorem

when we integrate the equations over the surface.

//(vxu)-dA:/u-ds, (5.5)

where 15 2
Vxu =(155 - S2)e,

(&= — Buze,

+1 (_(ml ao Bur ),

[[wxw-aa= [ [cTe - S,
/ u-ds= / ugrdd + u.dz.

Q]
-~



Let u. = Ty, ug = 0 and u. = 0, uy = T, seperately, thus

J[divTdA = [ [(185 + 2L2)44

(5.6)
= [Tdz — T, Rd6.
Just as in the plane case, we integrate the DR equations over the cylinder
suface with the mesh in Fig.5, and get

2AM (div )" =
+1/2,54+1/2,n {1 (41,7 (-1/2,741/2.n i=1,7 t. 741
[T /RTHRRQIFL _ ity i an gimtd _ ity

+T}{l—l/2.j—1/2.n($;.j-l _ z;—-l,j) _ Ti:’l+1/2.j—1/2.n($;.j-1 _ I;—H.j)]_ (

v
~1
~—

i+1/2,j+1/2n, {j+1 i+l.j i=1/2,j+1/2:n, i=1,f i+l
R[T, (2" =27 ) + Ty (¢ —z")

+1"‘_{2“l/2vj-1/2',n(ziy]."l — mi_lyj) — 1’;‘;‘1/2']-1/2’”(1{'].-1 — x‘;’*'l'j)]:
where half the area of the enclosed arrow quadrilateral s,

i=1j _ _ilgyeoidtl _id-l
—(z, -z ) (z; - I )]
Similarly, for deformation gradient. For Fi,,
H1/2,j+1/20 _ 1/2,j+1/2y~1
it = (24 [2.+1/ )

[(mg'j'l"l — x;’*’lyj)(rl;‘*'lvj"‘l.n _ rivjvn) * (ri+l'l-+lvn + T'l-']-xn)/?'

—(zgthIH — ) (pfIHEn _ pEbdny o (pLiELn _ikLiny po) (5.9)

R[(z2* — ity (pit L _ Pidn) g (LA riiny 19

_(xi-*-lyj‘i'l — x{'j)(rl:yj'i'lyn - r::'{'lyj'n)

, it pithiny )

*(r
fOI‘ R’ay i = 22 3
FiEU2i+2n (2_4f+1/2.j+1/2)—1

i«

[(227.7-'*'1 —_ x;‘*’lvj) r::+lyj+lvn _ ,r::vjyn)

_(x;-i-l,f-H _ :z:;’j)(r::'j"‘l'n _ r:_‘-f-l.f,n)]_ (5.10)

R[(zt;f-f-l — zi—i-l.f) (7.::+1,J'+1.n _ T.t}j,n)

1

_(xi-i-l,f'f'l _

xtlJ) (T.:}J'H,n _ r:}l.j,n)]_
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where, N o N
Al+l/2._]+l/2 = %[(JJ;H‘l _x12+l._;)(mll+l,]+l _ rul,.])

g T g (5.11)
~(&} = e ),
The rest of the formulae are the same as those in Chapter 4.
The following numerical examples are elastic cases with a convergence con-
dition of DR iteration as 0.le-5.

Example 1

For comparison, first we calculate the unit square case. Two family fibres
are in x, y directions respectively, with x=-0.5 and x=0.5 fixed; y=-0.5 and
y=0.5 are free. With uniform pressure upd=0.4, the shape is shown in Fig.39;
then with the two fixed sides coming together, the shape is shown in Fig.40.

Example 2

Specifications: (1) the domain is the surface of a circular cylinder, with
height 1 and radius 1/27.

When 6 = 0(or6 = 2) is fixed and the unform pressure upd=0.4, the shape
is shown in Fig.41. We can see the difference between Fig.41 and Fig.40. The
results depend on the loading paths. When z=0 and z=1 are fixed, the shape
is shown in Fig.42. When z=1 is fixed, and freedom in r direction at z=0 is
free, uniform pressure upd=0.1. The shape is shown in Fig.43.

Example 3

Specifications: (1) the domain is the surface of a circular cylinder, with
height 1 and radius 1/27.

When upd=0.4, with different meshes, the shape is shown in F ig.44. With
an additional concentrated load P = (0,0, —0.2), the shape is shown in Fig.45.

Discussion

The circular cylinder is only a special curve surface. For an arbitrary curve
surface, there is no way to implement the Expilcit Lagrangian Finite Difference
formulae.



Chapter 6. Conclusions and Remarks

Explicit Lagrangian Finite Difference(ELFD) methods and Dynamic Rela-
xation(DR) have been used to solved some problems.

1. For various domains, ELDF shows its flexibility to discretize the do-
mains and adapt the boundaries. In cases with one concentrated load applied,
co-centered circuits and radiative segments can be generated to produce the
mesh grids. The center is the point at which the concentrated load is applied.
Only mesh nodes need to be recorded. The information concerning what nodes
consist of which cell is automatically clear, and need not be recorded addition-
ally. It is very easy to implement in programs. The pre-processing part is quite
short. Theoretically, ELDF can be used in any kind of mesh grid if infomation
about which cell has what nodes and which node has what neighbouring cells
can be recorded. These things can be done, but it is very difficult to do so.
The mature commercial Finite Element method softwares can deal with nearly

any domain and any mesh grids.

2. When DR is used, the way to choose all node masses as 1.0, no matter
whether the mesh grids are uniform or not, shows its advantages in many
static numerical examples. It is a concept of non-unifrom fictitious density. It
seems that non-uniform fictitious density has advantages over uniform fictitious

density. Its mathematical proof is not available yet.

3. Impact and penetration are very difficult and complex; some of the work
here is in the primary stage. The methods that have been adopted in this work

are limited to low velocity cases.

4. The circular cylinder surface is only a specific and simple curved surface
case. There are many similarities between a circular cylinder surface and a
plane rectangle. The ELFD methods are easy to implement in the circular
cylinder surface case. Numerical examples show that it works well. But for
arbitrary curved reference surfaces, the ways to implement ELFD methods
are not yet available. Though the shell membrane model is limited, the FEM
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can be used to solve problems with any arbitrary curved surface. Geometrical

shape is not a problem for FEM.

5. There is still a lot of work left to be done in networks. Analytical
investigations are the basis for numerical investigations. Extra effort should
be made on both aspects. The two important assumptions in this work are
that the networks have no bending stiffness and that there is no slip between
fibres on the crossing points. Future work may be done without taking into

account one or the other of the above assumptions.
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Figure 7: Shape with point load at center and pressure
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Figure 15a: Mesh one for L-domain
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mesh?2 for L-damain
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Figure 15c: Mesh three for L-domain
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Figure 16c: Deformed shape with mesh 2
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Figure 17: Deformed shape of 4-family fiber network
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Figure 17a: Defromed shape after being stretched
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Figure 19: Deformed shape of unit square network

Figure 20: Deformed shape of unit square network
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Figure 21: Deformed shape in plastic range
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Figure 23: Load-displacement relationship
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Figure 25: Residual shape of unit circle network
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Figure 26: Load-displacement relationship
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Figure 27: Deformed shape of unit square network

45



05,

\ +
A -
04r + + 7
] AR EAEL g
03f o +1+ |+ + 1= +
+ T+l +
[
o2f i P
A — ——
01F
[+] 8
=01 F
1]
~02k A T+
L ——t—T"T+ | + b
_._{’-: L e s
-0.3f - B EssIEIrIk:
+ L =
+ + ]+ +
/r——l + ]+
-4k [+ Z 5
—
/
-05 . . L )
~0.6 -0.4 -0.2 0 0.8

Figure 28: Deformed shape of unit square network after unloading
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Figure 29: Deformed shape independent of strain rate
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Figure 30: Deformed shape dependent of strain rate
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Figure 31: Deformed shape when hv=0.1
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Figure 33: Deformed shape when hv=0.001
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Figure 36: Static load-displacement relationship
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Figure 37: Motion of the mass
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Figure 38: Deformed shape after being impacted

T %

//////////// '\i\
was= — /11111111111 ///\\

//// ////////\\\\\\\\ \\
o W/ IIIII\\\\\\\\\\\\\\\\\
IIIIIIIIIIIII

A \\\\\\\\\\\\\\\\ :
S, \\\\\\\\\\\\\\\\\\\\

IIIIIIIIIIIIIIIIIIII ______ \\\\\\\\\\\\\\\\\\\\

Fig.30
Figure 39: Deformed shape of unit square network
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Figure 41: Deformed shape of circular cylinder network

52



Figure 42: Deformed shape of circular cylinder network
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Figure 43: Deformed shape of circular cylinder network
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