
1

SDN- Data Center Automation with Firewall as a Service

MINT 709

Capstone Project Report

Feb, 2016

Submitted By:

Saminderjit Singh Chahal

Supervisor: Muhammad Durrani

Cisco Systems Limited

Submitted To:

Dr. M.H. (Mike) MacGregor

MINT Program Director

&

Mr. Shahnawaz Mir

MINT Program Coordinator

SDN Data Center Automation as a Firewall Service

SDN Data Center Automation as a Firewall Service

2

ABSTRACT

The software-defined data center (SDDC) has already redefined the traditional ways

of implementing the storage, networking, computing and security services by

eliminating the dependency on the dedicated hardware. Enterprise data centres are

evolving to provide the higher performance and agility, driven by rapid adoption of

mobility/BYOD, big data, cloud, and SaaS. But, the data center security needs to

guard against the more sophisticated attacks , while keeping up with rapidly

increasing bandwidth requirements.

Software defined networking (SDN) and network virtualization had already been

abstracted the networking and security service attributes, while creating the network

fabric overlays for on-demand policy orchestration and ensuring the consistent

visibility and control. So, the intent of my project is to deploy an orchestrated firewall

plugin in multi-tenant data center network in automated manner using Openflow

Controller (POX) and Python API. The firewall plugin developed in this project

supports the network segmentation and security service function deployment.

SDN Data Center Automation as a Firewall Service

3

ACKNOWLEDGMENTS

I sincerely thank Mr. Muhammad Durrani and Mr. Shahnawaz Mir for their guidance

and encouragement in carrying out this project work on this emerging technology and

providing me the equipment in the MINT lab required to implement this project.

I also thank the MINT program director Dr. M.H. (Mike) MacGregor for providing

me the opportunity to embark on this project.

SDN Data Center Automation as a Firewall Service

4

Table of Contents

Abstract ... 2

Acknowledgments ... 3

Table of Figures ... 5

Why we need SDN? ... 6

History .. 7

Definition .. 8

SDN Architecture .. 9

OpenFlow .. 10

Discussion ... 11

Mininet: ... 11

Why I used Mininet? .. 12

POX SDN Controller ... 12

Environment Setup .. 13

Install Ubuntu or other Linux Operating system .. 13

Install Git ... 13

Install Mininet.. 14

Install POX .. 15

Install Editor .. 15

Implementation .. 16

Use Case: Deploy Tenant Firewall Using SDN Controller (POX) using Python API 19

SDN - DC as a firewall Service .. 20

Deploy Hierarchical multi-Tenant Data Center network in the automated manner using Mininet

Python API infrastructure simulation. ... 21

Deploy Python based SDN Controller (POX) in layer 2 switch mode and verify end to end

connectivity of the hosts. .. 23

Deploy the firewall plugin in the layer 2 switch controller. .. 26

TestCases ... 29

Summary and Conclusion .. 31

Future Work to do: ... 31

Bibliography & References: ... 32

SDN Data Center Automation as a Firewall Service

5

TABLE OF FIGURES

Figure 1 History of SDN: Before OpenFlow ... 7

Figure 2 SDN Architecture ... 9

Figure 3 OpenFlow Protocol .. 10

Figure 4 Mininet Installation Confirmation ... 14

Figure 5 POX Installation .. 15

Figure 6 Running basic topology in Mininet ... 16

Figure 7 Checking POX controller ... 17

Figure 8 Verifying connectivity of hosts for Mininet basic topology ... 18

Figure 9 Checking the POX console ... 18

Figure 10 Our Project Scenario .. 19

Figure 11 Running Mininet for our required topology ... 21

Figure 12 Checking Hosts Configurations .. 22

Figure 13 Checking POX connectivity for our required topology .. 23

Figure 14 Verifying end to end connectivity for required topology .. 24

Figure 15 Checking flows on POX console .. 25

Figure 16 CSV file format .. 26

Figure 17 Firewall Plugin code screenshot .. 27

Figure 18 Installing Firewall flow rules on switch .. 28

Figure 19 Checking the Switch Flow Table entries ... 28

Figure 20 Verifying Firewall Rule Implementation between H1 and H2/H4 29

Figure 21 Verifying end to end connectivity between H1 and H3 .. 29

Figure 22 Verifying Firewall Rule Implementation between H2 and H1/H3 30

Figure 23 Verifying end to end connectivity between H2 and H4 .. 30

Figure 24 Verifying end to end connectivity between H3 and H4 .. 31

SDN Data Center Automation as a Firewall Service

6

WHY WE NEED SDN?

The explosion of mobile devices, server virtualization, and advent of cloud services

are among the trends driving the networking industry to re-examine the traditional

network architectures. Many conventional networks are hierarchical, built with tiers

of Ethernet switches arranged in a tree structure. This design made sense when client-

server computing was dominant, but such a static architecture is ill-suited to the

dynamic computing and storage needs of today’s enterprise data centers, campuses,

and carrier environments.

So, today network administrators are in hunt for something that fulfills the scalability

issues and provides a reliable high performance services to the clients listed as

1. Virtualization: Use network resource without worrying about where it is

follows:physically located, how much it is, how it is organised etc.

2. Orchestration: Should be able to control and manage thousands of devices

with one command

3. Programmable: Should change behaviour according to the network’s needs.

4. Dynamic Scaling: Should be able to change size accordingly.

5. Automation: Minimize the manual involvement for doing tasks like

troubleshooting, policy enforcement, add new workloads, sites etc.

6. Performance: Provides the network device utilization optimization for traffic

engineering, failure handling, capacity optimization and high utilization.

7. Multi-tenancy: To give complete control to tenants for managing addresses,

topology, security etc.

8. Service Integration: To provide the load balancer, firewall, intrusion

Detection System (IDS) services on demand.

The requirements of above services in modern networks gave birth to a new era of

technology named “Software Defined Networking (SDN)”.SDN has the potential to

revolutionize the legacy data centers by providing a flexible way to control the

network according to the needs and provide high performance services.

SDN Data Center Automation as a Firewall Service

7

HISTORY

The origins of software defined networking (SDN) began shortly after when the Java

was released by the Sun Microsystems in 1995.The first notable SDN project was

AT&T’s GeoPlex platform that manages the networks and on-line services.

In 2000, WebSprocket a Silicon Valley startup launched by Mark Medovich, designed

a platform in Java that had the ability to instantiate network stack(s), interfaces ,

protocols as multiple threads and an object oriented structured runtime model that

could be modified by a networked compiler/class-loader in real time.

In early 2001, Ericsson and WebSprocket made a license contract and created the first

soft switch. OARnet ran the SDN tests successfully over Internet2 in collaboration

with Ohio State University. In 2003, Bob Burke and Zac Carman continued the SDN

work by developing the Content Delivery Control Network patent application.

Finally, in 2007 Nicira startup focused on software-defined networking and network

virtualization was launched by Martino Casado, Nick McKeown and Scott Shenker.

Nicira created their own proprietary versions of OpenFlow, Open vSwitch and

OpenStack networking projects.

Figure 1 History of SDN: Before OpenFlow

SDN Data Center Automation as a Firewall Service

8

DEFINITION

SDN has many definitions given by the experts:

“Software Defined Networking (SDN) is an approach to design, build and manage

the networks while separating the network’s control plane and the forwarding planes

to better optimize each

 Or

“Software-defined networking (SDN) is an approach to computer-networking that

allows network administrators to manage the network services through abstraction of

higher-level functionality. This is done by decoupling the system that makes decisions

about where traffic is sent (the control plane) from the underlying systems that

forward traffic to the selected destination (the data plane).

 --Wikipedia

SDN Data Center Automation as a Firewall Service

9

SDN ARCHITECTURE

Figure 2 SDN Architecture

The figure describes the logical structure of SDN. SDN architecture has basically

three layers:

1. Application Plane: The applications like cloud orchestration, business

applications and other SDN applications are deployed in the application plane.

The Application plane communicates with the control plane using Application

Programming Interfaces (APIs) like REST API or Java API and these APIs are

also known as Northbound APIs.

2. Control Plane: A central controller performs all the complex functions like

routing, naming, policy declaration and security checks. It basically consists of

one or more SDN servers. SDN controller allows the data flows that occur

SDN Data Center Automation as a Firewall Service

10

through SDN Data Plane. If the controller allows a flow, it then computes the

route for the flow to take, and then adds a flow entry for that flow in every

switch along the path. The control plane communicates with the data plane

through various protocols like OpenFlow which talks to the networking

devices through open APIs known as Southbound APIs.

3. Data Plane: The main purpose of data plane is to forward the traffic based on

the rules installed on it by the control plane. Data plane network devices like

switches, routers, firewalls or load balancers simply manage flow tables whose

entries can be populated only by the controller.

SDN controllers and the switches can be deployed for Ethernet switches (Layer 2),

Internet Routers (Layer 3), transport switching (Layer 4) or application layer

functionality.

OPENFLOW

OpenFlow is basically a network protocol which allows the communication between

the control and the data plane through open APIs. It is designed to manage and direct

the traffic among routers and switches from various vendors. Thus, it differentiates

the programming of routers and switched from the underlying hardware.

Figure 3 OpenFlow Protocol

SDN Data Center Automation as a Firewall Service

11

Controller communicates with the switch using OpenFlow over the SSH giving

instructions to the switch like installing the new rule by describing the action (like

send-out-port, modify field or drop action) to take for the particular flow according to

the network topology requirements. When a switch see a packet that has no matching

flow entries to switch flow table, it simply sends that packet to the controller. The

controller then makes the decision on how to handle this packet and installs a flow

rule on switch flow table to handle the similar packets in future.

DISCUSSION

MININET:

Mininet is a network emulator used to create the networks of virtual hosts, switches,

controllers and links. It runs standard Linux network software, and its switches

support OpenFlow for highly flexible custom routing and software-defined

networking. The github codebase for Mininet is available at

https://github.com/mininet/mininet.git.

Mininet key features are:

 Provides a simple and inexpensive network environment to develop OpenFlow

applications

 Enables complex topology testing, without the need to wire up a physical

network.

 Easy to debug or running network-wide tests

 Provides an extensible Python API for network creation and experimentation

on local machine.

 Supports arbitrary custom topologies.

Mininet networks run real code which includes Unix/Linux network applications as

well as the real Linux kernel and network stack. Because of this the code we develop

and test on Mininet, for an OpenFlow controller, Open vSwitch or host can be moved

to a real system with small amendments, to deploy over the real-world testing and

https://github.com/mininet/mininet.git

SDN Data Center Automation as a Firewall Service

12

performance evaluation. So, the design I created using Mininet can be moved directly

to hardware switches for line-rate packet forwarding.

WHY I USED MININET?

Mininet is totally based on Python, except for a short C utility. It has the following

best features among other emulators, hardware testbeds and the simulators:

Compared to other virtualization approaches:

 Boots faster

 Highly Scalable – It supports hundreds of hosts and switches.

 Provides more bandwidth.

 Easy to use and install.

Compared to other hardware testbeds:

 Inexpensive and open source.

 Quickly reconfigurable.

Compared to other simulators:

 Connects easily to real networks

 High performance

 Runs real code including application code, OS kernel code, and control plane

code (for both OpenFlow controller code and Open vSwitch code).

POX SDN CONTROLLER

POX is a python based framework used to develop the SDN controllers to

communicate with the SDN switches using either the OpenFlow or OVSDB protocol.

It is highly used for teaching and doing research on software defined networking and

network applications programming.

POX is open source product and can be directly used as a SDN controller because it

has stock components bundled with it. The github codebase for POX is available at

https://github.com/noxrepo/pox.git.

https://github.com/noxrepo/pox.git

SDN Data Center Automation as a Firewall Service

13

POX key features are:

 “Pythonic” OpenFlow interface.

 Inbuilt topology discovery.

 Easy to use and open source.

 Compatible with Linux, Mac OS, and Windows environment.

 Performs well compared to other Python based SDN controllers like NOX or

Ryu.

ENVIRONMENT SETUP

METHOD 1

INSTALL UBUNTU OR OTHER LINUX OPERATING

SYSTEM

We can install Ubuntu on any compute node that can scale to install mininet on

Ubuntu with FW plugin and POX controller binaries or install it in Virtual Machine

(VirtualBox, VMware , KVM etc).

There are many ways to install Ubuntu, I installed it in Virtual Box from the iso image

of Ubuntu available at http://www.ubuntu.com/download/desktop.

INSTALL GIT

Git is a free and open source distributed version control system designed to handle

large projects with speed and efficiency. Once the Ubuntu is installed, we can simply

install the git with the following commands :

 sudo apt-get install git

http://www.ubuntu.com/download/desktop

SDN Data Center Automation as a Firewall Service

14

INSTALL MININET

Mininet is a network emulator which can create a network of hosts, links and switches

on a single machine. Installing the mininet from github is very easy use the following

command from your home directory to install it:

 git clone https://github.com/mininet/mininet.git

The above command will create a new repository named Mininet at your current

location and all the mininet binaries are installed in this directory.

To check if mininet is installed successfully type ls in your terminal and check if

Mininet is there as follows:

Figure 4 Mininet Installation Confirmation

If you can see mininet directory as shown in screenshot , it means Mininet is installed

successfully on your machine.

Now go inside the mininet and type “sudo apt-get install mininet” to install the

mininet default topologies which we use in our project.

https://github.com/mininet/mininet.git

SDN Data Center Automation as a Firewall Service

15

INSTALL POX

Similarly, we can easily install the pox from the pox github repository as follows:

 git clone https://github.com/noxrepo/pox.git

This will create a new repository named Pox with all the pox binaries pre-installed in

this repository. Type ls to check if you can see the pox directory as shown below:

Figure 5 POX Installation

INSTALL EDITOR

You can install any editor you want, I installed vim editor as it’s very easy to use.

 sudo apt-get install vim

https://github.com/noxrepo/pox.git

SDN Data Center Automation as a Firewall Service

16

METHOD 2

We can also install the mininet from the mininet pre installed virtual machine image

available at https://github.com/mininet/mininet/wiki/Mininet-VM-Images

 Simply download the vm image from the above link and import in to your own

VM. This VM has mininet, git and vim pre-installed with it. Then install POX

same as mentioned above by running git clone

https://github.com/noxrepo/pox.git

IMPLEMENTATION

Till now we have successfully installed Ubuntu, Mininet, Pox and Vim Editor

required for our project. Now it’s time to implement them.

Step 1: Type “sudo mn” from your home repository to check mininet is working. It

will create a default topology with single switch and two hosts as shown below:

Figure 6 Running basic topology in Mininet

https://github.com/mininet/mininet/wiki/Mininet-VM-Images
https://github.com/noxrepo/pox.git

SDN Data Center Automation as a Firewall Service

17

If “sudo mn” is working and creating a default topo as shown in screenshot it means

mininet is working fine. We can customize the topology according to our requirement

which we will see later.

Step 2: Exit the mininet by typing “exit” and again run it with “sudo mn –

controller=remote”. Open another terminal and go inside the pox repository. Type

“python pox.py log.level –DEBUG forwarding.l2_leaning”. Default port for the

openflow traffic is 6633 on which mininet is already running. So, it should show the

datapath name and id of switch running on mininet connected.

Figure 7 Checking POX controller

Type “pingall” to ping every host with each other on mininet , then it should show

0% dropped packet on mininet console as follows:

Mininet Console:

SDN Data Center Automation as a Firewall Service

18

Figure 8 Verifying connectivity of hosts for Mininet basic topology

On pox console it will show the mac addresses of the hosts pinging with each other as

follows:

POX Console:

Figure 9 Checking the POX console

SDN Data Center Automation as a Firewall Service

19

So, this is how a basic topology on mininet can be run and how a remote controller

can control the traffic based on the type of application we are running on the

controller.

USE CASE: DEPLOY TENANT FIREWALL USING

SDN CONTROLLER (POX) USING PYTHON API

Figure 10 Our Project Scenario

SDN Data Center Automation as a Firewall Service

20

SDN - DC AS A FIREWALL SERVICE

SDN created the whole new world of network design and enabled the innovative

approaches to networking due to the separation of control plane and the data plane.

Thus, SDN also caused us to reconsider how the security policies are enforced in the

network.

Open vSwitch has traditionally supported only stateless matches on the policies.

However, work is being done by the Open vSwitch community to have connection

tracking to maintain the state tables of existing sessions. If any organisation requires

the stateful firewall protections specifically, then they must use the SDN policies to

steer the traffic with service-chaining toward a stateful packet inspection Network

Function Virtualization (NFV) firewall.

I deployed the firewall as a service for hierarchical multi-tenant Data Center network

by provisioning rules to allow specific source MAC addresses to communicate

specific Tenants while resolving the conflict between the standard programmed flow

and Firewall programmed flows.

My research work can be divided into following key points:

 Deploy Hierarchical multi-Tenant Data Center network in the automated

manner using Mininet Python API infrastructure simulation.

 Then deploy Python based SDN Controller (POX) in layer 2 switch mode and

verify end to end connectivity of the hosts.

 Finally deploy the firewall plugin in the layer 2 switch controller which

installs the firewall flow rules by reading the csv file containing the rules

taking care to resolve the conflicts between standard programmed flow and

firewall programed flows.

SDN Data Center Automation as a Firewall Service

21

DEPLOY HIERARCHICAL MULTI-TENANT DATA CENTER

NETWORK IN THE AUTOMATED MANNER USING

MININET PYTHON API INFRASTRUCTURE SIMULATION.

According to our project requirement, we need to deploy single switch with four hosts

in mininet environment.

Type “sudo mn –controller=remote –topo=single, 4 –mac”

It will create a single switch with four hosts as shown below:

Figure 11 Running Mininet for our required topology

SDN Data Center Automation as a Firewall Service

22

We can also see the ip address and mac address of our hosts by typing

“hostname ifconfig”

Figure 12 Checking Hosts Configurations

In out topology our host have following configuration:

hostname ip mac

h1 10.0.0.1 00:00:00:00:00:01

h2 10.0.0.2 00:00:00:00:00:02

h3 10.0.0.3 00:00:00:00:00:03

h4 10.0.0.4 00:00:00:00:00:04

SDN Data Center Automation as a Firewall Service

23

DEPLOY PYTHON BASED SDN CONTROLLER (POX) IN

LAYER 2 SWITCH MODE AND VERIFY END TO END

CONNECTIVITY OF THE HOSTS.

Now with mininet running in one terminal , open the other terminal and go inside the

pox repository and type:

“python pox.py log.level –DEBUG forwarding.l2_learning”

It will show the datapath name and dpid (of our running topology in mininet)

connected as follows:

Figure 13 Checking POX connectivity for our required topology

SDN Data Center Automation as a Firewall Service

24

Now we can verify end to end connectivity of our hosts by typing “pingall or

<hostname1> ping <hostname2>” as shown in screenshots below and it should

work:

Figure 14 Verifying end to end connectivity for required topology

SDN Data Center Automation as a Firewall Service

25

Our pox controller shows the mac addresses of the flows it installs on the switch as

below:

Figure 15 Checking flows on POX console

SDN Data Center Automation as a Firewall Service

26

DEPLOY THE FIREWALL PLUGIN IN THE LAYER 2

SWITCH CONTROLLER.

So far our basic layer 2 switching operations are working fine, but our main task is to

orchestrate the firewall plugin in our main controller to install the firewall rules on our

switch to allow/disallow the flow accordingly.

I wrote the firewall rules in a csv file with mac addresses which should not

communicate with each other and my controller will install all these rules at the

starting when our controller connects to the switch.

According to our project:

 H1 should not communicate with H2/H4

 H2 should not communicate with H1/H3

 H1 should communicate with H3

 H2 should communicate with H4

 H3 should communicate with H4

So, I wrote the mac addresses of H1 and H4; H1 and H4; H2 and H1; H2 and H3 in a

csv file from where our firewall will read the rules and install these flows to disallow

communication between these hosts.

Figure 16 CSV file format

SDN Data Center Automation as a Firewall Service

27

So, now I changed the layer 2 switch controller code by adding some lines to install

the firewall plugin which reads the rules from csv file above and install the rules on

switch to disallow communication between these tenants.

Figure 17 Firewall Plugin code screenshot

Now, copy and paste the FirewallMint.py file inside the pox controller repository at

/pox/pox/forwarding location I submitted with this report.

Then, copy the rules file inside the pox repository from where we run our pox

controller.

Finally our job is done and we can verify the results by running FirewallMint.py file

as a controller with the topology we are using in mininet.

Our Firewall installs the default rules on the switch as follows when we run the

controller file :

SDN Data Center Automation as a Firewall Service

28

Figure 18 Installing Firewall flow rules on switch

Switch flows on Switch S1 as below:

(white part is firewall flow and other part is normal flow with output port action)

Figure 19 Checking the Switch Flow Table entries

SDN Data Center Automation as a Firewall Service

29

TESTCASES

 H1 ping should not work with H2/H4

Figure 20 Verifying Firewall Rule Implementation between H1 and H2/H4

 H1 ping should work with H3

Figure 21 Verifying end to end connectivity between H1 and H3

SDN Data Center Automation as a Firewall Service

30

 H2 ping should not work with H1/H3

Figure 22 Verifying Firewall Rule Implementation between H2 and H1/H3

 H2 ping should work with H4

Figure 23 Verifying end to end connectivity between H2 and H4

SDN Data Center Automation as a Firewall Service

31

 H3 ping should work with H4

Figure 24 Verifying end to end connectivity between H3 and H4

SUMMARY AND CONCLUSION

We successfully deployed the firewall plugin to enable the firewall rules in multi-

tenant data center automated environment. This can be used to deploy the firewall

policies for thousands of tenants simultaneously in real data center environment with

centralised control and visibility.

FUTURE WORK TO DO:

 Support for real world leading network virtualization and SDN platforms

including VMware NSX, Cisco Application ACI and OpenStack SDN.

 Extensible management interface – API’s for the cloud automation and

orchestration.

SDN Data Center Automation as a Firewall Service

32

BIBLIOGRAPHY & REFERENCES:

https://en.wikipedia.org/wiki/Software-defined_networking

https://www.sdxcentral.com/resources/sdn/what-the-definition-of-software-defined-

networking-sdn/

http://www.slideshare.net/SDNCentral/sdnu-101-final

http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_16-1/161_sdn.html

http://ofsdn.blogspot.ca/

http://www.networkworld.com/article/2905257/sdn/is-an-sdn-switch-a-new-form-of-

a-firewall.html

http://mininet.org/overview/

http://www.brianlinkletter.com/using-the-pox-sdn-controller/

http://searchsdn.techtarget.com/definition/POX

http://www.fortinet.com/solutions/data-center-firewalls.html

http://www.fortinet.com/solutions/sdn.html

https://git-scm.com/

http://www.ubuntu.com/download/desktop/install-ubuntu-desktop

https://github.com/mininet/mininet

https://github.com/mininet/mininet/wiki/Mininet-VM-Images

http://www.ubuntu.com/download/desktop

http://image.slidesharecdn.com/sdnpresentation-bbf-final-131111113336-

phpapp02/95/sdn-openflow-17-638.jpg?cb=1384169835

https://en.wikipedia.org/wiki/Software-defined_networking
https://www.sdxcentral.com/resources/sdn/what-the-definition-of-software-defined-networking-sdn/
https://www.sdxcentral.com/resources/sdn/what-the-definition-of-software-defined-networking-sdn/
http://www.slideshare.net/SDNCentral/sdnu-101-final
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_16-1/161_sdn.html
http://ofsdn.blogspot.ca/
http://www.networkworld.com/article/2905257/sdn/is-an-sdn-switch-a-new-form-of-a-firewall.html
http://www.networkworld.com/article/2905257/sdn/is-an-sdn-switch-a-new-form-of-a-firewall.html
http://mininet.org/overview/
http://www.brianlinkletter.com/using-the-pox-sdn-controller/
http://searchsdn.techtarget.com/definition/POX
http://www.fortinet.com/solutions/data-center-firewalls.html
http://www.fortinet.com/solutions/sdn.html
https://git-scm.com/
http://www.ubuntu.com/download/desktop/install-ubuntu-desktop
https://github.com/mininet/mininet
https://github.com/mininet/mininet/wiki/Mininet-VM-Images
http://www.ubuntu.com/download/desktop
http://image.slidesharecdn.com/sdnpresentation-bbf-final-131111113336-phpapp02/95/sdn-openflow-17-638.jpg?cb=1384169835
http://image.slidesharecdn.com/sdnpresentation-bbf-final-131111113336-phpapp02/95/sdn-openflow-17-638.jpg?cb=1384169835

