s
SEEE

UNIVERSITY OF ALBERTA

—

,/

N ~

e
J
'.
-
14
J

-
e
6
J

SDN- Data Center Automation with Firewall as a Service

MINT 709
Capstone Project Report
Feb, 2016

Submitted By:
Saminderjit Singh Chahal

Supervisor: Muhammad Durrani
Cisco Systems Limited

Submitted To:

Dr. M.H. (Mike) MacGregor
MINT Program Director
&

Mr. Shahnawaz Mir
MINT Program Coordinator

SDN Data Center Automation as a Firewall Service

(=]
SCEES

UNIVERSITY OF ALBERTA

ABSTRACT

The software-defined data center (SDDC) has already redefined the traditional ways
of implementing the storage, networking, computing and security services by
eliminating the dependency on the dedicated hardware. Enterprise data centres are
evolving to provide the higher performance and agility, driven by rapid adoption of
mobility/BYQOD, big data, cloud, and SaaS. But, the data center security needs to
guard against the more sophisticated attacks , while keeping up with rapidly
increasing bandwidth requirements.

Software defined networking (SDN) and network virtualization had already been
abstracted the networking and security service attributes, while creating the network
fabric overlays for on-demand policy orchestration and ensuring the consistent
visibility and control. So, the intent of my project is to deploy an orchestrated firewall
plugin in multi-tenant data center network in automated manner using Openflow
Controller (POX) and Python API. The firewall plugin developed in this project
supports the network segmentation and security service function deployment.

SDN Data Center Automation as a Firewall Service

s
SEEE

UNIVERSITY OF ALBERTA

ACKNOWLEDGMENTS

I sincerely thank Mr. Muhammad Durrani and Mr. Shahnawaz Mir for their guidance
and encouragement in carrying out this project work on this emerging technology and
providing me the equipment in the MINT lab required to implement this project.

I also thank the MINT program director Dr. M.H. (Mike) MacGregor for providing
me the opportunity to embark on this project.

SDN Data Center Automation as a Firewall Service

—~——
SEEES

UNIVERSITY OF ALBERTA

Table of Contents

AADSEFACT ...ttt ettt ettt et s bbbt s b e bt etk bt e s et b e e bt e st e e bt she e e b e e bt eaeentenee 2
ACKNOWIEAGMENTS ..ttt ettt e et e e e teeetae e s taeeeabeeeabaeenbsaesbaesssesensasensseenssaesses 3
TADIE OF FIQUIES ...eteeiee ettt ettt e e st e et e e st e e s teessteeessseesssaeassaesssaesnssesssesasseessseenn 5
WHY WE NEEA SDIN7? ...ttt ettt ettt e et e et e e e teeebeeebaeesasaessseesasaesnsaeessasessasensaeesseansseennses 6
[113 1o OSSPSR 7
DEFINITION ...ttt ettt s b et e e e st s bt et e b e nb e e bt et e besbesbtemtentesbeenaentens 8
SDIN AFCNITECTUNE «..enveteeiteierteeteetete ettt ettt et ettt sb et e e st e s bt est et e sbe e bt et e besbesaeentenbesbeenaeneen 9
OPENFIOWottt ettt ettt et et et e be et e e be e be e ss e se e seesssesseassaassasssasssasssassasssesssesssesssennes 10
DISCUSSION ...ttt sttt st e ettt s b et e et s bt et et e s bt eb e e st et e e bt eatembenbesbeest et e beebeestentenbesbeensenee 11
IVIININEL: .ottt ettt sttt st sb e et s bt s se et s bt emeemnenesreemnennen 11
WHY T USEA IMIININEE? ...ttt et ettt e et e e et e eaaeeesaeeeateeeateeenbbeenaraaeaseeenseean 12
POX SDIN CONLIOMET ...ttt ettt ettt ettt 12
ENVIFONMENT SELUD ..vieutieeiieiieieeie ettt et et et e et e eveeteeabeeabeesbe e seesseesseesseesseesseesssasseasssanssessaessenseas 13
Install Ubuntu or other LinuxX OPerating SYStEMcveceereereereenieneeseeseeseeseeseessesssesssesnsennns 13
INSEAIT GlE..eeeetieee ettt b ettt sttt s b et e e bt st a et ene s 13
INSEAIT IVIININEL. ...ttt ettt sttt et saea et ene s 14
INSTAHT POX ...ttt ettt ettt s bt s s bt s e st e sreeseemaensesresmeennens 15
INSEAHT EQITON ... 15
IMPIEMENTALIONc.etiieieeeie ettt ettt et te e te et e e teeteesteesteesteestessaesnseesseessesssesssesnsesssesssesssennes 16
Use Case: Deploy Tenant Firewall Using SDN Controller (POX) using Python APIcccvvennee. 19
SDN - DC as @ fIreWall SEIVICEccecvruiriirieieiitirtetcteerertetete ettt ettt 20
Deploy Hierarchical multi-Tenant Data Center network in the automated manner using Mininet
Python API infrastructure SIMUIALION.ccveiiiieeiie ettt ree e e r e e ereeeens 21
Deploy Python based SDN Controller (POX) in layer 2 switch mode and verify end to end
CONNECLIVILY OF tNE NOSES. ...eeieiiece ettt et te e e rae e sreessbaeeseneesnneenns 23
Deploy the firewall plugin in the layer 2 switch CONroller.ccocvevierenerieneneneeeereeeeeee 26
TSI ASES .uvenveveeueetenteeteete s bt etee et s bt e bt est e bt s bt ese et e s bt s b et e st e bt s b e emt et e e bt ebeeme et e e bt ebeena et e ebeeneenaen 29
SUMMArY and CONCIUSIONeecviiiieiieiieieeie ettt ettt e se et e st e e e e se e seesseesseesssassaasssasssesssesssesssennes 31
FULUIE WOTK T0 G0: .ottt ettt sttt ettt sttt et et sb et s b emaenaenbesmeemeeneen 31
Bibliography & REEIENCES:iiiviieciiieeiee ettt etee et e ettt e et e stre e treesebaesebaesrsaeerssaesssaeansnees 32

SDN Data Center Automation as a Firewall Service

—~——
SEEES

UNIVERSITY OF ALBERTA
TABLE OF FIGURES
Figure 1 History of SDN: Before OPENFIOW........cccuiiiiiieiieciieecee ettt ae e 7
FIQUIE 2 SDIN ANCHITECIUNEetieceiieciie ettt ettt et ettt e et e e et e e eveeebae e abeesabeessbaeearaeesseenssasnnses 9
Figure 3 OPenFIOW ProtOCONc...ooiiiiiiiieiieieeieeee ettt ettt ettt e esae s 10
Figure 4 Mininet Installation Confirmation............cc.vieciiiiiiieecieieee ettt e 14
Figure 5 POX INSTAHTALIONooviiiiiiieieeieeieeeet ettt ettt ettt et e bt e b e sbeenae s 15
Figure 6 Running basic topology iN IMININETcccuiiiiiiiiie ettt ettt eare e e e v e earae s 16
Figure 7 Checking POX CONLIOIIETcouiiiiiiieiieieeieet ettt ettt e sbe e s 17
Figure 8 Verifying connectivity of hosts for Mininet basic topologycecceverveenienieneenieneenen. 18
Figure 9 Checking the POX CONSOIEccuiiiiieiieiieieeieeieeieeie ettt ettt e e esve e seesse e e enseeseenseen 18
Figure 10 OUF PrOJECE SCENAITOeeveeierieeiieieeteeieeste et et et e et et et e e bt e steesbeesseebeebe e beenbeenseensean 19
Figure 11 Running Mininet for our required tOPOIOGYc.cocvevieeriieniieniieiierieerieesie e sve e eseeeseees 21
Figure 12 Checking HOsts CONfIQUIAtIONSccecveruirieieiesieeieienie sttt ete et eseenaeaesseeseeneenes 22
Figure 13 Checking POX connectivity for our required topologyccceceereereenveneeneeneeneeneeneeen 23
Figure 14 Verifying end to end connectivity for required topology.........ceceereereereeneeneeneeneeneennees 24
Figure 15 Checking flows 0n POX CONSOIEoiiiiiiiiiiiieieeiteiteeetete ettt ettt 25
Figure 16 CSV ile FOrMAL.......ocuiiiiiieieteeetee ettt sttt sttt st 26
Figure 17 Firewall Plugin code SCreENSNOL.........cecuieriiriiieiieieeitertt ettt ettt e e es 27
Figure 18 Installing Firewall flow rules on SWItCh ..o 28
Figure 19 Checking the Switch FIOW Table entriescocueeirrieiieieeeeeeeeeeeee e 28
Figure 20 Verifying Firewall Rule Implementation between H1 and H2/H4ccooeeiievinnienniennnen. 29
Figure 21 Verifying end to end connectivity between H1 and H3oooiininiinininieeneneecene 29
Figure 22 Verifying Firewall Rule Implementation between H2 and HI/H3cccooiiiiienennieenennnen. 30
Figure 23 Verifying end to end connectivity between H2 and Haccccovininienininienieneneeeene 30
Figure 24 Verifying end to end connectivity between H3 and H4ccoovieiiininnienieieeceeieeeen 31

SDN Data Center Automation as a Firewall Service

(=]
SCEES

UNIVERSITY OF ALBERTA

WHY WE NEED SDN?

The explosion of mobile devices, server virtualization, and advent of cloud services
are among the trends driving the networking industry to re-examine the traditional
network architectures. Many conventional networks are hierarchical, built with tiers
of Ethernet switches arranged in a tree structure. This design made sense when client-
server computing was dominant, but such a static architecture is ill-suited to the
dynamic computing and storage needs of today’s enterprise data centers, campuses,

and carrier environments.

So, today network administrators are in hunt for something that fulfills the scalability

issues and provides a reliable high performance services to the clients listed as

1. Virtualization: Use network resource without worrying about where it is
follows:physically located, how much it is, how it is organised etc.

2. Orchestration: Should be able to control and manage thousands of devices
with one command

3. Programmable: Should change behaviour according to the network’s needs.

4. Dynamic Scaling: Should be able to change size accordingly.

5. Automation: Minimize the manual involvement for doing tasks like
troubleshooting, policy enforcement, add new workloads, sites etc.

6. Performance: Provides the network device utilization optimization for traffic
engineering, failure handling, capacity optimization and high utilization.

7. Multi-tenancy: To give complete control to tenants for managing addresses,
topology, security etc.

8. Service Integration: To provide the load balancer, firewall, intrusion

Detection System (IDS) services on demand.

The requirements of above services in modern networks gave birth to a new era of
technology named “Software Defined Networking (SDN)”.SDN has the potential to
revolutionize the legacy data centers by providing a flexible way to control the
network according to the needs and provide high performance services.

SDN Data Center Automation as a Firewall Service

—~——
SEEES

UNIVERSITY OF ALBERTA

HISTORY

The origins of software defined networking (SDN) began shortly after when the Java

was released by the Sun Microsystems in 1995.The first notable SDN project was

AT&T’s GeoPlex platform that manages the networks and on-line services.

In 2000, WebSprocket a Silicon Valley startup launched by Mark Medovich, designed
a platform in Java that had the ability to instantiate network stack(s), interfaces ,
protocols as multiple threads and an object oriented structured runtime model that

could be modified by a networked compiler/class-loader in real time.

In early 2001, Ericsson and WebSprocket made a license contract and created the first
soft switch. OARnet ran the SDN tests successfully over Internet2 in collaboration
with Ohio State University. In 2003, Bob Burke and Zac Carman continued the SDN
work by developing the Content Delivery Control Network patent application.

Finally, in 2007 Nicira startup focused on software-defined networking and network
virtualization was launched by Martino Casado, Nick McKeown and Scott Shenker.
Nicira created their own proprietary versions of OpenFlow, Open vSwitch and

OpensStack networking projects.

w= History of SDN: Before OpenFlow (BO)

The Distributed Coctrol Plane s nol new

Soparated Control & Dedr ovted Cortrdd A Dot win Controd Soparatd Contnd &
Oxa Pars Plarewn Swich Plare oty "0y Outa Planes Late 00
Easy 907 Mg 90
))) pargto®® o XORP
~
\/ mMeraxs
MPLS 8 3G Verdon..,
4
O, *
SAN iieeee
& COMPUTERLINKS - , \ i

Figure 1 History of SDN: Before OpenFlow

SDN Data Center Automation as a Firewall Service

s
SEEE

UNIVERSITY OF ALBERTA

DEFINITION

SDN has many definitions given by the experts:

“Software Defined Networking (SDN) is an approach to design, build and manage
the networks while separating the network’s control plane and the forwarding planes

to better optimize each

Or

“Software-defined networking (SDN) is an approach to computer-networking that
allows network administrators to manage the network services through abstraction of
higher-level functionality. This is done by decoupling the system that makes decisions
about where traffic is sent (the control plane) from the underlying systems that
forward traffic to the selected destination (the data plane).

--Wikipedia

SDN Data Center Automation as a Firewall Service

EESY)
SEEE

UNIVERSITY OF ALBERTA

SDN ARCHITECTURE

Application
Plane Cloud
Drehestration
Business SON
Applications Applications
I AP
Contral
Plane Traffic
Engineering
Routing Mobility
SDM Control Software
I OpenFlow
Data
Plane

S W o ¥

Fouter Other Network LAN Switch Pachket Switch
Device
Network Devices

Figure 2 SDN Architecture

The figure describes the logical structure of SDN. SDN architecture has basically
three layers:
1. Application Plane: The applications like cloud orchestration, business
applications and other SDN applications are deployed in the application plane.
The Application plane communicates with the control plane using Application
Programming Interfaces (APIs) like REST API or Java API and these APIs are
also known as Northbound APIs.
2. Control Plane: A central controller performs all the complex functions like
routing, naming, policy declaration and security checks. It basically consists of
one or more SDN servers. SDN controller allows the data flows that occur

SDN Data Center Automation as a Firewall Service

—~——
SEEES

UNIVERSITY OF ALBERTA

through SDN Data Plane. If the controller allows a flow, it then computes the
route for the flow to take, and then adds a flow entry for that flow in every
switch along the path. The control plane communicates with the data plane
through various protocols like OpenFlow which talks to the networking
devices through open APIs known as Southbound APIs.

3. Data Plane: The main purpose of data plane is to forward the traffic based on
the rules installed on it by the control plane. Data plane network devices like
switches, routers, firewalls or load balancers simply manage flow tables whose
entries can be populated only by the controller.

SDN controllers and the switches can be deployed for Ethernet switches (Layer 2),
Internet Routers (Layer 3), transport switching (Layer 4) or application layer

functionality.

OPENFLOW

OpenFlow is basically a network protocol which allows the communication between
the control and the data plane through open APIs. It is designed to manage and direct
the traffic among routers and switches from various vendors. Thus, it differentiates
the programming of routers and switched from the underlying hardware.

OpenFlow
OpenFlow Switch specification o8 FloW Controller
J2penFlow protocd! 5
“Switch icSian®

Secure - Iﬁﬂ

Channel "= g8

Add/delete flow entries
Encapsulated packets
Controller discovery

Figure 3 OpenFlow Protocol

SDN Data Center Automation as a Firewall Service

(=]
SCEES

UNIVERSITY OF ALBERTA

Controller communicates with the switch using OpenFlow over the SSH giving
instructions to the switch like installing the new rule by describing the action (like
send-out-port, modify field or drop action) to take for the particular flow according to
the network topology requirements. When a switch see a packet that has no matching
flow entries to switch flow table, it simply sends that packet to the controller. The
controller then makes the decision on how to handle this packet and installs a flow

rule on switch flow table to handle the similar packets in future.

DISCUSSION

MININET:

Mininet is a network emulator used to create the networks of virtual hosts, switches,
controllers and links. It runs standard Linux network software, and its switches
support OpenFlow for highly flexible custom routing and software-defined
networking. The github codebase for Mininet is available at
https://github.com/mininet/mininet.qit.

Mininet key features are:

e Provides a simple and inexpensive network environment to develop OpenFlow
applications

e Enables complex topology testing, without the need to wire up a physical
network.

e Easy to debug or running network-wide tests

e Provides an extensible Python API for network creation and experimentation
on local machine.

e Supports arbitrary custom topologies.

Mininet networks run real code which includes Unix/Linux network applications as
well as the real Linux kernel and network stack. Because of this the code we develop
and test on Mininet, for an OpenFlow controller, Open vSwitch or host can be moved

to a real system with small amendments, to deploy over the real-world testing and

SDN Data Center Automation as a Firewall Service

https://github.com/mininet/mininet.git

&

UNIVERSITY OF ALBERTA

performance evaluation. So, the design | created using Mininet can be moved directly
to hardware switches for line-rate packet forwarding.

WHY | USED MININET?

Mininet is totally based on Python, except for a short C utility. It has the following

best features among other emulators, hardware testbeds and the simulators:
Compared to other virtualization approaches:

e Boots faster
e Highly Scalable — It supports hundreds of hosts and switches.
e Provides more bandwidth.

e Easy to use and install.
Compared to other hardware testbeds:

e Inexpensive and open source.

e Quickly reconfigurable.
Compared to other simulators:

e Connects easily to real networks
e High performance
e Runs real code including application code, OS kernel code, and control plane

code (for both OpenFlow controller code and Open vSwitch code).

POX SDN CONTROLLER

POX is a python based framework used to develop the SDN controllers to
communicate with the SDN switches using either the OpenFlow or OVSDB protocol.
It is highly used for teaching and doing research on software defined networking and

network applications programming.

POX is open source product and can be directly used as a SDN controller because it
has stock components bundled with it. The github codebase for POX is available at

https://github.com/noxrepo/pox.qit.

SDN Data Center Automation as a Firewall Service

https://github.com/noxrepo/pox.git

(=]
SEEES

UNIVERSITY OF ALBERTA

POX key features are:

e “Pythonic” OpenFlow interface.

e Inbuilt topology discovery.

e Easy to use and open source.

e Compatible with Linux, Mac OS, and Windows environment.

e Performs well compared to other Python based SDN controllers like NOX or

Ryu.

ENVIRONMENT SETUP

METHOD 1

INSTALL UBUNTU OR OTHER LINUX OPERATING
SYSTEM

We can install Ubuntu on any compute node that can scale to install mininet on
Ubuntu with FW plugin and POX controller binaries or install it in Virtual Machine
(VirtualBox, VMware , KVM etc).

There are many ways to install Ubuntu, I installed it in Virtual Box from the iso image

of Ubuntu available at http://www.ubuntu.com/download/desktop.

INSTALL GIT

Git is a free and open source distributed version control system designed to handle
large projects with speed and efficiency. Once the Ubuntu is installed, we can simply
install the git with the following commands :

e sudo apt-get install git

SDN Data Center Automation as a Firewall Service

http://www.ubuntu.com/download/desktop

&

UNIVERSITY OF ALBERTA

INSTALL MININET

Mininet is a network emulator which can create a network of hosts, links and switches
on a single machine. Installing the mininet from github is very easy use the following

command from your home directory to install it:

e git clone https://github.com/mininet/mininet.qit

The above command will create a new repository named Mininet at your current

location and all the mininet binaries are installed in this directory.

To check if mininet is installed successfully type Is in your terminal and check if
Mininet is there as follows:

Terminal Ty B 4 3:57PM

saminderjit@Sam: ~

saminderjit@sam:~$ ls

Desktop Downloads HEEETY Pictures Templates
Documents examples.desktop Music Public Videos
saminder jit@sam:~$ I

Figure 4 Mininet Installation Confirmation

If you can see mininet directory as shown in screenshot , it means Mininet is installed
successfully on your machine.

Now go inside the mininet and type “sudo apt-get install mininet” to install the

mininet default topologies which we use in our project.

SDN Data Center Automation as a Firewall Service

https://github.com/mininet/mininet.git

&

UNIVERSITY OF ALBERTA

INSTALL POX

Similarly, we can easily install the pox from the pox github repository as follows:

e (it clone https://github.com/noxrepo/pox.git

This will create a new repository named Pox with all the pox binaries pre-installed in

this repository. Type Is to check if you can see the pox directory as shown below:

Terminal 1ty =y) 400PM %
ol saminderjit@sam: ~

saminder jit@sam:~5 git clone https://github.com/noxrepo/pox.git
Cloning into 'pox'...

remote: Counting objects: 10915, done.

Receiving objects: 14% (1529/18915), 348.01 KiB
Receiving objects: 15% (1638/10915), 348.01 KiB
Receiving objects: 16% (1747/18915), 348.01 KiB
Receiving objects: 17% (1856/10915), 348.01 KiB

632.00 KiBfs
632.00 KiB/s
632.00 KiB/fs
632.00 KiB/s

Receiving objects: 19% (2074/10915), 348.01 KiB
Receiving objects: 20% (2183/18915), 348.01 KiB
Receiving objects: 20% (2227/10915), 348.01 KiB | 632.00 KiB/s
Receiving objects: 21% (2293/10915), 348.01 KiB | 632.00 KiB/s
remote: Total 10915 (delta 0), reused @ (delta @), pack-reused
10915

Receiving objects: 100% (10915/10915), 5.11 MiB | 1.79 MiB/s, d
one.

Resolving deltas: 100% (6527/6527), done.

Checking connectivity... done.

saminderjit@sam:~% 1s

Desktop examples.desktop Pictures Templates

Documents mininet m Videos

qDownloads Music Public

saminder jit@sam: -5 I

632.00 KiB/fs
632.00 KiBfs

|
|
|
|
Receiving objects: 18% (1965/16915), 348.01 KiB | 632.00 KiB/s
|
I
|
I

Figure 5 POX Installation

INSTALL EDITOR

You can install any editor you want, I installed vim editor as it’s very easy to use.

e sudo apt-get install vim

SDN Data Center Automation as a Firewall Service

https://github.com/noxrepo/pox.git

(=]
SEEES

UNIVERSITY OF ALBERTA

METHOD 2

We can also install the mininet from the mininet pre installed virtual machine image

available at https://github.com/mininet/mininet/wiki/Mininet-VM-Images

e Simply download the vm image from the above link and import in to your own
VM. This VM has mininet, git and vim pre-installed with it. Then install POX
same as mentioned above by running git clone

https://github.com/noxrepo/pox.qit

IMPLEMENTATION

Till now we have successfully installed Ubuntu, Mininet, Pox and Vim Editor

required for our project. Now it’s time to implement them.

Step 1: Type “sudo mn” from your home repository to check mininet is working. It

will create a default topology with single switch and two hosts as shown below:

saminderjit@sam:~$ sudo mn
*** Creating network
*** Adding controller
*** Adding hosts:

hi h2

*** Adding switches:

s1

*** Adding links:

(h1, s1) (h2, s1)

*** Configuring hosts
hi h2

**%* Starting controller
*** Starting 1 switches
s1

*%% Starting CLI:
ininet> nodes
available nodes are:

c@® h1 h2 s1

Figure 6 Running basic topology in Mininet

SDN Data Center Automation as a Firewall Service

https://github.com/mininet/mininet/wiki/Mininet-VM-Images
https://github.com/noxrepo/pox.git

&

UNIVERSITY OF ALBERTA

If “sudo mn” is working and creating a default topo as shown in screenshot it means
mininet is working fine. We can customize the topology according to our requirement

which we will see later.

Step 2: Exit the mininet by typing “exit” and again run it with “sudo mn —
controller=remote . Open another terminal and go inside the pox repository. Type
“python pox.py log.level -DEBUG forwarding.12_leaning . Default port for the
openflow traffic is 6633 on which mininet is already running. So, it should show the

datapath name and id of switch running on mininet connected.

-~ 8

saminderjit@5am: ~/pox

saminder jit@Sam:~/poxS python pox.py log.level --DEBUG forwarding.l2_learning
POX @.2.0 (carp) / Copyright 2011-2013 James McCauley, et al.

DEBUG:core:POX 0.2.0 (carp) going up...

DEBUG:core:Running on CPython (2.7.6/Mar 22 2014 22:59:56)

DEBUG:core:Platform 1s Linux-3.16.08-38-generic-x86_64-with-Ubuntu-14.04-trusty
INFO:core:POX 0.2.0 (carp) is up.

DEBUG:openflow.of_@1:Listening on 0.0.0.0:6633
INFO:openflow.of_01:[00-00-00-00-00-01 1] connected
DEBUG: forwarding.1l2_learning:Connection [08-00-80-00-00-01 1]

Figure 7 Checking POX controller

Type “pingall ” to ping every host with each other on mininet , then it should show
0% dropped packet on mininet console as follows:

Mininet Console:

SDN Data Center Automation as a Firewall Service

oty

saminderjit@Sam: ~

&

UNIVERSITY OF ALBERTA

saminderjit@Sam:~$ sudo mn --controller=remote

*** Creating

network

*** Adding controller

Unable to contact the remote controller

*** Adding hosts:

h1 h2

*** Adding switches:

s1

*** Adding links:

(h1, s1) (h2,

s1)

*** Configuring hosts

h1l h2

*** Starting controller
*** Starting 1 switches

sl

*** Starting CLI:
mininet> pingall
*** Ping: testing ping reachability

h1
h2

-> h2
-> h1l

at 127.0.0.1:6633

*** Results: 0% dropped (2/2 received)

Figure 8 Verifying connectivity of hosts for Mininet basic topology

On pox console it will show the mac addresses of the hosts pinging with each other as

follows:

POX Console:

saminderjit@Sam:~/pox$ python pox.py log.level --DEBUG forwarding.l2_learning
POX 0.2.0 (carp) / Copyright 2011-2013 James McCauley, et al.

DEBUG:core:POX 0.2.0 (carp) going up...
DEBUG:core:Running on CPython (2.7.6/Mar 22 2014 22:59:56)

DEBUG:core:Platform is Linux-3.16.0-30-generic-x86_64-with-Ubuntu-14.04-trusty
INFO:core:POX 0.2.0 (carp) is up.
DEBUG:openflow.of_0O1:Listening on 0.0.0.0:6633
INFO:openflow.of_01:[00-00-00-00-00-01 1] connected

DEBUG: forwarding.
DEBUG: forwarding.

sce:ee:4c.1

DEBUG: forwarding.

:c6:fd:d3.2

DEBUG: forwarding.

:ce:ee:4c.1

DEBUG: forwarding.

ice:ee:dc.1

DEBUG: forwarding.

:c6:fd:d3.2

DEBUG: forwarding.

:ce:ee:4c.1

DEBUG: forwarding.

:c6:fd:d3.2

12_learning:
12_learning:

12_learning:
12_learning:
12_learning:
12_learning:
12_learning:

12_learning:

Connection
installing

installing
installing
installing
installing

installing

installing

[00-00-00-00-00-01 1]
flow for aa:03:fa:c6:

flow for 12:27:bi:ce:

flow for aa:03:fa:c6:

flow for aa:03:fa:c6:

flow for 12:27:bi:ce:

flow for aa:03:fa:c6:

flow for 12:27:b1i:ce:

Figure 9 Checking the POX console

SDN Data Center Automation as a Firewall Service

(5]
SEEEL

UNIVERSITY OF ALBERTA

So, this is how a basic topology on mininet can be run and how a remote controller
can control the traffic based on the type of application we are running on the

controller.

USE CASE: DEPLOY TENANT FIREWALL USING
SDN CONTROLLER (POX) USING PYTHON API

POX Controller

Public Cloud

Mininet w/FW

Figure 10 Our Project Scenario

SDN Data Center Automation as a Firewall Service

(=]
SCEES

UNIVERSITY OF ALBERTA

SDN - DC AS A FIREWALL SERVICE

SDN created the whole new world of network design and enabled the innovative

approaches to networking due to the separation of control plane and the data plane.
Thus, SDN also caused us to reconsider how the security policies are enforced in the

network.

Open vSwitch has traditionally supported only stateless matches on the policies.
However, work is being done by the Open vSwitch community to have connection
tracking to maintain the state tables of existing sessions. If any organisation requires
the stateful firewall protections specifically, then they must use the SDN policies to
steer the traffic with service-chaining toward a stateful packet inspection Network

Function Virtualization (NFV) firewall.

I deployed the firewall as a service for hierarchical multi-tenant Data Center network
by provisioning rules to allow specific source MAC addresses to communicate
specific Tenants while resolving the conflict between the standard programmed flow

and Firewall programmed flows.
My research work can be divided into following key points:

e Deploy Hierarchical multi-Tenant Data Center network in the automated
manner using Mininet Python API infrastructure simulation.

e Then deploy Python based SDN Controller (POX) in layer 2 switch mode and
verify end to end connectivity of the hosts.

e Finally deploy the firewall plugin in the layer 2 switch controller which
installs the firewall flow rules by reading the csv file containing the rules
taking care to resolve the conflicts between standard programmed flow and
firewall programed flows.

SDN Data Center Automation as a Firewall Service

&

UNIVERSITY OF ALBERTA

DEPLOY HIERARCHICAL MULTI-TENANT DATA CENTER
NETWORK IN THE AUTOMATED MANNER USING
MININET PYTHON API INFRASTRUCTURE SIMULATION.

According to our project requirement, we need to deploy single switch with four hosts

in mininet environment.
Type “sudo mn —controller=remote —topo=single, 4 -mac”

It will create a single switch with four hosts as shown below:

E'E Ubuntu(initial) Clone [Running] - Oracle VM VirtualBox — U >

Machine View Devices Help
Terminal - == <)) 10:02PM it

saminderjit@Sam: ~

saminder jit@sam:~% sudo mn --controller=remote --topo=single,4
- -mac

*** Creating network

*** Adding controller

Unable to contact the remote controller at 127.0.0.1:6633
**%* Adding hosts:

h1 h2 h3 h4

*** Adding switches:

51

*** Adding links:

(h1, s1) (h2, s1) (h3, s1) (h4, s1)
*** Configuring hosts

hi h2 h3 h4

**% Starting controller

**% Starting 1 switches

s1

*** Starting CLI:

mininet> nodes

available nodes are:

c® hl h2 h3 h4 s1

mininet> |

&2 vm {3 @ & Right Ctrl

Figure 11 Running Mininet for our required topology

SDN Data Center Automation as a Firewall Service

&

UNIVERSITY OF ALBERTA

We can also see the ip address and mac address of our hosts by typing

“hostname ifconfig”

E“E Ubuntu(initial) Clone [Running] - Oracle VM VirtualBox - O >

Machine

View Devices Help

Terminal

- = 4 10:04PM 3%

saminderjit@Sam: ~

available nodes are:
c® hl h2 h3 h4 s1
mininet> hl ifconfig

hi-ethe

Link encap:Ethernet HWaddr 00:00:00:00:00:01
inet addr:10.0.8.1 Bcast:10.255.255.255 Mask:255.0.

inet6 addr: fe8P::200:ff:fe@B®:1/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1580 Metric:1
RX packets:87 errors:0 dropped:® overruns:0 frame:@
TX packets:9 errors:0 dropped:®@ overruns:@ carrier:@
collisions:® txqueuelen:1060

RX bytes:16695 (16.6 KB) TX bytes:738 (738.0 B)

Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

ineté addr: ::1/128 Scope:Host

UP LOOPBACK RUNMING MTU:65536 Metric:1

RX packets:® errors:0 dropped:@ overruns:@ frame:@
TX packets:® errors:® dropped:® overruns:@ carrier:@
collisions:® txqueuelen:0

RX bytes:@ (8.8 B) TX bytes:0 (0.0 B)

& &P] {3 | & (2] Rright ctrl

Figure 12 Checking Hosts Configurations

In out topology our host have following configuration:

hostname

hl

h2

h3

h4

ip mac
10.0.0.1 00:00:00:00:00:01
10.0.0.2 00:00:00:00:00:02
10.0.0.3 00:00:00:00:00:03
10.0.0.4 00:00:00:00:00:04

SDN Data Center Automation as a Firewall Service

&

UNIVERSITY OF ALBERTA

DEPLOY PYTHON BASED SDN CONTROLLER (POX) IN
LAYER 2 SWITCH MODE AND VERIFY END TO END
CONNECTIVITY OF THE HOSTS.

Now with mininet running in one terminal , open the other terminal and go inside the

poX repository and type:
“python pox.py log.level -DEBUG forwarding.I2_learning”

It will show the datapath name and dpid (of our running topology in mininet)

connected as follows:

l'*'_“g Ubuntu(initial) Clone [Running] - Oracle VM VirtualBox - O X

Machine View Devices Help
Terminal = = «)) 10:13PM Lt

a @ S @ saminderjit@sam: ~/pox

T saminderjit@Sam:~/pox$ clear
saminderjit@sam:~/pox$ python pox.py log.level --DEBUG forwardi
ng.l2_learning
POX ©.2.8 (carp) / Copyright 2011-2013 James McCauley, et al.
DEBUG:core:POX ©.2.0 (carp) going up...
DEBUG:core:Running on CPython (2.7.6/Mar 22 2014 22:59:56)
DEBUG:core:Platform is Linux-3.16.8-30-generic-x86_64-with-Ubun
tu-14.04-trusty
INFO:core:POX 0.2.8 (carp) is up.
DEBUG:openflow.of 81:Listening on 6.0.0.0:6633
INFO:openflow.of 01:[00-00-00-00-00-861 1] connected
DEBUG: forwarding.1l2_learning:Connection [00-00-00-00-00-01 1]

= AN el a— P T e R

Figure 13 Checking POX connectivity for our required topology

SDN Data Center Automation as a Firewall Service

&

UNIVERSITY OF ALBERTA

Now we can verify end to end connectivity of our hosts by typing “pingall or
<hostnamel> ping <hostname2> " as shown in screenshots below and it should

work:

E‘"E Ubuntu(initial) Clone [Running] - Oracle VM VirtualBox — O X

Machine View Devices Help
Terminal = = 4 10:15PM %

saminderjit@Sam: ~

collisions:® txqueuelen:®
RX bytes:® (8.8 B) TX bytes:0 (0.0 B)

mininet> clear
**%% UUnknown command: clear
mininet= hl ping h2
PING 10.0.0.2 (10.0.08.2) 56(84) bytes of data.
64 bytes from icmp_seq=1 ttl=64 time=37.1 ms
64 bytes from : icmp_seq=2 ttl=64 time=0.283 ms
64 bytes from 10.08.0. icmp_seq=3 ttl=64 time=0.0822 ms
64 bytes from 10.0.0. icmp_seq=4 ttl=64 time=0.027 ms
!‘.C
--- 10.0.0.2 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3000ms
rtt minfavg/max/mdev = 0.022/9.357/37.178/16.062 ms
mininet> pingall
**%* ping: testing ping reachability
hi -> h2 h3 h4
h2 -> h1 h3 h4
h3 -> h1 h2 h4
h4 -> h1 h2 h3

1*** Results: 0% dropped (12/12 received)
mininet=

&P v [@Right::trl

Figure 14 Verifying end to end connectivity for required topology

SDN Data Center Automation as a Firewall Service

&

UNIVERSITY OF ALBERTA

Our pox controller shows the mac addresses of the flows it installs on the switch as

below:

E‘E Ubuntudinitial) Clone [Running] - Oracle VM VirtualBox

Machine View

Terminal

DEBUG:
:182.2
DEBUG:
:83.3
DEBUG:
:04.4
DEBUG:
:03.3
DEBUG:
161.1
DEBUG:
t82.2
DEBUG:
61.1
DEBUG:
t82.2
DEBUG:
61.1
DEBUG:
:04.4
DEBUG:

Devices Help

saminderjit@Sam: ~/pox

forwarding.1l2_learning:installing
-> 00:00:00:00:00:01.1
forwarding.12 learning:installing
-> 00:00:00:00:00:02.2
forwarding.12_learning:installing
-> 00:00:00:00:00:02.2
forwarding.12_learning:installing
-> 00:00:00:00:00:01.1
forwarding.12_learning:installing
-> PP:00:00:00:00:02.2
forwarding.12_learning:installing
-> 00:00:00:00:00:03.3
forwarding.12_learning:installing
-> 00:00:00:00:00:03.3
forwarding.12_learning:installing
-> 00:00:00:00:00:04.4
forwarding.12_learning:installing
-> 00:00:00:00:00:04.4
forwarding.12_learning:installing
-> 00:00:00:00:00:03.3
forwarding.12_learning:installing
-> 00:00:00:00:00:04.4

flow

flow

flow

flow

flow

flow

flow

flow

flow

flow

flow

Q) 10:16PM 1%

00:00:00:00:00
00:00:00:00:00
00:00:00:00:00
00:00:00:00:00

00:00:00:00:00

00:00:00:00:00
00:00:00:00:00
00:00:00:00:00
00:00:00:00:00
00:00:00:00: ¢

00:00:00:00:

@ C @ & @ right crl

Figure 15 Checking flows on POX console

SDN Data Center Automation as a Firewall Service

HZIN
SCEES

UNIVERSITY OF ALBERTA

DEPLOY THE FIREWALL PLUGIN IN THE LAYER 2
SWITCH CONTROLLER.
So far our basic layer 2 switching operations are working fine, but our main task is to
orchestrate the firewall plugin in our main controller to install the firewall rules on our

switch to allow/disallow the flow accordingly.

| wrote the firewall rules in a csv file with mac addresses which should not
communicate with each other and my controller will install all these rules at the

starting when our controller connects to the switch.
According to our project:

e H1 should not communicate with H2/H4
e H2 should not communicate with H1/H3
e H1 should communicate with H3
e H2 should communicate with H4

e H3 should communicate with H4

So, | wrote the mac addresses of H1 and H4; H1 and H4; H2 and H1; H2 and H3 in a
csv file from where our firewall will read the rules and install these flows to disallow

communication between these hosts.

= : Rulesfile.csv
GI3 HOME INSERT PAGELAYOUT FORMULAS DATA REVIEW VIEW /

o PROTECTED VIEW Be careful—files from the Internet can contain viruses. Unless you need to ec

cs - Jx
A B C D E
1 lid mac_0 mac_1
2 1 00:00:00:00:00:01 00:00:00:00:00:04
3 2 00:00:00:00:00:01 00:00:00:00:00:02
4 3 00:00:00:00:00:02 00:00:00:00:00:01
5 4 00:00:00:00:00:02 00:00:00:00:00:03
6

Figure 16 CSV file format

SDN Data Center Automation as a Firewall Service

(=]
SCEES

UNIVERSITY OF ALBERTA

So, now | changed the layer 2 switch controller code by adding some lines to install
the firewall plugin which reads the rules from csv file above and install the rules on

switch to disallow communication between these tenants.

class FirewallPlugin (EventMixin):

def __init__ (self):
i self.listenTo(core.openflow)
log.debug(“"Enabling Firewall Module™)

def read_rulesfile (self, file): #Reading the firewall rules file
with open(file, 'r') as rulesfile:
| reader = DictReader(rulesfile, delimiter = ",")
FirewallPolicies = {} #dictionary with ID as keys and mac address pairs values

for row in reader:
i i FirewallPolicies[row['id']] = Policy(EthAddr(row['mac_@']), EthAddr(row['mac_1']))
return FirewallPolicies

def _handle_ConnectionUp (self, event): #Connection up event handler

FirewallPolicies = self.read_rulesfile(File)

for policy in FirewallPolicies.itervalues():

#ploicy in one direction and installing this message to switch flowtable

event.connection.send(of.ofp_flow mod(action = of.ofp_action_output(port = of.OFPP_NONE), priority = 65535,
match = of.ofp_match(dl_src = policy.dl_src, dl_dst= policy.dl_dst)))

#policy for opposite direction and installing this message to switch flowtable
event.connection.send(of.ofp_flow mod(action = of.ofp_action_output(port = of.OFPP_NONE), priority = 65535,
match = of.ofp_match(dl_src = policy.dl_dst, dl_dst= policy.dl_src)))

debug
log.info("Installing firewall rule for src=%¥s, dst=%s" ¥ (policy.dl_src, policy.dl_dst))

log.debug(“"Firewall rules installed on ¥s", dpid_to_str(event.dpid))

Figure 17 Firewall Plugin code screenshot

Now, copy and paste the FirewallMint.py file inside the pox controller repository at

/pox/pox/forwarding location I submitted with this report.

Then, copy the rules file inside the pox repository from where we run our pox

controller.

Finally our job is done and we can verify the results by running FirewalIMint.py file

as a controller with the topology we are using in mininet.

Our Firewall installs the default rules on the switch as follows when we run the

controller file :

SDN Data Center Automation as a Firewall Service

&

UNIVERSITY OF ALBERTA

F oW

saminderjit@Sam: ~/pox

saminderjit@sam:~/pox$ python pox.py forwarding.FirewallMINT

POX ©.2.0 (carp) / Copyright 2011-2013 James McCauley, et al.

INFO:core:POX 0.2.8 (carp) is up.

INFO:openflow.of 01:[00-00-00-00-00-81 1] connected
INFO:forwarding.FirewallMINT:Installing firewall rule for src=00:00:00:00:00:01,
dst=00:00:00:00:00:04

INFO:forwarding.FirewallMINT:Installing firewall rule for src=00:00:00:00:00:02,
dst=00:00:00:00:00:01

INFO:forwarding.FirewallMINT:Installing firewall rule for src=00:00:00:00:00:01,
dst=00:00:00:00:00:02

INFO:forwarding.FirewallMINT:Installing firewall rule for src=00:00:00:00:00:02,
dst=00:00:00:00:00:03

Figure 18 Installing Firewall flow rules on switch

Switch flows on Switch S1 as below:

(white part is firewall flow and other part is normal flow with output port action)

saminderjit@5am: ~

Eminderjit@sam:~$ sudo ovs-ofctl dump-flows si1
MXST_FLOW reply (xid=0x4):

cookie=0x0, duration=597.875s, table=0, n_packets=08, n_bytes=0, idle_age=597, p
riority=65535,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:02 actions=ANY
cookie=0x0, duration=597.911s, table=0, n_packets=08, n_bytes=0, idle_age=597, p
riority=65535,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:04 actions=ANY
cookie=0x0, duration=597.875s, table=0, n_packets=8, n_bytes=448, idle_age=415,
priority=65535,dl_src=00:00:00:00:00:02,d1_dst=00:00:00:00:00:01 actions=ANY
cookie=0x0, duration=597.875s, table=0, n_packets=3, n_bytes=126, idle_age=426,
priority=65535,dl_src=00:00:00:00:00:03,d1l_dst=00:00:00:00:00:02 actions=ANY
cookie=0x0, duration=597.875s, table=0, n_packets=08, n_bytes=0, idle_age=597, p
riority=65535,dl_src=00:00:00:00:00:02,dl_dst=00:00:00:00:00:03 actions=ANY
cookie=0x0, duration=597.875s, table=0, n_packets=3, n_bytes=126, idle_age=501
priority=65535,dl src=00:00:00:00:00:04,d1l dst=00:00:00:00:00:01 actions=ANY|
cookie=0x0, duration=4.303s, table=0, n_packets=2, n_bytes=196, idle_timeout=10
, hard_timeout=30, idle_age=3, priority=65535,icmp,in_port=3,vlan_tci=0x06000,dl_|
src=00:00:00:00:00:03,d1l_dst=00:00:00:00:00:04,nw_src=10.0.0.3,nw_dst=10.0.0.4,
w_tos=0,icmp_type=8,icmp_code=0 actions=output:4

cookie=0x0, duration=4.301s, table=@, n_packets=2, n_bytes=196, idle_timeout=16

, hard_timeout=30, idle_age=3, priority=65535,icmp,in_port=4,vlan_tci=0x0000,dl
src=00:00:00:00:00:04,d1l_dst=00:00:00:00:00:03,nw_src=10.0.0.4,nw_dst=10.0.0.3,
w_tos=0,icmp_type=0,icmp_code=0 actions=output:3

saminderjit@sam:~$ ~C

saminderjit@sam:~$

Figure 19 Checking the Switch Flow Table entries

SDN Data Center Automation as a Firewall Service

&

UNIVERSITY OF ALBERTA

TESTCASES
e H1 ping should not work with H2/H4

mininet> h1 ping -c2 h2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

From 10.0.0.1 icmp_seg=1 Destination Host Unreachable
From 10.8.08.1 icmp_seqg=2 Destination Host Unreachable

--- 10.0.0.2 ping statistics ---

2 packets transmitted, @ received, +2 errors, 100% packet loss, time 999ms
pipe 2

mininet> hl ping -c2 h4

PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.

From 10.8.08.1 icmp_seqg=1 Destination Host Unreachable

From 10.8.08.1 icmp_seqg=2 Destination Host Unreachable

--- 10.0.0.4 ping statistics ---

2 packets transmitted, @ received, +2 errors, 100% packet loss, time 1887ms
pipe 2

mininet= h4 ping -c2 hil

PING 10.0.8.1 (10.0.0.1) 56(84) bytes of data.

--- 10.0.0.1 ping statistics ---
2 packets transmitted, @ received, 100% packet loss, time 1007ms

mininet> h2 ping -c2 hi
PING 10.0.0.1 (10.0.0.1) 56(84) bytes of data.

--- 10.0.8.1 ping statistics ---
2 packets transmitted, @ received, 100% packet loss, time 1008ms

Figure 20 Verifying Firewall Rule Implementation between H1 and H2/H4

e H1 ping should work with H3

mininet> h1l ping -c2 h3

PING 10.0.0.3 (10.0.8.3) 56(84) bytes of data.

I64 bytes from 10.0.0.3: icmp_seg=1 ttl=64 time=6.73 ms
i64 bytes from 10.0.0.3: icmp_seg=2 ttl=64 time=0.236 ms

l--- 10.0.0.3 ping statistics ---
12 packets transmitted, 2 received, 0% packet loss, time
irtt min/avg/max/mdev = 0.236/3.484/6.732/3.248 ms

imininet> h3 ping -c2 hil

[PING 10.0.0.1 (10.8.8.1) 56(84) bytes of data.

64 bytes from 18.8.8.1: icmp_seq=1 ttl=64 time=14.6 ms
64 bytes from 18.08.0.1: icmp_seqg=2 ttl=64 time=0.296 ms

10.0.0.1 ping statistics ---
packets transmitted, 2 received, 0% packet loss, time
irtt min/avg/max/mdev = 0©.296/7.475/14.655/7.180 ms

Figure 21 Verifying end to end connectivity between H1 and H3

SDN Data Center Automation as a Firewall Service

&

UNIVERSITY OF ALBERTA

e H2 ping should not work with H1/H3

mininet> h2 ping -c2 h3

PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.

From 10.0.0.2 icmp_seq=1 Destination Host Unreachable
From 10.0.0.2 icmp_seq=2 Destination Host Unreachable

--- 10.0.0.3 ping statistics ---

2 packets transmitted, @ received, +2 errors, 100% packet loss, time 999ms
pipe 2

mininet> h2 ping -c2 hl

PING 10.0.0.1 (10.0.0.1) 56(84) bytes of data.

From 10.0.0.2 icmp_seq=1 Destination Host Unreachable

From 10.0.0.2 icmp_seq=2 Destination Host Unreachable

--- 18.0.0.1 ping statistics ---

2 packets transmitted, 0 received, +2 errors, 100% packet loss, time 10087ms
pipe 2

mininet> h3 ping -c2 h2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

--- 18.0.08.2 ping statistics ---
2 packets transmitted, 0 received, 100% packet loss, time

mininet> hl ping -c2 h2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

--- 18.0.08.2 ping statistics ---
2 packets transmitted, 0 received, 100% packet loss, time 1007ms

Figure 22 Verifying Firewall Rule Implementation between H2 and H1/H3

e H2 ping should work with H4

mininet= h2 ping -c2 h4

PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.

64 bytes from 10.0.0.4: icmp_seqg=1 ttl=64 time=19.1 ms
64 bytes from 10.0.0.4: icmp_seq=2 ttl=64 time=0.234 ms

- 18.0.0.4 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time
rtt minfavg/max/mdev = 0.234/9.700/19.166/9.466 ms

mininet= h4 ping -c2 h2

PING 10.0.08.2 (10.0.08.2) 56(84) bytes of data.

64 bytes from 10.0.0.2: icmp_seg=1 ttl=64 time=508.2 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.295 ms

- 18.0.0.2 ping statistics ---
2 packets transmitted, 2 received, 8% packet loss, time
rtt min/avg/max/mdev = 0.295/25.284/50.274/24.990 ms

Figure 23 Verifying end to end connectivity between H2 and H4

SDN Data Center Automation as a Firewall Service

&

UNIVERSITY OF ALBERTA

e H3 ping should work with H4

mininet= h3 ping -c2 h4

PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.

64 bytes from 10.0.0.4: icmp_seqg=1 ttl=64 time=9.35 ms
64 bytes from 10.0.0.4: icmp_seg=2 ttl=64 time=0.237 ms

--- 10.0.0.4 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time
rtt minfavg/max/mdev = 0.237/4.794/9.352/4.558 ms

mininet= h4 ping -c2 h3

PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.

64 bytes from 10.0.0.3: icmp_seg=1 ttl=64 time=58.6 ms
64 bytes from 10.0.0.3: icmp_seqg=2 ttl=64 time=0.247 ms

--- 10.0.0.3 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time
rtt minfavg/max/mdev = 0.247/25.460/50.673/25.213 ms

Figure 24 Verifying end to end connectivity between H3 and H4

1002ms

SUMMARY AND CONCLUSION

centralised control and visibility.

FUTURE WORK TO DO:

including VMware NSX, Cisco Application ACI and OpenStack SDN.

orchestration.

SDN Data Center Automation as a Firewall Service

We successfully deployed the firewall plugin to enable the firewall rules in multi-
tenant data center automated environment. This can be used to deploy the firewall

policies for thousands of tenants simultaneously in real data center environment with

Support for real world leading network virtualization and SDN platforms

Extensible management interface — API’s for the cloud automation and

BIBLIOGRAPHY & REFERENCES:

—~——
SEEES

UNIVERSITY OF ALBERTA

https://en.wikipedia.org/wiki/Software-defined networking

https://www.sdxcentral.com/resources/sdn/what-the-definition-of-software-defined-

networking-sdn/

http://www.slideshare.net/SDNCentral/sdnu-101-final

http://www.cisco.com/web/about/ac123/ac147/archived issues/ipj 16-1/161 sdn.html

http://ofsdn.blogspot.ca/

http://www.networkworld.com/article/2905257/sdn/is-an-sdn-switch-a-new-form-of-

a-firewall.html

http://mininet.org/overview/

http://www.brianlinkletter.com/using-the-pox-sdn-controller/

http://searchsdn.techtarget.com/definition/POX

http://www.fortinet.com/solutions/data-center-firewalls.html

http://www.fortinet.com/solutions/sdn.html

https://qgit-scm.com/

http://www.ubuntu.com/download/desktop/install-ubuntu-desktop

https://github.com/mininet/mininet

https://github.com/mininet/mininet/wiki/Mininet-VM-Images

http://www.ubuntu.com/download/desktop

http://image.slidesharecdn.com/sdnpresentation-bbf-final-131111113336-

phpapp02/95/sdn-openflow-17-638.jpg?ch=1384169835

SDN Data Center Automation as a Firewall Service

https://en.wikipedia.org/wiki/Software-defined_networking
https://www.sdxcentral.com/resources/sdn/what-the-definition-of-software-defined-networking-sdn/
https://www.sdxcentral.com/resources/sdn/what-the-definition-of-software-defined-networking-sdn/
http://www.slideshare.net/SDNCentral/sdnu-101-final
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_16-1/161_sdn.html
http://ofsdn.blogspot.ca/
http://www.networkworld.com/article/2905257/sdn/is-an-sdn-switch-a-new-form-of-a-firewall.html
http://www.networkworld.com/article/2905257/sdn/is-an-sdn-switch-a-new-form-of-a-firewall.html
http://mininet.org/overview/
http://www.brianlinkletter.com/using-the-pox-sdn-controller/
http://searchsdn.techtarget.com/definition/POX
http://www.fortinet.com/solutions/data-center-firewalls.html
http://www.fortinet.com/solutions/sdn.html
https://git-scm.com/
http://www.ubuntu.com/download/desktop/install-ubuntu-desktop
https://github.com/mininet/mininet
https://github.com/mininet/mininet/wiki/Mininet-VM-Images
http://www.ubuntu.com/download/desktop
http://image.slidesharecdn.com/sdnpresentation-bbf-final-131111113336-phpapp02/95/sdn-openflow-17-638.jpg?cb=1384169835
http://image.slidesharecdn.com/sdnpresentation-bbf-final-131111113336-phpapp02/95/sdn-openflow-17-638.jpg?cb=1384169835

